WorldWideScience

Sample records for shear induced microstructure

  1. Shear localization and microstructure in coarse grained beta titanium alloy

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha, Hunan (China); Wang, Xiaoyan [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Li, Zezhou [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Ma, Rui [School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Xie, Fangyu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhang, Xiaoyong [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China)

    2016-01-15

    Adiabatic shear localization plays an important role in the deformation and failure of the coarse grained beta titanium alloy Ti-5 Al-5 Mo-5 V-1 Cr-1 Fe with grain size about 1 mm at high strain rate deformation. Hat shaped specimens with different nominal shear strains are used to induce the formation of shear bands under the controlled shock-loading experiments. The true stress in the specimens can reach about 1040 MPa where the strain is about 1.83. The whole shear localization process lasts about 35 μs. The microstructures within the shear band are investigated by optical microscopy, scanning electron microscopy / electron backscatter diffraction, and transmission electron microscopy. The results show that the width of the shear bands decreases with increasing nominal shear strain, and the grains in the transition region near the shear band are elongated along the shear band, and the core of the shear band consists of the ultrafine deformed grains with width of 0.1 μm and heavy dislocations. With the aims of accommodating the imposed shear strain and maintaining neighboring grain compatibility, the grain subdivision continues to take place within the band. A fiber texture is formed in the core of the shear band. The calculated temperature rise in the shear band can reach about 722 K. Dynamic recovery is responsible for the formation of the microstructure in coarse grained beta titanium alloy.

  2. Microstructural evolution of a model, shear-banding micellar solution during shear startup and cessation.

    López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J

    2014-04-01

    We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations.

  3. The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)

    Min Kim, Jung; Kate Gurnon, A.; Wagner, Norman J.; Eberle, Aaron P. R.; Porcar, Lionel

    2014-01-01

    The microstructure-rheology relationship for a model, thermoreversible nanoparticle gel is investigated using a new technique of time-resolved neutron scattering under steady and time-resolved large amplitude oscillatory shear (LAOS) flows. A 21 vol. % gel is tested with varying strength of interparticle attraction. Shear-induced structural anisotropy is observed as butterfly scattering patterns and quantified through an alignment factor. Measurements in the plane of flow show significant, local anisotropy develops with alignment along the compressional axis of flow, providing new insights into how gels flow. The microstructure-rheology relationship is analyzed through a new type of structure-Lissajous plot that shows how the anisotropic microstructure is responsible for the observed LAOS response, which is beyond a response expected for a purely viscous gel with constant structure. The LAOS shear viscosities are observed to follow the “Delaware-Rutgers” rule. Rheological and microstructural data are successfully compared across a broad range of conditions by scaling the shear rate by the strength of attraction, providing a method to compare behavior between steady shear and LAOS experiments. However, important differences remain between the microstructures measured at comparatively high frequency in LAOS experiments and comparable steady shear experiments that illustrate the importance of measuring the microstructure to properly interpret the nonlinear, dynamic rheological response

  4. The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)

    Min Kim, Jung; Kate Gurnon, A.; Wagner, Norman J., E-mail: wagnernj@udel.edu [Department of Chemical and Biomolecular Engineering and Center for Neutron Science, University of Delaware, Newark, Delaware 19716 (United States); Eberle, Aaron P. R. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Porcar, Lionel [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France)

    2014-09-01

    The microstructure-rheology relationship for a model, thermoreversible nanoparticle gel is investigated using a new technique of time-resolved neutron scattering under steady and time-resolved large amplitude oscillatory shear (LAOS) flows. A 21 vol. % gel is tested with varying strength of interparticle attraction. Shear-induced structural anisotropy is observed as butterfly scattering patterns and quantified through an alignment factor. Measurements in the plane of flow show significant, local anisotropy develops with alignment along the compressional axis of flow, providing new insights into how gels flow. The microstructure-rheology relationship is analyzed through a new type of structure-Lissajous plot that shows how the anisotropic microstructure is responsible for the observed LAOS response, which is beyond a response expected for a purely viscous gel with constant structure. The LAOS shear viscosities are observed to follow the “Delaware-Rutgers” rule. Rheological and microstructural data are successfully compared across a broad range of conditions by scaling the shear rate by the strength of attraction, providing a method to compare behavior between steady shear and LAOS experiments. However, important differences remain between the microstructures measured at comparatively high frequency in LAOS experiments and comparable steady shear experiments that illustrate the importance of measuring the microstructure to properly interpret the nonlinear, dynamic rheological response.

  5. Shear-induced chaos

    Lin, Kevin K; Young, Lai-Sang

    2008-01-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed

  6. Shear-induced chaos

    Lin, Kevin K.; Young, Lai-Sang

    2008-05-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed.

  7. Microstructure of shear-induced thixoformed Al- 4.5Cu-1.5Mg alloy via RAP and SSTT processes

    Siamak Nikzad

    2017-07-01

    Full Text Available In this research, the effect of the thixoforming temperature on the microstructure and mechanical properties was investigated in the thixoforming of the feedstock produced by the RAP (recrystallization and partial melting and SSTT (semi-solid thermal transformation processes for Al-4.5Cu-1.5Mg alloy. In the RAP process, the percentage reduction in area was approximately 35%. Thixoforming was done at 610, 620, and 630 °C. Globular microstructure was observed at all temperatures and conditions. The minimum average globule size was 39 μm, and it was obtained in the thixoforming of the feedstock produced by the RAP process in the section of 4 mm in diameter at 620 ° C after applying shear. Its corresponding compressive strength was -877.44 MPa. The maximum average globule size was 136 μm, and it was obtained in the thixoforming of the feedstock produced by the SSTT process in the section of 10 mm in diameter at 630 °C before applying shear. Its corresponding compressive strength was -769.18 MPa. The finest and most spherical globules, as well as the highest compressive strength were obtained at 620 °C in both RAP and SSTT states.

  8. Microstructure evolution of pure copper during a single pass of simple shear extrusion (SSE): role of shear reversal

    Bagherpour, E., E-mail: e.bagherpour@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610–0394 (Japan); Qods, F., E-mail: qods@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Ebrahimi, R., E-mail: ebrahimy@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Miyamoto, H., E-mail: hmiyamot@mail.doshisha.ac.jp [Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610–0394 (Japan)

    2016-06-01

    In the present paper the role of shear reversal on microstructure, texture and mechanical properties of pure copper during a single pass of the simple shear extrusion (SSE) process was investigated. For SSE processing an appropriate die with a linear die profile was designed and constructed, which imposes forward shear in the first half and reverse shear in the second half channels. Electron back-scattering diffraction (EBSD), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were used to evaluate the microstructure of the deformed samples. The geometrical nature of this process imposes a distribution of strain results in the inhomogeneous microstructure and the hardness throughout the plane perpendicular to the extrusion direction. Strain reversal during the process results in a slight reduction in dislocation density, the hardness and mean disorientation angle of the samples, and an increase in the grain size. After a complete pass of SSE, dislocation density decreased by ~14% if compared to the middle of the process. This suggests that the dislocation annihilation occurred by the reversal of the shear strain. The simple shear textures were formed gradually and the strongest simple shear textures were observed on the middle of the SSE channel. The degree of the simple shear textures decreases with the distance from the middle plane where the shear is reversed, but the simple shear textures are still the major components after exit of the channel. Hardness variation was modeled by contributions from dislocation strengthening and grain boundary strengthening, where dislocation density is approximated by the misorientation angle of LAGBs which are regarded as dislocation cell boundaries. As a result, the hardness can be predicted successfully by the microstructural features, i.e. the low-angle boundaries, the mean misorientation angle and the fraction of high-angle grain boundaries.

  9. Shear-induced phase changes in mixtures

    Romig, K.D.; Hanley, H.J.M.

    1986-01-01

    A thermodynamic theory to account for the behavior of liquid mixtures exposed to a shear is developed. One consequence of the theory is that shear-induced phase changes are predicted. The theory is based on a thermodynamics that includes specifically the shear rate in the formalism and is applied to mixtures by a straightforward modification of the corresponding states, conformalsolution approach. The approach is general but is used here for a mixture of Lennard-Jones particles with a Lennard-Jones equation of state as a reference fluid. The results are discussed in the context of the Scott and Van Konynenberg phase classification. It is shown that the influence of a shear does affect substantially the type of the phase behavior. Results from the model mixture are equated loosely with those from real polymeric liquids

  10. Microstructural and Mechanical Characterization of Shear Formed Aluminum Alloys for Airframe and Space Applications

    Troeger, L. P.; Domack, M. S.; Wagner, J. A.

    1998-01-01

    Advanced manufacturing processes such as near-net-shape forming can reduce production costs and increase the reliability of launch vehicle and airframe structural components through the reduction of material scrap and part count and the minimization of joints. The current research is an investigation of the processing-microstructure-property relationship for shear formed cylinders of the Al-Cu-Li-Mg-Ag alloy 2195 for space applications and the Al-Cu-Mg-Ag alloy C415 for airframe applications. Cylinders which have undergone various amounts of shear-forming strain have been studied to assess the microstructure and mechanical properties developed during and after shear forming.

  11. Microstructural evolution in adiabatic shear bands of copper at high strain rates: Electron backscatter diffraction characterization

    Tang Lin; Chen Zhiyong; Zhan Congkun; Yang Xuyue; Liu Chuming; Cai Hongnian

    2012-01-01

    The microstructural evolution of adiabatic shear bands in annealed copper with different large strains at high strain rates has been investigated by electron backscatter diffraction. The results show that mechanical twinning can occur with minimal contribution to shear localization under dynamic loading. Elongated ultrafine grains with widths of 100–300 nm are observed during the evolution of the adiabatic shear bands. A rotational dynamic recrystallization mechanism is proposed to explain the formation of the elongated ultrafine grains. - Highlights: ► The microstructural evolution of ASB is studied by electron backscatter diffraction. ► Twinning can occur in ASB while the contribution to shear localization is slight. ► Elongated ultrafine grains are observed during the evolution process of ASB. ► A possible mechanism is proposed to explain the microstructure evolution of ASB.

  12. Controlling microstructure and texture in magnesium alloy sheet by shear-based deformation processing

    Sagapuram, Dinakar

    Application of lightweight Mg sheet is limited by its low workability, both in production of sheet (typically by multistep hot and cold-rolling) and forming of sheet into components. Large strain extrusion machining (LSEM), a constrained chip formation process, is used to create Mg alloy AZ31B sheet in a single deformation step. The deformation in LSEM is shown to be intense simple shear that is confined to a narrow zone, which results in significant deformation-induced heating up to ~ 200°C and reduces the need for pre-heating to realize continuous sheet forms. This study focuses on the texture and microstructure development in the sheet processed by LSEM. Interestingly, deep, highly twinned steady-state layer develops in the workpiece subsurface due to the compressive field ahead of the shear zone. The shear deformation, in conjunction with this pre-deformed twinned layer, results in tilted-basal textures in the sheet with basal planes tilted well away from the surface. These textures are significantly different from those in rolled sheet, where basal planes are nearly parallel to the surface. By controlling the strain path, the basal plane inclination from the surface could be varied in the range of 32-53°. B-fiber (basal plane parallel to LSEM shear plane), associated with basal slip, is the major texture component in the sheet. An additional minor C2-fiber component appears above 250°C due to the thermal activation of pyramidal slip. Together with these textures, microstructure ranges from severely cold-worked to (dynamically) recrystallized type, with the corresponding grain sizes varying from ultrafine- (~ 200 nm) to fine- (2 mum) grained. Small-scale limiting dome height (LDH) confirmed enhanced formability (~ 50% increase in LDH) of LSEM sheet over the conventional rolled sheet. Premature, twinning-driven shear fractures are observed in the rolled sheet with the basal texture. In contrast, LSEM sheet with a tilted-basal texture favorably oriented for

  13. Shear induced phase transitions induced in edible fats

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.

  14. Microstructural and Mechanical Property Characterization of Shear Formed Aerospace Aluminum Alloys

    Troeger, Lillianne P.; Domack, Marcia S.; Wagner, John A.

    2000-01-01

    Advanced manufacturing processes such as near-net-shape forming can reduce production costs and increase the reliability of launch vehicle and airframe structural components through the reduction of material scrap and part count and the minimization of joints. The current research is an investigation of the processing-microstructure-property relationships for shear formed cylinders of the Al-Cu-Li-Mg-Ag alloy 2195 for space applications and the Al-Cu-Mg-Ag alloy C415 for airframe applications. Cylinders which had undergone various amounts of shear-forming strain were studied to correlate the grain structure, texture, and mechanical properties developed during and after shear forming.

  15. Modeling of Metallic Glass Matrix Composites Under Compression: Microstructure Effect on Shear Band Evolution

    Jiang, Yunpeng; Qiu, Kun; Sun, Longgang; Wu, Qingqing

    2018-01-01

    The relationship among processing, microstructure, and mechanical performance is the most important for metallic glass matrix composites (MGCs). Numerical modeling was performed on the shear banding in MGCs, and the impacts of particle concentration, morphology, agglomerate, size, and thermal residual stress were revealed. Based on the shear damage criterion, the equivalent plastic strain acted as an internal state variable to depict the nucleation, growth, and coalescence of shear bands. The element deletion technique was employed to describe the process of transformation from shear band to micro-crack. The impedance effect of particle morphology on the propagation of shear bands was discussed, whereby the toughening mechanism was clearly interpreted. The present work contributes to the subsequent strengthening and toughening design of MGCs.

  16. Strain-induced shear instability in Liverpool Bay

    Wihsgott, Juliane; Palmer, Matthew R.

    2013-04-01

    Liverpool Bay is a shallow subsection of the eastern Irish Sea with large tides (10 m), which drive strong tidal currents (1 ms-1). The Bay is heavily influenced by large freshwater inputs from several Welsh and English rivers that maintain a strong and persistent horizontal density gradient. This gradient interacts with the sheared tidal currents to strain freshwater over denser pelagic water on a semi-diurnal frequency. This Strain-Induced-Periodic-Stratification (SIPS) has important implications on vertical and horizontal mixing. The subtle interaction between stratification and turbulence in this complex environment is shown to be of critical importance to freshwater transport, and subsequently the fate of associated biogeochemical and pollutant pathways. Recent work identified an asymmetry of current ellipses due to SIPS that increases shear instability in the halocline with the potential to enhance diapycnal mixing. Here, we use data from a short, high intensity process study which reveals this mid-water mechanism maintains prolonged periods of sub-critical gradient Richardson number (Ri ≤ ¼) that suggests shear instability is likely. A time series of measurements from a microstructure profiler identifies the associated increase in turbulence is short lived and 'patchy' but sufficient to promote diapycnal mixing. The significance of this mixing process is further investigated by comparing our findings with long-term observations from the Liverpool Bay Coastal Observatory. We identify that the conditions for shear instability during SIPS are regularly met and suggest that this process contributes to the current underestimates of near coastal mixing observed in regional models. To assist our understanding of the observed processes and to test the current capability of turbulence 'closure schemes' we employ a one-dimensional numerical model to investigate the physical mechanisms driving diapycnal mixing in Liverpool Bay.

  17. Shear induced orientation of edible fat and chocolate crystals

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    Shear-induced orientation of fat crystallites was observed during crystallization of cocoa butter, milk fat, stripped milk fat and palm oil. This universal effect was observed in systems crystallized under high shear. The minor polar components naturally present in milk fat were found to decrease the shear-induced orientation effect in this system. The competition between Brownian and shear forces, described by the Peclet number, determines the crystallite orientation. The critical radius size, from the Gibbs-Thomson equation, provides a tool to understand the effect of shear at the onset stages of crystallization.

  18. Microstructure quantification of ultrafine grained pure copper fabricated by simple shear extrusion (SSE) technique

    Bagherpour, E.; Qods, F.; Ebrahimi, R.; Miyamoto, H.

    2016-01-01

    In the present paper commercially pure copper was processed by simple shear extrusion (SSE) technique up to 12 passes using the so-called route C. For SSE processing an appropriate die with a linear die profile was designed and constructed. Effect of SSE passes on isotropy and uniformity of microstructures are focused. Electron back-scattering diffraction (EBSD) was used to evaluate the microstructure of the deformed samples in three orthogonal planes. To investigate the microstructural uniformity EBSD maps were taken from center to periphery of the extrusion direction plane (ED-plane) samples. Significant evolution in grain refinement was achieved down to sub-micron grain size in all planes. Hardness measurements show a considerable increase in hardness of the material after the processing, which confirms the microstructural evolutions. EBSD scans revealed a homogeneous ultrafine grained microstructure after 12 passes. Micro-shear bands were found as potential sites for accelerating the formation of new grains by fragmentation of the initial grains. The total frequency of coincidence site lattice (CSL) boundaries including Σ3 boundaries increased by the increasing of SSE passes. The higher fraction of low to high angle grain boundaries of SSE compared to equal channel angular pressing is an evidence for the cyclic behavior of SSE technique.

  19. Microstructure quantification of ultrafine grained pure copper fabricated by simple shear extrusion (SSE) technique

    Bagherpour, E., E-mail: e.bagherpour@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Qods, F., E-mail: qods@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Ebrahimi, R., E-mail: ebrahimy@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Miyamoto, H., E-mail: hmiyamot@mail.doshisha.ac.jp [Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan)

    2016-09-30

    In the present paper commercially pure copper was processed by simple shear extrusion (SSE) technique up to 12 passes using the so-called route C. For SSE processing an appropriate die with a linear die profile was designed and constructed. Effect of SSE passes on isotropy and uniformity of microstructures are focused. Electron back-scattering diffraction (EBSD) was used to evaluate the microstructure of the deformed samples in three orthogonal planes. To investigate the microstructural uniformity EBSD maps were taken from center to periphery of the extrusion direction plane (ED-plane) samples. Significant evolution in grain refinement was achieved down to sub-micron grain size in all planes. Hardness measurements show a considerable increase in hardness of the material after the processing, which confirms the microstructural evolutions. EBSD scans revealed a homogeneous ultrafine grained microstructure after 12 passes. Micro-shear bands were found as potential sites for accelerating the formation of new grains by fragmentation of the initial grains. The total frequency of coincidence site lattice (CSL) boundaries including Σ3 boundaries increased by the increasing of SSE passes. The higher fraction of low to high angle grain boundaries of SSE compared to equal channel angular pressing is an evidence for the cyclic behavior of SSE technique.

  20. Microstructural Evolution in Intensively Melt Sheared Direct Chill Cast Al-Alloys

    Jones, S.; Rao, A. K. Prasada; Patel, J. B.; Scamans, G. M.; Fan, Z.

    The work presented here introduces the novel melt conditioned direct chill casting (MC-DC) technology, where intensive melt shearing is applied to the conventional direct-chill casting process. MC-DC casting can successfully produce high quality Al-alloy billets. The results obtained from 80 mm diameter billets cast at speed of 200 mm/min show that MC-DC casting of Al-alloys, substantially refines the microstructure and reduces macro-segregation. In this paper, we present the preliminary results and discuss microstructural evolution during MC-DC casting of Al-alloys.

  1. Shear-mode Crack Initiation Behavior in the Martensitic and Bainitic Microstructures

    Wada Kentaro

    2018-01-01

    Full Text Available Fully reversed torsional fatigue tests were conducted to elucidate the behaviour of shear-mode crack initiation and propagation in one martensitic and two bainitic steels. The relationship between the crack initiation site and microstructure was investigated by means of an electron backscatter diffraction (EBSD technique. From the S-N diagram, two notable results were obtained: (i the shear-mode crack was initiated on the prior austenitic grain boundary in martensitic steel, while in bainitic steels, the crack was initiated along the {110} plane; one of the slip planes of bcc metals, and (ii the torsional fatigue limit of lower bainitic steel with finer grains was 60 MPa higher than that of upper bainitic steel with coarser grains even though the hardnesses were nearly equivalent. The mechanism determining the torsional fatigue strength in these steels is discussed from the viewpoint of microstructure morphology.

  2. Effect of microstructure on the nucleation and initiation of adiabatic shear bands (ASBs) during impact

    Boakye Yiadom, Solomon, E-mail: boakyeys@cc.umanitoba.ca; Khaliq Khan, Abdul, E-mail: abdulkhaliq.khan@umanitoba.ca; Bassim, Nabil, E-mail: nabil.bassim@ad.umanitoba.ca

    2014-10-06

    While instability may occur homogenously during plastic deformation, the formation of adiabatic shear band (ASBs) does not follow a homogenous instability during impact. Geometrical stress concentration sites and/or microstructural inhomogeneities result in the nucleation and initiation of shear strain localization. In this study, initial microstructural inhomogeneity was found to produce nucleation sites for the initiation of ASBs. It was observed that double misfit interfaces and boundary layers with random arrangement of atomic columns are formed around precipitated carbides and they increase the volume fraction of dislocation sources within the specimens. The AISI 4340 steel specimens which were tempered at the lowest temperature had smaller precipitated carbides with high aspect ratios densely distributed within the matrix and were easily susceptible to the formation of ASBs. As the tempering temperature increased, the relative sizes of the carbides increased with a corresponding reduction in their aspect ratios and their distribution density within the matrix and thus were more resistant to the formation of ASBs. In this study, it is demonstrated that the intersection of an activated dislocation source with the direction of maximum shear (regions of stress concentrations) within the specimens during impact, is a necessary condition for the point of intersection to act as a possible site for the nucleation of ASBs, depending on the rate of dislocation generation, local strain and strain rate. At a constant carbide volume fraction, the higher susceptibility of the tempered specimens to the initiation of ASBs is attributed to the volume fraction of the points of intersection between activated dislocation sources and direction of maximum shear during impact. Additionally, the smaller carbides, with their higher aspect ratios and distribution densities, accentuate the effect of strain gradients and the microstructural inhomogeneities associated with the tempered

  3. Boundary Effects and Shear Thickening of Colloidal Suspensions: A study based on measurement of Suspension Microstructure

    Perera, M. Tharanga D.

    Microstructure is key to understanding rheological behaviors of flowing particulate suspensions. During the past decade, Stokesian Dynamics simulations have been the dominant method of determining suspension microstructure. Structure results obtained numerically reveal that an anisotropic structure is formed under high Peclet (Pe) number conditions. Researchers have used various experimental techniques such as small angle neutron scattering (SANS) and light scattering methods to validate microstructure. This work outlines an experimental technique based on confocal microscopy to study microstructure of a colloidal suspension in an index-matched fluid flowing in a microchannel. High resolution scans determining individual particle locations in suspensions 30-50 vol % yield quantitative results of the local microstructure in the form of the pair distribution function, g(r). From these experimentally determined g(r), the effect of shear rate, quantified by the Peclet number as a ratio of shear and Brownian stress, on the suspension viscosity and normal stress follow that seen in macroscopic rheological measurements and simulations. It is generally believed that shear thickening behavior of colloidal suspensions is driven by the formation of hydroclusters. From measurements of particle locations, hydroclusters are identified. The number of hydroclusters grows exponentially with increasing Pe, and the onset of shear thickening is driven by the increase in formation of clusters having 5-8 particles. At higher Pe, we notice the emergence of 12 or more particle clusters. The internal structure of these hydroclusters has been investigated, and there is some evidence that particles internal to hydroclusters preferentially align along the 45° and 135° axis. Beyond observations of bulk suspension behavior, the influence of boundaries on suspension microstructure is also investigated. Experiments were performed for suspensions flowing over smooth walls, made of glass

  4. Inertial shear flow of assemblies of frictionless polygons: Rheology and microstructure.

    Azéma, Émilien; Radjaï, Farhang; Roux, Jean-Noël

    2018-01-05

    Motivated by the understanding of shape effects in granular materials, we numerically investigate the macroscopic and microstructural properties of anisotropic dense assemblies of frictionless polydisperse rigid pentagons in shear flow, and compare them with similar systems of disks. Once subjected to large cumulative shear strains their rheology and microstructure are investigated in uniform steady states, depending on inertial number I, which ranges from the quasistatic limit ([Formula: see text]) to 0.2. In the quasistatic limit both systems are devoid of Reynolds dilatancy, i.e., flow at their random close packing density. Both macroscopic friction angle [Formula: see text], an increasing function of I , and solid fraction [Formula: see text], a decreasing function of I, are larger with pentagons than with disks at small I, but the differences decline for larger I and, remarkably, nearly vanish for [Formula: see text]. Under growing I , the depletion of contact networks is considerably slower with pentagons, in which increasingly anisotropic, but still well-connected force-transmitting structures are maintained throughout the studied range. Whereas contact anisotropy and force anisotropy contribute nearly equally to the shear strength in disk assemblies, the latter effect dominates with pentagons at small I, while the former takes over for I of the order of 10 -2 . The size of clusters of grains in side-to-side contact, typically comprising more than 10 pentagons in the quasistatic limit, very gradually decreases for growing I.

  5. Shear induced structures in crystallizing cocoa butter

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  6. Orientation-dependent microstructure and shear flow behavior of extruded Mg–Li–Zn alloys

    Karami, M.; Mahmudi, R., E-mail: mahmudi@ut.ac.ir

    2015-06-11

    The microstructural and textural evolutions together with the orientation dependencies of mechanical properties of the extruded Mg–6Li–1Zn (LZ61), Mg–8Li–1Zn (LZ81) and Mg–12Li–1Zn (LZ121) alloys were investigated. The shear punch testing (SPT) method was employed to evaluate the room- and high-temperature (200–300 °C) mechanical anisotropy of the extruded materials. Microstructural analysis revealed that, despite a great discontinuous dynamic recrystallization (DDRX) occurred in the extrusion direction (ED) and normal direction (ND), the microstructural anisotropy was observed in all extruded materials, the effect which was more pronounced in the LZ81 alloy by developing banded structure in the ND condition. Textural studies in both hcp LZ61 and LZ81-α phase showed a fiber-type texture with the basal planes being parallel to the ED after extrusion. For the LZ81 alloy, however, the interfering presence of β phase affects the LZ81-α-phase texture by reducing the intensity of the maximum orientations of the basal and prismatic planes. Similar weakened bimodal type texture was formed in the bcc-structured LZ81-β phase, where some <110> poles were located parallel to the ED along with developing some other poles of a fiber-type character. It was also found that the abnormal grain growth might have been encouraged by the strong texture developed in the extruded LZ121 alloy. The SPT results indicated that the texture-dependent hcp LZ61 alloy showed higher shear strength in the ND condition than the ED condition, caused by the texture strengthening effect. As the Li content and deformation temperature increase, the texture dependence of strength properties, and thus, the mechanical anisotropy, decrease so that the LZ121-ND sample showed lower shear strength than the ED specimen due to the greater grain sizes achieved in the ND condition.

  7. Nanostructured pure copper fabricated by simple shear extrusion (SSE): A correlation between microstructure and tensile properties

    Bagherpour, E., E-mail: e.bagherpour@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Qods, F., E-mail: qods@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Ebrahimi, R., E-mail: ebrahimy@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Miyamoto, H., E-mail: hmiyamot@mail.doshisha.ac.jp [Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan)

    2017-01-02

    In the present paper the variation of microstructural parameters and tensile properties of ultrafine-grained copper processed by simple shear extrusion (SSE) via namely route C in 1, 2, 4, 6, 8 and 12 passes is described. TEM analysis showed that the microstructure evolves from lamellar boundaries and elongated cells towards a more equiaxed homogeneous microstructure. After 12 passes, the grain fragmentation occurred in all the directions without any significant elongation in the grains. The minimum cell size is achieved after eight passes. Evaluation of dislocation density using scanning transmission electron microscopy observations shows a gradual increase of dislocation from one to eight passes following a reduction afterward. Yield stress and ultimate tensile stress reach a maximum after eight passes. The uniform elongation attains its minimum after eight passes. Reduction in dislocation density, grain growth, formation of Moiré fringes and twinning after twelve passes of SSE are some of the evidences for the softening. The critical grain size for the formation of nano twins (the onset of grain growth) is predicted. Prosperous prediction of yield stress using a strength–structure relationship helps in the understanding of the effect of dislocation density and microstructural observations.

  8. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures

    Zhan, Hongyi, E-mail: h.zhan@uq.edu.au [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Zeng, Weidong [State Key Laboratory of Solidification Processing, School of Materials, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Gui [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia); Kent, Damon [School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4575 (Australia); Dargusch, Matthew [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia)

    2015-04-15

    The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentation of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.

  9. Shear flows induced by nonlinear evolution of double tearing modes

    Wang Zhengxiong; Kishimoto, Y.; Li, J. Q.; Wang Xiaogang; Dong, J. Q.

    2008-01-01

    Shear flows induced by nonlinear evolution of double tearing modes are investigated in a resistive magnetohydrodynamic model with slab geometry. It is found that intensive and thin poloidal shear flow layers are generated in the magnetic island region driven by coupled reconnection process at both rational surfaces. The structure of the flow layers keeps evolving after the merging of magnetic separatrices and forms a few narrow vortices along the open field lines in the final stage of magnetic reconnection. The effects of the distance between both rational surfaces and the initial magnetic shear on the nonlinear evolution of the plasma flows are also taken into consideration and the relevant mechanism is discussed

  10. Theory of ion Bernstein wave induced shear suppression of turbulence

    Craddock, G. G.; Diamond, P. H.; Ono, M.; Biglari, H.

    1994-06-01

    The theory of radio frequency induced ion Bernstein wave- (IBW) driven shear flow in the edge is examined, with the goal of application of shear suppression of fluctuations. This work is motivated by the observed confinement improvement on IBW heated tokamaks [Phys. Fluids B 5, 241 (1993)], and by previous low-frequency work on RF-driven shear flows [Phys. Rev. Lett. 67, 1535 (1991)]. It is found that the poloidal shear flow is driven electrostatically by both Reynolds stress and a direct ion momentum source, analogous to the concepts of helicity injection and electron momentum input in current drive, respectively. Flow drive by the former does not necessarily require momentum input to the plasma to induce a shear flow. For IBW, the direct ion momentum can be represented by direct electron momentum input, and a charge separation induced stress that imparts little momentum to the plasma. The derived Er profile due to IBW predominantly points inward, with little possibility of direction change, unlike low-frequency Alfvénic RF drive. The profile scale is set by the edge density gradient and electron dissipation. Due to the electrostatic nature of ion Bernstein waves, the poloidal flow contribution dominates in Er. Finally, the necessary edge power absorbed for shear suppression on Princeton Beta Experiment-Modified (PBX-M) [9th Topical Conference on Radio Frequency Power in Plasmas, Charleston, SC, 1991 (American Institute of Physics, New York, 1991), p. 129] is estimated to be 100 kW distributed over 5 cm.

  11. Modeling Shear Induced Von Willebrand Factor Binding to Collagen

    Dong, Chuqiao; Wei, Wei; Morabito, Michael; Webb, Edmund; Oztekin, Alparslan; Zhang, Xiaohui; Cheng, Xuanhong

    2017-11-01

    Von Willebrand factor (vWF) is a blood glycoprotein that binds with platelets and collagen on injured vessel surfaces to form clots. VWF bioactivity is shear flow induced: at low shear, binding between VWF and other biological entities is suppressed; for high shear rate conditions - as are found near arterial injury sites - VWF elongates, activating its binding with platelets and collagen. Based on parameters derived from single molecule force spectroscopy experiments, we developed a coarse-grain molecular model to simulate bond formation probability as a function of shear rate. By introducing a binding criterion that depends on the conformation of a sub-monomer molecular feature of our model, the model predicts shear-induced binding, even for conditions where binding is highly energetically favorable. We further investigate the influence of various model parameters on the ability to predict shear-induced binding (vWF length, collagen site density and distribution, binding energy landscape, and slip/catch bond length) and demonstrate parameter ranges where the model provides good agreement with existing experimental data. Our results may be important for understanding vWF activity and also for achieving targeted drug therapy via biomimetic synthetic molecules. National Science Foundation (NSF),Division of Mathematical Sciences (DMS).

  12. A Conceptual Model for Shear-Induced Phase Behavior in Crystallizing Cocoa Butter

    Mazzanti, G.; Guthrie, S.; Marangoni, A.; Idziak, S.

    2007-01-01

    We propose a conceptual model to explain the quantitative data from synchrotron X-ray diffraction experiments on the shear-induced phase behavior of cocoa butter, the main structural component of chocolate. We captured two-dimensional diffraction patterns from cocoa butter at crystallization temperatures of 17.5, 20.0, and 22.5 o C under shear rates from 45 to 1440 s -1 and under static conditions. From the simultaneous analysis of the integrated intensity, correlation length, lamellar thickness, and crystalline orientation, we postulate a conceptual model to provide an explanation for the distribution of phases II, IV, V, and X and the kinetics of the process. As previously proposed in the literature, we assume that the crystallites grow layer upon layer of slightly different composition. The shear rate and temperature applied define these compositions. Simultaneously, the shear and temperature define the crystalline interface area available for secondary nucleation by promoting segregation and affecting the size distribution of the crystallites. The combination of these factors (composition, area, and size distribution) favors dramatically the early onset of phase V under shear and determines the proportions of phases II, IV, V, and X after the transition. The experimental observations, the methodology used, and the proposed explanation are of fundamental and industrial interest, since the structural properties of crystalline networks are determined by their microstructure and polymorphic crystalline state. Different proportions of the phases will thus result in different characteristics of the final material

  13. Analysis of local microstructure after shear creep deformation of a fine-grained duplex {gamma}-TiAl alloy

    Peter, D., E-mail: dennis.peter@rub.de [Institute for Materials, Ruhr University Bochum, Universitaetsstrasse 150, 44801 Bochum (Germany); Viswanathan, G.B. [Institute for Materials, Ruhr University Bochum, Universitaetsstrasse 150, 44801 Bochum (Germany)] [Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 (United States); Dlouhy, A. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, 61662 Brno, Zizkova 22 (Czech Republic); Eggeler, G. [Institute for Materials, Ruhr University Bochum, Universitaetsstrasse 150, 44801 Bochum (Germany)

    2010-11-15

    The present work characterizes the microstructure of a hot-extruded Ti-45Al-5Nb-0.2B-0.2C (at.%) alloy with a fine-grained duplex microstructure after shear creep deformation (temperature 1023 K; shear stress 175 MPa; shear deformation 20%). Diffraction contrast transmission electron microscopy (TEM) was performed to identify ordinary dislocations, superdislocations and twins. The microstructure observed in TEM is interpreted taking into account the contribution of the applied stress and coherency stresses to the overall local stress state. Two specific locations in the lamellar part of the microstructure were analyzed, where either twins or superdislocations provided c-component deformation in the L1{sub 0} lattice of the {gamma} phase. Lamellar {gamma} grains can be in soft and hard orientations with respect to the resolved shear stress provided by the external load. The presence of twins can be rationalized by the superposition of the applied stress and local coherency stresses. The presence of superdislocations in hard {gamma} grains represents indirect evidence for additional contributions to the local stress state associated with stress redistribution during creep.

  14. Microstructure and Tensile-Shear Properties of Resistance Spot-Welded Medium Mn Steel

    Qiang Jia

    2018-01-01

    Full Text Available The medium Mn steels are gaining increasing attention due to their excellent combination of mechanical properties and material cost. A cold-rolled 0.1C5Mn medium Mn steel with a ferrite matrix plus metastable austenite duplex microstructure was resistance spot-welded with various welding currents and times. The nugget size rose with the increase of heat input, but when the welding current exceeded the critical value, the tensile-shear load increased slowly and became unstable due to metal expulsion. The fusion zone exhibited a lath martensite microstructure, and the heat-affected zone was composed of a ferrite/martensite matrix with retained austenite. The volume fraction of retained austenite decreased gradually from the base metal to the fusion zone, while the microhardness presented a reverse varying trend. Interfacial failure occurred along the interface of the steel sheets with lower loading capacity. Sufficient heat input along with serious expulsion brought about high stress concentration around the weld nugget, and the joint failed in partial interfacial mode. Pull-out failure was absent in this study.

  15. Shear-induced transitions in a ternary polymeric system

    Zvelindovsky, AV; Sevink, GJA; Fraaije, JGEM

    The first three-dimensional simulation of shear-induced phase transitions in a polymeric system has been performed. The method is based on dynamic density-functional theory. The pathways between a bicontinuous phase with developing gyroid mesostructure and a lamellar/cylinder phase coexistence are

  16. Shear-Induced Membrane Fusion in Viscous Solutions

    Kogan, Maxim

    2014-05-06

    Large unilamellar lipid vesicles do not normally fuse under fluid shear stress. They might deform and open pores to relax the tension to which they are exposed, but membrane fusion occurring solely due to shear stress has not yet been reported. We present evidence that shear forces in a viscous solution can induce lipid bilayer fusion. The fusion of 1,2-dioleoyl-sn-glycero-3- phosphocholine (DOPC) liposomes is observed in Couette flow with shear rates above 3000 s-1 provided that the medium is viscous enough. Liposome samples, prepared at different viscosities using a 0-50 wt % range of sucrose concentration, were studied by dynamic light scattering, lipid fusion assays using Förster resonance energy transfer (FRET), and linear dichroism (LD) spectroscopy. Liposomes in solutions with 40 wt % (or more) sucrose showed lipid fusion under shear forces. These results support the hypothesis that under suitable conditions lipid membranes may fuse in response to mechanical-force- induced stress. © 2014 American Chemical Society.

  17. Far-from-equilibrium sheared colloidal liquids: Disentangling relaxation, advection, and shear-induced diffusion

    Lin, Neil Y. C.

    2013-12-01

    Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations. © 2013 American Physical Society.

  18. Far-from-equilibrium sheared colloidal liquids: Disentangling relaxation, advection, and shear-induced diffusion

    Lin, Neil Y. C.; Goyal, Sushmit; Cheng, Xiang; Zia, Roseanna N.; Escobedo, Fernando A.; Cohen, Itai

    2013-01-01

    Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations. © 2013 American Physical Society.

  19. Tensile properties of modified 9Cr-1Mo steel by shear punch testing and correlation with microstructures

    Karthik, V., E-mail: karthik@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Laha, K.; Parameswaran, P.; Chandravathi, K.S.; Kasiviswanathan, K.V.; Jayakumar, T.; Raj, Baldev [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India)

    2011-10-15

    Modified 9Cr-1Mo ferritic steel (P91) is subjected to a series of heat treatments consisting of soaking for 5 min at the selected temperatures in the range 973 K-1623 K (below Ac{sub 1} to above Ac{sub 4}) followed by oil quenching and tempering at 1033 K for 1 h to obtain different microstructural conditions. The tensile properties of the different microstructural conditions are evaluated from small volumes of material by shear punch test technique. A new methodology for evaluating yield strength, ultimate tensile strength and strain hardening exponent from shear punch test by using correlation equations without employing empirical constants is presented and validated. The changes in the tensile properties are related to the microstructural changes of the steel investigated by electron microscopic studies. The steel exhibits minimum strength and hardness when soaked between Ac{sub 1} and Ac{sub 3} (intercritical range) temperatures due to the replacement of original lath martensitic structure with subgrains. The finer martensitic microstructure produced in the steel after soaking at temperatures above Ac{sub 3} leads to a monotonic increase in hardness and strength with decreasing strain hardening exponent. For soaking temperatures above Ac{sub 4}, the hardness and strength of the steel increases marginally due to the formation of soft {delta} ferrite. - Highlights: > A methodology presented for computing tensile properties from shear punch test. > UTS and strain hardening estimated using extended analysis of blanking models. > The analysis methodology validated for different heat treated 9Cr-1Mo steel. > Changes in tensile properties of steel correlated with microstructures.

  20. Shear-induced particle migration in suspensions of rods

    Mondy, L.A. (Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)); Brenner, H. (Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)); Altobelli, S.A. (The Lovelace Institutes, 2425 Ridgecrest Drive, S. E., Albuquerque, New Mexico 87108 (United States)); Abbott, J.R.; Graham, A.L. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

    1994-03-01

    Shear-induced migration of particles occurs in suspensions of neutrally buoyant spheres in Newtonian fluids undergoing shear in the annular space between two rotating, coaxial cylinders (a wide-gap Couette), even when the suspension is in creeping flow. Previous studies have shown that the rate of migration of spherical particles from the high-shear-rate region near the inner (rotating) cylinder to the low-shear-rate region near the outer (stationary) cylinder increases rapidly with increasing sphere size. To determine the effect of particle shape, the migration of rods suspended in Newtonian fluids was recently measured. The behavior of several suspensions was studied. Each suspension contained well-characterized, uniform rods with aspect ratios ranging from 2 to 18 at either 0.30 or 0.40 volume fraction. At the same volume fraction of solids, the steady-state, radial concentration profiles for rods were independent of aspect ratio and were indistinguishable from those obtained from suspended spheres. Only minor differences near the walls (attributable to the finite size of the rods relative to the curvature of the walls) appeared to differentiate the profiles. Data taken during the transition from a well-mixed suspension to the final steady state show that the rate of migration increased as the volume of the individual rods increased.

  1. Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear

    Kim, Juntae; Helgeson, Matthew E., E-mail: helgeson@engineering.ucsb.edu [Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106 (United States); Merger, Dimitri; Wilhelm, Manfred [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany)

    2014-09-01

    We investigate yielding in a colloidal gel that forms a heterogeneous structure, consisting of a two-phase bicontinuous network of colloid-rich domains of fractal clusters and colloid-poor domains. Combining large amplitude oscillatory shear measurements with simultaneous small and ultra-small angle neutron scattering (rheo-SANS/USANS), we characterize both the nonlinear mechanical processes and strain amplitude-dependent microstructure underlying yielding. We observe a broad, three-stage yielding process that evolves over an order of magnitude in strain amplitude between the onset of nonlinearity and flow. Analyzing the intracycle response as a sequence of physical processes reveals a transition from elastic straining to elastoplastic thinning (which dominates in region I) and eventually yielding (which evolves through region II) and flow (which saturates in region III), and allows quantification of instantaneous nonlinear parameters associated with yielding. These measures exhibit significant strain rate amplitude dependence above a characteristic frequency, which we argue is governed by poroelastic effects. Correlating these results with time-averaged rheo-USANS measurements reveals that the material passes through a cascade of structural breakdown from large to progressively smaller length scales. In region I, compression of the fractal domains leads to the formation of large voids. In regions II and III, cluster-cluster correlations become increasingly homogeneous, suggesting breakage and eventually depercolation of intercluster bonds at the yield point. All significant structural changes occur on the micron-scale, suggesting that large-scale rearrangements of hundreds or thousands of particles, rather than the homogeneous rearrangement of particle-particle bonds, dominate the initial yielding of heterogeneous colloidal gels.

  2. Interfacial Microstructure and Shear Strength of Brazed Cu-Cr-Zr Alloy Cylinder and Cylindrical Hole by Au Based Solder

    Zaihua Li

    2017-07-01

    Full Text Available Au-Ge-Ni solder was chosen for brazing of the Cu-Cr-Zr alloy cylinder and a part with a cylindrical hole (sleeve below 550 °C. The Au based solder was first sintered on the surface of the cylinder and then brazed to the inner surface of the sleeve. The effects of the heating process, the temperature and the holding time at the temperature on the microstructure of the sintered layer on the surface of the cylinder, the brazed interfacial microstructure, and the brazed shear strength between the cylinder and the sleeve were investigated by scanning electron microscope, energy dispersive X-ray spectroscopy analysis, and tensile shear tests. By approach of side solder melt feeding and brazing under proper parameters, the voids and micro cracks due to a lack of enough solder melt feeding are greatly lessened and the brazed shear strength of 100 MPa is ensured even with large clearances around 0.01 mm.

  3. Computation of shear-induced collective-diffusivity in emulsions

    Malipeddi, Abhilash Reddy; Sarkar, Kausik

    2017-11-01

    The shear-induced collective-diffusivity of drops in an emulsion is calculated through simulation. A front-tracking finite difference method is used to integrate the Navier-Stokes equations. When a cloud of drops is subjected to shear flow, after a certain time, the width of the cloud increases with the 1/3 power of time. This scaling of drop-cloud-width with time is characteristic of (sub-)diffusion that arises from irreversible two-drop interactions. The collective diffusivity is calculated from this relationship. A feature of the procedure adopted here is the modest computational requirement, wherein, a few drops ( 70) in shear for short time ( 70 strain) is found to be sufficient to get a good estimate. As far as we know, collective-diffusivity has not been calculated for drops through simulation till now. The computed values match with experimental measurements reported in the literature. The diffusivity in emulsions is calculated for a range of Capillary (Ca) and Reynolds (Re) numbers. It is found to be a unimodal function of Ca , similar to self-diffusivity. A sub-linear increase of the diffusivity with Re is seen for Re < 5 . This work has been limited to a viscosity matched case.

  4. Non-gyrotropic pressure anisotropy induced by velocity shear.

    Tenerani, A.; Del Sarto, D.; Pegoraro, F.; Califano, F.

    2015-12-01

    We discuss how, in a collisionless magnetized plasma, a sheared velocity field may lead to the anisotropization of an initial Maxwellian state. By including the full pressure tensor dynamics in a fluid plasma model, we show, analytically and numerically, that a sheared velocity field makes an initial isotropic state anisotropic and non-gyrotropic [1], i.e., makes the plasma pressure tensor anisotropic also in the plane perpendicular to the magnetic field. The propagation of transverse magneto-elastic waves in the anisotropic plasma affects the process of formation of a non-gyrotropic pressure and can lead to its spatial filamentation. This plasma dynamics implies in particular that isotropic MHD equilibria cease to be equilibria in presence of a stationary sheared flow. Similarly, in the case of turbulence, where small-scale spatial inhomogeneities are naturally developed during the direct cascade, we may expect that isotropic turbulent states are not likely to exist whenever a full pressure tensor evolution is accounted for. These results may be relevant to understanding the agyrotropic pressure configurations which are well documented in solar wind measurements and possibly correlated to plasma flows (see e.g. Refs.[2,3]), and which have also been measured in Vlasov simulations of Alfvenic turbulence [4]. [1] D. Del Sarto, F. Pegoraro, F. Califano, "Pressure anisotropy and small spatial scales induced by a velocity shear", http://arxiv.org/abs/1507.04895 [2] H.F. Astudillo, E. Marsch, S. Livi, H. Rosenbauer, "TAUS measurements of non-gyrotropic distribution functions of solar wind alpha particles", AIP Conf. Proc. 328, 289 (1996). [3] A. Posner, M.W. Liemhon, T.H. Zurbuchen, "Upstream magnetospheric ion flux tube within a magnetic cloud: Wind/STICS", Geophys. Res. Lett. 30, (2003). [4] S. Servidio, F. Valentini, F. Califano, P. Veltri, "Local kinetic effects in Two-Dimensional Plasma Turbulence", Phys. Rev. Lett. 108, 045001 (2012).

  5. Shear deformation-induced anisotropic thermal conductivity of graphene.

    Cui, Liu; Shi, Sanqiang; Wei, Gaosheng; Du, Xiaoze

    2018-01-03

    Graphene-based materials exhibit intriguing phononic and thermal properties. In this paper, we have investigated the heat conductance in graphene sheets under shear-strain-induced wrinkling deformation, using equilibrium molecular dynamics simulations. A significant orientation dependence of the thermal conductivity of graphene wrinkles (GWs) is observed. The directional dependence of the thermal conductivity of GWs stems from the anisotropy of phonon group velocities as revealed by the G-band broadening of the phonon density of states (DOS), the anisotropy of thermal resistance as evidenced by the G-band peak mismatch of the phonon DOS, and the anisotropy of phonon relaxation times as a direct result of the double-exponential-fitting of the heat current autocorrelation function. By analyzing the relative contributions of different lattice vibrations to the heat flux, we have shown that the contributions of different lattice vibrations to the heat flux of GWs are sensitive to the heat flux direction, which further indicates the orientation-dependent thermal conductivity of GWs. Moreover, we have found that, in the strain range of 0-0.1, the anisotropy ratio of GWs increases monotonously with increasing shear strain. This is induced by the change in the number of wrinkles, which is more influential in the direction perpendicular to the wrinkle texture. The findings elucidated here emphasize the utility of wrinkle engineering for manipulation of nanoscale heat transport, which offers opportunities for the development of thermal channeling devices.

  6. A microstructural study of SAFOD gouge from actively creeping San Andreas Fault zone; Implications for shear localization models

    Blackburn, E. D.; Hadizadeh, J.; Babaie, H. A.

    2009-12-01

    The prevailing models of shear localization in fault gouges are mainly based on experimental aggregates that necessarily neglect the effects of chemical and mechanical maturation with time. The SAFOD cores have provided a chance to test whether cataclasis as a deformation mechanism and factors such as porosity and particle size, critical in some existing shear localization models continue to be critical in mature gouges. We studied a core sample from 3194m MD in the SAFOD phase 3, which consists of intensely foliated shale-siltstone cataclasites in contact with less deformed shale. Microstructures were studied in 3 perpendicular planes with reference to foliation using high resolution scanning electron microscopy, cathodoluminescence imaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The cataclastic foliation, recognizable at length scales >100 μm, is primarily defined by bands of clay gouge with distinct microstructure, clay content, and porosity. Variations in elemental composition and porosity of the clay gouge were measured continuously across the foliation. Prominent features within the foliation bands include lens-shaped clusters of highly brecciated and veined siltstone fragments, pyrite smears, and pyrite-cemented cataclasites. The microstructural relations and chemical data provide clear evidence of multiple episodes of veining and deformation with some possibility of relative age determination for the episodes. There is evidence of syn-deformation hydrothermal changes including growth and brittle shear of pyrite, alteration of host shale clays to illite-smectite clays and Fe-rich smectite. Evidence of grain-boundary corrosion of non-clay mineral fragments suggests pressure solution creep. The gouge porosity estimates varied from 0-18% (about 3% in less deformed shale) with the highest value in the bands with abundant siltstone fragments. The banding is mechanically significant since it pervasively segregates the gouge into

  7. Microstructure evolution associated with adiabatic shear bands and shear band failure in ballistic plug formation in Ti-6Al-4V targets

    Murr, L.E.; Ramirez, A.C.; Gaytan, S.M.; Lopez, M.I.; Martinez, E.Y.; Hernandez, D.H.; Martinez, E.

    2009-01-01

    The microstructures and microstructure evolution associated with adiabatic shear band (ASB) formation in ballistic plugging in thick (2.5 cm) Ti-6Al-4V targets impacted by cylindrical, 4340 steel projectiles (2.0 cm in height) at impact velocities ranging from 633 m/s to 1027 m/s (just above the ballistic limit) were investigated by optical and transmission electron microscopy. ASB width increased from 10 μm to 21 μm as the velocity increased. ASB evolution was accompanied by the evolution of dark deformation bands composed of α' martensite platelets which increased in density with increasing impact velocity. The corresponding Vickers microindentation hardness also increased from HV 619 to HV 632 in contrast to the surrounding matrix microindentation hardness of HV 555. These deformation bands were not necessarily precursors to ASB formation. The ASB average Vickers microindentation hardness was essentially constant at HV 645, a 16% increase over the matrix. This constant microindentation hardness was characterized by a consistent DRX grain structure which varied from equiaxed, defect-free grains (∼2 μm diameter) to heavily dislocated, equiaxed grains. Cracks nucleating and propagating within the ABSs were observed to increase from 8% to 87% of the ASB length with increasing impact velocity.

  8. Microstructural Changes of the Nanostructured Bainitic Steel Induced by Quasi-Static and Dynamic Deformation

    Marcisz J.

    2017-12-01

    Full Text Available Changes in the microstructure of nanostructured bainitic steel induced by quasi-static and dynamic deformation have been shown in the article. The method of deformation and strain rate have important impact on the microstructure changes especially due to strain localization. Microstructure of nanostructured steel Fe-0.6%C-1.9Mn-1.8Si-1.3Cr-0.7Mo consists of nanometer size carbide-free bainite laths and 20-30% volume fraction of retained austenite. Quasi-static and dynamic (strain rate up to 2×102 s−1 compression tests were realized using Gleeble simulator. Dynamic deformation at the strain rate up to 9×103 s−1 was realized by the Split Hopkinson Pressure Bar method (SHPB. Moreover high energy firing tests of plates made of the nanostructured bainitic steel were carried out to produce dynamically deformed material for investigation. Adiabatic shear bands were found as a result of localization of deformation in dynamic compression tests and in firing tests. Microstructure of the bands was examined and hardness changes in the vicinity of the bands were determined. The TEM examination of the ASBs showed the change from the internal shear band structure to the matrix structure to be gradual. This study clearly resolved that the interior (core of the band has an extremely fine grained structure with grain diameter ranging from 100 nm to 200 nm. Martensitic twins were found within the grains. No austenite and carbide reflections were detected in the diffraction patterns taken from the core of the band. Hardness of the core of the ASBs for examined variants of isothermal heat treatment was higher about 300 HV referring to steel matrix hardness.

  9. Microstructural evolution in deformed austenitic TWinning Induced Plasticity steels

    Van Tol, R.T.

    2014-01-01

    This thesis studies the effect of plastic deformation on the stability of the austenitic microstructure against martensitic transformation and diffusional decomposition and its role in the phenomenon of delayed fracture in austenitic manganese (Mn)-based TWinning Induced Plasticity (TWIP) steels.

  10. The effect of microstructure on the sheared edge quality and hole expansion ratio of hot-rolled 700 MPa steel

    Kaijalainen, A.; Kesti, V.; Vierelä, R.; Ylitolva, M.; Porter, D.; Kömi, J.

    2017-09-01

    The effects of microstructure on the cutting and hole expansion properties of three thermomechanically rolled steels have been investigated. The yield strength of the studied 3 mm thick strip steels was approximately 700 MPa. Detailed microstructural studies using laser scanning confocal microscopy (LCSM), FESEM and FESEM-EBSD revealed that the three investigated materials consist of 1) single-phase polygonal ferrite, 2) polygonal ferrite with precipitates and 3) granular bainite. The quality of mechanically sheared edges were evaluated using visual inspection and LSCM, while hole expansion properties were characterised according to the methods described in ISO 16630. Roughness values (Ra and Rz) of the sheet edge with different cutting clearances varied between 12 µm to 21 µm and 133 µm to 225 µm, respectively. Mean hole expansion ratios varied from 28.4% to 40.5%. It was shown that granular bainite produced the finest cutting edge, but the hole expansion ratio remained at the same level as in the steel comprising single-phase ferrite. This indicates that a single-phase ferritic matrix enhances hole expansion properties even with low quality edges. A brief discussion of the microstructural features controlling the cutting quality and hole expansion properties is given.

  11. Microstructure evolution and shear strength of vacuum brazed joint for super-Ni/NiCr laminated composite with Ni–Cr–Si–B amorphous interlayer

    Wu, Na; Li, Yajiang; Ma, Qunshuang

    2014-01-01

    Highlights: • Divorced eutectic of γ-Ni and Ni 3 B formed in the brazed region. • The detailed isothermal solidification mechanism was proposed. • Borides formed at the interfaces at different temperatures were identified. • Effect of brazing temperatures on microstructure and shear strength was investigated. • Excellent joint with shear strength of 191 MPa was obtained at 1100 °C for 20 min. - Abstract: Vacuum brazing of super-Ni/NiCr laminated composite and Cr18–Ni8 steel was carried out with Ni–Cr–Si–B amorphous interlayer at different temperatures (1060–1150 °C). The effects of brazing temperature on the microstructure evolution and shear strength of the joints were investigated. Microstructure, chemical composition and microhardness of the joints were studied using field emission scanning electron microscope, energy dispersive spectroscopy, X-ray diffraction and microsclerometer. Shear strength of the joints were measured by the electromechanical universal testing machine. Diffusion of B was the controlling factor for microstructure evolution. The detailed isothermal solidification mechanism was proposed in this study. The fracture morphology of the joint made at 1100 °C exhibited plastic feature and the shear strength reached 191 MPa. Bulky Ni 3 B formed in super-Ni cover layer near the brazed region when performed at 1060–1100 °C while Ni–B eutectic formed instead at 1150 °C

  12. Modelling and analysis of canister and buffer for earthquake induced rock shear and glacial load

    Hernelind, Jan

    2010-08-01

    Existing fractures crossing a deposition hole may be activated and sheared by an earthquake. The effect of such a rock shear has been investigated by finite element calculations. The buffer material in a deposition hole acts as a cushion between the canister and the rock, which reduces the effect of a rock shear substantially. Lower density of the buffer yields softer material and reduced effect on the canister. However, at the high density that is suggested for a repository the stiffness of the buffer is rather high. The stiffness is also a function of the rate of shear, which means that there may be a substantial damage on the canister at very high shear rates. However, the earthquake induced rock shear velocity is lower than 1 m/s which is not considered to be very high. The rock shear has been modelled with finite element calculations with the code Abaqus. A three dimensional finite element mesh of the buffer and the canister has been created and simulation of a rock shear has been performed. The rock shear has been assumed to take place either perpendicular to the canister at the quarter point or at an inclined angle of 22.5 deg in tension. Furthermore horizontal shear has been studied using a vertical shear plane either at the centre or at 1/4-point for the canister. The shear calculations have been driven to a total shear of 10 cm. The canister also has to be designed to withstand the loads caused by a thick ice sheet. Besides rock shear the model has been used to analyse the effect of such glacial load (either combined with rock shear or without rock shear). This report also summarizes the effect when considering creep in the copper shell

  13. Modelling and analysis of canister and buffer for earthquake induced rock shear and glacial load

    Hernelind, Jan (5T Engineering AB (Sweden))

    2010-08-15

    Existing fractures crossing a deposition hole may be activated and sheared by an earthquake. The effect of such a rock shear has been investigated by finite element calculations. The buffer material in a deposition hole acts as a cushion between the canister and the rock, which reduces the effect of a rock shear substantially. Lower density of the buffer yields softer material and reduced effect on the canister. However, at the high density that is suggested for a repository the stiffness of the buffer is rather high. The stiffness is also a function of the rate of shear, which means that there may be a substantial damage on the canister at very high shear rates. However, the earthquake induced rock shear velocity is lower than 1 m/s which is not considered to be very high. The rock shear has been modelled with finite element calculations with the code Abaqus. A three dimensional finite element mesh of the buffer and the canister has been created and simulation of a rock shear has been performed. The rock shear has been assumed to take place either perpendicular to the canister at the quarter point or at an inclined angle of 22.5 deg in tension. Furthermore horizontal shear has been studied using a vertical shear plane either at the centre or at 1/4-point for the canister. The shear calculations have been driven to a total shear of 10 cm. The canister also has to be designed to withstand the loads caused by a thick ice sheet. Besides rock shear the model has been used to analyse the effect of such glacial load (either combined with rock shear or without rock shear). This report also summarizes the effect when considering creep in the copper shell

  14. Permeability and 3-D melt geometry in shear-induced high melt fraction conduits

    Zhu, W.; Cordonnier, B.; Qi, C.; Kohlstedt, D. L.

    2017-12-01

    Observations of dunite channels in ophiolites and uranium-series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. Formation of high melt fraction conduits could result from mechanical shear, pyroxene dissolution, and lithological partitioning. Deformation experiments (e.g. Holtzman et al., 2003) demonstrate that shear stress causes initially homogeneously distributed melt to segregate into an array of melt-rich bands, flanked by melt-depleted regions. At the same average melt fraction, the permeability of high melt fraction conduits could be orders of magnitude higher than that of their homogenous counterparts. However, it is difficult to determine the permeability of melt-rich bands. Using X-ray synchrotron microtomography, we obtained high-resolution images of 3-dimensional (3-D) melt distribution in a partially molten rock containing shear-induced high melt fraction conduits. Sample CQ0705, an olivine-alkali basalt aggregate with a nominal melt fraction of 4%, was deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa to a shear strain of 13.3. A sub-volume of CQ0705 encompassing 3-4 melt-rich bands was imaged. Microtomography data were reduced to binary form so that solid olivine is distinguishable from basalt glass. At a spatial resolution of 160 nm, the 3-D images reveal the shape and connectedness of melt pockets in the melt-rich bands. Thin melt channels formed at grain edges are connected at large melt nodes at grain corners. Initial data analysis shows a clear preferred orientation of melt pockets alignment subparallel to the melt-rich band. We use the experimentally determined geometrical parameters of melt topology to create a digital rock with identical 3-D microstructures. Stokes flow simulations are conducted on the digital rock to obtain the permeability tensor. Using this digital rock physics approach, we determine how deformation

  15. Onset of shear thinning in glassy liquids: Shear-induced small reduction of effective density.

    Furukawa, Akira

    2017-01-01

    We propose a simple mechanism for describing the onset of shear thinning in a high-density glassy liquid. In a shear flow, along the compression axis, the overlap between neighboring particles is more enhanced than that at equilibrium, meaning that the "effective" size is reduced along this axis. On the other hand, along the extension axis perpendicular to the compression axis, the average structural configurations are stretched, but it does not indicate the expansion of the "effective" size itself. This asymmetric shear flow effect for particles results in a small reduction of the "effective" density. Because, in glass-forming liquids, the structural relaxation time τ_{α} strongly depends on the density ρ, even a very small reduction of the effective density should lead to a significant decrease of the relaxation time under shear flow. We predict that the crossover shear rate from Newtonian to non-Newtonian flow behaviors is given by γ[over ̇]_{c}=[ρ(∂τ_{α}/∂ρ)]^{-1}, which can be much smaller than 1/τ_{α} near the glass transition point. It is shown that this prediction is consistent with the results of molecular dynamics simulations.

  16. Shear-Induced Membrane Fusion in Viscous Solutions

    Kogan, Maxim; Feng, Bobo; Nordé n, Bengt; Rocha, Sandra; Beke-Somfai, Tamá s

    2014-01-01

    Large unilamellar lipid vesicles do not normally fuse under fluid shear stress. They might deform and open pores to relax the tension to which they are exposed, but membrane fusion occurring solely due to shear stress has not yet been reported. We

  17. Shear-induced inflation of coronal magnetic fields

    Klimchuk, J.A.

    1990-01-01

    Using numerical models of force-free magnetic fields, the shearing of footprints in arcade geometries leading to an inflation of the coronal magnetic field was examined. For each of the shear profiles considered, all of the field lines become elevated compared with the potential field. This includes cases where the shear is concentrated well away from the arcade axis, such that B(sub z), the component of field parallel to the axis, increases outward to produce an inward B(sub z) squared/8 pi magnetic pressure gradient force. These results contrast with an earlier claim, shown to be incorrect, that field lines can sometimes become depressed as a result of shear. It is conjectured that an inflation of the entire field will always result from the shearing of simple arcade configurations. These results have implications for prominence formation, the interplanetary magnetic flux, and possibly also coronal holes. 38 refs

  18. Correlation of yield strength with irradiation-induced microstructure in AISI 316 stainless steel

    Simons, R.L.; Hulbert, L.A.

    1985-10-01

    Improvements in the correlation of radiation-induced change in yield strength in AISI 316 stainless steel with microstructure were made by re-examining the role of short-range obstacles. Effects due to the size of the obstacles relative to their spacing and shape of the obstacles were applied. The concept of shearing the precipitates instead of bowing around them was used to explain the effects of precipitate hardening. It is concluded that large changes in yield strength may be produced in high swelling materials. Voids will dominate the hardening at high dpa. The increase in hardening will depend on the diameter of the voids even though the swelling in the material is the same. Precipitate hardening at high fluence (>15 dpa) make a significant contribution for irradiation temperatures above 500 0 C

  19. Edge-Induced Shear Banding in Entangled Polymeric Fluids.

    Hemingway, Ewan J; Fielding, Suzanne M

    2018-03-30

    Despite decades of research, the question of whether solutions and melts of highly entangled polymers exhibit shear banding as their steady state response to a steadily imposed shear flow remains controversial. From a theoretical viewpoint, an important unanswered question is whether the underlying constitutive curve of shear stress σ as a function of shear rate γ[over ˙] (for states of homogeneous shear) is monotonic, or has a region of negative slope, dσ/dγ[over ˙]<0, which would trigger banding. Attempts to settle the question experimentally via velocimetry of the flow field inside the fluid are often confounded by an instability of the free surface where the sample meets the outside air, known as "edge fracture." Here we show by numerical simulation that in fact even only very modest edge disturbances-which are the precursor of full edge fracture but might well, in themselves, go unnoticed experimentally-can cause strong secondary flows in the form of shear bands that invade deep into the fluid bulk. Crucially, this is true even when the underlying constitutive curve is monotonically increasing, precluding true bulk shear banding in the absence of edge effects.

