WorldWideScience

Sample records for shear elastic constant

  1. Measurement of elastic constants by simultaneously sensing longitudinal and shear waves as an overlapped signal

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ho Geon; Song, Dong Gi; Jhang, Kyoung Young [Hanyang University, Seoul (Korea, Republic of)

    2016-04-15

    Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data.

  2. Measurement of elastic constants by simultaneously sensing longitudinal and shear waves as an overlapped signal

    International Nuclear Information System (INIS)

    Seo, Ho Geon; Song, Dong Gi; Jhang, Kyoung Young

    2016-01-01

    Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data

  3. Low-temperature monocrystal elastic constants of Fe-19Cr-10Ni

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1984-01-01

    By a pulse-echo-overlap ultrasonic method, we determined the monocrystal elastic constants (C 11 , C 12 , C 44 ) of an Fe-19Cr-10Ni alloy between 295 and 4 K. In composition this laboratory alloy approximates a technological austenitic stainless steel: AISI 304. Many previous studies on polycrystalline steels found a low-temperature magnetic phase transition that affects physical properties, including elastic constants. At the transition, anomalies occur in all polycrystal elastic constants: Young's modulus, shear modulus, bulk modulus, and Poisson's ratio. The present study found that the transition, near 50 K, does not affect one monocrystal elastic constant: C 44 , the resistance to shear on a (100) plane in a [100]-type direction. We interpret this new observation from the viewpoint of a Born-type lattice model. Also, we comment about the relationship between the elastic-constant changes and the low-temperature magnetic state

  4. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    Science.gov (United States)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  5. Temperature dependence of grain boundary free energy and elastic constants

    International Nuclear Information System (INIS)

    Foiles, Stephen M.

    2010-01-01

    This work explores the suggestion that the temperature dependence of the grain boundary free energy can be estimated from the temperature dependence of the elastic constants. The temperature-dependent elastic constants and free energy of a symmetric Σ79 tilt boundary are computed for an embedded atom method model of Ni. The grain boundary free energy scales with the product of the shear modulus times the lattice constant for temperatures up to about 0.75 the melting temperature.

  6. Single-crystal elastic constants of natural ettringite

    KAUST Repository

    Speziale, Sergio

    2008-07-01

    The single-crystal elastic constants of natural ettringite were determined by Brillouin spectroscopy at ambient conditions. The six non-zero elastic constants of this trigonal mineral are: C11 = 35.1 ± 0.1 GPa, C12 = 21.9 ±0.1 GPa, C13 = 20.0 ± 0.5 GPa, C14 = 0.6 ± 0.2 GPa, C33 = 55 ± 1 GPa, C44 = 11.0 ± 0.2 GPa. The Hill average of the aggregate bulk, shear modulus and the polycrystal Young\\'s modulus and Poisson\\'s ratio are 27.3 ± 0.9 GPa, 9.5 ± 0.8 GPa, 25 ± 2 GPa and 0.34 ± 0.02 respectively. The longitudinal and shear elastic anisotropy are C33/C11 = 0.64 ± 0.01 and C66/C44 =0.60 ± 0.01. The elastic anisotropy in ettringite is connected to its crystallographic structure. Stiff chains of [Al(OH)6]3- octahedra alternating with triplets of Ca2+ in eight-fold coordination run parallel to the c-axis leading to higher stiffness along this direction. The determination of the elastic stiffness tensor can help in the prediction of the early age properties of cement paste when ettringite crystals precipitate and in the modeling of both internal and external sulfate attack when secondary ettringite formation leads to expansion of concrete. © 2008 Elsevier Ltd. All rights reserved.

  7. Single-crystal elastic constants of natural ettringite

    KAUST Repository

    Speziale, Sergio; Jiang, Fuming; Mao, Zhu; Monteiro, Paulo J.M.; Wenk, Hans-Rudolf; Duffy, Thomas S.; Schilling, Frank R.

    2008-01-01

    The single-crystal elastic constants of natural ettringite were determined by Brillouin spectroscopy at ambient conditions. The six non-zero elastic constants of this trigonal mineral are: C11 = 35.1 ± 0.1 GPa, C12 = 21.9 ±0.1 GPa, C13 = 20.0 ± 0.5 GPa, C14 = 0.6 ± 0.2 GPa, C33 = 55 ± 1 GPa, C44 = 11.0 ± 0.2 GPa. The Hill average of the aggregate bulk, shear modulus and the polycrystal Young's modulus and Poisson's ratio are 27.3 ± 0.9 GPa, 9.5 ± 0.8 GPa, 25 ± 2 GPa and 0.34 ± 0.02 respectively. The longitudinal and shear elastic anisotropy are C33/C11 = 0.64 ± 0.01 and C66/C44 =0.60 ± 0.01. The elastic anisotropy in ettringite is connected to its crystallographic structure. Stiff chains of [Al(OH)6]3- octahedra alternating with triplets of Ca2+ in eight-fold coordination run parallel to the c-axis leading to higher stiffness along this direction. The determination of the elastic stiffness tensor can help in the prediction of the early age properties of cement paste when ettringite crystals precipitate and in the modeling of both internal and external sulfate attack when secondary ettringite formation leads to expansion of concrete. © 2008 Elsevier Ltd. All rights reserved.

  8. Elasticity Constants of a Two-Phase Tungsten Thin Film

    Directory of Open Access Journals (Sweden)

    Mohamed Fares Slim

    2018-05-01

    Full Text Available The IET was used to determine the macroscopic elasticity constants of the multiphase coating. In order to determine the macroscopic elasticity constants of the film firstly, a critical assessment of Young’s modulus determination was done by comparing all the models proposed in the literature. The best model was identified and a study was performed to identify and quantify the most influent factors on the global uncertainty. Secondly, an enhanced formulation to determine the shear modulus of coating by IET was developed. The methodology was applied on a tungsten thin film deposited by DC magnetron sputtering.

  9. Single-crystal elastic constants of a plutonium-gallium alloy

    International Nuclear Information System (INIS)

    Moment, R.L.

    1976-01-01

    The single-crystal elastic constants of a plutonium-1 wt % gallium alloy were determined at room temperature by measuring ultrasonic sound-wave velocities. The three independent elastic constants of this face-centered cubic delta-phase alloy were determined from the longitudinal and the two shear-wave velocities, all along a direction. Their values are C 11 =3.628, C 12 =2.673 and C 44 =3.359 in units of 10 10 N/m 2 ; the respective errors are estimated to be 1%, 1%, and 0.3 %. The Zener anisotropy ratio is 7.03, almost twice that known for any other fcc metal, and falls among the ratios for the body centered cubic alkali metals, which are noted for their high elastic anisotropy. Polycrystalline elastic constants calculated from the single-crystal data are Young's modulus E=4.064, the shear modulus G=1.596 and the bulk modulus (reciprocal compressibility) B=2.991, all in units of 10 10 N/m 2 , and Poisson's ratio γ=0.27. These values of E and G are both lower than those obtained by Taylor, Linford and Dean from measurements on polycrystalline specimens. Within a single crystal, the longitudinal sound velocity varies with direction by a factor of 1.4 and the transverse velocity by a factor of 2.6. The maximum Young's modulus (along ) was 5.4 times larger than the minimum (along ). The Debye temperature was calculated to be 105.7 K at 293 K and estimated to be 114 K at 0.K. (Auth.)

  10. Calculation of elastic constants of BCC transition metals: tight-binding recursion method

    International Nuclear Information System (INIS)

    Masuda, K.; Hamada, N.; Terakura, K.

    1984-01-01

    The elastic constants of BCC transition metals (Fe, Nb, Mo and W) are calculated by using the tight-binding d band and the Born-Mayer repulsive potential. Introducing a small distortion characteristic to C 44 (or C') elastic deformation and calculating the energy change up to second order in the atomic displacement, the shear elastic constants C 44 and C' are determined. The elastic constants C 11 and C 12 are then calculated by using the relations B=1/3(C 11 + 2C 12 ) and C'=1/2(C 11 -C 12 ), where B is the bulk modulus. In general, the agreement between the present results and the experimental values is satisfactory. The characteristic elasticity behaviour, i.e. the strong Nsub(d) (number of d electrons) dependence of the observed anisotropy factor A=C 44 /C', will also be discussed. (author)

  11. Surface acoustic waves and elastic constants of InN epilayers determined by Brillouin scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Rioboo, R.J.; Prieto, C. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, Madrid (Spain); Cusco, R.; Domenech-Amador, N.; Artus, L. [Institut Jaume Almera, Consell Superior d' Investigacions Cientifiques (CSIC), Lluis Sole i Sabaris s.n., Barcelona, Catalonia (Spain); Yamaguchi, T.; Nanishi, Y. [Faculty of Science and Engineering, Ritsumeikan University, Noji-Higashi, Kusatsu, Shiga (Japan)

    2012-06-15

    The surface acoustic wave velocity in InN has been experimentally determined by means of Brillouin scattering experiments on c - and m -face epilayers. From simulations based on the Green's function formalism we determine the shear elastic constants c{sub 66} and c{sub 44} and propose a complete set of elastic constants for wurtzite InN. The analysis of the sagittal and azimuthal dependence of the surface acoustic wave velocity indicates a slightly different elastic behavior of the m -face sample that basically affects the c{sub 44} elastic constant. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Three-body interactions and the elastic constants of hcp solid 4He

    Science.gov (United States)

    Barnes, Ashleigh L.; Hinde, Robert J.

    2017-09-01

    The effect of three-body interactions on the elastic properties of hexagonal close packed solid 4He is investigated using variational path integral (VPI) Monte Carlo simulations. The solid's nonzero elastic constants are calculated, at T = 0 K and for a range of molar volumes from 7.88 cm3/mol to 20.78 cm3/mol, from the bulk modulus and the three pure shear constants C0, C66, and C44. Three-body interactions are accounted for using our recently reported perturbative treatment based on the nonadditive three-body potential of Cencek et al. Previous studies have attempted to account for the effect of three-body interactions on the elastic properties of solid 4He; however, these calculations have treated zero point motions using either the Einstein or Debye approximations, which are insufficient in the molar volume range where solid 4He is characterized as a quantum solid. Our VPI calculations allow for a more accurate treatment of the zero point motions which include atomic correlation. From these calculations, we find that agreement with the experimental bulk modulus is significantly improved when three-body interactions are considered. In addition, three-body interactions result in non-negligible differences in the calculated pure shear constants and nonzero elastic constants, particularly at higher densities, where differences of up to 26.5% are observed when three-body interactions are included. We compare to the available experimental data and find that our results are generally in as good or better agreement with experiment as previous theoretical investigations.

  13. The Elastic Constants Measurement of Metal Alloy by Using Ultrasonic Nondestructive Method at Different Temperature

    Directory of Open Access Journals (Sweden)

    Eryi Hu

    2016-01-01

    Full Text Available The ultrasonic nondestructive method is introduced into the elastic constants measurement of metal material. The extraction principle of Poisson’s ratio, elastic modulus, and shear modulus is deduced from the ultrasonic propagating equations with two kinds of vibration model of the elastic medium named ultrasonic longitudinal wave and transverse wave, respectively. The ultrasonic propagating velocity is measured by using the digital correlation technique between the ultrasonic original signal and the echo signal from the bottom surface, and then the elastic constants of the metal material are calculated. The feasibility of the correlation algorithm is verified by a simulation procedure. Finally, in order to obtain the stability of the elastic properties of different metal materials in a variable engineering application environment, the elastic constants of two kinds of metal materials in different temperature environment are measured by the proposed ultrasonic method.

  14. Determination of the elastic constants of portlandite by Brillouin spectroscopy

    KAUST Repository

    Speziale, S.; Reichmann, H.J.; Schilling, F.R.; Wenk, H.R.; Monteiro, P.J.M.

    2008-01-01

    The single crystal elastic constants Cij and the shear and adiabatic bulk modulus of a natural portlandite (Ca(OH)2) crystal were determined by Brillouin spectroscopy at ambient conditions. The elastic constants, expressed in GPa, are: C11 = 102.0(± 2.0), C12 = 32.1(± 1.0), C13 = 8.4(± 0.4), C14 = 4.5(± 0.2), C33 = 33.6(± 0.7), C44 = 12.0(± 0.3), C66 = (C11-C12)/2 = 35.0(± 1.1), where the numbers in parentheses are 1σ standard deviations. The Reuss bounds of the adiabatic bulk and shear moduli are K0S = 26.0(± 0.3) GPa and G0 = 17.5(± 0.4) GPa, respectively, while the Voigt bounds of these moduli are K0S = 37.3(± 0.4) GPa and G0 = 24.4(± 0.3) GPa. The Reuss and Voigt bounds for the aggregate Young's modulus are 42.8(± 1.0) GPa and 60.0(± 0.8) GPa respectively, while the aggregate Poisson's ratio is equal to 0.23(± 0.01). Portlandite exhibits both large compressional elastic anisotropy with C11/C33 = 3.03(± 0.09) equivalent to that of the isostructural hydroxide brucite (Mg(OH)2), and large shear anisotropy with C66/C44 = 2.92(± 0.12) which is 11% larger than brucite. The comparison between the bulk modulus of portlandite and that of lime (CaO) confirms a systematic linear relationship between the bulk moduli of brucite-type simple hydroxides and the corresponding NaCl-type oxides. © 2008 Elsevier Ltd. All rights reserved.

  15. Determination of the elastic constants of portlandite by Brillouin spectroscopy

    KAUST Repository

    Speziale, S.

    2008-10-01

    The single crystal elastic constants Cij and the shear and adiabatic bulk modulus of a natural portlandite (Ca(OH)2) crystal were determined by Brillouin spectroscopy at ambient conditions. The elastic constants, expressed in GPa, are: C11 = 102.0(± 2.0), C12 = 32.1(± 1.0), C13 = 8.4(± 0.4), C14 = 4.5(± 0.2), C33 = 33.6(± 0.7), C44 = 12.0(± 0.3), C66 = (C11-C12)/2 = 35.0(± 1.1), where the numbers in parentheses are 1σ standard deviations. The Reuss bounds of the adiabatic bulk and shear moduli are K0S = 26.0(± 0.3) GPa and G0 = 17.5(± 0.4) GPa, respectively, while the Voigt bounds of these moduli are K0S = 37.3(± 0.4) GPa and G0 = 24.4(± 0.3) GPa. The Reuss and Voigt bounds for the aggregate Young\\'s modulus are 42.8(± 1.0) GPa and 60.0(± 0.8) GPa respectively, while the aggregate Poisson\\'s ratio is equal to 0.23(± 0.01). Portlandite exhibits both large compressional elastic anisotropy with C11/C33 = 3.03(± 0.09) equivalent to that of the isostructural hydroxide brucite (Mg(OH)2), and large shear anisotropy with C66/C44 = 2.92(± 0.12) which is 11% larger than brucite. The comparison between the bulk modulus of portlandite and that of lime (CaO) confirms a systematic linear relationship between the bulk moduli of brucite-type simple hydroxides and the corresponding NaCl-type oxides. © 2008 Elsevier Ltd. All rights reserved.

  16. Hydrostatic pressure dependence of elastic constants for lead fluoride crystal

    International Nuclear Information System (INIS)

    Singh, R.K.; Rao, C.N.

    1988-10-01

    The variations of the second order elastic constants (SOEC) and longitudinal and shear moduli with hydrostatic pressure for the lead fluoride have been investigated theoretically, for the first time, by means of a three-body force potential (TBP) model. The significance of three-body interactions (TBI) has been clearly demonstrated in these investigations. The present TBP model has reproduced the pressure derivatives of the SOEC of PbF more satisfactorily than the shell model and other model calculations. (author). 24 refs, 3 figs, 2 tabs

  17. Elastic constants of diamond from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Gao Guangtu; Van Workum, Kevin; Schall, J David; Harrison, Judith A

    2006-01-01

    The elastic constants of diamond between 100 and 1100 K have been calculated for the first time using molecular dynamics and the second-generation, reactive empirical bond-order potential (REBO). This version of the REBO potential was used because it was redesigned to be able to model the elastic properties of diamond and graphite at 0 K while maintaining its original capabilities. The independent elastic constants of diamond, C 11 , C 12 , and C 44 , and the bulk modulus were all calculated as a function of temperature, and the results from the three different methods are in excellent agreement. By extrapolating the elastic constant data to 0 K, it is clear that the values obtained here agree with the previously calculated 0 K elastic constants. Because the second-generation REBO potential was fit to obtain better solid-state force constants for diamond and graphite, the agreement with the 0 K elastic constants is not surprising. In addition, the functional form of the second-generation REBO potential is able to qualitatively model the functional dependence of the elastic constants and bulk modulus of diamond at non-zero temperatures. In contrast, reactive potentials based on other functional forms do not reproduce the correct temperature dependence of the elastic constants. The second-generation REBO potential also correctly predicts that diamond has a negative Cauchy pressure in the temperature range examined

  18. Wave anisotropy of shear viscosity and elasticity

    Science.gov (United States)

    Rudenko, O. V.; Sarvazyan, A. P.

    2014-11-01

    The paper presents the theory of shear wave propagation in a "soft solid" material possessing anisotropy of elastic and dissipative properties. The theory is developed mainly for understanding the nature of the low-frequency acoustic characteristics of skeletal muscles, which carry important diagnostic information on the functional state of muscles and their pathologies. It is shown that the shear elasticity of muscles is determined by two independent moduli. The dissipative properties are determined by the fourth-rank viscosity tensor, which also has two independent components. The propagation velocity and attenuation of shear waves in muscle depend on the relative orientation of three vectors: the wave vector, the polarization vector, and the direction of muscle fiber. For one of the many experiments where attention was distinctly focused on the vector character of the wave process, it was possible to make a comparison with the theory, estimate the elasticity moduli, and obtain agreement with the angular dependence of the wave propagation velocity predicted by the theory.

  19. Strain fluctuations and elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1982-03-01

    It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.

  20. A first-principles study of cementite (Fe{sub 3}C) and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, G., E-mail: g-ghosh@northwestern.edu [Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108 (United States)

    2015-08-15

    A comprehensive computational study of elastic properties of cementite (Fe{sub 3}C) and its alloyed counterparts (M{sub 3}C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr{sub 2}FeC and CrFe{sub 2}C) having the crystal structure of Fe{sub 3}C is carried out employing electronic density-functional theory (DFT), all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA). Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i) single-crystal elastic constants, C{sub ij}, of above M{sub 3}Cs; (ii) anisotropies of bulk, Young’s and shear moduli, and Poisson’s ratio based on calculated C{sub ij}s, demonstrating their extreme anisotropies; (iii) isotropic (polycrystalline) elastic moduli (bulk, shear, Young’s moduli and Poisson’s ratio) of M{sub 3}Cs by homogenization of calculated C{sub ij}s; and (iv) acoustic Debye temperature, θ{sub D}, of M{sub 3}Cs based on calculated C{sub ij}s. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  1. Proposal for Ultrasonic Technique for evaluation elastic constants in UO2 pellets

    International Nuclear Information System (INIS)

    Lopes, Alessandra Susanne Viana Ragone; Baroni, Douglas Brandao; Bittencourt, Marcelo de Siqueira Queiroz; Souza, Mauro Carlos Lopes

    2015-01-01

    Pellets of uranium dioxide are used as fuel in nuclear power reactors, in which are exposed to high thermal gradients. This high energy will initiate fusion in the central part of the pellet. The expansion of the uranium dioxide pellets, resulting from fission products, can cause fissures or cracks, therefore, the study of their behavior is important. This work aims to develop and propose an ultrasonic technique to evaluate the elastic constants of UO 2 pellets. However, because of the difficulties in handling nuclear material, we proposed an initial study of alumina specimens. Alumina pellets are also ceramic material and their porosity and dimensions are in the similar range of dioxide uranium pellets. They also are used as thermal insulation in the fuel rods, operating under the same conditions. They were fabricated and used in two different sets of 10 alumina pellets with densities of 92% and 96%. The developed ultrasonic technique evaluates the traveling time of ultrasonic waves, longitudinal and transverse, and correlates the observed time and the elastic constants of the materials. Equations relating the speed of the ultrasonic wave to the elastic modulus, shear modulus and Poisson's ratio have led to these elastic constants, with graphics of correlation that showed excellent agreement with the literature available for Alumina. In view of the results and the ease of implementation of this technique, we believe that it may easily be used for dioxide uranium pellets, justifying further studies for that application. (author)

  2. Impedance method for measuring shear elasticity of liquids

    Science.gov (United States)

    Badmaev, B. B.; Dembelova, T. S.; Damdinov, B. B.; Gulgenov, Ch. Zh.

    2017-11-01

    Experimental results of studying low-frequency (74 kHz) shear elasticity of polymer liquids by the impedance method (analogous to the Mason method) are presented. A free-volume thick liquid layer is placed on the horizontal surface of a piezoelectric quartz crystal with dimensions 34.7 × 12 × 5.5 cm. The latter performs tangential vibrations at resonance frequency. The liquid layer experiences shear strain, and shear waves should propagate in it. From the theory of the method, it follows that, with an increase in the layer thickness, both real and imaginary resonance frequency shifts should exhibit damped oscillations and tend to limiting values. For the liquids under study, the imaginary frequency shift far exceeds the real one, which testifies to the presence of bulk shear elasticity.

  3. X-Ray Elastic Constants for Cubic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Malen, K.

    1974-10-15

    The stress-strain relation to be used in X-ray stress measurements in anisotropic texture-free media is studied. The method for evaluation of appropriate elastic constants for a cubic medium is described. Some illustrative numerical examples have been worked out including line broadening due to elastic anisotropy. The elastic stress and strain compatibility at grain boundaries is taken into account using Kroner's method. These elastic constants obviously only apply when no internal stresses due to plastic deformation are present. The case of reorientation of free interstitials in the stress field can be taken into account

  4. X-Ray Elastic Constants for Cubic Materials

    International Nuclear Information System (INIS)

    Malen, K.

    1974-10-01

    The stress-strain relation to be used in X-ray stress measurements in anisotropic texture-free media is studied. The method for evaluation of appropriate elastic constants for a cubic medium is described. Some illustrative numerical examples have been worked out including line broadening due to elastic anisotropy. The elastic stress and strain compatibility at grain boundaries is taken into account using Kroner's method. These elastic constants obviously only apply when no internal stresses due to plastic deformation are present. The case of reorientation of free interstitials in the stress field can be taken into account

  5. X-Ray Elastic Constants for Cubic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Malen, K

    1974-10-15

    The stress-strain relation to be used in X-ray stress measurements in anisotropic texture-free media is studied. The method for evaluation of appropriate elastic constants for a cubic medium is described. Some illustrative numerical examples have been worked out including line broadening due to elastic anisotropy. The elastic stress and strain compatibility at grain boundaries is taken into account using Kroner's method. These elastic constants obviously only apply when no internal stresses due to plastic deformation are present. The case of reorientation of free interstitials in the stress field can be taken into account

  6. Elastic constants from microscopic strain fluctuations

    Science.gov (United States)

    Sengupta; Nielaba; Rao; Binder

    2000-02-01

    Fluctuations of the instantaneous local Lagrangian strain epsilon(ij)(r,t), measured with respect to a static "reference" lattice, are used to obtain accurate estimates of the elastic constants of model solids from atomistic computer simulations. The measured strains are systematically coarse-grained by averaging them within subsystems (of size L(b)) of a system (of total size L) in the canonical ensemble. Using a simple finite size scaling theory we predict the behavior of the fluctuations as a function of L(b)/L and extract elastic constants of the system in the thermodynamic limit at nonzero temperature. Our method is simple to implement, efficient, and general enough to be able to handle a wide class of model systems, including those with singular potentials without any essential modification. We illustrate the technique by computing isothermal elastic constants of "hard" and "soft" disk triangular solids in two dimensions from Monte Carlo and molecular dynamics simulations. We compare our results with those from earlier simulations and theory.

  7. Shear deformation and relaxed lattice constant of (Ga,Mn)As layers on GaAs(113)A

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, Lukas; Daeubler, Joachim; Glunk, Michael; Schoch, Wladimir; Limmer, Wolfgang; Sauer, Rolf [Institut fuer Halbleiterphysik, Universitaet Ulm, D-89069 Ulm (Germany)

    2008-07-01

    The shear deformation and the relaxed lattice constant of compressively strained (Ga,Mn)As layers with Mn concentrations of up to 5%, pseudomorphically grown on GaAs(113)A and GaAs(001) substrates by low-temperature molecular-beam epitaxy, have been studied by high resolution X-ray diffraction (HRXRD) measurements. Rocking curves reveal a triclinic distortion of the (113)A layers with a shear direction towards the [001] crystallographic axis, whereas the (001) layers are tetragonally distorted along [001]. The relaxed lattice constants were derived from {omega}-2{theta} scans for the symmetric (113) and (004) Bragg reflections, taking the elastic anisotropy of the cubic system into account. The increase of the lattice constant with Mn content has been found to be smaller for the (113)A layers than for the (001) layers, presumably due to the enhanced amount of excess As in the (113)A layers.

  8. Elastic properties

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1983-01-01

    This chapter investigates the following five aspects of engineering-material solid-state elastic constants: general properties, interrelationships, relationships to other physical properties, changes during cooling from ambient to near-zero temperature, and near-zero-temperature behavior. Topics considered include compressibility, bulk modulus, Young's modulus, shear modulus, Poisson's ratio, Hooke's law, elastic-constant measuring methods, thermodynamic potentials, higher-order energy terms, specific heat, thermal expansivity, magnetic materials, structural phase transitions, polymers, composites, textured aggregates, and other-phenomena correlations. Some of the conclusions concerning polycrystalline elastic properties and their temperature dependence are: elastic constants are physical, not mechanical, properties which relate thermodynamically to other physical properties such as specific heat and thermal expansivity; elastic constants at low temperatures are nearly temperature independent, as required by the third law of thermodynamics; and elastic constants can be used to study directional properties of materials, such as textured aggregates and composites

  9. The Relationship between Elastic Properties and Shear Fabric in Clay-Rich Fault Gouge

    Science.gov (United States)

    Kenigsberg, A.; Saffer, D. M.; Riviere, J.; Ryan, K. L.; Marone, C.

    2016-12-01

    The low mechanical strength of major crustal faults remains a fundamental problem in geophysics and earthquake mechanics. Although both clay abundance and shear fabric are known as key controls on the frictional weakening of faults, the detailed links between fabric, elastic properties, composition, and fault strength remain poorly understood. This gap in information is in part because data are lacking to fully characterize the evolution of gouge microstructures and elastic properties during shearing. Here, we use seismic wave propagation to probe gouge ultrasonic and elastic properties, as a proxy for the development of shear fabrics. We report on a suite of direct shear experiments that include ultrasonic wave transmission to monitor compressional and shear wave velocities (Vp, Vs), during progressive shear of synthetic, clay-rich fault gouge. In order to better understand when and how clay grain alignment and nano-coatings begin to dominate the affect of shear fabric and local gouge density on elastic properties and shear strength, we studied a suite of synthetic gouges composed of Ca-montmorillonite and quartz ranging from 0-100% clay. Our laboratory experiments document friction coefficients (μ) ranging from 0.21 for gouges composed of 100% smectite to 0.62 for 100% quartz, with μ decreasing as clay content increases. We find that Vp and Vs increases as shear progresses and porosity decreases. Ongoing analyses of ultrasonic waves will assess variations of Vp, Vs, and elastic moduli throughout shear and as a function of gouge composition. We anticipate that these variations will be linked to formation of fabric elements observed via microstructural analysis, and will be indicative of whether quartz or clay is dominating how the fabrics form. Finally, we expect that clay content will be the dominant factor controlling shear fabric evolution and, consequently, the key control on the evolution of elastic properties with shear.

  10. Experimental determination of third-order elastic constants of diamond.

    Science.gov (United States)

    Lang, J M; Gupta, Y M

    2011-03-25

    To determine the nonlinear elastic response of diamond, single crystals were shock compressed along the [100], [110], and [111] orientations to 120 GPa peak elastic stresses. Particle velocity histories and elastic wave velocities were measured by using laser interferometry. The measured elastic wave profiles were used, in combination with published acoustic measurements, to determine the complete set of third-order elastic constants. These constants represent the first experimental determination, and several differ significantly from those calculated by using theoretical models.

  11. Theory of the change of elastic constants by interstitials

    International Nuclear Information System (INIS)

    Breuer, N.; Dederichs, P.H.; Lehmann, C.; Leibfried, G.; Scholz, A.