  20. Deformation-Induced Microstructural Banding in TRIP Steels

    Celotto, S.; Ghadbeigi, H.; Pinna, C.; Shollock, B. A.; Efthymiadis, P.

    2018-05-01

    Microstructure inhomogeneities can strongly influence the mechanical properties of advanced high-strength steels in a detrimental manner. This study of a transformation-induced plasticity (TRIP) steel investigates the effect of pre-existing contiguous grain boundary networks (CGBNs) of hard second-phases and shows how these develop into bands during tensile testing using in situ observations in conjunction with digital image correlation (DIC). The bands form by the lateral contraction of the soft ferrite matrix, which rotates and displaces the CGBNs of second-phases and the individual features within them to become aligned with the loading direction. The more extensive pre-existing CGBNs that were before the deformation already aligned with the loading direction are the most critical microstructural feature for damage initiation and propagation. They induce micro-void formation between the hard second-phases along them, which coalesce and develop into long macroscopic fissures. The hard phases, retained austenite and martensite, were not differentiated as it was found that the individual phases do not play a role in the formation of these bands. It is suggested that minimizing the presence of CGBNs of hard second-phases in the initial microstructure will increase the formability.

  1. Influence of sodium chloride on shear flow induced starch-gluten separation from Soissons wheat dough

    Zalm, van der E.E.J.; Goot, van der A.J.; Boom, R.M.

    2010-01-01

    Wheat dough can be separated into a starch-rich and a gluten-rich fraction by subjecting the dough to curvilinear shear flow. This paper presents the effect of salt (NaCl) addition on the shear-induced separation process. The separation (defined as the changes in protein concentration in the various

  2. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M.; Eguchi, Satoru; Brown, Michael D.; Park, Joon-Young

    2015-01-01

    This study assesses effects of aerobic exercise training on the release of microparticles from endothelial cells and corroborates these findings using an in vitro experimental exercise stimulant, laminar shear stress. Furthermore, this study demonstrated that shear stress-induced mitochondrial biogenesis mediates these effects against endothelial cell activation and injury.

  3. High-n helicity-induced shear Alfven eigenmodes

    Nakajima, N.; Cheng, C.Z.; Okamoto, M.

    1992-05-01

    The high-n Helicity-induced shear Alfven Eigenmodes (HAE) are considered both analytically and numerically for the straight helical magnetic system, where n is the toroidal mode number. The eigenmode equation for the high-n HAE modes is derived along the field line and with the aid of the averaging method is shown to reduce to the Mathieu equation asymptotically. The discrete HAE modes are shown to exist inside the continuum spectrum gaps. The continuous spectrum gaps appear around ω 2 = ω A 2 [N(lι-m)/2] 2 for N = 1,2,.., where ω A is the toroidal Alfven transit frequency, and l, m, and ι are the polarity of helical coils, the toroidal pitch number of helical coils, and the rotational transform, respectively. For the same ω A and ι, the frequency of the helical continuum gap is larger than that of the continuum gap in tokamak plasmas by |l-ι -1 m|. The polarity of helical coils l plays a crucial role in determining the spectrum gaps and the properties of the high-n HAE modes. The spectrum gaps near the magnetic axis are created by the helical ripple with circular flux surfaces for l = 1, and ≥ 3 helicals. For l = 2 helical systems, the spectrum gaps are created by the ellipticity of the flux surfaces. These analytical results for the continuum gaps and the existence of the high-n HAE modes in the continuum gaps are confirmed numerically for the l = 2 case, and we find that the HAE modes exist for mode structures with the even and the odd parities. (author)

  4. Microstructural Origins of Nonlinear Response in Associating Polymers under Oscillatory Shear

    Mark A. Wilson

    2017-10-01

    Full Text Available The response of associating polymers with oscillatory shear is studied through large-scale simulations. A hybrid molecular dynamics (MD, Monte Carlo (MC algorithm is employed. Polymer chains are modeled as a coarse-grained bead-spring system. Functionalized end groups, at both ends of the polymer chains, can form reversible bonds according to MC rules. Stress-strain curves show nonlinearities indicated by a non-ellipsoidal shape. We consider two types of nonlinearities. Type I occurs at a strain amplitude much larger than one, type II at a frequency at which the elastic storage modulus dominates the viscous loss modulus. In this last case, the network topology resembles that of the system at rest. The reversible bonds are broken and chains stretch when the system moves away from the zero-strain position. For type I, the chains relax and the number of reversible bonds peaks when the system is near an extreme of the motion. During the movement to the other extreme of the cycle, first a stress overshoot occurs, then a yield accompanied by shear-banding. Finally, the network restructures. Interestingly, the system periodically restores bonds between the same associating groups. Even though major restructuring occurs, the system remembers previous network topologies.

  5. Shear-induced partial translational ordering of a colloidal solid

    Ackerson, B. J.; Clark, N. A.

    1984-08-01

    Highly charged submicrometer plastic spheres suspended in water at low ionic strength will order spontaneously into bcc crystals or polycrystals. A simple linear shear orients and disorders these crystals by forcing (110) planes to stack normal to the shear gradient and to slide relative to each other with a direction parallel to the solvent flow. In this paper we analyze in detail the disordering and flow processes occurring beyond the intrinsic elastic limit of the bcc crystal. We are led to a model in which the flow of a colloidal crystal is interpreted as a fundamentally different process from that found in atomic crystals. In the colloidal crystal the coupling of particle motion to the background fluid forces a homogeneous flow, where every layer is in motion relative to its neighboring layers. In contrast, the plastic flow in an atomic solid is defect mediated flow. At the lowest applied stress, the local bcc order in the colloidal crystal exhibits shear strains both parallel and perpendicular to the direction of the applied stress. The magnitude of these deformations is estimated using the configurational energy for bcc and distorted bcc crystals, assuming a screened Coulomb pair interaction between colloidal particles. As the applied stress is increased, the intrinsic elastic limit of the crystal is exceeded and the crystal begins to flow with adjacent layers executing an oscillatory path governed by the balance of viscous and screened Coulomb forces. The path takes the structure from the bcc1 and bcc2 twins observed at zero shear to a distorted two-dimensional hcp structure at moderate shear rates, with a loss of interlayer registration as the shear is increased. This theoretical model is consistent with other experimental observations, as well.

  6. Microstructures and rheology of the shear zones in granite Marmarajá, Lavalleja Province, Uruguay

    Scaglia, F.; Paris, A.

    2010-01-01

    The study area (coordinates x : 567 , x : 577.7 , y: 6216 : and ' : 6225 km ) is located near the town of Marschallin (Department of Lavalleja). It is represented mostly by granite, deformed granites and quartzite mylonites , whereas amphibolites and volcanic breccias are of small size . The Marmarajá (biotite - monzogranite) batholith, considered to post- orogenic tardi occupies about 80% of the study area , and is fragmented into three sectors per kilometer mylonitic belts by the SW- NE direction. The deformed granite is located west and east of the study area forming an extensive parallel on both sides of the mylonite belt. The mylonites are in topographic low along which the major waterways of the narrow belts direction N50E and dips 40 ° -50 ° to the area SE with thicknesses of up to 1km and lengths of tens of kilometers continuously , north and south of the area study. These belts have similar directions mylonitic the Sierra megatranscurrencia whale and may be contemporaneous to it. In turn, the kinematic indicators suggest sinistral sense justifying further similarity to the previous one. Major fractures have three orientations: N15E ; Vertical to subvertical N64E and N45W ( approx. 80 °). Based on studies of the lithologies petrographic areas of low deformation and is relieved areas of moderate to high strain, each having typical microstructures of ductile deformation (greater than 400 ° C )

  7. Interfacial microstructure and shear strength of reactive air brazed oxygen transport membrane ceramic-metal alloy joints

    FR, Wahid Muhamad; Yoon, Dang-Hyok; Raju, Kati; Kim, Seyoung; Song, Kwang-sup; Yu, Ji Haeng

    2018-01-01

    To fabricate a multi-layered structure for maximizing oxygen production, oxygen transport membrane (OTM) ceramics need to be joined or sealed hermetically metal supports for interfacing with the peripheral components of the system. Therefore, in this study, Ag-10 wt% CuO was evaluated as an effective filler material for the reactive air brazing of dense Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC-LSM) OTM ceramics. Thermal decomposition in air and wetting behavior of the braze filler was performed. Reactive air brazing was performed at 1050 °C for 30 min in air to join GDC-LSM with four different commercially available high temperature-resistant metal alloys, such as Crofer 22 APU, Inconel 600, Fecralloy, and AISI 310S. The microstructure and elemental distribution of the ceramic-ceramic and ceramic-metal interfaces were examined from polished cross-sections. The mechanical shear strength at room temperature for the as-brazed and isothermally aged (800 °C for 24 h) joints of all the samples was compared. The results showed that the strength of the ceramic-ceramic joints was decreased marginally by aging; however, in the case of metal-ceramic joints, different decreases in strengths were observed according to the metal alloy used, which was explained based on the formation of different oxide layers at the interfaces.

  8. Effect of Post-Braze Heat Treatment on the Microstructure and Shear Strength of Cemented Carbide and Steel Using Ag-Based Alloy

    Winardi, Y.; Triyono; Muhayat, N.

    2018-03-01

    The aim of the present study was to investigate the effect temperature of heat treatment process on the interfacial microstructure and mechanical properties of cemented carbide/carbon steel single lap joint brazed using Ag based alloy filler metal. The brazing process was carried out using torch brazing. Heat treatment process was carried out in induction furnace on the temperature of 700, 725, and 750°C, for 30 minutes. Microstructural examinations and phase analysis were performed using scanning electron microscopy (SEM) equipped with energy dispersion spectrometry (EDS). Shear strength of the joints was measured by the universal testing machine. The results of the microstructural analyses of the brazed area indicate that the increase temperature of treatment lead to the increase of solid solution phase of enrichted Cu. Based on EDS test, the carbon elements spread to all brazed area, which is disseminated by base metals. Shear strength joint is increased with temperature treatment. The highest shear strength of the brazed joint was 214,14 MPa when the heated up at 725°C.

  9. High glucose attenuates shear-induced changes in endothelial hydraulic conductivity by degrading the glycocalyx.

    Sandra V Lopez-Quintero

    Full Text Available Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localizes typically in regions of low or disturbed shear stress, but in diabetics, the distribution is more diffuse, suggesting that there is a fundamental difference in the way cells sense shear forces. In the present study, we examined the effect of hyperglycemia on mechanotranduction in bovine aortic endothelial cells (BAEC. After six days in high glucose media, we observed a decrease in heparan sulfate content coincident with a significant attenuation of the shear-induced hydraulic conductivity response, lower activation of eNOS after exposure to shear, and reduced cell alignment with shear stress. These studies are consistent with a diabetes-induced change to the glycocalyx altering endothelial response to shear stress that could affect the distribution of atherosclerotic plaques.

  10. Shear induced hexagonal ordering observed in an ionic viscoelastic fluid in flow past a surface

    Hamilton, W.A.; Butler, P.D.; Baker, S.M.; Smith, G.S.; Hayter, J.B.; Magid, L.J.; Pynn, R.

    1994-01-01

    We present the first clear evidence of a shear induced hexagonal phase in a polyionic fluid in flow past a plane quartz surface. The dilute surfactant solution studied is viscoelastic due to the formation and entanglement of highly extended charged threadlike micelles many thousands of A long, which are known to align along the flow direction under shear. Small-angle neutron diffraction data show that in the high shear region within a few tens of microns of the surface these micelles not only align, but form a remarkably well ordered hexagonal array separated by 370 A, 8 times their 46 A diameter

  11. Shear-induced nano-macro structural transition in a polymeric bicontinuous microemulsion

    Krishnan, K.; Almdal, K.; Burghardt, W.R.

    2001-01-01

    structure. In situ neutron scattering shows flow-induced anisotropy in the nanometer-scale microemulsion structure at moderate shear rates, while higher rates induce bulk phase separation, with micron-size morphology, which is characterized with in situ light scattering and optical microscopy....

  12. Repetitive Supra-Physiological Shear Stress Impairs Red Blood Cell Deformability and Induces Hemolysis.

    Horobin, Jarod T; Sabapathy, Surendran; Simmonds, Michael J

    2017-11-01

    The supra-physiological shear stress that blood is exposed to while traversing mechanical circulatory assist devices affects the physical properties of red blood cells (RBCs), impairs RBC deformability, and may induce hemolysis. Previous studies exploring RBC damage following exposure to supra-physiological shear stress have employed durations exceeding clinical instrumentation, thus we explored changes in RBC deformability following exposure to shear stress below the reported "hemolytic threshold" using shear exposure durations per minute (i.e., duty-cycles) reflective of that employed by circulatory assist devices. Blood collected from 20 male donors, aged 18-38 years, was suspended in a viscous medium and exposed to an intermittent shear stress protocol of 1 s at 100 Pa, every 60 s for 60 duty-cycles. During the remaining 59 s/min, the cells were left at stasis until the subsequent duty-cycle commenced. At discrete time points (15/30/45/60 duty-cycles), an ektacytometer measured RBC deformability immediately after shear exposure at 100 Pa. Plasma-free hemoglobin, a measurement of hemolysis, was quantified via spectrophotometry. Supra-physiological shear stress impaired RBC properties, as indicated by: (1) decreased maximal elongation of RBCs at infinite shear stress following 15 duty-cycles (P supra-physiological shear stress protocol (100 Pa) following exposure to 1 duty-cycle (F (1.891, 32.15) = 12.21, P = 0.0001); and (3) increased plasma-free hemoglobin following 60 duty-cycles (P supra-physiological shear stress, impairs RBC deformability, with the extent of impairment exacerbated with each duty-cycle, and ultimately precipitates hemolysis. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Microstructural and mechanical properties of AA1100 aluminum processed by multi-axial incremental forging and shearing

    Montazeri-Pour, M. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Jafarian, H.R. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Taieban, S. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2015-07-15

    Multi-axial incremental forging and shearing (MAIFS), as a new severe plastic deformation technique, was successfully applied up to eight passes on the workpieces of commercially pure Al (AA1100). The microstructure evolutions and mechanisms of the grain refinement in the billets deformed through various passes of process were studied using the electron backscatter diffraction (EBSD) analysis. Microhardness measurements and tensile tests were carried out to evaluate the mechanical properties and deformation behavior of the material after successive passes of the MAIFS process. Measured microhardness evolution indicated that while the distribution of hardness was non-uniform after odd-numbered passes up to four passes, but thereafter outstanding deformation homogeneity was achieved when the consecutive MAIFS passes were applied. Tensile tests indicated that yield stress and ultimate tensile strength increased rapidly during the primary pass of process but thereafter there was only a minor increase up to four passes. After that, a little drop could be observed in strength and then it reached to a saturated magnitude. Measured microhardness distribution values exhibited the same trend, viz. it increased through successive passes to a limiting value beyond which it showed a minor decline by disappearance of points having maximum hardness. Some coarsening was taken place and the dislocation walls between the boundaries were reduced significantly in going from four to six passes. It was suggested that the absorption of the dislocations into grain boundaries as an effective recovery process under large deformations and short-range migration of grain boundaries might be significant mechanisms responsible for the softening observed after four passes of process.

  14. Microstructural and mechanical properties of AA1100 aluminum processed by multi-axial incremental forging and shearing

    Montazeri-Pour, M.; Parsa, M.H.; Jafarian, H.R.; Taieban, S.

    2015-01-01

    Multi-axial incremental forging and shearing (MAIFS), as a new severe plastic deformation technique, was successfully applied up to eight passes on the workpieces of commercially pure Al (AA1100). The microstructure evolutions and mechanisms of the grain refinement in the billets deformed through various passes of process were studied using the electron backscatter diffraction (EBSD) analysis. Microhardness measurements and tensile tests were carried out to evaluate the mechanical properties and deformation behavior of the material after successive passes of the MAIFS process. Measured microhardness evolution indicated that while the distribution of hardness was non-uniform after odd-numbered passes up to four passes, but thereafter outstanding deformation homogeneity was achieved when the consecutive MAIFS passes were applied. Tensile tests indicated that yield stress and ultimate tensile strength increased rapidly during the primary pass of process but thereafter there was only a minor increase up to four passes. After that, a little drop could be observed in strength and then it reached to a saturated magnitude. Measured microhardness distribution values exhibited the same trend, viz. it increased through successive passes to a limiting value beyond which it showed a minor decline by disappearance of points having maximum hardness. Some coarsening was taken place and the dislocation walls between the boundaries were reduced significantly in going from four to six passes. It was suggested that the absorption of the dislocations into grain boundaries as an effective recovery process under large deformations and short-range migration of grain boundaries might be significant mechanisms responsible for the softening observed after four passes of process

  15. Influence of heat and shear induced protein aggregation on the in vitro digestion rate of whey proteins.

    Singh, Tanoj K; Øiseth, Sofia K; Lundin, Leif; Day, Li

    2014-11-01

    Protein intake is essential for growth and repair of body cells, the normal functioning of muscles, and health related immune functions. Most food proteins are consumed after undergoing various degrees of processing. Changes in protein structure and assembly as a result of processing impact the digestibility of proteins. Research in understanding to what extent the protein structure impacts the rate of proteolysis under human physiological conditions has gained considerable interest. In this work, four whey protein gels were prepared using heat processing at two different pH values, 6.8 and 4.6, with and without applied shear. The gels showed different protein network microstructures due to heat induced unfolding (at pH 6.8) or lack of unfolding, thus resulting in fine stranded protein networks. When shear was applied during heating, particulate protein networks were formed. The differences in the gel microstructures resulted in considerable differences in their rheological properties. An in vitro gastric and intestinal model was used to investigate the resulting effects of these different gel structures on whey protein digestion. In addition, the rate of digestion was monitored by taking samples at various time points throughout the in vitro digestion process. The peptides in the digesta were profiled using SDS-polyacrylamide gel electrophoresis, reversed-phase-HPLC and LC-MS. Under simulated gastric conditions, whey proteins in structured gels were hydrolysed faster than native proteins in solution. The rate of peptides released during in vitro digestion differed depending on the structure of the gels and extent of protein aggregation. The outcomes of this work highlighted that changes in the network structure of the protein can influence the rate and pattern of its proteolysis under gastrointestinal conditions. Such knowledge could assist the food industry in designing novel food formulations to control the digestion kinetics and the release of biologically

  16. Shear-induced changes of electrical conductivity in suspensions

    Crawshaw, John; Meeten, Gerald [Schlumberger Cambridge Research, Cambridge (United Kingdom)

    2006-12-15

    The effect of shear on electrical conductivity (rheo-conduction) is studied to give information about particle behaviour in suspensions. Past work is reviewed, and expressions are derived for the rheo-conduction of a suspension of nonconducting spheroids in a conducting matrix for current flow, parallel and normal to the suspension flow direction. A simple apparatus to study rheo-conduction in pipe flow is described, and measurements of steady and time-dependent effects are reported for various suspensions of colloidal particles. Suspensions of anisometric rod- and platelike particles at low concentrations showed rheo-conductive changes of sign, magnitude and relaxation that were consistent with the particle shape, concentration and interactions. The rheo-conductive response decreased with increasing volume fraction for platelike kaolinite particles, attributed to orientational jamming. Spherical latex particles gave unexpected rheo-conductive changes consistent with shear disruption of a conductive network of particles. It is concluded that rheo-conduction measurements are a useful adjunct to conventional rheometry. (orig.)

  17. Shearing-induced asymmetry in entorhinal grid cells.

    Stensola, Tor; Stensola, Hanne; Moser, May-Britt; Moser, Edvard I

    2015-02-12

    Grid cells are neurons with periodic spatial receptive fields (grids) that tile two-dimensional space in a hexagonal pattern. To provide useful information about location, grids must be stably anchored to an external reference frame. The mechanisms underlying this anchoring process have remained elusive. Here we show in differently sized familiar square enclosures that the axes of the grids are offset from the walls by an angle that minimizes symmetry with the borders of the environment. This rotational offset is invariably accompanied by an elliptic distortion of the grid pattern. Reversing the ellipticity analytically by a shearing transformation removes the angular offset. This, together with the near-absence of rotation in novel environments, suggests that the rotation emerges through non-coaxial strain as a function of experience. The systematic relationship between rotation and distortion of the grid pattern points to shear forces arising from anchoring to specific geometric reference points as key elements of the mechanism for alignment of grid patterns to the external world.

  18. Dynamics of shear-induced ATP release from red blood cells.

    Wan, Jiandi; Ristenpart, William D; Stone, Howard A

    2008-10-28

    Adenosine triphosphate (ATP) is a regulatory molecule for many cell functions, both for intracellular and, perhaps less well known, extracellular functions. An important example of the latter involves red blood cells (RBCs), which help regulate blood pressure by releasing ATP as a vasodilatory signaling molecule in response to the increased shear stress inside arterial constrictions. Although shear-induced ATP release has been observed widely and is believed to be triggered by deformation of the cell membrane, the underlying mechanosensing mechanism inside RBCs is still controversial. Here, we use an in vitro microfluidic approach to investigate the dynamics of shear-induced ATP release from human RBCs with millisecond resolution. We demonstrate that there is a sizable delay time between the onset of increased shear stress and the release of ATP. This response time decreases with shear stress, but surprisingly does not depend significantly on membrane rigidity. Furthermore, we show that even though the RBCs deform significantly in short constrictions (duration of increased stress <3 ms), no measurable ATP is released. This critical timescale is commensurate with a characteristic membrane relaxation time determined from observations of the cell deformation by using high-speed video. Taken together our results suggest a model wherein the retraction of the spectrin-actin cytoskeleton network triggers the mechanosensitive ATP release and a shear-dependent membrane viscosity controls the rate of release.

  19. Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis.

    Winkel, Leah C; Hoogendoorn, Ayla; Xing, Ruoyu; Wentzel, Jolanda J; Van der Heiden, Kim

    2015-07-01

    Atherosclerosis is a chronic inflammatory disease of the arterial tree that develops at predisposed sites, coinciding with locations that are exposed to low or oscillating shear stress. Manipulating flow velocity, and concomitantly shear stress, has proven adequate to promote endothelial activation and subsequent plaque formation in animals. In this article, we will give an overview of the animal models that have been designed to study the causal relationship between shear stress and atherosclerosis by surgically manipulating blood flow velocity profiles. These surgically manipulated models include arteriovenous fistulas, vascular grafts, arterial ligation, and perivascular devices. We review these models of manipulated blood flow velocity from an engineering and biological perspective, focusing on the shear stress profiles they induce and the vascular pathology that is observed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Radiation induced microstructural evolution in ferritic/martensitic steels

    Kohno, Y.; Kohyama, A.; Asakura, K.; Gelles, D.S.

    1993-01-01

    R and D of ferritic/martensitic steels as structural materials for fusion reactor is one of the most important issues of fusion technology. The efforts to characterize microstructural evolution under irradiation in the conventional Fe-Cr-Mo steels as well as newly developed Fe-Cr-Mn or Fe-Cr-W low activation ferritic/ martensitic steels have been continued. This paper provides some of the recent results of heavy irradiation effects on the microstructural evolution of ferritic/martensitic steels neutron irradiated in the FFTF/MOTA (Fast Flux Test Facility/Materials Open Test Assembly). Materials examined are Fe-10Cr-2Mo dual phase steel (JFMS: Japanese Ferritic/Martensitic Steel), Fe-12Cr-XMn-1Mo manganese stabilized martensitic steels and Fe-8Cr-2W Tungsten stabilized low activation martensitic steel (F82H). JFMS showed excellent void swelling resistance similar to 12Cr martensitic steel such as HT-9, while the manganese stabilized steels and F82H showed less void swelling resistance with small amount of void swelling at 640-700 K (F82H: 0.14% at 678 K). As for irradiation response of precipitate behavior, significant formation of intermetallic χ phase was observed in the manganese stabilized steels along grain boundaries which is though to cause mechanical property degradation. On the other hand, precipitates identified were the same type as those in unirradiated condition in F82H with no recognition of irradiation induced precipitates, which suggested satisfactory mechanical properties of F82H after the irradiation. (author)

  1. Earthquake induced rock shear through a deposition hole. Influence of shear plane inclination and location as well as buffer properties on the damage caused to the canister

    Boergesson, Lennart [Clay Technology AB, Lund (Sweden); Hernelind, Jan [5T Engineering AB, Vaesteraas (Sweden)

    2006-10-15

    The effect on the canister of an earthquake induced 20 cm rock shear with the shear rate 1 m/s along a fracture intersecting a deposition hole in a KBS-V repository has been investigated for a number of different shear cases and for different properties of the buffer material. The scenarios have been modelled with the finite element method and calculations have been done using the code ABAQUS. D-element models of the rock, the buffer and the canister have been used. Contact elements that can model separation have been used for the interfaces between the buffer and the rock and the interfaces between the buffer and the canister. The influence of mainly the following factors has been investigated: 1. Inclination of the intersecting fracture. 2. Shear direction when the fracture is not horizontal (inclination deviates from 90 deg). 3. Location of the shear plane when the inclination is 90 deg. 4. Magnitude of the shear displacement. 5. Bentonite type. 6. Bentonite density. 7. Transformation of the buffer to illite or cemented bentonite. The results from the calculations show that all these factors have important influence on the damage of the canister but the influence is for most factors not easily described since there are mutual interferences between the different factors. Plastic strain larger than 1% was reached in the copper already at 10 cm shear in all cases with Na- and Ca- bentonite. However, for several cases of Na-bentonite and one case of Ca-bentonite such plastic strain was only reached in the lid. The plastic strain in the steel was generally smaller than in the copper mainly due to the higher yield stress in the steel. For all cases of Na-bentonite except one and for about half of the Ca-bentonite cases the plastic strain in the steel was smaller than 1% after 10 cm shear. The shear inclination 45 deg was more harmful for the copper tube than the shear inclination 90 deg when tension shear was considered. At the shear inclinations 45 deg and 22.5 deg

  2. Earthquake induced rock shear through a deposition hole. Influence of shear plane inclination and location as well as buffer properties on the damage caused to the canister

    Boergesson, Lennart; Hernelind, Jan

    2006-10-01

    The effect on the canister of an earthquake induced 20 cm rock shear with the shear rate 1 m/s along a fracture intersecting a deposition hole in a KBS-V repository has been investigated for a number of different shear cases and for different properties of the buffer material. The scenarios have been modelled with the finite element method and calculations have been done using the code ABAQUS. D-element models of the rock, the buffer and the canister have been used. Contact elements that can model separation have been used for the interfaces between the buffer and the rock and the interfaces between the buffer and the canister. The influence of mainly the following factors has been investigated: 1. Inclination of the intersecting fracture. 2. Shear direction when the fracture is not horizontal (inclination deviates from 90 deg). 3. Location of the shear plane when the inclination is 90 deg. 4. Magnitude of the shear displacement. 5. Bentonite type. 6. Bentonite density. 7. Transformation of the buffer to illite or cemented bentonite. The results from the calculations show that all these factors have important influence on the damage of the canister but the influence is for most factors not easily described since there are mutual interferences between the different factors. Plastic strain larger than 1% was reached in the copper already at 10 cm shear in all cases with Na- and Ca- bentonite. However, for several cases of Na-bentonite and one case of Ca-bentonite such plastic strain was only reached in the lid. The plastic strain in the steel was generally smaller than in the copper mainly due to the higher yield stress in the steel. For all cases of Na-bentonite except one and for about half of the Ca-bentonite cases the plastic strain in the steel was smaller than 1% after 10 cm shear. The shear inclination 45 deg was more harmful for the copper tube than the shear inclination 90 deg when tension shear was considered. At the shear inclinations 45 deg and 22.5 deg

  3. Microstructural evolution and deformation behavior of twinning-induced plasticity (TWIP) steel during wire drawing

    Hwang, Joong-Ki; Yi, Il-Cheol; Son, Il-Heon; Yoo, Jang-Yong; Kim, Byoungkoo; Zargaran, A.; Kim, Nack J.

    2015-01-01

    The effect of wire drawing on the microstructural evolution and deformation behavior of Fe–Mn–Al–C twinning-induced plasticity (TWIP) steel has been investigated. The inhomogeneities of the stress state, texture, microstructure, and mechanical properties were clarified over the cross section of drawn wire with the aid of numerical simulation, Schmid factor analysis, and electron backscatter diffraction (EBSD) techniques. The analysis of texture in drawn wire shows that a mixture of <111> and <100> fiber texture was developed with strain; however, the distribution of <111> and <100> fibers was inhomogeneous along the radial direction of wire due to uneven strain distribution and different stress state along the radial direction. It has also been shown that the morphology, volume fraction, and variant system of twins as well as twinning rate were dependent on the imposed stress state. The surface area was subjected to larger strain and more complex stress state involving compression, shear, and tension than the center area, resulting in a larger twin volume fraction and more twin variants in the former than in the latter at all the strain levels. While the surface area was saturated with twins at an early stage of drawing, the center area was not saturated with twins even at fracture, implying that the fracture of wire were initiated at the surface area because of the exhaustion of ductility due to twinning. Based on these results, it is suggested that imposing a uniform strain distribution along the radial direction of wire by the control of processing conditions such as die angle and amount of reduction per pass is necessary to increase the drawing limit of TWIP steel

  4. Measurement of earthquake-induced shear strain in sandy gravel

    Ohkawa, I.; Futaki, M.; Yamanouchi, H.

    1989-01-01

    The nuclear power reactor buildings have been constructed on the hard rock ground formed in or before the Tertiary in Japan. This is mainly because the nuclear reactor building is much heavier than the common buildings and requires a large bearing capacity of the underlying soil deposit, and additionally the excessive deformation in soil deposit might cause damage in reactor building and subsequently cause the malfunction of the internal important facilities. Another reason is that the Quaternary soil deposit is not fully known with respect to its dynamic property. The gravel, and the sandy gravel, the representative soils of the Quaternary, have been believed to be suitable soil deposits to support the foundation of a common building, although the soils have rarely been investigated so closely on their physical properties quantitatively. In this paper, the dynamic deformability, i.e., the shear stress-strain relationship of the Quaternary diluvial soil deposit is examined through the earthquake ground motion measurement using accelerometers, pore-pressure meters, the specific devices developed in this research work. The objective soil deposit in this research is the sandy gravel of the diluvial and the alluvial

  5. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells.

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M; Eguchi, Satoru; Brown, Michael D; Park, Joon-Young

    2015-08-01

    The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31(+)/CD42a(-)) and activated (CD62E(+)) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting

  6. Numerical investigations of two-degree-of-freedom vortex-induced vibration in shear flow

    Zhang, Hui; Liu, Mengke; Han, Yang; Li, Jian; Gui, Mingyue; Chen, Zhihua, E-mail: zhanghui1902@hotmail.com [Science and Technology on Transient Physics Laboratory, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2017-06-15

    Exponential-polar coordinates attached to a moving cylinder are used to deduce the stream function-vorticity equations for two-degree-of-freedom vortex-induced vibration, the initial and boundary conditions, and the distribution of the hydrodynamic force, which consists of the vortex-induced force, inertial force, and viscous damping force. The fluid-structure interactions occurring from the motionless cylinder to the steady vibration are investigated numerically, and the variations of the flow field, pressure, lift/drag, and cylinder displacement are discussed. Both the dominant vortex and the cylinder shift, whose effects are opposite, affect the shear layer along the transverse direction and the secondary vortex along the streamwise direction. However, the effect of the cylinder shift is larger than that of the dominant vortices. Therefore, the former dominates the total effects of the flow field. Moreover, the symmetry of the flow field is broken with the increasing shear rate. With the effect of the background vortex, the upper vortices are strengthened, and the lower vortices are weakened; thus, the shear layer and the secondary vortices induced by the upper shedding vortices are strengthened, while the shear layer and the secondary vortices induced by the lower shedding vortices are weakened. Therefore, the amplitudes of the displacement and drag/lift dominated by the upper vortex are larger than those of the displacement and drag/lift dominated by the lower vortex. (paper)

  7. Shear-induced structural transformation and plasticity in ultraincompressible ReB2 limit its hardness

    Zhang, R. F.; Legut, Dominik; Niewa, R.; Argon, A. S.; Veprek, S.

    2010-01-01

    Roč. 82, č. 10 (2010), 104104/1-104104/7 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z20410507 Keywords : ReB2 * ab initio * ultrahard * shear-induced transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  8. Shear wave induced resonance elastography of spherical masses with polarized torsional waves

    Hadj Henni, Anis; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy

    2012-03-01

    Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an invitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary invivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.

  9. Effects of earthquake induced rock shear on containment system integrity. Laboratory testing plan development

    Read, Rodney S.

    2011-07-01

    This report describes a laboratory-scale testing program plan to address the issue of earthquake induced rock shear effects on containment system integrity. The document contains a review of relevant literature from SKB covering laboratory testing of bentonite clay buffer material, scaled analogue tests, and the development of related material models to simulate rock shear effects. The proposed testing program includes standard single component tests, new two-component constant volume tests, and new scaled analogue tests. Conceptual drawings of equipment required to undertake these tests are presented along with a schedule of tests. The information in this document is considered sufficient to engage qualified testing facilities, and to guide implementation of laboratory testing of rock shear effects. This document was completed as part of a collaborative agreement between SKB and Nuclear Waste Management Organization (NWMO) in Canada

  10. Pressure-induced forces and shear stresses on rubble mound breakwater armour layers in regular waves

    Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu

    2014-01-01

    This paper presents the results from an experimental investigation of the pressure-induced forces in the core material below the main armour layer and shear stresses on the armour layer for a porous breakwater structure. Two parallel experiments were performed which both involved pore pressure...... structure i.e. no additional filter layers were applied. For both experiments, high-speed video recordings were synchronised with the pressure measurements for a detailed investigation of the coupling between the run-up and run-down flow processes and the measured pressure variations. Outward directed...... and turbulence measurements showed that the large outward directed pressure gradients in general coincide, both in time and space, with the maximum bed-shear stresses on the armour layer based on the Reynolds-stresses. The bed-shear stresses were found to result in a Shields parameter in the same order...

  11. Effects of earthquake induced rock shear on containment system integrity. Laboratory testing plan development

    Read, Rodney S. (RSRead Consulting Inc. (Canada))

    2011-07-15

    This report describes a laboratory-scale testing program plan to address the issue of earthquake induced rock shear effects on containment system integrity. The document contains a review of relevant literature from SKB covering laboratory testing of bentonite clay buffer material, scaled analogue tests, and the development of related material models to simulate rock shear effects. The proposed testing program includes standard single component tests, new two-component constant volume tests, and new scaled analogue tests. Conceptual drawings of equipment required to undertake these tests are presented along with a schedule of tests. The information in this document is considered sufficient to engage qualified testing facilities, and to guide implementation of laboratory testing of rock shear effects. This document was completed as part of a collaborative agreement between SKB and Nuclear Waste Management Organization (NWMO) in Canada

  12. Sheared-flow induced confinement transition in a linear magnetized plasma

    Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.

    2012-01-01

    A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn /n~eδφ/kTe~0.5) are observed at the plasma edge, accompanied by a large density gradient (Ln=|∇lnn |-1~2cm) and shearing rate (γ ~300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (Vbias) on the obstacle and the axial magnetic field (Bz) strength. In cases with low Vbias and large Bz, improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by E ×B drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller Bz, large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m =1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.

  13. Sheared-flow induced confinement transition in a linear magnetized plasma

    Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.

    2012-01-01

    A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn/n∼eδφ/kT e ∼0.5) are observed at the plasma edge, accompanied by a large density gradient (L n =∇lnn -1 ∼2cm) and shearing rate (γ∼300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (V bias ) on the obstacle and the axial magnetic field (B z ) strength. In cases with low V bias and large B z , improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by ExB drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller B z , large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m=1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.

  14. A micro-kinematic framework for vorticity analysis in polyphase shear zones using integrated field, microstructural and crystallographic orientation-dispersion methods

    Kruckenberg, S. C.; Michels, Z. D.; Parsons, M. M.

    2017-12-01

    We present results from integrated field, microstructural and textural analysis in the Burlington mylonite zone (BMZ) of eastern Massachusetts to establish a unified micro-kinematic framework for vorticity analysis in polyphase shear zones. Specifically, we define the vorticity-normal surface based on lattice-scale rotation axes calculated from electron backscatter diffraction data using orientation statistics. In doing so, we objectively identify a suitable reference frame for rigid grain methods of vorticity analysis that can be used in concert with textural studies to constrain field- to plate-scale deformation geometries without assumptions that may bias tectonic interpretations, such as relationships between kinematic axes and fabric forming elements or the nature of the deforming zone (e.g., monoclinic vs. triclinic shear zones). Rocks within the BMZ comprise a heterogeneous mix of quartzofeldspathic ± hornblende-bearing mylonitic gneisses and quartzites. Vorticity axes inferred from lattice rotations lie within the plane of mylonitic foliation perpendicular to lineation - a pattern consistent with monoclinic deformation geometries involving simple shear and/or wrench-dominated transpression. The kinematic vorticity number (Wk) is calculated using Rigid Grain Net analysis and ranges from 0.25-0.55, indicating dominant general shear. Using the calculated Wk values and the dominant geographic fabric orientation, we constrain the angle of paleotectonic convergence between the Nashoba and Avalon terranes to 56-75º with the convergence vector trending 142-160° and plunging 3-10°. Application of the quartz recrystallized grain size piezometer suggests differential stresses in the BMZ mylonites ranging from 44 to 92 MPa; quartz CPO patterns are consistent with deformation at greenschist- to amphibolite-facies conditions. We conclude that crustal strain localization in the BMZ involved a combination of pure and simple shear in a sinistral reverse transpressional

  15. Laser-induced microstructural development and phase evolution in magnesium alloy

    Guan, Y.C.; Zhou, W.; Li, Z.L.; Zheng, H.Y.

    2014-01-01

    Highlights: • Secondary phase evolution caused by laser processing was firstly reported. • Microstructure development was controlled by heat flow thermodynamics and kinetics. • Solid-state transformation resulted in submicron and nano-scale precipitates. • Cluster-shaped particles in overlapped region were due to precipitation coarsening. • Properties of materials can be tailored selectively by laser processing. -- Abstract: Secondary phase plays an important role in determining microstructures and properties of magnesium alloys. This paper focuses on laser-induced microstructure development and secondary phase evolution in AZ91D Mg alloy studied by SEM, TEM and EDS analyses. Compared to bulk shape and lamellar structure of the secondary phase in as-received cast material, rapid-solidified microstructures with various morphologies including nano-precipitates were observed in laser melt zone. Formation mechanisms of microstructural evolution and effect of phase development on surface properties were further discussed

  16. Functional Polymer Opals and Porous Materials by Shear-Induced Assembly of Tailor-Made Particles.

    Gallei, Markus

    2018-02-01

    Photonic band-gap materials attract enormous attention as potential candidates for a steadily increasing variety of applications. Based on the preparation of easily scalable monodisperse colloids, such optically attractive photonic materials can be prepared by an inexpensive and convenient bottom-up process. Artificial polymer opals can be prepared by shear-induced assembly of core/shell particles, yielding reversibly stretch-tunable materials with intriguing structural colors. This feature article highlights recent developments of core/shell particle design and shear-induced opal formation with focus on the combination of hard and soft materials as well as crosslinking strategies. Structure formation of opal materials relies on both the tailored core/shell architecture and the parameters for polymer processing. The emphasis of this feature article is on elucidating the particle design and incorporation of addressable moieties, i.e., stimuli-responsive polymers as well as elaborated crosslinking strategies for the preparation of smart (inverse) opal films, inorganic/organic opals, and ceramic precursors by shear-induced ordering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Shear-induced Bubble Coalescence in Rhyolitic Melts with Low Vesicularity

    Okumura, S.; Nakamura, M.; Tsuchiyama, A.

    2006-12-01

    Development of bubble structure during magma ascent controls the dynamics of volcanic eruption, because the bubble structure influences the magma rheology and permeability, and hence magma degassing. In the flowing magmas, the bubble structure is expected to be changed by shear, as pointed out by some previous studies based on geological observations. However, the development of bubble structure has been experimentally studied only in the isostatic magmas. We have experimentally demonstrated for the first time, the shear-induced development of number density, size and shape of bubbles in a rhyolitic melt. The deformation experiments were performed by using an externally heated, piston-cylinder type apparatus with a rotational piston. At 975°C, natural obsidian (initial water content of 0.5 wt%) having cylindrical shape (ca. 4.7 mm in diameter and 5 mm in length) was vesiculated in the graphite container (ca. 5 and 9 mm in the inner and the outer diameters, respectively, and 5 mm in length), and the vesiculated samples were twisted at various rotational speeds up to 1 rpm. The number density, size and shape of bubbles in the quenched samples were then measured by using the X-ray computed tomography. The size distribution of bubbles shows that the number of larger bubbles increases with the rotational speed and at the outer zone of the samples at which the shear rate is high. In the high shear rate zone, the magnitude of bubble deformation is large. The 3D images of large bubbles clearly indicate that they were formed by coalescence. These results indicate that the degree of bubble coalescence is enhanced with the shear rate. The experimental results also demonstrated that the coalescence of bubbles occur even at low vesicularity (ca. 20 vol.%). Because the shear rate induced in this study (in the order of 0.01 1/s) seems to be produced for magmas ascending in a volcanic conduit, we propose the possibility that the vesiculated magmas undergo bubble coalescence at a

  18. Effect of initial as-cast microstructure on semisolid microstructure of AZ91D alloy during the strain-induced melt activation process

    Wang, J.G.; Lin, H.Q.; Li, Y.Q.; Jiang, Q.C.

    2008-01-01

    The effects of different as-cast microstructures which were initially cast in graphite, metal, sand and firebrick moulds, respectively on the semisolid microstructure of AZ91D alloy, have been investigated during the strain-induced melt activation (SIMA) process. The experimental results showed that the moulds with high cooling capacity could produce the fine-grained as-cast microstructure in which the fine α-Mg dendrites were surrounded by a narrow layer of eutectic mixtures. After compressive deformation, in the fine-grained as-cast microstructure, the more systemic strain energy would be gradually accumulated and abundantly stored due to uniform inner crystal lattice distortion, so the recrystallization was easily induced by the stored strain energy at the elevated temperature. As a channel for the diffusion of atoms, the subgrain boundary along which Al element was enriched, foremost melted above the eutectic temperature and resulted in the separation of neighboring subgrains from primary dendrites. Therefore, the refining role of recrystallization on the microstructural evolution from dendrite to globular particles in morphology was easier to play in the fine-grained as-cast microstructure, which was advantageous for the production of fine-grained semisolid microstructure. Additionally, in the fine-grained as-cast microstructure, the melting fracture of narrow secondary dendritic arms was easy to occur in their roots, which also attributed to the production of fine globular grains in semisolid microstructure from primary dendrites. The finer dendrites in the initial as-cast alloy could evolve into the finer globular grains with relatively small grain size distribution range in the semisolid microstructure during partial remelting; therefore, the finer the dendrites in the initial as-cast microstructure, the better were the tensile properties of the evolved semisolid microstructure

  19. Microstructures and magnetic fabrics of the Ngaoundéré granite pluton (Cameroon): Implications to the late-Pan-African evolution of Central Cameroon Shear Zone

    Dawaï, Daouda; Tchameni, Rigobert; Bascou, Jérome; Awe Wangmene, Salomon; Fosso Tchunte, Périclex Martial; Bouchez, Jean-Luc

    2017-05-01

    The Ngaoundéré granite pluton, in Central-North Cameroon, located near the Central Cameroon Shear zone (CCSZ), and previously studied for its petrography and geochemistry, is characterized by the absence of macroscopic markers of deformation. In this study, we report microstructures and magnetic fabrics (AMS) of this pluton and discuss the relationship with the Pan-African evolution of the CCSZ. The pluton consists of a porphyritic Hbl-Bt-monzogranite at its rim and a porphyritic biotite-granite at its core, a petrographic distribution denoting a normal zoning pattern, i.e. more silicic toward the centre. As expected, magnetic susceptibilities values also exhibit a zoning pattern in agreement with petrographic zonation. Thermomagnetic data indicate that this pluton is dominantly ferromagnetic in behaviour. As indicated by its microstructures, the pluton has suffered a continuum of deformation from the magmatic state to the high temperature solid-state during magma crystallization and solidification. The magnetic foliations dominantly strike NE-SW and dip moderately to steeply and the lineations mostly plunge shallowly to the NE or SW, roughly parallel to NE-to ENE-trending Central Cameroun Shear Zone (CCSZ). The foliation poles define a girdle pattern with a zone axis (52°/11°) rather close to the best line of the lineations (44°/21°). These fabrics correlate with the structures of the country rocks ascribed by several workers to a regional transpression. Toward the margins of the pluton, particularly the northern one, the lineations tend to rotate from NE to N in azimuth. This change is interpreted as due to strain partitioning, simple shearing with NE-SW extension being relayed by compression toward the northern pluton border. This new magnetic fabric study suggests that the Ngaoundéré pluton (poorly dated at c. 575 Ma) was emplaced during the late stages of the CCSZ dextral transpressive movement. It also provides some more constraints on the correlation

  20. Irradiation-induced microstructural changes in alloy X-750

    Kenik, E.A.

    1997-01-01

    Alloy X-750 is a nickel base alloy that is often used in nuclear power systems for it's excellent corrosion resistance and mechanical properties. The present study examines the microstructure and composition profiles in a heat of Alloy X-750 before and after neutron irradiation

  1. Investigation of the Mechanical Properties and Microstructure of Nickel Superalloys Processed in Shear Forming / Identyfikacja Właściwości Mechanicznych Oraz Mikrostruktury Superstopów Niklu Przetwarzanych W Procesie Kształtowania Obrotowego

    Żaba K.

    2015-12-01

    Full Text Available The paper presents the research results of the mechanical properties and microstructure of the material in initial state and parts made from nickel superalloy Inconel®718 in the rotary forming process with laser heating. In the first step was carried out basic research of chemical composition, mechanical properties, hardness and microstructure of sheet in initial state. Then from the metal sheet, in industrial conditions, was made axisymmetric parts in the flow and shear forming with laser heating. Parts were subjected to detailed studies focused on the analysis of changes in the mechanical properties and microstructure in the relation to the material in initial state. The analysis was based on the tests results of strength and plastic properties, hardness, microstructural observations and X-ray microanalysis in the areas where defects appear and beyond. The results are presented in the form of tables, charts, and photographs of the microstructure.

  2. Texture, microstructure and geochemistry of magnetite from the Banduhurang uranium mine, Singhbhum shear zone, India - implications for physico-chemical evolution of magnetite mineralization

    Ghosh, Dibakar; Dutta, Tusar; Samanta, Susanta K.; Pal, Dipak C.

    2013-01-01

    The Singhbhum Shear zone in eastern India is one of the largest repositories of uranium and copper in India. Besides uranium and copper, apatite-magnetite mineralization is widespread in this shear zone. This study aims at deciphering the physico-chemical evolution of magnetite mineralization in relation to progressive shearing integrating field relations, micro-textures, structures and compositions of magnetite in the Banduhurang uranium mine. Apatite-magnetite ores occur as discrete patches, tongues, and veins in the strongly deformed, fine grained quartz-chlorite schist. Textures and microstructures of magnetite indicate at least three stages of magnetite formation. Coarse-grained magnetite (magnetite-1) with long, rotational, and complex strain fringes, defined by fibrous and elongate quartz, is assigned to a stage of pre-/early-shearing magnetite formation. Medium grained magnetite (magnetite-2), characterized by single non-rotational strain fringe equivalent to the youngest fringe of magnetite-1, grew likely at the mid-/late-stage of shearing. Fine grained magnetite (magnetite-3) is generally devoid of any pressure shadow. This indicates even a much later stage of formation of this magnetite, presumably towards the closing stage of shearing. Some of the magnetite-1 grains are optically heterogeneous with a dark, pitted Cr-Ti-bearing core overgrown by lighter, fresh rim locally containing pyrite, chalcopyrite, and chlorite inclusions. The cores are also locally characterized by high AI and Si content. Homogeneous magnetite-1 is optically and compositionally similar to the overgrowth of heterogeneous magnetite-1. This homogeneous magnetite-1 that grew as separate phase is contemporaneous with the overgrowth on pitted core of heterogeneous magnetite-1. Magnetite-2 is compositionally very similar to homogeneous magnetite-1, but is devoid of sulfide inclusion. Magnetite-3 is generally devoid of any silicate or sulfide inclusion and is most pure with least

  3. The effects of buoyancy on shear-induced melt bands in a compacting porous medium

    Butler, S. L.

    2009-03-01

    It has recently been shown [Holtzman, B., Groebner, N., Zimmerman, M., Ginsberg, S., Kohlstedt, D., 2003. Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4, Art. No. 8607; Holtzman, B.K., Kohlstedt, D.L., 2007. Stress-driven melt segregation and strain partitioning in partially molten rocks: effects of stress and strain. J. Petrol. 48, 2379-2406] that when partially molten rock is subjected to simple shear, bands of high and low porosity are formed at a particular angle to the direction of instantaneous maximum extension. These have been modeled numerically and it has been speculated that high porosity bands may form an interconnected network with a bulk, effective permeability that is enhanced in a direction parallel to the bands. As a result, the bands may act to focus mantle melt towards the axis of mid-ocean ridges [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679]. In this contribution, we examine the combined effects of buoyancy and matrix shear on a deforming porous layer. The linear theory of Spiegelman [Spiegelman, M., 1993. Flow in deformable porous media. Part 1. Simple analysis. J. Fluid Mech. 247, 17-38; Spiegelman, M., 2003. Linear analysis of melt band formation by simple shear. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000499, Article 8615] and Katz et al. [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679] is generalized to include both the effects of buoyancy and matrix shear on a deformable porous layer with strain-rate dependent rheology. The predictions of linear theory are compared with the early time evolution of our 2D numerical model and they are found to be in excellent agreement. For conditions similar to the upper mantle, buoyancy forces can be similar to or much greater than matrix shear-induced forces. The

  4. Theory of high-n toroidicity-induced shear Alfven eigenmode in tokamaks

    Fu, G.Y.; Cheng, C.Z.; Princeton Univ., NJ

    1989-07-01

    High-n WKB-ballooning mode equation is employed to study toroidicity-induced shear Alfven eigenmodes (TAE) in the δ - α space, where δ = (r/q)(dq/dr) is the magnetic shear, and α = -(2Rq 2 /B 2 )(dp/dr) is the normalized pressure gradient for tokamak plasmas. In the ballooning mode first stability region, TAE modes are found to exist only for α less than some critical value α c . We also find that these TAE modes reappear in the ballooning mode second stability region for bands of α values. The global envelope structures of these TAE modes are studied by WKB method and are found to be bounded radially if the local mode frequency has a maximum in radius. 15 refs., 14 figs

  5. Shear- and magnetic-field-induced ordering in magnetic nanoparticle dispersion from small-angle neutron scattering

    Krishnamurthy, V.V.; Bhandar, A.S.; Piao, M.; Zoto, I.; Lane, A.M.; Nikles, D.E.; Wiest, J.M.; Mankey, G.J.; Porcar, L.; Glinka, C.J.

    2003-01-01

    Small-angle neutron scattering experiments have been performed to investigate orientational ordering of a dispersion of rod-shaped ferromagnetic nanoparticles under the influence of shear flow and static magnetic field. In this experiment, the flow and flow gradient directions are perpendicular to the direction of the applied magnetic field. The scattering intensity is isotropic in zero-shear-rate or zero-applied-field conditions, indicating that the particles are randomly oriented. Anisotropic scattering is observed both in a shear flow and in a static magnetic field, showing that both flow and field induce orientational order in the dispersion. The anisotropy increases with the increase of field and with the increase of shear rate. Three states of order have been observed with the application of both shear flow and magnetic field. At low shear rates, the particles are aligned in the field direction. When increasing shear rate is applied, the particles revert to random orientations at a characteristic shear rate that depends on the strength of the applied magnetic field. Above the characteristic shear rate, the particles align along the flow direction. The experimental results agree qualitatively with the predictions of a mean field model

  6. Exercise-induced heat stress disrupts the shear-dilatory relationship.

    Ives, Stephen J; Lefferts, Wesley K; Wharton, Margret; Fehling, Patricia C; Smith, Denise L

    2016-12-01

    What is the central question of this study? Although heat stress is known to increase cardiovascular strain, no study, to date, had explored the potential impact of exercise-induced heat stress on vascular function. What is the main finding and its importance? We found that acute exercise tended to reduce flow-mediated dilatation (FMD), owing in part to reduced reactive hyperaemia/shear stimulus; thus, when FMD is normalized to shear no postexercise deficit exists. Exercise-induced heat stress increased reactive hyperaemia, shear rate, coupled with a sustained FMD postexercise, suggests that exercise-induced heat stress increases the amount of shear stimulus to elicit a similar response, indicating reduced vascular responsiveness, or reserve, which might increase cardiovascular susceptibility. Heat stress increases cardiovascular strain and is of particular concern in occupations, such as firefighting, in which individuals are required to perform strenuous work while wearing personal protective equipment. Sudden cardiac events are associated with strenuous activity and are the leading cause of duty-related death among firefighters, accounting for ∼50% of duty-related fatalities per year. Understanding the acute effects of exercise-induced heat stress (EIHS) on vascular endothelial function may provide insight into the mechanisms precipitating acute coronary events in firefighters. The purpose of this study, therefore, was to determine the effects of EIHS on vascular endothelial function. Using a balanced crossover design, 12 healthy men performed 100 min of moderate-intensity, intermittent exercise with and without EIHS (personal protective equipment or cooling vest, respectively). Measurements of flow-mediated dilatation (FMD), reactive hyperaemia and shear rate area under the curve (SR AUC ) were performed pre- and postexercise. During EIHS, core temperature was significantly higher (38 ± 0.1 versus 37 ± 0.1°C). Postexercise FMD tended to be suppressed

  7. Supplementary Microstructural Features Induced During Laser Surface Melting of Thermally Sprayed Inconel 625 Coatings

    Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.

    2014-02-01

    Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.

  8. Influence of sample geometry and microstructure on the hydrogen induced cracking characteristics under uniaxial load

    Laureys, A., E-mail: aurelie.laureys@ugent.be [Department of Materials, Textiles and Chemical Engineering, Ghent University (UGent), Tech Lane Ghent Science Park - Campus A, Technologie park 903, B-9052 Gent (Belgium); Depover, T., E-mail: tom.depover@ugent.be [Department of Materials, Textiles and Chemical Engineering, Ghent University (UGent), Tech Lane Ghent Science Park - Campus A, Technologie park 903, B-9052 Gent (Belgium); Petrov, R., E-mail: roumen.petrov@ugent.be [Department of Materials, Textiles and Chemical Engineering, Ghent University (UGent), Tech Lane Ghent Science Park - Campus A, Technologie park 903, B-9052 Gent (Belgium); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Verbeken, K., E-mail: kim.verbeken@ugent.be [Department of Materials, Textiles and Chemical Engineering, Ghent University (UGent), Tech Lane Ghent Science Park - Campus A, Technologie park 903, B-9052 Gent (Belgium)

    2017-04-06

    The present work evaluates hydrogen induced cracking in a TRIP (transformation induced plasticity) assisted steel and pure iron. The goal of this work is to understand the effect of the macroscopic stress distribution in the material on the hydrogen induced cracking phenomenon. Additionally, the effect of a complex multiphase microstructure on the characteristics of hydrogen induced cracking was investigated by comparing results for TRIP-assisted steel and pure iron as reference material. Tensile tests on notched and unnotched samples combined with in-situ electrochemical hydrogen charging were conducted. Tests were performed until the tensile strength was reached and until fracture. The resulting hydrogen induced cracks were studied by optical microscopy and scanning electron microscopy (SEM). Hydrogen induced cracks showed a typical S-shape and crack propagation was mainly transgranular, independently of the presence of a notch or the material's microstructure. This was also the case for the V-shaped secondary crack network and resulting stepped crack morphology characteristic for hydrogen induced damage. These observations indicate that the stress state surrounding the crack tip has a very large impact on the hydrogen induced cracking characteristics. The use of a notch or the presence of a different microstructure did not influence the overall hydrogen induced cracking features, but did change the kinetics of the hydrogen induced cracking process.

  9. Influence of sample geometry and microstructure on the hydrogen induced cracking characteristics under uniaxial load

    Laureys, A.; Depover, T.; Petrov, R.; Verbeken, K.

    2017-01-01

    The present work evaluates hydrogen induced cracking in a TRIP (transformation induced plasticity) assisted steel and pure iron. The goal of this work is to understand the effect of the macroscopic stress distribution in the material on the hydrogen induced cracking phenomenon. Additionally, the effect of a complex multiphase microstructure on the characteristics of hydrogen induced cracking was investigated by comparing results for TRIP-assisted steel and pure iron as reference material. Tensile tests on notched and unnotched samples combined with in-situ electrochemical hydrogen charging were conducted. Tests were performed until the tensile strength was reached and until fracture. The resulting hydrogen induced cracks were studied by optical microscopy and scanning electron microscopy (SEM). Hydrogen induced cracks showed a typical S-shape and crack propagation was mainly transgranular, independently of the presence of a notch or the material's microstructure. This was also the case for the V-shaped secondary crack network and resulting stepped crack morphology characteristic for hydrogen induced damage. These observations indicate that the stress state surrounding the crack tip has a very large impact on the hydrogen induced cracking characteristics. The use of a notch or the presence of a different microstructure did not influence the overall hydrogen induced cracking features, but did change the kinetics of the hydrogen induced cracking process.

  10. Microstructure, hardness, corrosion resistance and porcelain shear bond strength comparison between cast and hot pressed CoCrMo alloy for metal-ceramic dental restorations.

    Henriques, B; Soares, D; Silva, F S

    2012-08-01

    The purpose of this study was to compare the microstructure, hardness, corrosion resistance and metal-porcelain bond strength of a CoCrMo dental alloy obtained by two routes, cast and hot pressing. CoCrMo alloy substrates were obtained by casting and hot pressing. Substrates' microstructure was examined by the means of Optical Microscopy (OM) and by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). Hardness tests were performed in a microhardness indenter. The electrochemical behavior of substrates was investigated through potentiodynamic tests in a saline solution (8g NaCl/L). Substrates were bonded to dental porcelain and metal-porcelain bond strength was assessed by the means of a shear test performed in a universal test machine (crosshead speed: 0.5 mm/min) until fracture. Fractured surfaces as well as undestroyed interface specimens were examined with Stereomicroscopy and SEM-EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The t-test (pmicrostructures whereas hot pressed specimens exhibited a typical globular microstructure with a second phase spread through the matrix. The hardness registered for hot pressed substrates was greater than that of cast specimens, 438±24HV/1 and 324±8HV/1, respectively. Hot pressed substrates showed better corrosion properties than cast ones, i.e. higher OCP; higher corrosion potential (E(corr)) and lower current densities (i(corr)). No significant difference was found (p<0.05) in metal-ceramic bond strength between cast (116.5±6.9 MPa) and hot pressed (114.2±11.9 MPa) substrates. The failure type analysis revealed an adhesive failure for all specimens. Hot pressed products arise as an alternative to cast products in dental prosthetics, as they impart enhanced mechanical and electrochemical properties to prostheses without compromising the metal-ceramic bond strength. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Mechanism for microstructural evolution induced by high temperature deformation in Zr-based bulk metallic glasses

    Cheng, Sirui; Wang, Chunju; Ma, Mingzhen; Shan, Debin; Guo, Bin

    2016-01-01

    In the Zr_4_1_._2Ti_1_3_._8Cu_1_2_._5Ni_1_0Be_2_2_._5 (Vit1) alloy undergoing high temperature deformation, its thermal properties and microstructure are quite different from those in the annealing alloy. In order to research the coupled effect of temperature and plastic strain on microstructural evolution of Zr-based amorphous, uniaxial compression test of Vit1 alloy with good amorphous nature has been performed, and then the structural state and thermal properties of Vit1 alloy after thermal deformation and isothermal annealing in the supercooled liquid region were investigated. It is revealed that the deformed specimens possess higher characteristic temperature and lower enthalpy change of microstructural relaxation. In addition, the smaller inter-atomic distance and higher order degree of atomic arrangement can be observed in those deformed Vit1 alloy. That can be deduced that thermal deformation is in favor of the microstructural evolution from a metastable amorphous state to stable crystallization state, because plastic strain promotes the annihilation of free volume and provide excess driving force of atomic diffusion. However, upon increasing the ambient temperature, the influence of plastic deformation on microstructure gradually decreased owing to the decreasing proportion of the plastic deformation-induced annihilation of free volume during the whole thermal deformation process. - Highlights: • The deformed specimens possess closer microstructure and higher characteristic temperatures. • The order degree of microstructures in deformed specimens is higher than that in annealed specimens. • Thermal deformation accelerates the microstructural evolution of Zr-based BMGs. • The influence of thermal deformation on microstructure decreases with the temperature increasing.

  12. Mechanism for microstructural evolution induced by high temperature deformation in Zr-based bulk metallic glasses

    Cheng, Sirui [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Chunju [Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Mingzhen [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Shan, Debin, E-mail: shandebin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Bin [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2016-08-15

    In the Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} (Vit1) alloy undergoing high temperature deformation, its thermal properties and microstructure are quite different from those in the annealing alloy. In order to research the coupled effect of temperature and plastic strain on microstructural evolution of Zr-based amorphous, uniaxial compression test of Vit1 alloy with good amorphous nature has been performed, and then the structural state and thermal properties of Vit1 alloy after thermal deformation and isothermal annealing in the supercooled liquid region were investigated. It is revealed that the deformed specimens possess higher characteristic temperature and lower enthalpy change of microstructural relaxation. In addition, the smaller inter-atomic distance and higher order degree of atomic arrangement can be observed in those deformed Vit1 alloy. That can be deduced that thermal deformation is in favor of the microstructural evolution from a metastable amorphous state to stable crystallization state, because plastic strain promotes the annihilation of free volume and provide excess driving force of atomic diffusion. However, upon increasing the ambient temperature, the influence of plastic deformation on microstructure gradually decreased owing to the decreasing proportion of the plastic deformation-induced annihilation of free volume during the whole thermal deformation process. - Highlights: • The deformed specimens possess closer microstructure and higher characteristic temperatures. • The order degree of microstructures in deformed specimens is higher than that in annealed specimens. • Thermal deformation accelerates the microstructural evolution of Zr-based BMGs. • The influence of thermal deformation on microstructure decreases with the temperature increasing.