    1975-01-01

    The theory of the change of elastic constants by point-defects, in particular by interstitials, is briefly summarized. The typical effects of spring changes in a defect lattice on the elastic data are discussed qualitatively. Numerical results for the change of elastic constants by self-interstitials and vacancies are given and compared with experimental data for Cu and Al

  12. Elastic constants and internal friction of fiber-reinforced composites

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1982-01-01

    We review recent experimental studies at NBS on the anisotropic elastic constants and internal friction of fiber-reinforced composites. Materials that were studied include: boron-aluminum, boron-epoxy, graphite-epoxy, glass-epoxy, and aramid-epoxy. In all cases, elastic-constant direction dependence could be described by relationships developed for single crystals of homogeneous materials. Elastic stiffness and internal friction were found to vary inversely

  13. DFT calculation for elastic constants of orthorhombic structure within WIEN2K code: A new package (ortho-elastic)

    International Nuclear Information System (INIS)

    Reshak, Ali H.; Jamal, Morteza

    2012-01-01

    Highlights: ► A new package for calculating elastic constants of orthorhombic structure is released. ► The package called ortho-elastic. ► It is compatible with [FP-(L)APW+lo] method implemented in WIEN2k code. ► Several orthorhombic structure compounds were used to test the new package. ► Elastic constants calculated using this package show good agreement with experiment. - Abstract: A new package for calculating the elastic constants of orthorhombic structure is released. The package called ortho-elastic. The formalism of calculating the ortho-elastic constants is described in details. The package is compatible with the highly accurate all-electron full-potential (linearized) augmented plane-wave plus local orbital [FP-(L)APW+lo] method implemented in WIEN2k code. Several orthorhombic structure compounds were used to test the new package. We found that the calculated elastic constants using the new package show better agreement with the available experimental data than the previous theoretical results used different methods. In this package the second-order derivative E ″ (ε) of polynomial fit E=E(ε) of energy vs strains at zero strain (ε=0), used to calculate the orthorhombic elastic constants.

  14. A first-principles approach to finite temperature elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Wang, J J; Zhang, H; Manga, V R; Shang, S L; Chen, L-Q; Liu, Z-K [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-06-09

    A first-principles approach to calculating the elastic stiffness coefficients at finite temperatures was proposed. It is based on the assumption that the temperature dependence of elastic stiffness coefficients mainly results from volume change as a function of temperature; it combines the first-principles calculations of elastic constants at 0 K and the first-principles phonon theory of thermal expansion. Its applications to elastic constants of Al, Cu, Ni, Mo, Ta, NiAl, and Ni{sub 3}Al from 0 K up to their respective melting points show excellent agreement between the predicted values and existing experimental measurements.

  15. A first-principles approach to finite temperature elastic constants

    International Nuclear Information System (INIS)

    Wang, Y; Wang, J J; Zhang, H; Manga, V R; Shang, S L; Chen, L-Q; Liu, Z-K

    2010-01-01

    A first-principles approach to calculating the elastic stiffness coefficients at finite temperatures was proposed. It is based on the assumption that the temperature dependence of elastic stiffness coefficients mainly results from volume change as a function of temperature; it combines the first-principles calculations of elastic constants at 0 K and the first-principles phonon theory of thermal expansion. Its applications to elastic constants of Al, Cu, Ni, Mo, Ta, NiAl, and Ni 3 Al from 0 K up to their respective melting points show excellent agreement between the predicted values and existing experimental measurements.

  16. The elastic constants and anisotropy of superconducting MgCNi3 and CdCNi3 under different pressure

    KAUST Repository

    Feng, Huifang

    2013-11-23

    The second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of MgCNi3 and CdCNi3 are presented by using first-principles methods combined with homogeneous deformation theory. The Voigt-Reuss-Hill (VRH) approximation are used to calculate the bulk modulus B, shear modulus G, averaged Young\\'s modulus E and Poisson\\'s ratio ν for polycrystals and these effective modulus are consistent with the experiments. The SOECs under different pressure of MgCNi3 and CdCNi3 are also obtained based on the TOECs. Furthermore, the Zener anisotropy factor, Chung-Buessem anisotropy index, and the universal anisotropy index are used to describe the anisotropy of MgCNi3 and CdCNi3. The anisotropy of Young\\'s modulus of single-crystal under different pressure is also presented. © 2013 Springer Science+Business Media New York.

  17. Shape Recovery of Elastic Red Blood Cells from Shear Flow Induced Deformation in Three Dimensions

    Science.gov (United States)

    Peng, Yan; Gounley, John

    2015-11-01

    Red blood cells undergo substantial shape changes in vivo. Modeled as an elastic capsule, the shape recovery of a three dimensional biconcave capsule from shear flow is studied for different preferred elastic and bending configuration. The fluid-structure interaction is modeled using the multiple-relaxation time lattice Boltzmann (LBM) and immersed boundary (IBM) methods. Based on the studies of the limited shape memory observed in three dimensions, the shape recovery is caused by the preferred elastic configuration, at least when paired with a constant spontaneous curvature. For these capsules, the incompleteness of the shape recovery observed precludes any conjecture about whether a single or multiple phase(s) are necessary to describe the recovery process. Longer simulations and a more stable methodology will be necessary. Y. Peng acknowledges support from Old Dominion University Research Foundation Grant #503921 and National Science Foundation Grant DMS-1319078.

  18. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity

    Directory of Open Access Journals (Sweden)

    Dae Woo Park

    2016-01-01

    Full Text Available Shear wave elasticity imaging (SWEI can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE- based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard tumor and surrounding tissue (soft. The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.

  19. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity.

    Science.gov (United States)

    Park, Dae Woo

    2015-01-01

    Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.

  20. Shape oscillations of elastic particles in shear flow.

    Science.gov (United States)

    Subramaniam, Dhananjay Radhakrishnan; Gee, David J

    2016-09-01

    Particle suspensions are common to biological fluid flows; for example, flow of red- and white-blood cells, and platelets. In medical technology, current and proposed methods for drug delivery use membrane-bounded liquid capsules for transport via the microcirculation. In this paper, we consider a 3D linear elastic particle inserted into a Newtonian fluid and investigate the time-dependent deformation using a numerical simulation. Specifically, a boundary element technique is used to investigate the motion and deformation of initially spherical or spheroidal particles in bounded linear shear flow. The resulting deformed shapes reveal a steady-state profile that exhibits a 'tank-treading' motion for initially spherical particles. Wall effects on particle trajectory are seen to include a modified Jeffrey׳s orbit for spheroidal inclusions with a period that varies inversely with the strength of the shear flow. Alternately, spheroidal inclusions may exhibit either a 'tumbling' or 'trembling' motion depending on the initial particle aspect ratio and the capillary number (i.e., ratio of fluid shear to elastic restoring force). We find for a capillary number of 0.1, a tumbling mode transitions to a trembling mode at an aspect ratio of 0.87 (approx.), while for a capillary number of 0.2, this transition takes place at a lower aspect ratio. These oscillatory modes are consistent with experimental observations involving similarly shaped vesicles and thus serves to validate the use of a simple elastic constitutive model to perform relevant physiological flow calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Steady shear characteristic and behavior of magneto-thermo-elasticity of isotropic MR elastomers

    International Nuclear Information System (INIS)

    Gao, Wei; Wang, Xingzhe

    2016-01-01

    The magneto-thermo-elastic steady shear behaviors of isotropic smart composites of silicon rubber matrix randomly filled with ferromagnetic particles, commonly referred to as magnetorheological (MR) elastomers, are investigated experimentally and theoretically in the present study. The strip specimens of the MR elastomer composite with different ferromagnetic particle concentrations are fabricated and implemented for lap-shear tests under both magnetic and thermal fields. It is illustrated that the magneto-thermo-elastic shear modulus of the MR elastomer is markedly enhanced with the volume fraction of ferromagnetic particles and the applied external magnetic field, while the shear modulus is decreased with the environment temperature. To qualitatively elucidate the magneto-thermo-elastic shear performance of this kind of magnetic smart composites, a modified constitutive of hyperelasticity is suggested taking into account the influence of magnetic field and temperature on the magnetic potential energy and strain energy. The theoretical modeling predictions on the stress–strain behaviors for different applied magnetic fields and environment temperatures are compared to experimental observations to demonstrate a good agreement. (paper)

  2. Elasticity of Pargasite Amphibole: A Hydrous Phase at Mid Lithospheric Discontinuity

    Science.gov (United States)

    Peng, Y.; Mookherjee, M.

    2017-12-01

    Mid Lithospheric Discontinuity (MLD) is characterized by a low shear wave velocity ( 3 to 10 %). In cratons, the depth of MLD varies between 80 and 100 km. The reduction of the shear wave velocity at MLD is similar to what is observed in the lithosphere-asthenosphere boundary (LAB). Such low velocity at MLD could be caused by partial melting, temperature induced grain boundary sliding, changes in the elastic anisotropy, and/or metasomatism which may lead to the formation of hydrous phases including mica and amphibole. Thus, it is clear that in order to assess the role of metasomatism at MLD, we need better constraints on the elasticity of hydrous phases. However, such elasticity data are scarce. In this study, we explore elasticity of pargasite amphibole [NaCa2(Mg4Al)(Si6Al2)O22(OH)2] using density functional theory (DFT) with local density approximation (LDA) and generalized gradient approximation (GGA). We find that the pressure-volume results can be adequately described by a finite strain equation with the bulk modulus, K0 being 102 and 85 GPa for LDA and GGA respectively. We also determined the full elastic constant tensor (Cij) using the finite difference method. The bulk modulus, K0 determined from the full elastic constant tensor is 104 GPa for LDA and 87 GPa for GGA. The shear modulus, G0 determined from the full elastic constant tensor is 64 GPa for LDA and 58 GPa for GGA. The bulk and shear moduli predicted with LDA are 5 and 1 % stiffer than the recent results [1]. In contrast, the bulk and shear moduli predicted with GGA are 12 and 10 % softer compared to the recent results [1]. The full elastic constant tensor for pargasite shows significant anisotropy. For instance, LDA predicts compressional (AVP) and shear (AVS) wave anisotropy of 22 and 20 % respectively. At higher pressure, elastic moduli stiffen. However, temperature is likely to have an opposite effect on the elasticity and this remains largely unknown for pargasite. Compared to the major mantle

  3. Estimation of effective elastic constants for grid plate

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Kuriyama, Masaaki; Okumura, Yoshikazu

    1980-07-01

    This article contains a method of estimation for the effective elastic constants of a grid plate, which is a flat perforated plate with pipes for cooling. The elastic constants of the grid plate are formulated for two symmetric axes. In the case of using OFCu(E 0 = 12500 kg/mm 2 , ν 0 = 0.34) as the material of the grid, the results are given as follows. E sub(L) = 3180 kg/mm 2 , E sub(T) = 3860 kg/mm 2 upsilon sub(LT) = 0.12, upsilon sub(TL) = 0.15 (author)

  4. Supersonic shear imaging provides a reliable measurement of resting muscle shear elastic modulus

    International Nuclear Information System (INIS)

    Lacourpaille, Lilian; Hug, François; Bouillard, Killian; Nordez, Antoine; Hogrel, Jean-Yves

    2012-01-01

    The aim of the present study was to assess the reliability of shear elastic modulus measurements performed using supersonic shear imaging (SSI) in nine resting muscles (i.e. gastrocnemius medialis, tibialis anterior, vastus lateralis, rectus femoris, triceps brachii, biceps brachii, brachioradialis, adductor pollicis obliquus and abductor digiti minimi) of different architectures and typologies. Thirty healthy subjects were randomly assigned to the intra-session reliability (n = 20), inter-day reliability (n = 21) and the inter-observer reliability (n = 16) experiments. Muscle shear elastic modulus ranged from 2.99 (gastrocnemius medialis) to 4.50 kPa (adductor digiti minimi and tibialis anterior). On the whole, very good reliability was observed, with a coefficient of variation (CV) ranging from 4.6% to 8%, except for the inter-operator reliability of adductor pollicis obliquus (CV = 11.5%). The intraclass correlation coefficients were good (0.871 ± 0.045 for the intra-session reliability, 0.815 ± 0.065 for the inter-day reliability and 0.709 ± 0.141 for the inter-observer reliability). Both the reliability and the ease of use of SSI make it a potentially interesting technique that would be of benefit to fundamental, applied and clinical research projects that need an accurate assessment of muscle mechanical properties. (note)

  5. The Effects of Shear Strain, Fabric, and Porosity Evolution on Elastic and Mechanical Properties of Clay-Rich Fault Gouge

    Science.gov (United States)

    Kenigsberg, A.; Saffer, D. M.; Riviere, J.; Marone, C.

    2017-12-01

    Ultrasonic/seismic waves are widely used for probing fault zone elastic and mechanical properties (gouge composition, frictional strength, density) and elastic properties (Vp, Vs, bulk and shear moduli), as it can provide insight into key processes and fault properties during shearing. These include fabric and force chain formation, porosity evolution, and fault zone stiffness, which are in turn factors in fault slip, damage, and healing. We report on a suite of direct shear experiments on synthetic fault gouge composed of 50% smectite /50% quartz at a normal stress of 25 MPa, in which we use ultrasonic wave transmission to continuously monitor compressional and shear wave velocities (Vp, Vs) up to shear strains of 25, while simultaneously measuring friction and monitoring the evolution of density and porosity. We find that wavespeeds vary with shear strain, due to fabric development and the evolution of density and porosity. The coefficient of friction peaks at μ .47 at a shear strain of .5 - 1, decreases to a steady state value of μ .43 by shear strains of 4.5- 6 and then remains rather constant to shear strains of 6 - 25, consistent with previous work. Density increases rapidly from 1.78 g/cm3 to 1.83 g/cm3 at shear strains from 0-2 (porosity decreases from 33% to 25% over that range), and then more gradually increases to a density of 2.08 g/cm3 (porosity of 21%) at a shear strain of 25. Vp increases from 2400 m/s to 2900 m/s during the onset of shear until a shear strain of 3, and then decreases to 2400-2500 by shear strain of 7-9. At shear strains above 9, Vp slowly increases as the layer becomes denser and less porous. We interpret the co-evolving changes in friction, porosity, and elastic moduli/wavespeed to reflect fabric development and alignment of clay particles as a function of shearing. More specifically, the decrease in Vp at a shear strain of 3 reflects the clay particles gradually aligning. Once the particles are aligned, the gradual increase of

  6. Prediction study of structural, elastic and electronic properties of FeMP (M = Ti, Zr, Hf) compounds

    Science.gov (United States)

    Tanto, A.; Chihi, T.; Ghebouli, M. A.; Reffas, M.; Fatmi, M.; Ghebouli, B.

    2018-06-01

    First principles calculations are applied in the study of FeMP (M = Ti, Zr, Hf) compounds. We investigate the structural, elastic, mechanical and electronic properties by combining first-principles calculations with the CASTEP approach. For ideal polycrystalline FeMP (M = Ti, Zr, Hf) the shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy indexes, Pugh's criterion, elastic wave velocities and Debye temperature are also calculated from the single crystal elastic constants. The shear anisotropic factors and anisotropy are obtained from the single crystal elastic constants. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal.

  7. Heterogeneous shear elasticity of glasses: The origin of the boson peak

    KAUST Repository

    Marruzzo, Alessia

    2013-03-08

    The local elasticity of glasses is known to be inhomogeneous on a microscopic scale compared to that of crystalline materials. Their vibrational spectrum strongly deviates from that expected from Debye\\'s elasticity theory: The density of states deviates from Debye\\'s law, the sound velocity shows a negative dispersion in the boson-peak frequency regime and there is a strong increase of the sound attenuation near the boson-peak frequency. By comparing a mean-field theory of shear-elastic heterogeneity with a large-scale simulation of a soft-sphere glass we demonstrate that the observed anomalies in glasses are caused by elastic heterogeneity. By observing that the macroscopic bulk modulus is frequency independent we show that the boson-peak-related vibrational anomalies are predominantly due to the spatially fluctuating microscopic shear stresses. It is demonstrated that the boson-peak arises from the steep increase of the sound attenuation at a frequency which marks the transition from wave-like excitations to disorder-dominated ones.

  8. Heterogeneous shear elasticity of glasses: The origin of the boson peak

    KAUST Repository

    Marruzzo, Alessia; Schirmacher, Walter; Fratalocchi, Andrea; Ruocco, Giancarlo

    2013-01-01

    The local elasticity of glasses is known to be inhomogeneous on a microscopic scale compared to that of crystalline materials. Their vibrational spectrum strongly deviates from that expected from Debye's elasticity theory: The density of states deviates from Debye's law, the sound velocity shows a negative dispersion in the boson-peak frequency regime and there is a strong increase of the sound attenuation near the boson-peak frequency. By comparing a mean-field theory of shear-elastic heterogeneity with a large-scale simulation of a soft-sphere glass we demonstrate that the observed anomalies in glasses are caused by elastic heterogeneity. By observing that the macroscopic bulk modulus is frequency independent we show that the boson-peak-related vibrational anomalies are predominantly due to the spatially fluctuating microscopic shear stresses. It is demonstrated that the boson-peak arises from the steep increase of the sound attenuation at a frequency which marks the transition from wave-like excitations to disorder-dominated ones.

  9. Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates

    International Nuclear Information System (INIS)

    Wu, Bin; Zhang, Chunli; Chen, Weiqiu; Zhang, Chuanzeng

    2015-01-01

    Material surfaces may have a remarkable effect on the mechanical behavior of magneto-electro-elastic (or multiferroic) structures at nanoscale. In this paper, a surface magneto-electro-elasticity theory (or effective boundary condition formulation), which governs the motion of the material surface of magneto-electro-elastic nanoplates, is established by employing the state-space formalism. The properties of anti-plane shear (SH) waves propagating in a transversely isotropic magneto-electro-elastic plate with nanothickness are investigated by taking surface effects into account. The size-dependent dispersion relations of both antisymmetric and symmetric SH waves are presented. The thickness-shear frequencies and the asymptotic characteristics of the dispersion relations considering surface effects are determined analytically as well. Numerical results show that surface effects play a very pronounced role in elastic wave propagation in magneto-electro-elastic nanoplates, and the dispersion properties depend strongly on the chosen surface material parameters of magneto-electro-elastic nanoplates. As a consequence, it is possible to modulate the waves in magneto-electro-elastic nanoplates through surface engineering. (paper)

  10. Softening of the elastic shear mode C{sub 66} in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Anna; Burger, Philipp [Karlsruher Institut fuer Technologie, Institut fuer Festkoerperphysik, D-76021 Karlsruhe (Germany); Karlsruher Institut fuer Technologie, Fakultaet fuer Physik, D-76128 Karlsruhe (Germany); Hardy, Frederic; Schweiss, Peter; Fromknecht, Rainer; Wolf, Thomas; Meingast, Christoph [Karlsruher Institut fuer Technologie, Institut fuer Festkoerperphysik, D-76021 Karlsruhe (Germany); Reinecker, Marius; Schranz, Wilfried [Universitaet Wien, Fakultaet fuer Physik, A-1090 Wien, Vienna (Austria)

    2013-07-01

    The structural phase transition of underdoped iron-based superconductors is accompanied by a large softening of the elastic shear mode C{sub 66}, which has attracted considerable attention. This softening has been discussed both in terms of orbital and spin-nematic fluctuations which would be responsible for the structural phase transition and, possibly, superconductivity. However, sample requirements have so far restricted experimental investigations of C{sub 66} (via measurements of the ultrasound velocity) to the Ba(Fe,Co){sub 2}As{sub 2} system. Here, we report on a new technique, based on a three-point bending setup, to probe the Young's modulus of a sample with a capacitance dilatometer. For certain orientations, the Young's modulus is related to the elastic constant C{sub 66} whose effective temperature dependence can be obtained. Platelet-like samples, as frequently encountered for iron-based systems, are easily studied with our setup. Data on several systems are presented and discussed.

  11. Elastic-constant systematics in f.c.c. metals, including lanthanides-actinides

    Energy Technology Data Exchange (ETDEWEB)

    Ledbetter, Hassel [Mechanical Engineering Department, University of Colorado, Boulder, Colorado 80309 (United States); Migliori, Albert [Los Alamos National Laboratory (E536), Los Alamos, New Mexico 87545 (United States)

    2008-01-15

    For f.c.c. metals, using Blackman's diagram of dimensionless elastic-constant ratios, we consider the systematics of physical properties and interatomic bonding. We focus especially on the lanthanides-actinides La, Ce, Yb, Th, U, Pu, those for which we know some monocrystal elastic constants. Their behavior differs from the other f.c.c. metals, and all except La show a negative Cauchy pressure, contrary to most f.c.c. metals, which show a positive Cauchy pressure. Among the lanthanides-actinides, {delta}-Pu stands apart, consistent with its many odd physical properties. Based on elastic-constant correlations, we suggest that {delta}-Pu possesses a strong s-electron interatomic-bonding component together with a covalent component. Elastically, {delta}-Pu shows properties similar to Yb. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Multiscale modeling of the effect of carbon nanotube orientation on the shear deformation properties of reinforced polymer-based composites

    Energy Technology Data Exchange (ETDEWEB)

    Montazeri, A. [Institute for Nano-Science and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Sadeghi, M. [Institute for Nano-Science and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Naghdabadi, R., E-mail: naghdabd@sharif.ed [Institute for Nano-Science and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Rafii-Tabar, H. [Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, and Research Centre for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of)

    2011-04-04

    A combination of molecular dynamics (MD), continuum elasticity and FEM is used to predict the effect of CNT orientation on the shear modulus of SWCNT-polymer nanocomposites. We first develop a transverse-isotropic elastic model of SWCNTs based on the continuum elasticity and MD to compute the transverse-isotropic elastic constants of SWCNTs. These constants are then used in an FEM-based simulation to investigate the effect of SWCNT alignment on the shear modulus of nanocomposites. Furthermore, shear stress distributions along the nanotube axis and over its cross-sectional area are investigated to study the effect of CNT orientation on the shear load transfer. - Highlights: A transverse-isotropic elastic model of SWCNTs is presented. A hierarchical MD/FEM multiscale model of SWCNT-polymer composites is developed. Behavior of these nanocomposites under shear deformation is studied. A symmetric shear stress distribution occurs only in SWCNTs with 45{sup o} orientation. The total shear load sustained is greatest in the case of 45{sup o} orientation.

  13. Multiscale modeling of the effect of carbon nanotube orientation on the shear deformation properties of reinforced polymer-based composites

    International Nuclear Information System (INIS)

    Montazeri, A.; Sadeghi, M.; Naghdabadi, R.; Rafii-Tabar, H.

    2011-01-01

    A combination of molecular dynamics (MD), continuum elasticity and FEM is used to predict the effect of CNT orientation on the shear modulus of SWCNT-polymer nanocomposites. We first develop a transverse-isotropic elastic model of SWCNTs based on the continuum elasticity and MD to compute the transverse-isotropic elastic constants of SWCNTs. These constants are then used in an FEM-based simulation to investigate the effect of SWCNT alignment on the shear modulus of nanocomposites. Furthermore, shear stress distributions along the nanotube axis and over its cross-sectional area are investigated to study the effect of CNT orientation on the shear load transfer. - Highlights: → A transverse-isotropic elastic model of SWCNTs is presented. → A hierarchical MD/FEM multiscale model of SWCNT-polymer composites is developed. → Behavior of these nanocomposites under shear deformation is studied. → A symmetric shear stress distribution occurs only in SWCNTs with 45 o orientation. → The total shear load sustained is greatest in the case of 45 o orientation.

  14. Test of parameter-free local pseudopotential for the study of dynamical elastic constants - Cu as a prototype

    Science.gov (United States)

    Bhatia, K. G.; Vyas, S. M.; Patel, A. B.; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.

    2018-05-01

    Using parameter-free (first principles local) pseudopotential, in the present communication we have calculated dynamical elastic constants (C11, C12 and C44), bulk modulus (B), shear modulus (µp), Young's modulus (Y) and Poisson's ratio (σ) in long wavelength limit. Our computed results are well agreed for C44 and B with experiment and with other theoretical results obtained within framework of second order perturbation pseudopotential theory. From the present study we conclude that pseudopotential used contain s-p hybridization and no extra term is required to account core-core repulsion.

  15. Effect of collisional elasticity on the Bagnold rheology of sheared frictionless two-dimensional disks

    Science.gov (United States)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2017-01-01

    We carry out constant volume simulations of steady-state, shear-driven flow in a simple model of athermal, bidisperse, soft-core, frictionless disks in two dimensions, using a dissipation law that gives rise to Bagnoldian rheology. Focusing on the small strain rate limit, we map out the rheological behavior as a function of particle packing fraction ϕ and a parameter Q that measures the elasticity of binary particle collisions. We find a Q*(ϕ ) that marks the clear crossover from a region characteristic of strongly inelastic collisions, Q Q* , and give evidence that Q*(ϕ ) diverges as ϕ →ϕJ , the shear-driven jamming transition. We thus conclude that the jamming transition at any value of Q behaves the same as the strongly inelastic case, provided one is sufficiently close to ϕJ. We further characterize the differing nature of collisions in the strongly inelastic vs weakly inelastic regions, and recast our results into the constitutive equation form commonly used in discussions of hard granular matter.

  16. Elastic constants of stressed and unstressed materials in the phase-field crystal model

    Science.gov (United States)

    Wang, Zi-Le; Huang, Zhi-Feng; Liu, Zhirong

    2018-04-01

    A general procedure is developed to investigate the elastic response and calculate the elastic constants of stressed and unstressed materials through continuum field modeling, particularly the phase-field crystal (PFC) models. It is found that for a complete description of system response to elastic deformation, the variations of all the quantities of lattice wave vectors, their density amplitudes (including the corresponding anisotropic variation and degeneracy breaking), the average atomic density, and system volume should be incorporated. The quantitative and qualitative results of elastic constant calculations highly depend on the physical interpretation of the density field used in the model, and also importantly, on the intrinsic pressure that usually pre-exists in the model system. A formulation based on thermodynamics is constructed to account for the effects caused by constant pre-existing stress during the homogeneous elastic deformation, through the introducing of a generalized Gibbs free energy and an effective finite strain tensor used for determining the elastic constants. The elastic properties of both solid and liquid states can be well produced by this unified approach, as demonstrated by an analysis for the liquid state and numerical evaluations for the bcc solid phase. The numerical calculations of bcc elastic constants and Poisson's ratio through this method generate results that are consistent with experimental conditions, and better match the data of bcc Fe given by molecular dynamics simulations as compared to previous work. The general theory developed here is applicable to the study of different types of stressed or unstressed material systems under elastic deformation.

  17. Elastic constants of a Laves phase compound: C15 NbCr2

    International Nuclear Information System (INIS)

    Ormeci, A.; Chu, F.; Wills, J.M.; Chen, S.P.; Albers, R.C.; Thoma, D.J.; Mitchell, T.E.

    1997-01-01

    The single-crystal elastic constants of C15 NbCr 2 have been computed by using a first-principles, self-consistent, full-potential total energy method. From these single-crystal elastic constants the isotropic elastic moduli are calculated using the Voigt and Reuss averages. The calculated values are in fair agreement with the experimental values. The implications of the results are discussed with regards to Poisson's ratio and the direction dependence of Young's modulus

  18. Mechanical Properties and Elastic Constants Due to Damage Accumulation and Amorphization in SiC

    International Nuclear Information System (INIS)

    Gao, Fei; Weber, William J.

    2004-01-01

    Damage accumulation due to cascade overlap, which was simulated previously, has been used to study the changes of elastic constants, bulk and elastic moduli as a function of dose. These mechanical properties generally decrease with increasing dose, and the rapid decrease at low-dose level indicates that point defects and small clusters play an important role in the changes of elastic constants rather than topological disorder. The internal strain relaxation has no effect on the elastic constants, C11 and C12, in perfect SiC, but it has a significant influence on all elastic constants calculated in damaged SiC. The elastic constants in the cascade-amorphized (CA) SiC decrease about 19%, 29% and 46% for C11, C12 and C44, respectively. The bulk modulus decrease 23% and the elastic modulus decreases 29%, which is consistent with experimental measurements. The stability of both the perfect SiC and CA-SiC under hydrostatic tension has been also investigated. All mechanical properties in the CA-SiC exhibit behavior similar to that in perfect SiC, but the critical stress at which the CA-SiC becomes structurally unstable is one order of magnitude smaller than that for perfect SiC

  19. Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity.

    Science.gov (United States)

    Ateş, Filiz; Hug, François; Bouillard, Killian; Jubeau, Marc; Frappart, Thomas; Couade, Mathieu; Bercoff, Jeremy; Nordez, Antoine

    2015-08-01

    Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (torque over the entire range of isometric contraction and (ii) the influence of the size of the region of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as an index of muscle torque and elastic modulus. A high coefficient of determination (R(2)) (range: 0.86-0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus as a function of torque were highly repeatable. Lower R(2) values (0.89±0.13 for 1/16 of ROI) and significantly increased absolute errors were observed when the shear elastic modulus was averaged over smaller ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18±0.24cm(2)). It suggests that the ROI should be as large as possible for accurate measurement of muscle shear modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.

    Science.gov (United States)

    Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping

    2015-10-01

    We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.

  1. Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density

    KAUST Repository

    Wu, Ying; Lai, Yun; Zhang, Zhao-Qing

    2011-01-01

    We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse

  2. Shear elastic modulus of magnetic gels with random distribution of magnetizable particles

    Science.gov (United States)

    Iskakova, L. Yu; Zubarev, A. Yu

    2017-04-01

    Magnetic gels present new type of composite materials with rich set of uniquie physical properties, which find active applications in many industrial and bio-medical technologies. We present results of mathematically strict theoretical study of elastic modulus of these systems with randomly distributed magnetizable particles in an elastic medium. The results show that an external magnetic field can pronouncedly increase the shear modulus of these composites.

  3. First-principles elastic constants and phonons of delta-Pu

    DEFF Research Database (Denmark)

    Söderlind, P.; Landa, A.; Sadigh, B.