  13. Shear Stress Induces Phenotypic Modulation of Vascular Smooth Muscle Cells via AMPK/mTOR/ULK1-Mediated Autophagy.

    Sun, Liqian; Zhao, Manman; Liu, Aihua; Lv, Ming; Zhang, Jingbo; Li, Youxiang; Yang, Xinjian; Wu, Zhongxue

    2018-03-01

    Phenotypic modulation of vascular smooth muscle cells (VSMCs) is involved in the pathophysiological processes of the intracranial aneurysms (IAs). Although shear stress has been implicated in the proliferation, migration, and phenotypic conversion of VSMCs, the molecular mechanisms underlying these events are currently unknown. In this study, we investigated whether shear stress(SS)-induced VSMC phenotypic modulation was mediated by autophagy involved in adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway. The results show that shear stress could inhibit the expression of key VSMC contractile genes and induce pro-inflammatory/matrix-remodeling genes levels, contributing to VSMCs phenotypic switching from a contractile to a synthetic phenotype. More importantly, Shear stress also markedly increased the levels of the autophagy marker microtubule-associated protein light chain 3-II (LC3II), Beclin-1, and p62 degradation. The autophagy inhibitor 3-methyladenine (3-MA) significantly blocked shear-induced phenotypic modulation of VSMCs. To further explore the molecular mechanism involved in shear-induced autophagy, we found that shear stress could activate AMPK/mTOR/ULK1 signaling pathway in VSMCs. Compound C, a pharmacological inhibitor of AMPK, significantly reduced the levels of p-AMPK and p-ULK, enhanced p-mTOR level, and finally decreased LC3II and Beclin-1 level, which suggested that activated AMPK/mTOR/ULK1 signaling was related to shear-mediated autophagy. These results indicate that shear stress promotes VSMC phenotypic modulation through the induction of autophagy involved in activating the AMPK/mTOR/ULK1 pathway.

  14. An X-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels

    Fourspring, P.M.; Pangborn, R.N.

    1996-06-01

    X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The first objective of the investigation was to determine if XRDCD could be used to effectively monitor cyclic microstructural deformation in polycrystalline Fe alloys. A second objective was to study the microstructural deformation induced by cyclic loading of polycrystalline Fe alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 microm), subsurface (10--300 microm), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys

  15. Vortex-induced vibrations of a square cylinder under linear shear flow

    Sun, Wenjuan; Zhou, Dai; Han, Zhaolong [School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Tu, Jiahuang, E-mail: tujiahuang1982@163.com, E-mail: han.arkey@gmail.com [College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2017-04-15

    This paper investigates the numerical vortex-induced vibration (VIV) of a square cylinder which is connected to a 2-DOF mass-spring system and is immersed in the planar shear flow by employing a characteristic-based split (CBS) finite element method (FEM). The reduced mass of the square cylinder is M {sub r} = 2, while the reduced velocity, U {sub r}, is changed from 3 to 12 with an increment of Δ U {sub r} = 1. The effects of some key parameters on the cylinder dynamic responses, vibrating frequencies, the flow patterns as well as the energy transferred between the fluid and cylinder are revealed. In this study, the key parameters are selected as follows: shear ratio ( k  = 0, 0.05 and 0.1) and Reynolds numbers ( Re  = 80 and 160). Numerical results demonstrate that the X – Y trajectories of the cylinder mainly appear as a symmetrical figure ‘8’ in uniform flow ( k  = 0) and an unsymmetrical figure ‘8’ and ‘O’ in shear flows ( k  = 0.05 and 0.1). The maximum oscillation amplitudes of the square cylinder in both the inline and transverse directions have distinct characteristics compared to that of a circular cylinder. Two kinds of flow patterns, ‘2S’ and ‘P + S’, are mainly observed under the shear flow. Also, the mean values of the energy of the cylinder system increase with the reduced velocity, while the root mean square (rms) of the energy reaches its peak value at reduced velocity U {sub r} = 5. (paper)

  16. Experimental and numerical investigations of shock and shear wave propagation induced by femtosecond laser irradiation in epoxy resins

    Ecault, Romain; Touchard, Fabienne; Boustie, Michel; Berthe, Laurent; Lescoute, Emilien; Sollier, Arnaud; Voillaume, Hubert

    2015-01-01

    In this work, original shock experiments are presented. Laser-induced shock and shear wave propagations have been observed in an epoxy resin, in the case of femtosecond laser irradiation. A specific time-resolved shadowgraphy setup has been developed using the photoelasticimetry principle to enhance the shear wave observation. Shear waves have been observed in epoxy resin after laser irradiation. Their propagation has been quantified in comparison with the main shock propagation. A discussion, hinging on numerical results, is finally given to improve understanding of the phenomenon. (paper)

  17. Effect of Admixed Micelles on the Microstructure Alterations of Reinforced Mortar Subjected to Chloride Induced Corrosion

    Hu, J.; Koleva, D.A.; Van Breugel, K.

    2011-01-01

    This paper reports the main results from the influence of the initially admixed nano-aggregates (0.5 g/l PEO113-b-PS70 micelles previously dissolved in demi-water) on microstructural alterations of the reinforced mortar subjected to chloride induced corrosion. The morphology of hydration/corrosion

  18. Deformation-induced microstructural evolution at grain scale

    Winther, Grethe

    During plastic deformation metals develop microstructures which may be analysed on several scales,spanning from crystallographic textures averaged over the entire sample to the scale of individualgrains. Even within individual grains, intragranular phenomena in the form of orientation gradients...... aswell as dislocation patterning by formation of dislocation boundaries occur. Experimental data andassociated data analysis at the grain scale and below will be presented to illustrate our current level ofunderstanding. The basis for the analysis is the crystallographic orientation of the grain as well...... is presented for both fcc and bcc materials inseveral deformation modes, demonstrating a clear grain orientation dependence [Huang & Winther,2007]. This dependence has its origin in a dependence on the slip systems [Winther & Huang, 2007].This further implies that the dislocations in the boundaries come from...

  19. In-situ bending under tension shear fracture analysis and microstructure “earthquake” of DP780 dual phase steels

    Zhao, Yixi, E-mail: yxzhao@sjtu.edu.cn [State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Huang, Sheng [State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Dan, Wenjiao; Zhang, Weigang [Innovation Center for Advanced Ship and Deep-Sea Exploration, Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Shuhui [State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2017-05-17

    Dual phase (DP) steels consist of hard brittle martensite phase and soft ductile ferrite phase. With a novel bending under tension test system, in-situ symmetrical bending under tension experiments were carried out and photomicrographs of bending surface were recorded. The microstructure “earthquake” of DP780 dual phase steels was observed in the bending under tension process. By analyzing the in-situ images serious, the initiation, coalescence of cavities and propagation of micro-cracks until final fracture were analyzed. The micro-cracks form only in the outside surface of bending radius, and mainly appear near the phase boundary of ferrite and martensite. Micro-cracks coalesce and propagate in the direction perpendicular to the stretching direction approximately, and at the phase boundary of martensite and ferrite. Furthermore, digital image correlation technology was used in this study to analysis the strain distribution between ferrite and martensite during the bending under tension deformation and fracture.

  20. The electronic origin of shear-induced direct to indirect gap transition and anisotropy diminution in phosphorene.

    Sa, Baisheng; Li, Yan-Ling; Sun, Zhimei; Qi, Jingshan; Wen, Cuilian; Wu, Bo

    2015-05-29

    Artificial monolayer black phosphorus, so-called phosphorene, has attracted global interest with its distinguished anisotropic, optoelectronic, and electronic properties. Here, we unraveled the shear-induced direct-to-indirect gap transition and anisotropy diminution in phosphorene based on first-principles calculations. Lattice dynamic analysis demonstrates that phosphorene can sustain up to 10% applied shear strain. The bandgap of phosphorene experiences a direct-to- indirect transition when 5% shear strain is applied. The electronic origin of the direct-to-indirect gap transition from 1.54 eV at ambient conditions to 1.22 eV at 10% shear strain for phosphorene is explored. In addition, the anisotropy diminution in phosphorene is discussed by calculating the maximum sound velocities, effective mass, and decomposed charge density, which signals the undesired shear-induced direct-to-indirect gap transition in applications of phosphorene for electronics and optoelectronics. On the other hand, the shear-induced electronic anisotropy properties suggest that phosphorene can be applied as the switcher in nanoelectronic applications.

  1. Sheared electric field-induced suppression of edge turbulence using externally driven R.F. waves

    Craddock, G.G.; Diamond, P.H.

    1991-01-01

    Here the authors propose a novel method for active control and suppression of edge turbulence by sheared ExB flows driven by externally launched RF waves. The theory developed addresses the problem of open-quotes flow driveclose quotes, which is somewhat analogous to the problem of plasma current drive. As originally demonstrated for the case of spontaneously driven flows, a net difference in the gradient of the fluid and magnetic Reynolds' stresses produced by radially propagating waves can drive the plasma flow. For the prototypical case of the Alfven wave flow drive considered here, ρ 0 r v θ > - r B θ > is proportional to k perpendicular 2 ρ s 2 in the case of the kinetic Alfven wave, and [(ηk perpendicular 2 -vk perpendicular 2 )/ω] 2 in the case of resistive MHD. Both results reflect the dependence of flow drive on the net stress imbalance. The shear layer width is determined by the waves evanescence length (determined by dissipation) that sets the stress gradient scale length, while the direction of the flow is determined by the poloidal orientation of the launched waves. In particular, it should be noted that both positive and negative E r may be driven, so that enhanced confinement need not be accompanied by impurity accumulation, as commonly encountered in spontaneous H-modes. The efficiency is determined by the criterion that the radial electric field shear be large enough to suppress turbulence. For typical TEXT parameters, and unity efficiency, 300 kW of absorbed power is needed to suppress turbulence over 3 cm radially. For DIII-D, 300 kW over 4 cm is needed. Also, direct transport losses induced by RF have been shown to be small. Extensions of the theory to ICRF are underway and are discussed. They also discuss the analogous problem of current drive using kinetic Alfven waves. 2 refs

  2. Heating induced microstructural changes in graphene/Cu nanocomposites

    Solá, F; Niu, J; Xia, Z H

    2013-01-01

    Dynamic heating experiments on graphene/Cu nanocomposites by in situ scanning electron microscopy were conducted to observe the evolution of the morphology and size of the Cu nanoparticles. Microstructural characterization showed that the graphene/Cu nanocomposites system consists of graphene sheets decorated with Cu-based nanoparticles with different chemistries (Cu, Cu 2 O), shapes (cube, rod, triangle, etc) and sizes. Evidence of neck evolution, coalescence, sublimation and Ostwald ripening were observed. Interestingly, some of the events occurred at the edges of the graphene sheets. The quantitative data of necking evolution deviates from the classical continuum theory indicating that intrinsic faceting and the shape of the nanoparticles played an important role in the necking process. This was supported by molecular dynamics simulations. Experimental data of liquid-spherical nanoparticles on graphene suggested that Cu did not wet graphene. Based on sublimation experiments and surface stability, we propose that graphene decorated with Cu nanoparticles enclosed by {111} facets are the most stable nanocomposite at high temperatures. The growth mechanism of nanoparticles on graphene is discussed.

  3. Purinergic signaling is required for fluid shear stress-induced NF-{kappa}B translocation in osteoblasts

    Genetos, Damian C., E-mail: dgenetos@ucdavis.edu [Department of Anatomy, Cell Biology, and Physiology, School of Veterinary Medicine, University of California, Davis, CA (United States); Karin, Norman J. [Cell Biology and Biochemistry, Pacific Northwest National Laboratory, Richland, WA (United States); Geist, Derik J. [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States); Donahue, Henry J. [Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Pennsylvania State College of Medicine, Hershey, PA (United States); Duncan, Randall L. [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States)

    2011-04-01

    Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-{kappa}B. We examined whether this process was under the control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-{kappa}B inhibitory protein I{kappa}B{alpha} and exhibited cytosolic localization of NF-{kappa}B. Under fluid shear stress, I{kappa}B{alpha} levels decreased, and concomitant nuclear localization of NF-{kappa}B was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in I{kappa}B{alpha}, and NF-{kappa}B remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X{sub 7} receptor antagonists, indicating that the P2X{sub 7} receptor is responsible for fluid shear-stress-induced I{kappa}B{alpha} degradation and nuclear accumulation of NF-{kappa}B. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced I{kappa}B{alpha} degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X{sub 7}-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-{kappa}B activity through the P2Y{sub 6} and P2X{sub 7} receptor.

  4. Formation of compositional gradient profiles by using shear-induced polymer migration phenomenon under Couette flow field

    Im, Sang Hyuk; Lee, Su Jin [Kyung Hee University, Yongin (Korea, Republic of); Suh, Duck Jong; Park, O Ok [Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Kwon, Moo Hyun [Woosuk University, Wanju (Korea, Republic of)

    2015-07-15

    We investigated whether a graded-index profile, specified by the polymer compositional gradient, could be formed using shear-induced polymer migration phenomenon in a polymer solution. For the presented model system, we generated a shear flow by rotating a glass rod at the center of a polystyrene/methylmethacrylate (PS/MMA) solution and measured the degree of polymer migration by the shear flow field by examining the concentration of polymer solution along the radial direction from the rotating axis to the periphery. Through model experiments, we formed a compositional gradient and controlled its profile in the solution by varying the concentration of polymer solution, molecular weight of polymer, and shear rate. Finally, we solidified the gradient profiles by the polymerization of the PS/MMA solution and confirmed that the gradient profiles were maintained with a compositional gradient twice larger than the mother PS/MMA solution.

  5. Exact analytical solution of shear-induced flexural vibration of functionally graded piezoelectric beam

    Sharma, Pankaj, E-mail: psharma@rtu.ac.in; Parashar, Sandeep Kumar, E-mail: parashar2@yahoo.com [Mechanical Engineering Department, Rajasthan Technical University, Kota (India)

    2016-05-06

    The priority of this paper is to obtain the exact analytical solution for free flexural vibration of FGPM beam actuated using the d{sub 15} effect. In piezoelectric actuators, the potential use of d{sub 15} effect has been of particular interest for engineering applications since shear piezoelectric coefficient d15 is much higher than the other piezoelectric coupling constants d{sub 31} and d{sub 33}. The applications of shear actuators are to induce and control the flexural vibrations of beams and plates. In this study, a modified Timoshenko beam theory is used where electric potential is assumed to vary sinusoidaly along the thickness direction. The material properties are assumed to be graded across the thickness in accordance with power law distribution. Hamilton's principle is employed to obtain the equations of motion along with the associated boundary conditions for FGPM beams. Exact analytical solution is derived thus obtained equations of motion. Results for clamped-clamped and clamped-free boundary conditions are presented. The presented result and method shell serve as benchmark for comparing the results obtained from the other approximate methods.

  6. Role Played by Shear-Induced Hydrodynamic Diffusion on the Continuous Separation of Blood Cells

    Hoyos, Mauricio; Kurowski, Pascal; Moore, Lee; Williams, Stephen; Zborowski, Maciej

    2001-11-01

    The continuous sorting of hematopoietic stem cells, lymphocytes or other blood cells can be performed using a membraneless hydrodynamic technique called split-flow thin channel fractionation, SPLITT. Two streams are introduced to the separator: carrier at one inlet and a suspension containing a mixture of immunomagnetically-labeled cells and unlabeled cells at the other inlet. The SPLITT channel, comprising a thin annulus between two concentric cylinders, is fitted into a permanent quadrupole magnet. The sample is transported along the axis of the separation column, and the labeled cells migrate perpendicular to the bulk flow under the influence of the magnetic field. The aim is to recover - at high purity - all of the magnetized cells in the enriched outlet. However, other cells contaminate the enriched fraction. This may be due to a transversal transport of non-immunomagnetically-labeled cells - termed crossover - by shear-induced hydrodynamic diffusion, SIHD, occurring along the separator. The unwanted cell crossover strongly influences the target cell purity in the enriched fraction. We investigate the possible presence of SIHD on the separation of progenitor cells and particles by studying the cross-stream concentration as a function of different parameters: namely, shear rate, inlet concentration and particle size. With our SIHD model we can solve the convection-diffusion equation by assuming an effective diffusion coefficient, which predicts the observed crossover.

  7. Proof, interpretation and evaluation of radiation-induced microstructural changes in WWER reactor pressure vessel steels

    Boehmert, J.; Gokhman, A.; Grosse, M.; Ulbricht, A.

    2003-06-01

    Neutron embrittlement is a special issue for the VVER-type reactors. One of the fundamentals for a reliable assessment of the current material state is knowledge of the causes and mechanisms of neutron embrittlement. The aim of the project is to understand and to quantify the microstructural appearances due to neutron radiation in VVER-type reactor pressure vessel steels. The material base is a broad variation of irradiation probes taken from the irradiation programme Rheinsberg, surveillance programmes of Russian, Ukrainian or Hungarian NPPs or irradiation experiments with mockup-alloys. The microstructure was investigated by different methods. The small angle neutron scattering (SANS) proved to be the most suitable method. A procedure was developed to determine mean diameter, size distribution and volume fraction of irradiation-induced microstructure from SANS experiments in a reliable and comparable manner. With this method microstructural parameters were systematically determined and the main factors of influence were identified. Apart from the neutron fluence the volume fraction of radiation defects mainly changes with the copper or nickel content whereas phosphorus is hardly relevant. Annealing remedies the radiation-induced microstructural appearances. The ratio between nuclear and magnetic neutron scattering provides information on the type of radiation defects. This leads to the conclusion that the material composition changes the radiation defects. The change occurs gradually rather than abruptly. The radiation defects detected by SANS correlate with the radiation hardening and embrittlement. Generally, the results suggest a bimodal mechanism due to radiation-enhanced and radiation-induced defect evolution. A kinetic model on base of the rate theory approach was established. (orig.)

  8. Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes

    Huang, Chunfa, E-mail: chunfa.huang@case.edu [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States); Bruggeman, Leslie A. [Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States); Hydo, Lindsey M. [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Miller, R. Tyler [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States)

    2012-06-10

    The glomerular capillary wall, composed of endothelial cells, the glomerular basement membrane and the podocytes, is continually subjected to hemodynamic force arising from tractional stress due to blood pressure and shear stress due to blood flow. Exposure of glomeruli to abnormal hemodynamic force such as hyperfiltration is associated with glomerular injury and progressive renal disease, and the conversion of mechanical stimuli to chemical signals in the regulation of the process is poorly understood in podocytes. By examining DNA fragmentation, apoptotic nuclear changes and cytochrome c release, we found that shear stress induced cell apoptosis in cultured podocytes. Meanwhile, podocytes exposed to shear stress also stimulated c-Src phosphorylation, phospholipase D (PLD) activation and mammalian target of rapamycin (mTOR) signaling. Using the antibodies against c-Src, PLD{sub 1}, and PLD{sub 2} to perform reciprocal co-immunoprecipitations and in vitro PLD activity assay, our data indicated that c-Src interacted with and activated PLD{sub 1} but not PLD{sub 2}. The inhibition of shear stress-induced c-Src phosphorylation by PP{sub 2} (a specific inhibitor of c-Src kinase) resulted in reduced PLD activity. Phosphatidic acid, produced by shear stress-induced PLD activation, stimulated mTOR signaling, and caused podocyte hypertrophy and apoptosis.

  9. Shear-induced anisotropic plastic flow from body-centred-cubic tantalum before melting

    Wu, Christine J.; Söderlind, Per; Glosli, James N.; Klepeis, John E.

    2009-03-01

    There are many structural and optical similarities between a liquid and a plastic flow. Thus, it is non-trivial to distinguish between them at high pressures and temperatures, and a detailed description of the transformation between these phenomena is crucial to our understanding of the melting of metals at high pressures. Here we report a shear-induced, partially disordered viscous plastic flow from body-centred-cubic tantalum under heating before it melts into a liquid. This thermally activated structural transformation produces a unique, one-dimensional structure analogous to a liquid crystal with the rheological characteristics of Bingham plastics. This mechanism is not specific to Ta and is expected to hold more generally for other metals. Remarkably, this transition is fully consistent with the previously reported anomalously low-temperature melting curve and thus offers a plausible resolution to a long-standing controversy about melting of metals under high pressures.

  10. Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation.

    Kyung Min Kim

    Full Text Available Shear stress activates cellular signaling involved in cellular proliferation, differentiation, and migration. However, the mechanisms of mesenchymal stem cell (MSC differentiation under interstitial flow are not fully understood. Here, we show the increased osteogenic differentiation of MSCs under exposure to constant, extremely low shear stress created by osmotic pressure-induced flow in a microfluidic chip. The interstitial level of shear stress in the proposed microfluidic system stimulated nuclear localization of TAZ (transcriptional coactivator with PDZ-binding motif, a transcriptional modulator of MSCs, activated TAZ target genes such as CTGF and Cyr61, and induced osteogenic differentiation. TAZ-depleted cells showed defects in shear stress-induced osteogenic differentiation. In shear stress induced cellular signaling, Rho signaling pathway was important forthe nuclear localization of TAZ. Taken together, these results suggest that TAZ is an important mediator of interstitial flow-driven shear stress signaling in osteoblast differentiation of MSCs.

  11. Effect of shear stress and free radicals induced by ultrasound on erythrocytes

    Kondo, T.; Fukushima, Y.; Kon, H.; Riesz, P.

    1989-01-01

    The present study was undertaken to elucidate the mechanism of hemolysis induced by ultrasound. Ar or N2O gas was used to distinguish between cavitation with or without free radical formation (hydroxyl radicals and hydrogen atoms). Free radical formation was examined by the method of spin trapping combined with ESR. After sonication of erythrocyte suspensions, several structural and functional parameters of the erythrocyte membrane--hemolysis, membrane fluidity, membrane permeability, and membrane deformability--were examined. Although free radical formation was observed in the erythrocyte suspensions sonicated in the presence of Ar, no free radical formation was observed in the presence of N2O. However, the hemolysis behavior induced by ultrasound was similar in the presence of Ar or N2O. The membrane fluidity, permeability, and deformability of the remaining unlysed erythrocytes after sonication in the presence of Ar or N2O were unchanged and identical to those of the control cells. On the other hand, after gamma irradiation (700 Gy), the hemolysis behavior was quite different from that after sonication, and the membrane properties were significantly changed. These results suggest that hemolysis induced by sonication was due to mechanical shearing stress arising from cavitation, and that the membrane integrity of the remaining erythrocytes after sonication was the same as that of control cells without sonication. The triatomic gas, N2O, may be useful for ultrasonically disrupting cells without accompanying free radical formation

  12. A multi-layer bioinspired design with evolution of shish-kebab structures induced by controlled periodical shear field

    J. Zhang

    2013-04-01

    Full Text Available The crystallization of polymers, caused by flow fields in the melt, has been the subject of extensive studies for many years. In this study, we use periodical shear to induce polypropylene to form multi-layer structure, which is usually observed in plants. Two interesting points were found: firstly, the quest of mimicking natural structures was achieved by controlled periodical shear field; secondly, the evolution from nano to shish-kebab-like cylindrite structure was obtained in the multi-layer structure, which can be clarified by nuclei competition model. This study can be used to better understand the shear-induced crystallization of polymer. Here our intention is to place this new observation on the map, leaving a fuller presentation and discussion of the work to a future publication.

  13. Measurement of shear-induced diffusion of red blood cells using dynamic light scattering-optical coherence tomography

    Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A.; Lee, Jonghwan; Boas, David A.

    2018-02-01

    Dynamic Light Scattering-Optical Coherence Tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained 3D volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile, and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of 0.1 to 0.5 × 10-6 mm2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.

  14. Effects of microstructure and water on the electrical potentials in bone induced by ultrasound irradiation

    Tsuneda, H.; Matsukawa, S.; Takayanagi, S.; Matsukawa, M., E-mail: mmatsuka@mail.doshisha.ac.jp [Wave Electronics Research Center, Laboratory of Ultrasonic Electronics, Doshisha University, 1-3, Tatara Miyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Mizuno, K. [Underwater Technology Collaborative Research Center, Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Yanagitani, T. [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso cho, Showa-ku, Nagoya 466-8555 (Japan)

    2015-02-16

    The healing mechanism of bone fractures by low intensity pulse ultrasound is yet to be fully understood. There have been many discussions regarding how the high frequency dynamic stress can stimulate numerous cell types through various pathways. As one possible initial process of this mechanism, we focus on the piezoelectricity of bone and demonstrate that bone can generate electrical potentials by ultrasound irradiation in the MHz range. We have fabricated ultrasonic bone transducers using bovine cortical bone as the piezoelectric device. The ultrasonically induced electrical potentials in the transducers change as a function of time during immersed ultrasonic pulse measurements and become stable when the bone is fully wet. In addition, the magnitude of the induced electrical potentials changes owing to the microstructure in the cortical bone. The potentials of transducers with haversian structure bone are higher than those of plexiform structure bone, which informs about the effects of bone microstructure on the piezoelectricity.

  15. Constitutive Model Of Graded Micro-Structure Obtained Via Strain Induced Phase Transformation

    Ortwein, Rafał

    The literature review has been divided into three main sub-chapters. The first one is concentrated on the general information about stainless steels and their applications. It is important to perform a general overview and get an idea where the results of the present thesis could be applied. Description of all the brands of stainless steels, their microstructures and properties are important, as similar characteristics can be found in the newly created functionally graded structures. The second sub-chapter is an overview of the most important constitutive models and the experimental results for materials that undergo plastic strain induced phase transformation. Finally, the last one is devoted to functionally graded microstructures obtained via strain induced martensitic transformation – the subject of particular importance for the present thesis. As a general note, the literature review is organized mainly in a chronological order. In some cases similar publications or publications of the same Authors were...

  16. Electromagnetically induced transparency with wide band in all-dielectric microstructure based on Mie resonances

    Zhu, Lei; Dong, Liang

    2014-01-01

    We numerically demonstrate that a broadband electromagnetically induced transparency–like (EIT-like) effect can be achieved in an all-dielectric microstructure consisting of a dielectric bar and six dielectric bricks. With proper excitations, the dielectric bar and bricks serve as bright and dark elements via the Mie electric and magnetic resonances, respectively. In particular, the mutual couplings between the Mie electric and magnetic resonances induce a broad transparency window. The nature of resonances of the broadband EIT-like effect in an all-dielectric microstructure is investigated by numerical simulation and a coupled oscillator model. Results reveal that significant enhancement of coupling interactions between dielectric resonators leads to a broadband EIT-like effect. Such a dielectric EIT-like structure is promising for future applications in nonlinear optics, slow light devices, and filters. (paper)

  17. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity

    Weber, Martina; Baker, Meredith B.; Moore, Jeffrey P.; Searles, Charles D.

    2010-01-01

    Mechanical forces associated with blood flow play an important role in regulating vascular signaling and gene expression in endothelial cells (ECs). MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. miRNAs are known to have an important role in modulating EC biology, but their expression and functions in cells subjected to shear stress conditions are unknown. We sought to determine the miRNA expression profile in human ECs subjected to unidirectional shear stress and define the role of miR-21 in shear stress-induced changes in EC function. TLDA array and qRT-PCR analysis performed on HUVECs exposed to prolonged unidirectional shear stress (USS, 24 h, 15 dynes/cm 2 ) identified 13 miRNAs whose expression was significantly upregulated (p · ) production. These data demonstrate that shear stress forces regulate the expression of miRNAs in ECs, and that miR-21 influences endothelial biology by decreasing apoptosis and activating the NO · pathway. These studies advance our understanding of the mechanisms by which shear stress forces modulate vascular homeostasis.

  18. Femtosecond laser-induced microstructures on Ti substrates for reduced cell adhesion

    Heitz, J.; Plamadeala, C.; Muck, M.; Armbruster, O.; Baumgartner, W.; Weth, A.; Steinwender, C.; Blessberger, H.; Kellermair, J.; Kirner, S. V.; Krüger, J.; Bonse, J.; Guntner, A. S.; Hassel, A. W.

    2017-12-01

    Miniaturized pacemakers with a surface consisting of a Ti alloy may have to be removed after several years from their implantation site in the heart and shall, therefore, not be completely overgrown by cells or tissue. A method to avoid this may be to create at the surface by laser-ablation self-organized sharp conical spikes, which provide too little surface for cells (i.e., fibroblasts) to grow on. For this purpose, Ti-alloy substrates were irradiated in the air by 790 nm Ti:sapphire femtosecond laser pulses at fluences above the ablation threshold. The laser irradiation resulted in pronounced microstructure formation with hierarchical surface morphologies. Murine fibroblasts were seeded onto the laser-patterned surface and the coverage by cells was evaluated after 3-21 days of cultivation by means of scanning electron microscopy. Compared to flat surfaces, the cell density on the microstructures was significantly lower, the coverage was incomplete, and the cells had a clearly different morphology. The best results regarding suppression of cell growth were obtained on spike structures which were additionally electrochemically oxidized under acidic conditions. Cell cultivation with additional shear stress could reduce further the number of adherent cells.

  19. Microstructure fabrication process induced modulations in CVD graphene

    Matsubayashi, Akitomo; Zhang, Zhenjun; Lee, Ji Ung; LaBella, Vincent P.

    2014-12-01

    The systematic Raman spectroscopic study of a "mimicked" graphene device fabrication is presented. Upon photoresist baking, compressive stress is induced in the graphene which disappears after it is removed. The indirect irradiation from the electron beam (through the photoresist) does not significantly alter graphene characteristic Raman peaks indicating that graphene quality is preserved upon the exposure. The 2D peak shifts and the intensity ratio of 2D and G band, I(2D)/I(G), decreases upon direct metal deposition (Co and Py) suggesting that the electronic modulation occurs due to sp2 C-C bond weakening. In contrast, a thin metal oxide film deposited graphene does not show either the significant 2D and G peaks shift or I(2D)/I(G) decrease upon the metal deposition suggesting the oxide protect the graphene quality in the fabrication process.

  20. Microstructure fabrication process induced modulations in CVD graphene

    Matsubayashi, Akitomo, E-mail: amatsubayashi@albany.edu; Zhang, Zhenjun; Lee, Ji Ung; LaBella, Vincent P., E-mail: vlabella@albany.edu [College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, New York 12203 (United States)

    2014-12-15

    The systematic Raman spectroscopic study of a “mimicked” graphene device fabrication is presented. Upon photoresist baking, compressive stress is induced in the graphene which disappears after it is removed. The indirect irradiation from the electron beam (through the photoresist) does not significantly alter graphene characteristic Raman peaks indicating that graphene quality is preserved upon the exposure. The 2D peak shifts and the intensity ratio of 2D and G band, I(2D)/I(G), decreases upon direct metal deposition (Co and Py) suggesting that the electronic modulation occurs due to sp{sup 2} C-C bond weakening. In contrast, a thin metal oxide film deposited graphene does not show either the significant 2D and G peaks shift or I(2D)/I(G) decrease upon the metal deposition suggesting the oxide protect the graphene quality in the fabrication process.

  1. Dilatancy induced ductile-brittle transition of shear band in metallic glasses

    Zeng, F.; Jiang, M. Q.; Dai, L. H.

    2018-04-01

    Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.

  2. Intrinsic torque reversals induced by magnetic shear effects on the turbulence spectrum in tokamak plasmas

    Lu, Z. X.; Tynan, G. [Center for Energy Research and Department of Mechanical and Aerospace Engineering, University of California at San Diego, San Diego, California 92093 (United States); Center for Momentum Transport and Flow Organization and Center for Astrophysics and Space Science, University of California, San Diego, California 92093 (United States); Wang, W. X.; Ethier, S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Diamond, P. H. [Center for Momentum Transport and Flow Organization and Center for Astrophysics and Space Science, University of California, San Diego, California 92093 (United States); Gao, C.; Rice, J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-05-15

    Intrinsic torque, which can be generated by turbulent stresses, can induce toroidal rotation in a tokamak plasma at rest without direct momentum injection. Reversals in intrinsic torque have been inferred from the observation of toroidal velocity changes in recent lower hybrid current drive (LHCD) experiments. This work focuses on understanding the cause of LHCD-induced intrinsic torque reversal using gyrokinetic simulations and theoretical analyses. A new mechanism for the intrinsic torque reversal linked to magnetic shear (s{sup ^}) effects on the turbulence spectrum is identified. This reversal is a consequence of the ballooning structure at weak s{sup ^}. Based on realistic profiles from the Alcator C-Mod LHCD experiments, simulations demonstrate that the intrinsic torque reverses for weak s{sup ^} discharges and that the value of s{sup ^}{sub crit} is consistent with the experimental results s{sup ^}{sub crit}{sup exp}≈0.2∼0.3 [Rice et al., Phys. Rev. Lett. 111, 125003 (2013)]. The consideration of this intrinsic torque feature in our work is important for the understanding of rotation profile generation at weak s{sup ^} and its consequent impact on macro-instability stabilization and micro-turbulence reduction, which is crucial for ITER. It is also relevant to internal transport barrier formation at negative or weakly positive s{sup ^}.

  3. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    Laureys, A., E-mail: Aurelie.Laureys@UGent.be [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Depover, T. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Petrov, R. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Verbeken, K. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium)

    2016-02-15

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses just after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of

  4. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    Laureys, A.; Depover, T.; Petrov, R.; Verbeken, K.

    2016-01-01

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses just after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of

  5. Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity

    Turunen, S; Kaepylae, E; Kellomaeki, M [Tampere University of Technology, Department of Biomedical Engineering, PO Box 692, 33101 Tampere (Finland); Terzaki, K; Fotakis, C; Farsari, M [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, 70013, Heraklion, Crete (Greece); Viitanen, J, E-mail: elli.kapyla@tut.fi [VTT Technical Research Centre of Finland, PO Box 1300, 33101 Tampere (Finland)

    2011-12-15

    This study reports the pico- and femtosecond laser-induced photocrosslinking of protein microstructures. The capabilities of a picosecond Nd:YAG laser to promote multiphoton excited crosslinking of proteins were evaluated by fabricating 2D and 3D microstructures of avidin, bovine serum albumin (BSA) and biotinylated bovine serum albumin (bBSA). The multiphoton absorption-induced photocrosslinking of proteins was demonstrated here for the first time with a non-toxic biomolecule flavin mononucleotide (FMN) as the photosensitizer. Sub-micrometer and micrometer scale structures were fabricated from several different compositions of protein and photosensitizer by varying the average laser power and scanning speed in order to determine the optimal process parameters for efficient photocrosslinking. In addition, the retention of ligand-binding ability of the crosslinked protein structures was shown by fluorescence imaging of immobilized biotin or streptavidin conjugated fluorescence labels. The surface topography and the resolution of the protein patterns fabricated with the Nd:YAG laser were compared to the results obtained with a femtosecond Ti:Sapphire laser. Quite similar grain characteristics and comparable feature sizes were achieved with both laser sources, which demonstrates the utility of the low-cost Nd:YAG microlaser for direct laser writing of protein microstructures.

  6. Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity

    Turunen, S; Kaepylae, E; Kellomaeki, M; Terzaki, K; Fotakis, C; Farsari, M; Viitanen, J

    2011-01-01

    This study reports the pico- and femtosecond laser-induced photocrosslinking of protein microstructures. The capabilities of a picosecond Nd:YAG laser to promote multiphoton excited crosslinking of proteins were evaluated by fabricating 2D and 3D microstructures of avidin, bovine serum albumin (BSA) and biotinylated bovine serum albumin (bBSA). The multiphoton absorption-induced photocrosslinking of proteins was demonstrated here for the first time with a non-toxic biomolecule flavin mononucleotide (FMN) as the photosensitizer. Sub-micrometer and micrometer scale structures were fabricated from several different compositions of protein and photosensitizer by varying the average laser power and scanning speed in order to determine the optimal process parameters for efficient photocrosslinking. In addition, the retention of ligand-binding ability of the crosslinked protein structures was shown by fluorescence imaging of immobilized biotin or streptavidin conjugated fluorescence labels. The surface topography and the resolution of the protein patterns fabricated with the Nd:YAG laser were compared to the results obtained with a femtosecond Ti:Sapphire laser. Quite similar grain characteristics and comparable feature sizes were achieved with both laser sources, which demonstrates the utility of the low-cost Nd:YAG microlaser for direct laser writing of protein microstructures.

  7. Effects of Toroidal Rotation Shear on Toroidicity-induced Alfven Eigenmodes in the National Spherical Torus Experiment

    Podesta, M.; Bell, R.E.; Fredrickson, E.D.; Gorelenkov, N.N.; LeBlanc, B.P.; Heidbrink, W.W.; Crocker, N.A.; Kubota, S.; Yuh, H.

    2010-01-01

    The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) (M. Ono et al., Nucl. Fusion 40 557 (2000)). The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.

  8. Microstructure design of low alloy transformation-induced plasticity assisted steels

    Zhu, Ruixian

    The microstructure of low alloy Transformation Induced Plasticity (TRIP) assisted steels has been systematically varied through the combination of computational and experimental methodologies in order to enhance the mechanical performance and to fulfill the requirement of the next generation Advanced High Strength Steels (AHSS). The roles of microstructural parameters, such as phase constitutions, phase stability, and volume fractions on the strength-ductility combination have been revealed. Two model alloy compositions (i.e. Fe-1.5Mn-1.5Si-0.3C, and Fe-3Mn-1Si-0.3C in wt%, nominal composition) were studied. Multiphase microstructures including ferrite, bainite, retained austenite and martensite were obtained through conventional two step heat treatment (i.e. intercritical annealing-IA, and bainitic isothermal transformation-BIT). The effect of phase constitution on the mechanical properties was first characterized experimentally via systematically varying the volume fractions of these phases through computational thermodynamics. It was found that martensite was the main phase to deteriorate ductility, meanwhile the C/VA ratio (i.e. carbon content over the volume fraction of austenite) could be another indicator for the ductility of the multiphase microstructure. Following the microstructural characterization of the multiphase alloys, two microstructural design criteria (i.e. maximizing ferrite and austenite, suppressing athermal martensite) were proposed in order to optimize the corresponding mechanical performance. The volume fraction of ferrite was maximized during the IA with the help of computational thermodyanmics. On the other hand, it turned out theoretically that the martensite suppression could not be avoided on the low Mn contained alloy (i.e. Fe- 1.5Mn-1.5Si-0.3C). Nevertheless, the achieved combination of strength (~1300MPa true strength) and ductility (˜23% uniform elongation) on the low Mn alloy following the proposed design criteria fulfilled the

  9. Shear-induced aggregation or disaggregation in edible oils: Models, computer simulation, and USAXS measurements

    Townsend, B.; Peyronel, F.; Callaghan-Patrachar, N.; Quinn, B.; Marangoni, A. G.; Pink, D. A.

    2017-12-01

    The effects of shear upon the aggregation of solid objects formed from solid triacylglycerols (TAGs) immersed in liquid TAG oils were modeled using Dissipative Particle Dynamics (DPD) and the predictions compared to experimental data using Ultra-Small Angle X-ray Scattering (USAXS). The solid components were represented by spheres interacting via attractive van der Waals forces and short range repulsive forces. A velocity was applied to the liquid particles nearest to the boundary, and Lees-Edwards boundary conditions were used to transmit this motion to non-boundary layers via dissipative interactions. The shear was created through the dissipative forces acting between liquid particles. Translational diffusion was simulated, and the Stokes-Einstein equation was used to relate DPD length and time scales to SI units for comparison with USAXS results. The SI values depended on how large the spherical particles were (250 nm vs. 25 nm). Aggregation was studied by (a) computing the Structure Function and (b) quantifying the number of pairs of solid spheres formed. Solid aggregation was found to be enhanced by low shear rates. As the shear rate was increased, a transition shear region was manifested in which aggregation was inhibited and shear banding was observed. Aggregation was inhibited, and eventually eliminated, by further increases in the shear rate. The magnitude of the transition region shear, γ˙ t, depended on the size of the solid particles, which was confirmed experimentally.

  10. Shear-induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater.

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Stražar, Marjeta; Heath, Ester

    2014-05-01

    In this study, the removal of clofibric acid, ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac residues from wastewater, using a novel shear-induced cavitation generator has been systematically studied. The effects of temperature, cavitation time and H2O2 dose on removal efficiency were investigated. Optimisation (50°C; 15 min; 340 mg L(-1) of added H2O2) resulted in removal efficiencies of 47-86% in spiked deionised water samples. Treatment of actual wastewater effluents revealed that although matrix composition reduces removal efficiency, this effect can be compensated for by increasing H2O2 dose (3.4 g L(-1)) and prolonging cavitation time (30 min). Hydrodynamic cavitation has also been investigated as either a pre- or a post-treatment step to biological treatment. The results revealed a higher overall removal efficiency of recalcitrant diclofenac and carbamazepine, when hydrodynamic cavitation was used prior to as compared to post biological treatment i.e., 54% and 67% as compared to 39% and 56%, respectively. This is an important finding since diclofenac is considered as a priority substance to be included in the EU Water Framework Directive. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Platelet size and density affect shear-induced thrombus formation in tortuous arterioles

    Chesnutt, Jennifer K. W.; Han, Hai-Chao

    2013-10-01

    Thrombosis accounts for 80% of deaths in patients with diabetes mellitus. Diabetic patients demonstrate tortuous microvessels and larger than normal platelets. Large platelets are associated with increased platelet activation and thrombosis, but the physical effects of large platelets in the microscale processes of thrombus formation are not clear. Therefore, the objective of this study was to determine the physical effects of mean platelet volume (MPV), mean platelet density (MPD) and vessel tortuosity on platelet activation and thrombus formation in tortuous arterioles. A computational model of the transport, shear-induced activation, collision, adhesion and aggregation of individual platelets was used to simulate platelet interactions and thrombus formation in tortuous arterioles. Our results showed that an increase in MPV resulted in a larger number of activated platelets, though MPD and level of tortuosity made little difference on platelet activation. Platelets with normal MPD yielded the lowest amount of mural thrombus. With platelets of normal MPD, the amount of mural thrombus decreased with increasing level of tortuosity but did not have a simple monotonic relationship with MPV. The physical mechanisms associated with MPV, MPD and arteriole tortuosity play important roles in platelet activation and thrombus formation.

  12. Predictions and observations of low-shear beta-induced shear Alfven-acoustic eigenmodes in toroidal plasmas

    Gorelenkov, N.N. [Princeton Plasma Physics Laboratory, Princeton University (United States)], E-mail: ngorelen@pppl.gov; Berk, H.L. [IFS, Austin, Texas (United States); Fredrickson, E. [Princeton Plasma Physics Laboratory, Princeton University (United States); Sharapov, S.E. [Euroatom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United States)

    2007-10-08

    New global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode (GAM) frequency have been found numerically and have been used to explain relatively low frequency experimental signals seen in NSTX and JET tokamaks. These global eigenmodes, referred to here as Beta-induced Alfven-Acoustic Eigenmodes (BAAE), exist in the low magnetic safety factor region near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes shifts as the safety factor, q, decreases. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta <2% as well as in NSTX plasmas at relatively high-beta >20%. In contrast to the mostly electrostatic character of GAMs the new global modes also contain an electromagnetic (magnetic field line bending) component due to the Alfven coupling, leading to wave phase velocities along the field line that are large compared to the sonic speed. Qualitative agreement between theoretical predictions and observations are found.

  13. Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography.

    Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A; Lee, Jonghwan; Boas, David A

    2018-02-01

    Quantitative measurements of intravascular microscopic dynamics, such as absolute blood flow velocity, shear stress and the diffusion coefficient of red blood cells (RBCs), are fundamental in understanding the blood flow behavior within the microcirculation, and for understanding why diffuse correlation spectroscopy (DCS) measurements of blood flow are dominantly sensitive to the diffusive motion of RBCs. Dynamic light scattering-optical coherence tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained three-dimensional volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of ~0.1 to 0.5 × 10 -6  mm 2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Shear induced structures of soft colloids: Rheo-SANS experiments on kinetically frozen PEP-PEO diblock copolymer micelles

    Stellbrink, J; Lonetti, B; Rother, G; Willner, L; Richter, D

    2008-01-01

    We investigated the effect of external steady shear on dilute to concentrated solutions of PEP-PEO diblock copolymer micelles (soft colloids). The degree of softness in terms of particle interactions (intermolecular softness) and deformability of the individual particle (intramolecular softness) was varied by changing the ratio between hydrophobic and hydrophilic blocks from symmetric (1:1, hard sphere-like) to very asymmetric (1:20, star-like). We performed in situ rheology and small angle neutron scattering experiments (Rheo-SANS) to relate macroscopic flow properties to microscopic structural changes. The rheology data qualitatively show the same behavior for both types of micelles: (i) a divergence of the zero shear viscosity η 0 at a critical concentration φ c approximately following a Vogel-Fulcher-Tammann law and (ii) close to this liquid-solid transition a shear rate dependent viscosity which can be described by the Carreau function with an asymptotic power law η(γ-dot) ∼ γ-dot -0.4 starting at a critical shear rate γ-dot c . Rheo-SANS experiments in the liquid phase close to φ c were extended into the strong shear thinning region for both types of micelles at φ/φ c ∼0.8 and γ-dot red =γ-dot/γ-dot c approx. 10. In our Rheo-SANS data we observe a rather controversial influence of external shear on the structural properties of the two different micellar systems. With increasing shear rate the symmetric, hard sphere-like micelles show a decreasing structure factor S(Q) but a shear rate independent interparticle distance. The asymmetric, star-like micelles show an increase in S(Q) and an increase of the interparticle distance, both in the flow and vorticity direction. This unexpected behavior can be rationalized by a shear induced elongation and tilt of the star-like micelles along the flow direction as predicted by recent MD simulations (Ripoll et al 2006 Phys. Rev. Lett. 96 188302)

  15. Effect of microstructure on radiation induced segregation and depletion in ion irradiated SS316 steel

    Jin, Hyung Ha; Kwon, Sang Chul; Kwon, Jun Hyun

    2011-01-01

    Irradiation assisted stress corrosion cracking (IASCC), void swelling and irradiation induced hardening are caused by change of characteristics of material by neutron irradiation, stress state of material and environmental situation. It has been known that chemical compositions varies at grain boundary (GB) significantly with fluence level and the depletion of Cr element at GB has been considered as one of important factors causing material degradation, especially, IASCC in austenitic stainless steel. However, experimental results of IASCC under PWR condition were directly not connected with Cr depletion phenomenon by neutron irradiation. Because the mechanism of IASCC under PWR has not yet been clearly understood in spite of many energetic researches, fundamental researches about radiation induced segregation and depletion in irradiated austenitic stainless steels have been attracted again. In this work, an effect of residual microstructure on radiation induced segregation and depletion of alloy elements at GB was investigated in ion irradiated SS316 steel using transmission electron microscope (TEM) with energy dispersive spectrometer (EDS)

  16. A small angle neutron study of irradiation induced microstructures in Cr-Mo-V WWER steels

    Levit, Vladimir I.; Santos, Ari S.; Louzada, Ana R.R.; Silveira, Cristina M.; Vaniel, Ana Paula H.; Odette, George R.; Mader, Eric

    2000-01-01

    Small angle neutron scattering (SANS) has proven to be a very effective technique for characterizing the ultrafine (∼1 nm) irradiation induced microstructures which are responsible for hardening and the concomitant embrittlement of reactor pressure vessel steels. SANS measurement were carried out on three irradiated and unirradiated weld materials of WWER- type on 8 m instrument at the National Institute of Standards and Technology, Washington, USA. Small (r m < 1 nm) irradiation induced features were found for all three materials. Were found volume fractions, number densities and ratios of magnetic to nuclear scattering. Some analyses of the irradiation induced precipitation nature and possible chemical composition were made by comparison of the results with other reactor materials SANS and Atom Probe Field Ion Microscopy data. (author)

  17. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity

    Weber, Martina; Baker, Meredith B.; Moore, Jeffrey P. [Division of Cardiology, Emory University, 1639 Pierce Drive, WMB 319, Atlanta, GA 30322 (United States); Searles, Charles D., E-mail: csearle@emory.edu [Division of Cardiology, Emory University, 1639 Pierce Drive, WMB 319, Atlanta, GA 30322 (United States); Atlanta Veterans Administration Medical Center, 1670 Clarimont Road, Decatur, GA 30033 (United States)

    2010-03-19

    Mechanical forces associated with blood flow play an important role in regulating vascular signaling and gene expression in endothelial cells (ECs). MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. miRNAs are known to have an important role in modulating EC biology, but their expression and functions in cells subjected to shear stress conditions are unknown. We sought to determine the miRNA expression profile in human ECs subjected to unidirectional shear stress and define the role of miR-21 in shear stress-induced changes in EC function. TLDA array and qRT-PCR analysis performed on HUVECs exposed to prolonged unidirectional shear stress (USS, 24 h, 15 dynes/cm{sup 2}) identified 13 miRNAs whose expression was significantly upregulated (p < 0.05). The miRNA with the greatest change was miR-21; it was increased 5.2-fold (p = 0.002) in USS-treated versus control cells. Western analysis demonstrated that PTEN, a known target of miR-21, was downregulated in HUVECs exposed to USS or transfected with pre-miR-21. Importantly, HUVECs overexpressing miR-21 had decreased apoptosis and increased eNOS phosphorylation and nitric oxide (NO{sup {center_dot}}) production. These data demonstrate that shear stress forces regulate the expression of miRNAs in ECs, and that miR-21 influences endothelial biology by decreasing apoptosis and activating the NO{sup {center_dot}} pathway. These studies advance our understanding of the mechanisms by which shear stress forces modulate vascular homeostasis.

  18. Microstructural evolution of radiation induced defects in ZnO during isochronal annealing

    Brunner, S.; Puff, W.; Balogh, A.G.

    1999-01-01

    In this study the authors discuss the microstructural changes after electron and proton irradiation and the thermal evolution of the radiation induced defects during isochronal annealing. The nominally undoped samples were irradiated either with 3 MeV protons to a fluence of 1.2 x 10 18 p/cm 2 or with 1 MeV electrons to a fluence of 1 x 10 18 e/cm 2 . The investigation was performed with positron lifetime and Doppler-Broadening measurements. The measurements were done at room temperature and in some cases down to 10 K to investigate the thermal dependence of the trapping characteristics of the positrons

  19. Deformation Induced Martensitic Transformation and Its Initial Microstructure Dependence in a High Alloyed Duplex Stainless Steel

    Xie, Lin; Huang, Tian Lin; Wang, Yu Hui

    2017-01-01

    Deformation induced martensitic transformation (DIMT) usually occurs in metastable austenitic stainless steels. Recent studies have shown that DIMT may occur in the austenite phase of low alloyed duplex stainless steels. The present study demonstrates that DIMT can also take place in a high alloyed...... Fe–23Cr–8.5Ni duplex stainless steel, which exhibits an unexpectedly rapid transformation from γ-austenite into α′-martensite. However, an inhibited martensitic transformation has been observed by varying the initial microstructure from a coarse alternating austenite and ferrite band structure...

  20. Microstructure and phase transformation on milled and unmilled Ti induced by water quenching

    Bolokang, AS

    2014-10-01

    Full Text Available Materials Letters Vol. 132 Microstructure and phase transformation on milled and unmilled Ti induced by water quenching A.S.Bolokang a,b,n, M.J.Phasha c, D.E.Motaung b, F.R.Cummings a,d, T.F.G.Muller a, C.J.Arendse a a Department of...Physics,UniversityoftheWesternCape,PrivateBagx17,Bellville7535,SouthAfrica bDST/CSIR Nanotechnology InnovationCentre ,National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, P.O.Box395, Pretoria 0001, SouthAfrica c Transnet Engineering, Product...

  1. Microstructure, optical characterization and light induced degradation in a-Si:H deposited at different temperatures

    Minani, E.; Sigcau, Z.; Adgebite, O.; Ramukosi, F.L.; Ntsoane, T.P.; Harindintwari, S.; Knoesen, D.; Comrie, C.M.; Britton, D.T.; Haerting, M.

    2006-01-01

    The microstructure and optical properties of a series of hydrogenated amorphous silicon layers deposited on glass substrates at different temperature have been characterized by means of X-ray diffraction techniques and optical spectroscopy. The radial distribution function of the as-deposited samples showed an increase in the bond angle and a decrease in the radial distance indicating a relaxation of the amorphous network with increasing the deposition temperature. Light induced degradation was studied using a simulated daylight spectrum. The changes in hydrogen bonding configuration, associated with the light soaking at different stages of illumination, was monitored via the transmission bands of the vibrational wag and stretch modes of the IR spectrum

  2. Shear-induced Fracture Slip and Permeability Change. Implications for Long-term Performance of a Deep Geological Repository

    Min, Ki-Bok; Stephansson, Ove

    2009-03-01

    Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in jointed rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this project are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. The first part of the study is about the evolution of thermal stresses in the rock during the lifetime of the repository. Critical sections of heat generated stresses around the repository are selected and classified. Fracture data from Forsmark is used to establish fracture network models (DFN) and the models are subjected to the sum of virgin stress and thermal stresses and the shear slip and related permeability change are studied. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the corners of the repository. In the

  3. Shear-induced Fracture Slip and Permeability Change. Implications for Long-term Performance of a Deep Geological Repository

    Min, Ki-Bok (School of Civil, Environmental and Mining Engineering, Univ. of Adelaide, Adelaide (Australia)); Stephansson, Ove (Steph Rock Consulting AB, Berlin (Germany))

    2009-03-15

    Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in jointed rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this project are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. The first part of the study is about the evolution of thermal stresses in the rock during the lifetime of the repository. Critical sections of heat generated stresses around the repository are selected and classified. Fracture data from Forsmark is used to establish fracture network models (DFN) and the models are subjected to the sum of virgin stress and thermal stresses and the shear slip and related permeability change are studied. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the corners of the repository. In the

  4. Ultra-short laser pulse ablation using shear-force feedback: Femtosecond laser induced breakdown spectroscopy feasibility study

    Samek, Ota; Kurowski, Andre; Kittel, Silke; Kukhlevsky, Sergei; Hergenroeder, Roland

    2005-01-01

    This work reports on a feasibility study of proximity ablation using femtosecond pulses. Ultra-short pulses were launched to a bare tapered optical fiber and delivered to the sample. The tip-sample distance was controlled by means of shear-force feedback. Consequently, ablation craters with submicrometer dimensions were obtained. Potential analytical applications for Laser Induced Breakdown Spectroscopy (LIBS) technique, such as e.g. inclusions in steel or bio cells, are suggested

  5. Shear-induced morphology transition and microphase separation in a lamellar phase doped with clay particles.

    Nettesheim, Florian; Grillo, Isabelle; Lindner, Peter; Richtering, Walter

    2004-05-11

    We report on the influence of shear on a nonionic lamellar phase of tetraethyleneglycol monododecyl ether (C12E4) in D2O containing clay particles (Laponite RD). The system was studied by means of small-angle light scattering (SALS) and small-angle neutron scattering (SANS) under shear. The SANS experiments were conducted using a H2O/D2O mixture of the respective scattering length density to selectively match the clay scattering. The rheological properties show the familiar shear thickening regime associated with the formation of multilamellar vesicles (MLVs) and a shear thinning regime at higher stresses. The variation of viscosity is less pronounced as commonly observed. In the shear thinning regime, depolarized SALS reveals an unexpectedly strong variation of the MLV size. SANS experiments using the samples with lamellar contrast reveal a change in interlamellar spacing of up to 30% at stresses that lead to MLV formation. This change is much more pronounced than the change observed, when shear suppresses thermal bilayer undulations. Microphase separation occurs, and as a consequence, the lamellar spacing decreases drastically. The coincidence of the change in lamellar spacing and the onset of MLV formation is a strong indication for a morphology-driven microphase separation.

  6. Influence of biofilm lubricity on shear-induced transmission of staphylococcal biofilms from stainless steel to silicone rubber.

    Gusnaniar, Niar; Sjollema, Jelmer; Jong, Ed D; Woudstra, Willem; de Vries, Joop; Nuryastuti, Titik; van der Mei, Henny C; Busscher, Henk J

    2017-11-01

    In real-life situations, bacteria are often transmitted from biofilms growing on donor surfaces to receiver ones. Bacterial transmission is more complex than adhesion, involving bacterial detachment from donor and subsequent adhesion to receiver surfaces. Here, we describe a new device to study shear-induced bacterial transmission from a (stainless steel) pipe to a (silicone rubber) tube and compare transmission of EPS-producing and non-EPS-producing staphylococci. Transmission of an entire biofilm from the donor to the receiver tube did not occur, indicative of cohesive failure in the biofilm rather than of adhesive failure at the donor-biofilm interface. Biofilm was gradually transmitted over an increasing length of receiver tube, occurring mostly to the first 50 cm of the receiver tube. Under high-shearing velocity, transmission of non-EPS-producing bacteria to the second half decreased non-linearly, likely due to rapid thinning of the lowly lubricious biofilm. Oppositely, transmission of EPS-producing strains to the second tube half was not affected by higher shearing velocity due to the high lubricity and stress relaxation of the EPS-rich biofilms, ensuring continued contact with the receiver. The non-linear decrease of ongoing bacterial transmission under high-shearing velocity is new and of relevance in for instance, high-speed food slicers and food packaging. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Modeling of microalgal shear-induced flocculation and sedimentation using a coupled CFD-population balance approach.

    Golzarijalal, Mohammad; Zokaee Ashtiani, Farzin; Dabir, Bahram

    2018-01-01

    In this study, shear-induced flocculation modeling of Chlorella sp. microalgae was conducted by combination of population balance modeling and CFD. The inhomogeneous Multiple Size Group (MUSIG) and the Euler-Euler two fluid models were coupled via Ansys-CFX-15 software package to achieve both fluid and particle dynamics during the flocculation. For the first time, a detailed model was proposed to calculate the collision frequency and breakage rate during the microalgae flocculation by means of the response surface methodology as a tool for optimization. The particle size distribution resulted from the model was in good agreement with that of the jar test experiment. Furthermore, the subsequent sedimentation step was also examined by removing the shear rate in both simulations and experiments. Consequently, variation in the shear rate and its effects on the flocculation behavior, sedimentation rate and recovery efficiency were evaluated. Results indicate that flocculation of Chlorella sp. microalgae under shear rates of 37, 182, and 387 s -1 is a promising method of pre-concentration which guarantees the cost efficiency of the subsequent harvesting process by recovering more than 90% of the biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:160-174, 2018. © 2017 American Institute of Chemical Engineers.

  8. A modeling of radiation induced microstructural evolution under applied stress in austenitic alloys

    Tanigawa, Hiroyasu; Kohyama, Akira [Kyoto Univ., Uji (Japan). Inst. of Advanced Energy; Katoh, Yutai; Kohno, Yutaka

    1996-10-01

    Effects of applied stress on interstitial type Frank loop evolution at early stages of irradiation were investigated by both numerical calculation and irradiation experiments. In the experimental part of this work, microstructural inspection has been made by transmission electron microscopy with a special emphasis on Frank loops and perfect loops on every {l_brace}111{r_brace} plane. The results of the TEM observation revealed that Frank loop concentration on a {l_brace}111{r_brace} plane increased as the resolved normal stress to a {l_brace}111{r_brace} plane increased and that small perfect loops were more likely produced on {l_brace}111{r_brace} planes where larger resolved shear stress was applied. The model of a stress effect on Frank loop unfaulting was provided, which is triggered by nucleation of a Shockley partial dislocation loop in a Frank loop, was proposed. The results of the numerical calculation was successful to predict the strong dependence of Frank loop concentration on the resolved normal stress to {l_brace}111{r_brace} plane, which was the characteristic feature seen in the irradiation experiments. (author)

  9. Assessing the microstructural and rheological changes induced by food additives on potato puree.

    Dankar, Iman; Haddarah, Amira; El Omar, Fawaz; Sepulcre, Francesc; Pujolà, Montserrat

    2018-02-01

    The effects of agar, alginate, lecithin and glycerol on the rheological properties of commercial potato puree were investigated and interpreted in terms of starch microstructural changes, and the applicability of the Cox-Merz rule was evaluated. Each additive was applied separately at two concentrations (0.5 and 1%). Microscopic observations revealed more swollen starch aggregations in lecithin and glycerol compared with those of potato puree and agar, consequently affecting the rheological properties of potato puree. All samples exhibited shear thinning non-Newtonian behaviour. Rheological measurements were strongly concentration dependent. At 0.5% concentration, additives exerted decreases in all the rheological properties of potato puree in the order of glycerol>alginate>lecithin>agar, while at 1% concentration, the order changed to glycerol>lecithin>alginate, whereas 1% agar behaved differently, increasing all rheological values. This study also showed that agar and alginate in addition to potato puree could be valuable and advantageous for further technological processes, such as 3D printing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. White matter microstructure changes induced by motor skill learning utilizing a body machine interface.

    Wang, Xue; Casadio, Maura; Weber, Kenneth A; Mussa-Ivaldi, Ferdinando A; Parrish, Todd B

    2014-03-01

    The purpose of this study is to identify white matter microstructure changes following bilateral upper extremity motor skill training to increase our understanding of learning-induced structural plasticity and enhance clinical strategies in physical rehabilitation. Eleven healthy subjects performed two visuo-spatial motor training tasks over 9 sessions (2-3 sessions per week). Subjects controlled a cursor with bilateral simultaneous movements of the shoulders and upper arms using a body machine interface. Before the start and within 2days of the completion of training, whole brain diffusion tensor MR imaging data were acquired. Motor training increased fractional anisotropy (FA) values in the posterior and anterior limbs of the internal capsule, the corona radiata, and the body of the corpus callosum by 4.19% on average indicating white matter microstructure changes induced by activity-dependent modulation of axon number, axon diameter, or myelin thickness. These changes may underlie the functional reorganization associated with motor skill learning. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Shear Slip Potential Induced by Thermomechanical Loading in an Underground Repository for Nuclear Waste

    Lee, Jaewon; Min, Kibok; Stephansson, Ove

    2010-01-01

    In the context of a deep geological repository for nuclear water, the thermal stress generated by nuclear waster is expected to contribute to shear slip and dilation, which will eventually alter the fracture permeability in the region. In this study, the probability of the occurrence of shear slip at a fracture was examined by the Mohr-Coulomb failure criterion. The study was based on the fracture orientation generated by the Latin hypercube sampling method, which can improve the efficiency of Monte Carlo simulations by the use of a more systematic approach for selecting the input samples. Statistical data of fracture orientations from the site investigation in Forsmark, Sweden, were used in this study. The historical assessment of thermal stress was based on three-dimensional finite element modeling of a geological repository that measures 800 m by 2000 m and on a time scale up to 10,000 years. The results show that the probability of shear slip evolved differently at six selected points due to the difference stresses at each point. However, it was evident that the probability of shear slip was more that twice as large as the initial probability of failure. This increased permeability and micro seismicity, which can be an issue during the initial operation of the repository. The study provided a quantitative assessment of the probability of shear slip at a fracture, which is an important parameter for assessing the performance of a geological repository. Conclusions are summarized as follows: · With random orientation data, the probability of shear slip around the repository model increases with increased thermal stress. · The probability of shear slip depends on the manner in which the thermal stress is generated. Higher shear slip is expected with higher differential thermal stress. · The probability of shear slip at Forsmark was less than 1 %. If different sites have fracture sets with more overlap, however, the probability may become increase. Therefore, a

  12. Shear Slip Potential Induced by Thermomechanical Loading in an Underground Repository for Nuclear Waste

    Lee, Jaewon; Min, Kibok; Stephansson, Ove

    2010-01-01

    In the context of a deep geological repository for nuclear water, the thermal stress generated by nuclear waster is expected to contribute to shear slip and dilation, which will eventually alter the fracture permeability in the region. In this study, the probability of the occurrence of shear slip at a fracture was examined by the Mohr-Coulomb failure criterion. The study was based on the fracture orientation generated by the Latin hypercube sampling method, which can improve the efficiency of Monte Carlo simulations by the use of a more systematic approach for selecting the input samples. Statistical data of fracture orientations from the site investigation in Forsmark, Sweden, were used in this study. The historical assessment of thermal stress was based on three-dimensional finite element modeling of a geological repository that measures 800 m by 2000 m and on a time scale up to 10,000 years. The results show that the probability of shear slip evolved differently at six selected points due to the difference stresses at each point. However, it was evident that the probability of shear slip was more that twice as large as the initial probability of failure. This increased permeability and micro seismicity, which can be an issue during the initial operation of the repository. The study provided a quantitative assessment of the probability of shear slip at a fracture, which is an important parameter for assessing the performance of a geological repository. Conclusions are summarized as follows: · With random orientation data, the probability of shear slip around the repository model increases with increased thermal stress. · The probability of shear slip depends on the manner in which the thermal stress is generated. Higher shear slip is expected with higher differential thermal stress. · The probability of shear slip at Forsmark was less than 1 %. If different sites have fracture sets with more overlap, however, the probability may become increase. Therefore, a

  13. Memory-induced sign reversals of the spatial cross-correlation for particles in viscoelastic shear flows

    Sauga, Ako; Laas, Katrin; Mankin, Romi

    2015-01-01

    Highlights: • Cross-correlation (CC) of coordinates of particles in viscoelastic shear flows is discussed. • Expressions for CC functions subjected to both internal and external noises are presented. • Impact of internal and external noises on CC functions are compared. • Memory-induced reentrant sign reversals of the spatial cross-moment are established. - Abstract: The behavior of shear-induced cross-correlation functions between particle fluctuations along orthogonal directions in the shear plane for harmonically trapped Brownian particles in a viscoelastic shear flow is studied. A generalized Langevin equation with a power-law-type memory kernel is used to model the complex structure of the viscoelastic media. Interaction with fluctuations of environmental parameters is modeled by a multiplicative white Gaussian noise, by an internal fractional Gaussian noise, and by an additive external white noise. It is shown that the presence of a memory has a profound effect on the behavior of the cross-correlation functions. Particularly, memory-induced reentrant sign reversals of the spatial cross-moment between orthogonal random displacements of a particle are established, i.e., an increase of the memory exponent can cause the sign reversal from positive to negative, but by a further increase of the memory exponent a reentrant transition from negative to positive values appears. Similarities and differences between the behavior of the models with additive internal and external noises are considered. It is shown that additive external and internal noises cause qualitatively different dependencies of the cross-correlation functions on the time lag. The occurrence of energetic instability due to the influence of multiplicative noise is also discussed.