    2004-01-01

    Elastic constants and zone-boundary phonons of delta-plutonium have been calculated within the density-functional theory. The paramagnetic state of delta-Pu is modeled by disordered magnetism utilizing either the disordered local moment or the special quasirandom structure techniques. The anomalo......Elastic constants and zone-boundary phonons of delta-plutonium have been calculated within the density-functional theory. The paramagnetic state of delta-Pu is modeled by disordered magnetism utilizing either the disordered local moment or the special quasirandom structure techniques....... The anomalously soft C-' as well as a large anisotropy ratio (C-44/C-') of delta-Pu is reproduced by this theoretical model. Also the recently measured phonons for delta-Pu compare relatively well with their theoretical counterpart at the zone boundaries....

  4. Elastic constants of a Laves phase compound: C15 NbCr{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ormeci, A. [Koc Univ., Istanbul (Turkey)]|[Los Alamos National Lab., NM (United States); Chu, F.; Wills, J.M.; Chen, S.P.; Albers, R.C.; Thoma, D.J.; Mitchell, T.E. [Los Alamos National Lab., NM (United States)

    1997-04-01

    The single-crystal elastic constants of C15 NbCr{sub 2} have been computed by using a first-principles, self-consistent, full-potential total energy method. From these single-crystal elastic constants the isotropic elastic moduli are calculated using the Voigt and Reuss averages. The calculated values are in fair agreement with the experimental values. The implications of the results are discussed with regards to Poisson`s ratio and the direction dependence of Young`s modulus.

  5. Shear-wave elastographic features of breast cancers: comparison with mechanical elasticity and histopathologic characteristics.

    Science.gov (United States)

    Lee, Su Hyun; Moon, Woo Kyung; Cho, Nariya; Chang, Jung Min; Moon, Hyeong-Gon; Han, Wonshik; Noh, Dong-Young; Lee, Jung Chan; Kim, Hee Chan; Lee, Kyoung-Bun; Park, In-Ae

    2014-03-01

    The objective of this study was to compare the quantitative and qualitative shear-wave elastographic (SWE) features of breast cancers with mechanical elasticity and histopathologic characteristics. This prospective study was conducted with institutional review board approval, and written informed consent was obtained. Shear-wave elastography was performed for 30 invasive breast cancers in 30 women before surgery. The mechanical elasticity of a fresh breast tissue section, correlated with the ultrasound image, was measured using an indentation system. Quantitative (maximum, mean, minimum, and standard deviation of elasticity in kilopascals) and qualitative (color heterogeneity and presence of signal void areas in the mass) SWE features were compared with mechanical elasticity and histopathologic characteristics using the Pearson correlation coefficient and the Wilcoxon signed rank test. Maximum SWE values showed a moderate correlation with maximum mechanical elasticity (r = 0.530, P = 0.003). There were no significant differences between SWE values and mechanical elasticity in histologic grade I or II cancers (P = 0.268). However, SWE values were significantly higher than mechanical elasticity in histologic grade III cancers (P masses were present in 43% of breast cancers (13 of 30) and were correlated with dense collagen depositions (n = 11) or intratumoral necrosis (n = 2). Quantitative and qualitative SWE features reflect both the mechanical elasticity and histopathologic characteristics of breast cancers.

  6. Determination of mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal.

    Science.gov (United States)

    Soluch, Waldemar; Brzozowski, Ernest; Lysakowska, Magdalena; Sadura, Jolanta

    2011-11-01

    Mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal were determined. Mass density was obtained from the measured ratio of mass to volume of a cuboid. The dielectric constants were determined from the measured capacitances of an interdigital transducer (IDT) deposited on a Z-cut plate and from a parallel plate capacitor fabricated from this plate. The elastic and piezoelectric constants were determined by comparing the measured and calculated SAW velocities and electromechanical coupling coefficients on the Z- and X-cut plates. The following new constants were obtained: mass density p = 5986 kg/m(3); relative dielectric constants (at constant strain S) ε(S)(11)/ε(0) = 8.6 and ε(S)(11)/ε(0) = 10.5, where ε(0) is a dielectric constant of free space; elastic constants (at constant electric field E) C(E)(11) = 349.7, C(E)(12) = 128.1, C(E)(13) = 129.4, C(E)(33) = 430.3, and C(E)(44) = 96.5 GPa; and piezoelectric constants e(33) = 0.84, e(31) = -0.47, and e(15) = -0.41 C/m(2).

  7. Analytic approximations for the elastic moduli of two-phase materials

    DEFF Research Database (Denmark)

    Zhang, Z. J.; Zhu, Y. K.; Zhang, P.

    2017-01-01

    Based on the models of series and parallel connections of the two phases in a composite, analytic approximations are derived for the elastic constants (Young's modulus, shear modulus, and Poisson's ratio) of elastically isotropic two-phase composites containing second phases of various volume...

  8. Density functional study of elastic and vibrational properties of the Heusler-type alloys Fe2VAl and Fe2VGa

    DEFF Research Database (Denmark)

    Kanchana, V.; Vaitheeswaran, G.; Ma, Yanming

    2009-01-01

    agree well with the experimental values. The elastic constants of Fe2VAl and Fe2VGa are predicted. From the elastic constants the shear modulus, Young's modulus, Poisson's ratio, sound velocities, and Debye temperatures are obtained. By analyzing the ratio between the bulk and shear moduli, we conclude...

  9. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2

    International Nuclear Information System (INIS)

    Ravindran, P.; Fast, L.; Korzhavyi, P.A.; Johansson, B.; Wills, J.; Eriksson, O.

    1998-01-01

    A theoretical formalism to calculate the single crystal elastic constants for orthorhombic crystals from first principle calculations is described. This is applied for TiSi 2 and we calculate the elastic constants using a full potential linear muffin-tin orbital method using the local density approximation (LDA) and generalized gradient approximation (GGA). The calculated values compare favorably with recent experimental results. An expression to calculate the bulk modulus along crystallographic axes of single crystals, using elastic constants, has been derived. From this the calculated linear bulk moduli are found to be in good agreement with the experiments. The shear modulus, Young's modulus, and Poisson's ratio for ideal polycrystalline TiSi 2 are also calculated and compared with corresponding experimental values. The directional bulk modulus and the Young's modulus for single crystal TiSi 2 are estimated from the elastic constants obtained from LDA as well as GGA calculations and are compared with the experimental results. The shear anisotropic factors and anisotropy in the linear bulk modulus are obtained from the single crystal elastic constants. From the site and angular momentum decomposed density of states combined with a charge density analysis and the elastic anisotropies, the chemical bonding nature between the constituents in TiSi 2 is analyzed. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal. The calculated elastic properties are found to be in good agreement with experimental values when the generalized gradient approximation is used for the exchange and correlation potential. copyright 1998 American Institute of Physics

  10. Thermodynamics and elastic properties of Ir from first-principle calculations

    International Nuclear Information System (INIS)

    Li Qiang; Huang Duohui; Cao Qilong; Wang Fanhou

    2013-01-01

    Within the framework of the quasiharmonic approximation, the thermodynamics and elastic properties, including phonon dispersion curves, equation of state, linear thermal expansion coefficient and temperature-dependent entropy, enthalpy, heat capacity, elastic constants, bulk modulus, shear modulus, Young's modulus of Ir have been studied using first-principles projector-augmented wave method. The results revealed that the predicted phonon dispersion curves of Ir are in agreement with the experimental measurements by neutron diffractions. Considering the thermal electronic contribution to Helmholtz free energy, the calculated entropy, enthalpy, heat capacity and linear thermal expansion co- efficient from the first-principle are consistent well with the experimental data. At 2600 K, the electronic heat capacity accounts for 17% of the total heat capacity at constant pressure, thus the thermal electronic contribution to Helmholtz free energy is very important. The predicted elastic constants, bulk modulus, shear modulus and Young's modulus at room temperature are also in agreement with the available measurements and increase with the increasing temperature. (authors)

  11. Elastic constants of the C15 laves phase compound NbCr2

    International Nuclear Information System (INIS)

    Chu, F.; He, Y.; Thoma, D.J.; Mitchell, T.E.

    1995-01-01

    Elastic properties of a solid are important because they relate to various fundamental solid-state phenomena such as interatomic potentials, equations of state, and phonon spectra. Elastic properties are also linked thermodynamically with specific heat, thermal expansion, Debye temperature, and Gruneisen parameter. Most important, knowledge of elastic constants is essential for many practical applications related to the mechanical properties of a solid as well: load-deflection, thermoelastic stress, internal strain (residual stress), sound velocities, dislocation core structure, and fracture toughness. In order to understand better the physical properties and deformation behavior of the C15 compound NbCr 2 , the authors have studied its elastic properties in this paper. In Section 2, the experimental methods are described, including the preparation of the sample and the measurement of the elastic constants. In Section 3, the experimental results are presented and the implications of these experimental results are discussed. Conclusions are drawn in Section 4

  12. Free vibration analysis of a cracked shear deformable beam on a two-parameter elastic foundation using a lattice spring model

    Science.gov (United States)

    Attar, M.; Karrech, A.; Regenauer-Lieb, K.

    2014-05-01

    The free vibration of a shear deformable beam with multiple open edge cracks is studied using a lattice spring model (LSM). The beam is supported by a so-called two-parameter elastic foundation, where normal and shear foundation stiffnesses are considered. Through application of Timoshenko beam theory, the effects of transverse shear deformation and rotary inertia are taken into account. In the LSM, the beam is discretised into a one-dimensional assembly of segments interacting via rotational and shear springs. These springs represent the flexural and shear stiffnesses of the beam. The supporting action of the elastic foundation is described also by means of normal and shear springs acting on the centres of the segments. The relationship between stiffnesses of the springs and the elastic properties of the one-dimensional structure are identified by comparing the homogenised equations of motion of the discrete system and Timoshenko beam theory.

  13. Shear stiffness in nanolaminar Ti3SiC2 challenges ab initio calculations

    International Nuclear Information System (INIS)

    Kisi, E H; Zhang, J F; Kirstein, O; Riley, D P; Styles, M J; Paradowska, A M

    2010-01-01

    Nanolaminates such as the M n+1 AX n (MAX) phases are a material class with ab initio derived elasticity tensors published for over 250 compounds. We have for the first time experimentally determined the full elasticity tensor of the archetype MAX phase, Ti 3 SiC 2 , using polycrystalline samples and in situ neutron diffraction. The experimental elastic constants show extreme shear stiffness, with c 44 more than five times greater than expected for an isotropic material. Such shear stiffness is quite rare in hexagonal materials and strongly contradicts the predictions of all published MAX phase elastic constants derived from ab initio calculations. It is concluded that second order properties such as elastic moduli derived from ab initio calculations require careful experimental verification. The diffraction technique used currently provides the only method of verification for the elasticity tensor for the majority of new materials where single crystals are not available. (fast track communication)

  14. Ultrasonic Determination of the Elastic Constants of Epoxy-natural Fiber Composites

    Science.gov (United States)

    Valencia, C. A. Meza; Pazos-Ospina, J. F.; Franco, E. E.; Ealo, Joao L.; Collazos-Burbano, D. A.; Garcia, G. F. Casanova

    This paper shows the applications ultrasonic through-transmission technique to determine the elastic constants of two polymer-natural fiber composite materials with potential industrial application and economic and environmental advantages. The transversely isotropic coconut-epoxy and fique-epoxy samples were analyzed using an experimental setup which allows the sample to be rotated with respect to transducers faces and measures the time-of-flight at different angles of incidence. Then, the elastic properties of the material were obtained by fitting the experimental data to the Christoffel equation. Results show a good agreement between the measured elastic constants and the values predicted by an analytical model. The velocities as a function of the incidence angle are reported and the effect of the natural fiber on the stiffness of the composite is discussed.

  15. Determination of elastic constants of fuels plates based on uranium by ultrasound testing

    International Nuclear Information System (INIS)

    Moreira Castro, Martin Ignacio

    2015-01-01

    Current nuclear reactors use as U-235 U-enriched compounds enriched with U-235, requiring U-alloys that increase the amount of atoms available for nuclear fission in a convenient way. This study was carried out on fuel plates manufactured in the Chilean Nuclear Energy Commission, whose cores are composed of a dispersed mixture Al-U_3Si_2 and Al-U_7Mo, with different densities of uranium, covered by a coating of Al6061. The objective was to characterize elastically and classify the fuel plates analyzed. Specifically, five Al-U_3Si_2 fuel plates with 1.7 gU/cm"3, eight A-U_3Si_2 with 3.4 gU/cm"3, five of A-l U_3Si_2 with 4.8 gU/cm"3 were successfully studied. The apparent elastic constants (Young and Shear modules, and Poisson coefficient) were determined in the area where the fuel is located (MEAT) by means of an ultrasound sampling technique, thus being able to characterize them and classify them according to their composition. The behavior of the elastic constants generally shows a tendency to decrease as the amount of U_3Si_2 particles dispersed in the MEAT zone of the fuel plates increases. In addition, the non-destructive test method used made it possible to detect several differences between the fuel plates analyzed, such as the amount of reduction in rolling, among others. Additionally, six experimental fuel miniplates were analyzed whose meat were formed by a dispersion of the Al-UMo type, specifically: two of Al-U_7Mo with 6.0 gU/cm"3, two of Al-U_7Mo with 7.0 gU/ cm"3 and two of Al-U_7Mo with 8.0 gU/cm"3. The response of the U-Mo fuel miniplates against this technique was not good, so several ideas were proposed to improve this situation

  16. Elastic and plastic characteristics of a model Cu–Zr amorphous alloy

    International Nuclear Information System (INIS)

    Nakamura, Akiho; Kamimura, Yasushi; Edagawa, Keiichi; Takeuchi, Shin

    2014-01-01

    Athermal quasistatic simulation of shear deformation has been conducted for a realistic model Cu–Zr amorphous alloy to investigate characteristic features of elasticity and plasticity of the material. Significant reduction of the shear modulus by nonaffine atomic displacements and appreciable nonlinearity of elasticity have been observed. The fourth-order elastic constant in shear deformation and the ideal shear strength have been evaluated. Plastic deformation has been observed to start with isolated local shear transformations (LSTs) followed by collective LSTs leading to the formation of a shear band. Participation-ratio analysis (PRA) has demonstrated how the nonaffine displacement field converges as the system approaches the critical point of losing structural stability. PRA has also evaluated quantitatively the numbers of atoms participating in LSTs – the average number is about 30. Spatially anisotropic development of nascent shear band on a plane has been shown, attributable to anisotropic internal stress field induced by an LST. The evaluated stresses for the shear-band nucleation and for its propagation have indicated that the yielding in real materials is controlled by the shear-band propagation, as previously pointed out

  17. Structural phase transition and elastic properties of mercury chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Shriya, S. [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria)

    2012-08-15

    Pressure induced structural transition and elastic properties of ZnS-type (B3) to NaCl-type (B1) structure in mercury chalcogenides (HgX; X = S, Se and Te) are presented. An effective interionic interaction potential (EIOP) with long-range Coulomb, as well charge transfer interactions, Hafemeister and Flygare type short-range overlap repulsion extended up to the second neighbor ions and van der Waals interactions are considered. Emphasis is on the evaluation of the pressure dependent Poisson's ratio {nu}, the ratio R{sub BT/G} of B (bulk modulus) over G (shear modulus), anisotropy parameter, Shear and Young's modulus, Lame constant, Kleinman parameter, elastic wave velocity and thermodynamical property as Debye temperature. The Poisson's ratio behavior infers that Mercury chalcogenides are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations. Highlights: Black-Right-Pointing-Pointer Vast volume discontinuity in phase diagram infers transition from ZnS to NaCl structure. Black-Right-Pointing-Pointer The shear elastic constant C{sub 44} is nonzero confirms the mechanical stability. Black-Right-Pointing-Pointer Pressure dependence of {theta}{sub D} infers the softening of lattice with increasing pressure. Black-Right-Pointing-Pointer Estimated bulk, shear and tetragonal moduli satisfied elastic stability criteria. Black-Right-Pointing-Pointer In both B3 and B1 phases, C{sub 11} and C{sub 12} increase linearly with pressure.

  18. Estimation of Single-Crystal Elastic Constants of Polycrystalline Materials from Back-Scattered Grain Noise

    International Nuclear Information System (INIS)

    Haldipur, P.; Margetan, F. J.; Thompson, R. B.

    2006-01-01

    Single-crystal elastic stiffness constants are important input parameters for many calculations in material science. There are well established methods to measure these constants using single-crystal specimens, but such specimens are not always readily available. The ultrasonic properties of metal polycrystals, such as velocity, attenuation, and backscattered grain noise characteristics, depend in part on the single-crystal elastic constants. In this work we consider the estimation of elastic constants from UT measurements and grain-sizing data. We confine ourselves to a class of particularly simple polycrystalline microstructures, found in some jet-engine Nickel alloys, which are single-phase, cubic, equiaxed, and untextured. In past work we described a method to estimate the single-crystal elastic constants from measured ultrasonic velocity and attenuation data accompanied by metallographic analysis of grain size. However, that methodology assumes that all attenuation is due to grain scattering, and thus is not valid if appreciable absorption is present. In this work we describe an alternative approach which uses backscattered grain noise data in place of attenuation data. Efforts to validate the method using a pure copper specimen are discussed, and new results for two jet-engine Nickel alloys are presented

  19. Emergence of linear elasticity from the atomistic description of matter

    Energy Technology Data Exchange (ETDEWEB)

    Cakir, Abdullah, E-mail: acakir@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University (Singapore); Pica Ciamarra, Massimo [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University (Singapore); Dipartimento di Scienze Fisiche, CNR–SPIN, Università di Napoli Federico II, I-80126 Napoli (Italy)

    2016-08-07

    We investigate the emergence of the continuum elastic limit from the atomistic description of matter at zero temperature considering how locally defined elastic quantities depend on the coarse graining length scale. Results obtained numerically investigating different model systems are rationalized in a unifying picture according to which the continuum elastic limit emerges through a process determined by two system properties, the degree of disorder, and a length scale associated to the transverse low-frequency vibrational modes. The degree of disorder controls the emergence of long-range local shear stress and shear strain correlations, while the length scale influences the amplitude of the fluctuations of the local elastic constants close to the jamming transition.

  20. Emergence of linear elasticity from the atomistic description of matter

    International Nuclear Information System (INIS)

    Cakir, Abdullah; Pica Ciamarra, Massimo

    2016-01-01

    We investigate the emergence of the continuum elastic limit from the atomistic description of matter at zero temperature considering how locally defined elastic quantities depend on the coarse graining length scale. Results obtained numerically investigating different model systems are rationalized in a unifying picture according to which the continuum elastic limit emerges through a process determined by two system properties, the degree of disorder, and a length scale associated to the transverse low-frequency vibrational modes. The degree of disorder controls the emergence of long-range local shear stress and shear strain correlations, while the length scale influences the amplitude of the fluctuations of the local elastic constants close to the jamming transition.

  1. Diffraction and single-crystal elastic constants of Inconel 625 at room and elevated temperatures determined by neutron diffraction

    International Nuclear Information System (INIS)

    Wang, Zhuqing; Stoica, Alexandru D.; Ma, Dong; Beese, Allison M.

    2016-01-01

    In this work, diffraction and single-crystal elastic constants of Inconel 625 have been determined by means of in situ loading at room and elevated temperatures using time-of-flight neutron diffraction. Theoretical models proposed by Voigt, Reuss, and Kroner were used to determine single-crystal elastic constants from measured diffraction elastic constants, with the Kroner model having the best ability to capture experimental data. The magnitude of single-crystal elastic moduli, computed from single-crystal elastic constants, decreases and the single crystal anisotropy increases as temperature increases, indicating the importance of texture in affecting macroscopic stress at elevated temperatures. The experimental data reported here are of great importance in understanding additive manufacturing of metallic components as: diffraction elastic constants are required for computing residual stresses from residual lattice strains measured using neutron diffraction, which can be used to validate thermomechanical models of additive manufacturing, while single-crystal elastic constants can be used in crystal plasticity modeling, for example, to understand mechanical deformation behavior of additively manufactured components.

  2. Diffraction and single-crystal elastic constants of Inconel 625 at room and elevated temperatures determined by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhuqing [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Stoica, Alexandru D. [Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Ma, Dong, E-mail: dongma@ornl.gov [Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Beese, Allison M., E-mail: amb961@psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2016-09-30

    In this work, diffraction and single-crystal elastic constants of Inconel 625 have been determined by means of in situ loading at room and elevated temperatures using time-of-flight neutron diffraction. Theoretical models proposed by Voigt, Reuss, and Kroner were used to determine single-crystal elastic constants from measured diffraction elastic constants, with the Kroner model having the best ability to capture experimental data. The magnitude of single-crystal elastic moduli, computed from single-crystal elastic constants, decreases and the single crystal anisotropy increases as temperature increases, indicating the importance of texture in affecting macroscopic stress at elevated temperatures. The experimental data reported here are of great importance in understanding additive manufacturing of metallic components as: diffraction elastic constants are required for computing residual stresses from residual lattice strains measured using neutron diffraction, which can be used to validate thermomechanical models of additive manufacturing, while single-crystal elastic constants can be used in crystal plasticity modeling, for example, to understand mechanical deformation behavior of additively manufactured components.

  3. Evaluation of single crystal coefficients from mechanical and x-ray elastic constants of the polycrystal

    International Nuclear Information System (INIS)

    Hauk, V.; Kockelmann, H.

    1979-01-01

    Methods of calculation are developed for determination of single crystal elastic compliance or stiffness constants of cubic and hexagonal materials from mechanical and X-ray elastic constants of polycrystals. The calculations are applied to pure, cubic iron and hexagonal WC. There are no single crystal constants in the literature for WC, because no single crystals suitable for measurement are available. (orig.) [de

  4. Mining for elastic constants of intermetallics from the charge density landscape

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chang Sun; Broderick, Scott R. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Jones, Travis E. [Molecular Theory Group, Colorado School of Mines, Golden, CO 80401 (United States); Loyola, Claudia [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Eberhart, Mark E. [Molecular Theory Group, Colorado School of Mines, Golden, CO 80401 (United States); Rajan, Krishna, E-mail: krajan@iastate.edu [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)

    2015-02-01

    There is a significant challenge in designing new materials for targeted properties based on their electronic structure. While in principle this goal can be met using knowledge of the electron charge density, the relationships between the density and properties are largely unknown. To help overcome this problem we develop a quantitative structure–property relationship (QSPR) between the charge density and the elastic constants for B2 intermetallics. Using a combination of informatics techniques for screening all the potentially relevant charge density descriptors, we find that C{sub 11} and C{sub 44} are determined solely from the magnitude of the charge density at its critical points, while C{sub 12} is determined by the shape of the charge density at its critical points. From this reduced charge density selection space, we develop models for predicting the elastic constants of an expanded number of intermetallic systems, which we then use to predict the mechanical stability of new systems. Having reduced the descriptors necessary for modeling elastic constants, statistical learning approaches may then be used to predict the reduced knowledge-based required as a function of the constituent characteristics.

  5. Mechanical properties and local mobility of atactic-polystyrene films under constant-shear deformation

    NARCIS (Netherlands)

    Hudzinskyy, D.; Michels, M.A.J.; Lyulin, A.V.

    2012-01-01

    We have performed molecular-dynamics simulations of atactic polystyrene thin films to study the effect of shear rate, pressure, and temperature on the stress-strain behaviour, the relevant energetic contributions and non-affine displacements of polymer chains during constant-shear deformation. Under

  6. Optimal determination of the elastic constants of woven 2D SiC/SiC composite materials

    International Nuclear Information System (INIS)

    Mouchtachi, A; Guerjouma, R El; Baboux, J C; Rouby, D; Bouami, D

    2004-01-01

    For homogeneous materials, the ultrasonic immersion method, associated with a numerical optimization process mostly based on Newton's algorithm, allows the determination of elastic constants for various synthetic and natural composite materials. Nevertheless, a principal limitation of the existing optimization procedure occurs when the considered material is at the limit of the homogeneous hypothesis. Such is the case of the woven bidirectional SiC matrix and SiC fibre composite material. In this study, we have developed two numerical methods for the determination of the elastic constants of the 2D SiC/SiC composite material (2D SiC/SiC). The first one is based on Newton's algorithm: the elastic constants are obtained by minimizing the square deviation between experimental and calculated velocities. The second method is based on the Levenberg-Marquardt algorithm. We show that these algorithms give the same results in the case of homogeneous anisotropic composite materials. For the 2D SiC/SiC composite material, the two methods, using the same measured velocities, give different sets of elastic constants. We then note that the Levenberg-Marquardt algorithm enables a better convergence towards a global set of elastic constants in good agreement with the elastic properties, which can be measured using classical quasi-static methods

  7. Dynamic measurements of the elastic constants of glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    2005-01-01

    . But a new mechanical design, which reduces mechanical resonance, is described. The measurements were carried out in atmospheric air at normal pressure, and this causes an oscillatory airflow in the sample. To obtain the elastic constants, the influence of the airflow was subtracted from the data by a new...

  8. The transverse shear deformation behaviour of magneto-electro-elastic shell

    International Nuclear Information System (INIS)

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H.; Faris, Waleed

    2016-01-01

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour

  9. The transverse shear deformation behaviour of magneto-electro-elastic shell

    Energy Technology Data Exchange (ETDEWEB)

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H. [UniversitiTeknologi PETRONAS, Perak (Malaysia); Faris, Waleed [International Islamic University Malaysia, Perak (Malaysia)

    2016-01-15

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour.

  10. Nonlinear reflection of shock shear waves in soft elastic media.

    Science.gov (United States)

    Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël

    2010-02-01

    For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.

  11. Elastic softness of hybrid lead halide perovskites

    KAUST Repository

    Ferreira, A. C.; Lé toublon, A.; Paofai, S.; Raymond, S.; Ecolivet, C.; Rufflé , B.; Cordier, S.; Katan, C.; Saidaminov, Makhsud I.; Zhumekenov, A. A.; Bakr, Osman; Even, J.; Bourges, Ph.

    2018-01-01

    scattering, low frequency acoustic phonons in four different hybrid perovskite single crystals: MAPbBr3, FAPbBr3, MAPbI3 and α-FAPbI3 (MA: methylammonium, FA: formamidinium). We report a complete set of elastic constants caracterized by a very soft shear

  12. Change of elastic constants induced by point defects in hop crystals

    International Nuclear Information System (INIS)

    Tome, C.

    1979-10-01

    An approximate model is developed to calculate the change of elastic constants induced by point defects in hcp metals, supposed the defect configuration is known. General expressions relating the change of elastic moduli to the final atomic coordinates and to the defect force field are derived using the specific symmetry of the defect. Explicit calculations are done for Mg. The predicted change of elastic moduli turns out to be negative for vacancies and trigonal interstitials while for hexagonal interstitials a positive change is predicted. Compatibility with experimental data would suggest that the trigonal configuration is the stable one. (author)

  13. Line-focus acoustic microscopy of Ti-6242 α/β single colony: determination of elastic constants

    International Nuclear Information System (INIS)

    Kim, J.-Y.; Yakovlev, V.; Rokhlin, S.I.

    2002-01-01

    Time-resolved line-focus acoustic microscopy is performed for determining elastic constants of Ti-6242 α/β-single colony and Ti-6 α-phase single crystal. Surface acoustic wave (SAW) velocities are obtained as a function of the propagation angle from measured time-delays of SAW signals. The propagation of surface waves in a semi-infinite half space formed by anisotropic layers inclined arbitrarily to the sample surface is studied to model a quasi-random lamellar structure of the Ti-6242 α/β-single colony. Effective elastic constants of the multilayered structure are derived and verified through the comparison with exact ones, based on which SAW velocities in non-principal planes are calculated. Effective and constituent elastic constants of the α/β-single colony and the α-phase single crystal are inversely determined from the measured and calculated SAW velocities. The α- and β-phase elastic constants from the α/β-single colony so determined are compared with those from the α-single crystal and data in the literature

  14. Tissue elasticity of in vivo skeletal muscles measured in the transverse and longitudinal planes using shear wave elastography.

    Science.gov (United States)

    Chino, Kentaro; Kawakami, Yasuo; Takahashi, Hideyuki

    2017-07-01

    The aim of the present study was to measure in vivo skeletal muscle elasticity in the transverse and longitudinal planes using shear wave elastography and then to compare the image stability, measurement values and measurement repeatability between these imaging planes. Thirty-one healthy males participated in this study. Tissue elasticity (shear wave velocity) of the medial gastrocnemius, rectus femoris, biceps brachii and rectus abdominis was measured in both the transverse and longitudinal planes using shear wave elastography. Image stability was evaluated by the standard deviation of the colour distribution in the shear wave elastography image. Measurement repeatability was assessed by the coefficient of variance obtained from three measurement values. Image stability of all tested muscles was significantly higher in the longitudinal plane (Pplanes (P>0·05), except in the biceps brachii (P = 0·001). Measurement values of the medial gastrocnemius, rectus femoris and biceps brachii were significantly different between the imaging planes (Pplane, which indicates that imaging plane should be considered when measuring skeletal muscle tissue elasticity by shear wave elastography. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  15. A simple model to understand the role of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow

    Science.gov (United States)

    Viallat, Annie; Abkarian, Manouk; Dupire, Jules

    2015-11-01

    The analytical model presented by Keller and Skalak on the dynamics of red blood cells in shear flow described the cell as a fluid ellipsoid of fixed shape. It was extended to introduce shear elasticity of the cell membrane. We further extend the model when the cell discoid physiological shape is not a stress-free shape. We show that spheroid stress-free shapes enables fitting experimental data with values of shear elasticity typical to that found with micropipettes and optical tweezers. For moderate shear rates (when RBCs keep their discoid shape) this model enables to quantitatively determine an effective cell viscosity, that combines membrane and hemoglobin viscosities and an effective shear modulus of the membrane that combines shear modulus and stress-free shape. This model allows determining RBC mechanical parameters both in the tanktreading regime for cells suspended in a high viscosity medium, and in the tumbling regime for cells suspended in a low viscosity medium. In this regime,a transition is predicted between a rigid-like tumbling motion and a fluid-like tumbling motion above a critical shear rate, which is directly related to the mechanical parameters of the cell. A*MIDEX (n ANR-11-IDEX-0001-02) funded by the ''Investissements d'Avenir'', Region Languedoc-Roussillon, Labex NUMEV (ANR-10-LABX-20), BPI France project DataDiag.