  14. Shear-Induced Amyloid Formation in the Brain: I. Potential Vascular and Parenchymal Processes.

    Trumbore, Conrad N

    2016-09-06

    Shear distortion of amyloid-beta (Aβ) solutions accelerates amyloid cascade reactions that may yield different toxic oligomers than those formed in quiescent solutions. Recent experiments indicate that cerebrospinal fluid (CSF) and interstitial fluid (ISF) containing Aβ flow through narrow brain perivascular pathways and brain parenchyma. This paper suggests that such flow causes shear distortion of Aβ molecules involving conformation changes that may be one of the initiating events in the etiology of Alzheimer's disease. Aβ shearing can occur in or around brain arteries and arterioles and is suggested as the origin of cerebral amyloid angiopathy deposits in cerebrovascular walls. Comparatively low flow rates of ISF within the narrow extracellular spaces (ECS) of the brain parenchyma are suggested as a possible initiating factor in both the formation of neurotoxic Aβ42 oligomers and amyloid fibrils. Aβ42 in slow-flowing ISF can gain significant shear energy at or near the walls of tortuous brain ECS flow paths, promoting the formation of a shear-distorted, excited state hydrophobic Aβ42* conformation. This Aβ42* molecule could possibly be involved in one of two paths, one involving rapid adsorption to a brain membrane surface, ultimately forming neurotoxic oligomers on membranes, and the other ultimately forming plaque within the ECS flow pathways. Rising Aβ concentrations combined with shear at or near critical brain membranes are proposed as contributing factors to Alzheimer's disease neurotoxicity. These hypotheses may be applicable in other neurodegenerative diseases, including tauopathies and alpha-synucleinopathies, in which shear-distorted proteins also may form in the brain ECS.

  15. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition

  16. Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.

    McAleavey, Stephen

    2011-01-01

    We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.

  17. Microstructure and fracture toughness of irradiated stainless steel retrieved from the field: the potential role of radiation-induced clusters

    Chou, P.; Soneda, N.; Nishida, K.; Dohi, K.; Marquis, E.A.; Chen, Y.

    2015-01-01

    The microstructures of six material/fluence combinations of stainless steels retrieved from BWR components (top guide and control rods) have been examined by atom probe tomography; the irradiated microstructure had been already characterized by transmission electron microscopy (TEM). The fracture toughness of two material/fluence combinations had been previously measured. The aggregate results strongly suggest that radiation-induced clusters play a significant role in the degradation of fracture toughness that occurs at fluences below ∼ 13 dpa. Because TEM has not been able to consistently identify and quantify the nano-sized clusters in this fluence range, it has not highlighted the potential role of radiation-induced clusters. (authors)

  18. Numerical simulation of bubble induced shear in membrane bioreactors: effects of mixed liquor rheology and membrane configuration.

    Liu, Xuefei; Wang, Yuan; Waite, T David; Leslie, Greg

    2015-05-15

    A CFD model, incorporating an empirically determined rheology model and a porous media model, was developed to simulate bubble induced surface shear in membrane bioreactors configured with hollow fibre membranes with outer diameters ranging from 1.3 to 2.4 mm, arranged in vertically orientated modules with packing density from 200 to 560 m(2)/m(3). The rheology model was developed for mixed liquor suspended solids (MLSS) concentrations of 3 to 16 gL(-1) in the presence and absence of coagulant (generated by addition of a ferrous salt) for shear rates ranging from 0 to 500 s(-1). Experimentally determined particle relaxation times for the biological flocs in the mixed liquor, both in the absence and presence of iron, were negligible, consistent with an environment where positive buoyancy forces were greater than negative settling forces thereby allowing the sludge mixture to be modelled as a single continuous phase. The non-Newtonian behaviour of the mixed liquor was incorporated into the CFD simulations using an Ostwald-de Waele rheology model. Interactions between mixed liquor and hollow fibre membranes of different fibre size and packing density were described using a porous media model that was calibrated by empirical measurement of inertial loss coefficients over a range of viscosities (0.8 × 10(-3) to 2.1 × 10(-3) Pa.s) and velocities (0 to 0.35 m/s) typically encountered in full scale MBRs. Experimental results indicated that addition of iron salts resulted in an increase in MLSS and sludge viscosity. Shear stress is affected by both velocity and viscosity. The increase in sludge viscosity resulted in an increase in resistance to flow through the hollow fibre membrane bundles and, as a result, decreased the liquid flow velocities. CFD simulations provided insight on the effects of point of coagulant addition and MLSS concentration on bubble-induced shear over a range of industrially relevant conditions. A 12% increase in shear stress was observed when

  19. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory

    Amann, Christian P., E-mail: Christian.2.Amann@uni-konstanz.de; Fuchs, Matthias, E-mail: Matthias.Fuchs@uni-konstanz.de [Fachbereich Physik, Universität Konstanz, 78457 Konstanz (Germany); Denisov, Dmitry; Dang, Minh Triet; Schall, Peter [Van der Waals-Zeeman Institute, University of Amsterdam, Amsterdam (Netherlands); Struth, Bernd [Deutsches Elektronen-Synchrotron, Hamburg (Germany)

    2015-07-21

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.

  20. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory

    Amann, Christian P.; Fuchs, Matthias; Denisov, Dmitry; Dang, Minh Triet; Schall, Peter; Struth, Bernd

    2015-01-01

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses

  1. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory.

    Amann, Christian P; Denisov, Dmitry; Dang, Minh Triet; Struth, Bernd; Schall, Peter; Fuchs, Matthias

    2015-07-21

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.

  2. The rheology of concentrated dispersions: structure changes and shear thickening in experiments and computer simulations

    Boersma, W.H.; Laven, J.; Stein, H.N.; Moldenaers, P.; Keunings, R.

    1992-01-01

    The flow-induced changes in the microstructure and rheol. of very concd., shear thickening dispersions are studied. Results obtained for polystyrene sphere dispersions are compared with previous data and computer simulations to give better insight into the processes occurring in the dispersions. [on

  3. Microstructural and electrical changes in nickel manganite powder induced by mechanical activation

    Savic, S.M.; Mancic, L.; Vojisavljevic, K.; Stojanovic, G.; Brankovic, Z.; Aleksic, O.S.; Brankovic, G.

    2011-01-01

    Highlights: → The influence of mechanical activation on microstructure evolution in the nickel manganite powder was investigated as well as electrical properties of the sintered samples. → Structural refinement obtained by Topas-Academic software based on Rietveld analysis showed that the milling process remarkably changed the powder morphology and microstructure. → SEM studies of sintered samples also revealed the strong influence of milling time on ceramics density (increases with milling time). → The electrical properties of ceramic samples are clearly conditioned by terms of synthesis, in our case the time of mechanical activation. → The highest density and higher values of dielectric constant were achieved at the sample activated for 45 min. -- Abstract: Nickel manganite powder synthesized by calcination of a stoichiometric mixture of manganese and nickel oxide was additionally mechanically activated in a high energy planetary ball mill for 5-60 min in order to obtain a pure NiMn 2 O 4 phase. The as-prepared powders were uniaxially pressed into disc shape pellets and then sintered for 60 min at 1200 o C. Changes in the particle morphology induced by mechanical activation were monitored using scanning electron microscopy, while changes in powder structural characteristics were followed using X-ray powder diffraction. The ac impedance spectroscopy was performed on sintered nickel manganite samples at 25 o C, 50 o C and 80 o C. It was shown that mechanical activation intensifies transport processes causing a decrease in the average crystallites size, while longer activation times can lead to the formation of aggregates, defects and increase of lattice microstrains. The observed changes in microstructures were correlated with measured electrical properties in order to define optimal processing conditions.

  4. Microstructural and electrical changes in nickel manganite powder induced by mechanical activation

    Savic, S.M., E-mail: slavicas@cms.bg.ac.rs [Institute for Multidisciplinary Research-University of Belgrade, Kneza Viseslava 1a, 11030 Belgrade (Serbia); Mancic, L. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Vojisavljevic, K. [Institute for Multidisciplinary Research-University of Belgrade, Kneza Viseslava 1a, 11030 Belgrade (Serbia); Stojanovic, G. [Faculty of Technical Sciences University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad (Serbia); Brankovic, Z.; Aleksic, O.S.; Brankovic, G. [Institute for Multidisciplinary Research-University of Belgrade, Kneza Viseslava 1a, 11030 Belgrade (Serbia)

    2011-07-15

    Highlights: {yields} The influence of mechanical activation on microstructure evolution in the nickel manganite powder was investigated as well as electrical properties of the sintered samples. {yields} Structural refinement obtained by Topas-Academic software based on Rietveld analysis showed that the milling process remarkably changed the powder morphology and microstructure. {yields} SEM studies of sintered samples also revealed the strong influence of milling time on ceramics density (increases with milling time). {yields} The electrical properties of ceramic samples are clearly conditioned by terms of synthesis, in our case the time of mechanical activation. {yields} The highest density and higher values of dielectric constant were achieved at the sample activated for 45 min. -- Abstract: Nickel manganite powder synthesized by calcination of a stoichiometric mixture of manganese and nickel oxide was additionally mechanically activated in a high energy planetary ball mill for 5-60 min in order to obtain a pure NiMn{sub 2}O{sub 4} phase. The as-prepared powders were uniaxially pressed into disc shape pellets and then sintered for 60 min at 1200 {sup o}C. Changes in the particle morphology induced by mechanical activation were monitored using scanning electron microscopy, while changes in powder structural characteristics were followed using X-ray powder diffraction. The ac impedance spectroscopy was performed on sintered nickel manganite samples at 25 {sup o}C, 50 {sup o}C and 80 {sup o}C. It was shown that mechanical activation intensifies transport processes causing a decrease in the average crystallites size, while longer activation times can lead to the formation of aggregates, defects and increase of lattice microstrains. The observed changes in microstructures were correlated with measured electrical properties in order to define optimal processing conditions.

  5. Experimental study of the vortex-induced vibration of drilling risers under the shear flow with the same shear parameter at the different Reynolds numbers.

    Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou

    2014-01-01

    A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment.

  6. Experimental study of the vortex-induced vibration of drilling risers under the shear flow with the same shear parameter at the different Reynolds numbers.

    Mao Liangjie

    Full Text Available A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment.

  7. Quantifying the strain-induced dissolution of precipitates in Al alloy microstructures using nuclear magnetic resonance

    Hutchinson, C.R.; Loo, P.T.; Bastow, T.J.; Hill, A.J.; Costa Teixeira, J. da

    2009-01-01

    Nuclear magnetic resonance (NMR) has been used for the first time to directly monitor the dynamic partitioning of Cu atoms from shearable precipitates into the solid solution as a function of straining at room temperature in two Al-Cu-based alloys. Al-3Cu-0.05Sn (wt.%) and Al-2.5Mg-1.5Cu (wt.%) alloys were heat-treated to provide a fine distribution of ∼5 nm Guinier-Preston (GP) zones and <1 nm Guinier-Preston-Bagaryatsky (GPB) zones, respectively, and were then subjected to rolling strains up to 100%. It is shown that in the Al-Cu-0.05Sn alloy, strains up to ∼40% can pump solute from the ∼5 nm GP zones back into solid solution for the temperature and strain-rate of deformation employed here. In the case of the Al-Cu-Mg alloy, no dissolution of the GPB zones is observed. A simple model for the strain-induced dissolution of the shearable precipitates is given and compared with the experimental results. The dependence of the Cu repartitioning process on the precipitate size is emphasized. These observations and modeling give guidelines for the design of Al-Cu-based alloys to exploit the dynamic interplay of strain-induced Cu partitioning between metastable states, e.g. solid solution and GP (or GPB) zones, for tailoring ultimate mechanical properties. It is proposed that this strain-induced phase transformation is a form of dynamically responding microstructure that can be employed to obtain aluminum alloys with well-designed microstructures.

  8. Origins of the anomalous stress behavior in charged colloidal suspensions under shear.

    Kumar, Amit; Higdon, Jonathan J L

    2010-11-01

    Numerical simulations are conducted to determine microstructure and rheology of sheared suspensions of charged colloidal particles at a volume fraction of ϕ=0.33. Over broad ranges of repulsive force strength F0 and Péclet number Pe, dynamic simulations show coexistence of ordered and disordered stable states with the state dependent on the initial condition. In contrast to the common view, at low shear rates, the disordered phase exhibits a lower viscosity (μ(r)) than the ordered phase, while this behavior is reversed at higher shear rates. Analysis shows the stress reversal is associated with different shear induced microstructural distortions in the ordered and disordered systems. Viscosity vs shear rate data over a wide range of F0 and Pe collapses well upon rescaling with the long-time self-diffusivity. Shear thinning viscosity in the ordered phase scaled as μ(r)∼Pe(-0.81) at low shear rates. The microstructural dynamics revealed in these studies explains the anomalous behavior and hysteresis loops in stress data reported in the literature.

  9. Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays.

    Jing, Xufeng; Shao, Jianda; Zhang, Junchao; Jin, Yunxia; He, Hongbo; Fan, Zhengxiu

    2009-12-21

    In order to more exactly predict femtosecond pulse laser induced damage threshold, an accurate theoretical model taking into account photoionization, avalanche ionization and decay of electrons is proposed by comparing respectively several combined ionization models with the published experimental measurements. In addition, the transmittance property and the near-field distribution of the 'moth eye' broadband antireflective microstructure directly patterned into the substrate material as a function of the surface structure period and groove depth are performed by a rigorous Fourier model method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure for TE polarization, but for TM wave it is insensitive to the period. What's more, the femtosecond pulse laser damage threshold of the surface microstructure on the pulse duration taking into account the local maximum electric field enhancement was calculated using the proposed relatively accurate theoretical ionization model. For the longer incident wavelength of 1064 nm, the weak linear damage threshold on the pulse duration is shown, but there is a surprising oscillation peak of breakdown threshold as a function of the pulse duration for the shorter incident wavelength of 532 nm.

  10. Microstructural changes in silicon induced by patterning with focused ion beams of Ga, Si and Au

    Chee, See Wee; Kammler, Martin; Balasubramanian, Prabhu; Reuter, Mark C.; Hull, Robert; Ross, Frances M.

    2013-01-01

    We use focused beams of Ga + , Au + and Si ++ ions to induce local microstructural changes in single crystal silicon. The ions were delivered as single spot pulses into thin Si membranes that could subsequently be imaged and annealed in situ in a transmission electron microscope. For each ion, the focused ion beam implantation created an array of amorphous regions in the crystalline membrane. Annealing causes solid phase epitaxial regrowth to take place, but we show that the resulting microstructure depends on the ion species. For Ga + and Au + , precipitates remain after recrystallization, while for Si ++ , dislocation loops form around the periphery of each implanted spot. We attribute these loops to defects formed during solid phase epitaxial regrowth, with controlled placement of the loops possible. - Highlights: ► Ga + , Au + and Si ++ were implanted into thin membranes of Si. ► Samples were imaged and annealed in situ in a transmission electron microscope. ► Focused ion beam implantation created an array of amorphous spots. ► After recrystallization, precipitates form for Ga + and Au + , dislocation loops for Si ++ . ► Controlled placement of the dislocation loops possible

  11. Break Differed Induced by Hydrides (BDIH) in Zr-2,5Nb: Microstructure effect

    Mieza, J. Ignacio; Domizzi, Gladys; Vigna, Gustavo L

    2006-01-01

    The alloys of Zr-2,5%Nb are susceptible to be degraded for the incorporation of hydrogen in their matrix. One of the mechanisms of the damage by hydrogen known as Break Differed Induced by Hydrides (BDIH) consists of the evolution, in discreet steps, of a crack inside the matrix by the fragile break of the hydride phase. The parameter utilized to characterize the severity of the process of BDIH is the velocity of advance of the crack. The variables that affect to the velocity are the solicitations of external load, the thermal cycles, the content of hydrogen and the microstructure of the material. The Zr-2, 5% Nb of nuclear use is a two-phase alloy (α-β) constituted by the phase alpha (rich in Zr) and β-Zr (rich in Nb) retained since high temperature. In service, the phase metastable evolves toward the stable phase depending on the time and the temperature of operation. In this work the effects of the evolution of the phase β-Zr on the velocity of BDIH are studied, measure with emission acoustics. The microstructural characterization was done by means of obtained dust X-rays diffraction by anodic dissolution of the material. The results obtained show the decrease of the velocity of propagation of the crack with the degree of advance of the transformation toward the phase β-Nb, consistent effect with the differences observed in the coefficients of diffusion of each phase (AG)

  12. Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass

    Ma Fengxu; Yang Jianjun; Xiaonong Zhu; Liang Chunyong; Wang Hongshui

    2010-01-01

    Surface morphological evolution of Zr-based metallic glass ablated by femtosecond lasers is investigated in atmosphere condition. Three types of permanent ring structures with micro-level spacing are observed for different laser shots and fluences. In the case of low laser fluences, the generation of annular patterns with nonthermal features is observed on the rippled structure with the subwavelength scale, and the ring spacing shows a decrease tendency from the center to the margin. While in the case of high laser fluences, the concentric rings formation within the laser spot is found to have evident molten traces and display the increasing ring spacing along the radial direction. Moreover, when the laser shots accumulation becomes large, the above two types of ring microstructures begin to develop into the common ablation craters. Analysis and discussion suggests that the stress-induced condensation of ablation vapors and the frozen thermocapillary waves on the molten surfaces should be responsible for the formation of two different types of concentric ring structures, respectively. Eventually, a processing window for each resulting surface microstructure type is obtained experimentally and indicates the possibility to control the morphological transitions among different types.

  13. BEND-INDUCED LOSSES IN A SINGLE-MODE MICROSTRUCTURED FIBER WITH A LARGE CORE

    Y. A. Gatchin

    2015-03-01

    Full Text Available A study of bend-induced losses in a silica-based single-mode microstructured fiber with a core diameter ranging from 20 to 35 microns and increased relative air content in the holey cladding has been conducted. With the use of the equivalent step-index profile method in approximation of waveguide parameters of microstructured fiber (normalized frequency and normalized transverse attenuation constant the effect of bending on the spectral position of the fundamentalmode short-wavelength leakage boundary has been analyzed. Upon measurement of spectral characteristics of attenuation in the considered fibers good accordance of numerical and experimental data has been found out. It is shown that increase of the air content in the holey cladding leads to expansion of the mentioned boundary to lower wavelengths for the value from 150 to 800 nm depending on the core size and bending conditions. A single-transverse-mode propagation is achieved on fiber length of 5-10 meters due to a substantial difference in losses of fundamental and higher-order guided modes attained by bending. Optical losses in all studied samples are less than 10 dB/km at the wavelength λ = 1550 nm. The results of the study can be applied in the design of high-power laser systems having such basic requirements as a relatively large mode spot and high beam quality.

  14. Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys.

    Ran, Chun; Chen, Pengwan

    2018-01-05

    To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively.

  15. Fundamental Studies of Irradiation-Induced Modifications in Microstructural Evolution and Mechanical Properties of Advanced Alloys

    Stubbins, James; Heuser, Brent; Hosemann, Peter; Liu, Xiang

    2018-04-24

    This final technical report summarizes the research performed during October 2014 and December 2017, with a focus on investigating the radiation-induced microstructural and mechanical property modifications in optimized advanced alloys for sodium-cooled fast reactor (SFR) structural applications. To accomplish these objectives, the radiation responses of several different advanced alloys, including austenitic steel Alloy 709 (A709) and 316H, and ferritic/ martensitic Fe–9Cr steels T91 and G92, were investigated using a combination of microstructure characterizations and nanoindentation measurements. Different types of irradiation, including ex situ bulk ion irradiation and in situ transmission electron microscopy (TEM) ion irradiation, were employed in this study. Radiation-induced dislocations, precipitates, and voids were characterized by TEM. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy (STEM-EDS) and/or atom probe tomography (APT) were used to study radiation-induced segregation and precipitation. Nanoindentation was used for hardness measurements to study irradiation hardening. Austenitic A709 and 316H was bulk-irradiated by 3.5 MeV Fe++ ions to up to 150 peak dpa at 400, 500, and 600°. Compared to neutron-irradiated stainless steel (SS) 316, the Frank loop density of ion-irradiated A709 shows similar dose dependence at 400°, but very different temperature dependence. Due to the noticeable difference in the initial microstructure of A709 and 316H, no systematic comparison on the Frank loops in A709 vs 316H was made. It would be helpful that future ion irradiation study on 316 stainless steel could be conducted to directly compare the temperature dependence of Frank loop density in ion-irradiated 316 SS with that in neutron-irradiated 316 SS. In addition, future neutron irradiation on A709 at 400–600° at relative high dose (>10 dpa) can be carried out to compare with ion-irradiated A709. The radiation-induced

  16. Microstructures induced by excimer laser surface melting of the SiC{sub p}/Al metal matrix composite

    Qian, D.S., E-mail: Daishu.qian@postgrad.manchester.ac.uk; Zhong, X.L.; Yan, Y.Z.; Hashimoto, T.; Liu, Z.

    2017-08-01

    Highlights: • Microstructural analysis of the excimer laser-melted SiC{sub p}/AA2124;. • Analytical, FEM, and SPH simulation of the laser-material interaction;. • Mechanism of the formation of the laser-induced microstructure. - Abstract: Laser surface melting (LSM) was carried out on the SiC{sub p}/Al metal matrix composite (MMC) using a KrF excimer laser with a fluence of 7 J/cm{sup 2}. The re-solidification microstructure was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with energy dispersive X-ray detector, and X-ray diffraction (XRD) analysis. It was found that a 2.5 μm thick melted layer was formed in the near-surface region, in which dissolution of the intermetallics and removal of the SiC particles occurred. The thermal and material response upon laser irradiation was simulated using three models, i.e. analytical model, finite element model (FEM) and smoothed-particle hydrodynamics (SPH) model. The effect of SiC particles on the LSM process, the mechanism of the SiC removal and the re-solidification microstructures in the melted layer were discussed. The simulation results were in good agreement with the experimental results and contributed to the generic understanding of the re-solidification microstructures induced by ns-pulsed lasers.

  17. Shear machines

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  18. Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow

    Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.

    2000-09-01

    We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.

  19. Martensite shear phase reversion-induced nanograined/ultrafine-grained Fe-16Cr-10Ni alloy: The effect of interstitial alloying elements and degree of austenite stability on phase reversion

    Misra, R.D.K., E-mail: dmisra@louisiana.edu [Center for Structural and Functional Materials, University of Louisiana at Lafayette, Madison Hall Room 217, P.O. Box 44130, Lafayette, LA 70504-1430 (United States); Zhang, Z.; Venkatasurya, P.K.C. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, Madison Hall Room 217, P.O. Box 44130, Lafayette, LA 70504-1430 (United States); Somani, M.C.; Karjalainen, L.P. [Department of Mechanical Engineering, University of Oulu, P.O. Box 4200, Oulu 90014 (Finland)

    2010-11-15

    Research highlights: {yields} Development of a novel process involving phase-reversion annealing process. {yields} Austensite stability strongly influences development of nanograined structure. {yields} Interstitial elements influence microstructural evolution during annealing. - Abstract: We describe here an electron microscopy study of microstructural evolution associated with martensitic shear phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure in an experimental Fe-16Cr-10Ni alloy with very low interstitial content. The primary objective is to understand and obtain fundamental insights on the influence of degree of austenite stability (Fe-16Cr-10Ni, 301LN, and 301 have different austenite stability index) and interstitial elements (carbon and nitrogen) in terms of phase reversion process, microstructural evolution during reversion annealing, and temperature-time annealing sequence. A relative comparison of Fe-16Cr-10Ni alloy with 301LN and 301 austenitic stainless steels indicated that phase reversion in Fe-16Cr-10Ni occurred by shear mechanism, which is similar to that observed for 301, but is different from the diffusional mechanism in 301LN steel. While the phase reversion in the experimental Fe-16Cr-10Ni alloy and 301 austenitic stainless steel occurred by shear mechanism, there were fundamental differences between these two alloys. The reversed strain-free austenite grains in Fe-16Cr-10Ni alloy were characterized by nearly same crystallographic orientation, where as in 301 steel there was evidence of break-up of martensite laths during reversion annealing resulting in several regions of misoriented austenite grains in 301 steel. Furthermore, a higher phase reversion annealing temperature range (800-900 deg. C) was required to obtain a fully NG/UFG structure of grain size 200-600 nm. The difference in the phase reversion and the temperature-time sequence in the three stages is explained in terms of Gibbs free energy change that

  20. Classification of Rotor Induced Shearing Events in the Near Wake of a Wind Turbine Array Boundary Layer

    Smith, Sarah; Viggiano, Bianca; Ali, Naseem; Cal, Raul Bayoan

    2017-11-01

    Flow perturbation induced by a turbine rotor imposes considerable turbulence and shearing effects in the near wake of a turbine, altering the efficiency of subsequent units within a wind farm array. Previous methods have characterized near wake vorticity of a turbine and recovery distance of various turbine array configurations. This study aims to build on previous analysis with respect to a turbine rotor within an array and develop a model to examine stress events and energy contribution in the near wake due to rotational effects. Hot wire anemometry was employed downstream of a turbine centrally located in the third row of a 3x3 array. Data considered points planar to the rotor and included simultaneous streamwise and wall-normal velocities as well as concurrent streamwise and transverse velocities. Conditional analysis of Reynolds stresses induced by the rotor agree with former near wake research, and examination of stresses in terms of streamwise and transverse velocity components depicts areas of significant rotational effects. Continued analysis includes spectral decomposition and conditional statistics to further characterize shearing events at various points considering the swept area of the rotor.

  1. 3D additive manufactured 316L components microstructural features and changes induced by working life cycles

    Pace, M. L.; Guarnaccio, A.; Dolce, P.; Mollica, D.; Parisi, G. P.; Lettino, A.; Medici, L.; Summa, V.; Ciancio, R.; Santagata, A.

    2017-10-01

    The ability of processing through laser beams different kinds of metallic powders for direct production of 3D components with complex geometries has been gaining an impressive and growing attention for specific industrial applications. The process which can be distinguished as Selective Laser Sintering or Selective Laser Melting is even considered, more generally, as Additive Manufacturing where layer by layer material is built by the interaction between a laser beam and a powder bed. The rapid heating of the powder due to the laser beam energy transfer process followed by a rapid cooling rate induces within the manufactured material a cellular structure with fine sub-grains, which are in the range of few hundreds of micrometers. These metastable structures, which are smaller than the grain size in conventionally manufactured 316L stainless steel components, can undertake towards a recrystallization process due to either heat or mechanical treatments. For instance, when sub-grain boundaries of the cells are enriched with Mo and higher concentration of dislocation, dynamical processes occur generating local residual stresses. In these circumstances the segregation of Mo in cell boundaries is out of thermodynamic equilibrium conditions so that microstructures and phases are metastable. In the range of 1100-1400 °C heat treatments a complete dissolution of Mo in the Fe matrix with a gradual disappearance of sub-microns cell is observed feeding the growth of larger austenitic sub-grains formation. It follows a higher degree of Mo dissolution in the material matrix and a decrease of dislocation's concentration (Saeidi et al., 2015) [1]. In the work here presented we point out which are the microstructural features of stainless steel 316L components realized by Additive Manufacturing. Furthermore, the occurrence of a microstructural evolution is presented after experiencing to fatigue of 80000 cycles some door joints obtained by this technique. A decrease of dislocation

  2. Dopant induced variations in microstructure and optical properties of CeO2 nanoparticles

    Mohanty, Bhaskar Chandra; Lee, Jong Won; Yeon, Deuk-Ho; Jo, Yeon-Hwa; Kim, Jong Hak; Cho, Yong Soo

    2011-01-01

    Research highlights: → Dopant (Zr 4+ , La 3+ , and Ca 2+ ) induced phase stability, and changes in microstructure and optical properties of CeO 2 nanoparticles have been studied. → The nanoparticles were prepared by hydrothermal synthesis of nitrate solutions. → The results show modification of the unit cell parameter by -0.39, +0.83 and +0.16% for doping of 20% Zr 4+ , La 3+ , and Ca 2+ , respectively. → For each batch prepared, nanoparticles with a narrow size distribution of 5-15 nm have been obtained. These particles are single crystals mostly having polygonal two-dimensional projections. → UV-visible spectra of doped particles exhibit shift of the absorption edge and absorption peak with respect to those of the undoped ones and has been attributed to compensation of Ce 3+ and decreasing crystallite size as result of doping. -- Abstract: Nanocrystalline CeO 2 particles doped in the range of 0-20% of Ca 2+ , La 3+ , and Zr 4+ have been prepared from hydrothermal synthesis of nitrate solutions at 200 o C and the influences of the dopants on microstructure and optical properties of the nanoparticles have been investigated. The unit cell parameter is found to be modified by -0.39, +0.83 and +0.16% for doping of 20% Zr 4+ , La 3+ , and Ca 2+ , respectively. For each batch prepared, nanoparticles with a narrow size distribution of 5-15 nm have been obtained. A high-resolution transmission electron microscopy investigation reveals that these particles are single crystals mostly having hexagonal, square or circular two-dimensional projections. UV-visible spectra of doped powders exhibit shift of the absorption edge and absorption peak with respect to those of the undoped CeO 2 particles and has been attributed to compensation of Ce 3+ and decreasing crystallite size as result of doping.

  3. Oxygen ion implantation induced microstructural changes and electrical conductivity in Bakelite RPC detector material

    Kumar, K. V. Aneesh, E-mail: aneesh1098@gmail.com; Ravikumar, H. B., E-mail: hbr@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Mysore-570006 (India); Ranganathaiah, C., E-mail: cr@physics.uni-mysore.ac.in [Govt. Research Centre, Sahyadri Educational Institutions, Mangalore-575007 (India); Kumarswamy, G. N., E-mail: kumy79@gmail.com [Department of Studies in Physics, Amrita Vishwa Vidyapeetham, Bangalore-560035 (India)

    2016-05-06

    In order to explore the structural modification induced electrical conductivity, samples of Bakelite Resistive Plate Chamber (RPC) detector materials were exposed to 100 keV Oxygen ion in the fluences of 10{sup 12}, 10{sup 13}, 10{sup 14} and 10{sup 15} ions/cm{sup 2}. Ion implantation induced microstructural changes have been studied using Positron Annihilation Lifetime Spectroscopy (PALS) and X-Ray Diffraction (XRD) techniques. Positron lifetime parameters viz., o-Ps lifetime and its intensity shows the deposition of high energy interior track and chain scission leads to the formation of radicals, secondary ions and electrons at lower ion implantation fluences (10{sup 12} to10{sup 14} ions/cm{sup 2}) followed by cross-linking at 10{sup 15} ions/cm{sup 2} fluence due to the radical reactions. The reduction in electrical conductivity of Bakelite detector material is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate implantation energy and fluence of Oxygen ion on polymer based Bakelite RPC detector material may reduce the leakage current, improves the efficiency, time resolution and thereby rectify the aging crisis of the RPC detectors.

  4. Microstructural characteristics of the hydroxyapatite and its influence in the Tl signal induced by gamma radiation

    Mendoza A, D.; Gonzalez M, P.R.; Hernandez A, M.; Estrada G, R.; Rodriguez L, V.

    2003-01-01

    The analysis carried out on different materials has shown that the quantity and type of dopants play an important role in the behaviour thermoluminescent signal induced by the ionizing radiation. More recent studies have also shown that the grain size influences strongly in the thermoluminescent signal. Plus still, the crystal growth habit and the crystalline degree have an important effect in the type and intensity thermoluminescent signal. In this sense, we present this work on the analysis of the thermoluminescent signal induced by the gamma radiation in the hydroxyapatite ceramic. Depending the growth habit, a variation of the peak temperature location, signal intensity and linearity range was observed; in particular cases a lineal relationship between glow curve and radiation dose was in the range from 2 to 1000 Gray. These results are complemented with a microstructural and crystalline degree analysis through scanning electron microscopy and X-ray Diffraction. The dose-response over the whole irradiation range opening up the possibility of employing this bio material as a dosimeter. (Author)

  5. Cellular shear stiffness reflects progression of arsenic-induced transformation during G1

    Muñoz, Alexandra; Eldridge, Will J; Jakobsen, Nina Munkholt

    2017-01-01

    epithelial cells were exposed to sodium arsenite to initiate early stages of transformation. Exposed cells were cultured in soft agar to further transformation and select for clonal populations exhibiting anchorage independent growth. Shear stiffness of various cell populations in G1 was assessed using...... reduced stiffness relative to control clonal lines, which were cultured in soft agar but did not receive arsenic treatment. The relative standard deviation of the stiffness of Arsenic clones was reduced compared to control clones, as well as to the arsenic exposed cell population. Cell stiffness...

  6. Shear-induced network-to-network transition in a block copolymer melt

    Cochran, Eric W.; Bates, Frank S.

    2004-01-01

    A tricontinuous (10,3)c network phase is documented in a poly(cyclohexylethylene-b-ethylethylene-b-ethylene) triblock copolymer melt based on small-angle x-ray scattering. Application of shear transforms the self-assembled soft material into a single crystal (10,3)d network while preserving the short-range threefold connector geometry. Long-range topological restructuring reduces the space group symmetry, from Fddd to Pnna, maintaining orthorhombic lattice symmetry. Both phases are stable to long time annealing, indicative of nearly degenerate free energies and prohibitive kinetic barriers

  7. Heat Treatment of Al 7075 for Ejection Seat Shear Wire

    Wong, Catherine

    1999-01-01

    .... Current lots of Al 6061 could not duplicate the double shear breaking load values and so it was attempted to achieve the required double shear breaking load in the Al 7075 alloy with a stable microstructure...

  8. Shear-induced Long Range Order in Diblock Copolymer Thin Films

    Ding, Xuan; Russell, Thomas

    2007-03-01

    Shear is a well-established means of aligning block copolymer micro-domains in bulk; cylinder-forming block copolymers respond by orienting cylinder axes parallel to the flow direction, and macroscopic specimens with near-single-crystal texture can be obtained. A stepper motor is a brushless, synchronous electric motor that can divide a full rotation into a large number of steps. With the combination of a stepper motor and several gear boxes in our experiment, we can control the rotating resolution to be as small as 1 x10-4 degree/step. Also, with the help of a customized computer program we can control the motor speed in a very systematical way. By changing parameters such as the weight (or the uniform pressure) and the lateral force we can carry on experiment to examine the effect of lateral shear on different polymer systems such as PS-b-PEO (large χ) and PS-b-P2VP (small χ).

  9. On the possibility of wave-induced chaos in a sheared, stably stratified fluid layer

    W. B. Zimmermann

    1994-01-01

    Full Text Available Shear flow in a stable stratification provides a waveguide for internal gravity waves. In the inviscid approximation, internal gravity waves are known to be unstable below a threshold in Richardson number. However, in a viscous fluid, at low enough Reynolds number, this threshold recedes to Ri = 0. Nevertheless, even the slightest viscosity strongly damps internal gravity waves when the Richardson number is small (shear forces dominate buoyant forces. In this paper we address the dynamics that approximately govern wave propagation when the Richardson number is small and the fluid is viscous. When Ri ξ = λ1A + λ2Aξξ + λ3Aξξξ + λ4AAξ + b(ξ where ξ is the coordinate of the rest frame of the passing temperature wave whose horizontal profile is b(ξ. The parameters λi are constants that depend on the Reynolds number. The above dynamical system is know to have limit cycle and chaotic attrators when forcing is sinusoidal and wave attenuation negligible.

  10. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  11. Large-area uniform periodic microstructures on fused silica induced by surface phonon polaritons and incident laser

    Zhang, Chuanchao; Liao, Wei; Zhang, Lijuan; Jiang, Xiaolong; Chen, Jing; Wang, Haijun; Luan, Xiaoyu; Yuan, Xiaodong

    2018-06-01

    A simple and convenient means to self-organize large-area uniform periodic microstructures on fused silica by using multiple raster scans of microsecond CO2 laser pulses with beam spot overlapping at normal incidence is presented, which is based on laser-induced periodic surface structures (LIPSS) attributed to the interference between surface phonon polaritons and incident CO2 laser. The evolution of fused silica surface morphologies with increasing raster scans indicates that the period of microstructures changed from 10.6 μm to 9 μm and the profiles of microstructures changed from a sinusoidal curve to a half-sinusoidal shape. Numerical simulation results suggest that the formation of the half-sinusoidal profile is due to the exponential relationship between evaporation rate and surface temperature inducing by the intensive interference between surface phonon polaritons and incident laser. The fabricated uniform periodic microstructures show excellent structural color effect in both forward-diffraction and back-diffraction.

  12. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites

    Xiong, Wei; Zhang, Xianfeng, E-mail: lynx@mail.njust.edu.cn; Wu, Yang; He, Yong; Wang, Chuanting; Guo, Lei

    2015-11-05

    Granular composites containing aluminum (Al) and nickel (Ni) are typical structural energetic materials, which possess ideal combination of both mechanical properties and energy release capability. The influence of two additives, namely Teflon (PTFE) and copper (Cu), on mechanical properties and shock-induced chemical reaction (SICR) characteristics of Al/Ni material system has been investigated. Three composites, namely Al/Ni, Al/Ni/PTFE and Al/Ni/Cu with same volumetric ratio of Al powder to Ni powder, were processed by means of static pressing. Scanning electron microscopy was used to study the microstructure of the mentioned three composites. Quasi static compression tests were also conducted to determine the mechanical properties and fracture behavior of the mentioned three composites. It was shown that the additives affected both compressive strength and fracture mode of the three composites. Impact initiation experiments on the mentioned three composites were performed to determine their shock-induced chemical reaction characteristics by considering pressure histories measured in the test chamber. The experimental results showed that the additives had significant effects on critical initiation velocity, reaction rate, reaction efficiency and post-reaction behavior. - Highlights: • .Al/Ni, Al/Ni/PTFE and Al/Ni/Cu were processed by means of static pressing. • .Microstructures, mechanical properties and shock-induced reactions were studied. • .Microstructures affect both compressive strength and fracture mode. • .Impact velocity is an important factor in shock-induced chemical characteristics. • .Each additive has significant effects on energy release behavior.

  13. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites

    Xiong, Wei; Zhang, Xianfeng; Wu, Yang; He, Yong; Wang, Chuanting; Guo, Lei

    2015-01-01

    Granular composites containing aluminum (Al) and nickel (Ni) are typical structural energetic materials, which possess ideal combination of both mechanical properties and energy release capability. The influence of two additives, namely Teflon (PTFE) and copper (Cu), on mechanical properties and shock-induced chemical reaction (SICR) characteristics of Al/Ni material system has been investigated. Three composites, namely Al/Ni, Al/Ni/PTFE and Al/Ni/Cu with same volumetric ratio of Al powder to Ni powder, were processed by means of static pressing. Scanning electron microscopy was used to study the microstructure of the mentioned three composites. Quasi static compression tests were also conducted to determine the mechanical properties and fracture behavior of the mentioned three composites. It was shown that the additives affected both compressive strength and fracture mode of the three composites. Impact initiation experiments on the mentioned three composites were performed to determine their shock-induced chemical reaction characteristics by considering pressure histories measured in the test chamber. The experimental results showed that the additives had significant effects on critical initiation velocity, reaction rate, reaction efficiency and post-reaction behavior. - Highlights: • .Al/Ni, Al/Ni/PTFE and Al/Ni/Cu were processed by means of static pressing. • .Microstructures, mechanical properties and shock-induced reactions were studied. • .Microstructures affect both compressive strength and fracture mode. • .Impact velocity is an important factor in shock-induced chemical characteristics. • .Each additive has significant effects on energy release behavior

  14. Piezoelectricity induced defect modes for shear waves in a periodically stratified supperlattice

    Piliposyan, Davit

    2018-01-01

    Properties of shear waves in a piezoelectric stratified periodic structure with a defect layer are studied for a superlattice with identical piezoelectric materials in a unit cell. Due to the electro-mechanical coupling in piezoelectric materials the structure exhibits defect modes in the superlattice with full transmission peaks both for full contact and electrically shorted interfaces. The results show an existence of one or two transmission peaks depending on the interfacial conditions. In the long wavelength region where coupling between electro-magnetic and elastic waves creates frequency band gaps the defect layer introduces one or two defect modes transmitting both electro-magnetic and elastic energies. Other parameters affecting the defect modes are the thickness of the defect layer, differences in refractive indexes and the magnitude of the angle of the incident wave. The results of the paper may be useful in the design of narrow band filters or multi-channel piezoelectric filters.

  15. Shape Recovery of Elastic Red Blood Cells from Shear Flow Induced Deformation in Three Dimensions

    Peng, Yan; Gounley, John

    2015-11-01

    Red blood cells undergo substantial shape changes in vivo. Modeled as an elastic capsule, the shape recovery of a three dimensional biconcave capsule from shear flow is studied for different preferred elastic and bending configuration. The fluid-structure interaction is modeled using the multiple-relaxation time lattice Boltzmann (LBM) and immersed boundary (IBM) methods. Based on the studies of the limited shape memory observed in three dimensions, the shape recovery is caused by the preferred elastic configuration, at least when paired with a constant spontaneous curvature. For these capsules, the incompleteness of the shape recovery observed precludes any conjecture about whether a single or multiple phase(s) are necessary to describe the recovery process. Longer simulations and a more stable methodology will be necessary. Y. Peng acknowledges support from Old Dominion University Research Foundation Grant #503921 and National Science Foundation Grant DMS-1319078.

  16. Numerical simulations of vortex-induced vibrations of a flexible riser with different aspect ratiosin uniform and shear currents

    Duanmu, Yu; Zou, Lu; Wan, De-cheng

    2017-12-01

    This paper aimed at describing numerical simulations of vortex-induced vibrations (VIVs) of a long flexible riser with different length-to-diameter ratio (aspect ratio) in uniform and shear currents. Three aspect ratios were simulated: L/D = 500, 750 and 1 000. The simulation was carried out by the in-house computational fluid dynamics (CFD) solver viv-FOAM-SJTU developed by the authors, which was coupled with the strip method and developed on the OpenFOAM platform. Moreover, the radial basis function (RBF) dynamic grid technique is applied to the viv-FOAM-SJTU solver to simulate the VIV in both in-line (IL) and cross-flow (CF) directions of flexible riser with high aspect ratio. The validation of the benchmark case has been completed. With the same parameters, the aspect ratio shows a significant influence on VIV of a long flexible riser. The increase of aspect ratio exerted a strong effect on the IL equilibrium position of the riser while producing little effect on the curvature of riser. With the aspect ratio rose from 500 to 1 000, the maximum IL mean displacement increased from 3 times the diameter to 8 times the diameter. On the other hand, the vibration mode of the riser would increase with the increase of aspect ratio. When the aspect ratio was 500, the CF vibration was shown as a standing wave with a 3rd order single mode. When the aspect ratio was 1 000, the modal weights of the 5th and 6th modes are high, serving as the dominant modes. The effect of the flow profile on the oscillating mode becomes more and more apparent when the aspect ratio is high, and the dominant mode of riser in shear flow is usually higher than that in uniform flow. When the aspect ratio was 750, the CF oscillations in both uniform flow and shear flow showed multi-mode vibration of the 4th and 5th mode. While, the dominant mode in uniform flow is the 4th order, and the dominant mode in shear flow is the 5th order.

  17. Characterizing wave- and current- induced bottom shear stress: U.S. middle Atlantic continental shelf

    Dalyander, P. Soupy; Butman, Bradford; Sherwood, Christopher R.; Signell, Richard P.; Wilkin, John L.

    2013-01-01

    Waves and currents create bottom shear stress, a force at the seabed that influences sediment texture distribution, micro-topography, habitat, and anthropogenic use. This paper presents a methodology for assessing the magnitude, variability, and driving mechanisms of bottom stress and resultant sediment mobility on regional scales using numerical model output. The analysis was applied to the Middle Atlantic Bight (MAB), off the U.S. East Coast, and identified a tidally-dominated shallow region with relatively high stress southeast of Massachusetts over Nantucket Shoals, where sediment mobility thresholds are exceeded over 50% of the time; a coastal band extending offshore to about 30 m water depth dominated by waves, where mobility occurs more than 20% of the time; and a quiescent low stress region southeast of Long Island, approximately coincident with an area of fine-grained sediments called the “Mud Patch”. The regional high in stress and mobility over Nantucket Shoals supports the hypothesis that fine grain sediment winnowed away in this region maintains the Mud Patch to the southwest. The analysis identified waves as the driving mechanism for stress throughout most of the MAB, excluding Nantucket Shoals and sheltered coastal bays where tides dominate; however, the relative dominance of low-frequency events varied regionally, and increased southward toward Cape Hatteras. The correlation between wave stress and local wind stress was lowest in the central MAB, indicating a relatively high contribution of swell to bottom stress in this area, rather than locally generated waves. Accurate prediction of the wave energy spectrum was critical to produce good estimates of bottom shear stress, which was sensitive to energy in the long period waves.

  18. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    Feng, Kai; Wang, Yibo [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.

  19. Fabrication of High-Aspect-Ratio 3D Hydrogel Microstructures Using Optically Induced Electrokinetics

    Yi Li

    2016-04-01

    Full Text Available We present a rapid hydrogel polymerization and prototyping microfabrication technique using an optically induced electrokinetics (OEK chip, which is based on a non-UV hydrogel curing principle. Using this technique, micro-scale high-aspect-ratio three-dimensional polymer features with different geometric sizes can be fabricated within 1–10 min by projecting pre-defined visible light image patterns onto the OEK chip. This method eliminates the need for traditional photolithography masks used for patterning and fabricating polymer microstructures and simplifies the fabrication processes. This technique uses cross-link hydrogels, such as poly(ethylene glycol (PEG-diacrylate (PEGDA, as fabrication materials. We demonstrated that hydrogel micropillar arrays rapidly fabricated using this technique can be used as molds to create micron-scale cavities in PDMS (polydimethylsiloxane substrates. Furthermore, hollow, circular tubes with controllable wall thicknesses and high-aspect ratios can also be fabricated. These results show the potential of this technique to become a rapid prototyping technology for producing microfluidic devices. In addition, we show that rapid prototyping of three-dimensional suspended polymer structures is possible without any sacrificial etching process.

  20. A study on early microstructural changes in the rabbit gallbladder induced by shock waves

    Oh, Eun Oak [Hong-Sung Koryo Hospital, Hongsung (Korea, Republic of); Shim, Hyung Jin; Kim, Kun Sang; Ryo, Dae Sik; Choi, Yun Sun; Song, In Sup; Kim, Young Koo [College of Medicine, Chung Ang University, Seoul (Korea, Republic of)

    1994-05-15

    In order to evaluate microstructural changes after shock wave exposure, gross, light microscopic and transmission electron microscopic findings were analyzed with rabbit gallbladders. A preliminary study(2 rabbits) was performed to determine the dosage intensity of shock waves needed to inflict damage, using a EDAP LT 01 piezoelectric extracorporeal shock wave lothotriptor. The Gallbladders of three different groups of rabbits were given shock waves of various intensity. A storage value of 100, 50, 25 at rate of 20/sec under 80% power were given to group I (4 rabbits), group II (4 rabbits), and group III (3 rabbits), respectively. The rabbits were sacrificed 6-12 hours later. The observed pathologic changes in the transmission electron microscopy were vaculization of cytoplasm and swelling of epithelial cells with dilatation and structural alteration of intracellular organelles, especially endoplasmic reticulum. Cell membrane rupture and necrosis were observed at the markedly affected area. The structural changes of intracellular organelles were minimally found at a storage value of 25. However, above pathologic changes with dilatation and structural alterations of endoplasmic reticulums were more profound at value of 100. Early histologic changes induced by shocked waves are dose dependent and findings of cellular damage caused by ESWL might be explained as above.

  1. Swift heavy ion induced surface and microstructural evolution in metallic glass thin films

    Thomas, Hysen; Thomas, Senoy; Ramanujan, Raju V.; Avasthi, D.K.; Al- Omari, I.A.; Al-Harthi, Salim; Anantharaman, M.R.

    2012-01-01

    Swift heavy ion induced changes in microstructure and surface morphology of vapor deposited Fe–Ni based metallic glass thin films have been investigated by using atomic force microscopy, X-ray diffraction and transmission electron microscopy. Ion beam irradiation was carried out at room temperature with 103 MeV Au 9+ beam with fluences ranging from 3 × 10 11 to 3 × 10 13 ions/cm 2 . The atomic force microscopy images were subjected to power spectral density analysis and roughness analysis using an image analysis software. Clusters were found in the image of as-deposited samples, which indicates that the film growth is dominated by the island growth mode. As-deposited films were amorphous as evidenced from X-ray diffraction; however, high resolution transmission electron microscopy measurements revealed a short range atomic order in the samples with crystallites of size around 3 nm embedded in an amorphous matrix. X-ray diffraction pattern of the as-deposited films after irradiation does not show any appreciable changes, indicating that the passage of swift heavy ions stabilizes the short range atomic ordering, or even creates further amorphization. The crystallinity of the as-deposited Fe–Ni based films was improved by thermal annealing, and diffraction results indicated that ion beam irradiation on annealed samples results in grain fragmentation. On bombarding annealed films, the surface roughness of the films decreased initially, then, at higher fluences it increased. The observed change in surface morphology of the irradiated films is attributed to the interplay between ion induced sputtering, volume diffusion and surface diffusion.

  2. Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation.

    Zhang, Jun-Xia; Qu, Xin-Liang; Chu, Peng; Xie, Du-Jiang; Zhu, Lin-Lin; Chao, Yue-Lin; Li, Li; Zhang, Jun-Jie; Chen, Shao-Liang

    2018-05-01

    Uncoupled endothelial nitric oxide synthase (eNOS) produces O 2 - instead of nitric oxide (NO). Earlier, we reported rapamycin, an autophagy inducer and inhibitor of cellular proliferation, attenuated low shear stress (SS) induced O 2 - production. Nevertheless, it is unclear whether autophagy plays a critical role in the regulation of eNOS uncoupling. Therefore, this study aimed to investigate the modulation of autophagy on eNOS uncoupling induced by low SS exposure. We found that low SS induced endothelial O 2 - burst, which was accompanied by reduced NO release. Furthermore, inhibition of eNOS by L-NAME conspicuously attenuated low SS-induced O 2 - releasing, indicating eNOS uncoupling. Autophagy markers such as LC3 II/I ratio, amount of Beclin1, as well as ULK1/Atg1 were increased during low SS exposure, whereas autophagic degradation of p62/SQSTM1 was markedly reduced, implying impaired autophagic flux. Interestingly, low SS-induced NO reduction could be reversed by rapamycin, WYE-354 or ATG5 overexpression vector via restoration of autophagic flux, but not by N-acetylcysteine or apocynin. eNOS uncoupling might be ascribed to autophagic flux blockade because phosphorylation of eNOS Thr495 by low SS or PMA stimulation was also regulated by autophagy. In contrast, eNOS acetylation was not found to be regulated by low SS and autophagy. Notably, although low SS had no influence on eNOS Ser1177 phosphorylation, whereas boosted eNOS Ser1177 phosphorylation by rapamycin were in favor of the eNOS recoupling through restoration of autophagic flux. Taken together, we reported a novel mechanism for regulation of eNOS uncoupling by low SS via autophagy-mediated eNOS phosphorylation, which is implicated in geometrical nature of atherogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Numerical Simulation of the Vortex-Induced Vibration of A Curved Flexible Riser in Shear Flow

    Zhu, Hong-jun; Lin, Peng-zhi

    2018-06-01

    A series of fully three-dimensional (3D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185-1015. The numerical results obtained by the two-way fluid-structure interaction (FSI) simulations are in good agreement with the experimental results reported in the earlier study. It is further found that the frequency transition is out of phase not only in the inline (IL) and crossflow (CF) directions but also along the span direction. The mode competition leads to the non-zero nodes of the rootmean- square (RMS) amplitude and the relatively chaotic trajectories. The fluid-structure interaction is to some extent reflected by the transverse velocity of the ambient fluid, which reaches the maximum value when the riser reaches the equilibrium position. Moreover, the local maximum transverse velocities occur at the peak CF amplitudes, and the values are relatively large when the vibration is in the resonance regions. The 3D vortex columns are shed nearly parallel to the axis of the curved flexible riser. As the local Reynolds number increases from 0 at the bottom of the riser to the maximum value at the top, the wake undergoes a transition from a two-dimensional structure to a 3D one. More irregular small-scale vortices appeared at the wake region of the riser, undergoing large amplitude responses.

  4. Shear induced phase transition in PbO under high pressure

    Giefers, Hubertus; Porsch, Felix

    2007-01-01

    We have studied the structural behavior of lead monoxide (PbO) as a function of pressure via angular dispersive X-ray diffraction employing two different pressure transmitting media that were quasi-hydrostatic (N 2 ) and non-hydrostatic (MgO), respectively. Besides litharge (α-PbO) and massicot (β-PbO), which are both stable at ambient pressure, there is an orthorhombic γ-PbO phase which appears upon application of pressure to α-PbO. We have found that the orthorhombic γ-PbO phase is favored by shear stress under non-hydrostatic conditions. α-PbO shows strong anisotropy in compressibility. The a-axis is rather incompressible with a linear stiffness coefficient of K a0 =540(30) GPa whereas the c-axis stiffness is K c0 =25(1) GPa. The bulk modulus of α-PbO is K 0 =23.1(3) GPa and its derivative K 0 ' =7.0(3)

  5. Studying gas-sheared liquid film in horizontal rectangular duct with laser-induced fluorescence technique

    Cherdantsev, Andrey; Hann, David; Azzopardi, Barry

    2013-11-01

    High-speed LIF-technique is applied to study gas-sheared liquid film in horizontal rectangular duct with 161 mm width. Instantaneous distributions of film thickness resolved in both longitudinal and transverse coordinates were obtained with a frequency of 10 kHz and spatial resolution from 0.125 mm to 0.04 mm. Processes of generation of fast and slow ripples by disturbance waves are the same as described in literature for downwards annular pipe flow. Disturbance waves are often localized by transverse coordinate and may have curved or slanted fronts. Fast ripples, covering disturbance waves, are typically horseshoe-shaped and placed in staggered order. Their characteristic transverse size is of order 1 cm and it decreases with gas velocity. Entrainment of liquid from film surface can also be visualized. Mechanisms of ripple disruption, known as ``bag break-up'' and ``ligament break-up,'' were observed. Both mechanisms may occur on the same disturbance waves. Various scenarios of droplet deposition on the liquid film are observed, including the impact, slow sinking and bouncing, characterized by different outcome of secondary droplets or entrapped bubbles. Number and size of bubbles increase greatly inside the disturbance waves. Both quantities increase with gas and liquid flow rates. EPSRC Programme Grant MEMPHIS (EP/K003976/1), and Roll-Royce UTC (Nottingham, for access to flow facility).

  6. Shear-induced autorotation of freely rotatable cylinder in a channel flow at moderate Reynolds number

    Xia, Yi; Lin, Jianzhong; Ku, Xiaoke; Chan, Tatleung

    2018-04-01

    Flow past a center-pinned freely rotatable cylinder asymmetrically confined in a two-dimensional channel is simulated with the lattice Boltzmann method for a range of Reynolds number 0.1 ≤ Re ≤ 200, eccentricity ratio 0/8 ≤ ɛ ≤ 7/8, and blockage ratio 0.1 ≤ β ≤ 0.5. It is found that the inertia tends to facilitate the anomalous clockwise rotation of the cylinder. As the eccentricity ratio increases, the cylinder rotates faster in the counterclockwise direction and then slows down at a range of Re 40, there exists an anomalous clockwise rotation for the cylinder at a low eccentricity ratio and the domain where the cylinder rotates anomalously becomes larger with the increase in the Reynolds number. In a channel with a higher blockage ratio, the rotation of the cylinder is more sensitive to the change of cylinder lateral position, and the separatrix at which the cylinder remains a state of rest moves upward generally. The cylinder is more likely to rotate counterclockwise and the rotating velocity is larger. At a lower blockage ratio, the anomalous clockwise rotation is more likely to occur, and the largest rotating velocity occurs when the blockage ratio is equal to 0.3. The mechanism of distinct rotational behavior of the cylinder is attributed to the transformation of distribution of shear stress which is resulted from the variation of pressure drop, the shift of maximum or minimum pressure zones along the upper and lower semi-cylinder surface, and the movement of stagnant point and separate point. Finally, the effects of the cylinder rotation on the flow structure and hydrodynamic force exerted on the cylinder surface are analyzed as well.

  7. Earthquake induced rock shear through a deposition hole when creep is considered - first model. Effect on the canister and the buffer

    Hernelind, Jan [5T Engineering AB, Vaesteraas (Sweden)

    2006-08-15

    March, 2000, a study regarding 'Earthquake induced rock shear through a deposition hole' was performed. Existing fractures crossing a deposition hole may be activated and sheared by an earthquake. The effect of such a rock shear has been investigated in a project that includes both laboratory tests and finite element calculations. The buffer material in a deposition hole acts as a cushion between the canister and the rock, which reduces the effect of a rock shear substantially. Lower density of the buffer yields softer material and reduced effect on the canister. However, at the high density that is suggested for a repository the stiffness of the buffer is rather high. The stiffness is also a function of the rate of shear, which means that there may be a substantial damage on the canister at very high shear rates. The rock shear has been modeled with finite element calculations with the code ABAQUS. A three-dimensional finite element mesh of the buffer and the canister has been created and simulation of a rock shear has been performed. The rock shear has been assumed to take place perpendicular to the canister at the quarter point. The shear calculations have been driven to a total shear of 20 cm. This report summarizes the effect of considering creep in the canister for one of the previous cases. Two different creep models have been used - the first one has been suggested by K Pettersson and the second one has been suggested by R Sandstroem. Both have been implemented in the FE-code ABAQUS as a user supplied subroutine CREEP. This report summarizes results obtained by using the first model suggested by K Pettersson. As can be seen from the obtained results using the first creep model (in the following named creep{sub k}p) the effect of creep in copper doesn't affect stresses and strains in the buffer and the steel part very much. However, especially the stresses in the canister are highly affected.

  8. Evolution of microstructure and property of NiTi alloy induced by cold rolling

    Li, Y.; Li, J.Y.; Liu, M.; Ren, Y.Y.; Chen, F.; Yao, G.C.; Mei, Q.S.

    2015-01-01

    We investigated the combination effect of plastic deformation and phase transformation on the evolution of microstructure and property of NiTi alloy. Samples of Ni 50.9 Ti 49.1 alloy were deformed by cold rolling to different strains/thickness reductions (4%–56%). X-ray diffraction, transmission electronic microscopy (TEM) and microhardness measurements were applied for characterization of the microstructure and property of the cold-rolled samples. Experimental results indicated the non-monotonic variations of microstructure parameters and mechanical property with strain, indicating the different processes in microstructure and property evolution of NiTi subjected to cold rolling. TEM observations further showed the dominating mechanisms of microstructure evolution at different strain levels, leading to the gradual reduction of grain size of NiTi to the nanoscale by cold rolling. The results were discussed and related to deformation of martensite, forward and reverse martensitic transformations and dynamic recrystallization. The present study provided experimental evidences for the enhanced formation of nanograins in NiTi by plastic deformation coupled with phase transformation. - Highlights: • Cold rolling of NiTi to thickness reductions from 4% to 56%. • Fluctuation behaviors in microstructure and property evolutions of NiTi. • Deformation coupled with phase transformation enhanced nanocrystallization of NiTi.

  9. Development of Microstructure and Crystallographic Texture in a Double-Sided Friction Stir Welded Microalloyed Steel

    Rahimi, S.; Wynne, B. P.; Baker, T. N.

    2017-01-01

    The evolution of microstructure and crystallographic texture has been investigated in double-sided friction stir welded microalloyed steel, using electron backscatter diffraction (EBSD). The microstructure analyses show that the center of stirred zone reached a temperature between Ac1 and Ac3 during FSW, resulting in a dual-phase austenitic/ ferritic microstructure. The temperatures in the thermo-mechanically affected zone and the overlapped area between the first and second weld pass did not exceed the Ac1. The shear generated by the rotation probe occurs in austenitic/ferritic phase field where the austenite portion of the microstructure is transformed to a bainitic ferrite, on cooling. Analysis of crystallographic textures with regard to shear flow lines generated by the probe tool shows the dominance of simple shear components across the whole weld. The austenite texture at Ac1 - Ac3 is dominated by the B { {1bar{1}2} }D2 { {11bar{2}} }< 111rangle simple shear texture components. The formation of ultrafine equiaxed ferrite with submicron grain size has been observed in the overlapped area between the first and second weld pass. This is due to continuous dynamic strain-induced recrystallization as a result of simultaneous severe shear deformation and drastic undercooling.

  10. Lattice Boltzmann simulation of shear-induced particle migration in plane Couette-Poiseuille flow: Local ordering of suspension

    Chun, Byoungjin; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun

    2017-12-01

    The shear-induced migration of concentrated non-Brownian monodisperse suspensions in combined plane Couette-Poiseuille (C-P) flows is studied using a lattice Boltzmann simulation. The simulations are mainly performed for a particle volume fraction of ϕbulk = 0.4 and H/a = 44.3, 23.3, where H and a denote the channel height and radius of suspended particles, respectively. The simulation method is validated in two simple flows, plane Poiseuille and plane Couette flows. In the Poiseuille flow, particles migrate to the mid-plane of the channel where the local concentration is close to the limit of random-close-packing, and a random structure is also observed at the plane. In the Couette flow, the particle distribution remains in the initial uniform distribution. In the combined C-P flows, the behaviors of migration are categorized into three groups, namely, Poiseuille-dominant, Couette-dominant, and intermediate regimes, based on the value of a characteristic force, G, where G denotes the relative magnitude of the body force (P) against the wall-driving force (C). With respect to the Poiseuille-dominant regime, the location of the maximum concentration is shifted from the mid-plane to the lower wall moving in the same direction as the external body force, when G decreases. With respect to the Couette-dominant regime, the behavior is similar to that of a simple shear flow with the exception that a slightly higher concentration of particles is observed near the lower wall. However, with respect to the intermediate value of G, several layers of highly ordered particles are unexpectedly observed near the lower wall where the plane of maximum concentration is located. The locally ordered structure is mainly due to the lateral migration of particles and wall confinement. The suspended particles migrate toward a vanishingly small shear rate at the wall, and they are consequently layered into highly ordered two-dimensional structures at the high local volume fraction.

  11. Structural steady states and relaxation oscillations in a two-phase fluid under shear flow: Experiments and phenomenological model

    Courbin, L.; Benayad, A.; Panizza, P.

    2006-01-01

    By means of several rheophysics techniques, we report on an extensive study of the couplings between flow and microstructures in a two-phase fluid made of lamellar (Lα) and sponge (L3) phases. Depending on the nature of the imposed dynamical parameter (stress or shear rate) and on the experimental conditions (brine salinity or temperature), we observe several different structural steady states consisting of either multilamellar droplets (with or without a long range order) or elongated (L3) phase domains. Two different astonishing phenomena, shear-induced phase inversion and relaxation oscillations, are observed. We show that (i) phase inversion is related to a shear-induced topological change between monodisperse multilamellar droplets and elongated structures and (ii) droplet size relaxation oscillations result from a shear-induced change of the surface tension between both coexisting (Lα) and (L3) phases. To explain these relaxation oscillations, we present a phenomenological model and compare its numerical predictions to our experimental results.

  12. Influence of heat treated microstructures on the dynamic deformation characteristics of Ti-6Al-4V alloy

    Seo, Yong Seok; Lee, Yong Shin; Woo, Sung Choong; Kim, Tae Won

    2015-01-01

    We investigated the influence of heat treated microstructures, namely, equiaxed, bimodal and lamella types of Ti-6Al-4V alloy on the dynamic deformation characteristics. Four different heat treatment conditions were employed for the development of the microstructures. Static tensile and compressive deformation tests were preliminarily performed with hydraulic test equipment. Dynamic deformation tests at a high level of strain rate, 2700 s"-"1 ∼ 6400 s"-"1, together with high velocity impact tests were, respectively, conducted on the specimens through a compressive Split Hopkinson pressure bar (SHPB) and a high pressure gas gun system. The dependence of flow stress on the strain rate associated with the corresponding microstructure was examined. The microstructural factors on the dynamic fracture characteristics were analyzed by scanning electron microscopy. The static compressive tests showed that the flow stress was greatest in the lamella microstructure and decreased in the order of lamella, bimodal and equiaxed microstructures, whereas the ductility was largest in the bimodal microstructure and smallest in the lamellar microstructure. In dynamic compressive tests, a similar dependency of the flow stress on microstructures was observed: highest in the lamellar microstructure and lowest in the equiaxed microstructure. The ductility, such as strain at maximum stress or at failure, was highest in the equiaxed microstructure and lowest in the lamellar structure. In addition, the ductility for individual microstructure decreased as the strain rate increased. Every microstructure exhibited ductile fracture surfaces, and it seems that a large shear crack on the lateral surface in the specimen was the main factor inducing the final failure. The result of high velocity impact test exhibited that the resistance to fracture of equiaxed microstructure with superior dynamic toughness was much higher than that of lamella microstructure with inferior dynamic toughness. The

  13. Influence of heat treated microstructures on the dynamic deformation characteristics of Ti-6Al-4V alloy

    Seo, Yong Seok; Lee, Yong Shin [Chungnam National University, Daejeon (Korea, Republic of); Woo, Sung Choong; Kim, Tae Won [Hanyang University, Seoul (Korea, Republic of)

    2015-11-15

    We investigated the influence of heat treated microstructures, namely, equiaxed, bimodal and lamella types of Ti-6Al-4V alloy on the dynamic deformation characteristics. Four different heat treatment conditions were employed for the development of the microstructures. Static tensile and compressive deformation tests were preliminarily performed with hydraulic test equipment. Dynamic deformation tests at a high level of strain rate, 2700 s{sup -1} ∼ 6400 s{sup -1}, together with high velocity impact tests were, respectively, conducted on the specimens through a compressive Split Hopkinson pressure bar (SHPB) and a high pressure gas gun system. The dependence of flow stress on the strain rate associated with the corresponding microstructure was examined. The microstructural factors on the dynamic fracture characteristics were analyzed by scanning electron microscopy. The static compressive tests showed that the flow stress was greatest in the lamella microstructure and decreased in the order of lamella, bimodal and equiaxed microstructures, whereas the ductility was largest in the bimodal microstructure and smallest in the lamellar microstructure. In dynamic compressive tests, a similar dependency of the flow stress on microstructures was observed: highest in the lamellar microstructure and lowest in the equiaxed microstructure. The ductility, such as strain at maximum stress or at failure, was highest in the equiaxed microstructure and lowest in the lamellar structure. In addition, the ductility for individual microstructure decreased as the strain rate increased. Every microstructure exhibited ductile fracture surfaces, and it seems that a large shear crack on the lateral surface in the specimen was the main factor inducing the final failure. The result of high velocity impact test exhibited that the resistance to fracture of equiaxed microstructure with superior dynamic toughness was much higher than that of lamella microstructure with inferior dynamic toughness

  14. Energetic particle drive for toroidicity-induced Alfven eigenmodes and kinetic toroidicity-induced Alfven eigenmodes in a low-shear Tokamak. Revised

    Breizman, B.N.; Sharapov, S.E.

    1994-10-01

    The structure of toroidicity-induced Alfven eigenmodes (TAE) and kinetic TAE (KTAE) with large mode numbers is analyzed and the linear power transfer from energetic particles to these modes is calculated in the low shear limit when each mode is localized near a single gap within an interval whose total width Δ out is much smaller than the radius r m of the mode location. Near its peak where most of the mode energy is concentrated, the mode has an inner scalelength Δ in , which is much smaller than Δ out . The scale Δ in is determined by toroidicity and kinetic effects, which eliminate the singularity of the potential at the resonant surface. This work examines the case when the drift orbit width of energetic particles Δ b is much larger than the inner scalelength Δ in , but arbitrary compared to the total width of the mode. It is shown that the particle-to-wave linear power transfer is comparable for the TAE and KTAE modes in this case. The ratio of the energetic particle contributions to the growth rates of the TAE and KTAE modes is then roughly equal to the inverse ratio of the mode energies. It is found that, in the low shear limit the growth rate of the KTAE modes can be larger than that for the TAE modes

  15. Cohesion-Induced Stabilization in Stick-Slip Dynamics of Weakly Wet, Sheared Granular Fault Gouge

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2018-03-01

    We use three-dimensional discrete element calculations to study stick-slip dynamics in a weakly wet granular layer designed to simulate fault gouge. The granular gouge is constituted by 8,000 spherical particles with a polydisperse size distribution. At very low liquid content, liquids impose cohesive and viscous forces on particles. Our simulations show that by increasing the liquid content, friction increases and granular layer shows higher recurrence time between slip events. We also observe that slip events exhibit larger friction drop and layer compaction in wet system compared to dry. We demonstrate that a small volume of liquid induces cohesive forces between wet particles that are responsible for an increase in coordination number leading to a more stable arrangement of particles. This stabilization is evidenced with 2 orders of magnitude lower particle kinetic energy in wet system during stick phase. Similar to previous experimental studies, we observe enhanced frictional strength for wet granular layers. In experiments, the physicochemical processes are believed to be the main reason for such behavior; we show, however, that at low confining stresses, the hydromechanical effects of induced cohesion are sufficient for observed behavior. Our simulations illuminate the role of particle interactions and demonstrate the conditions under which induced cohesion plays a significant role in fault zone processes, including slip initiation, weakening, and failure.

  16. Shear instability of a gyroid diblock copolymer

    Eskimergen, Rüya; Mortensen, Kell; Vigild, Martin Etchells

    2005-01-01

    -induced destabilization is discussed in relation to analogous observations on shear-induced order-to-order and disorder-to-order transitions observed in related block copolymer systems and in microemulsions. It is discussed whether these phenomena originate in shear-reduced fluctuations or shear-induced dislocations....

  17. Salt bridge interactions within the β2 integrin α7 helix mediate force-induced binding and shear resistance ability.

    Zhang, Xiao; Li, Linda; Li, Ning; Shu, Xinyu; Zhou, Lüwen; Lü, Shouqin; Chen, Shenbao; Mao, Debin; Long, Mian

    2018-01-01

    The functional performance of the αI domain α 7 helix in β 2 integrin activation depends on the allostery of the α 7 helix, which axially slides down; therefore, it is critical to elucidate what factors regulate the allostery. In this study, we determined that there were two conservative salt bridge interaction pairs that constrain both the upper and bottom ends of the α 7 helix. Molecular dynamics (MD) simulations for three β 2 integrin members, lymphocyte function-associated antigen-1 (LFA-1; α L β 2 ), macrophage-1 antigen (Mac-1; α M β 2 ) and α x β 2 , indicated that the magnitude of the salt bridge interaction is related to the stability of the αI domain and the strength of the corresponding force-induced allostery. The disruption of the salt bridge interaction, especially with double mutations in both salt bridges, significantly reduced the force-induced allostery time for all three members. The effects of salt bridge interactions of the αI domain α 7 helix on β 2 integrin conformational stability and allostery were experimentally validated using Mac-1 constructs. The results demonstrated that salt bridge mutations did not alter the conformational state of Mac-1, but they did increase the force-induced ligand binding and shear resistance ability, which was consistent with MD simulations. This study offers new insight into the importance of salt bridge interaction constraints of the αI domain α 7 helix and external force for β 2 integrin function. © 2017 Federation of European Biochemical Societies.

  18. Adiabatic shear localization in a near beta Ti–5Al–5Mo–5 V–1Cr–1Fe alloy

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083, Hunan (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); Sun, Jieying; Wang, Xiaoyan; Fu, Ao [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China)

    2015-07-15

    Adiabatic shear localization plays an important role in the deformation and failure of near beta Ti–5Al–5Mo–5 V–1Cr–1Fe alloy used in aircraft's gear at high rate deformation. Hat shaped specimens with different nominal shear strains are used to induce the formation of an adiabatic shear band under controlled shock-loading experiments. When the nominal shear strain is about 0.68, unstable shear deformation of the alloy emerges after the true flow stress reaches 1100 MPa, the first vibration peak during the split Hopkinson pressure bar testing, and the whole process lasts about 62 μs. The microstructures within the shear band in the Ti–5Al–5Mo–5V–1Cr–1Fe alloy are investigated by means of optical microscopy, scanning electron microscopy and transmission electron microscopy. Phase transformation occurs in the shear band when the nominal shear strain increases to 0.68. A number of equiaxed grains with sizes 50–200 nm and alpha″-phase are in the center of the shear band. Kinetic calculations indicate that during the deformation process, the recrystallized nanosized grains can be formed in the shear band by way of the subgrain boundaries rotation, and the alpha″ phase transformation start after the subgrain boundaries rotated to 30°.

  19. Rb-Sr dating of strain-induced mineral growth in two ductile shear zones in the western gneiss region of Nord-Troendelag, Central Norway

    Piasecki, M.A.; Cliff, R.A.

    1988-01-01

    In the Bjugn district of the northern part of the Western Gneiss Region, Nord-Troendelag, a basement gneiss-cover nappe boundary is marked by a thick zone of ductile shearing. In this zone a layer-parallel mylonitic fabric with related new mineral growth overprints and retrogresses a previous fabric associated with a granulite facies mineral assemblage. Related minor shear belts contain abundant new minerals and vein systems, including pegmatites, believed to represent strain-induced products formed at the time of the shearing movements. Central parts of two large muscovite books from such a pegmatite yielded Rb-Sr, Early to Middle Devonian ages of 389±6 Ma and 386±6 Ma, interpreted as indicating the approximate time of pegmatite formation and of the shearing. Small, matrix-size muscovite and biotite grains from the host mylonite gave ages of 378±6 Ma and 365±5 Ma, respectively, supposed to relate to post-shearing uplift and cooling

  20. Abnormal subchondral bone microstructure following steroid administration is involved in the early pathogenesis of steroid-induced osteonecrosis.

    Wang, L; Zhang, L; Pan, H; Peng, S; Zhao, X; Lu, W W

    2016-01-01

    Loss of bone microstructure integrity is thought to be related to osteonecrosis. But the relationship between the time when bone microstructure integrity loss appears and the onset of osteonecrosis has not yet been determined. Our study demonstrated abnormal changes of subchondral bone microstructure involved in the early pathogenesis of osteonecrosis. Using a rabbit model, we investigated the changes of subchondral bone microstructure following steroid administration to identify the onset of abnormal bone microstructure development in steroid-induced osteonecrosis. Fifty-five adult female Japanese White rabbits (mean body weight 3.5 kg; mean age 24 months) were used and randomly divided among three time points (3, 7, and 14 days) consisting of 15 rabbits each, received a single intramuscular injection of methylprednisolone acetate (MP; Pfizer Manufacturing Belgium NV) at a dose of 4 mg/kg, and a control group consisting of 10 rabbits was fed and housed under identical conditions but were not given steroid injections. A micro-CT scanner was applied to detect changes in the trabecular region of subchondral bone of excised femoral head samples. Parameters including bone volume fraction (BV/TV), bone surface (BS), trabecular bone pattern factor (Tb.Pf), trabecular thickness/number/separation (Tb.Th, Tb.N, and Tb.Sp), and structure model index (SMI) were evaluated using the software CTAn (SkyScan). After micro-CT scans, bilateral femoral heads were cut in the coronal plane at a thickness of 4 μm. The sections were then stained with haematoxylin-eosin and used for the diagnosis of osteonecrosis and the rate of development of osteonecrosis. The BV/TV, BS, Tb.Th and Tb.N demonstrated a time-dependent decline from 3, 7, and 14 days compared with the control group, while the Tb.Pf, Tb.Sp and SMI demonstrated an increase at 3, 7, and 14 days compared with the control group. For the histopathology portion, osteonecrosis was not seen 3 days after steroid treatment, but was

  1. Effect of reduction of area on microstructure and mechanical properties of twinning-induced plasticity steel during wire drawing

    Hwang, Joong-Ki; Son, Il-Heon; Yoo, Jang-Yong; Zargaran, A.; Kim, Nack J.

    2015-09-01

    The effect of reduction of area (RA), 10%, 20%, and 30%, during wire drawing on the inhomogeneities in microstructure and mechanical properties along the radial direction of Fe-Mn-Al-C twinning-induced plasticity steel has been investigated. After wire drawing, the deformation texture developed into the major and minor duplex fiber texture. However, the texture became more pronounced in both center and surface areas as the RA per pass increased. It also shows that a larger RA per pass resulted in a higher yield strength and smaller elongation than a smaller RA per pass at all strain levels. Although inhomogeneities in microstructure and mechanical properties along the radial direction decreased with increasing RA per pass, there existed an optimum RA per pass for maximum drawing limit. Insufficient penetration of strain from surface to center at small RA per pass (e.g., 10%) and high friction and unsound metal flow at large RA per pass (e.g., 30%) all resulted in heterogeneous microstructure and mechanical properties along the radial direction of drawn wire. On the other hand, 20% RA per pass improved the drawing limit by about 30% as compared to the 10% and 30% RAs per pass.

  2. Laser-induced dendritic microstructures on the surface of Ag+-doped glass

    Nahal, A.; Mostafavi-Amjad, J.; Ghods, A.; Khajehpour, M. R. H.; Reihani, S. N. S.; Kolahchi, M. R.

    2006-01-01

    Fractal dendritic silver microstructures are observed on the surface of the Ag + -doped glasses as a result of a photothermal interaction with a focused multiline cw high-power (P max =8 W) Ag + laser beam. It is found that evolution of the structures depends on the exposure time and also on the concentration of the silver ions in the sample. The fractal dimension of the generated dendritic microstructures increases with the exposure time. Instability of the contact line of the molten silver flow toward the periphery of the interaction area is discussed as a result of the temperature gradient, due to the Gaussian intensity distribution across the laser beam

  3. Resistance of Cementitious Binders to Chloride Induced Corrosion of Embedded Steel by Electrochemical and Microstructural Studies

    Song, Ha Won; Ann, Ki Yong; Kim, Tae Sang

    2009-01-01

    The high alkaline property in the concrete pore solution protects the embedded steel in concrete from corrosion due to aggressive ions attack. However, a continuous supply of those ions, in particular, chlorides altogether with a pH fall in electrochemical reaction on the steel surface eventually depassivate the steel to corrode. To mitigate chloride-induced corrosion in concrete structures, finely grained mineral admixtures, for example, pulverized fuel ash (PFA), ground granulated blast furnace slag (GGBS) and silica fume (SF) have been often advised to replace ordinary Portland cement (OPC) partially as binder. A consistent assessment of those partial replacements has been rarely performed with respect to the resistance of each binder to corrosion, although the studies for each binder were extensively looked into in a way of measuring the corrosion rate, influence of microstructure or chemistry of chlorides ions with cement hydrations. The paper studies the behavior of steel corrosion, chloride transport, pore structure and buffering capacity of those cementitious binders. The corrosion rate of steel in mortars of OPC, 30% PFA, 60% GGBS and 10% SF respectively, with chloride in cast ranging from 0.0 to 3.0% by weight of binder was measured at 7, 28 and 150 days to determine the chloride threshold level and the rate of corrosion propagation, using the anodic polarization technique. Mercury intrusion porosimetry was also applied to cement pastes of each binder at 7 and 28 days to ensure the development of pore structure. Finally, the release rate of bound chlorides (I.e. buffering capacity) was measured at 150 days. The chloride threshold level was determined assuming that the corrosion rate is beyond 1-2 mA/m 3 at corrosion and the order of the level was OPC > 10% SF > 60% GGBS > 30% PFA. Mercury intrusion porosimetry showed that 10% SF paste produced the most dense pore structure, followed by 60% GGBS, 30% PFA and OPC pastes, respectively. It was found that OPC

  4. Effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy

    Liu, Shengdan; Li, Chengbo; Han, Suqi; Deng, Yunlai; Zhang, Xinming

    2015-01-01

    Highlights: • The quench-induced hardness inhomogeneity in 7055 Al alloy decreases by natural aging. • The reason is discussed based on natural aging effect on microstructural inhomogeneity. • Natural aging decreases the difference of hardening precipitates due to slow quenching. • GPII zones appear in the rapidly-quenched sample after natural aging for 17,280 h. - Abstract: The effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy was investigated by means of end quenching technique, transmission electron microscopy and differential scanning calorimetry thermal analysis. The hardness inhomogeneity in the end-quenched specimens after artificial aging decreases with the increase of natural aging time prior to artificial aging. The quench-induced differences in the amount and size of η′ phase are large in the end-quenched specimen after artificial aging at 120 °C for 24 h, leading to high hardness inhomogeneity. Natural aging for a long time results in a larger amount of stable GPI zones in the slowly-quenched sample, and thus decreases such differences in the end-quenched specimens after subsequent artificial aging, leading to lower hardness inhomogeneity. The hardness inhomogeneity can be reduced from 14% to be 4% by natural aging for 17,280 h prior to artificial aging

  5. New developments in irradiation-induced microstructural evolution of austenitic alloys and their consequences on mechanical properties

    Garner, F.A.; Brager, H.R.; Hamilton, M.L.; Dodd, R.A.; Porter, D.L.

    1985-01-01

    A survey is presented of recent development in the study of radiation-induced changes in the microstructure of austenitic structural alloys that occur in fission reactors. The associated macroscopic consequences of these changes on both mechanical properties and dimensional stability are also reviewed. It is anticipated that some changes will occur in these phenomena as a result of the differences inherent in fission and fusion neutron spectra, but relevant data obtained to date do not indicate that the effects of helium and several other transmutation-related changes will be large. 78 refs., 12 figs

  6. Auger electron spectroscopy analysis of high metal content micro-structures grown by electron beam induced deposition

    Cicoira, F.; Hoffmann, P.; Olsson, C.O.A.; Xanthopoulos, N.; Mathieu, H.J.; Doppelt, P.

    2005-01-01

    An auger electron spectroscopy study was carried out on Rh-containing micro-structures grown by electron beam induced deposition (EBID) of the iso-structural and iso-electronic precursors [RhCl(PF 3 ) 2 ] 2 and [RhCl(CO) 2 ] 2 . A material containing between 55 and 60 at.% Rh was obtained from both precursors. The chemical composition of structures grown from the two different precursors indicates a similar decomposition mechanism. Deposits grown from [RhCl(PF 3 ) 2 ] 2 showed a chemical composition independent of electron energy and electron dose in the investigated range of conditions

  7. Microstructural evolution of cold-sprayed Inconel 625 superalloy coatings on low alloy steel substrate

    Chaudhuri, Atanu; Raghupathy, Y.; Srinivasan, Dheepa; Suwas, Satyam; Srivastava, Chandan

    2017-01-01

    This study illustrates microstructural evolution of INCONEL 625 superalloy coatings cold-sprayed on a 4130 chrome alloy steel with medium carbon content. INCONEL 625 powder (5–25 μm) were successfully cold sprayed without any oxidation. The comprehensive microstructure analysis of the as-sprayed coatings and of the substrate-coating interface was carried out using EBSD, TEM, and XRD. The coating microstructure at the substrate-coating interface was markedly different from the microstructure away from the interface. The coating microstructure at steel-coating interface consisted of a fine layer of small grains. The microstructure beyond this fine layer can be divided into splats, inter splat and intra splat boundaries. Both splat and splat boundaries exhibited deformation induced dislocations. Dynamic recovery of dislocations-ridden regions inside the splat was responsible for the development of sub grain structure inside a splat with both low and high angle grain boundaries. Splat-splat (inter splat) boundary consisted of a relatively high density of dislocations and shear bands as a result of adiabatic shear flow localisation. This flow instability is believed to enhance the microstructural integrity by eliminating porosity at splat-splat boundaries. Based on the microstructural analysis using electron microscopy, a plausible mechanism for the development of microstructure has been proposed in this work. Cold spray technique can thus be deployed to develop high quality coatings of commercial importance. - Graphical abstract: Schematics of the evolution of microstructure at the 4130 steel substrate close to interface. i) initial deformation close to interface. ii) Accumulation of dislocation in the substrate. iii) Formation of cell structure due to dislocation tangling and arrangement. iv) Dislocation rearrangement and subgrain formation. v.a) Formation HAGB from dislocation accumulation into LAGB. v.b) HAGB formation through DRX by progressive lattice rotation

  8. Effect of microstructure on static and dynamic mechanical properties of high strength steels

    Qu, Jinbo

    The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited

  9. Low Fluid Shear Culture of Staphylococcus Aureus Represses hfq Expression and Induces an Attachment-Independent Biofilm Phenotype

    Ott, C. Mark; Castro, S. L.; Nickerson, C. A.; Nelman-Gonzalez, M.

    2011-01-01

    Background: The opportunistic pathogen, Staphylococcus aureus, experiences fluctuations in fluid shear during infection and colonization of a human host. Colonization frequently occurs at mucus membrane sites such as in the gastrointestinal tract where the bacterium may experience low levels of fluid shear. The response of S. aureus to low fluid shear remains unclear. Methods: S. aureus was cultured to stationary phase using Rotating-Wall Vessel (RWV) bioreactors which produce a physiologically relevant low fluid shear environment. The bacterial aggregates that developed in the RWV were evaluated by electron microscopy as well as for antibiotic resistance and other virulence-associated stressors. Genetic expression profiles for the low-shear cultured S. aureus were determined by microarray analysis and quantitative real-time PCR. Results: Planktonic S. aureus cultures in the low-shear environment formed aggregates completely encased in high amounts of extracellular polymeric substances. In addition, these aggregates demonstrated increased antibiotic resistance indicating attachment-independent biofilm formation. Carotenoid production in the low-shear cultured S. aureus was significantly decreased, and these cultures displayed an increased susceptibility to oxidative stress and killing by whole blood. The hfq gene, associated with low-shear growth in Gram negative organisms, was also found to be down-regulated in S. aureus. Conclusions: Collectively, this data suggests that S. aureus decreases virulence characteristics in favor of a biofilm-dwelling colonization phenotype in response to a low fluid shear environment. Furthermore, the identification of an Hfq response to low-shear culture in S. aureus, in addition to the previously reported responses in Gram negative organisms, strongly suggests an evolutionarily conserved response to mechanical stimuli among structurally diverse prokaryotes.

  10. Characterization of aging-induced microstructural changes in M250 maraging steel using magnetic parameters

    Rajkumar, K.V. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Vaidyanathan, S. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Kumar, Anish [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)]. E-mail: tjk@igcar.gov.in; Raj, Baldev [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Ray, K.K. [Indian Institute of Technology, Kharagpur 721302 (India)

    2007-05-15

    The best combinations of mechanical properties (yield stress and fracture toughness) of M250 maraging steel is obtained through short-term thermal aging (3-10 h) at 755 K. This is attributed to the microstructure containing precipitation of intermetallic phases in austenite-free low-carbon martensite matrix. Over-aged microstructure, containing reverted austenite degrades the mechanical properties drastically. Hence, it necessitates identification of a suitable non-destructive evaluation (NDE) technique for detecting any reverted austenite unambiguously during aging. The influence of aging on microstructure, room temperature hardness and non-destructive magnetic parameters such as coercivity (H {sub c}), saturation magnetization (M {sub s}) and magnetic Barkhausen emission (MBE) RMS peak voltage is studied in order to derive correlations between these parameters in aged M250 maraging steel. Hardness was found to increase with precipitation of intermetallics during initial aging and decrease at longer durations due to austenite reversion. Among the different magnetic parameters studied, MBE RMS peak voltage was found to be very sensitive to austenite reversion (non-magnetic phase) as they decreased drastically up on initiation of austenite reversion. Hence, this parameter can be effectively utilized to detect and quantify the reverted austenite in maraging steel specimen. The present study clearly indicates that the combination of MBE RMS peak voltage and hardness can be used for unambiguous characterization of microstructural features of technological and practical importance (3-10 h of aging duration at 755 K) in M250 grade maraging steel.

  11. Characterization of aging-induced microstructural changes in M250 maraging steel using magnetic parameters

    Rajkumar, K.V.; Vaidyanathan, S.; Kumar, Anish; Jayakumar, T.; Raj, Baldev; Ray, K.K.

    2007-01-01

    The best combinations of mechanical properties (yield stress and fracture toughness) of M250 maraging steel is obtained through short-term thermal aging (3-10 h) at 755 K. This is attributed to the microstructure containing precipitation of intermetallic phases in austenite-free low-carbon martensite matrix. Over-aged microstructure, containing reverted austenite degrades the mechanical properties drastically. Hence, it necessitates identification of a suitable non-destructive evaluation (NDE) technique for detecting any reverted austenite unambiguously during aging. The influence of aging on microstructure, room temperature hardness and non-destructive magnetic parameters such as coercivity (H c ), saturation magnetization (M s ) and magnetic Barkhausen emission (MBE) RMS peak voltage is studied in order to derive correlations between these parameters in aged M250 maraging steel. Hardness was found to increase with precipitation of intermetallics during initial aging and decrease at longer durations due to austenite reversion. Among the different magnetic parameters studied, MBE RMS peak voltage was found to be very sensitive to austenite reversion (non-magnetic phase) as they decreased drastically up on initiation of austenite reversion. Hence, this parameter can be effectively utilized to detect and quantify the reverted austenite in maraging steel specimen. The present study clearly indicates that the combination of MBE RMS peak voltage and hardness can be used for unambiguous characterization of microstructural features of technological and practical importance (3-10 h of aging duration at 755 K) in M250 grade maraging steel

  12. Characterization of aging-induced microstructural changes in M250 maraging steel using magnetic parameters

    Rajkumar, K. V.; Vaidyanathan, S.; Kumar, Anish; Jayakumar, T.; Raj, Baldev; Ray, K. K.

    2007-05-01

    The best combinations of mechanical properties (yield stress and fracture toughness) of M250 maraging steel is obtained through short-term thermal aging (3-10 h) at 755 K. This is attributed to the microstructure containing precipitation of intermetallic phases in austenite-free low-carbon martensite matrix. Over-aged microstructure, containing reverted austenite degrades the mechanical properties drastically. Hence, it necessitates identification of a suitable non-destructive evaluation (NDE) technique for detecting any reverted austenite unambiguously during aging. The influence of aging on microstructure, room temperature hardness and non-destructive magnetic parameters such as coercivity ( Hc), saturation magnetization ( Ms) and magnetic Barkhausen emission (MBE) RMS peak voltage is studied in order to derive correlations between these parameters in aged M250 maraging steel. Hardness was found to increase with precipitation of intermetallics during initial aging and decrease at longer durations due to austenite reversion. Among the different magnetic parameters studied, MBE RMS peak voltage was found to be very sensitive to austenite reversion (non-magnetic phase) as they decreased drastically up on initiation of austenite reversion. Hence, this parameter can be effectively utilized to detect and quantify the reverted austenite in maraging steel specimen. The present study clearly indicates that the combination of MBE RMS peak voltage and hardness can be used for unambiguous characterization of microstructural features of technological and practical importance (3-10 h of aging duration at 755 K) in M250 grade maraging steel.

  13. Magnetic structure of deformation-induced shear bands in amorphous Fe{sub 80}B{sub 16}Si{sub 4} observed by magnetic force microscopy

    Brown, G.W. [Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hawley, M.E. [Materials Science and Technology Division, (MST-8), Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Markiewicz, D.J. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Spaepen, F.; Barth, E.P. [Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    1999-04-01

    Processing-induced magnetic structures in amorphous metallic alloys are of interest because of their impact on the performance of materials used in electric device applications. Plastic deformation associated with cutting or bending the material to the desired shape occurs through the formation of shear bands. The stress associated with these shear bands induces magnetic domains that can lead to power losses through interaction with the fields and currents involved in normal device operation. These domains have been studied previously using a variety of techniques capable of imaging magnetic domain structures. In an effort to better characterize and understand these issues, we have applied atomic and magnetic force microscopy to these materials to provide three-dimensional nanometer-scale topographic resolution and micrometer-scale magnetic resolution. {copyright} {ital 1999 American Institute of Physics.}

  14. ''Over the horizon'' SANS: Measurements on near-surface Poiseuille shear-induced ordering of dilute solutions of threadlike micelles

    Hamilton, W.A.; Butler, P.D.; Hayter, J.B.; Magid, L.J.; Kreke, P.J.

    1995-01-01

    Although the behavior of a fluid under shear near a surface can be expected to be critically important to its drag and lubrication properties, most shear measurements to date have been of the bulk. This paper outlines the use of a specially developed Poiseuille shear cell at grazing incidence to measure the small-angle neutron scattering (SANS) signal from the first few tens of microns in the interfacial region. The authors illustrate the technique with measurements made on the near-surface ordering in flow past a quartz surface of dilute surfactant solutions comprising highly extended self-assembling ''threadlike'' micelles

  15. Hydrogen embrittlement of austenitic stainless steels revealed by deformation microstructures and strain-induced creation of vacancies

    Hatano, M.; Fujinami, M.; Arai, K.; Fujii, H.; Nagumo, M.

    2014-01-01

    Hydrogen embrittlement of austenitic stainless steels has been examined with respect to deformation microstructures and lattice defects created during plastic deformation. Two types of austenitic stainless steels, SUS 304 and SUS 316L, uniformly hydrogen-precharged to 30 mass ppm in a high-pressure hydrogen environment, are subjected to tensile straining at room temperature. A substantial reduction of tensile ductility appears in hydrogen-charged SUS 304 and the onset of fracture is likely due to plastic instability. Fractographic features show involvement of plasticity throughout the crack path, implying the degradation of the austenitic phase. Electron backscatter diffraction analyses revealed prominent strain localization enhanced by hydrogen in SUS 304. Deformation microstructures of hydrogen-charged SUS 304 were characterized by the formation of high densities of fine stacking faults and ε-martensite, while tangled dislocations prevailed in SUS 316L. Positron lifetime measurements have revealed for the first time hydrogen-enhanced creation of strain-induced vacancies rather than dislocations in the austenitic phase and more clustering of vacancies in SUS 304 than in SUS 316L. Embrittlement and its mechanism are ascribed to the decrease in stacking fault energies resulting in strain localization and hydrogen-enhanced creation of strain-induced vacancies, leading to premature fracture in a similar way to that proposed for ferritic steels

  16. An In Vitro Comparative Study of Intracanal Fluid Motion and Wall Shear Stress Induced by Ultrasonic and Polymer Rotary Finishing Files in a Simulated Root Canal Model

    Koch, Jon; Borg, John; Mattson, Abby; Olsen, Kris; Bahcall, James

    2012-01-01

    Objective. This in vitro study compared the flow pattern and shear stress of an irrigant induced by ultrasonic and polymer rotary finishing file activation in an acrylic root canal model. Flow visualization analysis was performed using an acrylic canal filled with a mixture of distilled water and rheoscopic fluid. The ultrasonic and polymer rotary finishing file were separately tested in the canal and activated in a static position and in a cyclical axial motion (up and down). Particle moveme...

  17. Influence of the microstructural changes and induced residual stresses on tensile properties of wrought magnesium alloy friction stir welds

    Commin, Loreleï; Dumont, Myriam; Rotinat, René; Pierron, Fabrice; Masse, Jean-Eric; Barrallier, Laurent

    2012-01-01

    Highlights: ► Study of AZ31 FSW mechanical behaviour. ► Early yielding occurs in the TMAZ, the nugget and base metal zones undergo almost no plastic strains. ► Texture gradient in the TMAZ localises the deformations in this area. ► Residual stresses have a major influence in FSW mechanical behaviour. - Abstract: Friction stir welding induces a microstructural evolution and residual stresses that will influence the resulting mechanical properties. Friction stir welds produced from magnesium alloy hot rolled plates were studied. Electron back scattered diffraction was used to determine the texture evolution, residual stresses were analysed using X ray diffraction and tensile tests coupled with speckle interferometry were performed. The residual stresses induced during friction stir welding present a major influence on the final mechanical properties.

  18. Experimental method to determine the role of helium in neutron-induced microstructural evolution

    Gelles, D.S.; Garner, F.A.

    1978-12-01

    A method is presented which allows the determination of the role of helium on microstructural evolution in complex alloys and which avoids many of the problems associated with other simulation experiments. It involves a direct comparison of the materials' response to a primary difference in fission and fusion environments, namely the rate of helium generation. This is accomplished by irradiating specimens in a fission reactor and conducting microstructural analyses which concentrate on alloy matrix regions adjacent to precipitates rich in boron or nitrogen. Procedures are outlined for calculation of background and injected helium levels as well as displacement doses generated by neutrons and alpha particles. An example of the analysis method is shown for an experimental austenitic stainless steel containing boride particles and irradiated to 3 and 7 x 10 22 n/cm 2

  19. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.

    Kang, Suk Hoon; Kim, Tae Kyu; Jang, Jinsung; Oh, Kyu Hwan

    2015-06-01

    In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy - electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy - analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.

  20. Treatment with platelet lysate induces endothelial differentation of bone marrow mesenchymal stem cells under fluid shear stress.

    Homayouni Moghadam, Farshad; Tayebi, Tahereh; Moradi, Alireza; Nadri, Hamid; Barzegar, Kazem; Eslami, Gilda

    2014-01-01

    By considering stem cell-based therapies as a new hope for the treatment of some tragic diseases, marrow stromal cells or marrow mesenchymal stem cells (MSCs) were considered as a suitable and safe multipotential cell source for this new therapeutic approach. For this purpose, many investigations have been performed on differentiation of MSCs toward specific cell lines to overcome the demand for providing the organ specific cells for cell therapy or preparation of engineered tissues. In the present study, differentiation of MSCs to endothelial cells (ECs) by mechanical and chemical stimulation was evaluated. Fluid shear stress (FSS) was used as mechanical inducer, while platelet lysate (PL) and estradiol (E) were used as chemical induction factors. MSCs were placed under FSS with different forces (2, 5 and 10dyn/cm(2)) for different periods (6, 12 and 24 hours). In some groups, PL and E were added to the culture media to evaluate their effect on expression of EC specific markers. This investigation revealed that FSS with low tension (2.5-5 dyn/cm(2)) for a long time (24 hours) or high tension (10 dyn/cm(2)) in short time (6 hours) in the presence of PL could differentiate MSCs toward ECs. The presence of PL was necessary for initiation of endothelial differentiation, and in the absence of PL, there was not any expression of CD34 and Cadherin5 (Cdh5) among cells. Adding E to the culture medium did not change the rate of endothelial differentiation under FSS. Generated endothelial progenitors could produce von Willebrand factor (vWF) after two weeks culture and also they formed tubular structures after culture on matrigel.

  1. Validation of a low field Rheo-NMR instrument and application to shear-induced migration of suspended non-colloidal particles in Couette flow

    Colbourne, A. A.; Blythe, T. W.; Barua, R.; Lovett, S.; Mitchell, J.; Sederman, A. J.; Gladden, L. F.

    2018-01-01

    Nuclear magnetic resonance rheology (Rheo-NMR) is a valuable tool for studying the transport of suspended non-colloidal particles, important in many commercial processes. The Rheo-NMR imaging technique directly and quantitatively measures fluid displacement as a function of radial position. However, the high field magnets typically used in these experiments are unsuitable for the industrial environment and significantly hinder the measurement of shear stress. We introduce a low field Rheo-NMR instrument (1 H resonance frequency of 10.7MHz), which is portable and suitable as a process monitoring tool. This system is applied to the measurement of steady-state velocity profiles of a Newtonian carrier fluid suspending neutrally-buoyant non-colloidal particles at a range of concentrations. The large particle size (diameter > 200 μm) in the system studied requires a wide-gap Couette geometry and the local rheology was expected to be controlled by shear-induced particle migration. The low-field results are validated against high field Rheo-NMR measurements of consistent samples at matched shear rates. Additionally, it is demonstrated that existing models for particle migration fail to adequately describe the solid volume fractions measured in these systems, highlighting the need for improvement. The low field implementation of Rheo-NMR is complementary to shear stress rheology, such that the two techniques could be combined in a single instrument.

  2. Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass

    Cao, Q.P.; Liu, J.W.; Yang, K.J.; Xu, F.; Yao, Z.Q.; Minkow, A.; Fecht, H.J.; Ivanisenko, J.; Chen, L.Y.; Wang, X.D.; Qu, S.X.; Jiang, J.Z.

    2010-01-01

    Bulk Zr 64.13 Cu 15.75 Ni 10.12 Al 10 metallic glass has been rolled at room temperature in two different directions, and the dependences of microstructure and tensile mechanical property on the degree of deformation and rolling directions have been investigated. No deformation-induced crystallization occurs except for shear bands. Shear band formation in conjugated directions is achieved in the specimen rolled in two directions, while rolling in one direction induces shear band formation only in a single direction. Pre-existing properly spaced soft inhomogeneities can stabilize shear bands and lead to tensile plastic strain, and the efficient intersection of shear bands in conjugated directions results in work-hardening behavior, which is further confirmed by in situ tensile scanning electron microscopic observation. Based on the experimental results obtained in two different specimen geometries and finite element analysis, it is deduced that a normal-stress-modified maximum shear stress criterion rather than a shear plane criterion can describe the conditions for the formation of shear bands in uniaxial tension.

  3. Muscle Shear Moduli Changes and Frequency of Alternate Muscle Activity of Plantar Flexor Synergists Induced by Prolonged Low-Level Contraction

    Ryota Akagi

    2017-09-01

    Full Text Available During prolonged low-level contractions, synergist muscles are activated in an alternating pattern of activity and silence called as alternate muscle activity. Resting muscle stiffness is considered to increase due to muscle fatigue. Thus, we investigated whether the difference in the extent of fatigue of each plantar flexor synergist corresponded to the difference in the frequency of alternate muscle activity between the synergists using muscle shear modulus as an index of muscle stiffness. Nineteen young men voluntarily participated in this study. The shear moduli of the resting medial and lateral gastrocnemius muscles (MG and LG and soleus muscle (SOL were measured using shear wave ultrasound elastography before and after a 1-h sustained contraction at 10% peak torque during maximal voluntary contraction of isometric plantar flexion. One subject did not accomplish the task and the alternate muscle activity for MG was not found in 2 subjects; therefore, data for 16 subjects were used for further analyses. The magnitude of muscle activation during the fatiguing task was similar in MG and SOL. The percent change in shear modulus before and after the fatiguing task (MG: 16.7 ± 12.0%, SOL: −4.1 ± 13.9%; mean ± standard deviation and the alternate muscle activity during the fatiguing task (MG: 33 [20–51] times, SOL: 30 [17–36] times; median [25th–75th percentile] were significantly higher in MG than in SOL. The contraction-induced change in shear modulus (7.4 ± 20.3% and the alternate muscle activity (37 [20–45] times of LG with the lowest magnitude of muscle activation during the fatiguing task among the plantar flexors were not significantly different from those of the other muscles. These results suggest that the degree of increase in muscle shear modulus induced by prolonged contraction corresponds to the frequency of alternate muscle activity between MG and SOL during prolonged contraction. Thus, it is likely that, compared with

  4. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells

    O Schätti

    2011-10-01

    Full Text Available ere is great interest in how bone marrow derived stem cells make fate decisions. Numerous studies have investigated the role of individual growth factors on mesenchymal stem cell differentiation, leading to protocols for cartilage, bone and adipose tissue. However, these protocols overlook the role of biomechanics on stem cell differentiation. There have been various studies that have applied mechanical stimulation to constructs containing mesenchymal stem cells, with varying degrees of success. One critical fate decision is that between cartilage and bone. Articular motion is a combination of compressive, tensile and shear deformations; therefore, one can presume that compression alone is unlikely to be a sufficient mechanical signal to generate a cartilage-like tissue in vitro. Within this study, we aimed to determine the role of shear on the fate of stem cell differentiation. Specifically, we investigated the potential enhancing effect of surface shear, superimposed on cyclic axial compression, on chondrogenic differentiation of human bone marrow-derived stem cells. Using a custom built loading device we applied compression, shear or a combination of both stimuli onto fibrin/polyurethane composites in which human mesenchymal stem cells were embedded, while no exogenous growth-factors were added to the culture medium. Both compression or shear alone was insufficient for the chondrogenic induction of human mesenchymal stem cells. However, the application of shear superimposed upon dynamic compression led to significant increases in chondrogenic gene expression. Histological analysis detected sulphated glycosaminoglycan and collagen II only in the compression and shear group. The results obtained may provide insight into post-operative care after cell therapy involving mesenchymal stromal cells.

  5. Thermo-mechanically induced texture evolution and micro-structural change of aluminum metallization

    Brincker, Mads; Walter, Thomas; Kristensen, Peter Kjær

    2018-01-01

    During operation of high power electronic chips the topside metallization is subjected to cyclic compressive and tensile stresses leading to unwanted thermo-mechanical fatigue of the metallization layer. The stress is caused by the difference in the thermal expansion coefficients...... are not yet fully understood. In this work, we investigate the microstructural evolution of an Al metallization on high power diode chips subjected to passive thermal cycling between 20 and 100ºC. The texture of the Al film is analyzed ex-situ by a combination of electron backscatter diffraction and X...

  6. Intrinsic and light induced gap states in a-Si:H materials and solar cells--effects of microstructure

    Wronski, C.R.; Pearce, J.M.; Deng, J.; Vlahos, V.; Collins, R.W

    2004-03-22

    The effects of microstructure on the gap states of hydrogen diluted and undiluted hydrogenated amorphous silicon (a-Si:H) thin film materials and their solar cells have been investigated. In characterizing the films the commonly used methodology of relating just the magnitudes of photocurrents and subgap absorption, {alpha}(E), was expanded to take into account states other than those due to dangling bond defects. The electron mobility-lifetime products were characterized as a function of carrier generation rates and analysis was carried out of the entire {alpha}(E) spectra and their evolution with light induced degradation. Two distinctly different defect states at 1.0 and 1.2 eV from the conduction band and their contributions to carrier recombination were identified and their respective evolution under 1 sun illumination characterized. Direct correlations were obtained between the recombination in thin films with that of corresponding solar cells. The effects of the difference in microstructure on the changes in these two gap states in films and solar cells were also identified. It is found that improved stability of protocrystalline Si:H can in part be attributed to the reduction of the 1.2 eV defects. It is also shown that ignoring the presence of multiple defects leads to erroneous conclusions being drawn about the stability of a-Si:H and SWE.

  7. Intrinsic and light induced gap states in a-Si:H materials and solar cells--effects of microstructure

    Wronski, C.R.; Pearce, J.M.; Deng, J.; Vlahos, V.; Collins, R.W.

    2004-01-01

    The effects of microstructure on the gap states of hydrogen diluted and undiluted hydrogenated amorphous silicon (a-Si:H) thin film materials and their solar cells have been investigated. In characterizing the films the commonly used methodology of relating just the magnitudes of photocurrents and subgap absorption, α(E), was expanded to take into account states other than those due to dangling bond defects. The electron mobility-lifetime products were characterized as a function of carrier generation rates and analysis was carried out of the entire α(E) spectra and their evolution with light induced degradation. Two distinctly different defect states at 1.0 and 1.2 eV from the conduction band and their contributions to carrier recombination were identified and their respective evolution under 1 sun illumination characterized. Direct correlations were obtained between the recombination in thin films with that of corresponding solar cells. The effects of the difference in microstructure on the changes in these two gap states in films and solar cells were also identified. It is found that improved stability of protocrystalline Si:H can in part be attributed to the reduction of the 1.2 eV defects. It is also shown that ignoring the presence of multiple defects leads to erroneous conclusions being drawn about the stability of a-Si:H and SWE

  8. Magneto-Induced ac Electrical Permittivity of Metal-Dielectric Composites with a Two Characteristic Length Scales Periodic Microstructure

    Strelniker, Y.M.; Bergman, D.J.

    1998-01-01

    A new effect was recently predicted in conducting composites that have a periodic microstructure: an induced strongly anisotropic dc magneto-resistance. This phenomenon is already verified on high mobility n-GaAs films. Here we discuss the possibility of observing analogous behavior in the ac electric permittivity of a metal-dielectric composite with a periodic microstructure in the presence of a strong magnetic field. We developed new analytical and numerical methods to treat the low-frequency magneto-optical properties in composite media with both disordered and periodic conducting micro-structures. Those methods allow us to study composites with inclusions of arbitrary shape (and arbitrary volume fraction) at arbitrarily strong magnetic field. This is exploited in order to calculate an effective dielectric tensor for this system as a function of applied magnetic field and ac frequency. We show that in a non-dilute metal-dielectric composite medium the magneto-plasma resonance and the cyclotron resonance depend upon both the applied magnetic field as well as on the geometric shape of the inclusion. Near such a resonance, it is possible to achieve large values for the ratio of the off-diagonal-to-diagonal electric permittivity tensor components, ε xy /ε xx , (since ε xx →0, while ε xy ≠0), which is analogous to similar ratio of the resistivity tensor components, ρ xy /ρ xx , in the case of dc magneto-transport problem. Motivated by this observation and by results of previous studies of dc magneto-transport in composite conductors, we then performed a numerical study of the ac magneto-electric properties of a particular metal-dielectric composite film with a periodic columnar microstructure which has a two characteristic length scales. The unit cell of such composite is prepared as follows: We placed the conducting square (in cross section) rods (first characteristic length scale) along the perimeter of the unit cell in order to create a dielectric host

  9. Research Status on Bonding Behavior of Prefabricated Concrete Shear Wall

    Wang, Donghui; Liu, Xudong; Wang, Sheng; Li, Shanshan

    2018-03-01

    Prefabricated shear wall structure adapts to the development and requirements of China’s residential industrialization. The key to the prefabricated concrete shear wall structure is the connection between the prefabricated members, where the reliability of the connection of the concrete joint is related to the overall performance and seismic effect of the structure. In this paper, the microstructures of the joint surface and shear properties are analysed, and the formula for calculating the shear strength of the joint is obtained.

  10. Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates

    Erdem, Savaş; Dawson, Andrew Robert; Thom, Nicholas Howard

    2012-01-01

    The relationship between the nature of micro damage under impact loading and changes in mechanical behavior associated with different microstructures is studied for concretes made with two different coarse aggregates having significant differences mainly in roughness and porosity — sintered fly ash and uncrushed gravel. A range of techniques including X-ray diffraction, digital image analysis, mercury porosimetry, X-ray computed tomography, laser surface profilometry and scanning electron microscopy were used to characterize the aggregates and micro-structures. The concrete prepared with lightweight aggregates was stronger in compression than the gravel aggregate concrete due to enhanced hydration as a result of internal curing. In the lightweight concrete, it was deduced that an inhomogeneous micro-structure led to strain incompatibilities and consequent localized stress concentrations in the mix, leading to accelerated failure. The pore structure, compressibility, and surface texture of the aggregates are of paramount importance for the micro-cracking growth.

  11. On the stability of a rod adhering to a rigid surface: Shear-induced stable adhesion and the instability of peeling

    Majidi, Carmel; O'Reilly, Oliver M.; Williams, John A.

    2012-05-01

    Using variational methods, we establish conditions for the nonlinear stability of adhesive states between an elastica and a rigid halfspace. The treatment produces coupled criteria for adhesion and buckling instabilities by exploiting classical techniques from Legendre and Jacobi. Three examples that arise in a broad range of engineered systems, from microelectronics to biologically inspired fiber array adhesion, are used to illuminate the stability criteria. The first example illustrates buckling instabilities in adhered rods, while the second shows the instability of a peeling process and the third illustrates the stability of a shear-induced adhesion. The latter examples can also be used to explain how microfiber array adhesives can be activated by shearing and deactivated by peeling. The nonlinear stability criteria developed in this paper are also compared to other treatments.

  12. Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic

    John D. Clayton

    2014-07-01

    Full Text Available A nonlinear continuum phase field theory is developed to describe amorphization of crystalline elastic solids under shear and/or pressure loading. An order parameter describes the local degree of crystallinity. Elastic coefficients can depend on the order parameter, inelastic volume change may accompany the transition from crystal to amorphous phase, and transitional regions parallel to bands of amorphous material are penalized by interfacial surface energy. Analytical and simple numerical solutions are obtained for an idealized isotropic version of the general theory, for an element of material subjected to compressive and/or shear loading. Solutions compare favorably with experimental evidence and atomic simulations of amorphization in boron carbide, demonstrating the tendency for structural collapse and strength loss with increasing shear deformation and superposed pressure.

  13. Exercise-induced shear stress is associated with changes in plasma von Willebrand factor in older humans

    Gonzales, Joaquin U.; Thistlethwaite, John R.; Thompson, Benjamin C.; Scheuermann, Barry W.

    2009-01-01

    Shear stress is the frictional force of blood against the endothelium, a stimulus for endothelial activation and the release of von Willebrand factor (vWF). This study tested the hypothesis that the increase in shear stress associated with exercise correlates with plasma vWF. Young (n = 14, 25.7 ± 5.4 y) and older (n = 13, 65.6 ± 10.7 y) individuals participated in 30 min of dynamic handgrip exercise at a moderate intensity. Brachial artery diameter and blood flow were measured using ultrasou...

  14. Flocculation and floc break-up related to tidally induced turbulent shear in a low-turbidity, microtidal estuary

    Markussen, Thor Nygaard; Andersen, Thorbjørn Joest

    2014-01-01

    flocculation and floc break-up dynamics in the lower part of the water column in the period around slack water. These dynamics were confirmed in the Eulerian deployments and were reoccurring in every tidal cycle. The dynamics were mostly governed by changes in turbulent shear. Strong microflocs with a lower...... mean threshold diameter of 50–60 μm present at high turbulent shear flocculated to form fragile macroflocs with sizes of several hundred microns and mean diameters above 80 μm around slack water periods. A hysteresis in floc break-up and flocculation was found at high water slack (HWS), as flocs formed...

  15. On the strain-induced fibrillar microstructure of polyethylene: Influence of chemical structure, initial morphology and draw temperature

    B. Xiong

    2016-04-01

    Full Text Available The influence of crystalline microstructure and molecular topology on the strain-induced fibrillar transformation of semi-crystalline polyethylenes having various chemical structures including co-unit content and molecular weight and crystallized under various thermal treatments was studied by in situ SAXS at different draw temperatures. The long period of the nascent microfibrils, Lpf, proved to be strongly dependent on the draw temperature but non-sensitive to the initial crystallization conditions. Lpf was smaller than the initial long period. Both findings have been ascribed to the straininduced melting-recrystallization process as generally claimed in the literature. The microfibrils diameter, Df, was shown to depend on the draw temperature and initial microstructure in a different way as Lpf. The evolution of Df was shown to correlate with the interfacial layer thickness that mainly depends on the chemical structure of the chains. It was concluded that, in contrast to Lpf, the microfibril diameter should not be directly sensitive to the strain-induced melting-recrystallization. The proposed scenario is that after the generation of the protofibrils by fragmentation of the crystalline lamellae at yielding, the diameter of the microfibril during the course of their stabilization should be governed by the chain-unfolding and subsequent aggregation of the unfolded chains onto the lateral surface of the microfibrils. The morphogenesis of the microfibrils should therefore essentially depend on the chemical structure of the polymer that governs its crystallization ability, its chain topology and subsequently its fragmentation process at yielding. This scenario is summed up in a sketch.

  16. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels

    Pareige, P.

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends

  17. Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd)

    Ruiz, Geraldine Avila; Xiao, Wukai; Boekel, van Tiny; Minor, Marcel; Stieger, Markus

    2016-01-01

    The aim of this study was to determine the influence of extraction pH on heat-induced aggregation, gelation and microstructure of suspensions of protein isolates extracted from quinoa (Chenopodium quinoa Willd). Quinoa seed protein was extracted by alkaline treatment at various pH values (pH 8

  18. Effects of temperature and thermally-induced microstructure change on hydraulic conductivity of Boom Clay

    W.Z. Chen

    2017-06-01

    Full Text Available Boom Clay is one of the potential host rocks for deep geological disposal of high-level radioactive nuclear waste in Belgium. In order to investigate the mechanism of hydraulic conductivity variation under complex thermo-mechanical coupling conditions and to better understand the thermo-hydro-mechanical (THM coupling behaviour of Boom Clay, a series of permeability tests using temperature-controlled triaxial cell has been carried out on the Boom Clay samples taken from Belgian underground research laboratory (URL HADES. Due to its sedimentary nature, Boom Clay presents across-anisotropy with respect to its sub-horizontal bedding plane. Direct measurements of the vertical (Kv and horizontal (Kh hydraulic conductivities show that the hydraulic conductivity at 80 °C is about 2.4 times larger than that at room temperature (23 °C, and the hydraulic conductivity variation with temperature is basically reversible during heating–cooling cycle. The anisotropic property of Boom Clay is studied by scanning electron microscope (SEM tests, which highlight the transversely isotropic characteristics of intact Boom Clay. It is shown that the sub-horizontal bedding feature accounts for the horizontal permeability higher than the vertical one. The measured increment in hydraulic conductivity with temperature is lower than the calculated one when merely considering the changes in water kinematic viscosity and density with temperature. The nuclear magnetic resonance (NMR tests have also been carried out to investigate the impact of microstructure variation on the THM properties of clay. The results show that heating under unconstrained boundary condition will produce larger size of pores and weaken the microstructure. The discrepancy between the hydraulic conductivity experimentally measured and predicted (considering water viscosity and density changes with temperature can be attributed to the microstructural weakening effect on the thermal volume change

  19. Improving the Microstructure and Electrical Properties of Aluminum Induced Polysilicon Thin Films Using Silicon Nitride Capping Layer

    Min-Hang Weng

    2014-01-01

    Full Text Available We investigated the capping layer effect of SiNx (silicon nitride on the microstructure, electrical, and optical properties of poly-Si (polycrystalline silicon prepared by aluminum induced crystallization (AIC. The primary multilayer structure comprised Al (30 nm/SiNx (20 nm/a-Si (amorphous silicon layer (100 nm/ITO coated glass and was then annealed in a low annealing temperature of 350°C with different annealing times, 15, 30, 45, and 60 min. The crystallization properties were analyzed and verified by X-ray diffraction (XRD and Raman spectra. The grain growth was analyzed via optical microscope (OM and scanning electron microscopy (SEM. The improved electrical properties such as Hall mobility, resistivity, and dark conductivity were investigated by using Hall and current-voltage (I-V measurements. The results show that the amorphous silicon film has been effectively induced even at a low temperature of 350°C and a short annealing time of 15 min and indicate that the SiNx capping layer can improve the grain growth and reduce the metal content in the induced poly-Si film. It is found that the large grain size is over 20 μm and the carrier mobility values are over 80 cm2/V-s.

  20. Modelling tidal current-induced bed shear stress and palaeocirculation in an epicontinental seaway: the Bohemian Cretaceous Basin, Central Europe

    Mitchell, A. J.; Uličný, David; Hampson, G. J.; Allison, P. A.; Gorman, G. J.; Piggott, M. D.; Wells, M. R.; Pain, C. C.

    2010-01-01

    Roč. 57, č. 2 (2010), s. 359-388 ISSN 0037-0746 R&D Projects: GA AV ČR(CZ) IAA300120609 Institutional research plan: CEZ:AV0Z30120515 Keywords : bed shear stress * Bohemian Cretaceous Basin * epicontinental sea * tidal circulation * Turonian Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.229, year: 2010

  1. Shear-Induced Phase Separation in Aqueous Polymer Solutions: Temperature-Sensitive Microgels and Linear Polymer Chains

    Stieger, M.A.; Richtering, W.

    2003-01-01

    The influence of shear flow on the phase separation of aqueous poly(N-isopropylacrylamide) (PNiPAM) microgel suspensions was investigated by means of rheo-turbidity and rheo-small angle neutron scattering (rheo-SANS) and compared to the behavior of linear PNiPAM macromolecules. The rheological

  2. Earthquake induced rock shear through a deposition hole - modelling of three scale tests for validation of models

    Boergesson, Lennart; Hernelind, Jan

    2012-01-01

    Document available in extended abstract form only. Three model shear tests of very high quality simulating a horizontal rock shear through a KBS-3V deposition hole in the centre of a canister were performed 1986. The tests simulated a deposition hole in the scale 1:10 with reference density of the buffer, very stiff confinement simulating the rock, and a solid bar of copper simulating the canister. The three tests were almost identical with exception of the rate of shear, which was varied between 0.031 and 160 mm/s, i.e. with a factor of more than 5000, and the density of the bentonite, which differed slightly. The tests were very well documented. Shear force, shear rate, total stress in the bentonite, strain in the copper and the movement of the top of the simulated canister were measured continuously during the shear. After finished shear the equipment was dismantled and careful sampling of the bentonite with measurement of water ratio and density were made. The deformed copper 'canister' was also carefully measured after the test. The tests have been modelled with the finite element code Abaqus with the same models and techniques that were used for the full scale cases in the Swedish safety assessment SR-Site. The results have been compared with the measured results, which has yielded very valuable information about the relevancy of the material models and the modelling technique. An elastic-plastic material model was used for the bentonite where the stress-strain relations have been derived from laboratory tests. The material model is also described in another article to this conference. The material model is made a function of both the density and the strain rate at shear. Since the shear is fast and takes place under undrained conditions, the density is not changed during the tests. However, strain rate varies largely with both the location of the elements and time. This can be taken into account in Abaqus by making the material model a function of the strain

  3. Oscillatory fluid flow induces the osteogenic lineage commitment of mesenchymal stem cells: The effect of shear stress magnitude, frequency, and duration.

    Stavenschi, Elena; Labour, Marie-Noelle; Hoey, David A

    2017-04-11

    A potent regulator of bone anabolism is physical loading. However, it is currently unclear whether physical stimuli such as fluid shear within the marrow cavity is sufficient to directly drive the osteogenic lineage commitment of resident mesenchymal stem cells (MSC). Therefore, the objective of the study is to employ a systematic analysis of oscillatory fluid flow (OFF) parameters predicted to occur in vivo on early MSC osteogenic responses and late stage lineage commitment. MSCs were exposed to OFF of 1Pa, 2Pa and 5Pa magnitudes at frequencies of 0.5Hz, 1Hz and 2Hz for 1h, 2h and 4h of stimulation. Our findings demonstrate that OFF elicits a positive osteogenic response in MSCs in a shear stress magnitude, frequency, and duration dependent manner that is gene specific. Based on the mRNA expression of osteogenic markers Cox2, Runx2 and Opn after short-term fluid flow stimulation, we identified that a regime of 2Pa shear magnitude and 2Hz frequency induces the most robust and reliable upregulation in osteogenic gene expression. Furthermore, long-term mechanical stimulation utilising this regime, elicits a significant increase in collagen and mineral deposition when compared to static control demonstrating that mechanical stimuli predicted within the marrow is sufficient to directly drive osteogenesis. Copyright © 2017. Published by Elsevier Ltd.

  4. Assessment Of Noise-induced Sleep Fragility In Two Age Ranges By Means Of Polysomnographic Microstructure

    Terzano, M. G.; Parrino, L.; Spaggiari, M. C.; Buccino, G. P.; Fioriti, G.; Depoortere, H.

    1993-04-01

    The microstructure of sleep, which translates the short-lived fluctuations of the arousal level, is a commonly neglected feature in polysomnographic studies. Specifically arranged microstructural EEG events may provide important information on the dynamic characteristics of the sleep process. CAP (cyclic alternating pattern) and non-CAP are complementary modalities in which arousal-related "phasic" EEG phenomena are organized in non-REM sleep, and they correspond to opposite conditions of unstable and stable sleep depth, respectively. Thus, arousal instability can be measured by the CAP rate, the percentage ratio of total CAP time to total non-REM sleep time. The CAP rate, an age-related physiological variable that increases in several pathological conditions, is highly sensitive to acoustic perturbation. In the present study, two groups of healthy subjects without complaints about sleep, belonging to different age ranges (six young adults, three males and three females, between 20 and 30 years, and six middle-aged individuals, three males and three females, between 40 and 55 years) slept, after adaptation to the sleep laboratory, in a random sequence for two non-consecutive nights either under silent baseline (27·3 dB(A) Lcq) or noise-disturbed (continuous 55 dB(A) white noise) conditions. Age-related and noise-related effects on traditional sleep parameters and on the CAP rate were statistically evaluated by a split-plot test. Compared to young adults, the middle-aged individuals showed a significant reduction of total sleep time, stage 2 and REM sleep and significantly higher values of nocturnal awakenings and the CAP rate. The noisy nights were characterized by similar alterations. The disruptive effects of acoustic perturbation were greater on the more fragile sleep architecture of the older group. The increased fragility of sleep associated with aging probably reflects the decreased capacity of the sleeping brain to maintain steady states of vigilance. Total

  5. Micro-structural evolution and biomineralization behavior of carbon nanofiber/bioactive glass composites induced by precursor aging time.