  16. Origin of shear thickening in semidilute wormlike micellar solutions and evidence of elastic turbulence

    International Nuclear Information System (INIS)

    Marín-Santibáñez, Benjamín M.; Pérez-González, José; Rodríguez-González, Francisco

    2014-01-01

    The origin of shear thickening in an equimolar semidilute wormlike micellar solution of cetylpyridinium chloride and sodium salicylate was investigated in this work by using Couette rheometry, flow visualization, and capillary Rheo-particle image velocimetry. The use of the combined methods allowed the discovery of gradient shear banding flow occurring from a critical shear stress and consisting of two main bands, one isotropic (transparent) of high viscosity and one structured (turbid) of low viscosity. Mechanical rheometry indicated macroscopic shear thinning behavior in the shear banding regime. However, local velocimetry showed that the turbid band increased its viscosity along with the shear stress, even though barely reached the value of the viscosity of the isotropic phase. This shear band is the precursor of shear induced structures that subsequently give rise to the average increase in viscosity or apparent shear thickening of the solution. Further increase in the shear stress promoted the growing of the turbid band across the flow region and led to destabilization of the shear banding flow independently of the type of rheometer used, as well as to vorticity banding in Couette flow. At last, vorticity banding disappeared and the flow developed elastic turbulence with chaotic dynamics

  17. Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation

    Science.gov (United States)

    Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.

    2012-01-01

    The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material. PMID:22757501

  18. X-ray elastic constants in textured Zr-base materials

    International Nuclear Information System (INIS)

    Ortiz, M.; Pochettino, A.A.; Lebrun, J.L.; Maeder, G.

    1993-01-01

    A general method for the calculation of the X-ray elastic constants (XREC) for textured hexagonal close-packed (hcp) materials was developed by using the orientation distribution function (ODF) and the Reuss hypothesis. This method was applied to textured zirconium (Zr) sheets and zircaloy 4 (Zry 4) extruded tubes. For these samples, where the elastic anisotropy is not very strong, an 'isotropic approximation' method is proposed using the ODF data. In that case, the classical XREC 1/2S 2 and S, values are calculated and experimentally verified for (10 bar 14) diffracting planes. Theoretical XREC values are also given for different (hkil) that could be chosen according to the experimental conditions, considering texture effects on diffracting peak intensities

  19. Trends in elasticity and electronic structure of 5d transition metal diborides: first-principles calculations

    International Nuclear Information System (INIS)

    Hao Xianfeng; Wu Zhijian; Xu Yuanhui; Zhou Defeng; Liu Xiaojuan; Meng Jian

    2007-01-01

    We investigate the cohesive energy, heat of formation, elastic constant and electronic band structure of transition metal diborides TMB 2 (TM = Hf, Ta, W, Re, Os and Ir, Pt) in the Pmmn space group using the ab initio pseudopotential total energy method. Our calculations indicate that there is a relationship between elastic constant and valence electron concentration (VEC): the bulk modulus and shear modulus achieve their maximum when the VEC is in the range of 6.8-7.2. In addition, trends in the elastic constant are well explained in terms of electronic band structure analysis, e.g., occupation of valence electrons in states near the Fermi level, which determines the cohesive energy and elastic properties. The maximum in bulk modulus and shear modulus is attributed to the nearly complete filling of TM d-B p bonding states without filling the antibonding states. On the basis of the observed relationship, we predict that alloying W and Re in the orthorhombic structure OsB 2 might be harder than alloying the Ir element. Indeed, the further calculations confirmed this expectation

  20. Trends in elasticity and electronic structure of 5d transition metal diborides: first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hao Xianfeng [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Wu Zhijian [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Xu Yuanhui [School of Biological Engineering, Changchun University of Technology, Changchun 130012 (China); Zhou Defeng [School of Biological Engineering, Changchun University of Technology, Changchun 130012 (China); Liu Xiaojuan [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng Jian [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2007-05-16

    We investigate the cohesive energy, heat of formation, elastic constant and electronic band structure of transition metal diborides TMB{sub 2} (TM = Hf, Ta, W, Re, Os and Ir, Pt) in the Pmmn space group using the ab initio pseudopotential total energy method. Our calculations indicate that there is a relationship between elastic constant and valence electron concentration (VEC): the bulk modulus and shear modulus achieve their maximum when the VEC is in the range of 6.8-7.2. In addition, trends in the elastic constant are well explained in terms of electronic band structure analysis, e.g., occupation of valence electrons in states near the Fermi level, which determines the cohesive energy and elastic properties. The maximum in bulk modulus and shear modulus is attributed to the nearly complete filling of TM d-B p bonding states without filling the antibonding states. On the basis of the observed relationship, we predict that alloying W and Re in the orthorhombic structure OsB{sub 2} might be harder than alloying the Ir element. Indeed, the further calculations confirmed this expectation.

  1. Temperature variation of higher-order elastic constants of MgO

    Indian Academy of Sciences (India)

    series of strains using Taylor's series expansion. The coefficients of quadratic, cu- ... as thermal expansion, specific heat at higher temperature, temperature variation of ultrasonic velocity and attenuation, .... such studies have an impression that linear variation of elastic constant is true. The experimental study shows that ...

  2. First-principles study of structural and elastic properties of monoclinic and orthorhombic BiMnO3

    International Nuclear Information System (INIS)

    Mei Zhigang; Shang Shunli; Wang Yi; Liu Zikui

    2010-01-01

    The structural and elastic properties of BiMnO 3 with monoclinic (C 2/c) and orthorhombic (Pnma) ferromagnetic (FM) structures have been studied by first-principles calculations within LDA + U and GGA + U approaches. The equilibrium volumes and bulk moduli of BiMnO 3 phases are evaluated by equation of state (EOS) fittings, and the bulk properties predicted by LDA + U calculations are in better agreement with experiment. The orthorhombic phase is found to be more stable than the monoclinic phase at ambient pressure. A monoclinic to monoclinic phase transition is predicted to occur at a pressure of about 10 GPa, which is ascribed to magnetism versus volume instability of monoclinic BiMnO 3 . The single-crystal elastic stiffness constants c ij s of the monoclinic and orthorhombic phases are investigated using the stress-strain method. The c 46 of the monoclinic phase is predicted to be negative. In addition, the polycrystalline elastic properties including bulk modulus, shear modulus, Young's modulus, bulk modulus-shear modulus ratio, Poisson's ratio, and elastic anisotropy ratio are determined based on the calculated elastic constants. The presently predicted phase transition and elastic properties open new directions for investigation of the phase transitions in BiMnO 3 , and provide helpful guidance for the future elastic constant measurements.

  3. The elastic constants and anisotropy of superconducting MgCNi3 and CdCNi3 under different pressure

    KAUST Repository

    Feng, Huifang; Wu, Xiaozhi; Gan, Liyong; Wang, Rui; Wei, Qunyi

    2013-01-01

    The second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of MgCNi3 and CdCNi3 are presented by using first-principles methods combined with homogeneous deformation theory. The Voigt-Reuss-Hill (VRH) approximation are used

  4. Systematic study of the elastic properties of Mn3AC antiperovskite with A = Zn, Al, Ga, In, Tl, Ge and Sn

    International Nuclear Information System (INIS)

    Medkour, Y.; Roumili, A.; Maouche, D.; Saoudi, A.; Louail, L.

    2012-01-01

    Highlights: ► Single crystal elastic constants C 11 , C 12 and C 44 were calculated. ► Elastic moduli for polycrystalline aggregate were obtained. ► Increasing the atomic number of A element reduces B, G′, Y and v. ► Mn 3 AlC has a high melting point and light weight. - Abstract: First principle calculations were made to investigate the elastic properties of Mn 3 AC antiperovskites, A = Zn, Al, Ga, In, Tl, Ge and Sn. The estimated equilibrium lattice parameters are in agreement with the experimental ones. From the single crystal elastic constants we have calculated the polycrystalline elastic moduli: the bulk modulus B, shear modulus G, tetragonal shear modulus G′, Young’s modulus Y, Cauchy’s pressure CP, Poisson’s ratio v, elastic anisotropy factor and Pugh’s criterion G/B. Using Debye’s approximation we have deduced the elastic wave velocities and Debye’s temperature.

  5. The elastic strain energy of crystallographic shear planes in reduced tungsten trioxide

    International Nuclear Information System (INIS)

    Iguchi, E.; Tilley, R.J.D.

    1977-01-01

    Calculations of the elastic strain energy due to crystallographic shear (c.s.) planes lying upon 102, 103 and 001 planes in reduced tungsten trioxide crystals have been made. The cases analysed in detail are for both isolated c.s. planes and for pairs of c.s. planes. These results are used to determine the elastic strain energy per unit volume for crystals containing ordered arrays of c.s. planes. It was found that the magnitude of the elastic strain energy was in the sequence 001 < 102 < 103 and that at relatively small inter-c.s. spacings the curves of elastic strain energy against c.s. plane separation take the form of a series of peaks and valleys. These results are compared with experimental observations of c.s. plane spacings in substantially reduced crystals containing quasi-ordered arrays of c.s. planes and with observations of c.s. plane nucleation and growth in both slightly and more appreciably reduced crystals. It was found that the elastic strain energy plays a significant part in controlling the microstructure of c.s. plane arrays in such cases. (author)

  6. TH-A-207B-01: Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity

    International Nuclear Information System (INIS)

    Chen, S.

    2016-01-01

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging

  7. TH-A-207B-01: Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. [Mayo Clinic (United States)

    2016-06-15

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging

  8. Estimation of parameters of constant elasticity of substitution production functional model

    Science.gov (United States)

    Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi

    2017-11-01

    Nonlinear model building has become an increasing important powerful tool in mathematical economics. In recent years the popularity of applications of nonlinear models has dramatically been rising up. Several researchers in econometrics are very often interested in the inferential aspects of nonlinear regression models [6]. The present research study gives a distinct method of estimation of more complicated and highly nonlinear model viz Constant Elasticity of Substitution (CES) production functional model. Henningen et.al [5] proposed three solutions to avoid serious problems when estimating CES functions in 2012 and they are i) removing discontinuities by using the limits of the CES function and its derivative. ii) Circumventing large rounding errors by local linear approximations iii) Handling ill-behaved objective functions by a multi-dimensional grid search. Joel Chongeh et.al [7] discussed the estimation of the impact of capital and labour inputs to the gris output agri-food products using constant elasticity of substitution production function in Tanzanian context. Pol Antras [8] presented new estimates of the elasticity of substitution between capital and labour using data from the private sector of the U.S. economy for the period 1948-1998.

  9. Flow through internal elastic lamina affects shear stress on smooth muscle cells (3D simulations).

    Science.gov (United States)

    Tada, Shigeru; Tarbell, John M

    2002-02-01

    We describe a three-dimensional numerical simulation of interstitial flow through the medial layer of an artery accounting for the complex entrance condition associated with fenestral pores in the internal elastic lamina (IEL) to investigate the fluid mechanical environment around the smooth muscle cells (SMCs) right beneath the IEL. The IEL was modeled as an impermeable barrier to water flow except for the fenestral pores, which were assumed to be uniformly distributed over the IEL. The medial layer was modeled as a heterogeneous medium composed of a periodic array of cylindrical SMCs embedded in a continuous porous medium representing the interstitial proteoglycan and collagen matrix. Depending on the distance between the IEL bottom surface and the upstream end of the proximal layer of SMCs, the local shear stress on SMCs right beneath the fenestral pore could be more than 10 times higher than that on the cells far removed from the IEL under the conditions that the fenestral pore diameter and area fraction of pores were kept constant at 1.4 microm and 0.05, respectively. Thus these proximal SMCs may experience shear stress levels that are even higher than endothelial cells exposed to normal blood flow (order of 10 dyn/cm(2)). Furthermore, entrance flow through fenestral pores alters considerably the interstitial flow field in the medial layer over a spatial length scale of the order of the fenestral pore diameter. Thus the spatial gradient of shear stress on the most superficial SMC is noticeably higher than computed for endothelial cell surfaces.

  10. Strain localization and elastic-plastic coupling during deformation of porous sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Dewers, Thomas A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Issen, Kathleen A. [Clarkson Univ., Potsdam, NY (United States). Mechanical and Aeronautical Engineering; Holcomb, David J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Olsson, William A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Ingraham, Mathew D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.

    2017-09-12

    Results of axisymmetric compression tests on weak, porous Castlegate Sandstone (Cretaceous, Utah, USA), covering a range of dilational and compactional behaviors, are examined for localization behavior. Assuming isotropy, bulk and shear moduli evolve as increasing functions of mean stress and Mises equivalent shear stress respectively, and as decreasing functions of work-conjugate plastic strains. Acoustic emissions events located during testing show onset of localization and permit calculation of observed shear and low-angle compaction localization zones, or bands, as localization commences. Total strain measured experimentally partitions into: A) elastic strain with constant moduli, B) elastic strain due to stress dependence of moduli, C) elastic strain due to moduli degradation with increasing plastic strain, and D) plastic strain. The third term is the elastic-plastic coupling strain, and though often ignored, contributes significantly to pre-failure total strain for brittle and transitional tests. Constitutive parameters and localization predictions derived from experiments are compared to theoretical predictions. In the brittle regime, predictions of band angles (angle between band normal and maximum compression) demonstrate good agreement with observed shear band angles. Compaction localization was observed in the transitional regime in between shear localization and spatially pervasive compaction, over a small range of mean stresses. In contrast with predictions however, detailed acoustic emissions analyses in this regime show low angle, compaction-dominated but shear-enhanced, localization.

  11. Quantitative assessment of thyroid gland elasticity with shear-wave elastography in pediatric patients with Hashimoto's thyroiditis.

    Science.gov (United States)

    Kandemirli, Sedat Giray; Bayramoglu, Zuhal; Caliskan, Emine; Sari, Zeynep Nur Akyol; Adaletli, Ibrahim

    2018-01-18

    Hashimoto's thyroiditis is the most common autoimmune thyroid disorder in the pediatric age range. Measurement of thyroid gland size is an essential component in evaluation and follow-up of thyroid pathologies. Along with size, tissue elasticity is becoming a more commonly used parameter in evaluation of parenchyma in inflammatory diseases. The aim of the current study was to assess thyroid parenchyma elasticity by shear-wave elastography in pediatric patients with Hashimoto's thyroiditis; and compare the elasticity values to a normal control group. In this study; thyroid glands of 59 patients with a diagnosis of Hashimoto's thyroiditis based on ultrasonographic and biochemical features, and 26 healthy volunteers without autoimmune thyroid disease and thyroid function disorders, were evaluated with shear-wave elastography. Patients with Hashimoto thyroiditis were further subdivided into three categories based on gray-scale ultrasonography findings as focal thyroiditis (grade 1), diffuse thyroiditis (grade 2), and fibrotic thyroid gland (grade 3). Patients with Hashimoto's thyroiditis (n = 59) had significantly higher elasticity values (14. 9 kPa; IQR 12.9-17.8 kPa) than control subjects (10.6 kPa; IQR 9.0-11.3 kPa) (p thyroiditis, 23 patients had focal thyroiditis involving less than 50% of the gland categorized as grade 1, 24 patients had diffuse involvement of the thyroid gland categorized as grade 2, and 12 patients had marked hyperechoic septations and pseudonodular appearance categorized as grade 3 on gray-scale ultrasound. Based on elastography, grade 3 patients had significantly higher elasticity values (19.7 kPa; IQR 17.8-21.5 kPa) than patients with grade 2 (15.5 kPa; IQR 14.5-17.8 kPa) and grade 1 thyroiditis (12.8 kPa; IQR 11.9-13.1 kPa) (p thyroiditis had significantly higher elasticity values than those with grade 1 thyroiditis (p thyroiditis. Our results indicate that shear-wave elastography could be used to evaluate the degree of

  12. Chirality-dependent anisotropic elastic properties of a monolayer graphene nanosheet.

    Science.gov (United States)

    Guo, Jian-Gang; Zhou, Li-Jun; Kang, Yi-Lan

    2012-04-01

    An analytical approach is presented to predict the elastic properties of a monolayer graphene nanosheet based on interatomic potential energy and continuum mechanics. The elastic extension and torsional springs are utilized to simulate the stretching and angle variation of carbon-carbon bond, respectively. The constitutive equation of the graphene nanosheet is derived by using the strain energy density, and the analytical formulations for nonzero elastic constants are obtained. The in-plane elastic properties of the monolayer graphene nanosheet are proved to be anisotropic. In addition, Young's moduli, Poisson's ratios and shear modulus of the monolayer graphene nanosheet are calculated according to the force constants derived from Morse potential and AMBER force field, respectively, and they were proved to be chirality-dependent. The comparison with experimental results shows a very agreement.

  13. Diffraction plane dependency of elastic constants in ferritic steel in neutron stress measurement

    International Nuclear Information System (INIS)

    Hayashi, M.; Ishiwata, M.; Minakawa, N.; Funahashi, S.

    1993-01-01

    Neutron diffraction measurements have been made to investigate the elastic properties of the ferritic steel obtained from socket weld. The Kroner elastic model is found to account for the [hkl]-dependence of Young's modulus and Poisson's ratio in the material. Maps of residual stress are later to be made by measuring lattice strain from shifts in the (112) diffraction peak, for which the diffraction elastic constants the herein found to be E=243±5GPa and ν=0.28±0.01. (author)

  14. Measurement of tissue-radiation dosage using a thermal steady-state elastic shear wave.

    Science.gov (United States)

    Chang, Sheng-Yi; Hsieh, Tung-Sheng; Chen, Wei-Ru; Chen, Jin-Chung; Chou, Chien

    2017-08-01

    A biodosimeter based on thermal-induced elastic shear wave (TIESW) in silicone acellular porcine dermis (SAPD) at thermal steady state has been proposed and demonstrated. A square slab SAPD treated with ionizing radiation was tested. The SAPD becomes a continuous homogeneous and isotropic viscoelastic medium due to the generation of randomly coiled collagen fibers formed from their bundle-like structure in the dermis. A harmonic TIESW then propagates on the surface of the SAPD as measured by a nanometer-scaled strain-stress response under thermal equilibrium conditions at room temperature. TIESW oscillation frequency was noninvasively measured in real time by monitoring the transverse displacement of the TIESW on the SAPD surface. Because the elastic shear modulus is highly sensitive to absorbed doses of ionizing radiation, this proposed biodosimeter can become a highly sensitive and noninvasive method for quantitatively determining tissue-absorbed dosage in terms of TIESW’s oscillation frequency. Detection sensitivity at 1 cGy and dynamic ranges covering 1 to 40 cGy and 80 to 500 cGy were demonstrated.

  15. Elasticity of methane hydrate phases at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Beam, Jennifer; Yang, Jing; Liu, Jin [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Liu, Chujie [Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lin, Jung-Fu, E-mail: afu@jsg.utexas.edu [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Center for High Pressure Science and Advanced Technology Research (HPSTAR), Shanghai 201203 (China)

    2016-04-21

    Determination of the full elastic constants (c{sub ij}) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases′ compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  16. FP-LAPW study of the elastic properties of Al2X (X=Sc,Y,La,Lu)

    International Nuclear Information System (INIS)

    Rajagopalan, M.; Praveen Kumar, S.; Anuthama, R.

    2010-01-01

    From the first principles total energy calculations based on full-potential linear augmented plane wave method (FP-LAPW), the elastic properties of Al 2 X (X=Sc,Y,La,Lu) are reported here. Theoretical values of Young's modulus, shear modulus, Poisson's ratio and Debye temperature are estimated from the computed elastic constants. From the analysis of the ratio of shear to bulk modulus, it is found that these intermetallic compounds are brittle in nature. The calculated results are compared with other reported values.

  17. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    Science.gov (United States)

    Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.

    2017-07-01

    In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.

  18. Stresses and elastic constants of crystalline sodium, from molecular dynamics

    International Nuclear Information System (INIS)

    Schiferl, S.K.

    1985-02-01

    The stresses and the elastic constants of bcc sodium are calculated by molecular dynamics (MD) for temperatures to T = 340K. The total adiabatic potential of a system of sodium atoms is represented by pseudopotential model. The resulting expression has two terms: a large, strictly volume-dependent potential, plus a sum over ion pairs of a small, volume-dependent two-body potential. The stresses and the elastic constants are given as strain derivatives of the Helmholtz free energy. The resulting expressions involve canonical ensemble averages (and fluctuation averages) of the position and volume derivatives of the potential. An ensemble correction relates the results to MD equilibrium averages. Evaluation of the potential and its derivatives requires the calculation of integrals with infinite upper limits of integration, and integrand singularities. Methods for calculating these integrals and estimating the effects of integration errors are developed. A method is given for choosing initial conditions that relax quickly to a desired equilibrium state. Statistical methods developed earlier for MD data are extended to evaluate uncertainties in fluctuation averages, and to test for symmetry. 45 refs., 10 figs., 4 tabs

  19. The elastic properties of zirconium alloy fuel cladding and pressure tubing materials

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Northwood, D.O.

    1979-01-01

    A knowledge of the elastic properties of zirconium alloys is required in the mathematical modelling of cladding and pressure tubing performance. Until recently, little of this type of data was available, particularly at elevated temperatures. The dynamic elastic moduli of zircaloy-2, zircaloy-4, the alloys Zr-1.0 wt%Nb, Zr-2.5 wt%Nb and Marz grade zirconium have therefore been determined over the temperature range 275 to 1000 K. Young's modulus and shear modulus for all the zirconium alloys decrease with temperature and are expressed by empirical relations fitted to the data. The elastic properties are texture dependent and a detailed study has been conducted on the effect of texture on the elastic properties of Zr-1.0 wt% Nb over the temperature range 275 to 775 K. The results are compared with polycrystalline elastic constants computed from single crystal elastic constants, and the effect of texture on the dynamic elastic moduli is discussed in detail. (Auth.)

  20. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus

    DEFF Research Database (Denmark)

    Appalakondaiah, S.; Vaitheeswaran, G.; Lebègue, S.

    2012-01-01

    constant is significantly larger than the C11 and C33 parameters, implying that black phosphorus is stiffer against strain along the a axis than along the b and c axes. From the calculated elastic constants, the mechanical properties, such as bulk modulus, shear modulus, Young's modulus, and Poisson...

  1. Identification of elastic, dielectric, and piezoelectric constants in piezoceramic disks.

    Science.gov (United States)

    Perez, Nicolas; Andrade, Marco A B; Buiochi, Flavio; Adamowski, Julio C

    2010-12-01

    Three-dimensional modeling of piezoelectric devices requires a precise knowledge of piezoelectric material parameters. The commonly used piezoelectric materials belong to the 6mm symmetry class, which have ten independent constants. In this work, a methodology to obtain precise material constants over a wide frequency band through finite element analysis of a piezoceramic disk is presented. Given an experimental electrical impedance curve and a first estimate for the piezoelectric material properties, the objective is to find the material properties that minimize the difference between the electrical impedance calculated by the finite element method and that obtained experimentally by an electrical impedance analyzer. The methodology consists of four basic steps: experimental measurement, identification of vibration modes and their sensitivity to material constants, a preliminary identification algorithm, and final refinement of the material constants using an optimization algorithm. The application of the methodology is exemplified using a hard lead zirconate titanate piezoceramic. The same methodology is applied to a soft piezoceramic. The errors in the identification of each parameter are statistically estimated in both cases, and are less than 0.6% for elastic constants, and less than 6.3% for dielectric and piezoelectric constants.

  2. Effect of elasticity during viscoelastic polymer flooding : a possible mechanism of increasing the sweep efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Urbissinova, T.S.; Trivedi, J.J.; Kuru, E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2010-12-15

    This paper discussed a laboratory experiment undertaken to study how the elasticity of polymer-based fluids affects microscopic sweep efficiency, which has implications for enhanced oil recovery processes. In a series of experiments, polymer solutions with the same shear viscosity but notably different elastic characteristics were injected through a mineral-oil-saturated sandpack. The experiments involved a special core holder that was designed to simulate radial flow. The solution was injected via a perforated injection line located in the centre of the cell, and fluids were produced by way of 2 production lines located at the periphery. The shear rate used in the experiments was within the range of field applications. Using polymer solutions with similar shear viscosity behaviour and different elasticity allowed the effect of elasticity on sweep efficiency to be singled out. It was concluded that adjusting the molecular weight distribution of the solution at a constant shear viscosity and polymer concentration could improve the sweep efficiency of a polymeric fluid. The higher-elasticity polymer solution had a higher resistance to flow through porous media, resulting in better sweep efficiency and lower residual oil saturation. The objective of the study was to isolate elasticity from the other parameters that affect displacement efficiency to show the individual effect of elasticity on oil recovery. 20 refs., 5 tabs., 14 figs.

  3. Elastic properties of cubic perovskite BaRuO{sub 3} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Han Deming; Liu Xiaojuan; Lv Shuhui; Li Hongping [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng Jian, E-mail: jmeng@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-08-01

    We present first-principles investigations on the structural and elastic properties of the cubic perovskite BaRuO{sub 3} using density-functional theory within both local density approximation (LDA) and generalized gradient approximation (GGA). Basic physical properties, such as lattice constant, shear modulus, elastic constants (C{sub ij}) are calculated. The calculated energy band structures show that the cubic perovskite BaRuO{sub 3} is metallic. We have also predicted the Young's modulus (Y), Poisson's ratio ({upsilon}), and Anisotropy factor (A).

  4. Modelling and simulation of multi-phase effects on X-ray elasticity constants

    CERN Document Server

    Freour, S; Guillen, R; François, M X

    2003-01-01

    This paper deals with the calculation of X-ray Elasticity Constants (XEC) of phases embedded in multi-phase polycrystals. A three scales (macroscopic, pseudo-macroscopic, mesoscopic) model based on the classical self-consistent formalism is developed in order to analyse multi-phase effects on XEC values. Simulations are performed for cubic or hexagonal crystallographic structure phases embedded in several two-phases materials. In fact, it is demonstrated that XEC vary with the macroscopic stiffness of the whole polycrystal. In consequence, the constants of one particular phase depend on the elastic behaviour and the volume fraction of all the phases constituting the material. Now, XEC play a leading role in pseudo-macroscopic stresses determination by X-Ray Diffraction (XRD) methods. In this work, a quantitative analysis of the multi-phase effects on stresses determination by XRD methods was performed. Numerical results will be compared and discussed. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  5. Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density

    KAUST Repository

    Wu, Ying

    2011-09-02

    We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse waves can propagate with a negative dispersion while longitudinal waves are forbidden. This leads to many interesting phenomena such as negative refraction, which is demonstrated by using a wedge sample and a significant amount of mode conversion from transverse waves to longitudinal waves that cannot occur on the interface of two natural solids.

  6. Elastic Constants of Plane Orthotropic Elasticity

    DEFF Research Database (Denmark)

    Krenk, Steen

    1979-01-01

    The four independent material parameters of plane orthotropic elasti city are introduced as the effective stiffness, the effective Poisson ratio, the stiffness ratio and the shear parameter. It is proved that stress boundary value problems with zero resulting force on internal contours lead...

  7. A review of shear strength models for rock joints subjected to constant normal stiffness

    Directory of Open Access Journals (Sweden)

    Sivanathan Thirukumaran

    2016-06-01

    Full Text Available The typical shear behaviour of rough joints has been studied under constant normal load/stress (CNL boundary conditions, but recent studies have shown that this boundary condition may not replicate true practical situations. Constant normal stiffness (CNS is more appropriate to describe the stress–strain response of field joints since the CNS boundary condition is more realistic than CNL. The practical implications of CNS are movements of unstable blocks in the roof or walls of an underground excavation, reinforced rock wedges sliding in a rock slope or foundation, and the vertical movement of rock-socketed concrete piles. In this paper, the highlights and limitations of the existing models used to predict the shear strength/behaviour of joints under CNS conditions are discussed in depth.