    Jia, Xiaolong; Tang, Tianhong; Cheng, Dan; Zhang, Cuihua; Zhang, Ran; Cai, Qing; Yang, Xiaoping

    2015-12-01

    Bioactive glass (BG)-containing carbon nanofibers (CNFs) are promising orthopaedic biomaterials. Herein, CNF composites were produced from electrospinning of polyacrylonitrile (PAN)/BG sol-gel precursor solution, followed by carbonization. Choosing 58S-type BG (mol%: 58.0% SiO2-26.3% CaO-15.7% P2O5) as the model, micro-structural evolution of CNF/BG composites was systematically evaluated in relating to aging times of BG precursor solution. With aging time prolonging, BG precursors underwent morphological changes from small sol clusters with loosely and randomly branched structure to highly crosslinked Si-network structure, showing continuous increase in solution viscosity. BG precursor solution with low viscosity could mix well with PAN solution, resulting in CNF composite with homogeneously distributed BG component. Whereas, BG precursor gel with densely crosslinked Si-network structure led to uneven distribution of BG component along final CNFs due to its significant phase separation from PAN component. Meanwhile, BG nanoparticles in CNFs demonstrated micro-structural evolution that they transited from weak to strong crystal state along with longer aging time. Biomineralization in simulated body fluid and in vitro osteoblasts proliferation were then applied to determine the bioactivity of CNF/BG composites. CNF/BG composites prepared from shorter aging time could induce both faster apatite deposition and cell proliferation rate. It was suggested weakly crystallized BG nanoparticles along CNFs dissolved fast and was able to provide numerous nucleation sites for apatite deposition, which also favored the proliferation of osteoblasts cells. Aging time could thus be a useful tool to regulate the biological features of CNF/BG composites. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effects of diet-induced obesity and voluntary wheel running on the microstructure of the murine distal femur

    Timonen Jussi

    2011-01-01

    Full Text Available Abstract Background Obesity and osteoporosis, two possibly related conditions, are rapidly expanding health concerns in modern society. Both of them are associated with sedentary life style and nutrition. To investigate the effects of diet-induced obesity and voluntary physical activity we used high resolution micro-computed tomography (μCT together with peripheral quantitative computed tomography (pQCT to examine the microstructure of the distal femoral metaphysis in mice. Methods Forty 7-week-old male C57BL/6J mice were assigned to 4 groups: control (C, control + running (CR, high-fat diet (HF, and high-fat diet + running (HFR. After a 21-week intervention, all the mice were sacrificed and the left femur dissected for pQCT and μCT measurements. Results The mice fed the high-fat diet showed a significant weight gain (over 70% for HF and 60% for HFR, with increased epididymal fat pad mass and impaired insulin sensitivity. These obese mice had significantly higher trabecular connectivity density, volume, number, thickness, area and mass, and smaller trabecular separation. At the whole bone level, they had larger bone circumference and cross-sectional area and higher density-weighted maximal, minimal, and polar moments of inertia. Voluntary wheel running decreased all the cortical bone parameters, but increased the trabecular mineral density, and decreased the pattern factor and structure model index towards a more plate-like structure. Conclusions The results suggest that in mice the femur adapts to obesity by improving bone strength both at the whole bone and micro-structural level. Adaptation to running exercise manifests itself in increased trabecular density and improved 3D structure, but in a limited overall bone growth

  7. Frequency shift of a crystal quartz resonator in thickness-shear modes induced by an array of hemispherical material units.

    Yuantai Hu; Huiliang Hu; Bin Luo; Huan Xue; Jiemin Xie; Ji Wang

    2013-08-01

    A two-dimensional model was established to study the dynamic characteristics of a quartz crystal resonator with the upper surface covered by an array of hemispherical material units. A frequency-dependent equivalent mass ratio was proposed to simulate the effect of the covered units on frequency shift of the resonator system. It was found that the equivalent mass ratio alternately becomes positive or negative with change of shear modulus and radius of each material unit, which indicates that the equivalent mass ratio is strongly related to the vibration mode of the covered loadings. The further numerical results show the cyclical feature in the relationship of frequency shift and shear modulus/radius as expected. The solutions are useful in the analysis of frequency stability of quartz resonators and acoustic wave sensors.

  8. Reassessment of the role of stress in development of radiation-induced microstructure

    Garner, F.A.; Wolfer, W.G.; Brager, H.R.

    1978-10-01

    Data are now accumulating which clearly demonstrate that the stress state plays a strong role in the development of void and dislocation microstructure in metals during neutron irradiation. In these experiments the application of a tensile biaxial stress state at constant fluence and temperature has been found to lead to a progressively decreasing metal density with increasing stress. The effect of stress on the concurrent development of voids, Frank interstitial loops and dislocation networks has been studied with transmission electron microscopy. The results of these experiments clearly show that the densities of both Frank loops and voids are enhanced by a tensile stress field, with the relevant operating variable being the hydrostatic stress. More importantly it appears that any anisotropy in the stress field is reflected in a corresponding anisotropy that develops in the number of Frank loops that form on the various (111) planes. The loop density that develops on each plane exhibits a clear and direct dependence on the resolved normal stress component at each plane. Although the data from these experiments have been previously interpreted to support the existence of stress-assisted nucleation mechanisms for both loops and voids, further analysis has shown both of these explanations to be deficient in one or more respects, and both models have been replaced

  9. Ion-irradiation-induced microstructural modifications in ferritic/martensitic steel T91

    Liu, Xiang; Miao, Yinbin; Li, Meimei; Kirk, Marquis A.; Maloy, Stuart A.; Stubbins, James F.

    2017-07-01

    In this paper, in situ transmission electron microscopy investigations were carried out to study the microstructural evolution of ferritic/martensitic steel T91 under 1 MeV Krypton ion irradiation up to 4.2 x 10(15) ions/cm(2) at 573 K, 673 K, and 773 K. At 573 K, grown-in defects are strongly modified by black dot loops, and dislocation networks together with black-dot loops were observed after irradiation. At 673 K and 773 K, grown-in defects are only partially modified by dislocation loops; isolated loops and dislocation segments were commonly found after irradiation. Post irradiation examination indicates that at 4.2 x 1015 ions/cm(2), about 51% of the loops were a(0)/2 < 111 > type for the 673 K irradiation, and the dominant loop type was a(0)< 100 > for the 773 K irradiation. Finally, a dispersed barrier hardening model was employed to estimate the change in yield strength, and the calculated ion data were found to follow the similar trend as the existing neutron data with an offset of 100-150 MPa. (C) 2017 Elsevier B.V. All rights reserved.

  10. Microstructural modifications induced by hydraulic and mechanical actions on compacted bentonite

    Romero, E.; Suriol, J.; Lloret, A.; Castellanos, E.; Villar, M.V.

    2010-01-01

    Document available in extended abstract form only. The hydration of bentonite generates microstructural changes that modify both its hydraulic and mechanical properties. As a consequence, the evolution of porosity and microstructure influence greatly the hydration transient state. Measurements and observations at this microstructural level are very important, since they help in further understanding higher structural levels and their consequences on material properties and behaviour under various hydro-mechanical stress state conditions. To accomplish the complex issue of microstructural studies, several techniques have to be applied. A very useful technique for the quantitative study at the microscale is mercury intrusion porosimetry (MIP), since the range of pore diameters that can be examined (from 6 nm to 400 μm) is very wide. The influence of various mechanical (loading) and hydraulic (wetting / drying) stress paths on the pore size distribution of compacted bentonite was analysed. Some of the conclusions reached are: - The pore size distribution is clearly bi-modal. The dominant values are 10 nm, which would correspond to the pores inside clay aggregates that are not affected by the magnitude of the compaction load, and a larger pore size, which depends on compaction degree and ranges from 20 μm (for ρd=1.68 g/cm 3 ) to 30 μm (for ρd = 1.4 g/cm 3 ). These larger voids would correspond to the inter-granular pores. The boundary between the two pore size families is around 150-200 nm. The same pattern is found irrespective of the clay water content. - There exists a significant pore volume into which the mercury cannot penetrate because it corresponds to pores smaller than 6 nm, and it is the same irrespective of the density of the specimens. - The inter-granular pores disappear when a clay slurry is compacted. - After wetting of compacted samples, the hindered and latent inter-aggregate pore size mode emerges (350 and 1100 nm). Simultaneously, and as a

  11. Simulations of large winds and wind shears induced by gravity wave breaking in the mesosphere and lower thermosphere (MLT) region

    X. Liu; X. Liu; J. Xu; H.-L. Liu; J. Yue; W. Yuan

    2014-01-01

    Using a fully nonlinear two-dimensional (2-D) numerical model, we simulated gravity waves (GWs) breaking and their contributions to the formation of large winds and wind shears in the mesosphere and lower thermosphere (MLT). An eddy diffusion coefficient is used in the 2-D numerical model to parameterize realistic turbulent mixing. Our study shows that the momentum deposited by breaking GWs accelerates the mean wind. The resultant large background wind increases the GW's app...

  12. 60 keV Ar⁺-ion induced modification of microstructural, compositional, and vibrational properties of InSb

    Datta, D. P.; Garg, S. K.; Som, T., E-mail: tsom@iopb.res.in [SUNAG Laboratory, Institute of Physics, Bhubaneswar, Odisha 751005 (India); Satpati, B. [Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Sahoo, P. K. [School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar 751005, Odisha (India); Kanjilal, A. [Department of Physics, Shiv Nadar University, Uttar Pradesh 203207 (India); Dhara, S. [Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2014-10-14

    Room temperature irradiation of InSb(111) by 60 keV Ar⁺-ions at normal (0°) and oblique (60°) angles of incidence led to the formation of nanoporous structure in the high fluence regime of 1×10¹⁷ to 3×10¹⁸ ions cm⁻². While a porous layer comprising of a network of interconnected nanofibers was generated by normal ion incidence, evolution of plate-like structures was observed for obliquely incident ions. Systematic studies of composition and structure using energy dispersive x-ray spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, Raman mapping, grazing incidence x-ray diffraction, and cross-sectional transmission electron microscopy revealed a high degree of oxidation of the ion-induced microstructures with the presence of In₂O₃ and Sb₂O₃ phases and presence of nanocrystallites within the nanoporous structures. The observed structural evolution was understood in terms of processes driven by ion-induced defect accumulation within InSb.

  13. Exercise-induced shear stress is associated with changes in plasma von Willebrand factor in older humans.

    Gonzales, Joaquin U; Thistlethwaite, John R; Thompson, Benjamin C; Scheuermann, Barry W

    2009-07-01

    Shear stress is the frictional force of blood against the endothelium, a stimulus for endothelial activation and the release of von Willebrand factor (vWF). This study tested the hypothesis that the increase in shear stress associated with exercise correlates with plasma vWF. Young (n = 14, 25.7 +/- 5.4 years) and older (n = 13, 65.6 +/- 10.7 years) individuals participated in 30 min of dynamic handgrip exercise at a moderate intensity. Brachial artery diameter and blood flow were measured using ultrasound Doppler and blood samples were collected before, immediately after, and following 30 min of recovery from exercise with plasma levels of vWF. Plasma levels of vWF increased (P exercise. The change in plasma vWF was linearly correlated with the increase in shear stress during exercise in older individuals (post-exercise: r = 0.78, 30 min recovery: r = 0.77, P < 0.01), but no association was found in the young individuals. These changes in plasma levels of vWF in humans suggest that aging influences endothelial activation and hemostasis.

  14. Dynamic localization and shear-induced hopping of particles: A way to understand the rheology of dense colloidal dispersions

    Jiang, Tianying; Zukoski, Charles F.

    2014-01-01

    For decades, attempts have been made to understand the formation of colloidal glasses and gels by linking suspension mechanics to particle properties where details of size, shape, and spatial dependencies of pair potentials present a bewildering array of variables that can be manipulated to achieve observed properties. Despite the range of variables that control suspension properties, one consistent observation is the remarkably similarity of flow properties observed as particle properties are varied. Understanding the underlying origins of the commonality in those behaviors (e.g., shear-thinning with increasing stress, diverging zero shear rate viscosity with increasing volume fraction, development of a dynamic yield stress plateau with increases in volume faction or strength of attraction, development of two characteristic relaxation times probed in linear viscoelasticity, the creation of a rubbery plateau modulus at high strain frequencies, and shear-thickening) remains a challenge. Recently, naïve mode coupling and dynamic localization theories have been developed to capture collective behavior giving rise to formation of colloidal glasses and gels. This approach characterizes suspension mechanics of strongly interacting particles in terms of sluggish long-range particle diffusion modulated by varying particle interactions and volume fraction. These theories capture the scaling of the modulus with the volume fraction and strength of interparticle attraction, the frequency dependence of the moduli at the onset of the gel/glass transition, together with the divergence of the zero shear rate viscosity and cessation of diffusivity for hard sphere systems as close packing is approached. In this study, we explore the generality of the predictions of dynamic localization theory for systems of particles composed of bimodal particle size distributions experiencing weak interactions. We find that the mechanical properties of these suspensions are well captured within

  15. Dynamic localization and shear-induced hopping of particles: A way to understand the rheology of dense colloidal dispersions

    Jiang, Tianying; Zukoski, Charles F., E-mail: czukoski@illinois.edu [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-09-01

    For decades, attempts have been made to understand the formation of colloidal glasses and gels by linking suspension mechanics to particle properties where details of size, shape, and spatial dependencies of pair potentials present a bewildering array of variables that can be manipulated to achieve observed properties. Despite the range of variables that control suspension properties, one consistent observation is the remarkably similarity of flow properties observed as particle properties are varied. Understanding the underlying origins of the commonality in those behaviors (e.g., shear-thinning with increasing stress, diverging zero shear rate viscosity with increasing volume fraction, development of a dynamic yield stress plateau with increases in volume faction or strength of attraction, development of two characteristic relaxation times probed in linear viscoelasticity, the creation of a rubbery plateau modulus at high strain frequencies, and shear-thickening) remains a challenge. Recently, naïve mode coupling and dynamic localization theories have been developed to capture collective behavior giving rise to formation of colloidal glasses and gels. This approach characterizes suspension mechanics of strongly interacting particles in terms of sluggish long-range particle diffusion modulated by varying particle interactions and volume fraction. These theories capture the scaling of the modulus with the volume fraction and strength of interparticle attraction, the frequency dependence of the moduli at the onset of the gel/glass transition, together with the divergence of the zero shear rate viscosity and cessation of diffusivity for hard sphere systems as close packing is approached. In this study, we explore the generality of the predictions of dynamic localization theory for systems of particles composed of bimodal particle size distributions experiencing weak interactions. We find that the mechanical properties of these suspensions are well captured within

  16. Quercetin-induced changes in femoral bone microstructure of adult male rabbits

    Ramona Babosová

    2016-06-01

    Full Text Available Flavonoids are a group of plant metabolites with antioxidant effects. One of the most abundant flavonoids in the human diet is quercetin. It is found widely in fruits, vegetables and has a lot of beneficial effects on human health. Quercetin has a positive pharmacological effect on bone metabolism and it prevents the organism against bone loss. However, its impact on the size of basic structural units of the compact bone is still unknown. Therefore, the aim of present study was to investigate the impact of the quercetin on femoral bone microstructure in 5-month-old male rabbits. Five rabbits of Californian broiler line were randomly divided into two groups. In the experimental group (E group; n=3, animals were intramuscularly injected with quercetin at dose 1000 μg.kg-1 body weight (bw for 90 days, 3 times per week. Two rabbits without quercetin administration served as a control group (C group. According to our results, intramuscular application of quercetin had an insignificant effect on cortical bone thickness in male rabbits. In these rabbits, changes in qualitative histological characteristics were present in the middle part of the compacta, where primary vascular longitudinal bone tissue was present and expanded there from the periosteum. Also, a lower number of secondary osteons was found in these animals. From the histomorphometrical point of view, significantly decreased sizes of primary osteons' vascular canals and secondary osteons (p <0.05 were found in rabbits administered by quercetin. Our findings indicate that subchronic administration of quercetin at the dose used in our study had considerable impact on both qualitative and quantitative histological characteristics of the compact bone in adult male rabbits.

  17. A study on early microstructural changes in the rabbit kidney induced by shock waves

    Cha, Kyung Soo [Sung Ae Hospital, Seoul (Korea, Republic of); Shim, Hyung Jin; Kim, Kun Sang; Song, In Sup; Lee, Yong Chul; Song, Kei Yong [College of Medicine, Chung Ang University, Seoul (Korea, Republic of)

    1993-07-15

    Many reports have been published on the tissue damage of a shock wave with respect to histopathological changes in light microscopy and various imaging modalities. However, the studies on the electron microscopic findings and cause of renal functional change such as parenchymal obstructive pattern following extracorporeal shock wave lithotripsy (ESWL) have not been elucidated. In order to evaluate the microstructural changes after shock wave exposure, gross, light microscopic and transmission electron microscopic findings were analyzed with rabbit kidneys. Preliminary study (n=2) was performed to determine the dosage intensity of shock waves to inflict damage, using a EDAP LT 01 piezoelectric extracorporeal shock wave lithotriptor. A shock wave of various intensities were given to the left kidneys of 3 different groups of rabbits. Storage of value of 100, 50, 25 at rate of 20/sec under 87% power were given to group I (n=4), group II (n=4), and group III (n=3) respectively. The right kidneys were preserved as the control group. The rabbits were killed 6-12 hour later. In gross, there were a few subcapsular hemorrhage foci and mild congestion of corticomedullary junction without a large hematoma formation. No significant differences were noted between each group. Light microscopic findings were mainly hydropic changes in the proximal convoluted tubules and congestion without significant necrotic changes. The observed pathologic changes in the transmission electron microscopy were vacuolization of cytoplasm with swelling of epithelial cells especially porximal convoluted tubules. There were also tubular obstruction due to swelling and desquamation of epithelial cells into tubular lumen. The structural changes of intracellular organelles were not found at storage values of 25 and 50. But dilatation and structural alterations of endoplasmic reticulums were noted at value of 100 with cell membrane rupture. The findings of this study suggest that tubular obstructions with

  18. Effect of microstructure on radiation-induced processes in Fe-34.7 at% Ni alloy

    Danilov, S.E.; Arbuzov, V.L.

    2009-01-01

    The method of residual resistivity was used to study processes of the radiation-induced decomposition of the solid solution in the Fe-34.7 at.% Ni alloy at different temperatures and in different initial states under electron irradiation. The comparison was made for alloys in the following states: quenched from 1373 K; aged at 780 K; deformed to 40%; deformed, but annealed at 573 K for elimination of vacancy clusters. Dose and temperature dependences were obtained. Isochronous annealing treatments were performed. It was shown that concentration inhomogeneities of the matrix in the aged alloy did not represent considerable sinks of point defects. Deformation considerably suppressed processes of the radiation-induced decomposition of the solid solution mainly on account of the dislocation structure. The effect of deformation-induced vacancy clusters vanished above 400 K

  19. Length-scales of Slab-induced Asthenospheric Deformation from Geodynamic Modeling, Mantle Deformation Fabric, and Synthetic Shear Wave Splitting

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2017-12-01

    The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear

  20. Shear-induced formation of vesicles in membrane phases: Kinetics and size selection mechanisms, elasticity versus surface tension

    Courbin, L.; Panizza, P.

    2004-02-01

    Multilamellar vesicles can be formed upon shearing lamellar phases (Lα) and phase-separated lamellar-sponge (Lα/L3) mixtures. In the first case, the vesicle volume fraction is always 100% and the vesicle size is monitored by elasticity (“onion textures”). In the second system the vesicle volume fraction can be tuned from 0 to 100% and the mean size results from a balance between capillary and viscous forces (“Taylor droplets”). However, despite these differences, in both systems we show that the formation of vesicles is a strain-controlled process monitored by a universal primary buckling instability of the lamellae.

  1. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    He, Jin-Song; Yang, Hongwei; Zhu, Wanpeng; Mu, Tai-Hua

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum Im and the corresponding wavenumber qm could be described in terms of the power-law relationship as Im~fβ and qm~f-α, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  2. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    He Jinsong; Yang Hongwei; Zhu Wanpeng; Mu Taihua

    2010-01-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum I m and the corresponding wavenumber q m could be described in terms of the power-law relationship as I m ∼f β and q m ∼f -α , respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  3. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    He Jinsong; Yang Hongwei; Zhu Wanpeng [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Mu Taihua, E-mail: mutaihuacaas@126.co [Institute of Agro-Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100094 (China)

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum I{sub m} and the corresponding wavenumber q{sub m} could be described in terms of the power-law relationship as I{sub m}{approx}f{sup {beta}} and q{sub m}{approx}f{sup -}{alpha}, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  4. Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system

    Pawar, Prashant M; Jung, Sung Nam

    2008-01-01

    In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades

  5. Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system

    Pawar, Prashant M.; Jung, Sung Nam

    2008-12-01

    In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades.

  6. Rheological study of two-dimensional very anisometric colloidal particle suspensions: from shear-induced orientation to viscous dissipation.

    Philippe, A M; Baravian, C; Bezuglyy, V; Angilella, J R; Meneau, F; Bihannic, I; Michot, L J

    2013-04-30

    In the present study, we investigate the evolution with shear of the viscosity of aqueous suspensions of size-selected natural swelling clay minerals for volume fractions extending from isotropic liquids to weak nematic gels. Such suspensions are strongly shear-thinning, a feature that is systematically observed for suspensions of nonspherical particles and that is linked to their orientational properties. We then combined our rheological measurements with small-angle X-ray scattering experiments that, after appropriate treatment, provide the orientational field of the particles. Whatever the clay nature, particle size, and volume fraction, this orientational field was shown to depend only on a nondimensional Péclet number (Pe) defined for one isolated particle as the ratio between hydrodynamic energy and Brownian thermal energy. The measured orientational fields were then directly compared to those obtained for infinitely thin disks through a numerical computation of the Fokker-Plank equation. Even in cases where multiple hydrodynamic interactions dominate, qualitative agreement between both orientational fields is observed, especially at high Péclet number. We have then used an effective approach to assess the viscosity of these suspensions through the definition of an effective volume fraction. Using such an approach, we have been able to transform the relationship between viscosity and volume fraction (ηr = f(φ)) into a relationship that links viscosity with both flow and volume fraction (ηr = f(φ, Pe)).

  7. Effect of glucose on fatigue-induced changes in the microstructure and mechanical properties of demineralized bovine cortical bone.

    Trębacz, Hanna; Zdunek, Artur; Wlizło-Dyś, Ewa; Cybulska, Justyna; Pieczywek, Piotr

    2015-10-16

    The aim of this study was to test a hypothesis that fatigue-induced weakening of cortical bone was intensified in bone incubated in glucose and that this weakening is revealed in the microstructure and mechanical competence of the bone matrix. Cubic specimens of bovine femoral shaft were incubated in glucose solution (G) or in buffer (NG). One half of G samples and one half of NG were axially loaded in 300 cycles (30 mm/min) at constant deformation (F); the other half was a control (C). Samples from each group (GF, NGF, GC, NGC) were completely demineralized. Slices from demineralized samples were used for microscopic image analysis. A combined effect of glycation and fatigue on demineralized bone was tested in compression (10 mm/min). Damage of samples during the test was examined in terms of acoustic emission analysis (AE). During the fatigue procedure, resistance to loading in glycated samples decreased by 14.5% but only by 8.1% in nonglycated samples. In glycated samples fatigue resulted in increased porosity with pores significantly larger than in the other groups. Under compression, strain at failure in demineralized bone was significantly affected by glucose and fatigue. AE from demineralized bone matrix was considerably related to the largest pores in the tissue. The results confirm the hypothesis that the effect of fatigue on cortical bone tissue was intensified after incubation in glucose, both in the terms of the mechanical competence of bone tissue and the structural changes in the collagenous matrix of bone.

  8. In situ transmission electron microscopy study of the microstructural origins for the electric field-induced phenomena in ferroelectric perovskites

    Guo, Hanzheng [Iowa State Univ., Ames, IA (United States)

    2014-12-15

    Ferroelectrics are important materials due to their extensive technological applications, such as non-volatile memories, field-effect transistors, ferroelectric tunneling junctions, dielectric capacitors, piezoelectric transducers, sensors and actuators. As is well known, the outstanding dielectric, piezoelectric, and ferroelectric properties of these functional oxides originate from their ferroelectric domain arrangements and the corresponding evolution under external stimuli (e.g. electric field, stress, and temperature). Electric field has been known as the most efficient stimulus to manipulate the ferroelectric domains through polarization switching and alignment. Therefore, direct observation of the dynamic process of electric field-induced domain evolution and crystal structure transformation is of significant importance to understand the microstructural mechanisms for the functional properties of ferroelectrics. In this dissertation, electric field in situ transmission electron microscopy (TEM) technique was employed to monitor the real-time evolution of the domain morphology and crystal structure during various electrical processes: (1) the initial poling process, (2) the electric field reversal process, and (3) the electrical cycling process. Two types of perovskite-structured ceramics, normal ferroelectrics and relaxor ferroelectrics, were used for this investigation. In addition to providing the microscopic insight for some wellaccepted phase transformation rules, discoveries of some new or even unexpected physical phenomena were also demonstrated.

  9. Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel

    Fu, Liming; Shan, Mokun; Zhang, Daoda; Wang, Huanrong; Wang, Wei; Shan, Aidang

    2017-05-01

    The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.

  10. Characterisation of human induced pluripotent stem cell-derived endothelial cells under shear stress using an easy-to-use microfluidic cell culture system.

    Ohtani-Kaneko, Rsituko; Sato, Kenjiro; Tsutiya, Atsuhiro; Nakagawa, Yuka; Hashizume, Kazutoshi; Tazawa, Hidekatsu

    2017-10-09

    Induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) can contribute to elucidating the pathogenesis of heart and vascular diseases and developing their treatments. Their precise characteristics in fluid flow however remain unclear. Therefore, the aim of the present study is to characterise these features. We cultured three types of ECs in a microfluidic culture system: commercially available human iPS-ECs, human umbilical vein endothelial cells (HUVECs) and human umbilical artery endothelial cells (HUAECs). We then examined the mRNA expression levels of endothelial marker gene cluster of differentiation 31 (CD31), fit-related receptor tyrosine kinase (Flk-1), and the smooth muscle marker gene smooth muscle alpha-actin, and investigated changes in plasminogen activator inhibitor-1 (PAI-1) secretion and intracellular F-actin arrangement following heat stress. We also compared expressions of the arterial and venous marker genes ephrinB2 and EphB4, and the endothelial gap junction genes connexin (Cx) 37, 40, and 43 under fluidic shear stress to determine their arterial or venous characteristics. We found that iPS-ECs had similar endothelial marker gene expressions and exhibited similar increases in PAI-1 secretion under heat stress as HUVECs and HUAECs. In addition, F-actin arrangement in iPSC-ECs also responded to heat stress, as previously reported. However, they had different expression patterns of arterial and venous marker genes and Cx genes under different fluidic shear stress levels, showing that iPSC-ECs exhibit different characteristics from arterial and venous ECs. This microfluidic culture system equipped with variable shear stress control will provide an easy-to-use assay tool to examine characteristics of iPS-ECs generated by different protocols in various laboratories and contribute to basic and applied biomedical researches on iPS-ECs.

  11. Starch-zein beldns formed by shear flow

    Habeych Narvaez, E.A.; Dekkers, B.; Goot, van der A.J.; Boom, R.M.

    2008-01-01

    A newly in-house developed shearing device was used to explore the formation of new types of microstructures in concentrated starch¿zein blends. The device allowed processing of the biopolymer blends under homogeneous, simple shear flow conditions. Water and glycerol were added as plasticizers.

  12. Construction of human induced pluripotent stem cell-derived oriented bone matrix microstructure by using in vitro engineered anisotropic culture model.

    Ozasa, Ryosuke; Matsugaki, Aira; Isobe, Yoshihiro; Saku, Taro; Yun, Hui-Suk; Nakano, Takayoshi

    2018-02-01

    Bone tissue has anisotropic microstructure based on collagen/biological apatite orientation, which plays essential roles in the mechanical and biological functions of bone. However, obtaining an appropriate anisotropic microstructure during the bone regeneration process remains a great challenging. A powerful strategy for the control of both differentiation and structural development of newly-formed bone is required in bone tissue engineering, in order to realize functional bone tissue regeneration. In this study, we developed a novel anisotropic culture model by combining human induced pluripotent stem cells (hiPSCs) and artificially-controlled oriented collagen scaffold. The oriented collagen scaffold allowed hiPSCs-derived osteoblast alignment and further construction of anisotropic bone matrix which mimics the bone tissue microstructure. To the best of our knowledge, this is the first report showing the construction of bone mimetic anisotropic bone matrix microstructure from hiPSCs. Moreover, we demonstrated for the first time that the hiPSCs-derived osteoblasts possess a high level of intact functionality to regulate cell alignment. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 360-369, 2018. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  13. Adiabatic shear localization in ultrafine grained 6061 aluminum alloy

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083 (China); Ma, Rui; Zhou, Jindian [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Zezhou; Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); Huang, Xiaoxia [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-10-15

    Localized shear is an important mode of deformation; it leads to catastrophic failure with low ductility, and occurs frequently during high strain-rate deformation. The hat-shaped specimen has been successfully used to generate shear bands under controlled shock-loading tests. The microstructure in the forced shear band was characterized by optical microscopy, microhardness, and transmission electron microscopy. The true flow stress in the shear region can reach 800 MPa where the strain is about 2.2. The whole shear localization process lasts for about 100 μs. The shear band is a long and straight band distinguished from the matrix by boundaries. It can be seen that the grains in the boundary of the shear band are highly elongated along the shear direction and form the elongated cell structures (0.2 µm in width), and the core of the shear band consists of a number of recrystallized equiaxed grains with 0.2−0.3 µm in diameters, and the second phase particles distribute in the boundary of the ultrafine equiaxed new grains. The calculated temperature in the shear band can reach about 667 K. Finally, the formation of the shear band in the ultrafine grained 6061 aluminum alloy and its microstructural evolution are proposed.

  14. Microstructural modifications induced by rapid thermal annealing in plasma deposited SiOxNyHz films

    Prado, A. del; San Andres, E.; Martil, I.; Gonzalez-Diaz, G.; Bravo, D.; Lopez, F.J.; Fernandez, M.; Martinez, F.L.

    2003-01-01

    The effect of rapid thermal annealing (RTA) processes on the structural properties of SiO x N y H z films was investigated. The samples were deposited by the electron cyclotron resonance plasma method, using SiH 4 , O 2 and N 2 as precursor gases. For SiO x N y H z films with composition close to that of SiO 2 , which have a very low H content, RTA induces thermal relaxation of the lattice and improvement of the structural order. For films of intermediate composition and of compositions close to SiN y H z , the main effect of RTA is the release of H at high temperatures (T>700 deg. C). This H release is more significant in films containing both Si-H and N-H bonds, due to cooperative reactions between both kinds of bonds. In these films the degradation of structural order associated to H release prevails over thermal relaxation, while in those films with only N-H bonds, thermal relaxation predominates. For annealing temperatures in the 500-700 deg. C range, the passivation of dangling bonds by the nonbonded H in the films and the transition from the paramagnetic state to the diamagnetic state of the K center result in a decrease of the density of paramagnetic defects. The H release observed at high annealing temperatures is accompanied by an increase of density of paramagnetic defects

  15. Silica-based microstructures on nonplanar substrates by femtosecond laser-induced nonlinear lithography

    Mizoshiri, M; Nishiyama, H; Hirata, Y; Nishii, J

    2009-01-01

    We developed a technique for the formation of nonplanar surfaces of inorganic optical materials by a combined process of nonlinear lithography and plasma etching. This technique can be used to fabricate structures even on non-flat substrates, which is difficult using current semiconductor technology. Three-dimensional patterns were written directly inside a positive-tone photoresist using femtosecond laser-induced nonlinear optical absorption. The patterns were then transferred to underlying nonplanar substrates by the ion beam etching technique. For the lithographic process, we obtained a minimum feature size of 900 nm, which is below the diffraction limit. We demonstrated the fabrication of silica-based hybrid diffractive-refractive lenses. Fresnel zone plates with smooth surfaces were obtained on convex microlenses. When a 633-nm-wavelength He-Ne laser was coupled normally to the hybrid lens, the primary focal length was measured as 630 μm. This hybridization shifted the focal length by 200 μm, which agreed with the theoretical value. Our process is useful for the precise fabrication of nonplanar structures based on inorganic materials.

  16. The effect of liquid phase separation on the Vickers microindentation shear bands evolution in a Fe-based bulk metallic glass

    Askari-Paykani, M. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11356-4563 (Iran, Islamic Republic of); Nili Ahmadabadi, M., E-mail: nili@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11356-4563 (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Seiffodini, A. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11356-4563 (Iran, Islamic Republic of); Yazd University, Department of Material Science and Engineering, Yazd 84196 (Iran, Islamic Republic of)

    2013-11-15

    The Vickers microindentation experiments and associated plastic deformation in as-cast and annealed (Fe{sub 0.9}Ni{sub 0.1}){sub 77}Mo{sub 5}P{sub 9}C{sub 7.5}B{sub 1.5} bulk metallic glass was conducted. In addition to the bulk indentation behavior, the shear band morphology underneath the Vickers microindenter was examined by employing the bonded interface technique. Microstructural characterization revealed that a liquid phase separation occurred during melting process. Atomic force microscopy of the glassy matrix of the as-cast specimen reveals the composition inhomogeneity induced by the liquid phase separation. This effect generates shear band branching or deflection during the shear band propagation. For the bulk indentation, the trends in the hardness vs. indentation load were found related to the pressure sensitive index and the phase separation process simultaneously. The results show that the as-cast as well as the annealed specimens are deformed through semi-circular and radial shear bands. In addition, in the partially crystalized specimen, the change in the properties and microstructure of the BMG induced by the partial crystallization treatment and phase separation process resulted in tertiary shear bands formation.

  17. Shock-induced microstructural response of mono- and nanocrystalline SiC ceramics

    Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2018-04-01

    The dynamic behavior of mono- and nanocrystalline SiC ceramics under plane shock loading is revealed using molecular-dynamics simulations. The generation of shock-induced elastic compression, plastic deformation, and structural phase transformation is characterized at different crystallographic directions as well as on a 5-nm grain size nanostructure at 10 K and 300 K. Shock profiles are calculated in a wide range of particle velocities 0.1-6.0 km/s. The predicted Hugoniot agree well with experimental data. Results indicate the generation of elastic waves for particle velocities below 0.8-1.9 km/s, depending on the crystallographic direction. In the intermediate range of particle velocities between 2 and 5 km/s, the shock wave splits into an elastic precursor and a zinc blende-to-rock salt structural transformation wave, which is triggered by shock pressure over the ˜90 GPa threshold value. A plastic wave, with a strong deformation twinning component, is generated ahead of the transformation wave for shocks in the velocity range between 1.5 and 3 km/s. For particle velocities greater than 5-6 km/s, a single overdriven transformation wave is generated. Surprisingly, shocks on the nanocrystalline sample reveal the absence of wave splitting, and elastic, plastic, and transformation wave components are seamlessly connected as the shock strength is continuously increased. The calculated strengths 15.2, 31.4, and 30.9 GPa for ⟨001⟩, ⟨111⟩, and ⟨110⟩ directions and 12.3 GPa for the nanocrystalline sample at the Hugoniot elastic limit are in excellent agreement with experimental data.

  18. Aerobic exercise acutely prevents the endothelial dysfunction induced by mental stress among subjects with metabolic syndrome: the role of shear rate.

    Sales, Allan R K; Fernandes, Igor A; Rocha, Natália G; Costa, Lucas S; Rocha, Helena N M; Mattos, João D M; Vianna, Lauro C; Silva, Bruno M; Nóbrega, Antonio C L

    2014-04-01

    Mental stress induces transient endothelial dysfunction, which is an important finding for subjects at cardiometabolic risk. Thus, we tested whether aerobic exercise prevents this dysfunction among subjects with metabolic syndrome (MetS) and whether an increase in shear rate during exercise plays a role in this phenomenon. Subjects with MetS participated in two protocols. In protocol 1 (n = 16), endothelial function was assessed using brachial artery flow-mediated dilation (FMD). Subjects then underwent a mental stress test followed by either 40 min of leg cycling or rest across two randomized sessions. FMD was assessed again at 30 and 60 min after exercise or rest, with a second mental stress test in between. Mental stress reduced FMD at 30 and 60 min after the rest session (baseline: 7.7 ± 0.4%, 30 min: 5.4 ± 0.5%, and 60 min: 3.9 ± 0.5%, P exercise prevented this reduction (baseline: 7.5 ± 0.4%, 30 min: 7.2 ± 0.7%, and 60 min: 8.7 ± 0.8%, P > 0.05 vs. baseline). Protocol 2 (n = 5) was similar to protocol 1 except that the first period of mental stress was followed by either exercise in which the brachial artery shear rate was attenuated via forearm cuff inflation or exercise without a cuff. Noncuffed exercise prevented the reduction in FMD (baseline: 7.5 ± 0.7%, 30 min: 7.0 ± 0.7%, and 60 min: 8.7 ± 0.8%, P > 0.05 vs. baseline), whereas cuffed exercise failed to prevent this reduction (baseline: 7.5 ± 0.6%, 30 min: 5.4 ± 0.8%, and 60 min: 4.1 ± 0.9%, P exercise prevented mental stress-induced endothelial dysfunction among subjects with MetS, and an increase in shear rate during exercise mediated this effect.

  19. Ion beam modification of sputtered metal nitride thin films: A study of the induced microstructural changes

    Milosavljevic, M.; Perusko, D.; Popovic, M.; Novakovic, M.

    2008-01-01

    Single CrN and TiN and multilayered AlN/TiN and Al/Ti thin film structures (t = 240-280 nm) deposited on Si were irradiated with 120-200 keV Ar + ions to the fluences ranging from 1 x 10 11 5 to 4 x 10 16 ions/cm 2 . The metallic Al/Ti multilayered structure was also irradiated with high fluence (1- 2 x 10 17 /cm 2 ) nitrogen ions at 200 keV, in order to study interface mixing and formation of nitrides. Single component CrN and TiN thin films were found to grow in the form of a very fine polycrystalline columnar structures. Individual crystal grains were of the order of a few tens of nm in diameter, stretching from the substrate to the surface. After ion irradiation, the layers retain their polycrystalline structure, although the columns become disconnected, the resulting structures consisting of larger grains and nano-particles of the same phase. The implanted samples displayed higher electrical resistivity, presumably due to a higher concentration of point defects and the presence of nano-particles. In Al/Ti and AlN/TiN multilayers irradiated with Ar ions, the as-deposited structures exhibit well-defined, isolated polycrystalline Al and Ti, or AlN and TiN layers, with sharp interfaces. In the metallic system ion irradiation induced interface mixing which progressed with increasing the ion fluence. Mixing was most pronounced at the interfaces that are located around the projected ion range. The multilayered structure was essentially preserved, but the implanted samples exhibit much larger crystal grains. Also, the formation of lamellar columns stretching over a number of individual layers was observed. The AlN/TiN multilayered structures exhibited no measurable interface mixing on Ar irradiation, attributable to the nature of interatomic bonding and to mutual immiscibility of AlN and TiN. High fluence nitrogen ion irradiation of Al/Ti multilayers results in both the introduction of nitrogen into the structures as well as a high level of their intermixing. A

  20. In situ transmission electron microscopy study of the microstructural origins for the electric field-induced phenomena in ferroelectric perovskites

    Guo, Hanzheng

    Ferroelectrics are important materials due to their extensive technological applications, such as non-volatile memories, field-effect transistors, ferroelectric tunneling junctions, dielectric capacitors, piezoelectric transducers, sensors and actuators. As is well known, the outstanding dielectric, piezoelectric, and ferroelectric properties of these functional oxides originate from their ferroelectric domain arrangements and the corresponding evolution under external stimuli (e.g. electric field, stress, and temperature). Electric field has been known as the most efficient stimulus to manipulate the ferroelectric domains through polarization switching and alignment. Therefore, direct observation of the dynamic process of electric field-induced domain evolution and crystal structure transformation is of significant importance to understand the microstructural mechanisms for the functional properties of ferroelectrics. In this dissertation, electric field in situ transmission electron microscopy (TEM) technique was employed to monitor the real-time evolution of the domain morphology and crystal structure during various electrical processes: (1) the initial poling process, (2) the electric field reversal process, and (3) the electrical cycling process. Two types of perovskite-structured ceramics, normal ferroelectrics and relaxor ferroelectrics, were used for this investigation. In addition to providing the microscopic insight for some well-accepted phase transformation rules, discoveries of some new or even unexpected physical phenomena were also demonstrated. For the initial poling process, microstructural origins for the piezoelectricity development in the three most promising lead-free piezoceramic systems were investigated. For the non-ergodic relaxor ferroelectric compositions ( x = 6% - 9%) in the (1-x)(Bi1/2Na 1/2)TiO3-xBaTiO3 system, well-developed piezoelectricity was realized at poling fields far below the coercive field and phase transition field. Such

  1. Shear failure of granular materials

    Degiuli, Eric; Balmforth, Neil; McElwaine, Jim; Schoof, Christian; Hewitt, Ian

    2012-02-01

    Connecting the macroscopic behavior of granular materials with the microstructure remains a great challenge. Recent work connects these scales with a discrete calculus [1]. In this work we generalize this formalism from monodisperse packings of disks to 2D assemblies of arbitrarily shaped grains. In particular, we derive Airy's expression for a symmetric, divergence-free stress tensor. Using these tools, we derive, from first-principles and in a mean-field approximation, the entropy of frictional force configurations in the Force Network Ensemble. As a macroscopic consequence of the Coulomb friction condition at contacts, we predict shear failure at a critical shear stress, in accordance with the Mohr-Coulomb failure condition well known in engineering. Results are compared with numerical simulations, and the dependence on the microscopic geometric configuration is discussed. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310

  2. Shear-stress-induced structural arrangement of water molecules in nanoscale Couette flow with slipping at wall boundary

    Lin, Jau-Wen

    2014-01-01

    This study investigated the structuring of water molecules in a nanoscale Couette flow with the upper plate subjected to lateral forces with various magnitudes and water slipping against a metal wall. It was found that when the upper plate is subjected to a force, the water body deforms into a parallelepiped. Water molecules in the channel are then gradually arranged into lattice positions, creating a layered structure. The structural arrangement of water molecules is caused by the water molecules accommodating themselves to the increase in energy under the application of a lateral force on the moving plate. The ordering arrangement of water molecules increases the rotational degree of freedom, allowing the molecules to increase their Coulomb potential energy through polar rotation that accounts for the energy input through the upper plate. With a force continuously applied to the upper plate, the water molecules in contact with the upper plate move forward until slip between the water and upper plate occurs. The relation between the structural arrangement of water molecules, slip at the wall, and the shear force is studied. The relation between the slip and the locking/unlocking of water molecules to metal atoms is also studied

  3. NOX4-dependent Hydrogen peroxide promotes shear stress-induced SHP2 sulfenylation and eNOS activation.

    Sánchez-Gómez, Francisco J; Calvo, Enrique; Bretón-Romero, Rosa; Fierro-Fernández, Marta; Anilkumar, Narayana; Shah, Ajay M; Schröder, Katrin; Brandes, Ralf P; Vázquez, Jesús; Lamas, Santiago

    2015-12-01

    Laminar shear stress (LSS) triggers signals that ultimately result in atheroprotection and vasodilatation. Early responses are related to the activation of specific signaling cascades. We investigated the participation of redox-mediated modifications and in particular the role of hydrogen peroxide (H2O2) in the sulfenylation of redox-sensitive phosphatases. Exposure of vascular endothelial cells to short periods of LSS (12 dyn/cm(2)) resulted in the generation of superoxide radical anion as detected by the formation of 2-hydroxyethidium by HPLC and its subsequent conversion to H2O2, which was corroborated by the increase in the fluorescence of the specific peroxide sensor HyPer. By using biotinylated dimedone we detected increased total protein sulfenylation in the bovine proteome, which was dependent on NADPH oxidase 4 (NOX4)-mediated generation of peroxide. Mass spectrometry analysis allowed us to identify the phosphatase SHP2 as a protein susceptible to sulfenylation under LSS. Given the dependence of FAK activity on SHP2 function, we explored the role of FAK under LSS conditions. FAK activation and subsequent endothelial NO synthase (eNOS) phosphorylation were promoted by LSS and both processes were dependent on NOX4, as demonstrated in lung endothelial cells isolated from NOX4-null mice. These results support the idea that LSS elicits redox-sensitive signal transduction responses involving NOX4-dependent generation of hydrogen peroxide, SHP2 sulfenylation, and ulterior FAK-mediated eNOS activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Stress- and Structure-Induced Anisotropy in Southern California From Two Decades of Shear Wave Splitting Measurements

    Li, Zefeng; Peng, Zhigang

    2017-10-01

    We measure shear wave splitting (SWS) parameters (i.e., fast direction and delay time) using 330,000 local earthquakes recorded by more than 400 stations of the Southern California Seismic Network (1995-2014). The resulting 232,000 SWS measurements (90,000 high-quality ones) provide a uniform and comprehensive database of local SWS measurements in Southern California. The fast directions at many stations are consistent with regional maximum compressional stress σHmax. However, several regions show clear deviations from the σHmax directions. These include linear sections along the San Andreas Fault and the Santa Ynez Fault, geological blocks NW to the Los Angeles Basin, regions around the San Jacinto Fault, the Peninsular Ranges near San Diego, and the Coso volcanic field. These complex patterns show that regional stresses and active faults cannot adequately explain the upper crustal anisotropy in Southern California. Other types of local structures, such as local rock types or tectonic features, also play significant roles.

  5. Physics-based simulation modeling and optimization of microstructural changes induced by machining and selective laser melting processes in titanium and nickel based alloys

    Arisoy, Yigit Muzaffer

    Manufacturing processes may significantly affect the quality of resultant surfaces and structural integrity of the metal end products. Controlling manufacturing process induced changes to the product's surface integrity may improve the fatigue life and overall reliability of the end product. The goal of this study is to model the phenomena that result in microstructural alterations and improve the surface integrity of the manufactured parts by utilizing physics-based process simulations and other computational methods. Two different (both conventional and advanced) manufacturing processes; i.e. machining of Titanium and Nickel-based alloys and selective laser melting of Nickel-based powder alloys are studied. 3D Finite Element (FE) process simulations are developed and experimental data that validates these process simulation models are generated to compare against predictions. Computational process modeling and optimization have been performed for machining induced microstructure that includes; i) predicting recrystallization and grain size using FE simulations and the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, ii) predicting microhardness using non-linear regression models and the Random Forests method, and iii) multi-objective machining optimization for minimizing microstructural changes. Experimental analysis and computational process modeling of selective laser melting have been also conducted including; i) microstructural analysis of grain sizes and growth directions using SEM imaging and machine learning algorithms, ii) analysis of thermal imaging for spattering, heating/cooling rates and meltpool size, iii) predicting thermal field, meltpool size, and growth directions via thermal gradients using 3D FE simulations, iv) predicting localized solidification using the Phase Field method. These computational process models and predictive models, once utilized by industry to optimize process parameters, have the ultimate potential to improve performance of

  6. Seismic anisotropy and compositionally induced velocity anomalies in the lithosphere above mantle plumes: a petrological and microstructural study of mantle xenoliths from French Polynesia

    Tommasi, Andréa; Godard, Marguerite; Coromina, Guilhem; Dautria, Jean-Marie; Barsczus, Hans

    2004-11-01

    In addition to thermal erosion, plume/lithosphere interaction may induce significant changes in the lithosphere chemical composition. To constrain the extent of this process in an oceanic environment and its consequences on the lithosphere seismic properties, we investigated the relationship between petrological processes and microstructure in mantle xenoliths from different hotspots tracks in South Pacific Superswell region: the Austral-Cook, Society, and Marquesas islands in French Polynesia. Olivine forsterite contents in the studied spinel peridotites vary continuously from Fo91 to Fo83. Dunites and wehrlites display the lowest forsterite contents. Their microstructure and high Ni contents preclude a cumulate origin, suggesting that these rocks result from melt/rock reactions involving olivine precipitation and pyroxene dissolution. In addition, lherzolites and wehrlites display evidence of late crystallization of clinopyroxene, which may result from a near-solidus melt-freezing reaction. These data suggest that the lithosphere above a mantle plume undergoes a complex sequence of magmatic processes that significantly change its composition. These compositional changes, particularly iron enrichment in olivine, result in lower P- and S-waves velocities. Relative to normal lithospheric mantle, compositionally induced seismic anomalies may attain -2.2% for S-waves and -1% for P-waves. Smaller negative anomalies for P-waves are due to a higher sensitivity to modal composition. Conversely, crystal-preferred orientations (CPO) and seismic anisotropy are little affected by these processes. Lherzolites and harzburgites, independent from composition, show high-temperature porphyroclastic microstructures and strong olivine CPO. Dunites and wehrlites display annealing microstructures to which is associated a progressive dispersion of the olivine CPO. Very weak, almost random olivine CPO is nevertheless rare, suggesting that CPO destruction is restricted to domains of

  7. Effect of microstructure and THCM processes on fault weakening

    Stefanou, I.; Sulem, J.; Rattez, H.

    2017-12-01

    Field observations of exhumed mature faults and outcrops, i.e. faults that have experienced a large slip, suggest that shear localization occurs in a narrow zone of few millimeters thick or even less inside the fault core. The size of this zone plays a major role in the energy budget of the system as it controls the feedback of the dissipative terms in the energy balance equation.Strain localization in narrow bands can be seen as a bifurcation from the homogeneous deformation solution of the underlying mathematical problem, and is favored by softening behavior. Here we model the shearing of a saturated fault gouge under various multi-physical couplings to investigate the influence of these coupled processes on the softening response. The major drawback of classical continuum theories is that they lead to infinitely narrow shear localized zone. This can be remedied by resorting to Cosserat continuum theory for which constitutive models contain a material length. Moreover, Cosserat models are appropriate for taking into account the granular microstructure of the fault gouge for which the Cosserat material length is naturally related to the grain size of the gouge. Thus, bifurcation analysis of the sheared layer includes the calculation of the evolution of the thickness of the localized zone.A numerical analysis including the effect of shear heating and pore fluid thermal pressurization is performed and the results of the bifurcation analysis are compared to field observations in terms of the localized zone thickness. At high temperature rise, thermally induced mineral transformation such as dehydration of clayey minerals or decomposition of carbonates can occur. The effect of these chemical reactions on the shear band thickness evolution is investigated and the numerical results are compared to observations of the Mt. Maggio fault located in the Northern Apennines of Italy.

  8. Position-dependent shear-induced austenite– martensite transformation in double-notched TRIP and dual-phase steel samples

    Blondé, R.J.P.; Jimenez-Melero, E.; Anusuya Ponnusami, S.; Zhao, L.; Schell, N.; Brück, E.H.; Van der Zwaag, S.; Van Dijk, N.H.

    2014-01-01

    While earlier studies on transformation-induced-plasticity (TRIP) steels focused on the determination of the austenite-to-martensite decomposition in uniform deformation or thermal fields, the current research focuses on the determination of the local retained austenite-to-martensite transformation

  9. Simulations of Granular Particles Under Cyclic Shear

    Royer, John; Chaikin, Paul

    2012-02-01

    We perform molecular dynamics (MD) simulations of spherical grains subjected to cyclic, quasi-static shear in a 3D parallelepiped shear cell. This virtual shear cell is constructed out of rough, bumpy walls in order to minimize wall-induced ordering and has an open top surface to allow the packing to readily dilate or compact. Using a standard routine for MD simulations of frictional grains, we simulate over 1000 shear cycles, measuring grain displacements, the local packing density and changes in the contact network. Varying the shear amplitude and the friction coefficient between grains, we map out a phase diagram for the different types of behavior exhibited by these sheared grains. With low friction and high enough shear, the grains can spontaneously order into densely packed crystals. With low shear and increasing friction the packing remains disordered, yet the grains arrange themselves into configurations which exhibit limit cycles where all grains return to the same position after each full shear cycle. At higher shear and friction there is a transition to a diffusive state, where grains continue rearrange and move throughout the shear cell.

  10. Monitoring of multiple solvent induced form changes during high shear wet granulation and drying processes using online Raman spectroscopy.

    Reddy, Jay Poorna; Jones, John W; Wray, Patrick S; Dennis, Andrew B; Brown, Jonathan; Timmins, Peter

    2018-04-25

    Form changes during drug product processing can be a risk to the final product quality in terms of chemical stability and bioavailability. In this study, online Raman spectroscopy was used to monitor the form changes in real time during high shear wet granulation of Compound A, a highly soluble drug present at a high drug load in an extended release formulation. The effect of water content, temperature, wet massing time and drying technique on the degree of drug transformation were examined. A designed set of calibration standards were employed to develop quantitative partial least square regression models to predict the concentration of each drug form during both wet granulation and the drying process. Throughout all our experiments we observed complex changes of the drug form during granulation, manifest as conversions between the initial non-solvated form of Compound A, the hemi-hydrate form and the "apparent" amorphous form (dissolved drug). The online Raman data demonstrate that the non-solvated form converts to an "apparent" amorphous form (dissolved drug) due to drug dissolution with no appearance of the hemi-hydrate form during water addition stage. The extent of conversion of the non-solvated form was governed by the amount of water added and the rate of conversion was accelerated at higher temperatures. Interestingly, in the wet massing zone, the formation of the hemi-hydrate form was observed at a rate equivalent to the rate of depletion of the non-solvated form with no change in the level of the "apparent amorphous" form generated. The level of hemi-hydrate increased with an increase in wet massing time. The drying process had a significant effect on the proportion of each form. During tray drying, changes in drug form continued for hours. In contrast fluid bed drying appeared to lock the final proportions of drug form product attained during granulation, with comparatively small changes observed during drying. In conclusion, it was possible to

  11. Geometry and subsidence history of the Dead Sea basin: A case for fluid-induced mid-crustal shear zone?

    ten Brink, Uri S.; Flores, C.H.

    2012-01-01

    Pull-apart basins are narrow zones of crustal extension bounded by strike-slip faults that can serve as analogs to the early stages of crustal rifting. We use seismic tomography, 2-D ray tracing, gravity modeling, and subsidence analysis to study crustal extension of the Dead Sea basin (DSB), a large and long-lived pull-apart basin along the Dead Sea transform (DST). The basin gradually shallows southward for 50 km from the only significant transverse normal fault. Stratigraphic relationships there indicate basin elongation with time. The basin is deepest (8-8.5 km) and widest (???15 km) under the Lisan about 40 km north of the transverse fault. Farther north, basin depth is ambiguous, but is 3 km deep immediately north of the lake. The underlying pre-basin sedimentary layer thickens gradually from 2 to 3 km under the southern edge of the DSB to 3-4 km under the northern end of the lake and 5-6 km farther north. Crystalline basement is ???11 km deep under the deepest part of the basin. The upper crust under the basin has lower P wave velocity than in the surrounding regions, which is interpreted to reflect elevated pore fluids there. Within data resolution, the lower crust below ???18 km and the Moho are not affected by basin development. The subsidence rate was several hundreds of m/m.y. since the development of the DST ???17 Ma, similar to other basins along the DST, but subsidence rate has accelerated by an order of magnitude during the Pleistocene, which allowed the accumulation of 4 km of sediment. We propose that the rapid subsidence and perhaps elongation of the DSB are due to the development of inter-connected mid-crustal ductile shear zones caused by alteration of feldspar to muscovite in the presence of pore fluids. This alteration resulted in a significant strength decrease and viscous creep. We propose a similar cause to the enigmatic rapid subsidence of the North Sea at the onset the North Atlantic mantle plume. Thus, we propose that aqueous fluid flux

  12. Effect of Dynamic Reheating Induced by Weaving on the Microstructure of GTAW Weld Metal of 25% Cr Super Duplex Stainless Steel Weld Metal

    Hee-Joon Sung

    2017-11-01

    Full Text Available The importance of the additional growth and/or transformation of the austenite phase that occurs in weld metals of super duplex stainless steel upon reheating is known. However, the effects have not been fully investigated, especially with respect to reheating induced by weaving during single-pass welding. In this work, bead-on-pipe gas tungsten arc welding (GTAW was conducted on super duplex stainless steel to understand the effect of weaving on the microstructure of weld metal. Microstructural analysis, electron backscatter diffraction (EBSD, and focused ion beam transmission electron microscopy (FIB-TEM were carried out to investigate the relationship between weaving and microstructural change. The weaving of GTAW produced a dynamic reheated area just before the weld bead during welding. It was revealed that extensive reheated weld existed even after one welding pass, and that the content of the austenite phase in the reheated area was higher than that in the non-reheated area, indicating the existence of a large quantity of intragranular austenite phase. In addition, the Cr2N content in the reheated area was lower than that in the non-reheated area. This reduction of Cr2N was closely related to the reheating resulting from weaving. TEM analysis revealed that Cr2N in the non-reheated area was dispersed following heating and transformed to secondary austenite.

  13. Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow

    Cheng, X.; Xu, X.; Rice, S. A.; Dinner, A. R.; Cohen, I.

    2011-01-01

    under shear, there are conflicting predictions about whether particles link up into string-like structures along the shear flow direction. Here, using confocal microscopy, we measure the shear-induced suspension structure. Surprisingly, rather than flow

  14. Rheology and microstructure of kefiran and whey protein mixed gels.

    Kazazi, Hosayn; Khodaiyan, Faramarz; Rezaei, Karamatollah; Pishvaei, Malihe; Mohammadifar, Mohammad Amin; Moieni, Sohrab

    2017-04-01

    The effect of kefiran on cold-set gelation of whey protein isolate (WPI) at 25 °C was studied using rheological measurements and environmental scanning electron microscopy (ESEM). The gelation of samples was induced by the addition of glucono-δ-lactone to the dispersions. WPI concentration was maintained at 8% (w/v) and the concentration of kefiran varied from 0 to 0.08% (w/v). According to rheological measurements, the addition of kefiran into WPI dispersions resulted in a significant increase in the gel strength, the yield stress, and the shear stress values at the flowing point. The gelling point and gelation pH of samples decreased significantly with an increase in kefiran concentration. ESEM micrographs showed that the presence of kefiran played an important role in the microstructure formation of gels. The microstructure of kefiran-WPI mixed gels was more compact and dense, compared to the WPI gel. Depletion interactions between kefiran and whey protein aggregates can be regarded as the chief factor which was responsible for these effects. The present work demonstrated that rheological and microstructural properties of acid-induced whey protein gels were improved by the addition of kefiran.

  15. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention

    Buzi, L.; De Temmerman, G.; Unterberg, B.; M. Reinhart,; Dittmar, T.; Matveev, D.; Linsmeier, C.; Breuer, U.; Kreter, A.; Van Oost, G.

    2015-01-01

    The influence of surface temperature, particle flux density and material microstructure on the surface morphology and deuterium retention was studied by exposing tungsten targets (20 μm and 40 μm grain size) to deuterium plasma at the same particle fluence (1026 m−2) and

  16. Residual shear strength variability as a primary control on movement of landslides reactivated by earthquake-induced ground motion: Implications for coastal Oregon, U.S.

    Schulz, William H.; Wang, Gonghui

    2014-01-01

    Most large seismogenic landslides are reactivations of preexisting landslides with basal shear zones in the residual strength condition. Residual shear strength often varies during rapid displacement, but the response of residual shear zones to seismic loading is largely unknown. We used a ring shear apparatus to perform simulated seismic loading tests, constant displacement rate tests, and tests during which shear stress was gradually varied on specimens from two landslides to improve understanding of coseismic landslide reactivation and to identify shear strength models valid for slow gravitational failure through rapid coseismic failure. The landslides we studied represent many along the Oregon, U.S., coast. Seismic loading tests resulted in (1) catastrophic failure involving unbounded displacement when stresses represented those for the existing landslides and (2) limited to unbounded displacement when stresses represented those for hypothetical dormant landslides, suggesting that coseismic landslide reactivation may be significant during future great earthquakes occurring near the Oregon Coast. Constant displacement rate tests indicated that shear strength decreased exponentially during the first few decimeters of displacement but increased logarithmically with increasing displacement rate when sheared at 0.001 cm s−1 or greater. Dynamic shear resistance estimated from shear strength models correlated well with stresses observed during seismic loading tests, indicating that displacement rate and amount primarily controlled failure characteristics. We developed a stress-based approach to estimate coseismic landslide displacement that utilizes the variable shear strength model. The approach produced results that compared favorably to observations made during seismic loading tests, indicating its utility for application to landslides.

  17. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    microcracks and nearly absent in matrix grains in the well developed C bands. The chemical variation between primary and secondary new-formed micas was clearly identified by the Mg-Ti-Na content. The microstructural analysis documents a progressive decrease in quartz grain size and increasing interconnectivity of K-feldspar and white mica towards more mature shear bands. The contact-frequency analysis demonstrates that the phase distribution in shear bands tends to evolve from quartz aggregate distribution via randomization to K-feldspar aggregate distribution. The boundary preferred orientation is absent in quartz-quartz contacts either inside of outside the C bands, while it changes from random to parallel to the C band for the K-feldspar and and K-feldspar-quartz boundaries. The lack of crystallographic preferred orientation of the individual phases in the mixed matrix of the C planes suggests a dominant diffusion-assisted grain boundary sliding deformation mechanism. In the later stages of shear band development, the deformation is accommodated by crystal plasticity of white mica in micaceous bands. The crystallographic and microstructural data thus indicate two important switches in deformation mechanisms, from (i) brittle to Newtonian viscous behavior in the initial stages of shear band evolution and from (ii) Newtonian viscous to power law in the later evolutionary stages. The evolution of shear bands in the South Armorican Shear Zone thus document the interplay between deformation mechanisms and chemical reactions in deformed granitoids.

  18. Corrosion-induced microstructural developments in 316 stainless steel during exposure to molten Li{sub 2}BeF{sub 4}(FLiBe) salt

    Zheng, Guiqiu, E-mail: guiqiuzheng@gmail.com [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States); He, Lingfeng [Idaho National Laboratory, Idaho Fall, ID (United States); Carpenter, David [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States); Sridharan, Kumar [Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI (United States)

    2016-12-15

    The microstructural developments in the near-surface regions of AISI 316 stainless steel during exposure to molten Li{sub 2}BeF{sub 4} (FLiBe) salt have been investigated with the goal of using this material for the construction of the fluoride salt-cooled high-temperature reactor (FHR), a leading nuclear reactor concept for the next generation nuclear plants (NGNP). Tests were conducted in molten FLiBe salt (melting point: 459 °C) at 700 °C in graphite crucibles and 316 stainless steel crucibles for exposure duration of up to 3000 h. Corrosion-induced microstructural changes in the near-surface regions of the samples were characterized using scanning electron microscopy (SEM) in conjunction with energy dispersive x-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD), and scanning transmission electron microscopy (STEM) with EDS capabilities. Intergranular corrosion attack in the near-surface regions was observed with associated Cr depletion along the grain boundaries. High-angle grain boundaries (15–180°) were particularly prone to intergranular attack and Cr depletion. The depth of attack extended to the depths of 22 μm after 3000-h exposure for the samples tested in graphite crucible, while similar exposure in 316 stainless steel crucible led to the attack depths of only about 11 μm. Testing in graphite crucibles led to the formation of nanometer-scale Mo{sub 2}C, Cr{sub 7}C{sub 3} and Al{sub 4}C{sub 3} particle phases in the near-surface regions of the material. The copious depletion of Cr in the near-surface regions induced a γ-martensite to α-ferrite phase (FeNi{sub x}) transformation. Based on the microstructural analysis, a thermal diffusion controlled corrosion model was developed and experimentally validated for predicting long-term corrosion attack depth.