  8. Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Ferraioli, Giovanna, E-mail: giovanna.ferraioli@unipv.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Tinelli, Carmine, E-mail: ctinelli@smatteo.pv.it [Clinical Epidemiology and Biometric Unit, IRCCS San Matteo Hospital Foundation, Viale Golgi 19, 27100 Pavia (Italy); Zicchetti, Mabel, E-mail: mabel.zicchetti@unipv.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Above, Elisabetta, E-mail: betta.above@gmail.com [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Poma, Gianluigi, E-mail: gigi.poma@libero.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Di Gregorio, Marta, E-mail: martadigregorio@virgilio.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Filice, Carlo, E-mail: carfil@unipv.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy)

    2012-11-15

    Objective: To evaluate the reproducibility of real-time shear wave elastography in assessing liver elasticity in healthy volunteers. Methods: Forty-two volunteers were studied in day 1. Shear wave elastography studies were performed by using the ultrasound system Aixplorer Trade-Mark-Sign (SuperSonic Imagine S.A., Aix-en-Provence, France) with a convex broadband probe. Measurements were carried by two operators, an expert (operator 1) and a novice (operator 2). Examinations were performed on the right lobe of the liver. Each operator performed 10 consecutive measurements in each volunteer. In a subset of volunteers (n = 18) measurements were performed twice on two different days (day 1 and day 2). Intraobserver and interobserver agreement were assessed by intraclass correlation coefficient. Results: Intraobserver agreement between measurements performed in the same subject in the same day (day 1 or day 2) showed intraclass correlation coefficient values of 0.95 (95% confidence interval, 0.93-0.98) and 0.93 (95% confidence interval, 0.90-0.96) for operator 1 and operator 2, respectively. Intraobserver agreement between measurements performed in the same subject in different days showed intraclass correlation coefficient values of 0.84 (95% confidence interval, 0.69-0.98) and 0.65 (95% confidence interval, 0.39-0.91) for operator 1 and operator 2, respectively. Interobserver agreement was 0.88 (95% confidence interval, 0.82-0.94). Conclusions: The results of this study show that shear wave elastography is a reliable and reproducible noninvasive method for the assessment of liver elasticity. Expert operator had higher reproducibility of measurements over time than novice operator.

  9. Temperature dependence of the elastic constant of Borassus Flabellifier 'BF' material by acoustic response

    International Nuclear Information System (INIS)

    Phadke, Sushil; DShrivastava, B; Dagaonkar, N; Mishra, Ashutosh

    2012-01-01

    The homogeneous continuous materials are widely used for many structural applications. Migrations of atoms or molecules are the mechanism of mechanical and kinetic processes in materials for their synthesis processing as well as for their structural evolutions. The elastic constant of solids provides valuable information on their mechanical and dynamical properties. In particular, they provide information on the stability and stiffness of materials. In the present study author investigated relation between elastic constant and temperature in Borassus Flabellifier 'BF' wood part. Determination of elastic properties of material is based on the longitudinal wave's velocities via ultrasonic methods. The resonant frequencies of the specimens were measured by Ultrasonic Interferometer (for solids) dual frequency using longitudinal cubic piezoelectric crystal of quartz of frequency 123.62 KHz. The temperature variations from room temperature were done by PID control unit, Mittal Enterprises, New Delhi, India. Characterization of the samples was done by scanning electron microscope (SEM) Model JEOL JSM5400 at 5.0kvx750, 10 μm.

  10. Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation

    OpenAIRE

    Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.

    2012-01-01

    The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isot...

  11. Importance of Interfacial Interactions to Access Shear Elasticity of Liquids and Understand Flow Induced Birefringence from Liquid Crystals to Worm-Like Micellar Solutions

    Directory of Open Access Journals (Sweden)

    Noirez Laurence

    2017-03-01

    Full Text Available This work points out the importance of the substrate boundary conditions to lower the dissipation in the dynamic measurement and access the closest dynamic characteristics of liquids, in particular to access the low frequency shear elasticity. The liquid/surface interface is a source of dissipation that enters and impacts the measurement. Examples of steady-state shear flows or flow birefringence are presented to highlight the non-universality of the behavior with respect to the nature of the substrate or the sheared thickness. Additionally the present development completes and extends the identification of low frequency shear elasticity made at sub-millimeter gaps in various one-component liquids to salt-free aqueous solutions (CTAB-water (Hexadecyl-TrimethylAmmonium Bromide.

  12. Measurement of gastrocnemius muscle elasticity by shear wave elastography: association with passive ankle joint stiffness and sex differences.

    Science.gov (United States)

    Chino, Kentaro; Takahashi, Hideyuki

    2016-04-01

    Passive joint stiffness is an important quantitative measure of flexibility, but is affected by muscle volume and all of the anatomical structures located within and over the joint. Shear wave elastography can assess muscle elasticity independent of the influences of muscle volume and the other nearby anatomical structures. We determined how muscle elasticity, as measured using shear wave elastography, is associated with passive joint stiffness and patient sex. Twenty-six healthy men (24.4 ± 5.9 years) and 26 healthy women (25.2 ± 4.8 years) participated in this study. The passive ankle joint stiffness and tissue elasticity of the medial gastrocnemius (MG) were quantified with the ankle in 30° plantar flexion (PF), a neutral anatomical position (NE), and 20° dorsiflexion (DF). No significant difference in passive joint stiffness by sex was observed with the ankle in PF, but significantly greater passive ankle joint stiffness in men than in women was observed in NE and DF. The MG elasticity was not significantly associated with joint stiffness in PF or NE, but it was significantly associated with joint stiffness in DF. There were no significant differences in MG elasticity by sex at any ankle position. Muscle elasticity, measured independent of the confounding effects of muscle volume and the other nearby anatomical structures, is associated with passive joint stiffness in the joint position where the muscle is sufficiently lengthened, but does not vary by sex in any joint position tested.

  13. The modified Black-Scholes model via constant elasticity of variance for stock options valuation

    Science.gov (United States)

    Edeki, S. O.; Owoloko, E. A.; Ugbebor, O. O.

    2016-02-01

    In this paper, the classical Black-Scholes option pricing model is visited. We present a modified version of the Black-Scholes model via the application of the constant elasticity of variance model (CEVM); in this case, the volatility of the stock price is shown to be a non-constant function unlike the assumption of the classical Black-Scholes model.

  14. Effect of Microstructure Constraints on the Homogenized Elastic Constants of Elastomeric Sylgard/GMB Syntactic Foam.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Judith Alice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steck, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Judith Alice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Previous numerical studies of Sylgard filled with glass microballoons (GMB) have relied on various microstructure idealizations to achieve a large range of volume fractions with high mesh quality. This study investigates how different microstructure idealizations and constraints affect the apparent homogenized elastic constants in the virgin state of the material, in which all GMBs are intact and perfectly bonded to the Sylgard matrix, and in the fully damaged state of the material in which all GMBs are destroyed. In the latter state, the material behaves as an elastomeric foam. Four microstructure idealizations are considered relating to how GMBs are packed into a representative volume element (RVE): (1) no boundary penetration nor GMB-GMB overlap, (2) GMB-GMB overlap, (3) boundary penetration, and (4) boundary penetration and GMB-GMB overlap. First order computational homogenization with kinematically uniform displacement boundary conditions (KUBCs) was employed to determine the homogenized (apparent) bulk and shear moduli for the four microstructure idealizations in the intact and fully broken GMB material states. It was found that boundary penetration has a significant effect on the shear modulus for microstructures with intact GMBs, but that neither boundary penetration nor GMB overlap have a significant effect on homogenized properties for microstructures with fully broken GMBs. The primary conclusion of the study is that future investigations into Sylgard/GMB micromechanics should either force GMBs to stay within the RVE fully and/or use periodic BCs (PBCs) to eliminate the boundary penetration issues. The implementation of PBCs requires the improvement of existing tools in Sandia’s Sierra/SM code.

  15. Exact solutions for oscillatory shear sweep behaviors of complex fluids from the Oldroyd 8-constant framework

    Science.gov (United States)

    Saengow, Chaimongkol; Giacomin, A. Jeffrey

    2018-03-01

    In this paper, we provide a new exact framework for analyzing the most commonly measured behaviors in large-amplitude oscillatory shear flow (LAOS), a popular flow for studying the nonlinear physics of complex fluids. Specifically, the strain rate sweep (also called the strain sweep) is used routinely to identify the onset of nonlinearity. By the strain rate sweep, we mean a sequence of LAOS experiments conducted at the same frequency, performed one after another, with increasing shear rate amplitude. In this paper, we give exact expressions for the nonlinear complex viscosity and the corresponding nonlinear complex normal stress coefficients, for the Oldroyd 8-constant framework for oscillatory shear sweeps. We choose the Oldroyd 8-constant framework for its rich diversity of popular special cases (we list 18 of these). We evaluate the Fourier integrals of our previous exact solution to get exact expressions for the real and imaginary parts of the complex viscosity, and for the complex normal stress coefficients, as functions of both test frequency and shear rate amplitude. We explore the role of infinite shear rate viscosity on strain rate sweep responses for the special case of the corotational Jeffreys fluid. We find that raising η∞ raises the real part of the complex viscosity and lowers the imaginary. In our worked examples, we thus first use the corotational Jeffreys fluid, and then, for greater accuracy, we use the Johnson-Segalman fluid, to describe the strain rate sweep response of molten atactic polystyrene. For our comparisons with data, we use the Spriggs relations to generalize the Oldroyd 8-constant framework to multimode. Our generalization yields unequivocally, a longest fluid relaxation time, used to assign Weissenberg and Deborah numbers to each oscillatory shear flow experiment. We then locate each experiment in the Pipkin space.

  16. Compression and shear properties of elastomeric bearing using finite element analysis

    Directory of Open Access Journals (Sweden)

    2Faculty of Science and Technology, Chiang Mai Rajabhat University, Muang, Chiang Mai, 50300 Thailand.

    2006-09-01

    Full Text Available Standard size samples of four natural rubber compounds, varying the amount of carbon black from 10 to 70 phr, were characterised under uniaxial compression and simple shear tests in order to obtain the strain energy function constants. These constants were then used as hyperelastic material constants for the Windows-based finite element package (COSMOS/M version 1.75. The investigated bearings, made with those NR compounds, had the approximate area and thickness of 50x106 mm2 and 50 mm respectively. Each compound of bearing consisted of four different values of shape factor ranging from about 0.33 to 1.70, according to the number of reinforcing plates in the bearing. Three deformation modes of compression, shear and compression-shear were predicted. Good agreement was found between twelve compression model predictions and the corresponding experimental values of bearings, containing 10, 20 and 40 phr of carbon black and each of which consisted of four different layers of reinforcing metal plates (0, 1, 2 and 3 layers. On the other hand, deviation from the predicted valve was clearly seen in the 70 phr black bearing case. The percentage difference increased with respect to the increasing number of reinforcing plates or the rising shape factor. Therefore, the improved FEA model was supplemented with an imaginary elastic glue layer between the rubber block and metal plate as glue failure compensation. The optimum value of the elastic layers modulus is 8 MPa while the thickness of the layer depends on the total thickness or total volume of rubber block. This model can predict the 70 phr carbon black bearings, having shape factor ranging from 0.5 to 2.35 for 11 cases. The FEA prediction of shear behaviour agrees well with the experimental data for all four bearing compounds and there is no effect of shape factor on shear stress. Moreover, shear stress does not depend on the compressive force applied to like bearing before shear and the FEA results

  17. Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-10-01

    This paper develops nonlocal elasticity equations and magneto-electro-elastic relations to size-dependent electro-magneto-elastic bending analyses of the functionally graded axisymmetric circular nanoplates based on the first-order shear deformation theory. All material properties are graded along the thickness direction based on exponential varying. It is assumed that a circular nanoplate is made from piezo-magnetic materials. The energy method and Ritz approach is employed for the derivation of governing equations of electro-magneto-elastic bending and the solution of the problem, respectively. The nanoplate is subjected to applied electric and magnetic potentials at top and transverse loads while it is rested on Pasternak's foundation. Some important numerical results are presented in various figures to show the influence of applied electric and magnetic potentials, small scale parameter and inhomogeneous index of an exponentially graded nanoplate.

  18. Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings.

    Directory of Open Access Journals (Sweden)

    Brian Chin Wing Kot

    Full Text Available Standardization on Shear wave ultrasound elastography (SWUE technical settings will not only ensure that the results are accurate, but also detect any differences over time that may be attributed to true physiological changes. The present study evaluated the variations of elastic modulus of muscle and tendon using SWUE when different technical aspects were altered. The results of this study indicated that variations of elastic modulus of muscle and tendon were found when different transducer's pressure and region of interest (ROI's size were applied. No significant differences in elastic modulus of the rectus femoris muscle and patellar tendon were found with different acquisition times of the SWUE sonogram. The SWUE on the muscle and tendon should be performed with the lightest transducer's pressure, a shorter acquisition time for the SWUE sonogram, while measuring the mean elastic modulus regardless the ROI's size.

  19. First-principles calculations of the elastic constants of the cubic, orthorhombic and hexagonal phases of BaF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nyawere, P.W.O., E-mail: otienop98@yahoo.ca [Computational Materials Science Group, Department of Physics, University of Eldoret, P.O. Box 1125-30100 Eldoret (Kenya); Department of Computing, Kabarak University, P.O. - Private Bag - 20157 Kabarak (Kenya); The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Makau, N.W., E-mail: wanimak@yahoo.com [Computational Materials Science Group, Department of Physics, University of Eldoret, P.O. Box 1125-30100 Eldoret (Kenya); Amolo, G.O., E-mail: georgeamolo862@gmail.com [Computational Materials Science Group, Department of Physics, University of Eldoret, P.O. Box 1125-30100 Eldoret (Kenya)

    2014-02-01

    All the elastic constants of cubic, orthorhombic and hexagonal phases of BaF{sub 2} have been calculated using first principles methods. We have employed density-functional theory within generalized gradient approximation (GGA) using a plane-wave pseudopotentials method and a plane-wave basis set. The calculated elastic constant values for a cubic phase compare well with recent theoretical and experimental calculations. The bulk modulus derived from the elastic constant calculations of orthorhombic phase of BaF{sub 2} is 94.5 GPa and those of hexagonal phase is 161 GPa. These values are in good agreement with experimental data available. Stability of these phases of BaF{sub 2} is also estimated in different crystallographic directions.

  20. A micromechanics model of the elastic properties of human dentine

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, J. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Balooch, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marshall, G. W. [Univ. of California, San Francisco, CA (United States). Dept. of Restorative Dentistry; Marshall, S. J. [Univ. of California, San Francisco, CA (United States). Dept. of Restorative Dentistry

    1999-10-01

    A generalized self-consistent model of cylindrical inclusions in a homogeneous and isotropic matrix phase was used to study the effects of tubule orientation on the elastic properties of dentin. Closed form expressions for the five independent elastic constants of dentin were derived in terms of tubule concentration, and the Young's moduli and Poisson ratios of peri- and intertubular dentin. An atomic force microscope (AFM) indentation technique determined the Young's moduli of the peri- and intertubular dentin as approximately 30 GPa and 15 GPa, respectively. Over the natural variation in tubule density found in dentin, there was only a slight variation in the axial and transverse shear moduli with position in the tooth, and there was no measurable effect of tubule orientation. We conclude that tubule orientation has no appreciable effect on the elastic behavior of normal dentin, and that the elastic properties of healthy dentin can be modeled as an isotropic continuum with a Young's modulus of approximately 16 GPa and a shear modulus of 6.2 GPa.

  1. Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity

    International Nuclear Information System (INIS)

    Ferraioli, Giovanna; Tinelli, Carmine; Zicchetti, Mabel; Above, Elisabetta; Poma, Gianluigi; Di Gregorio, Marta; Filice, Carlo

    2012-01-01

    Objective: To evaluate the reproducibility of real-time shear wave elastography in assessing liver elasticity in healthy volunteers. Methods: Forty-two volunteers were studied in day 1. Shear wave elastography studies were performed by using the ultrasound system Aixplorer™ (SuperSonic Imagine S.A., Aix-en-Provence, France) with a convex broadband probe. Measurements were carried by two operators, an expert (operator 1) and a novice (operator 2). Examinations were performed on the right lobe of the liver. Each operator performed 10 consecutive measurements in each volunteer. In a subset of volunteers (n = 18) measurements were performed twice on two different days (day 1 and day 2). Intraobserver and interobserver agreement were assessed by intraclass correlation coefficient. Results: Intraobserver agreement between measurements performed in the same subject in the same day (day 1 or day 2) showed intraclass correlation coefficient values of 0.95 (95% confidence interval, 0.93–0.98) and 0.93 (95% confidence interval, 0.90–0.96) for operator 1 and operator 2, respectively. Intraobserver agreement between measurements performed in the same subject in different days showed intraclass correlation coefficient values of 0.84 (95% confidence interval, 0.69–0.98) and 0.65 (95% confidence interval, 0.39–0.91) for operator 1 and operator 2, respectively. Interobserver agreement was 0.88 (95% confidence interval, 0.82–0.94). Conclusions: The results of this study show that shear wave elastography is a reliable and reproducible noninvasive method for the assessment of liver elasticity. Expert operator had higher reproducibility of measurements over time than novice operator.

  2. ELASTIC CHARACTERIZATION OF Eucalyptus citriodora WOOD

    Directory of Open Access Journals (Sweden)

    Adriano Wagner Ballarin

    2003-01-01

    Full Text Available This paper contributed to the elastic characterization of Eucalyptus citriodora grown inBrazil, considering an orthotropic model and evaluating its most important elastic constants.Considering this as a reference work to establish basic elastic ratios — several important elasticconstants of Brazilian woods were not determined yet - the experimental set-up utilized one tree of 65years old from plantations of “Horto Florestal Navarro de Andrade”, at Rio Claro-SP, Brazil. All theexperimental procedures attended NBR 7190/97 – Brazilian Code for wooden structures –withconventional tension and compression tests. Results showed statistical identity between compressionand tension modulus of elasticity. The relation observed between longitudinal and radial modulus ofelasticity was 10 (EL/ER ≈ 10 and same relation, considering shear modulus (modulus of rigidity was20 (EL/GLR ≈ 20. These results, associated with Poisson’s ratios herein determined, allow theoreticalmodeling of wood mechanical behavior in structures.

  3. Theoretical study of phonon dispersion, elastic, mechanical and thermodynamic properties of barium chalcogenides

    Science.gov (United States)

    Musari, A. A.; Orukombo, S. A.

    2018-03-01

    Barium chalcogenides are known for their high-technological importance and great scientific interest. Detailed studies of their elastic, mechanical, dynamical and thermodynamic properties were carried out using density functional theory and plane-wave pseudo potential method within the generalized gradient approximation. The optimized lattice constants were in good agreement when compared with experimental data. The independent elastic constants, calculated from a linear fit of the computed stress-strain function, were used to determine the Young’s modulus (E), bulk modulus (B), shear modulus (G), Poisson’s ratio (σ) and Zener’s anisotropy factor (A). Also, the Debye temperature and sound velocities for barium chalcogenides were estimated from the three independent elastic constants. The calculations of phonon dispersion showed that there are no negative frequencies throughout the Brillouin zone. Hence barium chalcogenides have dynamically stable NaCl-type crystal structure. Finally, their thermodynamic properties were calculated in the temperature range of 0-1000 K and their constant-volume specific heat capacities at room-temperature were reported.

  4. Shear wave propagation in piezoelectric-piezoelectric composite layered structure

    Directory of Open Access Journals (Sweden)

    Anshu Mli Gaur

    Full Text Available The propagation behavior of shear wave in piezoelectric composite structure is investigated by two layer model presented in this approach. The composite structure comprises of piezoelectric layers of two different materials bonded alternatively. Dispersion equations are derived for propagation along the direction normal to the layering and in direction of layering. It has been revealed that thickness and elastic constants have significant influence on propagation behavior of shear wave. The phase velocity and wave number is numerically calculated for alternative layer of Polyvinylidene Difluoride (PVDF and Lead Zirconate Titanate (PZT-5H in composite layered structure. The analysis carried out in this paper evaluates the effect of volume fraction on the phase velocity of shear wave.

  5. Numerical simulation of shear and the Poynting effects by the finite element method: An application of the generalised empirical inequalities in non-linear elasticity

    KAUST Repository

    Angela Mihai, L.

    2013-03-01

    Finite element simulations of different shear deformations in non-linear elasticity are presented. We pay particular attention to the Poynting effects in hyperelastic materials, complementing recent theoretical findings by showing these effects manifested by specific models. As the finite element method computes uniform deformations exactly, for simple shear deformation and pure shear stress, the Poynting effect is represented exactly, while for the generalised shear and simple torsion, where the deformation is non-uniform, the solution is approximated efficiently and guaranteed computational bounds on the magnitude of the Poynting effect are obtained. The numerical results further indicate that, for a given elastic material, the same sign effect occurs under different shearing mechanisms, showing the genericity of the Poynting effect under a variety of shearing loads. In order to derive numerical models that exhibit either the positive or the negative Poynting effect, the so-called generalised empirical inequalities, which are less restrictive than the usual empirical inequalities involving material parameters, are assumed. © 2012 Elsevier Ltd.

  6. Effect of single-particle magnetostriction on the shear modulus of compliant magnetoactive elastomers

    Science.gov (United States)

    Kalita, Viktor M.; Snarskii, Andrei A.; Shamonin, Mikhail; Zorinets, Denis

    2017-03-01

    The influence of an external magnetic field on the static shear strain and the effective shear modulus of a magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach to the single-particle magnetostriction mechanism [V. M. Kalita et al., Phys. Rev. E 93, 062503 (2016), 10.1103/PhysRevE.93.062503]. The planar problem of magnetostriction in an MAE with magnetically soft inclusions in the form of a thin disk (platelet) having the magnetic anisotropy in the plane of this disk is solved analytically. An external magnetic field acts with torques on magnetic filler particles, creates mechanical stresses in the vicinity of inclusions, induces shear strain, and increases the effective shear modulus of these composite materials. It is shown that the largest effect of the magnetic field on the effective shear modulus should be expected in MAEs with soft elastomer matrices, where the shear modulus of the matrix is less than the magnetic anisotropy constant of inclusions. It is derived that the effective shear modulus is nonlinearly dependent on the external magnetic field and approaches the saturation value in magnetic fields exceeding the field of particle anisotropy. It is shown that model calculations of the effective shear modulus correspond to a phenomenological definition of effective elastic moduli and magnetoelastic coupling constants. The obtained theoretical results compare well with known experimental data. Determination of effective elastic coefficients in MAEs and their dependence on magnetic field is discussed. The concentration dependence of the effective shear modulus at higher filler concentrations has been estimated using the method of Padé approximants, which predicts that both the absolute and relative changes of the magnetic-field-dependent effective shear modulus will significantly increase with the growing concentration of filler particles.

  7. Measurements of Young's and shear moduli of rail steel at elevated temperatures.

    Science.gov (United States)

    Bao, Yuanye; Zhang, Haifeng; Ahmadi, Mehdi; Karim, Md Afzalul; Felix Wu, H

    2014-03-01

    The design and modelling of the buckling effect of Continuous Welded Rail (CWR) requires accurate material constants, especially at elevated temperatures. However, such material constants have rarely been found in literature. In this article, the Young's moduli and shear moduli of rail steel at elevated temperatures are determined by a new sonic resonance method developed in our group. A network analyser is used to excite a sample hanged inside a furnace through a simple tweeter type speaker. The vibration signal is picked up by a Polytec OFV-5000 Laser Vibrometer and then transferred back to the network analyser. Resonance frequencies in both the flexural and torsional modes are measured, and the Young's moduli and shear moduli are determined through the measured resonant frequencies. To validate the measured elastic constants, the measurements have been repeated by using the classic sonic resonance method. The comparisons of obtained moduli from the two methods show an excellent consistency of the results. In addition, the material elastic constants measured are validated by an ultrasound test based on a pulse-echo method and compared with previous published results at room temperature. The measured material data provides an invaluable reference for the design of CWR to avoid detrimental buckling failure. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The shear-free condition and constant-mean-curvature hyperboloidal initial data

    International Nuclear Information System (INIS)

    Allen, Paul T; Allen, Iva Stavrov; Isenberg, James; Lee, John M

    2016-01-01

    We consider the Einstein–Maxwell-fluid constraint equations, and make use of the conformal method to construct and parametrize constant-mean-curvature hyperboloidal initial data sets that satisfy the shear-free condition. This condition is known to be necessary in order that a spacetime development admit a regular conformal boundary at future null infinity; see (Andersson and Chruściel 1994 Commun. Math. Phys. 161 533–68). We work with initial data sets in a variety of regularity classes, primarily considering those data sets whose geometries are weakly asymptotically hyperbolic , as defined in (Allen et al 2015 arXiv:1506.03399). These metrics are C 1,1 conformally compact, but not necessarily C 2 conformally compact. In order to ensure that the data sets we construct are indeed shear-free, we make use of the conformally covariant traceless Hessian introduced in (Allen et al 2015 arXiv:1506.03399). We furthermore construct a class of initial data sets with weakly asymptotically hyerbolic metrics that may be only C 0,1 conformally compact; these data sets are insufficiently regular to make sense of the shear-free condition. (paper)

  9. Elastic constants and Debye temperature of wz-AlN and wz-GaN ...

    Indian Academy of Sciences (India)

    DOI: 10.1007/s12043-014-0785-7; ePublication: 5 September 2014. Abstract. First-principles calculations .... For calculating elastic stiffness constants, C11, C12, C13, C33 and C44, we have taken ..... 89, 5815 (2001). [2] G Chris, Van de Walle ...

  10. Anisotropy in elastic properties of TiSi2 (C49, C40 and C54), TiSi and Ti5Si3: an ab-initio density functional study

    International Nuclear Information System (INIS)

    Niranjan, Manish K

    2015-01-01

    We present a comparative study of the anisotropy in the elastic properties of the C49, C54 and C40 phases of TiSi 2 , as well as orthorhombic TiSi and hexagonal Ti 5 Si 3 . The elastic constants, elastic moduli, Debye temperature and sound velocities are computed within the framework of density functional theory. The computed values of the elastic constants and moduli are found to be in excellent agreement with available experimental values. The average elastic moduli, such as Young’s modulus, shear modulus, bulk modulus and Poisson’s ratio, of polycrystalline aggregates are computed using the computed elastic constants of single crystals. The anisotropy in elastic properties is analyzed using estimates of shear anisotropic factors, bulk modulus anisotropic factors and variations in Young’s and bulk moduli in different crystallographic directions. Among the Ti–Si phases, the computed directional Young’s modulus profiles of C49 TiSi 2 and C40 TiSi 2 are found to be quite similar to those of bulk Si and Ti, respectively. In addition to the elastic properties, the electronic structure of five Ti–Si phases is studied. The density of states and planar charge density profiles reveal mixed covalent–metallic bonding in all Ti–Si phases. (paper)

  11. A fluctuation method to calculate the third order elastic constants in crystalline solids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zimu [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Qu, Jianmin, E-mail: j-qu@northwestern.edu [Department of Civil and Environmental Engineering, Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-05-28

    This paper derives exact expressions of the isothermal third order elastic constants (TOE) in crystalline solids in terms of the kinetic and potential energies of the system. These expressions reveal that the TOE constants consist of a Born component and a relaxation component. The Born component is simply the third derivative of the system's potential energy with respect to the deformation, while the relaxation component is related to the non-uniform rearrangements of the atoms when the system is subject to a macroscopic deformation. Further, based on the general expressions derived here, a direct (fluctuation) method of computing the isothermal TOE constants is developed. Numerical examples of using this fluctuation method are given to compute the TOE constants of single crystal iron.

  12. Elastic properties of silicon nitride ceramics reinforced with graphene nanofillers

    Czech Academy of Sciences Publication Activity Database

    Seiner, Hanuš; Ramírez, C.; Koller, M.; Sedlák, Petr; Landa, Michal; Miranzo, P.; Belmonte, M.; Osendí, M. I.

    2015-01-01

    Roč. 87, December (2015), s. 675-680 ISSN 0264-1275 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 Keywords : multilayer graphene * graphene oxide (GO) * silicon nitride * elastic constants * elastic modulus * shear modulus Subject RIV: JI - Composite Materials Impact factor: 3.997, year: 2015 http://www.sciencedirect.com/science/article/pii/S0264127515302938/pdfft?md5=571e00fd7f976e9b66ed789ae2a868b2&pid=1-s2.0-S0264127515302938-main.pdf

  13. Optimal determination of the elastic constants of composite materials from ultrasonic wave-speed measurements

    Science.gov (United States)

    Castagnède, Bernard; Jenkins, James T.; Sachse, Wolfgang; Baste, Stéphane

    1990-03-01

    A method is described to optimally determine the elastic constants of anisotropic solids from wave-speeds measurements in arbitrary nonprincipal planes. For such a problem, the characteristic equation is a degree-three polynomial which generally does not factorize. By developing and rearranging this polynomial, a nonlinear system of equations is obtained. The elastic constants are then recovered by minimizing a functional derived from this overdetermined system of equations. Calculations of the functional are given for two specific cases, i.e., the orthorhombic and the hexagonal symmetries. Some numerical results showing the efficiency of the algorithm are presented. A numerical method is also described for the recovery of the orientation of the principal acoustical axes. This problem is solved through a double-iterative numerical scheme. Numerical as well as experimental results are presented for a unidirectional composite material.