  19. The dynamics of a shear band

    Giarola, Diana; Capuani, Domenico; Bigoni, Davide

    2018-03-01

    A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.

  20. Predictions and Observations of Low-shear Beta-induced Alfvén-acoustic Eigenmodes in Toroidal Plasmas

    Gorelenkov, N. N.; Berk, H. L.; Fredrickson, E.; Sharapov, S. E.

    2007-07-02

    New global MHD eigenmode solutions arising in gaps in the low frequency Alfvén -acoustic continuum below the geodesic acoustic mode (GAM) frequency have been found numerically and have been used to explain relatively low frequency experimental signals seen in NSTX and JET tokamaks. These global eigenmodes, referred to here as Beta-induced Alfvén-Acoustic Eigenmodes (BAAE), exist in the low magnetic safety factor region near the extrema of the Alfvén-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes shifts as the safety factor, q, decreases. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta < 2% as well as in NSTX plasmas at relatively high beta > 20%. In contrast to the mostly electrostatic character of GAMs the new global modes also contain an electromagnetic (magnetic field line bending) component due to the Alfvén coupling, leading to wave phase velocities along the field line that are large compared to the sonic speed. Qualitative agreement between theoretical predictions and observations are found.

  1. Enhancing Rotational Diffusion Using Oscillatory Shear

    Leahy, Brian D.; Cheng, Xiang; Ong, Desmond C.; Liddell-Watson, Chekesha; Cohen, Itai

    2013-01-01

    Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced

  2. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment

    Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie

    2017-01-01

    Highlights: • Accelerated electrochemical corrosion results in severer plastic deformation with finer grains. • Lower applied potential can increase protein adsorption on sample surfaces. • The tribo-film decreases the shear stresses and relief subsurface deformation. • Tribocorrosion induced passive film can suppress the annihilation of stacking faults. - Abstract: The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.

  3. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment

    Wang, Zhongwei; Yan, Yu, E-mail: yanyu@ustb.edu.cn; Su, Yanjing; Qiao, Lijie

    2017-06-01

    Highlights: • Accelerated electrochemical corrosion results in severer plastic deformation with finer grains. • Lower applied potential can increase protein adsorption on sample surfaces. • The tribo-film decreases the shear stresses and relief subsurface deformation. • Tribocorrosion induced passive film can suppress the annihilation of stacking faults. - Abstract: The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.

  4. The mechanical stability of retained austenite in low-alloyed TRIP steel under shear loading

    Blondé, R., E-mail: r.j.p.blonde@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Jimenez-Melero, E., E-mail: enrique.jimenez-melero@manchester.ac.uk [Dalton Cumbrian Facility, The University of Manchester, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3HA (United Kingdom); Zhao, L., E-mail: lie.zhao@tudelft.nl [Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Schell, N., E-mail: norbert.schell@hzg.de [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max Planck Strasse 1, 21502 Geesthacht (Germany); Brück, E., E-mail: e.h.bruck@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Zwaag, S. van der, E-mail: s.vanderzwaag@tudelft.nl [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands); Dijk, N.H. van, E-mail: n.h.vandijk@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2014-01-31

    The microstructure evolution during shear loading of a low-alloyed TRIP steel with different amounts of the metastable austenite phase and its equivalent DP grade has been studied by in-situ high-energy X-ray diffraction. A detailed powder diffraction analysis has been performed to probe the austenite-to-martensite transformation by characterizing simultaneously the evolution of the austenite phase fraction and its carbon concentration, the load partitioning between the austenite and the ferritic matrix and the texture evolution of the constituent phases. Our results show that for shear deformation the TRIP effect extends over a significantly wider deformation range than for simple uniaxial loading. A clear increase in average carbon content during the mechanically-induced transformation indicates that austenite grains with a low carbon concentration are least stable during shear loading. The observed texture evolution indicates that under shear loading the orientation dependence of the austenite stability is relatively weak, while it has previously been found that under tensile load the {110}〈001〉 component transforms preferentially. The mechanical stability of retained austenite in TRIP steel is found to be a complex interplay between the interstitial carbon concentration in the austenite, the grain orientation and the load partitioning.

  5. Focusing of Shear Shock Waves

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  6. Intergranular brittle fracture of a low alloy steel induced by grain boundary segregation of impurities: influence of the microstructure; Rupture intergranulaire fragile d'un acier faiblement allie induite par la segregation d'impuretes aux joints de grains: influence de la microstructure

    Raoul, St

    1999-07-01

    The study contributes to improve the comprehension of intergranular embrittlement induced by the phosphorus segregation along prior austenitic grain boundaries of low alloy steels used in pressurized power reactor vessel. A part of this study was performed using a A533 steel which contains chemical fluctuations (ghost lines) with two intensities. Axi-symmetrically notched specimens were tested and intergranular brittle de-cohesions were observed in the ghost lines. The fracture initiation sites observed on fracture surfaces were identified as MnS inclusions. A bimodal statistic obtained in a probabilistic model of the fracture is explained by the double population of ghost lines' intensities. A metallurgical study was performed on the same class of steel by studying the influence of the microstructure on the susceptibility to temper embrittlement. Brittle fracture properties of such microstructures obtained by dilatometric experiments were tested on sub-sized specimens to measure the V-notched fracture toughness. Fraction areas of brittle fracture modes were determined on surface fractures. A transition of the fracture mode with the microstructure is observed. It is shown that tempered microstructures of martensite and lower bainite are more susceptible to intergranular embrittlement than tempered upper bainitic microstructure. The intergranular fracture is the most brittle mode. The analysis of crystalline mis-orientations shows a grain boundary structure appreciably more coherent for tempered microstructures of martensite and lower bainite. The higher density of randomgrain boundaries is susceptible to drag the phosphorus in the upper bainitic matrix and to make the quantity of free phosphorus decreasing. Microstructure observations show a difference in the size and the spatial distribution of carbides, essentially cementite, between tempered martensite and upper bainite. It can explain the bigger susceptibility of this last microstructure to cleavage mode

  7. Importance of Interfacial Interactions to Access Shear Elasticity of Liquids and Understand Flow Induced Birefringence from Liquid Crystals to Worm-Like Micellar Solutions

    Noirez Laurence

    2017-03-01

    Full Text Available This work points out the importance of the substrate boundary conditions to lower the dissipation in the dynamic measurement and access the closest dynamic characteristics of liquids, in particular to access the low frequency shear elasticity. The liquid/surface interface is a source of dissipation that enters and impacts the measurement. Examples of steady-state shear flows or flow birefringence are presented to highlight the non-universality of the behavior with respect to the nature of the substrate or the sheared thickness. Additionally the present development completes and extends the identification of low frequency shear elasticity made at sub-millimeter gaps in various one-component liquids to salt-free aqueous solutions (CTAB-water (Hexadecyl-TrimethylAmmonium Bromide.

  8. Single-shot soft x-ray laser-induced ablative microstructuring of organic polymer with demagnifying projection

    Mocek, Tomáš; Rus, Bedřich; Kozlová, Michaela; Polan, Jiří; Homer, Pavel; Juha, Libor; Hájková, Věra; Chalupský, Jaromír

    2008-01-01

    Roč. 33, č. 10 (2008), s. 1087-1089 ISSN 0146-9592 R&D Projects: GA AV ČR KAN300100702; GA ČR GA202/05/2316; GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024 Institutional research plan: CEZ:AV0Z10100523 Keywords : x-ray lasers * laser ablation * microstructuring Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.772, year: 2008

  9. Maximum: Recent Implementation and Application to the Study of Corrosion-Induced Microstructures in Thin Films of Aluminum-Copper Metallization.

    Liang, Shoudeng

    We describe the recent implementation of a synchrotron radiation based scanning soft X-ray photoemission microscope - MAXIMUM, and discuss its application to the investigation of corrosion-induced microstructures in Al-Cu-Si thin films. The microscope employs a Mo/Si multilayer-coated Schwarzschild objective to focus 95eV X-rays from an undulator beamline. The photoelectrons are energy-analyzed by a CMA, and the sample is rastered to produce an image. We have achieved 980A spatial and 250meV energy resolution. Recent addition of a sample preparation and transfer system to the microscope enables us to perform surface and materials studies under UHV conditions. Since the spatial resolution of the microscope is determined by the spot size of the focused X-rays, any electrostatic potential from surface charging will not affect the image quality. This allowed the study of highly insulating films with the use of an electron flood gun to compensate for spectral shifts. We have employed MAXIMUM to investigate corrosion -induced surface microstructures in the Al-Cu-Si thin films commonly utilized in VLSI metallization. Spectromicroscopy was performed to characterize the chemical species and their distribution on the film surface after corrosion under 85% relative humidity at 85^circ C. The experimental images demonstrated that Cu -rich precipitates were formed near the surface region beneath the oxide layer upon annealing. We also observed a correlation between the precipitates and the increased corrosion in the alloy film: the localized corrosion occurs only at those sites where precipitation has taken place. This implies that the surface oxide layer is modified by the underlying Cu-rich phase such that it loses protection against moisture. After pitting, the Cu-rich phase acts as a cathode to facilitate corrosion of the surrounding Cu-deficient Al matrix via galvanic action. The corrosion -induced microstructures show characteristic circular features in the micrographs of

  10. Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd).

    Ruiz, Geraldine Avila; Xiao, Wukai; van Boekel, Martinus; Minor, Marcel; Stieger, Markus

    2016-10-15

    The aim of this study was to determine the influence of extraction pH on heat-induced aggregation, gelation and microstructure of suspensions of protein isolates extracted from quinoa (Chenopodium quinoa Willd). Quinoa seed protein was extracted by alkaline treatment at various pH values (pH 8 (E8), 9 (E9), 10 (E10) and 11 (E11)), followed by acid precipitation. The obtained protein isolates were freeze dried. The protein isolates E8 and E9 resulted in a lower protein yield as well as less protein denaturation. These isolates also had a higher protein purity, more protein bands at higher molecular weights, and a higher protein solubility in the pH range of 3-4.5, compared to the isolates E10 and E11. Heating the 10%w/w protein isolate suspensions E8 and E9 led to increased aggregation, and semi-solid gels with a dense microstructure were formed. The isolate suspensions E10 and E11, on the other hand, aggregated less, did not form self-supporting gels and had loose particle arrangements. We conclude that extraction pH plays an important role in determining the functionality of quinoa protein isolates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Semiconductor laser shearing interferometer

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  12. Hydrogen-Induced Phase Transformation and Microstructure Evolution for Ti-6Al-4V Parts Produced by Electron Beam Melting

    Natalia Pushilina

    2018-04-01

    Full Text Available In this paper, phase transitions and microstructure evolution in titanium Ti-6Al-4V alloy parts produced by electron beam melting (EBM under hydrogenation was investigated. Hydrogenation was carried out at the temperature of 650 °C to the absolute hydrogen concentrations in the samples of 0.29, 0.58, and 0.90 wt. %. Comparative analysis of microstructure changes in Ti-6Al-4V alloy parts was performed using scanning electron microscopy (SEM, transmission electron microscopy (TEM, and X-ray diffraction (XRD. Furthermore, in-situ XRD was used to investigate the phase transitions in the samples during hydrogenation. The structure of Ti-6Al-4V parts produced by EBM is represented by the α phase plates with the transverse length of 0.2 μm, the β phase both in the form of plates and globular grains, and metastable α″ and ω phases. Hydrogenation to the concentration of 0.29 wt. % leads to the formation of intermetallic Ti3Al phase. The dimensions of intermetallic Ti3Al plates and their volume fraction increase significantly with hydrogen concentration up to 0.58 wt. % along with precipitation of nano-sized crystals of titanium δ hydrides. Individual Ti3Al plates decay into nanocrystals with increasing hydrogen concentration up to 0.9 wt. % accompanied by the increase of proportion and size of hydride plates. Hardness of EBM Ti-6Al-4V alloy decreases with hydrogen content.

  13. Microstructural and conductivity changes induced by annealing of ZnO:B thin films deposited by chemical vapour deposition

    David, C; Girardeau, T; Paumier, F; Eyidi, D; Guerin, P; Marteau, M; Lacroix, B; Papathanasiou, N; Tinkham, B P

    2011-01-01

    Zinc oxide (ZnO) thin films have attracted much attention in recent years due to progress in crystal growth for a large variety of technological applications including optoelectronics and transparent electrodes in solar cells. Boron (B)-doped ZnO thin films are deposited by low pressure chemical vapour deposition (LPCVD) on Si(100). These films exhibit a strong (002) texture with a pyramidal grain structure. The ZnO films were annealed after growth; the annealing temperature and the atmosphere appear to strongly impact the layer conductivity. This work will first present the modification of the physical properties (carrier concentration, mobility) extracted from the simulation of layer reflection in the infrared range. At low annealing temperatures the mobility increases slightly before decreasing drastically above a temperature close to 250 deg. C. The chemical and structural evolution (XPS, x-ray diffraction) of the films was also studied to identify the relationship between microstructural modifications and the variations observed in the film conductivity. An in situ XRD study during annealing has been performed under air and low pressure conditions. As observed for electrical properties, the microstructural modifications shift to higher temperatures for vacuum annealing.

  14. Effects of Controlled Cooling-Induced Ferrite-Pearlite Microstructure on the Cold Forgeability of XC45 Steel

    Hu, Chengliang; Chen, Lunqiang; Zhao, Zhen; Gong, Aijun; Shi, Weibing

    2018-05-01

    The combination of hot/warm and cold forging with an intermediate controlled cooling process is a promising approach to saving costs in the manufacture of automobile parts. In this work, the effects of the ferrite-pearlite microstructure, which formed after controlled cooling, on the cold forgeability of a medium-carbon steel were investigated. Different specimens for both normal and notched tensile tests were directly heated to high temperature and then cooled down at different cooling rates, producing different ferrite volume fractions, ranging from 6.69 to 40.53%, in the ferrite-pearlite microstructure. The yield strength, ultimate tensile strength, elongation rate, percentage reduction of area, and fracture strain were measured by tensile testing. The yield strength, indicating deformation resistance, and fracture strain, indicating formability, were used to evaluate the cold forgeability. As the ferrite volume fraction increased, the cold forgeability of the dual-phase ferritic-pearlitic steel improved. A quantitatively relationship between the ferrite volume fraction and the evaluation indexes of cold forgeability for XC45 steel was obtained from the test data. To validate the mathematical relationship, different tensile specimens machined from real hot-forged workpieces were tested. There was good agreement between the predicted and measured values. Our predictions from the relationship for cold forgeability had an absolute error less than 5%, which is acceptable for industrial applications and will help to guide the design of combined forging processes.

  15. Deformation microstructures

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  16. Data on processing of Ti-25Nb-25Zr β-titanium alloys via powder metallurgy route: Methodology, microstructure and mechanical properties.

    Ueda, D; Dirras, G; Hocini, A; Tingaud, D; Ameyama, K; Langlois, P; Vrel, D; Trzaska, Z

    2018-04-01

    The data presented in this article are related to the research article entitled "Cyclic Shear behavior of conventional and harmonic structure-designed Ti-25Nb-25Zr β-titanium alloy: Back-stress hardening and twinning inhibition" (Dirras et al., 2017) [1]. The datasheet describes the methods used to fabricate two β-titanium alloys having conventional microstructure and so-called harmonic structure (HS) design via a powder metallurgy route, namely the spark plasma sintering (SPS) route. The data show the as-processed unconsolidated powder microstructures as well as the post-SPS ones. The data illustrate the mechanical response under cyclic shear loading of consolidated alloy specimens. The data show how electron back scattering diffraction(EBSD) method is used to clearly identify induced deformation features in the case of the conventional alloy.

  17. Influence of colloidal calcium phosphate level on the microstructure and rheological properties of rennet-induced skim milk gels

    Koutina, Glykeria; Knudsen, Jes Christian; Andersen, Ulf

    2015-01-01

    lactose, to obtain varying levels of micellar calcium and phosphorus but constant value of pH, serum and free calcium, and serum phosphorus. Bovine chymosin was added to the skim milk samples after dialysis and microstructural and rheological properties during gel formation were recorded at 30°C. Samples......Colloidal calcium phosphate is an essential part of casein micelles and being responsible for their stability. Different mineralization of casein micelles was obtained by acidification of skim milk to pH 6.5, 6.0 or 5.5, followed by a dialysis method, using simulated milk ultrafiltrate without...... after dialysis needed approximately 30min after the addition of chymosin to form rennet gels. In addition, low micellar calcium and phosphorus values were both found to correlate with slightly less time for the gels to be formed. This information highlights the importance of CCP in the primary phase...

  18. On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels

    Lambrecht, M.; Meslin, E.; Malerba, L.; Hernandez-Mayoral, M.; Bergner, F.; Pareige, P.; Radiguet, B.; Almazouzi, A.

    2010-01-01

    A correlation is attempted between microstructural observations by various complementary techniques, which have been implemented within the PERFECT project and the hardening measured by tensile tests of reactor pressure vessel steel and model alloys after irradiation to a dose of ∼7 x 10 19 n cm -2 . This is done, using the simple hardening model embodied by the Orowan equation and applying the most suitable superposition law, as suggested by a parametric study using the DUPAIR line tension code. It is found that loops are very strong obstacles to dislocation motion, but due to their low concentration, they only play a minor role in the hardening itself. For the precipitates, the contrary is found, although they are quite soft (due to their very small sizes and their coherent nature), they still play the dominant role in the hardening. Vacancy clusters are important for the formation of both loops and precipitates, but they will play almost no role in the hardening by themselves.

  19. General mechanism involved in subwavelength optics of conducting microstructures: charge-oscillation-induced light emission and interference.

    Huang, Xian-Rong; Peng, Ru-Wen

    2010-04-01

    Interactions between light and conducting microstructures or nanostructures can result in a variety of novel phenomena, but their underlying mechanisms have not been completely understood. From calculations of surface charge density waves on conducting gratings and by comparing them with classical surface plasmons, we revealed a general yet concrete picture regarding the coupling of light to free electron oscillation on structured conducting surfaces that can lead to oscillating subwavelength charge patterns (i.e., structured surface plasmons). New wavelets emitted from these light sources then destructively interfere to form evanescent waves. This principle, usually combined with other mechanisms, is mainly a geometrical effect that can be universally involved in light scattering from all periodic and non-periodic structures containing free electrons. This picture may provide clear guidelines for developing conductor-based nano-optical devices.

  20. Microstructural evolution during isothermal aging and strain-induced transformation followed by isothermal aging in Co-Cr-Mo-C alloy: A comparative study

    Lashgari, H.R.; Zangeneh, Sh.; Hasanabadi, F.; Saghafi, M.

    2010-01-01

    The present study was undertaken to investigate the effects of isothermal aging (at 850 deg. C for 4, 8, 16 and 24 h) and strain-induced transformation (engineering strains of 10% and 20%) followed by isothermal aging (at 850 deg. C for 4, 8 and 16 h) on the microstructural evolution of a Co-28Cr-5Mo-0.3C alloy. The obtained results showed that isothermal aging at 850 deg. C resulted in the formation of lamellar-type carbides at the grain boundaries. Moreover, X-ray diffraction analysis indicated that isothermal aging of solution treated specimens at 850 deg. C for 24 h did not lead to complete fcc phase transformation to hcp one. In contrast with the isothermally aged specimens, applying plastic deformation to the solutionized samples accelerated the completion and saturation of fcc(metastable) → hcp transformation after 8 h aging at 850 deg. C. In addition, the X-ray diffraction results indicated that implementing isothermal aging of the strain-induced specimens at the higher aging time (16 h) caused the formation of (1 1 1) fcc and (2 0 0) fcc diffraction peaks again. Also, the strain-induced specimens followed by isothermal aging showed higher amount of microhardness as compared with the other specimens aged solely.

  1. Delamination of Pearlitic Steel Wires: The Defining Role of Prior-Drawing Microstructure

    Durgaprasad, A.; Giri, S.; Lenka, S.; Sarkar, Sudip Kumar; Biswas, Aniruddha; Kundu, S.; Mishra, S.; Chandra, S.; Doherty, R. D.; Samajdar, I.

    2018-03-01

    This article reports the occasional (alignment of the pearlite: 22 ± 5 pct vs 34 ± 4 pct in the nondelaminated wires. Although all wires had similar through-thickness texture and stress gradients, delaminated wires had stronger gradients in composition and higher hardness across the ferrite-cementite interface. Carbide dissolution and formation of supersaturated ferrite were clearly correlated with delamination, which could be effectively mitigated by controlled laboratory annealing at 673 K. Direct observations on samples subjected to simple shear revealed significant differences in shear localizations. These were controlled by pearlite morphology and interlamellar spacing. Prior-drawing microstructure of coarse misaligned pearlite thus emerged as a critical factor in the wire drawing-induced delamination of the pearlitic wires.

  2. Microstructure evolution characteristics induced by oxygen vacancy generation in anatase TiO2 based resistive switching devices

    Liu, Chen; Gao, Bin; Huang, Peng; Kang, Jinfeng

    2017-03-01

    In this work, first principle calculations are employed to study the microstructure characteristics of the anatase TiO2 resistive switching material associated with the generation of oxygen vacancy (V o) based nanofilaments during the switching process. The calculations indicate that both the magnéli phase Ti4O7 and V o-defect phase of anatase TiO2 may be formed with the generation of oxygen vacancies during the forming and SET processes. Based on the calculations, a new physical insight is proposed to clarify the microstructure evolution characteristics of the anatase TiO2 resistive switching material and the correlation with resistive switching behaviors. During the forming or SET process, the anatase TiO2 is first excited to a transition state with the generation of oxygen vacancies, then fully relaxes to a stable V o-defect state. This V o-defect state may either recover to the original state with the recombination of the oxygen vacancies, which causes the reversible resistive switching behavior, or further transform to a much more stable state—the magnéli phase Ti4O7, through a phase transition process with the generation of many more oxygen vacancies. The phase transition from V o- defective anatase phase to magnéli phase Ti4O7 causes the failure of the resistive switching due to the significantly reduced possibility of the reversible phase transition from the magnéli phase to the anatase phase, compared with the possibility of the recombination from the V o-defective anatase.

  3. Role of symmetry-breaking induced by Er × B shear flows on developing residual stresses and intrinsic rotation in the TEXTOR tokamak

    Xu, Y.; Shesterikov, I.; Berte, M.; Dumortier, P.; Van Schoor, M.; Vergote, M.; Hidalgo, C.; Krämer-Flecken, A.; Koslowski, R.

    2013-01-01

    Direct measurements of residual stress (force) have been executed at the edge of the TEXTOR tokamak using multitip Langmuir and Mach probes, together with counter-current NBI torque to balance the existing toroidal rotation. Substantial residual stress and force have been observed at the plasma boundary, confirming the existence of a finite residual stress as possible mechanisms to drive the intrinsic toroidal rotation. In low-density discharges, the residual stress displays a quasi-linear dependence on the local pressure gradient, consistent with theoretical predictions. At high-density shots the residual stress and torque are strongly suppressed. The results show close correlation between the residual stress and the E r × B flow shear rate, suggesting a minimum threshold of the E × B flow shear required for the k ∥ symmetry breaking. These findings provide the first experimental evidence of the role of E r × B sheared flows in the development of residual stresses and intrinsic rotation. (letter)

  4. Flow-induced structure in colloidal suspensions

    Vermant, J [Department of Chemical Engineering, K U Leuven, W de Croylaan 46, B-3001 Leuven (Belgium); Solomon, M J [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136 (United States)

    2005-02-02

    We review the sequences of structural states that can be induced in colloidal suspensions by the application of flow. Structure formation during flow is strongly affected by the delicate balance among interparticle forces, Brownian motion and hydrodynamic interactions. The resulting non-equilibrium microstructure is in turn a principal determinant of the suspension rheology. Colloidal suspensions with near hard-sphere interactions develop an anisotropic, amorphous structure at low dimensionless shear rates. At high rates, clustering due to strong hydrodynamic forces leads to shear thickening rheology. Application of steady-shear flow to suspensions with repulsive interactions induces a rich sequence of transitions to one-, two-and three-dimensional order. Oscillatory-shear flow generates metastable ordering in suspensions with equilibrium liquid structure. On the other hand, short-range attractive interactions can lead to a fluid-to-gel transition under quiescent suspensions. Application of flow leads to orientation, breakup, densification and spatial reorganization of aggregates. Using a non-Newtonian suspending medium leads to additional possibilities for organization. We examine the extent to which theory and simulation have yielded mechanistic understanding of the microstructural transitions that have been observed. (topical review)

  5. Non-homogeneous flow profiles in sheared bacterial suspensions

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  6. Low-n shear Alfven spectra in axisymmetric toroidal plasmas

    Cheng, C.Z.; Chance, M.S.

    1985-11-01

    In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs

  7. Brittle-ductile gliding shear zone and its dynamic metallization in uranium deposit No. 3110

    Fang Shiyi.

    1990-01-01

    A preliminary study on the macroscopic geological structure, microstructures of plastic deformation rotary strain, structural geochemistry and zoning regularity of a brittle-ductile gliding shear zone in uranium deposit No. 3110 is made. Structural dynamic metallization of uranium caused by the strong shearing stress is discussed. It is pointed out that great attention must be paid to in further exploration

  8. Microstructure and bonding strength of Ni-based alloy coating

    LIU Qing

    2006-05-01

    Full Text Available A Ni-Cr-B-Si coating technique was developed and successfully applied on austenite grey iron substrate in a conventional resistance furnace under graphite powder protection. The microstructure, phase distribution, chemical composition profile and microhardness along the coating layer depth were investigated. Shear strength of the coating was also tested. Microanalysis shows that the coating is consist of γ-Ni solution and γ-Ni+Ni3B lamellar eutectic, as well as small amount of Cr5B3 particles. Diffusion induced metallurgical bonding occurs at the coating/substrate interfaces, and the higher the temperature, the more sufficient elements diffused, the broader interfusion region and the larger bonding strength, but it has an optimum value. And the bonding strength at the interface can be enable to reach 250-270 MPa, which is nearly the same as that of processed by flame spray. The microhardness along the coating layer depth shows a gradient distribution manner.

  9. Computer simulations of shear thickening of concentrated dispersions

    Boersma, W.H.; Laven, J.; Stein, H.N.

    1995-01-01

    Stokesian dynamics computer simulations were performed on monolayers of equally sized spheres. The influence of repulsive and attractive forces on the rheological behavior and on the microstructure were studied. Under specific conditions shear thickening could be observed in the simulations, usually

  10. Protein Adsorption and Layer Formation at the Stainless Steel-Solution Interface Mediates Shear-Induced Particle Formation for an IgG1 Monoclonal Antibody.

    Kalonia, Cavan K; Heinrich, Frank; Curtis, Joseph E; Raman, Sid; Miller, Maria A; Hudson, Steven D

    2018-03-05

    Passage of specific protein solutions through certain pumps, tubing, and/or filling nozzles can result in the production of unwanted subvisible protein particles (SVPs). In this work, surface-mediated SVP formation was investigated. Specifically, the effects of different solid interface materials, interfacial shear rates, and protein concentrations on SVP formation were measured for the National Institute of Standards and Technology monoclonal antibody (NISTmAb), a reference IgG1 monoclonal antibody (mAb). A stainless steel rotary piston pump was used to identify formulation and process parameters that affect aggregation, and a flow cell (alumina or stainless steel interface) was used to further investigate the effect of different interface materials and/or interfacial shear rates. SVP particles produced were monitored using flow microscopy or flow cytometry. Neutron reflectometry and a quartz crystal microbalance with dissipation monitoring were used to characterize adsorption and properties of NISTmAb at the stainless steel interface. Pump/shear cell experiments showed that the NISTmAb concentration and interface material had a significant effect on SVP formation, while the effects of interfacial shear rate and passage number were less important. At the higher NISTmAb concentrations, the adsorbed protein became structurally altered at the stainless steel interface. The primary adsorbed layer remained largely undisturbed during flow, suggesting that SVP formation at high NISTmAb concentration was caused by the disruption of patches and/or secondary interactions.

  11. Structural state diagram of concentrated suspensions of jammed soft particles in oscillatory shear flow

    Khabaz, Fardin; Cloitre, Michel; Bonnecaze, Roger T.

    2018-03-01

    In a recent study [Khabaz et al., Phys. Rev. Fluids 2, 093301 (2017), 10.1103/PhysRevFluids.2.093301], we showed that jammed soft particle glasses (SPGs) crystallize and order in steady shear flow. Here we investigate the rheology and microstructures of these suspensions in oscillatory shear flow using particle-dynamics simulations. The microstructures in both types of flows are similar, but their evolutions are very different. In both cases the monodisperse and polydisperse suspensions form crystalline and layered structures, respectively, at high shear rates. The crystals obtained in the oscillatory shear flow show fewer defects compared to those in the steady shear. SPGs remain glassy for maximum oscillatory strains less than about the yield strain of the material. For maximum strains greater than the yield strain, microstructural and rheological transitions occur for SPGs. Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for sufficiently high maximum shear rates and maximum strains about 10 times greater than the yield strain. Monodisperse suspensions form a face-centered cubic (FCC) structure when the maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum shear rate is high. In steady shear, the transition from a glassy state to a layered one for polydisperse suspensions included a significant induction strain before the transformation. In oscillatory shear, the transformation begins to occur immediately and with different microstructural changes. A state diagram for suspensions in large amplitude oscillatory shear flow is found to be in close but not exact agreement with the state diagram for steady shear flow. For more modest amplitudes of around one to five times the yield strain, there is a transition from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for monodisperse suspensions. At moderate frequencies, the transition is from glassy to HCP via

  12. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than

  13. Core/Shell Microstructure Induced Synergistic Effect for Efficient Water-Droplet Formation and Cloud-Seeding Application.

    Tai, Yanlong; Liang, Haoran; Zaki, Abdelali; El Hadri, Nabil; Abshaev, Ali M; Huchunaev, Buzgigit M; Griffiths, Steve; Jouiad, Mustapha; Zou, Linda

    2017-12-26

    Cloud-seeding materials as a promising water-augmentation technology have drawn more attention recently. We designed and synthesized a type of core/shell NaCl/TiO 2 (CSNT) particle with controlled particle size, which successfully adsorbed more water vapor (∼295 times at low relative humidity, 20% RH) than that of pure NaCl, deliquesced at a lower environmental RH of 62-66% than the hygroscopic point (h g.p ., 75% RH) of NaCl, and formed larger water droplets ∼6-10 times its original measured size area, whereas the pure NaCl still remained as a crystal at the same conditions. The enhanced performance was attributed to the synergistic effect of the hydrophilic TiO 2 shell and hygroscopic NaCl core microstructure, which attracted a large amount of water vapor and turned it into a liquid faster. Moreover, the critical particle size of the CSNT particles (0.4-10 μm) as cloud-seeding materials was predicted via the classical Kelvin equation based on their surface hydrophilicity. Finally, the benefits of CSNT particles for cloud-seeding applications were determined visually through in situ observation under an environmental scanning electron microscope on the microscale and cloud chamber experiments on the macroscale, respectively. These excellent and consistent performances positively confirmed that CSNT particles could be promising cloud-seeding materials.

  14. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention

    Buzi, Luxherta [IEK - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Juelich (Germany); FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research (Netherlands); Ghent University (Belgium); Temmerman, Greg de [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research (Netherlands); Reinhart, Michael; Matveev, Dmitry; Unterberg, Bernhard; Wienhold, Peter; Breuer, Uwe; Kreter, Arkadi [IEK - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Juelich (Germany); Oost, Guido van [Ghent University (Belgium)

    2014-07-01

    Tungsten is to be used as plasma-facing material for the ITER divertor due to its favourable thermal properties, low erosion and fuel retention. Bombardment of tungsten by low energy ions of hydrogen isotopes, at different surface temperature, can lead to surface modifications and influence the fuel accumulation in the material. This contribution will assess the impact of material microstructure and the correlation between the particle flux, surface modifications and deuterium retention in tungsten. Tungsten samples were exposed to deuterium plasma at a surface temperature of 510 K, 670 K and 870 K, ion energy of 40 eV and ion fluence of 10{sup 26} m{sup -2}. The high and low ion flux ranges were in the order 10{sup 24} m{sup -2}s{sup -1} and 10{sup 22} m{sup -2}s{sup -1}. Depth profiling of deuterium in all the samples was done by secondary ion mass spectroscopy technique and a scanning electron microscope was used to investigate the surface modifications. Modelling of the D desorption spectra with the coupled reaction diffusion system model will be also presented.

  15. The irradiation-induced microstructural development and the role of γ' on void formation in Ni-based alloys

    Kato, Takahiko; Nakata, Kiyotomo; Masaoka, Isao; Takahashi, Heishichiro; Takeyama, Taro; Ohnuki, Soumei; Osanai, Hisashi

    1984-05-01

    The microstructural development for Inconel X-750, N1-13 at%A1, and Ni-11.5 at%Si alloys during irradiation was investigated. These alloys were previously heat-treated at temperatures of 723-1073 K, and γ' precipitates were produced. Irradiation was performed in a high voltage electron microscope (1000 kV) in the temperature range 673-823 K. In the case of solution-treated Inconel, interstitial dislocation loops were formed initially, while voids were nucleated after longer times. When the Inconel specimen containing a high number density of small γ' was irradiated, dislocation loops were formed in both the matrix and precipitate-matrix interface. The loops formed on the interface scarcely grew during irradiation. On the other hand, for the Ni-Al alloy fine γ' nucleated during irradiation, the large γ' precipitated by pre-aging, dissolved. A similar resolution process was also observed in Ni-Si alloy. Furthermore, in the Ni-Si alloy precipitates of γ' formed preferentially at interstitial dislocation loops and both specimen surfaces.

  16. The irradiation induced microstructural development and the role of γ' on void formation in Ni-based alloys

    Kato, T.; Nakata, K.; Masaoka, I.; Takahashi, H.; Takeyama, T.; Ohnuki, S.; Osanai, H.

    1984-01-01

    The microstructural development for Inconel X-750, Ni-13 at% Al, and Ni-11.5 at% Si alloys during irradiation was investigated. These alloys were previously heat-treated at temperatures of 723-1073 K, and γ' precipitates were produced. Irradiation was performed in a high voltage electron microscope in the temperature range 627-823 K. In the case of solution-treated Inconel, interstitial dislocation loops were formed initially, while voids were nucleated after longer times. When the Inconel specimen containing a high number density of small γ' was irradiated, dislocation loops were formed in both the matrix and precipitate-matrix interface. The loops formed on the interface scarcely grew during irradiation. On the other hand, for the Ni-Al alloy fine γ' nucleated during irradiation, the large γ' precipitated by pre-aging, dissolved. A similar resolution process was also observed in Ni-Si alloy. Furthermore, in the Ni-Si alloy precipitates of γ' formed preferentially at interstitial dislocation loops and both specimen surfaces. (orig.)

  17. Effect of Different Loading Conditions on the Nucleation and Development of Shear Zones Around Material Heterogeneities

    Rybacki, E.; Nardini, L.; Morales, L. F.; Dresen, G.

    2017-12-01

    Rock deformation at depths in the Earth's crust is often localized in high temperature shear zones, which occur in the field at different scales and in a variety of lithologies. The presence of material heterogeneities has long been recognized to be an important cause for shear zones evolution, but the mechanisms controlling initiation and development of localization are not fully understood, and the question of which loading conditions (constant stress or constant deformation rate) are most favourable is still open. To better understand the effect of boundary conditions on shear zone nucleation around heterogeneities, we performed a series of torsion experiments under constant twist rate (CTR) and constant torque (CT) conditions in a Paterson-type deformation apparatus. The sample assemblage consisted of copper-jacketed Carrara marble hollow cylinders with one weak inclusion of Solnhofen limestone. The CTR experiments were performed at maximum bulk strain rates of 1.8-1.9*10-4 s-1, yielding shear stresses of 19-20 MPa. CT tests were conducted at shear stresses between 18.4 and 19.8 MPa resulting in shear strain rates of 1-2*10-4 s-1. All experiments were run at 900 °C temperature and 400 MPa confining pressure. Maximum bulk shear strains (γ) were ca. 0.3 and 1. Strain localized within the host marble in front of the inclusion in an area termed process zone. Here grain size reduction is intense and local shear strain (estimated from markers on the jackets) is up to 8 times higher than the applied bulk strain, rapidly dropping to 2 times higher at larger distance from the inclusion. The evolution of key microstructural parameters such as average grain size and average grain orientation spread (GOS, a measure of lattice distortion) within the process zone, determined by electron backscatter diffraction analysis, differs significantly as a function of loading conditions. Both parameters indicate that, independent of bulk strain and distance from the inclusion, the

  18. Evolution of phase microstructure during irradiation

    Wiedersich, H.

    1985-11-01

    The phase microstructure of alloys is frequently severely altered during irradiation. Sluggish precipitation reactions including precipitation coarsening are accelerated by irradiation-enhanced diffusion. Radiation-induced segregation redistributes existing precipitate phases within the microstructure, induces precipitation of nonequilibrium phases and affects the composition of phases in multicomponent alloys. The displacement process causes disordering of ordered alloys and frequently amorphization, especially in intermetallic compounds, at low temperature. Although a good qualitative understanding of the basic process involved, i.e., displacement mixing, radiation-enhanced diffusion and radiation-induced segregation exists, methods for detailed quantitative modeling of the evolution of the microstructure of alloys remain to be developed

  19. Earthquake induced rock shear through a deposition hole. Modelling of three model tests scaled 1:10. Verification of the bentonite material model and the calculation technique

    Boergesson, Lennart (Clay Technology AB, Lund (Sweden)); Hernelind, Jan (5T Engineering AB, Vaesteraas (Sweden))

    2010-11-15

    Three model shear tests of very high quality simulating a horizontal rock shear through a deposition hole in the centre of a canister were performed 1986. The tests and the results are described by /Boergesson 1986/. The tests simulated a deposition hole in the scale 1:10 with reference density of the buffer, very stiff confinement simulating the rock, and a solid bar of copper simulating the canister. The three tests were almost identical with exception of the rate of shear, which was varied between 0.031 and 160 mm/s, i.e. with a factor of more than 5,000 and the density of the bentonite, which differed slightly. The tests were very well documented. Shear force, shear rate, total stress in the bentonite, strain in the copper and the movement of the top of the simulated canister were measured continuously during the shear. After finished shear the equipment was dismantled and careful sampling of the bentonite with measurement of water ratio and density were made. The deformed copper 'canister' was also carefully measured after the test. The tests have been modelled with the finite element code Abaqus with the same models and techniques that were used for the full scale scenarios in SR-Site. The results have been compared with the measured results, which has yielded very valuable information about the relevancy of the material models and the modelling technique. An elastic-plastic material model was used for the bentonite where the stress-strain relations have been derived from laboratory tests. The material model is made a function of both the density and the strain rate at shear. Since the shear is fast and takes place under undrained conditions, the density is not changed during the tests. However, strain rate varies largely with both the location of the elements and time. This can be taken into account in Abaqus by making the material model a function of the strain rate for each element. A similar model, based on tensile tests on the copper used in

  20. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    Shirdel, M., E-mail: mshirdel1989@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-05-15

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  1. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2015-01-01

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  2. Characterization of enzymatically induced aggregation of casein micelles in natural concentration by in situ static light scattering and ultra low shear viscosimetry

    Lehner, D.; Worning, Peder; G, Fritz

    1999-01-01

    of multiple scattering whenthe transmission is above 0.85. Due to the very complex and porous structure of the casein aggregates theRayleigh-Debye-Gans scattering theory has been used in the data analysis. Measurements with a newinstrument using ultra low shear showed good agreement with theory. Copyright......The aggregation of casein micelles in undiluted skim milk after the addition of chymosin was studied bystatic light scattering and ultra low shear viscometry. The static light scattering measurements were madewith two different sample thicknesses, 72 and 16 mum. The scattering data were analyzed...... by indirect Fouriertransformation and by the polydispersity inversion technique which led to pair distance distributionfunctions and size distribution function, respectively. The minimum scattering angle was 1 degrees, whichallows for the determination of particle sizes up to a maximum diameter of 12 mum...

  3. A rheo-optical apparatus for real time kinetic studies on shear-induced alignment of self-assembled soft matter with small sample volumes

    Laiho, Ari; Ikkala, Olli

    2007-01-01

    In soft materials, self-assembled nanoscale structures can allow new functionalities but a general problem is to align such local structures aiming at monodomain overall order. In order to achieve shear alignment in a controlled manner, a novel type of rheo-optical apparatus has here been developed that allows small sample volumes and in situ monitoring of the alignment process during the shear. Both the amplitude and orientation angles of low level linear birefringence and dichroism are measured while the sample is subjected to large amplitude oscillatory shear flow. The apparatus is based on a commercial rheometer where we have constructed a flow cell that consists of two quartz teeth. The lower tooth can be set in oscillatory motion whereas the upper one is connected to the force transducers of the rheometer. A custom made cylindrical oven allows the operation of the flow cell at elevated temperatures up to 200 °C. Only a small sample volume is needed (from 9 to 25 mm3), which makes the apparatus suitable especially for studying new materials which are usually obtainable only in small quantities. Using this apparatus the flow alignment kinetics of a lamellar polystyrene-b-polyisoprene diblock copolymer is studied during shear under two different conditions which lead to parallel and perpendicular alignment of the lamellae. The open device geometry allows even combined optical/x-ray in situ characterization of the alignment process by combining small-angle x-ray scattering using concepts shown by Polushkin et al. [Macromolecules 36, 1421 (2003)].

  4. Vesicle dynamics in shear and capillary flows

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-01-01

    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape

  5. Seismic cycle feedbacks in a mid-crustal shear zone

    Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul

    2018-07-01

    Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.

  6. Theoretical analysis of the mode coupling induced by heat of large-pitch micro-structured fibers

    Zhang Hai-Tao; Hao Jie; Yan Ping; Gong Ma-Li; Chen Dan

    2015-01-01

    In this paper, a theoretical model to analyze the mode coupling induced by heat, when the fiber amplifier works at high power configuration, is proposed. The model mainly takes into consideration the mode field change due to the thermally induced refractive index change and the coupling between modes. A method to predict the largest average output power of fiber is also proposed according to the mode coupling theory. The largest average output power of a large pitch fiber with a core diameter of 190 μm and an available pulse energy of 100 mJ is predicted to be 540 W, which is the highest in large mode field fibers. (paper)

  7. The effect of milk processing on the microstructure of the milk fat globule and rennet induced gel observed using confocal laser scanning microscopy.

    Ong, L; Dagastine, R R; Kentish, S E; Gras, S L

    2010-04-01

    Confocal laser scanning microscopy (CLSM) was successfully used to observe the effect of milk processing on the size and the morphology of the milk fat globule in raw milk, raw ultrafiltered milk, and standardized and pasteurized milk prepared for cheese manufacture (cheese-milk) and commercial pasteurized and homogenized milk. Fat globule size distributions for the milk preparations were analyzed using both image analysis and light scattering and both measurements produced similar data trends. Changes to the native milk fat globule membrane (MFGM) were tracked using a MFGM specific fluorescent stain that allowed MFGM proteins and adsorbed proteins to be differentiated on the fat globule surface. Sodium dodecyl sulfate polyacrylamide gel electrophoresis confirmed the identity of native MFGM proteins isolated from the surface of fat globules within raw, UF retentate, and cheese-milk preparations, whereas only casein was detected on the surface of fat globules in homogenized milk. The microstructure, porosity, and gel strength of the rennet induced gel made from raw milk and cheese-milk was also found to be comparable and significantly different to that made from homogenized milk. Our results highlight the potential use of CLSM as a tool to observe the structural details of the fat globule and associated membrane close to its native environment.

  8. Haptic Edge Detection Through Shear

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  9. Effects of microstructures on hydrogen induced cracking of electrochemically hydrogenated double notched tensile sample of 4340 steel

    Sk, Mobbassar Hassan, E-mail: Skmobba@qu.edu.qa [Center for Advanced Materials, Qatar University, Doha (Qatar); Overfelt, Ruel A. [Materials Research and Education Center, Materials Engineer, Auburn University, Auburn, AL (United States); Abdullah, Aboubakr M. [Center for Advanced Materials, Qatar University, Doha (Qatar)

    2016-04-06

    Quantitative fractographic characteristics of 4340 steel is demonstrated for a grain size range of 10−100 µm and hardness range of 41–52 HRC. Double-notched tensile samples were electrochemically charged in-situ with hydrogen in 0.5 m H{sub 2}SO{sub 4}+5 mg/l As{sub 2}O{sub 3} solution for 0–40 min charging time. Hydrogen induced fracture initiations were analyzed by novel metallographic investigation of the “unbroken” notch while the overall fractographic behaviors were examined by the scanning electron microscopic imaging of the fracture surfaces of the actually broken notch. Effect of hydrogen was predominantly manifested as intergranular fracture for the harder samples and quasi-cleavage fracture for the softer counterparts. 10–40 µm samples showed the maximum intensity of the hydrogen induced fracture features (intergranular and/or quasi-cleavage) close to the notch which gradually reduced with increasing distance from the notch. The largest grained samples (100 µm) however showed brittle behavior even in absence of hydrogen with similar intensity of percent fracture features at all distance from the notch, while presence of hydrogen intensified the overall percent brittle fractures with their intensities being highest close to the notch. Finally, the brittle fracture characteristics of the hydrogen embrittled samples were shown to be distinguishably different from that of the liquid nitrogen treated samples of same grain sizes and hardnesses.

  10. Argon-ion-induced formation of nanoporous GaSb layer: Microstructure, infrared luminescence, and vibrational properties

    Datta, D. P.; Som, T., E-mail: tsom@iopb.res.in [SUNAG Laboratory, Institute of Physics, Bhubaneswar, Odisha 751 005 (India); Kanjilal, A. [Department of Physics, Shiv Nadar University, Uttar Pradesh 201 314 (India); Satpati, B. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Dhara, S. [Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Das, T. D. [Department of Electronic Science, University of Calcutta, APC Road, Kolkata 700 009 (India); Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2014-07-21

    Room temperature implantation of 60 keV Ar{sup +}-ions in GaSb to the fluences of 7 × 10{sup 16} to 3 × 10{sup 18} ions cm{sup −2} is carried out at two incidence angles, viz 0° and 60°, leading to formation of a nanoporous layer. As the ion fluence increases, patches grow on the porous layer under normal ion implantation, whereas the porous layer gradually becomes embedded under a rough top surface for oblique incidence of ions. Grazing incidence x-ray diffraction and cross-sectional transmission electron microscopy studies reveal the existence of nanocrystallites embedded in the ion-beam amorphized GaSb matrix up to the highest fluence used in our experiment. Oxidation of the nanoporous layers becomes obvious from x-ray photoelectron spectroscopy and Raman mapping. The correlation of ion-beam induced structural modification with photoluminescence signals in the infrared region has further been studied, showing defect induced emission of additional peaks near the band edge of GaSb.

  11. Experimental Study of Pressure Drop and Wall Shear Stress Characteristics of γ /Al2O3-Water Nanofluid in a Circular pipe under Turbulent flow induced vibration.

    Adil Abbas AL-Moosawy

    2016-09-01

    Full Text Available Experimental study of γ /Al2O3 with mean diameter of less than 50 nm was dispersed in the distilled water that flows through a pipe consist of five sections as work station ,four sections made of carbon steel metal and one sections made of Pyrex glass pipe, with five nanoparticles volume concentrations of 0%,0.1%,0.2%,0.3%,and 0.4% with seven different volume flow rates 100, 200 , 300, 400, 500, 600 ,and 700ℓ/min were investigated to calculated pressure distribution for the cases without rubber ,with 3mm rubber and with 6mm rubber used to support the pipe. Reynolds number was between 20000 and 130000. Frequency value through pipe was measured for all stations of pipe for all cases. The results show that the pressure drop and wall shear stress of the nanofluid increase by increasing the nanoparticles volume concentrations or Reynolds number, the values of frequency through the pipe increase continuously when wall shear stress increases and the ratio of increment increases as nanofluid concentrations increase. Increasing of vibration frequency lead to increasing the friction factor between the pipe and the wall and thus increasing in pressure drop. Several equations between the wall shear stress and frequency for all volume concentration and for three cases without rubber, with rubber has 3mm thickness ,and with rubber has 6mm thickness. Finally, the results led to that γ /Al2O3 could function as a good and alternative conventional working fluid in heat transfer applications. A good agreement is seen between the experimental and those available in the literature

  12. Microstructure and Rheology near an Attractive Colloidal Glass Transition

    Narayanan, T.; Sztucki, M.; Belina, G.; Pignon, F.

    2006-01-01

    Microstructure and rheological properties of a thermally reversible short-ranged attractive colloidal system are studied in the vicinity of the attractive glass transition line. At high volume fractions, the static structure factor changes very little but the low frequency shear moduli varies over several orders of magnitude across the transition. From the frequency dependence of shear moduli, fluid-attractive glass and repulsive glass-attractive glass transitions are identified

  13. Microstructure processes induced by phase transitions in a CuAu alloy as studied by acoustic emission and optical cinematography

    Masek, P.; Chmelik, F.; Sima, V. [Charles Univ., Prague (Czech Republic). Dept. of Metal Physics; Brinck, A.; Neuhaeuser, H. [Technische Univ. Braunschweig (Germany). Inst. fuer Metallphysik und Nukleare Festkoerperphysik

    1999-01-15

    Combined acoustic emission measurements and surface cinematography observations have been applied to determine the structure evolution during thermal loading of the CuAu alloy. Thermal history and the fashion of thermal loading have been shown to affect considerably the structure response of the CuAu alloy on temperature changes. On thermal loading, intense plastic deformation occurs in certain temperature intervals due to the relaxation of internal stresses induced by phase transitions and structure anisotropy. The main mechanism is twinning taking place most probably in (110) planes. Dislocation glide and grain-boundary sliding have also been observed as minor mechanisms. A shape-restoration effect associated with the order-disorder transition is revealed. Thermal cycling with upper temperatures over 500 C may also result in structural damage.

  14. Synchrotron radiography of direct-shear in semi-solid alloys

    Gourlay, C M; Nagira, T; Nakatsuka, N; Yasuda, H; Dahle, A K; Uesugi, K

    2012-01-01

    Understanding phenomena occurring at the scale of the crystals during the deformation of semi-solid alloys is important for the development of physically-based rheological models. A range of deformation mechanisms have been proposed including agglomeration and disagglomeration, viscoplastic deformation of the solid skeleton, and granular phenomena such as jamming and dilatancy. This paper overviews in-situ experiments that directly image crystal-scale deformation mechanisms in equiaxed Al alloys at solid fractions shortly after the crystals have impinged to form a loose crystal network. Direct evidence is presented for granular deformation mechanisms including shear-induced dilation in both equiaxed-dendritic and globular microstructures. Modelling approaches suitable for capturing this behaviour are then discussed.

  15. RheoSAXS studies of anisotropic complex fluids under shear

    Silva, J P de; Petermann, D; Kasmi, B; Imperor-Clerc, M; Davidson, P; Pansu, B; Meneau, F; Perez, J; Paineau, E; Bihannic, I; Michot, L J; Baravian, C

    2010-01-01

    We discuss the application of in-situ rheological small angle X-ray scattering experiments to the study of complex fluids under shear, implemented using custom Couette cylinder rheometers mounted on the SWING beamline of the SOLEIL Synchrotron. We discuss several applications of this technique to the study of phase transitions in nanoparticle doped liquid crystals and shear alignment of clay suspensions. The concurrent capture of rheological and scattering data provides vital information that relates macroscopic properties such as viscosity to the microstructure of the fluid.

  16. Alterations in white matter microstructure as vulnerability factors and acquired signs of traffic accident-induced PTSD.

    Yawen Sun

    Full Text Available It remains unclear whether white matter (WM changes found in post-traumatic stress disorder (PTSD patients are stress-induced or precursors for vulnerability. The current study aimed to identify susceptibility factors relating to the development of PTSD and to examine the ability of these factors to predict the course of longitudinal PTSD. Sixty two victims who had experienced traffic accidents underwent diffusion tensor imaging using a 3.0T MRI system within 2 days after their accidents. Of these, 21 were diagnosed with PTSD at 1 or 6 months using the Clinician-Administered Ptsd Scale (CAPS. Then, 11 trauma-exposed victims with PTSD underwent the second MRI scan. Compared with the victims without PTSD, the victims with PTSD showed decreased fractional anisotropy (FA in WM of the anterior cingulate cortex, ventromedial prefrontal cortex (vmPFC, temporal lobes and midbrain, and increased mean diffusivity (MD in the vmPFC within 2 days after the traumatic event. Importantly, decreased FA of the vmPFC in the acute phase predicted greater future CAPS scores. In addition, we found decreased FA in the insula in the follow-up scan in the victims with PTSD, which correlated with the decreased FA of the vmPFC in their baseline scan. These results suggested that the WM might have changed within 2 days after the traumatic event in the individuals who would later develop PTSD. Furthermore, decreased FA of the vmPFC could be a possible vulnerability marker predicting future development of PTSD and may provide an outcome prediction of the acquired signs.

  17. Prediction of irradiation induced microstructures in the AgCu model alloy using a multiscale method coupling atomistic and phase field modelling

    Demange, Gilles; Pontikis, Vassilis; Lunéville, Laurence; Simeone, David

    2016-01-01

    In this work, a multiscale approach based on phase field was developed to simulate the microstructure's evolution under irradiation in binary systems, from atomic to microstructural scale. For that purpose, an efficient numerical scheme was developed. In the case of AgCu alloy under Krypton ions irradiation, phenomenological parameters were computed using atomistic methods, as a function of the temperature and the irradiation flux. As a result, we predicted the influence of the irradiation fl...

  18. Effect of Continuous Galvanizing Heat Treatments on the Microstructure and Mechanical Properties of High Al-Low Si Transformation Induced Plasticity Steels

    Bellhouse, E. M.; McDermid, J. R.

    2010-02-01

    Heat treatments were performed using an isothermal bainitic transformation (IBT) temperature compatible with continuous hot-dip galvanizing on two high Al-low Si transformation induced plasticity (TRIP)-assisted steels. Both steels had 0.2 wt pct C and 1.5 wt pct Mn; one had 1.5 wt pct Al and the other had 1 wt pct Al and 0.5 wt pct Si. Two different intercritical annealing (IA) temperatures were used, resulting in intercritical microstructures of 50 pct ferrite (α)-50 pct austenite (γ) and 65 pct α-35 pct γ. Using the IBT temperature of 465 °C, five IBT times were tested: 4, 30, 60, 90, and 120 seconds. Increasing the IBT time resulted in a decrease in the ultimate tensile strength (UTS) and an increase in the uniform elongation, yield strength, and yield point elongation. The uniform elongation was higher when using the 50 pct α-50 pct γ IA temperature when compared to the 65 pct α-35 pct γ IA temperature. The best combinations of strength and ductility and their corresponding heat treatments were as follows: a tensile strength of 895 MPa and uniform elongation of 0.26 for the 1.5 pct Al TRIP steel at the 50 pct γ IA temperature and 90-second IBT time; a tensile strength of 880 MPa and uniform elongation of 0.27 for the 1.5 pct Al TRIP steel at the 50 pct γ IA temperature and 120-second IBT time; and a tensile strength of 1009 MPa and uniform elongation of 0.22 for the 1 pct Al-0.5 pct Si TRIP steel at the 50 pct γ IA temperature and 120-second IBT time.

  19. Intermittent Hypoxia Influences Alveolar Bone Proper Microstructure via Hypoxia-Inducible Factor and VEGF Expression in Periodontal Ligaments of Growing Rats

    Shuji Oishi

    2016-09-01

    Full Text Available Intermittent hypoxia (IH recapitulates morphological changes in the maxillofacial bones in children with obstructive sleep apnea (OSA. Recently, we found that IH increased bone mineral density (BMD in the inter-radicular alveolar bone (reflecting enhanced osteogenesis in the mandibular first molar (M1 region in the growing rats, but the underlying mechanism remains unknown. In this study, we focused on the hypoxia-inducible factor (HIF pathway to assess the effect of IH by testing the null hypothesis of no significant differences in the mRNA-expression levels of relevant factors associated with the HIF pathway, between control rats and growing rats with IH. To test the null hypothesis, we investigated how IH enhances mandibular osteogenesis in the alveolar bone proper with respect to HIF-1α and vascular endothelial growth factor (VEGF in periodontal ligament (PDL tissues. Seven-week-old male Sprague–Dawley rats were exposed to IH for 3 weeks. The microstructure and BMD in the alveolar bone proper of the distal root of the mandibular M1 were evaluated using micro-computed tomography (micro-CT. Expression of HIF-1α and VEGF mRNA in PDL tissues were measured, whereas osteogenesis was evaluated by measuring mRNA levels for alkaline phosphatase (ALP and bone morphogenetic protein-2 (BMP-2. The null hypothesis was rejected: we found an increase in the expression of all of these markers after IH exposure. The results provided the first indication that IH enhanced osteogenesis of the mandibular M1 region in association with PDL angiogenesis during growth via HIF-1α in an animal model.

  20. Shear Bond Strengths between Three Different Yttria-Stabilized Zirconia Dental Materials and Veneering Ceramic and Their Susceptibility to Autoclave Induced Low-Temperature Degradation

    Manoti Sehgal

    2016-01-01

    Full Text Available A study was undertaken to evaluate the effect of artificial aging through steam and thermal treatment as influencing the shear bond strength between three different commercially available zirconia core materials, namely, Upcera, Ziecon, and Cercon, layered with VITA VM9 veneering ceramic using Universal Testing Machine. The mode of failure between zirconia and ceramic was further analyzed as adhesive, cohesive, or mixed using stereomicroscope. X-ray diffraction and SEM (scanning electron microscope analysis were done to estimate the phase transformation (m-phase fraction and surface grain size of zirconia particles, respectively. The purpose of this study was to simulate the clinical environment by artificial aging through steam and thermal treatment so as the clinical function and nature of the bond between zirconia and veneering material as in a clinical trial of 15 years could be evaluated.

  1. An experimental investigation of the effect of shear-induced diffuse damage on transverse cracking in carbon-fiber reinforced laminates

    Nouri, Hedi

    2013-12-01

    When subjected to in-plane loading, carbon-fiber laminates experience diffuse damage and transverse cracking, two major mechanisms of degradation. Here, we investigate the effect of pre-existing diffuse damage on the evolution of transverse cracking. We shear-loaded carbon fiber-epoxy pre-preg samples at various load levels to generate controlled configurations of diffuse damage. We then transversely loaded these samples while monitoring the multiplication of cracking by X-ray radiography. We found that diffuse damage has a great effect on the transverse cracking process. We derived a modified effective transverse cracking toughness measure, which enabled a better definition of coupled transverse cracking/diffuse damage in advanced computational models for damage prediction. © 2013 Elsevier Ltd.

  2. Effect of simulated weightlessness on the expression of Cbfα1 induced by fluid shear stress in MG-63 osteosarcoma cells.

    Yang, Z.; Zhang, S.; Wang, B.; Sun, X. Q.

    Objective The role of mechanical load in the functional regulation of osteoblasts becomes an emphasis in osseous biomechanical researches recently This study was aim to explore the effect of flow shear stress on the expression of Cbf alpha 1 in human osteosarcoma cells and to survey its functional alteration in simulated weightlessness Method After cultured for 72 h in two different gravitational environments i e 1G terrestrial gravitational condition and simulated weightlessness condition human osteosarcoma cells MG-63 were treated with 0 5 Pa or 1 5 Pa fluid shear stress FSS in a flow chamber for 15 30 60 min respectively The total RNA in cells was isolated Transcription PCR analysis was made to examine the gene expression of Cbf alpha 1 And the total protein of cells was extracted and the expression of Cbf alpha 1 protein was detected by means of Western Blotting Results MG-63 cultured in 1G condition reacted to FSS treatment with an enhanced expression of Cbf alpha 1 Compared with no FSS control group Cbf alpha 1 mRNA and protein expression increased significantly at 30 and 60 min with the treatment of FSS P 0 01 And there was remarkable difference on the Cbf alpha 1 mRNA and protein expression between the treatments of 0 5 Pa and 1 5 Pa FSS at 30 min or 60 min P 0 01 As to the osteoblasts cultured in simulated weightlessness by using clinostat the expression of Cbf alpha 1 was significantly different between 1G and simulated weightlessness conditions at each test time P 0 05 Compared with no FSS

  3. A shear-induced network of aligned wormlike micelles in a sugar-based molecular gel. From gelation to biocompatibility assays.

    Fitremann, Juliette; Lonetti, Barbara; Fratini, Emiliano; Fabing, Isabelle; Payré, Bruno; Boulé, Christelle; Loubinoux, Isabelle; Vaysse, Laurence; Oriol, Luis

    2017-10-15

    A new low molecular weight hydrogelator with a saccharide (lactobionic) polar head linked by azide-alkyne click chemistry was prepared in three steps. It was obtained in high purity without chromatography, by phase separation and ultrafiltration of the aqueous gel. Gelation was not obtained reproducibly by conventional heating-cooling cycles and instead was obtained by shearing the aqueous solutions, from 2 wt% to 0.25 wt%. This method of preparation favored the formation of a quite unusual network of interconnected large but thin 2D-sheets (7nm-thick) formed by the association side-by-side of long and aligned 7nm diameter wormlike micelles. It was responsible for the reproducible gelation at the macroscopic scale. A second network made of helical fibres with a 10-13nm diameter, more or less intertwined was also formed but was scarcely able to sustain a macroscopic gel on its own. The gels were analysed by TEM (Transmission Electronic Microscopy), cryo-TEM and SAXS (Small Angle X-ray Scattering). Molecular modelling was also used to highlight the possible conformations the hydrogelator can take. The gels displayed a weak and reversible transition near 20°C, close to room temperature, ascribed to the wormlike micelles 2D-sheets network. Heating over 30°C led to the loss of the gel macroscopic integrity, but gel fragments were still observed in suspension. A second transition near 50°C, ascribed to the network of helical fibres, finally dissolved completely these fragments. The gels showed thixotropic behaviour, recovering slowly their initial elastic modulus, in few hours, after injection through a needle. Stable gels were tested as scaffold for neural cell line culture, showing a reduced biocompatibility. This new gelator is a clear illustration of how controlling the pathway was critical for gel formation and how a new kind of self-assembly was obtained by shearing. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Visualization of Wave Propagation and Fine Structure in Frictional Motion of Unconstrained Soft Microstructured Tapes

    Heepe, Lars; Filippov, Alexander E.; Kovalev, Alexander E.

    2017-01-01

    from previous friction tests of microstructured elastomers fixed onto a rigid support, allowing only for shear deformations of surface microstructures and the backing layer, but not for stretching of the entire sample. Three different types of microstructured tapes were tested and their frictional...... behavior compared to results from numerical simulations. In both experimental and numerical cases, visualization of wave propagation and fine structure in friction is obtained....