  14. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    Science.gov (United States)

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  15. Theoretical study of elastic, mechanical and thermodynamic properties of MgRh intermetallic compound

    Directory of Open Access Journals (Sweden)

    S. Boucetta

    2014-03-01

    Full Text Available In the last years, Magnesium alloys are known to be of great technological importance and high scientific interest. In this work, density functional theory plane-wave pseudo potential method, with local density approximation (LDA and generalized gradient approximation (GGA are used to perform first-principles quantum mechanics calculations in order to investigate the structural, elastic and mechanical properties of the intermetallic compound MgRh with a CsCl-type structure. Comparison of the calculated equilibrium lattice constant and experimental data shows good agreement. The elastic constants were determined from a linear fit of the calculated stress–strain function according to Hooke's law. From the elastic constants, the bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio σ, anisotropy factor A and the ratio B/G for MgRh compound are obtained. The sound velocities and Debye temperature are also predicted from elastic constants. Finally, the linear response method has been used to calculate the thermodynamic properties. The temperature dependence of the enthalpy H, free energy F, entropy S, and heat capacity at constant volume Cv of MgRh crystal in a quasi-harmonic approximation have been obtained from phonon density of states and discussed for the first report. This is the first quantitative theoretical prediction of these properties.

  16. The Pricing of European Options Under the Constant Elasticity of Variance with Stochastic Volatility

    Science.gov (United States)

    Bock, Bounghun; Choi, Sun-Yong; Kim, Jeong-Hoon

    This paper considers a hybrid risky asset price model given by a constant elasticity of variance multiplied by a stochastic volatility factor. A multiscale analysis leads to an asymptotic pricing formula for both European vanilla option and a Barrier option near the zero elasticity of variance. The accuracy of the approximation is provided in a rigorous manner. A numerical experiment for implied volatilities shows that the hybrid model improves some of the well-known models in view of fitting the data for different maturities.

  17. The first-principles calculations for the elastic properties of Zr2Al under compression

    International Nuclear Information System (INIS)

    Yuan Xiaoli; Wei Dongqing; Chen Xiangrong; Zhang Qingming; Gong Zizheng

    2011-01-01

    Graphical abstract: The calculated elastic constants C ij as a function of pressure P. Display Omitted Research highlights: → It is found that the five independent elastic constants increase monotonically with pressure. C 11 and C 33 vary rapidly as pressure increases, C 13 and C 12 becomes moderate. However, C 44 increases comparatively slowly with pressure. Figure shows excellent satisfaction of the calculated elastic constants of Zr 2 Al to these equations and hence in our calculation, the Zr 2 Al is mechanically stable at pressure up to 100 GPa. - Abstract: The first-principles calculations were applied to investigate the structural, elastic constants of Zr 2 Al alloy with increasing pressure. These properties are based on the plane wave pseudopotential density functional theory (DFT) method within the generalized gradient approximation (GGA) for exchange and correlation. The result of the heat of formation of Zr 2 Al crystal investigated is in excellent consistent with results from other study. The anisotropy, the shear modulus, and Young's modulus for the ideal polycrystalline Zr 2 Al are also studied. It is found that (higher) pressure can significantly improve the ductility of Zr 2 Al. Moreover, the elastic constants of Zr 2 Al increase monotonically and the anisotropies decrease with the increasing pressure. Finally, it is observed that Zr d electrons are mainly contributed to the density of states at the Fermi level.

  18. Size-dependent bending, buckling and vibration of higher-order shear deformable magneto-electro-thermo-elastic rectangular nanoplates

    Science.gov (United States)

    Gholami, Raheb; Ansari, Reza; Gholami, Yousef

    2017-06-01

    The aim of the present study is to propose a unified size-dependent higher-order shear deformable plate model for magneto-electro-thermo-elastic (METE) rectangular nanoplates by adopting the nonlocal elasticity theory to capture the size effect, and by utilizing a generalized shape function to consider the effects of transverse shear deformation and rotary inertia. By considering various shape functions, the proposed plate model can be reduced to the nonlocal plate model based upon the Kirchhoff, Mindlin and Reddy plate theories, as well as the parabolic, trigonometric, hyperbolic and exponential shear deformation plate theories. The governing equations of motion and corresponding boundary conditions of METE nanoplates subjected to external in-plane, transverse loads as well as magnetic, electric and thermal loadings, are obtained using Hamilton’s principle. Then, as in some case studies, the static bending, buckling, and free vibration characteristics of simply-supported METE rectangular nanoplates are investigated based upon the Navier solution approach. Numerical results are provided in order to investigate the influences of various parameters including the nondimensional nonlocal parameter, type of transverse loading, temperature change, applied voltage, and external magnetic potential on the mechanical behaviors of METE nanoplates. Furthermore, comparisons are made between the results predicted by different nonlocal plate models by utilizing the developed unified nonlocal plate model and selecting the associated shape functions. It is illustrated that by using the presented unified nonlocal plate model, the development of a nonlocal plate model based upon any existing higher-order shear deformable plate theory is a simple task.

  19. Ab initio study of the elastic properties of single and polycrystal TiO2, ZrO2 and HfO2 in the cotunnite structure

    International Nuclear Information System (INIS)

    Caravaca, M A; Mino, J C; Perez, V J; Casali, R A; Ponce, C A

    2009-01-01

    In this work, we study theoretically the elastic properties of the orthorhombic (Pnma) high-pressure phase of IV-B group oxides: titania, zirconia and hafnia. By means of the self-consistent SIESTA code, pseudopotentials, density functional theory in the LDA and GGA approximations, the total energies, hydrostatic pressures and stress tensor components are calculated. From the stress-strain relationships, in the linear regime, the elastic constants C ij are determined. Derived elastic constants, such as bulk, Young's and shear modulus, Poisson coefficient and brittle/ductile behavior are estimated with the polycrystalline approach, using Voigt-Reuss-Hill theories. We have found that C 11 , C 22 and C 33 elastic constants of hafnia and zirconia show increased strength with respect to the experimental values of the normal phase, P 2 1 /c. A similar situation applies to titania if these constants are compared with its normal phase, rutile. However, shear elastic constants C 44 , C 55 and C 66 are similar to the values found in the normal phase. This fact increases the compound anisotropy as well as its ductile behavior. The dependence of unit-cell volumes under hydrostatic pressures is also analyzed. P-V data, fitted to third-order Birch-Murnaghan equations of state, provide the bulk modulus B 0 and its pressure derivatives B' 0 . In this case, LDA estimations show good agreement with respect to recent measured bulk moduli of ZrO 2 and HfO 2 . Thermo-acoustic properties, e.g. the propagation speed of transverse, longitudinal elastic waves together with associated Debye temperatures, are also estimated.

  20. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    Science.gov (United States)

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  1. First-principles study of crystal structure, elastic stiffness constants, piezoelectric constants, and spontaneous polarization of orthorhombic Pna21-M2O3 (M = Al, Ga, In, Sc, Y)

    Science.gov (United States)

    Shimada, Kazuhiro

    2018-03-01

    We perform first-principles calculations to investigate the crystal structure, elastic and piezoelectric properties, and spontaneous polarization of orthorhombic M2O3 (M = Al, Ga, In, Sc, Y) with Pna21 space group based on density functional theory. The lattice parameters, full elastic stiffness constants, piezoelectric stress and strain constants, and spontaneous polarization are successfully predicted. Comparison with available experimental and computational results indicates the validity of our computational results. Detailed analysis of the results clarifies the difference in the bonding character and the origin of the strong piezoelectric response and large spontaneous polarization.

  2. The elastic and thermodynamic properties of ZrMo2 from first principles calculations

    International Nuclear Information System (INIS)

    Liu, Xian-Kun; Zhou, Wei; Zheng, Zhou; Peng, Shu-Ming

    2014-01-01

    Highlights: • Elastic and thermodynamic properties of ZrMo 2 under high temperature and pressure are calculated by first principles. • Mechanical stability is testified from elastic constants at zero pressure. • Phonon scattering of ZrMo 2 under different temperature are obtained. - Abstract: The elastic and thermodynamic properties of ZrMo 2 under high temperature and pressure are investigated by first-principles calculations based on pseudopotential plane-wave density functional theory (DFT) within the generalized gradient approximation (GGA) and quasi-harmonic Debye model. The calculated lattice parameters are in good agreement with the available experimental data. The calculated elastic constants of ZrMo 2 increase monotonically with increasing pressure, and the relationship between the elastic constants and pressure show that ZrMo 2 satisfies the mechanical stability criteria under applied pressure (0–65 GPa). The related mechanical properties such as bulk modulus (B), shear modulus (G), Young’s modulus (E), and Poisson’s ratio (v) are also studied for polycrystalline of ZrMo 2 . The calculated B/G value shows that ZrMo 2 behaves in a ductile manner, and higher pressure can significantly improve the ductility of ZrMo 2 . The pressure and temperature dependencies of the relative volume, the bulk modulus, the elastic constants, the heat capacity and the thermal expansion coefficient, as well as the Grüneisen parameters are obtained and discussed by the quasi-harmonic Debye model in the ranges of 0–1800 K and 0–65 GPa

  3. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  4. Pressure derivatives of the second-order elastic constants of strontium, barium, and lead nitrate

    International Nuclear Information System (INIS)

    Bedi, S.S.; Verma, M.P.

    1980-01-01

    An interpretation is given of the measured results on the pressure derivatives of second-order elastic constants (SOEC) of strontium barium, and lead nitrate crystallizing in the fluorite type structure from the Lundquist potential. Potential parameters are determined from the experimental values of SOEC and the equilibrium condition

  5. Pressure dependence of elastic constants in zinc-blende III-N and their influence on the light emission in nitride heterostructures

    International Nuclear Information System (INIS)

    Lepkowski, S.P.; Majewski, J.A.

    2004-01-01

    We studied the nonlinear elasticity effects for the case of III-N compounds. Particularly, we determined the pressure dependences of elastic constants, in zinc-blende InN, GaN, and AlN by performing ab initio calculations in the framework of plane-wave pseudopotential implementation of the density-functional theory. We found significant and almost linear increase in C 11 , C 12 with pressure for considered nitrides compounds. Much weaker dependences on pressure was observed for C 44 . We also discussed pressure dependences of two-dimensional Poisson's ratio and elastic anisotropy coefficient. Finally, we showed that the pressure dependence of elastic constants results in significant reduction of the pressure coefficient of the energy emission in cubic InGaN/GaN quantum well and essentially improves the agreement between experimental and theoretical values. (author)

  6. Evaluating Bounds and Estimators for Constants of Random Polycrystals Composed of Orthotropic Elastic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J. G.

    2012-03-01

    While the well-known Voigt and Reuss (VR) bounds, and the Voigt-Reuss-Hill (VRH) elastic constant estimators for random polycrystals are all straightforwardly calculated once the elastic constants of anisotropic crystals are known, the Hashin-Shtrikman (HS) bounds and related self-consistent (SC) estimators for the same constants are, by comparison, more difficult to compute. Recent work has shown how to simplify (to some extent) these harder to compute HS bounds and SC estimators. An overview and analysis of a subsampling of these results is presented here with the main point being to show whether or not this extra work (i.e., in calculating both the HS bounds and the SC estimates) does provide added value since, in particular, the VRH estimators often do not fall within the HS bounds, while the SC estimators (for good reasons) have always been found to do so. The quantitative differences between the SC and the VRH estimators in the eight cases considered are often quite small however, being on the order of ±1%. These quantitative results hold true even though these polycrystal Voigt-Reuss-Hill estimators more typically (but not always) fall outside the Hashin-Shtrikman bounds, while the self-consistent estimators always fall inside (or on the boundaries of) these same bounds.

  7. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    Science.gov (United States)

    Lawrence, S. K.; Somerday, B. P.; Ingraham, M. D.; Bahr, D. F.

    2018-04-01

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases 22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases 20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yielding in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal a direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.

  8. Is the Armington Elasticity Really Constant across Importers?

    OpenAIRE

    Yilmazkuday, Hakan

    2009-01-01

    This paper shows that the Armington elasticity, which refers to both the elasticity of substitution across goods and the price elasticity of demand under the assumption of a large number of varieties, systematically changes from one importer country to another in an international trade context. Then a natural question to ask is "What determines the Armington elasticity?" The answer comes from the distinction between the elasticity of demand with respect to the destination price (i.e., the Arm...

  9. Elastic properties of some transition metal arsenides

    Science.gov (United States)

    Nayak, Vikas; Verma, U. P.; Bisht, P. S.

    2018-05-01

    The elastic properties of transition metal arsenides (TMAs) have been studied by employing Wien2K package based on density functional theory in the zinc blende (ZB) and rock salt (RS) phase treating valance electron scalar relativistically. Further, we have also treated them non-relativistically to find out the relativistic effect. We have calculated the elastic properties by computing the volume conservative stress tensor for small strains, using the method developed by Charpin. The obtained results are discussed in paper. From the obtained results, it is clear that the values of C11 > C12 and C44 for all the compounds. The values of shear moduli of these compounds are also calculated. The internal parameter for these compounds shows that ZB structures of these compounds have high resistance against bond order. We find that the estimated elastic constants are in good agreement with the available data.

  10. Effective X-ray elastic constant measurement for in situ stress measurement of biaxially strained AA5754-O

    International Nuclear Information System (INIS)

    Iadicola, Mark A.; Gnäupel-Herold, Thomas H.

    2012-01-01

    Accurate measurement of stresses by X-ray diffraction requires accurate X-ray elastic constants. Calibration experiments are one method to determine these for a specific material in a specific condition. In this paper, uniaxial tension experiments are used to investigate the variation of these constants after uniaxial and equal-biaxial plastic deformation for an aluminum alloy (AA5754-O) of interest to the automotive industry. These data are critical for accurate measurement of the biaxial mechanical properties of the material using a recent experimental method combining specialized sheet metal forming equipment with portable X-ray diffraction equipment. The measured effective X-ray elastic constants show some minor variation with increased plastic deformation, and this behavior was found to be consistent for both uniaxially and equal-biaxially strained samples. The use of two average values for effective X-ray elastic constants, one in the rolling direction and one transverse to the rolling direction of the sheet material, is shown to be of sufficient accuracy for the combined tests of interest. Comparison of uniaxial data measured using X-ray diffraction and standard methods show good agreement, and biaxial stress–strain results show good repeatability. Additionally, the calibration data show some non-linear behavior, which is analyzed in regards to crystallographic texture and intergranular stress effects. The non-linear behavior is found to be the result of intergranular stresses based on comparison with additional measurements using other X-ray diffraction equipment and neutron diffraction.

  11. Temperature dependence of bulk modulus and second-order elastic constants

    International Nuclear Information System (INIS)

    Singh, P.P.; Kumar, Munish

    2004-01-01

    A simple theoretical model is developed to investigate the temperature dependence of the bulk modulus and second order elastic constants. The method is based on the two different approaches viz. (i) the theory of thermal expansivity formulated by Suzuki, based on the Mie-Gruneisen equation of state, (ii) the theory of high-pressure-high-temperature equation of state formulated by Kumar, based on thermodynamic analysis. The results obtained for a number of crystals viz. NaCl, KCl, MgO and (Mg, Fe) 2 SiO 4 are discussed and compared with the experimental data. It is concluded that the Kumar formulation is far better that the Suzuki theory of thermal expansivity

  12. The structural, elastic, electronic and dynamical properties of chalcopyrite semiconductor BeGeAs{sub 2} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ciftci, Yasemin Oe. [Gazi University Teknikokullar, Department of Physics, Faculty of Sciences, Ankara (Turkey); Evecen, Meryem; Aldirmaz, Emine [Amasya University, Department of Physics, Faculty of Arts and Sciences, Amasya (Turkey)

    2017-01-15

    First-principles calculations for the structural, elastic, electronic and vibrational properties of BeGeAs{sub 2} with chalcopyrite structure have been reported in the frame work of the density functional theory. The calculated ground state properties are in good agreement with the available data. By considering the electronic band structure and electronic density of states calculation, it is found that this compound is a semiconductor which confirmed the previous work. Single-crystal elastic constants and related properties such as Young's modulus, Poisson ratio, shear modulus and bulk modulus have been predicted using the stress-finite strain technique. It can be seen from the calculated elastic constants that this compound is mechanically stable in the chalcopyrite structure. Pressure dependences of elastic constants and band gap are also reported. Finally, the phonon dispersion curves and total and partial density of states were calculated and discussed. The calculated phonon frequencies BeGeAs{sub 2} are positive, indicating the dynamical stability of the studied compound. (orig.)

  13. WE-E-9A-01: Ultrasound Elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Emelianov, S [University of Texas at Austin, Austin, TX (United States); Hall, T [University of WI-Madison, Madison, WI (United States); Bouchard, R [UT MD Anderson Cancer Center and UTHSC at Houston Graduate School of Biomed, Houston, TX (United States)

    2014-06-15

    Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitative Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity measurement

  14. WE-E-9A-01: Ultrasound Elasticity

    International Nuclear Information System (INIS)

    Emelianov, S; Hall, T; Bouchard, R

    2014-01-01

    Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitative Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity measurement

  15. GPU-based Green's function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models.

    Science.gov (United States)

    Yang, Yiqun; Urban, Matthew W; McGough, Robert J

    2018-05-15

    Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green's functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs.

  16. Effects of elasticity on the damping characteristics of viscous shearing damper and estimation curve for modal damping in stay cables with this type of dampers. Cable seishin'yo nensei sendangata damper no gensui fuka tokusei ni oyobosu banegosei no eikyo to sono sekkeiyo gensui hyoka kyokusen

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, M. (Kawada Industries Inc., Tokyo (Japan)); Shimoda, I. (Oiles Corp., Tokyo (Japan))

    1993-12-20

    Oil dampers and viscous shearing dampers have been used to control wind-induced cable vibrations of cable-stayed bridges. The damping addition efficiency in the case where only damping force of the viscous shearing damper is considered was discussed in the previous paper. In this paper, more precise estimation is done by also considering the spring elasticity of the damper. Arranging the results of an indoor excitation test on viscous shearing dampers using SA-P viscous body, an experimental equation to express the spring rigidity is derived. The spring elasticity becomes smaller with increasing temperature of viscous body, decreasing frequency, and increasing amplitude. Then, the damping addition effect is measured by installing the viscous shearing damper on the actual bridge cable, and is compared with the theoretical value resulting from the complex-eigenvalue analysis. Consequently, it is shown that the theoretical value is almost correspondent with the measured result through the analysis using equivalent coefficient of viscosity and equivalent spring constant, which are arranged in the experimental equation. Moreover, application examples of damping estimation curves for designing cables with dampers are given. 15 refs., 13 figs., 10 tabs.

  17. Elastic constants and the structural phase transition in La2-xSrxCuO4

    International Nuclear Information System (INIS)

    Sarrao, J.L.; Lei, Ming; Stekel, A.; Bell, T.M.; Leisure, R.G.; Sham, L.J.; Visscher, W.M.; Migliori, A.; Bussmann-Holder, A.; Tanaka, I.; Kojima, H.

    1991-01-01

    Resonant ultrasound spectroscopy is used to measure the temperature dependence of all six elastic moduli of La 2-x Sr x CuO 4 . A giant softening (> 50% reduction) in the in-plane shear modulus, c 66 , is observed and is attributed to the tetragonal-orthorhombic structural phase transition in this material. This phase transition and the corresponding softening is examined with a simple anharmonic mechanical model and a macroscopic Ginsburg-Landau formalism exploiting the full symmetry of the crystal. 16 refs., 5 figs

  18. Theoretical studies of the pressure-induced phase transition and elastic properties of BeS

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xu [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Yu, Yang, E-mail: yuyang@scu.edu.cn [Department of Logistics Management, Sichuan University, Chengdu 610065 (China); Ji, Junyi [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Long, Jianping [College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Chen, Jianjun; Liu, Daijun [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2015-02-25

    Highlights: • Transition pressure from B3 to B8 of BeS is 58.86 GPa. • Elastic properties of BeS under pressure are predicted for the first time. • Elastic moduli of BeS increase monotonically with increasing pressure. • Elastic anisotropy of BeS has been investigated. - Abstract: First-principles calculations were performed to investigate the structural, electronic and elastic properties of BeS in both B3 and B8 structures. The structural phase transition from B3 to B8 occurs at 58.86 GPa with a volume decrease of 10.74%. The results of the electronic band structure show that the energy gap is indirect for B3 and B8 phases. The pressure dependence of the direct and indirect band gaps for BeS has been investigated. Especially, the elastic constants of B8 BeS under high pressure have been studied for the first time. The mechanical stability of the two phases has been discussed based on the pressure dependence of the elastic constants. In addition, the pressure dependence of bulk modulus, shear modulus, Young’s modulus, elastic wave velocities and brittle–ductile behavior of BeS are all successfully obtained. Finally, the elastic anisotropy has been investigated by using two different methods.

  19. High pressure elastic properties of minerals from ab initio simulations: The case of pyrope, grossular and andradite silicate garnets

    International Nuclear Information System (INIS)

    Erba, A.; Mahmoud, A.; Dovesi, R.; Belmonte, D.

    2014-01-01

    A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed

  20. The first principles study of elastic and thermodynamic properties of ZnSe

    Science.gov (United States)

    Khatta, Swati; Kaur, Veerpal; Tripathi, S. K.; Prakash, Satya

    2018-05-01

    The elastic and thermodynamic properties of ZnSe are investigated using thermo_pw package implemented in Quantum espresso code within the framework of density functional theory. The pseudopotential method within the local density approximation is used for the exchange-correlation potential. The physical parameters of ZnSe bulk modulus and shear modulus, anisotropy factor, Young's modulus, Poisson's ratio, Pugh's ratio and Frantsevich's ratio are calculated. The sound velocity and Debye temperature are obtained from elastic constant calculations. The Helmholtz free energy and internal energy of ZnSe are also calculated. The results are compared with available theoretical calculations and experimental data.

  1. Study of elastic and thermodynamic properties of uranium dioxide under high temperature and pressure with density functional theory

    International Nuclear Information System (INIS)

    Zhou Mu; Wang Feng; Zheng Zhou; Liu Xiankun; Jiang Tao

    2013-01-01

    The elastic and thermodynamic properties of UO 2 under extreme physical condition are studied by using the density functional theory and quasi-harmonic Debye model. Results show that UO 2 is still stable ionic crystal under high temperatures, and pressures. Tetragonal shear constant is steady under high pressures and temperatures, while elastic constant C 44 is stable under high temperatures, but rises with pressure sharply. Bulk modulus, shear modulus and Young's modulus increase with pressure rapidly, but temperature would not cause evident debasement of the moduli, all of which indicate that UO 2 has excellent mechanical properties. Heat capacity of different pressures increases with temperature and is close to the Dulong-Petit limit near 1000 K. Debye temperature decreases with temperature, and increases with pressure. Under low pressure, thermal expansion coefficient raises with temperature rapidly, and then gets slow at higher pressure and temperature. Besides, the thermal expansion coefficient of UO 2 is much lower than that of other nuclear materials. (authors)

  2. Ab initio study of the elastic properties of single and polycrystal TiO{sub 2}, ZrO{sub 2} and HfO{sub 2} in the cotunnite structure

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, M A; Mino, J C; Perez, V J [Departamento de Fisico-Quimica, Facultad de Ingenieria, UNNE, Avenida Las Heras 727, CP 3500, Resistencia (Argentina); Casali, R A; Ponce, C A [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales y Agrimensura UNNE, Avenida Libertad 5600, CP 3400, Corrientes (Argentina)

    2009-01-07

    In this work, we study theoretically the elastic properties of the orthorhombic (Pnma) high-pressure phase of IV-B group oxides: titania, zirconia and hafnia. By means of the self-consistent SIESTA code, pseudopotentials, density functional theory in the LDA and GGA approximations, the total energies, hydrostatic pressures and stress tensor components are calculated. From the stress-strain relationships, in the linear regime, the elastic constants C{sub ij} are determined. Derived elastic constants, such as bulk, Young's and shear modulus, Poisson coefficient and brittle/ductile behavior are estimated with the polycrystalline approach, using Voigt-Reuss-Hill theories. We have found that C{sub 11}, C{sub 22} and C{sub 33} elastic constants of hafnia and zirconia show increased strength with respect to the experimental values of the normal phase, P 2{sub 1}/c. A similar situation applies to titania if these constants are compared with its normal phase, rutile. However, shear elastic constants C{sub 44}, C{sub 55} and C{sub 66} are similar to the values found in the normal phase. This fact increases the compound anisotropy as well as its ductile behavior. The dependence of unit-cell volumes under hydrostatic pressures is also analyzed. P-V data, fitted to third-order Birch-Murnaghan equations of state, provide the bulk modulus B{sub 0} and its pressure derivatives B'{sub 0}. In this case, LDA estimations show good agreement with respect to recent measured bulk moduli of ZrO{sub 2} and HfO{sub 2}. Thermo-acoustic properties, e.g. the propagation speed of transverse, longitudinal elastic waves together with associated Debye temperatures, are also estimated.

  3. High-Temperature Elasticity of Topaz: A Resonant Ultrasound Spectroscopic study

    Science.gov (United States)

    Tennakoon, S.; Peng, Y.; Andreu, L.; Rivera, F.; Mookherjee, M.; Manthilake, G.; Speziale, S.

    2017-12-01

    Topaz (Al2SiO4(F,OH)2) is a hydrous aluminosilicate mineral stable in the hydrated sediments in subduction zone settings and could transport water into the Earth's interior. To constrain the amount of water subducted, it is important to have a better understanding of the elastic constants of hydrous phases and compare them with the geophysical observations. In this study, we explored the full elastic moduli tensor for a single crystal topaz using Resonant Ultrasound Spectroscopy. We determined the full elastic moduli tensor at ambient conditions (1 bar and 297 K), with the principal components- C11, C22, and C33 are 279, 352 and 288 GPa respectively, the off-diagonal components- C­12, C13, and C23 are 124, 72, and 82 GPa respectively, and the shear components- C44, C55, and C66 are 111, 134, and 130 GPa respectively. The compressional (AVP) and shear (AVS) anisotropy for topaz are 13 and 14 % respectively. The aggregate bulk (K) and shear (G) moduli are 162 and 117 GPa respectively. We determined the elasticity of topaz up to 1000 K. The components of the full elastic moduli tensor show softening at high temperature. Temperature derivatives of sound velocity of topaz, dVP/dT = -3.5 ×10-4 km/s/K and dVS/dT = -2.2 ×10-4 km/s/K are smaller than those for corundum [1], α-quartz [2], and olivine [3]. In contrast, the temperature derivatives of primary and shear sound velocity for topaz is greater than that of pyrope garnet [4]. The elasticity and sound velocity of topaz also vary as a function of chemistry i.e., OH-F contents. Our study demonstrates that the effect of composition (xOH) on the velocity is more pronounced than that of temperature.Acknowledgement: This study is supported by US NSF awards EAR-1634422. Reference: [1] Goto, T. et al.,1989, J. Geophys. Res., 94, 7588; [2] Ohno, I. et al., 2006, Phys. Chem. Miner., 33, 1-9; [3] Isaak, D. G., 1992, J. Geophys. Res. Solid Earth, 97, 1871-1885; [4] Sinogeikin, S. V., Bass, J. D., 2002, Earth Planet. Sci. Lett

  4. Bounds and self-consistent estimates for elastic constants of polycrystals of hcp solid He 4

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, James G.

    2012-03-01

    Recent advances in methods for computing both Hashin-Shtrikman bounds and related selfconsistent (or CPA) estimates of elastic constants for polycrystals composed of randomly oriented crystals can be applied successfully to hexagonal close packed solid He{sup 4}. In particular, since the shear modulus C{sub 44} of hexagonal close-packed solid He is known to undergo large temperature variations when 20 mK {<=} T {<=} 200 mK, bounds and estimates computed with this class of effective medium methods, while using C{sub 44} {r_arrow} 0 as a proxy for melting, are found to be both qualitatively and quantitatively very similar to prior results obtained using Monte Carlo methods. Hashin- Shtrikman bounds provide significantly tighter constraints on the polycrystal behavior than do the traditional Voigt and Reuss bounds.

  5. Structural and elastic properties of AIBIIIC 2 VI semiconductors

    Science.gov (United States)

    Kumar, V.; Singh, Bhanu P.

    2018-01-01

    The plane wave pseudo-potential method within density functional theory has been used to calculate the structural and elastic properties of AIBIIIC 2 VI semiconductors. The electronic band structure, density of states, lattice constants (a and c), internal parameter (u), tetragonal distortion (η), energy gap (Eg), and bond lengths of the A-C (dAC) and B-C (dBC) bonds in AIBIIIC 2 VI semiconductors have been calculated. The values of elastic constants (Cij), bulk modulus (B), shear modulus (G), Young's modulus (Y), Poisson's ratio (υ), Zener anisotropy factor (A), Debye temperature (ϴD) and G/B ratio have also been calculated. The values of all 15 parameters of CuTlS2 and CuTlSe2 compounds, and 8 parameters of 20 compounds of AIBIIIC 2 VI family, except AgInS2 and AgInSe2, have been calculated for the first time. Reasonably good agreement has been obtained between the calculated, reported and available experimental values.

  6. GPU-based Green’s function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models

    Science.gov (United States)

    Yang, Yiqun; Urban, Matthew W.; McGough, Robert J.

    2018-05-01

    Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green’s functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green’s function approach are ideally suited for high-performance GPUs.

  7. Structural and elastic properties of Ni2+xMn1-xGa alloys

    International Nuclear Information System (INIS)

    Ghosh, Subhradip; Vitos, Levente; Sanyal, Biplab

    2011-01-01

    The structural parameters and the energetics of the Ni 2+x Mn 1-x Ga alloys have been investigated by the first-principles Exact Muffin Tin Orbital-Coherent Potential Approximation (EMTO-CPA) for 0.10 m . The qualitative behavior of δE with variation of x has been found to be in agreement with the experimentally observed variation of T m with x. The elastic constants for the entire range of x have also been calculated and the determination of a relationship between δE and the elastic shear modulus has been attempted. It is seen that δE varies linearly with elastic shear modulus C', qualitatively similar to the relation between T m and C'. The energetics calculated with the EMTO method agrees quite well with the all-electron full-potential results ensuring the accuracy of the method. These results show that the EMTO-CPA method is one of the most reliable and accurate first-principles methods, in the context of off-stoichiometric alloys which undergo martensitic phase transformations.

  8. Superficial ultrasound shear wave speed measurements in soft and hard elasticity phantoms: repeatability and reproducibility using two ultrasound systems.

    Science.gov (United States)

    Dillman, Jonathan R; Chen, Shigao; Davenport, Matthew S; Zhao, Heng; Urban, Matthew W; Song, Pengfei; Watcharotone, Kuanwong; Carson, Paul L

    2015-03-01

    There is a paucity of data available regarding the repeatability and reproducibility of superficial shear wave speed (SWS) measurements at imaging depths relevant to the pediatric population. To assess the repeatability and reproducibility of superficial shear wave speed measurements acquired from elasticity phantoms at varying imaging depths using three imaging methods, two US systems and multiple operators. Soft and hard elasticity phantoms manufactured by Computerized Imaging Reference Systems Inc. (Norfolk, VA) were utilized for our investigation. Institution No. 1 used an Acuson S3000 US system (Siemens Medical Solutions USA, Malvern, PA) and three shear wave imaging method/transducer combinations, while institution No. 2 used an Aixplorer US system (SuperSonic Imagine, Bothell, WA) and two different transducers. Ten stiffness measurements were acquired from each phantom at three depths (1.0 cm, 2.5 cm and 4.0 cm) by four operators at each institution. Student's t-test was used to compare SWS measurements between imaging techniques, while SWS measurement agreement was assessed with two-way random effects single-measure intra-class correlation coefficients (ICCs) and coefficients of variation. Mixed model regression analysis determined the effect of predictor variables on SWS measurements. For the soft phantom, the average of mean SWS measurements across the various imaging methods and depths was 0.84 ± 0.04 m/s (mean ± standard deviation) for the Acuson S3000 system and 0.90 ± 0.02 m/s for the Aixplorer system (P = 0.003). For the hard phantom, the average of mean SWS measurements across the various imaging methods and depths was 2.14 ± 0.08 m/s for the Acuson S3000 system and 2.07 ± 0.03 m/s Aixplorer system (P > 0.05). The coefficients of variation were low (0.5-6.8%), and interoperator agreement was near-perfect (ICCs ≥ 0.99). Shear wave imaging method and imaging depth significantly affected measured SWS (P

  9. High pressure elastic properties of minerals from ab initio simulations: The case of pyrope, grossular and andradite silicate garnets

    Energy Technology Data Exchange (ETDEWEB)

    Erba, A., E-mail: alessandro.erba@unito.it; Mahmoud, A.; Dovesi, R. [Dipartimento di Chimica and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), Università di Torino, via Giuria 5, IT-10125 Torino (Italy); Belmonte, D. [DISTAV, Università di Genova, Corso Europa 26, 16132 Genoa (Italy)

    2014-03-28

    A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed.

  10. On the evaluation of temperature dependence of elastic constants of martensitic phases in shape memory alloys from resonant ultrasound spectroscopy studies

    International Nuclear Information System (INIS)

    Landa, Michal; Sedlak, Petr; Sittner, Petr; Seiner, Hanus; Heller, Ludek

    2008-01-01

    Elastic constants of austenite and martensite phases in shape memory alloys reflect fundamental thermodynamic properties of these materials-i.e. important physical information can be deduced not just from the values of the constants but, mainly from their temperature and stress dependencies. As regards to the parent austenite phase, such information is available in the literature for most of the known shape memory alloys. For the martensitic phases, however, only few reliable experimental data exist, due to the experimental difficulties with the preparation of martensite single crystals as well as due to the difficulties with the ultrasonic measurement of elastic properties of strongly anisotropic media with low symmetry. In this work, the temperature dependence of all elastic constants of cubic austenite and orthorhombic 2H martensite phases in Cu-Al-Ni alloy determined by resonance ultrasound spectroscopy (RUS) is reported. Experimental and theoretical improvements of the RUS method which had to be made to perform the successful measurements on strongly anisotropic and martensitic phases are discussed

  11. The response of dense dry granular material to the shear reversal

    Science.gov (United States)

    Zhang, Jie; Ren, Jie; Farhadi, Somayeh; Behringer, Robert

    2008-11-01

    We have performed two dimensional granular experiments under pure shear using bidisperse photo-elastic disks. Starting from a stress free state, a square box filled with granular particles is subject to shear. The forward shears involved various number of steps, leading to maximum strains between 0.1 and 0.3. The area is kept constant during the shear. The network of force chains gradually built up as the strain increased, leading to increased pressure and shear stress. Reverse shear was then applied to the system. Depending on the initial packing fraction and the strain at which the shear is reversed, the force chain network built prior to the shear reversal may be destroyed completely or partially destroyed. Following the force chain weakening, when the reserve shear is continuously applied to the system, there is a force chain strengthening. Following each change of the system, contact forces of individual disks were measured by applying an inverse algorithm. We also kept track of the displacement and angle of rotation of every particle from frame to frame. We present the results for the structure failure and reconstruction during shear reversals. We also present data for stresses, contact force distributions and other statistical measures.

  12. Comparison between the basic least squares and the Bayesian approach for elastic constants identification

    Science.gov (United States)

    Gogu, C.; Haftka, R.; LeRiche, R.; Molimard, J.; Vautrin, A.; Sankar, B.

    2008-11-01

    The basic formulation of the least squares method, based on the L2 norm of the misfit, is still widely used today for identifying elastic material properties from experimental data. An alternative statistical approach is the Bayesian method. We seek here situations with significant difference between the material properties found by the two methods. For a simple three bar truss example we illustrate three such situations in which the Bayesian approach leads to more accurate results: different magnitude of the measurements, different uncertainty in the measurements and correlation among measurements. When all three effects add up, the Bayesian approach can have a large advantage. We then compared the two methods for identification of elastic constants from plate vibration natural frequencies.

  13. The elastic constants of V2O3 in the insulating phase

    International Nuclear Information System (INIS)

    Yelon, W.B.; Keem, J.E.

    1979-01-01

    The initial slopes of the acoustic phonon dispersion curves in (Vsub(0.98)Crsub(0.02)) 2 O 3 have been measured at room temperature in several of the high symmetry directions by inelastic neutron scattering. From these data several sound velocities and four independent elastic constants have been determined. Although the Cr doped specimen is in the insulating phase and pure V 2 O 3 is metallic, these results are in good agreement with recent data obtained by ultrasonic measurements on pure V 2 O 3 . (author)

  14. A Unit-Cell Model for Predicting the Elastic Constants of 3D Four Directional Cylindrical Braided Composite Shafts

    Science.gov (United States)

    Hao, Wenfeng; Liu, Ye; Huang, Xinrong; Liu, Yinghua; Zhu, Jianguo

    2018-06-01

    In this work, the elastic constants of 3D four directional cylindrical braided composite shafts were predicted using analytical and numerical methods. First, the motion rule of yarn carrier of 3D four directional cylindrical braided composite shafts was analyzed, and the horizontal projection of yarn motion trajectory was obtained. Then, the geometry models of unit-cells with different braiding angles and fiber volume contents were built up, and the meso-scale models of 3D cylindrical braided composite shafts were obtained. Finally, the effects of braiding angles and fiber volume contents on the elastic constants of 3D braided composite shafts were analyzed theoretically and numerically. These results play a crucial role in investigating the mechanical properties of 3D 4-directional braided composites shafts.

  15. Elastic properties of magnetostrictive rare-earth-iron alloys

    International Nuclear Information System (INIS)

    Cullen, J.R.; Blessing, G.; Rinaldi, S.

    1978-01-01

    The elastic properties of certain magnetostrictive rare-earth-iron alloys, namely polycrystalline Tbsub(0.3)Dysub(0.7)Fesub(2), Smsub(0.88)Dysub(0.12)Fesub(2)and amorphous TbFesub(2), were investigated ultrasonically. In all cases two shear waves were observed propagating simultaneously when a magnetic field was applied perpendicular to the direction of propagation. A model to explain this behaviour, based on magnetic-elastic coupling within local regions of these disordered materials, is developed and discussed in two limiting cases: (i) strongly coupled regions for which an effective isotropic magneto-elastic coupling is appropriate, and (ii) materials for which the elastic properties of the conglomerate are determined by averaging over those of independent regions. Experimental results up to fields of 25 kOe on the alloys mentioned above are exhibited and compared with the limiting cases (i) and (ii). In the case of polycrystalline Tbsub(0.3)Dysub(0.7)Fesub(2) further comparison is made between the determination of the magneto-elastic coupling constants using this model and the determination by using the results of a previous single-crystal study. (author)

  16. Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature

    International Nuclear Information System (INIS)

    Andrushchak, A. S.; Laba, H. P.; Yurkevych, O. V.; Mytsyk, B. G.; Solskii, I. M.; Kityk, A. V.; Sahraoui, B.

    2009-01-01

    This paper presents the results of ultrasonic measurements of LiNbO 3 and LiNbO 3 :MgO crystals. The tensors of piezoelectric coefficients, elastic stiffness constants, and elastic compliances are determined for both crystals at room temperature. Combining these data with the results of piezo-optical measurements, a complete set of photoelastic tensor coefficients is also calculated. Doping of LiNbO 3 crystals by MgO does not lead to a considerable modification of their elastic and photoelastic properties. However, LiNbO 3 :MgO is characterized by a considerably higher resistance with respect to powerful light radiation, making it promising for future application in acousto-optic devices that deal with superpowerful laser radiation. Presented here are the complete tensor sets of elastic constants and photoelastic coefficients of LiNbO 3 and LiNbO 3 :MgO crystals that may be used for a geometry optimization of acousto-optical interaction providing the best diffraction efficiency of acousto-optical cells made of these materials.

  17. Elastic-plastic finite element analyses for reducers with constant-depth internal circumferential surface cracks

    International Nuclear Information System (INIS)

    Wu, Szu-Ying; Tsai, Bor-Jiun; Chen, Jien-Jong

    2015-01-01

    In this study, a 3-D automatic elastic-plastic finite element mesh generator is established to accurately predict the J-integral value of an arbitrary reducer with a constant-depth internal circumferential surface crack under bending and axial force. The contact pairs are used on the crack surfaces to simulate the actual contact behaviors of the crack model under loadings. In order to verify the accuracy of the proposed elastic-plastic finite element model for a reducer with a surface crack, the cracked straight pipe models are generated according to a special modeling procedure for a flawed reducer. The J-integral values along the crack front of surface crack are calculated and compared with the straight pipe models which have been verified in the previous published studies. Based on the comparison of computed results, good agreements are obtained to show the accuracy of present numerical models. More confidence on using the 3-D elastic-plastic finite element analysis for reducers with internal circumferential surface cracks can be thus established in this work

  18. High temperature elastic constant measurements: application to plutonium; Mesure des constantes elastiques a haute temperature application au plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Bouchet, J M [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-03-01

    We present an apparatus with which we have measured the Young's modulus and the Poisson's ratio of several compounds from the resonance frequency of cylinders in the temperature range 0 deg. C-700 deg. C. We especially studied the elastic constants of plutonium and measured for the first time to our knowledge the Young's modulus of Pu{sub {delta}} and Pu{sub {epsilon}}. E{sub {delta}} 360 deg. C = 1.6 10{sup 11} dy/cm{sup 2}; E{sub {epsilon}} 490 deg. C = 1.1 10{sup 11} dy/cm{sup 2}, {sigma}{sub {epsilon}} = 0.25 {+-} 0.03 Using our results, we have calculated the compressibility, the Debye temperature, the Grueneisen constant and the electronic specific heat of Pu{sub {epsilon}}. (author) [French] Nous decrivons un appareil qui permet de mesurer les constantes elastiques (module de Young et module de Poisson) jusqu'a 700 deg. C a partir des frequences de resonance de barreaux cylindriques. Nous avons plus specialement etudie le plutonium et determine pour la premiere fois a notre connaissance le module de Young des phases {delta} et {epsilon}: E{sub {delta}} 360 deg. C = 1.6 10{sup 11} dy/cm{sup 2}; E{sub {epsilon}} 490 deg. C = 1.1 10{sup 11} dy/cm{sup 2}, {sigma}{sub {epsilon}} = 0.25 {+-} 0.03 Nos mesures nous ont permis de calculer la compressibilite, la temperature de Debye, la constante de Gruneisen et la chaleur specifique electronique de Pu{sub {epsilon}}. (auteur)

  19. Numerical simulation of shear and the Poynting effects by the finite element method: An application of the generalised empirical inequalities in non-linear elasticity

    KAUST Repository

    Angela Mihai, L.; Goriely, Alain

    2013-01-01

    Finite element simulations of different shear deformations in non-linear elasticity are presented. We pay particular attention to the Poynting effects in hyperelastic materials, complementing recent theoretical findings by showing these effects

  20. First principles investigation of structural, electronic, elastic and thermal properties of rare-earth-doped titanate Ln2TiO5

    Directory of Open Access Journals (Sweden)

    Hui Niu

    2012-09-01

    Full Text Available Systematic first-principles calculations based on density functional theory were performed on a wide range of Ln2TiO5 compositions (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy and Y in order to investigate their structural, elastic, electronic, and thermal properties. At low temperature, these compounds crystallize in orthorhombic structures with a Pnma symmetry, and the calculated equilibrium structural parameters agree well with experimental results. A complete set of elastic parameters including elastic constants, Hill's bulk moduli, Young's moduli, shear moduli and Poisson's ratio were calculated. All Ln2TiO5 are ductile in nature. Analysis of densities of states and charge densities and electron localization functions suggests that the oxide bonds are highly ionic with some degree of covalency in the Ti-O bonds. Thermal properties including the mean sound velocity, Debye temperature, and minimum thermal conductivity were obtained from the elastic constants.

  1. Temperature coefficient of elastic constants of SiO2 over-layer on LiNbO3 for a temperature stable SAW device

    International Nuclear Information System (INIS)

    Tomar, Monika; Gupta, Vinay; Sreenivas, K

    2003-01-01

    The influence of sputtered SiO 2 over-layer on the SAW propagation characteristics of a 128 deg. rotated Y-cut X-propagating lithium niobate SAW filter has been studied. Experimentally measured SAW phase velocity and temperature coefficient of delay (TCD), with varying SiO 2 over-layer thickness, show a significant deviation from the theoretically calculated values using the bulk material parameters of SiO 2 . The observed deviation is attributed to the differences in the material parameters (density, elastic and dielectric constants and their temperature coefficient) of the deposited SiO 2 over-layer. The density and the dielectric constant of the deposited SiO 2 layer were determined separately, and the elastic constants and their temperature coefficients were estimated by fitting the experimental velocity and TCD data, respectively. The deviation in the dielectric constant and the density in comparison to the bulk was insignificant, and the estimated values of the elastic constants (C 11 = 0.75x10 11 N m -2 and C 44 0.225x10 11 N m -2 ) were found to be lower, and the respective temperature coefficients (5.0x10 -4 deg C -1 and 2.0x10 -4 deg C -1 ) were high in comparison to the bulk material parameters

  2. Fluid Effects on Shear Waves in Finely Layered Porous Media

    International Nuclear Information System (INIS)

    Berryman, J G

    2004-01-01

    Although there are five effective shear moduli for any layered VTI medium, one and only one effective shear modulus for the layered system contains all the dependence of pore fluids on the elastic or poroelastic constants that can be observed in vertically polarized shear waves. Pore fluids can increase the magnitude the shear energy stored by this modulus by a term that ranges from the smallest to the largest shear moduli of the VTI system. But, since there are five shear moduli in play, the increase in shear energy overall is reduced by a factor of about 5 in general. We can therefore give definite bounds on the maximum increase of shear modulus, being about 20% of the permitted range, when gas is fully replaced by liquid. An attendant increase of density (depending on porosity and fluid density) by approximately 5 to 10% partially offsets the effect of this shear modulus increase. Thus, an increase of shear wave speed on the order of 5 to 10% is shown to be possible when circumstances are favorable - i.e., when the shear modulus fluctuations are large (resulting in strong anisotropy), and the medium behaves in an undrained fashion due to fluid trapping. At frequencies higher than seismic (such as sonic and ultrasonic waves for well-logging or laboratory experiments), short response times also produce the requisite undrained behavior and, therefore, fluids also affect shear waves at high frequencies by increasing rigidity

  3. First-principles calculation of the structural and elastic properties of ternary metal nitrides TaxMo1-xN and TaxW1-xN

    Science.gov (United States)

    Bouamama, Kh.; Djemia, P.; Benhamida, M.

    2015-09-01

    First-principles pseudo-potentials calculations of the mixing enthalpy, of the lattice constants a0 and of the single-crystal elastic constants cij for ternary metal nitrides TaxMe1-xN (Me=Mo or W) alloys considering the cubic B1-rocksalt structure is carried out. For disordered ternary alloys, we employ the virtual crystal approximation VCA in which the alloy pseudopotentials are constructed within a first-principles VCA scheme. The supercell method SC is also used for ordered structures in order to evaluate clustering effects. We find that the mixing enthalpy still remains negative for TaxMe1-xN alloys in the whole composition range which implies these cubic TaxMo1-xN and TaxW1-xN ordered solid solutions are stable. We investigate the effect of Mo and W alloying on the trend of the mechanical properties of TaN. The effective shear elastic constant c44, the Cauchy pressure (c12-c44), and the shear to bulk modulus G/B ratio are used to discuss, respectively, the mechanical stability of the ternary structure and the brittle/ductile behavior in reference to TaN, MeN alloys. We determine the onset transition from the unstable structure to the stable one B1-rocksalt from the elastic stability criteria when alloying MeN with Ta. In a second stage, in the frame of anisotropic elasticity, we estimate by one homogenization method the averaged constants of the polycrystalline TaxMe1-xN alloys considering the special case of an isotropic medium with no crystallographic texture.

  4. First-principles study of the structural, phonon, elastic, and thermodynamic properties of Al_3Ta compound under high pressure

    Directory of Open Access Journals (Sweden)

    W. Leini

    2018-03-01

    Full Text Available We have investigated the phonon, elastic and thermodynamic properties of L1_2 phase Al_3Ta by density functional theory approach combining with quasi-harmonic approximation model. The results of phonon band structure shows that L1_2 phase Al_3Ta possesses dynamical stability in the pressure range from 0 to 80 GPa due to the absence of imaginary frequencies. The pressure dependences of the elastic constants C_ij, bulk modulus B, shear modulus G, Young's modulus Y, B/G and Poisson's ratio ν have been analysed. The elastic constants are satisfied with mechanical stability criteria up to the external pressure of 80 GPa. The results of the elastic properties studies show that Al_3Ta compound possesses a higher hardness, improved ductility and plasticity under higher pressures. Further, we systematically investigate the thermodynamic properties, such as the Debye temperature Θ, heat capacity C_p, and thermal expansion coefficient α, and provide the relationships between thermal parameters and pressure.

  5. Theoretical investigations on the elastic and thermodynamic properties of Ti2AlC0.5N0.5 solid solution

    International Nuclear Information System (INIS)

    Du, Y.L.; Sun, Z.M.; Hashimoto, H.; Barsoum, M.W.

    2009-01-01

    We have performed theoretical studies on the elastic and thermodynamic properties of the solid solution: Ti 2 AlC 0.5 N 0.5 . The lattice parameters, elastic constants, bulk, shear, Young's moduli, Poisson's ratio and Debye temperature were calculated and compared with those of the end members, Ti 2 AlC and Ti 2 AlN. The temperature dependence of the bulk moduli, thermal expansion coefficient and specific heats of Ti 2 AlC 0.5 N 0.5 were obtained from the quasi-harmonic Debye model. The calculated elastic and thermodynamic properties were compared with experimental data.

  6. Superficial Ultrasound Shear Wave Speed Measurements in Soft and Hard Elasticity Phantoms: Repeatability and Reproducibility Using Two Different Ultrasound Systems

    Science.gov (United States)

    Dillman, Jonathan R.; Chen, Shigao; Davenport, Matthew S.; Zhao, Heng; Urban, Matthew W.; Song, Pengfei; Watcharotone, Kuanwong; Carson, Paul L.

    2014-01-01

    Background There is a paucity of data available regarding the repeatability and reproducibility of superficial shear wave speed (SWS) measurements at imaging depths relevant to the pediatric population. Purpose To assess the repeatability and reproducibility of superficial shear wave speed (SWS) measurements acquired from elasticity phantoms at varying imaging depths using three different imaging methods, two different ultrasound systems, and multiple operators. Methods and Materials Soft and hard elasticity phantoms manufactured by Computerized Imaging Reference Systems, Inc. (Norfolk, VA) were utilized for our investigation. Institution #1 used an Acuson S3000 ultrasound system (Siemens Medical Solutions USA, Inc.) and three different shear wave imaging method/transducer combinations, while institution #2 used an Aixplorer ultrasound system (Supersonic Imagine) and two different transducers. Ten stiffness measurements were acquired from each phantom at three depths (1.0, 2.5, and 4.0 cm) by four operators at each institution. Student’s t-test was used to compare SWS measurements between imaging techniques, while SWS measurement agreement was assessed with two-way random effects single measure intra-class correlation coefficients and coefficients of variation. Mixed model regression analysis determined the effect of predictor variables on SWS measurements. Results For the soft phantom, the average of mean SWS measurements across the various imaging methods and depths was 0.84 ± 0.04 m/s (mean ± standard deviation) for the Acuson S3000 system and 0.90 ± 0.02 m/s for the Aixplorer system (p=0.003). For the hard phantom, the average of mean SWS measurements across the various imaging methods and depths was 2.14 ± 0.08 m/s for the Acuson S3000 system and 2.07 ± 0.03 m/s Aixplorer system (p>0.05). The coefficients of variation were low (0.5–6.8%), and inter-operator agreement was near-perfect (ICCs ≥0.99). Shear wave imaging method and imaging depth

  7. Abnormal Elasticity of Single-Crystal Magnesiosiderite across the Spin Transition in Earth's Lower Mantle

    Science.gov (United States)

    Fu, Suyu; Yang, Jing; Lin, Jung-Fu

    2017-01-01

    Brillouin light scattering and impulsive stimulated light scattering have been used to determine the full elastic constants of magnesiosiderite [(Mg0.35Fe0.65)CO3 ] up to 70 GPa at room temperature in a diamond-anvil cell. Drastic softening in C11 , C33 , C12 , and C13 elastic moduli associated with the compressive stress component and stiffening in C44 and C14 moduli associated with the shear stress component are observed to occur within the spin transition between ˜42.4 and ˜46.5 GPa . Negative values of C12 and C13 are also observed within the spin transition region. The Born criteria constants for the crystal remain positive within the spin transition, indicating that the mixed-spin state remains mechanically stable. Significant auxeticity can be related to the electronic spin transition-induced elastic anomalies based on the analysis of Poisson's ratio. These elastic anomalies are explained using a thermoelastic model for the rhombohedral system. Finally, we conclude that mixed-spin state ferromagnesite, which is potentially a major deep-carbon carrier, is expected to exhibit abnormal elasticity, including a negative Poisson's ratio of -0.6 and drastically reduced VP by 10%, in Earth's midlower mantle.

  8. Ab Initio Simulation Beryllium in Solid Molecular Hydrogen: Elastic Constant

    Science.gov (United States)

    Guerrero, Carlo L.; Perlado, Jose M.

    2016-03-01

    In systems of inertial confinement fusion targets Deuterium-Tritium are manufactured with a solid layer, it must have specific properties to increase the efficiency of ignition. Currently there have been some proposals to model the phases of hydrogen isotopes and hence their high pressure, but these works do not allow explaining some of the structures present at the solid phase change effect of increased pressure. By means of simulation with first principles methods and Quantum Molecular Dynamics, we compare the structural difference of solid molecular hydrogen pure and solid molecular hydrogen with beryllium, watching beryllium inclusion in solid hydrogen matrix, we obtain several differences in mechanical properties, in particular elastic constants. For C11 the difference between hydrogen and hydrogen with beryllium is 37.56%. This may produce a non-uniform initial compression and decreased efficiency of ignition.

  9. The stabilities, electronic structures and elastic properties of Rb—As systems

    International Nuclear Information System (INIS)

    Ozisik Havva Bogaz; Colakoglu Kemal; Deligoz Engin; Ozisik Haci

    2012-01-01

    The structural, electronic and elastic properties of Rb—As systems (RbAs in NaP, LiAs and AuCu structures, RbAs 2 in the MgCu 2 structure, Rb 3 As in Na 3 As, Cu 3 P and Li 3 Bi structures, and Rb 5 As 4 in the A 5 B 4 structure) are investigated with the generalized gradient approximation in the frame of density functional theory. The lattice parameters, cohesive energies, formation energies, bulk moduli and the first derivatives of the bulk moduli (to fit Murnaghan's equation of state) of the considered structures are calculated and reasonable agreement is obtained. In addition, the phase transition pressures are also predicted. The electronic band structures, the partial densities of states corresponding to the band structures and the charge density distributions are presented and analysed. The second-order elastic constants based on the stress-strain method and other related quantities such as Young's modulus, the shear modulus, Poisson's ratio, sound velocities, the Debye temperature and shear anisotropy factors are also estimated. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Elastic softness of hybrid lead halide perovskites

    KAUST Repository

    Ferreira, A. C.

    2018-01-26

    Much recent attention has been devoted towards unravelling the microscopic optoelectronic properties of hybrid organic-inorganic perovskites (HOP). Here we investigate by coherent inelastic neutron scattering spectroscopy and Brillouin light scattering, low frequency acoustic phonons in four different hybrid perovskite single crystals: MAPbBr3, FAPbBr3, MAPbI3 and α-FAPbI3 (MA: methylammonium, FA: formamidinium). We report a complete set of elastic constants caracterized by a very soft shear modulus C44. Further, a tendency towards an incipient ferroelastic transition is observed in FAPbBr3. We observe a systematic lower sound group velocity in the technologically important iodide-based compounds compared to the bromide-based ones. The findings suggest that low thermal conductivity and hot phonon bottleneck phenomena are expected to be enhanced by low elastic stiffness, particularly in the case of the ultrasoft α-FAPbI3.

  11. Surface Brillouin scattering measurement of the elastic constants of single crystal InAs0.91Sb0.09

    International Nuclear Information System (INIS)

    Kotane, L M; Comins, J D; Every, A G; Botha, J R

    2011-01-01

    Surface Brillouin scattering of light has been used to measure the angular dependence of the Rayleigh surface acoustic wave (SAW), pseudo surface acoustic wave (PSAW) and longitudinal lateral wave (LLW) speeds in a (100)-oriented single crystal of the ternary semiconductor alloy InAs 0.91 Sb 0.09 . The wave speed measurements have been used to determine the room temperature values of the elastic constants C 11 , C 12 and C 44 of the alloy. A simple and robust fitting procedure has been implemented for recovering the elastic constants, in which the merit function is constructed from explicit secular functions that determine the surface and lateral wave speeds in the [001] and [011] crystallographic directions. In the fitting, relatively larger weighting factors have been assigned to the SAW and PSAW data because of the greater precision with which the surface modes can be measured as compared with the lateral wave.

  12. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    International Nuclear Information System (INIS)

    Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.

    2011-01-01

    Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  13. Pressure effect on structural, elastic, and thermodynamic properties of tetragonal B4C4

    Directory of Open Access Journals (Sweden)

    Baobing Zheng

    2015-03-01

    Full Text Available The compressibility, elastic anisotropy, and thermodynamic properties of the recently proposed tetragonal B4C4 (t-B4C4 are investigated under high temperature and high pressure by using of first-principles calculations method. The elastic constants, bulk modulus, shear modulus, Young’s modulus, Vickers hardness, Pugh’s modulus ratio, and Poisson’s ratio for t-B4C4 under various pressures are systematically explored, the obtained results indicate that t-B4C4 is a stiffer material. The elastic anisotropies of t-B4C4 are discussed in detail under pressure from 0 GPa to 100 GPa. The thermodynamic properties of t-B4C4, such as Debye temperature, heat capacity, and thermal expansion coefficient are investigated by the quasi-harmonic Debye model.

  14. Thermal expansion and temperature variation of elastic constants of Li(H,D) and Na(H,D) systems

    International Nuclear Information System (INIS)

    Islam, A.K.M.A.; Hoque, M.T.