  5. Microalga propels along vorticity direction in a shear flow

    Chengala, Anwar; Hondzo, Miki; Sheng, Jian

    2013-05-01

    Using high-speed digital holographic microscopy and microfluidics, we discover that, when encountering fluid flow shear above a threshold, unicellular green alga Dunaliella primolecta migrates unambiguously in the cross-stream direction that is normal to the plane of shear and coincides with the local fluid flow vorticity. The flow shear drives motile microalgae to collectively migrate in a thin two-dimensional horizontal plane and consequently alters the spatial distribution of microalgal cells within a given suspension. This shear-induced algal migration differs substantially from periodic rotational motion of passive ellipsoids, known as Jeffery orbits, as well as gyrotaxis by bottom-heavy swimming microalgae in a shear flow due to the subtle interplay between torques generated by gravity and viscous shear. Our findings could facilitate mechanistic solutions for modeling planktonic thin layers and sustainable cultivation of microalgae for human nutrition and bioenergy feedstock.

  6. Effect of coating thickness on interfacial shear behavior of zirconia-coated sapphire fibers in a polycrystalline alumina matrix

    Hellmann, J.R.; Chou, Y.S.

    1995-01-01

    The effect of zirconia (ZrO 2 ) interfacial coatings on the interfacial shear behavior in sapphire reinforced alumina was examined in this study. Zirconia coatings of thicknesses ranging from 0.15 to 1.45 μm were applied to single crystal sapphire (Saphikon) fibers using a particulate loaded sol dipping technique. After calcining at 1,100 C in air, the coated fibers were incorporated into a polycrystalline alumina matrix via hot pressing. Interfacial shear strength and sliding behavior of the coated fibers was examined using thin-slice indentation fiber pushout and pushback techniques. In all cases, debonding and sliding occurred at the interface between the fibers and the coating. The coatings exhibited a dense microstructure and led to a higher interfacial shear strength (> 240 MPa) and interfacial sliding stress (> 75 MPa) relative to previous studies on the effect of a porous interphase on interfacial properties. The interfacial shear strength decreased with increasing fiber coating thickness (from 389 ± 59 to 241 ± 43 MPa for 0.15 to 1.45 microm thick coatings, respectively). Sliding behavior exhibited load modulation with increasing displacement during fiber sliding which is characteristic of fiber roughness-induced stick-slip. The high interfacial shear strengths and sliding stresses measured in this study, as well as the potentially strength degrading surface reconstruction observed on the coated fibers after hot pressing and heat treatment, indicate that dense zirconia coatings are not suitable candidates for optimizing composite toughness and strength in the sapphire fiber reinforced alumina system

  7. Effect of tocotrienol from Bixa orellana (annatto on bone microstructure, calcium content, and biomechanical strength in a model of male osteoporosis induced by buserelin

    Mohamad NV

    2018-03-01

    Full Text Available Nur-Vaizura Mohamad, Soelaiman Ima-Nirwana, Kok-Yong Chin Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia Background: Patients receiving androgen deprivation therapy experience secondary hypogonadism, associated bone loss, and increased fracture risk. It has been shown that tocotrienol from Bixa orellana (annatto prevents skeletal microstructural changes in rats experiencing primary hypogonadism. However, its potential in preventing bone loss due to androgen deprivation therapy has not been tested. This study aimed to evaluate the skeletal protective effects of annatto tocotrienol using a buserelin-induced osteoporotic rat model. Methods: Forty-six male Sprague Dawley rats aged 3 months were randomized into six groups. The baseline control (n=6 was sacrificed at the onset of the study. The normal control (n=8 received corn oil (the vehicle of tocotrienol orally daily and normal saline (the vehicle of buserelin subcutaneously daily. The buserelin control (n=8 received corn oil orally daily and subcutaneous buserelin injection (75 µg/kg daily. The calcium control (n=8 was supplemented with 1% calcium in drinking water and daily subcutaneous buserelin injection (75 µg/kg. The remaining rats were given daily oral annatto tocotrienol at 60 mg/kg (n=8 or 100 mg/kg (n=8 plus daily subcutaneous buserelin injection (75 µg/kg (n=8. At the end of the experiment, the rats were euthanized and their blood, tibia, and femur were harvested. Structural changes of the tibial trabecular and cortical bone were examined using X-ray micro-computed tomography. Femoral bone calcium content and biomechanical strength were also evaluated. Results: Annatto tocotrienol at 60 and 100 mg/kg significantly prevented the deterioration of trabecular bone and cortical thickness in buserelin-treated rats (P<0.05. Both doses of annatto tocotrienol also improved femoral biomechanical strength and bone calcium content

  8. Enhancing Rotational Diffusion Using Oscillatory Shear

    Leahy, Brian D.

    2013-05-29

    Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.

  9. Microstructure anisotropy and its effect on mechanical properties of reduced activation ferritic/martensitic steel fabricated by selective laser melting

    Huang, Bo; Zhai, Yutao; Liu, Shaojun; Mao, Xiaodong

    2018-03-01

    Selective laser melting (SLM) is a promising way for the fabrication of complex reduced activation ferritic/martensitic steel components. The microstructure of the SLM built China low activation martensitic (CLAM) steel plates was observed and analyzed. The hardness, Charpy impact and tensile testing of the specimens in different orientations were performed at room temperature. The results showed that the difference in the mechanical properties was related to the anisotropy in microstructure. The planer unmelted porosity in the interface of the adjacent layers induced opening/tensile mode when the tensile samples parallel to the build direction were tested whereas the samples vertical to the build direction fractured in the shear mode with the grains being sheared in a slant angle. Moreover, the impact absorbed energy (IAE) of all impact specimens was significantly lower than that of the wrought CLAM steel, and the IAE of the samples vertical to the build direction was higher than that of the samples parallel to the build direction. The impact fracture surfaces revealed that the load parallel to the build layers caused laminated tearing among the layers, and the load vertical to the layers induced intergranular fracture across the layers.

  10. Geological and structural characterization and microtectonic study of shear zones Colonia

    Gianotti, V.; Oyhantcabal, P.; Spoturno, J.; Wemmer, K.

    2010-01-01

    The “Colonia Shear Zone System”, characterized by a transcurrent system of predominant sinistral shear sense, is defined by two approximately parallel shear zones, denominated Isla San Gabriel-Juan Lacaze Shear Zone (ISG-JL S.Z.) and Islas de Hornos-Arroyo Riachuelo Shear Zone (IH-AºR S. Z.). Represented by rocks with ductile and brittle deformation, are defined as a strike slip fault system, with dominant subvertical foliation orientations: 090-100º (dip-direction 190º) and 090-100º (dip-direction 005º). The K/Ar geochronology realized, considering the estimates temperatures conditions for shear zones (450-550º), indicate that 1780-1812 Ma should be considered a cooling age and therefore a minimum deformation age. The observed microstructures suggest deformation conditions with temperatures between 450-550º overprinted by cataclastic flow structures (reactivation at lower temperature)

  11. On transformation shear of precipitated zirconia particles

    Zhang, J.M.; Lam, K.Y.

    1993-01-01

    A model is proposed to investigate the transformation shear of the precipitated zirconia particles which undergo a stress-induced lattice transformation from tetragonal to monoclinic symmetry. Kinematically admissible twinning planes and the corresponding twinning elements are determined according to the continuum theory of dispacive phase transformation. It is postulated that only one twinning mode prevails in each transformed particle and that the minimization of elastic strain energy change dictates the morphology of the transformed variants. The transformation shear is determined by the twinning mode and the volume fraction of the corresponding variant. Numerical calculations show that each of the six kinematically admissible twinning modes may be kinematically favorable and therefore operate in constrained particle. The actual transformation shear in a transformed particle is shown to be dependent on the transformation stress, on the particle shape as well as on the lattice orientation relative to the principal axes of the ellipsoidal particle

  12. Grain refinement in a AlZnMgCuTi alloy by intensive melt shearing: A multi-step nucleation mechanism

    Li, H. T.; Xia, M.; Jarry, Ph.; Scamans, G. M.; Fan, Z.

    2011-01-01

    Direct chill (DC) cast ingots of wrought Al alloys conventionally require the deliberate addition of a grain refiner to provide a uniform as-cast microstructure for the optimisation of both mechanical properties and processability. Grain refiner additions have been in widespread industrial use for more than half a century. Intensive melt shearing can provide grain refinement without the need for a specific grain refiner addition for both magnesium and aluminium based alloys. In this paper we present experimental evidence of the grain refinement in an experimental wrought aluminium alloy achieved by intensive melt shearing in the liquid state prior to solidification. The mechanisms for high shear induced grain refinement are correlated with the evolution of oxides in alloys. The oxides present in liquid aluminium alloys, normally as oxide films and clusters, can be effectively dispersed by intensive shearing and then provide effective sites for the heterogeneous nucleation of Al 3Ti phase. As a result, Al 3Ti particles with a narrower size distribution and hence improved efficiency as active nucleation sites of α-aluminium grains are responsible for the achieved significant grain refinement. This is termed a multi-step nucleation mechanism.

  13. Fluid shear stress suppresses TNF-α-induced apoptosis in MC3T3-E1 cells: Involvement of ERK5-AKT-FoxO3a-Bim/FasL signaling pathways

    Bin, Geng; Bo, Zhang; Jing, Wang; Jin, Jiang; Xiaoyi, Tan; Cong, Chen; Liping, An; Jinglin, Ma; Cuifang, Wang; Yonggang, Chen [The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, 730000 Gansu (China); Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000 Gansu (China); Yayi, Xia, E-mail: xiayayildey@163.com [The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, 730000 Gansu (China); Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000 Gansu (China)

    2016-05-01

    TNF-α is known to induce osteoblasts apoptosis, whereas mechanical stimulation has been shown to enhance osteoblast survival. In the present study, we found that mechanical stimulation in the form of fluid shear stress (FSS) suppresses TNF-α induced apoptosis in MC3T3-E1 cells. Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family that has been implicated in cell survival. We also demonstrated that FSS imposed by flow chamber in vitro leads to a markedly activation of ERK5, which was shown to be protective against TNF-α-induced apoptosis, whereas the transfection of siRNA against ERK5 (ERK5-siRNA) reversed the FSS-medicated anti-apoptotic effects. An initial FSS-mediated activation of ERK5 that phosphorylates AKT to increase its activity, and a following forkhead box O 3a (FoxO3a) was phosphorylated by activated AKT. Phosphorylated FoxO3a is sequestered in the cytoplasm, and prevents it from translocating to nucleus where it can increase the expression of FasL and Bim. The inhibition of AKT-FoxO3a signalings by a PI3K (PI3-kinase)/AKT inhibitor (LY294002) or the transfection of ERK5-siRNA led to the nuclear translocation of non-phosphorylated FoxO3a, and increased the protein expression of FasL and Bim. In addition, the activation of caspase-3 by TNF-α was significantly inhibited by aforementioned FSS-medicated mechanisms. In brief, the activation of ERK5-AKT-FoxO3a signaling pathways by FSS resulted in a decreased expression of FasL and Bim and an inhibition of caspase-3 activation, which exerts a protective effect that prevents osteoblasts from apoptosis. - Highlights: • Fluid shear stress inhibits osteoblast apoptosis induced by TNF-α. • Inhibition of ERK5 activity by transfection of ERK5 siRNA blocks FSS-mediated anti-apoptotic effect in osteoblast. • Activated ERK5-AKT-FoxO3a-Bim/FasL signaling pathways by FSS is required to protect osteoblast from apoptosis.

  14. Keyed shear joints

    Hansen, Klaus

    This report gives a summary of the present information on the behaviour of vertical keyed shear joints in large panel structures. An attemp is made to outline the implications which this information might have on the analysis and design of a complete wall. The publications also gives a short...

  15. Sheared Electroconvective Instability

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  16. An underwater shear compactor

    Biver, E.; Sims, J.

    1997-01-01

    This paper, originally presented at the WM'96 Conference in Tucson Arizona, describes a concept of a specialised decommissioning tool designed to operate underwater and to reduce the volume of radioactive components by shearing and compacting. The shear compactor was originally conceived to manage the size reduction of a variety of decommissioned stainless steel tubes stored within a reactor fuel cooling pond and which were consuming a substantial volume of the pond. The main objective of this tool was to cut the long tubes into shorter lengths and to compact them into a flat rectangular form which could be stacked on the pond floor, thus saving valuable space. The development programme, undertaken on this project, investigated a wide range of factors which could contribute to an extended cutting blade performance, ie: materials of construction, cutting blade shape and cutting loads required, shock effects, etc. The second phase was to review other aspects of the design, such as radiological protection, cutting blade replacement, maintenance, pond installation and resultant wall loads, water hydraulics, collection of products of shearing/compacting operations, corrosion of the equipment, control system, operational safety and the ability of the equipment to operate in dry environments. The paper summarises the extended work programme involved with this shear compactor tool. (author)

  17. Piezoelectric energy harvesting through shear mode operation

    Malakooti, Mohammad H; Sodano, Henry A

    2015-01-01

    Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)

  18. The Relationship between Elastic Properties and Shear Fabric in Clay-Rich Fault Gouge

    Kenigsberg, A.; Saffer, D. M.; Riviere, J.; Ryan, K. L.; Marone, C.

    2016-12-01

    The low mechanical strength of major crustal faults remains a fundamental problem in geophysics and earthquake mechanics. Although both clay abundance and shear fabric are known as key controls on the frictional weakening of faults, the detailed links between fabric, elastic properties, composition, and fault strength remain poorly understood. This gap in information is in part because data are lacking to fully characterize the evolution of gouge microstructures and elastic properties during shearing. Here, we use seismic wave propagation to probe gouge ultrasonic and elastic properties, as a proxy for the development of shear fabrics. We report on a suite of direct shear experiments that include ultrasonic wave transmission to monitor compressional and shear wave velocities (Vp, Vs), during progressive shear of synthetic, clay-rich fault gouge. In order to better understand when and how clay grain alignment and nano-coatings begin to dominate the affect of shear fabric and local gouge density on elastic properties and shear strength, we studied a suite of synthetic gouges composed of Ca-montmorillonite and quartz ranging from 0-100% clay. Our laboratory experiments document friction coefficients (μ) ranging from 0.21 for gouges composed of 100% smectite to 0.62 for 100% quartz, with μ decreasing as clay content increases. We find that Vp and Vs increases as shear progresses and porosity decreases. Ongoing analyses of ultrasonic waves will assess variations of Vp, Vs, and elastic moduli throughout shear and as a function of gouge composition. We anticipate that these variations will be linked to formation of fabric elements observed via microstructural analysis, and will be indicative of whether quartz or clay is dominating how the fabrics form. Finally, we expect that clay content will be the dominant factor controlling shear fabric evolution and, consequently, the key control on the evolution of elastic properties with shear.

  19. Optical fabrication of large area photonic microstructures by spliced lens

    Jin, Wentao; Song, Meng; Zhang, Xuehua; Yin, Li; Li, Hong; Li, Lin

    2018-05-01

    We experimentally demonstrate a convenient approach to fabricate large area photorefractive photonic microstructures by a spliced lens device. Large area two-dimensional photonic microstructures are optically induced inside an iron-doped lithium niobate crystal. The experimental setups of our method are relatively compact and stable without complex alignment devices. It can be operated in almost any optical laboratories. We analyze the induced triangular lattice microstructures by plane wave guiding, far-field diffraction pattern imaging and Brillouin-zone spectroscopy. By designing the spliced lens appropriately, the method can be easily extended to fabricate other complex large area photonic microstructures, such as quasicrystal microstructures. Induced photonic microstructures can be fixed or erased and re-recorded in the photorefractive crystal.

  20. Effects of cyclic shear loads on strength, stiffness and dilation of rock fractures

    Thanakorn Kamonphet

    2015-12-01

    Full Text Available Direct shear tests have been performed to determine the peak and residual shear strengths of fractures in sandstone, granite and limestone under cyclic shear loading. The fractures are artificially made in the laboratory by tension inducing and saw-cut methods. Results indicate that the cyclic shear load can significantly reduce the fracture shear strengths and stiffness. The peak shear strengths rapidly decrease after the first cycle and tend to remain unchanged close to the residual strengths through the tenth cycle. Degradation of the first order asperities largely occurs after the first cycle. The fracture dilation rates gradually decrease from the first through the tenth cycles suggesting that the second order asperities continuously degrade after the first load cycle. The residual shear strengths are lower than the peak shear strengths and higher than those of the smooth fractures. The strength of smooth fracture tends to be independent of cyclic shear loading.

  1. Shear strength of non-shear reinforced concrete elements

    Hoang, Cao linh

    1997-01-01

    The paper deals with the plastic shear strength of non shear reinforced T-beams.The influence of an un-reinforced flange on the shear capacity is investigated by considering a failure mechanism involving crack sliding in the web and a kind of membrane action over an effective width of the flange...

  2. Residual shear strength of a severely ASR-damaged flat slab bridge

    Barbosa, Ricardo Antonio; Gustenhoff Hansen, Søren; Hoang, Linh Cao

    2018-01-01

    moment carried by the beams. For the beams tested in asymmetric four-point bending, an increase in the shear span-to-effective depth ratio resulted in a decrease in the measured shear strength. The measured shear strengths were compared with calculated shear strengths using the Eurocode 2. Calculations...... based on the compressive strength of drilled cores were rather conservative at low shear span-to-effective depth ratios. However, the conservatism of the Eurocode 2 decreased with increasing shear span-to-effective depth ratios. With the inclusion of ASR-induced pre-stress effect, the calculated shear...... strengths correlated better with the measured shear strengths. The test results indicated that the ASR-induced pre-stress effect can, to some extent, compensate for the significant loss in material properties....

  3. Experiments on sheet metal shearing

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  4. Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading

    Wang Lin

    2015-01-01

    Full Text Available Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy with alpha/beta phases exhibits various strain rate hardening effects, both failure through adiabatic shear band. Ti-5553 alloy with Widmannstatten microstructure exhibit more obvious strain rate hardening effect, lower critical strain rate for ASB nucleation, compared with the alloy with Bimodal microstructures. Under dynamic compression, shock-induced beta to alpha” martensite transformation occurs.

  5. CAT LIDAR wind shear studies

    Goff, R. W.

    1978-01-01

    The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.

  6. Microstructure and Mechanical Properties of Fe-18Mn-18Cr-0.5N Austenitic Nonmagnetic Stainless Steel in Asymmetric Hot Rolling

    Song, Y. L.; Li, C. S.; Ma, B.; Han, Y. H.

    2017-05-01

    Asymmetric hot rolling (ASHR) with a mismatch speed ratio of 1.15 in a single pass was applied to Fe-18Mn-18Cr-0.5N steel and was compared with symmetric hot rolling (SHR). The results indicated that a through-thickness microstructure gradient was formed in the plate due to the shear strain (0.36) introduced by ASHR. A fine-grained layer with the average size of 3 μm was achieved at the top surface of ASHR plate, while numerous elongated grains with a few recrystallized grains were presented at the center layer. The texture was distributed randomly at the top surface of ASHR plate, and a weaker intensity of typical hot-rolled texture in austenitic steel was obtained at the center layer of ASHR plate compared to SHR plate. An excellent combination of microhardness, strength and ductility was obtained in the ASHR plate, which was attributed to gradient microstructure induced by ASHR.

  7. Gelation under shear

    Butler, B.D.; Hanley, H.J.M.; Straty, G.C. [National Institute of Standards and Technology, Boulder, CO (United States); Muzny, C.D. [Univ. of Colorado, Boulder, CO (United States)

    1995-12-31

    An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.

  8. Forflytning: shear og friktion

    2005-01-01

    friktion). Formålet med filmprojektet er: At give personalet i Apopleksiafsnittet viden om shear og friktion, så det motiveres til forebyggelse. Mål At udarbejde et enkelt undervisningsmateriale til bed-side-brug Projektbeskrivelse (resume) Patienter med apopleksi er særligt udsatte for tryksår, fordi de...... ofte er immobile, har svært ved at opretholde en god siddestilling eller ligger tungt i sengen som følger efter apopleksien Hvis personalet bruger forkert lejrings-og forflytningsteknik, udsættes patienterne for shear og friktion. Målgruppen i projektet er de personer, der omgås patienterne, dvs...

  9. Shear Roll Mill Reactivation

    2012-09-13

    pneumatically operated paste dumper and belt conveyor system, the loss in weight feeder system, the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...feed hopper and conveyor supplying the loss in weight feeder were turned on, and it was verified that these items functioned as designed . The

  10. Microstructural stability of a NiAl-Mo eutectic alloy

    Kush, M.T.; Holmes, J.W.; Gibala, R.

    1999-01-01

    The microstructural stability of a directionally-solidified NiAl-9 at.% Mo quasi-binary alloy was investigated under conditions of thermal cycling between the temperatures 973K and 1,473K utilizing time-temperature heating and cooling profiles which approximate potential engine applications. Two different microstructures were examined: a cellular microstructure in which the faceted second-phase Mo rods in the NiAl matrix formed misaligned cell boundaries which separated aligned cells approximately 0.4 mm in width and 5--25 mm in length, and a nearly fault-free fully columnar microstructure well aligned along the [001] direction. Both microstructures resisted coarsening under thermal cycling, but plastic deformation induced by thermal stresses introduced significant specimen shape changes. Surprisingly, the cellular microstructure, for which the cell boundary region apparently acts as a deformation buffer, exhibited better resistance to thermal fatigue than the more fault-free and better aligned columnar microstructure

  11. Microstructural Evolution of Ti-6Al-4V during High Strain Rate Conditions of Metal Cutting

    Dong, Lei; Schneider, Judy

    2009-01-01

    The microstructural evolution following metal cutting was investigated within the metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior grains and equiaxed primary located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary grains and lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the transus temperature.

  12. Plasticity Approach to Shear Design

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...... in uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing....

  13. The importance of strain localisation in shear zones

    Bons, Paul D.; Finch, Melanie; Gomez-Rivas, Enrique; Griera, Albert; Llorens, Maria-Gema; Steinbach, Florian; Weikusat, Ilka

    2016-04-01

    The occurrence of various types of shear bands (C, C', C'') in shear zones indicate that heterogeneity of strain is common in strongly deformed rocks. However, the importance of strain localisation is difficult to ascertain if suitable strain markers are lacking, which is usually the case. Numerical modelling with the finite-element method has so far not given much insight in the development of shear bands. We suggest that this is not only because the modelled strains are often not high enough, but also because this technique (that usually assumes isotropic material properties within elements) does not properly incorporate mineral deformation behaviour. We simulated high-strain, simple-shear deformation in single- and polyphase materials with a full-field theory (FFT) model coupled to the Elle modelling platform (www.elle.ws; Lebensohn 2001; Bons et al. 2008). The FFT-approach simulates visco-plastic deformation by dislocation glide, taking into account the different available slip systems and their critical resolved shear stresses in relations to the applied stresses. Griera et al. (2011; 2013) have shown that this approach is particularly well suited for strongly anisotropic minerals, such as mica and ice Ih (Llorens 2015). We modelled single- and polyphase composites of minerals with different anisotropies and strengths, roughly equivalent to minerals such as ice Ih, mica, quartz and feldspar. Single-phase polycrystalline aggregates show distinct heterogeneity of strain rate, especially in case of ice Ih, which is mechanically close to mica (see also Griera et al. 2015). Finite strain distributions are heterogeneous as well, but the patterns may differ from that of the strain rate distribution. Dynamic recrystallisation, however, usually masks any strain and strain rate localisation (Llorens 2015). In case of polyphase aggregates, equivalent to e.g. a granite, we observe extensive localisation in both syn- and antithetic shear bands. The antithetic shear bands

  14. Laser-ultrasound spectroscopy apparatus and method with detection of shear resonances for measuring anisotropy, thickness, and other properties

    Levesque, Daniel; Moreau, Andre; Dubois, Marc; Monchalin, Jean-Pierre; Bussiere, Jean; Lord, Martin; Padioleau, Christian

    2000-01-01

    Apparatus and method for detecting shear resonances includes structure and steps for applying a radiation pulse from a pulsed source of radiation to an object to generate elastic waves therein, optically detecting the elastic waves generated in the object, and analyzing the elastic waves optically detected in the object. These shear resonances, alone or in combination with other information, may be used in the present invention to improve thickness measurement accuracy and to determine geometrical, microstructural, and physical properties of the object. At least one shear resonance in the object is detected with the elastic waves optically detected in the object. Preferably, laser-ultrasound spectroscopy is utilized to detect the shear resonances.

  15. Stent implantation influence wall shear stress evolution

    Bernad, S. I.; Totorean, A. F.; Bosioc, A. I.; Petre, I.; Bernad, E. S.

    2016-06-01

    Local hemodynamic factors are known affect the natural history of the restenosis critically after coronary stenting of atherosclerosis. Stent-induced flows disturbance magnitude dependent directly on the strut design. The impact of flow alterations around struts vary as the strut geometrical parameters change. Our results provide data regarding the hemodynamic parameters for the blood flow in both stenosed and stented coronary artery under physiological conditions, namely wall shear stress and pressure drop.

  16. Microstructure Evolution during Friction Stir Spot Welding of TRIP steel

    Lomholt, Trine Colding

    , scanning electron microscopy and electron backscatter diffraction. Microhardness measurements and lab-shear tests completed the investigations of the welded samples and allow evaluation of the quality of the welds as seen from a practical point of view. Selected samples were also investigated by X...... Welding (FSSW) is investigated. The aim of the study is to assess whether high quality welds can be produced and, in particular, to obtain an understanding of the microstructural changes during welding. The microstructure of the welded samples was investigated by means of reflected light microscopy......-ray diffraction. The complementary use of the various characterization techniques allowed subdivision of the microstructure in the weld in different zones: two thermo-mechanically affected zones (TMAZs), and two heat-affected zones (HAZs). The dual behavior of the microstructure in the zones is related to the two...

  17. Comparison of the semisolid shear behaviour of Al-7Si-0.35Mg alloys produced by two casting methods

    Wang, H.; StJohn, D.H. [Queensland Univ., St. Lucia, QLD (Australia). Cooperative Res. Centre for Alloy and Solidification Technol.; Davidson, C.J. [Cooperative Research Centre for Alloy and Solidification Technology, CSIRO Mfg. Science and Technology, Kenmore, QLD (Australia); Couper, M.J. [Cooperative Research Centre for Alloy and Solidification Technology, Comalco Aluminium Ltd., Thomastown, Vic. (Australia)

    2000-07-01

    Al-7%Si-0.35%Mg alloys, with and without grain refiner addition, were produced by casting into cylindrical moulds. Their microstructure and shear behaviour in the semisolid state were compared with a standard thixotropic 356 alloy that was produced by electromagnetic stirring (EMS). The as-cast microstructures of the cast materials consisted of equiaxed grains with rosette-dendritic morphology, while the EMS material was made up of very fine and rosette-like grains but with a significant number of large grains or agglomerates. After partial remelting and isothermal holding, the cast materials lost their dendritic nature and became globular. The EMS material continued to contain large globular particles after isothermal holding. The shear behaviour of the semisolid materials was measured by a direct shear test. The shear resistance was high if the material had a dendritic microstructure, and was reduced after a globular microstructure developed during isothermal holding. The shear strength for the three alloy conditions studied varied with isothermal holding time and this was related to microstructural differences between the alloys. (orig.)

  18. The Influence of Forming Directions and Strain Rate on Dynamic Shear Properties of Aerial Aluminum Alloy

    Ying Meng

    2018-03-01

    Full Text Available Dynamic shear properties under high strain rate are an important basis for studying the dynamic mechanical properties and microscopic mechanisms of materials. Dynamic impact shear tests of aerial aluminum alloy 7050-T7451 in rolling direction (RD, transverse direction (TD and normal direction (ND were performed at a range of strain rates from 2.5 × 104 s−1 to 4.5 × 104 s−1 by High Split Hopkinson Pressure Bar (SHPB. The influence of different forming directions and strain rates on the dynamic shear properties of material and the microstructure evolution under dynamic shear were emphatically analyzed. The results showed that aluminum alloy 7050-T7451 had a certain strain rate sensitivity and positive strain rate strengthening effect, and also the material had no obvious strain strengthening effect. Different forming directions had a great influence on dynamic shear properties. The shear stress in ND was the largest, followed by that in RD, and the lowest was that in TD. The microstructure observation showed that the size and orientation of the grain structure were different in three directions, which led to the preferred orientation of the material. All of those were the main reasons for the difference of dynamic shear properties of the material.

  19. Quasi-static and dynamic forced shear deformation behaviors of Ti-5Mo-5V-8Cr-3Al alloy

    Wang, Zhiming; Chen, Zhiyong, E-mail: czysh@netease.com; Zhan, Congkun; Kuang, Lianjun; Shao, Jianbo; Wang, Renke; Liu, Chuming

    2017-04-13

    The mechanical behavior and microstructure characteristics of Ti-5Mo-5V-8Cr-3Al alloy were investigated with hat-shaped samples compressed under quasi-static and dynamic loading. Compared with the quasi-static loading, a higher shear stress peak and a shear instability stage were observed during the dynamic shear response. The results showed that an adiabatic shear band consisting of ultrafine equiaxed grains was only developed in the dynamic specimen, while a wider shear region was formed in the quasi-static specimen. The microhardness measurements revealed that shear region in the quasi-static specimen and adiabatic shear band in the dynamic specimen exhibited higher hardness than that of adjacent regions due to the strain hardening and grain refining, respectively. A stable orientation, in which the crystallographic {110} planes and <111> directions were respectively parallel to the shear plane and shear direction, developed in both specimens. And the microtexture of the adiabatic shear band was more well-defined than that of the shear region in the quasi-static specimen. Rotational dynamic recrystallization mechanism was suggested to explain the formation of ultrafine equiaxed grains within the adiabatic shear band by thermodynamic and kinetic calculations.

  20. Shear Resistance Variations in Experimentally Sheared Mudstone Granules: A Possible Shear-Thinning and Thixotropic Mechanism

    Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves

    2017-11-01

    We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.

  1. Effect of rock joint roughness on its cyclic shear behavior

    S.M. Mahdi Niktabar

    2017-12-01

    Full Text Available Rock joints are often subjected to dynamic loads induced by earthquake and blasting during mining and rock cutting. Hence, cyclic shear load can be induced along the joints and it is important to evaluate the shear behavior of rock joint under this condition. In the present study, synthetic rock joints were prepared with plaster of Paris (PoP. Regular joints were simulated by keeping regular asperity with asperity angles of 15°–15° and 30°–30°, and irregular rock joints which are closer to natural joints were replicated by keeping the asperity angles of 15°–30° and 15°–45°. The sample size and amplitude of roughness were kept the same for both regular and irregular joints which were 298 mm × 298 mm × 125 mm and 5 mm, respectively. Shear test was performed on these joints using a large-scale direct shear testing machine by keeping the frequency and amplitude of shear load under constant cyclic condition with different normal stress values. As expected, the shear strength of rock joints increased with the increases in the asperity angle and normal load during the first cycle of shearing or static load. With the increase of the number of shear cycles, the shear strength decreased for all the asperity angles but the rate of reduction was more in case of high asperity angles. Test results indicated that shear strength of irregular joints was higher than that of regular joints at different cycles of shearing at low normal stress. Shearing and degradation of joint asperities on regular joints were the same between loading and unloading, but different for irregular joints. Shear strength and joint degradation were more significant on the slope of asperity with higher angles on the irregular joint until two angles of asperities became equal during the cycle of shearing and it started behaving like regular joints for subsequent cycles.

  2. Assessment of homogeneity of the shear-strain pattern in Al–7 wt%Si casting alloy processed by high-pressure torsion

    Cepeda-Jiménez, C.M., E-mail: carmen.cepeda@imdea.org [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain); Orozco-Caballero, A.; García-Infanta, J.M. [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain); Zhilyaev, A.P. [Institute for Metals Superplasticity Problems, Russian Academy of Science, 39 Khalturina, 450001 Ufa (Russian Federation); Ruano, O.A.; Carreño, F. [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2014-03-01

    An as-cast Al–7 wt%Si alloy was subjected to processing by high-pressure torsion (HPT) at room temperature, through 1/4, 1/2, 1 and 5 turns at a pressure of 6 GPa and two rotation speeds, 0.1 and 1 rpm. Vickers microhardness was measured along diameters of HPT disk surfaces. The final hardness values were higher than in the initial as-cast condition and, unexpectedly, nearly constant under all different processing conditions, and along the disk diameter. The microstructure was characterised by optical and scanning electron microscopy. The as-cast microstructure comprises equiaxed primary α dendrite cells embedded in the Al–Si eutectic constituent. The morphology and distribution of the eutectic constituent in the HPT processed materials is used to delineate the shear strain, which was analysed in the cross-section planes of the disks. A high degree of homogeneity in the imposed shear strain throughout the samples was observed, being congruent with the ideal rigid-body torsion. In addition, the high compressive pressure applied, causing compressive strain prior to the torsional strain, is responsible for the deformation-induced precipitation of small Si particles and for the (sub)grain refinement in the primary Al constituent. The role of torsional strain is that of increasing monothonically the redistribution of the eutectic silicon and the misorientation of the (sub)grains.

  3. Velocity shear generated Alfven waves in electron-positron plasmas

    Rogava, A.D.; Berezhiani, V.I.; Mahajan, S.M.

    1996-01-01

    Linear MHD modes in cold, nonrelativistic electron-positron plasma shear flow are considered. The general set of differential equations, describing the evolution of perturbations in the framework of the nonmodal approach is derived. It is found, that under certain circumstances, the compressional and shear Alfven perturbations may exhibit large transient growth fuelled by the mean kinetic energy of the shear flow. The velocity shear also induces mode coupling allowing the exchange of energy as well as the possibility of a strong mutual transformation of these modes into each other. The compressional Alfven mode may extract the energy of the mean flow and transfer it to the shear Alfven mode via this coupling. The relevance of these new physical effects to provide a better understanding of the laboratory e + e - plasma is emphasized. It is speculated that the shear-induced effects in the electron-positron plasmas could also help solve some astrophysical puzzles (e.g., the generation of pulsar radio emission). Since most astrophysical plasma are relativistic, it is shown that the major results of the study remain valid for weakly sheared relativistic plasmas. (author). 21 refs, 4 figs

  4. Freezing of a colloidal liquid subject to shear flow

    Bagchi, B.; Thirumalai, D.

    1988-01-01

    A nonequilibrium generalization of the density-functional theory of freezing is proposed to investigate the shear-induced first-order phase transition in colloidal suspensions. It is assumed that the main effect of a steady shear is to break the symmetry of the structure factor of the liquid and that for small shear rate, the phenomenon of a shear-induced order-disorder transition may be viewed as an equilibrium phase transition. The theory predicts that the effective density at which freezing takes place increases with shear rate. The solid (which is assumed to be a bcc lattice) formed upon freezing is distorted and specifically there is less order in one plane compared with the order in the other two perpendicular planes. It is shown that there exists a critical shear rate above which the colloidal liquid does not undergo a transition to an ordered (or partially ordered) state no matter how large the density is. Conversely, above the critical shear rate an initially formed bcc solid always melts into an amorphous or liquidlike state. Several of these predictions are in qualitative agreement with the light-scattering experiments of Ackerson and Clark. The limitations as well as possible extensions of the theory are also discussed

  5. Bolt Shear Force Sensor

    2015-03-12

    0030] FIG. 7 is an isometric view of a deformable ring of the bolt shear force sensor of the present invention with an optical Attorney Docket No...102587 9 of 19 fiber having Bragg gratings wound around the ring; [0031] FIG. 8 is an isometric view of the deformable ring with wire strain... strength . [0047] Once the joint is subjected to an external load (see force arrows “F” and “F/2”); any frictional resistance to slip is overcome and

  6. Rheometry-PIV of shear-thickening wormlike micelles.

    Marín-Santibañez, Benjamín M; Pérez-Gonzalez, José; de Vargas, Lourdes; Rodríguez-Gonzalez, Francisco; Huelsz, Guadalupe

    2006-04-25

    The shear-thickening behavior of an equimolar semidilute aqueous solution of 40 mM/L cetylpyridinium chloride and sodium salicylate was studied in this work by using a combined method of rheometry and particle image velocimetry (PIV). Experiments were conducted at 27.5 degrees C with Couette, vane-bob, and capillary rheometers in order to explore a wide shear stress range as well as the effect of boundary conditions and time of flow on the creation and destruction of shear-induced structures (SIS). The use of the combined method of capillary rheometry with PIV allowed the detection of fast spatial and temporal variations in the flow kinematics, which are related to the shear-thickening behavior and the dynamics of the SIS but are not distinguished by pure rheometrical measurements. A rich-in-details flow curve was found for this solution, which includes five different regimes. Namely, at very low shear rates a Newtonian behavior was found, followed by a shear thinning one in the second regime. In the third, shear banding was observed, which served as a precursor of the SIS and shear-thickening. The fourth and fifth regimes in the flow curve were separated by a spurtlike behavior, and they clearly evidenced the existence of shear-thickening accompanied by stick-slip oscillations at the wall of the rheometer, which subsequently produced variations in the shear rate under shear stress controlled flow. Such a stick-slip phenomenon prevailed up to the highest shear stresses used in this work and was reflected in asymmetric velocity profiles with spatial and temporal variations linked to the dynamics of creation and breakage of the SIS. The presence of apparent slip at the wall of the rheometer provides an energy release mechanism which leads to breakage of the SIS, followed by their further reformation during the stick part of the cycles. In addition, PIV measurements allowed the detection of apparent slip at the wall, as well as mechanical failures in the bulk of the

  7. Introduction to the viewpoint set on shear bands

    Hutchinson, J.W.

    1984-01-01

    Recent work aimed at improving our understanding of shear banding and flow localization as modes of deformation and failure is summarized in the six viewpoint articles which follow. For the most part, the emphasis here is on the observation and analysis of shear banding in metals, but active efforts are also underway to understand the role of shear bands in the deformation and failure of soils and rocks. There is a tendency to regard shear bands as a failure mode, as indeed they often are. But extensive straining under highly constrained conditions such as rolling can give rise to profuse flow localization into shear bands which can be regarded as microscopic in the sense that their extent is on the scale of the grains rather than the overall dimensions of the block of material being deformed. Hatherly and Malin describe in detail the observation of such bands and emphasize that they should be considered as a mode of deformation under these circumstances. They relate the formation of the bands to microstructural aspects and discuss their role in the development of recrystallization textures. It will be clear from reading the articles in this viewpoint set that the beginnings of a quantitative theory of shear banding is in place. Continued progress will require parallel developments in constitutive theory and experimental observation. Moreover, basic questions remain to be explored related to the spatial development of the shear bands, their mutual interaction, their development into a failure mode, and how these are influenced by factors such as overall deformational constraint, rate of straining, and temperature

  8. Adiabatic shear behaviors in rolled and annealed pure titanium subjected to dynamic impact loading

    Kuang, Lianjun; Chen, Zhiyong, E-mail: czysh@netease.com; Jiang, Yanghui; Wang, Zhiming; Wang, Renke; Liu, Chuming

    2017-02-08

    The hat-shaped samples cut from rolled and annealed titanium plates were prepared to explore the adiabatic shear behaviors subjected to high-strain-rate deformation operated via Split Hopkinson Pressure Bar. The dynamic shear response calculation reveals that dynamic deformation processes of both state samples can be divided in similar three stages but rolled sample shows a higher susceptibility of adiabatic shear localization compared with the annealed one. Optical microscopy and electronic backscatter diffraction technique (EBSD) were used to systematically analyze the microstructure and texture characteristics. The results show that adiabatic shear bands form in both state samples and rotational dynamic recrystallization (RDRX) occurs within shear area and results in the formation of ultrafine equiaxed grains. Furthermore, ultrafine equiaxed grains within adiabatic shear bands have the same texture feature that <11–20> direction and {10-10} plane parallel to macro local shear direction and shear plane respectively. In the deformation region around the shear band, {10–12} <–1011> tensile and {11–22} <11-2-3> compressive two types twins are observed in both state samples and {10–12} <–1011> tensile twins are more frequently observed in rolled sample. In the rolled sample, {10–12} <–1011> tensile twins are more likely to happen in the hat-brim side than the hat-body side due to the difference of stress state in two sides.

  9. Microstructure and mechanical properties of SiO2-BN ceramic and Invar alloy joints brazed with Ag–Cu–Ti+TiH2+BN composite filler

    Y. Wang

    2016-03-01

    Full Text Available Ag–Cu–Ti + TiH2+BN composite filler was prepared to braze SiO2-BN ceramic and Invar alloy. The interfacial microstructure, mechanical properties, and residual stress distribution of the brazed joints were investigated. The results show that a wave-like Fe2Ti–Ni3Ti structure appears in the Invar substrate and a thin TiN–TiB2 reaction layer forms adjacent to the SiO2-BN ceramic. The added BN particles react with Ti to form TiN–TiB fine-particles, which is beneficial to refine the microstructure of the brazing seam and to greatly inhibit the brittle compounds formation. The interfacial microstructure at various brazing temperatures was analyzed, and the mechanism for the interfacial reactions responsible for the bonding was proposed. The maximum shear strength of the joints brazed with the composite filler at 880 °C for 10 min is 39 MPa, which is 30% greater than that brazed with Ag–Cu–Ti alloy. The improvement of the joint strength is attributed to the variation of joint microstructure and the reduction of tensile stresses induced in the SiO2-BN ceramic. The finite element analysis indicates that the peak tensile stress decreases from 230 to 142 MPa due to the addition of BN particles in the ceramic.

  10. Anomalous transport due to shear-Alfven waves

    Lee, W.W.; Chance, M.S.; Okuda, H.

    1980-10-01

    The behavior of shear-Alfven eigenmodes and the accompanied anomalous transport have been investigated. In the particle simulation, equilibrium thermal fluctuations associated with the eigenmodes have been observed to nullify the zeroth-order shear near the rational surface through the induced second-order eddy current, and, in turn, give rise to the formation of magnetic islands which cause rapid electron energy transport in the region. The theoretical verification of the observed behavior is discussed

  11. Excited waves in shear layers

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  12. Designing shear-thinning

    Nelson, Arif Z.; Ewoldt, Randy H.

    2017-11-01

    Design in fluid mechanics often focuses on optimizing geometry (airfoils, surface textures, microfluid channels), but here we focus on designing fluids themselves. The dramatically shear-thinning ``yield-stress fluid'' is currently the most utilized non-Newtonian fluid phenomenon. These rheologically complex materials, which undergo a reversible transition from solid-like to liquid-like fluid flow, are utilized in pedestrian products such as paint and toothpaste, but also in emerging applications like direct-write 3D printing. We present a paradigm for yield-stress fluid design that considers constitutive model representation, material property databases, available predictive scaling laws, and the many ways to achieve a yield stress fluid, flipping the typical structure-to-rheology analysis to become the inverse: rheology-to-structure with multiple possible materials as solutions. We describe case studies of 3D printing inks and other flow scenarios where designed shear-thinning enables performance remarkably beyond that of Newtonian fluids. This work was supported by Wm. Wrigley Jr. Company and the National Science Foundation under Grant No. CMMI-1463203.

  13. Modelling of deformation and recrystallisation microstructures in rocks and ice

    Bons, Paul D.; Evans, Lynn A.; Gomez-Rivas, Enrique; Griera, Albert; Jessell, Mark W.; Lebensohn, Ricardo; Llorens, Maria-Gema; Peternell, Mark; Piazolo, Sandra; Weikusat, Ilka; Wilson, Chris J. L.

    2015-04-01

    Microstructures both record the deformation history of a rock and strongly control its mechanical properties. As microstructures in natural rocks only show the final "post-mortem" state, geologists have attempted to simulate the development of microstructures with experiments and later numerical models. Especially in-situ experiments have given enormous insight, as time-lapse movies could reveal the full history of a microstructure. Numerical modelling is an alternative approach to simulate and follow the change in microstructure with time, unconstrained by experimental limitations. Numerical models have been applied to a range of microstructural processes, such as grain growth, dynamic recrystallisation, porphyroblast rotation, vein growth, formation of mylonitic fabrics, etc. The numerical platform "Elle" (www.elle.ws) in particular has brought progress in the simulation of microstructural development as it is specifically designed to include the competition between simultaneously operating processes. Three developments significantly improve our capability to simulate microstructural evolution: (1) model input from the mapping of crystallographic orientation with EBSD or the automatic fabric analyser, (2) measurement of grain size and crystallographic preferred orientation evolution using neutron diffraction experiments and (3) the implementation of the full-field Fast Fourier Transform (FFT) solver for modelling anisotropic crystal-plastic deformation. The latter enables the detailed modelling of stress and strain as a function of local crystallographic orientation, which has a strong effect on strain localisation such as, for example, the formation of shear bands. These models can now be compared with the temporal evolution of crystallographic orientation distributions in in-situ experiments. In the last decade, the possibility to combine experiments with numerical simulations has allowed not only verification and refinement of the numerical simulation

  14. Inductive shearing of drilling pipe

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger; Mcintyre, Timothy

    2016-04-19

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  15. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints

    Natascha Z. Borba

    2017-02-01

    Full Text Available In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet and glass-fiber-reinforced polyester (GF-P friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s. A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α′ martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined.

  16. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints

    Borba, Natascha Z.; Afonso, Conrado R. M.; Blaga, Lucian; dos Santos, Jorge F.; Canto, Leonardo B.; Amancio-Filho, Sergio T.

    2017-01-01

    In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet) and glass-fiber-reinforced polyester (GF-P) friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s). A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α′ martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined. PMID:28772545

  17. Study of texture and microstructure evaluation of steel API 5L X70 under various thermomechanical cycles

    Masoumi, Mohammad, E-mail: Mohammad@alu.ufc.br; Herculano, Luis Flavio Gaspar; Ferreira Gomes de Abreu, Hamilton

    2015-07-15

    This work studies the influence of different thermomechanical paths on the microstructure and crystallographic texture across the thickness of API 5L X70 pipeline steel manufactured via hot rolling using X-ray diffraction (XRD), scanning electron microscope (SEM), and electron backscattered diffraction (EBSD). The starting materials were controlled hot-rolled at 1000 °C to 44% and 67% reductions and subsequently heat treated with such processes as annealing, water quenching and quench tempering at three different temperatures to evaluate the microstructure and crystallographic texture changes across the thickness. The banded ferrite-pearlite microstructure of the initial material was changed to acicular ferrite, quasi-polygonal ferrite, granular bainite, martensite and retained austenite via different heat treatments. Moreover, different thermomechanical paths induced crystallographic texture variations across the thickness, e.g., {112}//ND, {111}//ND (γ fibre), and {011}//ND fibres dominated on the surface plane in contact with the rolls, whereas {001}//ND and particularly the (001)[1 1 0] texture component developed in the centre plane on which shear deformation has a zero value in this region. In this study, a simple interpretation of texture evolution was analyzed by comparison with the orientation changes that occurred during different rolling schedules and post-treatment processes.

  18. Microstructural analysis of the {delta} to {alpha}' phase transformation in plutonium alloys using X-ray diffraction

    Platteau, C; Ravat, B; Texier, G; Oudot, B; Delaunay, F, E-mail: brice.ravat@cea.fr [CEA Valduc 21120 Is sur Tille (France)

    2010-03-15

    The partial martensitic {delta}{yields}{alpha}' transformation in plutonium alloys is sensitive to chemical composition, sample thermal history, as well as crystalline defects. The present work investigates the {delta}-Pu phase microstructure before and after the martensitic transformation {delta}{yields}{delta}+{alpha}'. More precisely, microstructural modifications of the host {delta}-phase, resulting from the stress induced by a cell volume difference of 19% between the {delta} and {alpha}'-phases, were analysed. Microstructural information about crystallite size and microstrain of a highly homogenized Pu-Ga alloy was extracted from x-ray diffraction patterns using a three dimension crystallite size and microstrain model. This is available in Rietveld refinement software and consists in anisotropic broadening analysis of diffraction peaks. Crystallite size doesn't significantly change with the phase transformation contrary to microstrain that is multiplied, on average, by five. Furthermore, internal normal and shear microstress are multiplied, respectively, by 2 and 13 when {alpha}'-phase appears. Last, dislocation densities, calculated from crystallite size and microstrain, are compared to TEM results available in the literature.

  19. Nonlinear shear behavior of rock joints using a linearized implementation of the Barton–Bandis model

    Simon Heru Prassetyo

    2017-08-01

    Full Text Available Experiments on rock joint behaviors have shown that joint surface roughness is mobilized under shearing, inducing dilation and resulting in nonlinear joint shear strength and shear stress vs. shear displacement behaviors. The Barton–Bandis (BB joint model provides the most realistic prediction for the nonlinear shear behavior of rock joints. The BB model accounts for asperity roughness and strength through the joint roughness coefficient (JRC and joint wall compressive strength (JCS parameters. Nevertheless, many computer codes for rock engineering analysis still use the constant shear strength parameters from the linear Mohr–Coulomb (M−C model, which is only appropriate for smooth and non-dilatant joints. This limitation prevents fractured rock models from capturing the nonlinearity of joint shear behavior. To bridge the BB and the M−C models, this paper aims to provide a linearized implementation of the BB model using a tangential technique to obtain the equivalent M−C parameters that can satisfy the nonlinear shear behavior of rock joints. These equivalent parameters, namely the equivalent peak cohesion, friction angle, and dilation angle, are then converted into their mobilized forms to account for the mobilization and degradation of JRC under shearing. The conversion is done by expressing JRC in the equivalent peak parameters as functions of joint shear displacement using proposed hyperbolic and logarithmic functions at the pre- and post-peak regions of shear displacement, respectively. Likewise, the pre- and post-peak joint shear stiffnesses are derived so that a complete shear stress-shear displacement relationship can be established. Verifications of the linearized implementation of the BB model show that the shear stress-shear displacement curves, the dilation behavior, and the shear strength envelopes of rock joints are consistent with available experimental and numerical results.

  20. Magnetorheological dampers in shear mode

    Wereley, N M; Cho, J U; Choi, Y T; Choi, S B

    2008-01-01

    In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared

  1. The roles of electric field shear and Shafranov shift in sustaining high confinement in enhanced reversed shear plasmas on the TFTR tokamak

    Synakowski, E.J.; Beer, M.A.

    1997-02-01

    The relaxation of core transport barriers in TFTR Enhanced Reversed Shear plasmas has been studied by varying the radial electric field using different applied torques from neutral beam injection. Transport rates and fluctuations remain low over a wide range of radial electric field shear, but increase when the local E x B shearing rates are driven below a threshold comparable to the fastest linear growth rates of the dominant instabilities. Shafranov-shift-induced stabilization alone is not able to sustain enhanced confinement

  2. Shear strength of non-shear reinforced concrete elements

    Hoang, Cao linh

    1997-01-01

    The paper deals with the shear strength of prestressed hollow-core slabs determined by the theory of plasticity. Two failure mechanisms are considered in order to derive the solutions.In the case of sliding failure in a diagonal crack, the shear strength is determined by means of the crack sliding...

  3. Microstructure and mechanical properties after annealing of equal-channel angular pressed interstitial-free steel

    Hazra, Sujoy S.; Pereloma, Elena V.; Gazder, Azdiar A.

    2011-01-01

    The evolution of microstructure, microtexture and mechanical properties during isothermal annealing of an ultrafine-grained interstitial-free steel after eight passes of route B C room temperature equal-channel angular pressing (ECAP) was studied. The microstructure and microtexture were characterized by electron back-scattering diffraction, and mechanical properties were assessed by shear punch and uniaxial tensile testing. Homogeneous coarsening via continuous recrystallization of the ECAP microstructure is accompanied by minor changes in the ∼63% high-angle boundary population and a sharpening of the original ECAP texture. This is followed by abnormal growth during the final stages of softening due to local growth advantages. Linear correlations between shear and tensile data were established for yield, ultimate strength and total elongation. After yield, the changes in uniaxial tensile behaviour from geometrical softening after ECAP to load drop, Lueders banding and continuous yielding after annealing is attributable to a coarsening of the microstructure.

  4. Solidification of Al-Sn-Cu Based Immiscible Alloys under Intense Shearing

    Kotadia, H. R.; Doernberg, E.; Patel, J. B.; Fan, Z.; Schmid-Fetzer, R.

    2009-09-01

    The growing importance of Al-Sn based alloys as materials for engineering applications necessitates the development of uniform microstructures with improved performance. Guided by the recently thermodynamically assessed Al-Sn-Cu system, two model immiscible alloys, Al-45Sn-10Cu and Al-20Sn-10Cu, were selected to investigate the effects of intensive melt shearing provided by the novel melt conditioning by advanced shear technology (MCAST) unit on the uniform dispersion of the soft Sn phase in a hard Al matrix. Our experimental results have confirmed that intensive melt shearing is an effective way to achieve fine and uniform dispersion of the soft phase without macro-demixing, and that such dispersed microstructure can be further refined in alloys with precipitation of the primary Al phase prior to the demixing reaction. In addition, it was found that melt shearing at 200 rpm and 60 seconds will be adequate to produce fine and uniform dispersion of the Sn phase, and that higher shearing speed and prolonged shearing time can only achieve minor further refinement.

  5. Practical Weak-lensing Shear Measurement with Metacalibration

    Sheldon, Erin S. [Brookhaven National Laboratory, Bldg. 510, Upton, NY 11973 (United States); Huff, Eric M. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States)

    2017-05-20

    Metacalibration is a recently introduced method to accurately measure weak gravitational lensing shear using only the available imaging data, without need for prior information about galaxy properties or calibration from simulations. The method involves distorting the image with a small known shear, and calculating the response of a shear estimator to that applied shear. The method was shown to be accurate in moderate-sized simulations with galaxy images that had relatively high signal-to-noise ratios, and without significant selection effects. In this work we introduce a formalism to correct for both shear response and selection biases. We also observe that for images with relatively low signal-to-noise ratios, the correlated noise that arises during the metacalibration process results in significant bias, for which we develop a simple empirical correction. To test this formalism, we created large image simulations based on both parametric models and real galaxy images, including tests with realistic point-spread functions. We varied the point-spread function ellipticity at the five-percent level. In each simulation we applied a small few-percent shear to the galaxy images. We introduced additional challenges that arise in real data, such as detection thresholds, stellar contamination, and missing data. We applied cuts on the measured galaxy properties to induce significant selection effects. Using our formalism, we recovered the input shear with an accuracy better than a part in a thousand in all cases.

  6. A Piezoelectric Shear Stress Sensor

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  7. Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses

    Sarac, Baran

    Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology

  8. Strength and microstructure characteristics of the recycled rubber tire-sand mixtures as lightweight backfill.

    Zhang, Tao; Cai, Guojun; Duan, Weihong

    2018-02-01

    The disposal of scrap rubber tires has induced critical environmental issue worldwide due to the rapid increase in the number of vehicles. Recycled scrap tires as a construction material in civil engineering have significant environmental benefits from a waste management perspective. A systematic study that deals with strength and microstructure characteristics of the rubber-sand mixtures is initiated, and mechanical response of the mixtures is discussed in this investigation. Experiments were conducted to evaluate the effects of rubber fraction on the basic properties including mass density (ρ), stress-strain characteristics, shear strength, and unconfined compression strength (q u ) of the rubber-sand mixtures. Additionally, scanning electron microscopy (SEM) was carried out to reveal the microstructure characteristics of the mixtures with various rubber fractions. A discussion on the micromechanics of the mixtures also was conducted. This study demonstrates that the ρ, friction angle, and q u decrease linearly with an increase in rubber fraction, whereas shear strain at peak increases. The stress-strain characteristics of the rubber-sand mixtures shift from brittle to ductile as the rubber fraction increase. These changes are attributed to remarkably lower stiffness and higher compressibility of the rubber particle compared with those of the conventional mineral aggregates. With an increase in the rubber fraction, the mechanical response of rubber-sand mixtures exhibits two types: sand-like material and rubber-like material. Rubber particle possesses the capacity to prevent the contacted sand particles from sliding at lower rubber fraction, whereas it transmits the applied loadings as the rubber fraction increased. This outcome reinforces the practicability of using recycled rubber tire-sand mixtures as a lightweight backfill in subbase/base applications.

  9. The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part II: Numerical implementation and post-bifurcation analysis

    Rattez, Hadrien; Stefanou, Ioannis; Sulem, Jean; Veveakis, Manolis; Poulet, Thomas

    2018-06-01

    In this paper we study the phenomenon of localization of deformation in fault gouges during seismic slip. This process is of key importance to understand frictional heating and energy budget during an earthquake. A infinite layer of fault gouge is modeled as a Cosserat continuum taking into account Thermo-Hydro-Mechanical (THM) couplings. The theoretical aspects of the problem are presented in the companion paper (Rattez et al., 2017a), together with a linear stability analysis to determine the conditions of localization and estimate the shear band thickness. In this Part II of the study, we investigate the post-bifurcation evolution of the system by integrating numerically the full system of non-linear equations using the method of Finite Elements. The problem is formulated in the framework of Cosserat theory. It enables to introduce information about the microstructure of the material in the constitutive equations and to regularize the mathematical problem in the post-localization regime. We emphasize the influence of the size of the microstructure and of the softening law on the material response and the strain localization process. The weakening effect of pore fluid thermal pressurization induced by shear heating is examined and quantified. It enhances the weakening process and contributes to the narrowing of shear band thickness. Moreover, due to THM couplings an apparent rate-dependency is observed, even for rate-independent material behavior. Finally, comparisons show that when the perturbed field of shear deformation dominates, the estimation of the shear band thickness obtained from linear stability analysis differs from the one obtained from the finite element computations, demonstrating the importance of post-localization numerical simulations.

  10. Discrete Analysis of Damage and Shear Banding in Argillaceous Rocks

    Dinç, Özge; Scholtès, Luc

    2018-05-01

    A discrete approach is proposed to study damage and failure processes taking place in argillaceous rocks which present a transversely isotropic behavior. More precisely, a dedicated discrete element method is utilized to provide a micromechanical description of the mechanisms involved. The purpose of the study is twofold: (1) presenting a three-dimensional discrete element model able to simulate the anisotropic macro-mechanical behavior of the Callovo-Oxfordian claystone as a particular case of argillaceous rocks; (2) studying how progressive failure develops in such material. Material anisotropy is explicitly taken into account in the numerical model through the introduction of weakness planes distributed at the interparticle scale following predefined orientation and intensity. Simulations of compression tests under plane-strain and triaxial conditions are performed to clarify the development of damage and the appearance of shear bands through micromechanical analyses. The overall mechanical behavior and shear banding patterns predicted by the numerical model are in good agreement with respect to experimental observations. Both tensile and shear microcracks emerging from the modeling also present characteristics compatible with microstructural observations. The numerical results confirm that the global failure of argillaceous rocks is well correlated with the mechanisms taking place at the local scale. Specifically, strain localization is shown to directly result from shear microcracking developing with a preferential orientation distribution related to the orientation of the shear band. In addition, localization events presenting characteristics similar to shear bands are observed from the early stages of the loading and might thus be considered as precursors of strain localization.

  11. Reversed Microstructures and Tensile Properties after Various Cold Rolling Reductions in AISI 301LN Steel

    Antti Järvenpää

    2018-02-01

    Full Text Available Heavy cold rolling is generally required for efficient grain size refinement in the martensitic reversion process, which is, however, not desirable in practical processing. In the present work, the influence of cold rolling reductions of 32%, 45% and 63% on the microstructure evolution and mechanical properties of a metastable austenitic AISI 301LN type steel were investigated in detail adopting scanning electron microscopy with the electron backscatter diffraction method and mechanical testing. A completely austenitic microstructure and a partially reversed counterpart were created. It was found that the fraction of grains with a size of 3 µm or larger, called medium-sized grains, increased with decreasing the prior cold rolling reduction. These grains are formed mainly from the shear-reversed austenite, transformed from slightly-deformed martensite, by gradual evolution of subgrains to grains. However, in spite of significant amounts of medium-sized grains, the tensile properties after the 32% or 45% cold rolling reductions were practically equal to those after the 63% reduction. The austenite stability against the formation of deformation-induced martensite in subsequent straining was reduced by lowering the cold rolling reduction, due to the larger grain size of medium-sized grains and the shift of their orientation towards {211} .

  12. Modeling of Mesoscale Variability in Biofilm Shear Behavior.

    Pallab Barai

    Full Text Available Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regimes: a initial increase in stiffness due to strain stiffening of polymer matrix, and b eventual reduction in stiffness because of tear in polymeric substrate.

  13. Interaction of equal-size bubbles in shear flow.

    Prakash, Jai; Lavrenteva, Olga M; Byk, Leonid; Nir, Avinoam

    2013-04-01

    The inertia-induced forces on two identical spherical bubbles in a simple shear flow at small but finite Reynolds number, for the case when the bubbles are within each other's inner viscous region, are calculated making use of the reciprocal theorem. This interaction force is further employed to model the dynamics of air bubbles injected to a viscous fluid sheared in a Couette device at the first shear flow instability where the bubbles are trapped inside the stable Taylor vortex. It was shown that, during a long time scale, the inertial interaction between the bubbles in the primary shear flow drives them away from each other and, as a result, equal-size bubbles eventually assume an ordered string with equal separation distances between all neighbors. We report on experiments showing the dynamic evolution of various numbers of bubbles. The results of the theory are in good agreement with the experimental observations.

  14. Effects of fatigue-induced changes in microstructure and stress on domain structure and magnetic properties of Fe-C alloys

    Lo, C. C. H.; Tang, F.; Biner, S. B.; Jiles, D. C.

    2000-01-01

    A study of the effects of microstructural changes on domain structure and magnetic properties as a result of fatigue has been made on Fe-C alloys subjected to either cold work, stress-relief annealing, or heat treatment that produced a ferritic/pearlitic structure. The magnetic properties varied with stress cycling depending on the initial condition of the samples. Variations in coercivity in the initial stage of fatigue were closely related to the changes in dislocation structure. In the intermediate stage of fatigue the observed refinement of domain structures was related to the development of dislocation cell structures and formation of slip bands. In the final stage of fatigue the remanence and maximum permeability decreased dramatically, and this rate of decrease was dependent on the crack propagation rate. (c) 2000 American Institute of Physics

  15. Use of cyclic current reversal polarization voltammetry for investigating the relationship between corrosion resistance and heat-treatment induced variations in microstructures of 400 C martensitic stainless steels

    Ambrose, John R.

    1992-01-01

    Software for running a cyclic current reversal polarization voltammagram has been developed for use with a EG&G Princeton Applied Research Model 273 potentiostat/galvanostat system. The program, which controls the magnitude, direction and duration of an impressed galvanostatic current, will produce data in ASCII spreadsheets (Lotus, Quattro) for graphical representation of CCRPV voltammograms. The program was used to determine differences in corrosion resistance of 440 C martenstic stainless steel produced as a result of changes in microstructure effected by tempering. It was determined that tempering at all temperatures above 400 F resulted in increased polarizability of the material, with the increased likelihood that pitting would be initiated upon exposure to marine environments. These results will be used in development of remedial procedures for lowering the susceptibility of these alloys toward the stress corrosion cracking experienced in bearings used in high pressure oxygen turbopumps used in the main engines of space shuttle orbiters.

  16. Microstructure, Slip Systems and Yield Stress Anisotropy in Plastic Deformation

    Winther, Grethe; You, Ze Sheng; Lu, Lei

    The highly anisotropic microstructures in nanotwinned copper produced by electrodeposition provide an excellent opportunity to evaluate models for microstructurally induced mechanical anisotropy. A crystal plasticity model originally developed for the integration of deformation induced dislocatio...... boundaries with texture is applied to account for the effects of texture as well as twin and grain boundaries, providing good qualitative agreement with experimental yield stress and yield stress anisotropy data....

  17. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state