    1994-11-01

    An analysis of thermal expansion of Li(H,D) systems up to melting temperature has been performed using the theory of anharmonic lattice. The study has for the first time been extended to Na(H,D) systems where very little or no data are available. The calculated lattice constants of Li(H,D) systems show quite good agreement with experiment. The success of the present calculation with Li(H,D) and room temperature lattice constant data for Na(H,D) given an indication of the reliability of the computed lattice constants and thermal expansion coefficients for Na(H,D) systems. The study also allows us to predict the hitherto unknown lattice constants of Na(H,D) crystal at 0K. The temperature dependence of elastic constants for Li(H,D) systems has also been evaluated. Comparison with measurements shows the reliability of the present calculations. (author). 45 refs, 4 figs

  15. Achilles and patellar tendinopathy display opposite changes in elastic properties: A shear wave elastography study.

    Science.gov (United States)

    Coombes, B K; Tucker, K; Vicenzino, B; Vuvan, V; Mellor, R; Heales, L; Nordez, A; Hug, F

    2018-03-01

    To compare tendon elastic and structural properties of healthy individuals with those with Achilles or patellar tendinopathy. Sixty-seven participants (22 Achilles tendinopathy, 17 patellar tendinopathy, and 28 healthy controls) were recruited between March 2015 and March 2016. Shear wave velocity (SWV), an index of tissue elastic modulus, and tendon thickness were measured bilaterally at mid-tendon and insertional regions of Achilles and patellar tendons by an examiner blinded to group. Analysis of covariance, adjusted for age, body mass index, and sex was used to compare differences in tendon thickness and SWV between the two tendinopathy groups (relative to controls) and regions. Tendon thickness was included as a covariate for analysis of SWV. Compared to controls, participants with Achilles tendinopathy had lower SWV at the distal insertion (Mean difference MD; 95% CI: -1.56; -2.49 to -0.62 m/s; P < .001) and greater thickness at the mid-tendon (MD 0.19; 0.05-0.33 cm; P = .007). Compared to controls, participants with patellar tendinopathy had higher SWV at both regions (MD 1.25; 0.40-2.10 m/s; P = .005) and greater thickness proximally (MD 0.17; 0.06-0.29 cm; P = .003). Compared to controls, participants with Achilles and patellar tendinopathy displayed lower Achilles tendon elastic modulus and higher patellar tendon elastic modulus, respectively. More research is needed to explore whether maturation, aging, or chronic load underlie these findings and whether current management programs for Achilles and patellar tendinopathy need to be tailored to the tendon. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Living bacteria rheology: Population growth, aggregation patterns, and collective behavior under different shear flows

    Science.gov (United States)

    Patrício, P.; Almeida, P. L.; Portela, R.; Sobral, R. G.; Grilo, I. R.; Cidade, T.; Leal, C. R.

    2014-08-01

    The activity of growing living bacteria was investigated using real-time and in situ rheology—in stationary and oscillatory shear. Two different strains of the human pathogen Staphylococcus aureus—strain COL and its isogenic cell wall autolysis mutant, RUSAL9—were considered in this work. For low bacteria density, strain COL forms small clusters, while the mutant, presenting deficient cell separation, forms irregular larger aggregates. In the early stages of growth, when subjected to a stationary shear, the viscosity of the cultures of both strains increases with the population of cells. As the bacteria reach the exponential phase of growth, the viscosity of the cultures of the two strains follows different and rich behaviors, with no counterpart in the optical density or in the population's colony-forming units measurements. While the viscosity of strain COL culture keeps increasing during the exponential phase and returns close to its initial value for the late phase of growth, where the population stabilizes, the viscosity of the mutant strain culture decreases steeply, still in the exponential phase, remains constant for some time, and increases again, reaching a constant plateau at a maximum value for the late phase of growth. These complex viscoelastic behaviors, which were observed to be shear-stress-dependent, are a consequence of two coupled effects: the cell density continuous increase and its changing interacting properties. The viscous and elastic moduli of strain COL culture, obtained with oscillatory shear, exhibit power-law behaviors whose exponents are dependent on the bacteria growth stage. The viscous and elastic moduli of the mutant culture have complex behaviors, emerging from the different relaxation times that are associated with the large molecules of the medium and the self-organized structures of bacteria. Nevertheless, these behaviors reflect the bacteria growth stage.

  17. Conical Refraction of Elastic Waves by Anisotropic Metamaterials and Application for Parallel Translation of Elastic Waves.

    Science.gov (United States)

    Ahn, Young Kwan; Lee, Hyung Jin; Kim, Yoon Young

    2017-08-30

    Conical refraction, which is quite well-known in electromagnetic waves, has not been explored well in elastic waves due to the lack of proper natural elastic media. Here, we propose and design a unique anisotropic elastic metamaterial slab that realizes conical refraction for horizontally incident longitudinal or transverse waves; the single-mode wave is split into two oblique coupled longitudinal-shear waves. As an interesting application, we carried out an experiment of parallel translation of an incident elastic wave system through the anisotropic metamaterial slab. The parallel translation can be useful for ultrasonic non-destructive testing of a system hidden by obstacles. While the parallel translation resembles light refraction through a parallel plate without angle deviation between entry and exit beams, this wave behavior cannot be achieved without the engineered metamaterial because an elastic wave incident upon a dissimilar medium is always split at different refraction angles into two different modes, longitudinal and shear.

  18. First-principles calculations of the electronic, vibrational, and elastic properties of the magnetic laminate Mn2GaC

    International Nuclear Information System (INIS)

    Thore, A.; Dahlqvist, M.; Alling, B.; Rosén, J.

    2014-01-01

    In this paper, we report the by first-principles predicted properties of the recently discovered magnetic MAX phase Mn 2 GaC. The electronic band structure and vibrational dispersion relation, as well as the electronic and vibrational density of states, have been calculated. The band structure close to the Fermi level indicates anisotropy with respect to electrical conductivity, while the distribution of the electronic and vibrational states for both Mn and Ga depend on the chosen relative orientation of the Mn spins across the Ga sheets in the Mn–Ga–Mn trilayers. In addition, the elastic properties have been calculated, and from the five elastic constants, the Voigt bulk modulus is determined to be 157 GPa, the Voigt shear modulus 93 GPa, and the Young's modulus 233 GPa. Furthermore, Mn 2 GaC is found relatively elastically isotropic, with a compression anisotropy factor of 0.97, and shear anisotropy factors of 0.9 and 1, respectively. The Poisson's ratio is 0.25. Evaluated elastic properties are compared to theoretical and experimental results for M 2 AC phases where M = Ti, V, Cr, Zr, Nb, Ta, and A = Al, S, Ge, In, Sn.

  19. Elastic moduli of a Brownian colloidal glass former

    Science.gov (United States)

    Fritschi, S.; Fuchs, M.

    2018-01-01

    The static, dynamic and flow-dependent shear moduli of a binary mixture of Brownian hard disks are studied by an event-driven molecular dynamics simulation. Thereby, the emergence of rigidity close to the glass transition encoded in the static shear modulus G_∞ is accessed by three methods. Results from shear stress auto-correlation functions, elastic dispersion relations, and the elastic response to strain deformations upon the start-up of shear flow are compared. This enables one to sample the time-dependent shear modulus G(t) consistently over several decades in time. By that a very precise specification of the glass transition point and of G_∞ is feasible. Predictions by mode coupling theory of a finite shear modulus at the glass transition, of α-scaling in fluid states close to the transition, and of shear induced decay in yielding glass states are tested and broadly verified.

  20. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Possible Mechanism for Intermediate Depth Earthquakes and Slow Earthquakes?

    Science.gov (United States)

    Kelemen, P. B.; Hirth, G.

    2004-12-01

    Localized ductile shear zones with widths of cm to m are observed in exposures of Earth's shallow mantle (e.g., Kelemen & Dick JGR 95; Vissers et al. Tectonophys 95) and dredged from oceanic fracture zones (e.g., Jaroslow et al. Tectonophys 96). These are mylonitic (grain size 10 to 100 microns) and record mineral cooling temperatures from 1100 to 600 C. Pseudotachylites in a mantle shear zone show that shear heating temperatures can exceed the mantle solidus (e.g., Obata & Karato Tectonophys 95). Simple shear, recrystallization, and grain boundary sliding all decrease the spacing between pyroxenes, so olivine grain growth at lower stress is inhibited; thus, once formed, these shear zones do not "heal" on geological time scales. Reasoning that grain-size sensitive creep will be localized within these shear zones, rather than host rocks (grain size 1 to 10 mm), and inspired by the work of Whitehead & Gans (GJRAS 74), we thought these might undergo repeated shear heating instabilities. In this view, as elastic stress increases, the shear zone weakens via shear heating; rapid deformation of the weak shear zone releases most stored elastic stress; lower stress and strain rate coupled with diffusion of heat into host rocks leads to cooling and strengthening, after which the cycle repeats. We constructed a simple numerical model incorporating olivine flow laws for dislocation creep, diffusion creep, grain boundary sliding, and low T plasticity. We assumed that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. We fixed the velocity along one side of an elastic half space, and calculated stress due to elastic strain. This stress drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control temperature evolution in the shear zone and host rocks. A maximum of 1400 C (where substantial melting of peridotite would occur) is imposed. Grain size evolves during dislocation

  1. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.

    Science.gov (United States)

    Barkaoui, Abdelwahed; Chamekh, Abdessalem; Merzouki, Tarek; Hambli, Ridha; Mkaddem, Ali

    2014-03-01

    The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Experimental study and FEM simulation of the simple shear test of cylindrical rods

    Science.gov (United States)

    Wirti, Pedro H. B.; Costa, André L. M.; Misiolek, Wojciech Z.; Valberg, Henry S.

    2018-05-01

    In the presented work an experimental simple shear device for cutting cylindrical rods was used to obtain force-displacement data for a low-carbon steel. In addition, and FEM 3D-simulation was applied to obtain internal shear stress and strain maps for this material. The experimental longitudinal grid patterns and force-displacement curve were compared with numerical simulation results. Many aspects of the elastic and plastic deformations were described. It was found that bending reduces the shear yield stress of the rod material. Shearing starts on top and bottom die-workpiece contact lines evolving in an arc-shaped area. Due to this geometry, stress concentrates on the surface of the rod until the level of damage reaches the critical value and the fracture starts here. The volume of material in the plastic zone subjected to shearing stress has a very complex shape and is function of a dimensionless geometrical parameter. Expressions to calculate the true shear stress τ and strain γ from the experimental force-displacement data were proposed. The equations' constants are determined by fitting the experimental curve with the stress τ and strain γ simulation point tracked data.

  3. High Temperature Elastic Properties of Reduced Activation Ferritic-Martensitic (RAFM) Steel Using Impulse Excitation Technique

    Science.gov (United States)

    Tripathy, Haraprasanna; Raju, Subramanian; Hajra, Raj Narayan; Saibaba, Saroja

    2018-03-01

    The polycrystalline elastic constants of an indigenous variant of 9Cr-1W-based reduced activation ferritic-martensitic (RAFM) steel have been determined as a function of temperature from 298 K to 1323 K (25 °C to 1000 °C), using impulse excitation technique (IET). The three elastic constants namely, Young's modulus E, shear modulus G, and bulk modulus B, exhibited significant softening with increasing temperature, in a pronounced non-linear fashion. In addition, clearly marked discontinuities in their temperature variations are noticed in the region, where ferrite + carbides → austenite phase transformation occurred upon heating. Further, the incidence of austenite → martensite transformation upon cooling has also been marked by a step-like jump in both elastic E and shear moduli G. The martensite start M s and M f finish temperatures estimated from this study are, M s = 652 K (379 °C) and M f =580 K (307 °C). Similarly, the measured ferrite + carbide → austenite transformation onset ( Ac 1) and completion ( Ac 3) temperatures are found to be 1126 K and 1143 K (853 °C and 870 °C), respectively. The Poisson ratio μ exhibited distinct discontinuities at phase transformation temperatures; but however, is found to vary in the range 0.27 to 0.29. The room temperature estimates of E, G, and μ for normalized and tempered microstructure are found to be 219 GPa, 86.65 GPa, and 0.27, respectively. For the metastable austenite phase, the corresponding values are: 197 GPa, 76.5 GPa, and 0.29, respectively. The measured elastic properties as well as their temperature dependencies are found to be in good accord with reported estimates for other 9Cr-based ferritic-martensitic steel grades. Estimates of θ D el , the elastic Debye temperature and γ G, the thermal Grüneisen parameter obtained from measured bulk elastic properties are found to be θ D el = 465 K (192 °C) and γ G = 1.57.

  4. Molecular dynamics study of the elastic response of crystalline, amorphous and chemically disordered NiZr2

    International Nuclear Information System (INIS)

    Willaime, F.; Rosato, V.

    1990-01-01

    We calculate the shear elastic constants of the alloy NiZr 2 by molecular dynamics simulations in the crystalline and amorphous phases as well as upon introduction of antisite defects in the crystal at T=300K. For S (long range order parameter) equal to 0.5, the system is amorphous and C' is larger than the same quantity relative to the crystal whereas C 44 and C 66 are smaller

  5. Oscillatory shear response of moisture barrier coatings containing clay of different shape factor.

    Science.gov (United States)

    Kugge, C; Vanderhoek, N; Bousfield, D W

    2011-06-01

    Oscillatory shear rheology of barrier coatings based on dispersed styrene-butadiene latex and clay of various shape factors or aspect ratio has been explored. Barrier performance of these coatings when applied to paperboard has been assessed in terms of water vapour transmission rates and the results related to shape factor, dewatering and critical strain. It has been shown that a system based on clay with high shape factor gives a lower critical strain, dewatering and water vapour transmission rate compared with clays of lower shape factor. The dissipated energy, as calculated from an amplitude sweep, indicated no attractive interaction between clay and latex implying a critical strain that appears to be solely dependent on the shape factor at a constant volume fraction. Particle size distribution was shown to have no effect on the critical strain while coatings of high elasticity exhibited high yield strains as expected. The loss modulus demonstrated strain hardening before the elastic to viscous transition. The loss modulus peak was identified by a maximum strain which was significantly lower for a coating based on clay with a high shape factor. The characteristic elastic time was found to vary between 0.6 and 1.3s. The zero shear viscosity of barrier dispersion coatings were estimated from the characteristic elastic time and the characteristic modulus to be of the order of 25-100 Pa s. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Non-constant link tension coefficient in the tumbling-snake model subjected to simple shear

    Science.gov (United States)

    Stephanou, Pavlos S.; Kröger, Martin

    2017-11-01

    The authors of the present study have recently presented evidence that the tumbling-snake model for polymeric systems has the necessary capacity to predict the appearance of pronounced undershoots in the time-dependent shear viscosity as well as an absence of equally pronounced undershoots in the transient two normal stress coefficients. The undershoots were found to appear due to the tumbling behavior of the director u when a rotational Brownian diffusion term is considered within the equation of motion of polymer segments, and a theoretical basis concerning the use of a link tension coefficient given through the nematic order parameter had been provided. The current work elaborates on the quantitative predictions of the tumbling-snake model to demonstrate its capacity to predict undershoots in the time-dependent shear viscosity. These predictions are shown to compare favorably with experimental rheological data for both polymer melts and solutions, help us to clarify the microscopic origin of the observed phenomena, and demonstrate in detail why a constant link tension coefficient has to be abandoned.

  7. Elastic characteristics and fracture behaviour of materials in the system Al2O3+TiC at elevated temperatures

    International Nuclear Information System (INIS)

    Grellner, W.

    1978-01-01

    In the region between room temperature and 1400 0 C the elastic constants, fracture values and flow-stress values of different compositions of the Al 2 O 3 +TiC system were determined. It was found that: 1. The elasticity modulus and shear modulus increase linearly with the TiC content. 2. Up to approximately 1050 0 C the elastic constants decrease linearly with increasing temperature. 3. Additions of dispersed TiC lead to a uniform grain size distribution. 4. In the low temperature region the faults leading to cracks are about 50 times as large as the average grain size; this suggests the effect of thermal stresses on the occurrence of microcracks. 5. At temperatures above 900 0 C TiC deforms macroscopically. In the case of a high proportion of the 2nd phase the latter contributes, as a plastic substance, to stress reduction and thus to an increase of fracture stress in comparison to the single-phase material. (orig.) [de

  8. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed; Goumri-Said, Souraya

    2014-01-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  9. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed

    2014-09-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young\\'s modulus, and Poisson\\'s ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  10. Non-linear optical measurement of the twist elastic constant in thermotropic and DNA lyotropic chiral nematics.

    Science.gov (United States)

    Lucchetti, Liana; Fraccia, Tommaso P; Ciciulla, Fabrizio; Bellini, Tommaso

    2017-07-10

    Throughout the whole history of liquid crystals science, the balancing of intrinsic elasticity with coupling to external forces has been the key strategy for most application and investigation. While the coupling of the optical field to the nematic director is at the base of a wealth of thoroughly described optical effects, a significant variety of geometries and materials have not been considered yet. Here we show that by adopting a simple cell geometry and measuring the optically induced birefringence, we can readily extract the twist elastic coefficient K 22 of thermotropic and lyotropic chiral nematics (N*). The value of K 22 we obtain for chiral doped 5CB thermotropic N* well matches those reported in the literature. With this same strategy, we could determine for the first time K 22 of the N* phase of concentrated aqueous solutions of DNA oligomers, bypassing the limitations that so far prevented measuring the elastic constants of this class of liquid crystalline materials. The present study also enlightens the significant nonlinear optical response of DNA liquid crystals.

  11. AELAS: Automatic ELAStic property derivations via high-throughput first-principles computation

    Science.gov (United States)

    Zhang, S. H.; Zhang, R. F.

    2017-11-01

    The elastic properties are fundamental and important for crystalline materials as they relate to other mechanical properties, various thermodynamic qualities as well as some critical physical properties. However, a complete set of experimentally determined elastic properties is only available for a small subset of known materials, and an automatic scheme for the derivations of elastic properties that is adapted to high-throughput computation is much demanding. In this paper, we present the AELAS code, an automated program for calculating second-order elastic constants of both two-dimensional and three-dimensional single crystal materials with any symmetry, which is designed mainly for high-throughput first-principles computation. Other derivations of general elastic properties such as Young's, bulk and shear moduli as well as Poisson's ratio of polycrystal materials, Pugh ratio, Cauchy pressure, elastic anisotropy and elastic stability criterion, are also implemented in this code. The implementation of the code has been critically validated by a lot of evaluations and tests on a broad class of materials including two-dimensional and three-dimensional materials, providing its efficiency and capability for high-throughput screening of specific materials with targeted mechanical properties. Program Files doi:http://dx.doi.org/10.17632/f8fwg4j9tw.1 Licensing provisions: BSD 3-Clause Programming language: Fortran Nature of problem: To automate the calculations of second-order elastic constants and the derivations of other elastic properties for two-dimensional and three-dimensional materials with any symmetry via high-throughput first-principles computation. Solution method: The space-group number is firstly determined by the SPGLIB code [1] and the structure is then redefined to unit cell with IEEE-format [2]. Secondly, based on the determined space group number, a set of distortion modes is automatically specified and the distorted structure files are generated

  12. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua; Wu, Xiaozhi; Wang, Rui; Liu, Qing; Gan, Liyong

    2014-01-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  13. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua

    2014-12-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  14. Temperature coefficient of elastic constants of SiO{sub 2} over-layer on LiNbO{sub 3} for a temperature stable SAW device

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Monika; Gupta, Vinay; Sreenivas, K [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2003-08-07

    The influence of sputtered SiO{sub 2} over-layer on the SAW propagation characteristics of a 128 deg. rotated Y-cut X-propagating lithium niobate SAW filter has been studied. Experimentally measured SAW phase velocity and temperature coefficient of delay (TCD), with varying SiO{sub 2} over-layer thickness, show a significant deviation from the theoretically calculated values using the bulk material parameters of SiO{sub 2}. The observed deviation is attributed to the differences in the material parameters (density, elastic and dielectric constants and their temperature coefficient) of the deposited SiO{sub 2} over-layer. The density and the dielectric constant of the deposited SiO{sub 2} layer were determined separately, and the elastic constants and their temperature coefficients were estimated by fitting the experimental velocity and TCD data, respectively. The deviation in the dielectric constant and the density in comparison to the bulk was insignificant, and the estimated values of the elastic constants (C{sub 11} = 0.75x10{sup 11} N m{sup -2} and C{sub 44} 0.225x10{sup 11} N m{sup -2}) were found to be lower, and the respective temperature coefficients (5.0x10{sup -4} deg C{sup -1} and 2.0x10{sup -4} deg C{sup -1}) were high in comparison to the bulk material parameters.

  15. Simulations of biopolymer networks under shear

    NARCIS (Netherlands)

    Huisman, Elisabeth Margaretha

    2011-01-01

    In this thesis we present a new method to simulate realistic three-dimensional networks of biopolymers under shear. These biopolymer networks are important for the structural functions of cells and tissues. We use the method to analyze these networks under shear, and consider the elastic modulus,

  16. Quantitative shear wave ultrasound elastography: initial experience in solid breast masses

    OpenAIRE

    Evans, Andrew; Whelehan, Patsy; Thomson, Kim; McLean, Denis; Brauer, Katrin; Purdie, Colin; Jordan, Lee; Baker, Lee; Thompson, Alastair

    2010-01-01

    Introduction Shear wave elastography is a new method of obtaining quantitative tissue elasticity data during breast ultrasound examinations. The aims of this study were (1) to determine the reproducibility of shear wave elastography (2) to correlate the elasticity values of a series of solid breast masses with histological findings and (3) to compare shear wave elastography with greyscale ultrasound for benign/malignant classification. Methods Using the Aixplorer® ultrasound system (SuperSoni...

  17. The structural, elastic, electronic properties and Debye temperature of Ni3Mo under pressure from first-principles

    International Nuclear Information System (INIS)

    Qi, Lei; Jin, Yuchun; Zhao, Yuhong; Yang, Xiaomin; Zhao, Hui; Han, Peide

    2015-01-01

    Highlights: • Structural, elastic, electronic properties and Debye temperature under pressure. • Higher hardness of Ni 3 Mo compound may be obtained when pressure increases. • Proper pressure can improve the ductility but excess pressure was just the opposite. • Ni 3 Mo compound has no structural phase transformation under pressure up to 30 GPa. • Debye temperatures increase with increasing pressure. - Abstract: With the help of first principles method based on density functional theory, the structural, elastic, electronic properties and Debye temperature of Ni 3 Mo binary compound under pressure are investigated. Our calculated structural parameters are in good agreement with experimental and previous theoretical results. The obtained elastic constants show that Ni 3 Mo compound is mechanically stable. Elastic properties such as bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio υ are calculated by the Voigt–Reuss–Hill method. The results of B/G under various pressures show that proper pressure can improve the ductility of Ni 3 Mo but excess pressure will make the ductility decrease. In addition, the density of states as a function of pressure is analyzed. The Debye temperature Θ D calculated from elastic constants increases along with the pressure

  18. Shear-induced formation of vesicles in membrane phases: Kinetics and size selection mechanisms, elasticity versus surface tension

    Science.gov (United States)

    Courbin, L.; Panizza, P.

    2004-02-01

    Multilamellar vesicles can be formed upon shearing lamellar phases (Lα) and phase-separated lamellar-sponge (Lα/L3) mixtures. In the first case, the vesicle volume fraction is always 100% and the vesicle size is monitored by elasticity (“onion textures”). In the second system the vesicle volume fraction can be tuned from 0 to 100% and the mean size results from a balance between capillary and viscous forces (“Taylor droplets”). However, despite these differences, in both systems we show that the formation of vesicles is a strain-controlled process monitored by a universal primary buckling instability of the lamellae.

  19. Utility of shear wave elastography to detect papillary thyroid carcinoma in thyroid nodules: efficacy of the standard deviation elasticity.

    Science.gov (United States)

    Kim, Hye Jeong; Kwak, Mi Kyung; Choi, In Ho; Jin, So-Young; Park, Hyeong Kyu; Byun, Dong Won; Suh, Kyoil; Yoo, Myung Hi

    2018-02-23

    The aim of this study was to address the role of the elasticity index as a possible predictive marker for detecting papillary thyroid carcinoma (PTC) and quantitatively assess shear wave elastography (SWE) as a tool for differentiating PTC from benign thyroid nodules. One hundred and nineteen patients with thyroid nodules undergoing SWE before ultrasound-guided fine needle aspiration and core needle biopsy were analyzed. The mean (EMean), minimum (EMin), maximum (EMax), and standard deviation (ESD) of SWE elasticity indices were measured. Among 105 nodules, 14 were PTC and 91 were benign. The EMean, EMin, and EMax values were significantly higher in PTCs than benign nodules (EMean 37.4 in PTC vs. 23.7 in benign nodules, p = 0.005; EMin 27.9 vs. 17.8, p = 0.034; EMax 46.7 vs. 31.5, p < 0.001). The EMean, EMin, and EMax were significantly associated with PTC with diagnostic odds ratios varying from 6.74 to 9.91, high specificities (86.4%, 86.4%, and 88.1%, respectively), and positive likelihood ratios (4.21, 3.69, and 4.82, respectively). The ESD values were significantly higher in PTC than in benign nodules (6.3 vs. 2.6, p < 0.001). ESD had the highest specificity (96.6%) when applied with a cut-off value of 6.5 kPa. It had a positive likelihood ratio of 14.75 and a diagnostic odds ratio of 28.50. The shear elasticity index of ESD, with higher likelihood ratios for PTC, will probably identify nodules that have a high potential for malignancy. It may help to identify and select malignant nodules, while reducing unnecessary fine needle aspiration and core needle biopsies of benign nodules.

  20. Electronic, elastic, acoustic and optical properties of cubic TiO2: A DFT approach

    International Nuclear Information System (INIS)

    Mahmood, Tariq; Cao, Chuanbao; Tahir, Muhammad; Idrees, Faryal; Ahmed, Maqsood; Tanveer, M.; Aslam, Imran; Usman, Zahid; Ali, Zulfiqar; Hussain, Sajad

    2013-01-01

    The electronic, elastic, acoustic and optical properties of cubic phases TiO 2 fluorite and pyrite are investigated using the first principles calculations. We have employed five different exchange–correlation functions within the local density and generalized gradient approximations using the ultrasoft plane wave pseudopotential method. The calculated band structures of cubic-TiO 2 elucidate that the TiO 2 fluorite and pyrite are direct and indirect semiconductors in contrast to the previous findings. From our studied properties such as bulk and shear moduli, elastic constants C 44 and Debye temperature for TiO 2 fluorite and pyrite, we infer that both the cubic phases are not superhard materials and the pyrite phase is harder than fluorite. The longitudinal and transversal acoustic wave speeds for both phases in the directions [100], [110] and [111] are determined using the pre-calculated elastic constants. In addition, we also calculate the optical properties such as dielectric function, absorption spectrum, refractive index and energy loss function using the pre-optimized structure. On the observation of optical properties TiO 2 fluorite phase turn out to be more photocatalytic than pyrite

  1. Diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses: determination of the most discriminatory parameter.

    Science.gov (United States)

    Au, Frederick Wing-Fai; Ghai, Sandeep; Moshonov, Hadas; Kahn, Harriette; Brennan, Cressida; Dua, Hemi; Crystal, Pavel

    2014-09-01

    The purpose of this article is to assess the diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses and to determine the most discriminatory parameter. B-mode ultrasound and shear wave elastography were performed before core biopsy of 123 masses in 112 women. The diagnostic performance of ultrasound and quantitative shear wave elastography parameters (mean elasticity, maximum elasticity, and elasticity ratio) were compared. The added effect of shear wave elastography on the performance of ultrasound was determined. The mean elasticity, maximum elasticity, and elasticity ratio were 24.8 kPa, 30.3 kPa, and 1.90, respectively, for 79 benign masses and 130.7 kPa, 154.9 kPa, and 11.52, respectively, for 44 malignant masses (p shear wave elastography parameter was higher than that of ultrasound (p shear wave elastography parameters to the evaluation of BI-RADS category 4a masses, about 90% of masses could be downgraded to BI-RADS category 3. The numbers of downgraded masses were 40 of 44 (91%) for mean elasticity, 39 of 44 (89%) for maximum elasticity, and 42 of 44 (95%) for elasticity ratio. The numbers of correctly downgraded masses were 39 of 40 (98%) for mean elasticity, 38 of 39 (97%) for maximum elasticity, and 41 of 42 (98%) for elasticity ratio. There was improvement in the diagnostic performance of ultrasound of mass assessment with shear wave elastography parameters added to BI-RADS category 4a masses compared with ultrasound alone. Combined ultrasound and elasticity ratio had the highest improvement, from 35.44% to 87.34% for specificity, from 45.74% to 80.77% for positive predictive value, and from 57.72% to 90.24% for accuracy (p shear wave elastography parameters of benign and malignant solid breast masses. By adding shear wave elastography parameters to BI-RADS category 4a masses, we found that about 90% of them could be correctly downgraded to BI-RADS category 3, thereby avoiding biopsy. Elasticity ratio

  2. On elastic waves in an thinly-layered laminated medium with stress couples under initial stress

    Directory of Open Access Journals (Sweden)

    P. Pal Roy

    1988-01-01

    Full Text Available The present work is concerned with a simple transformation rule in finding out the composite elastic coefficients of a thinly layered laminated medium whose bulk properties are strongly anisotropic with a microelastic bending rigidity. These elastic coefficients which were not known completely for a layered laminated structure, are obtained suitably in terms of initial stress components and Lame's constants λi, μi of initially isotropic solids. The explicit solutions of the dynamical equations for a prestressed thinly layered laminated medium under horizontal compression in a gravity field are derived. The results are discussed specifying the effects of hydrostatic, deviatoric and couple stresses upon the characteristic propagation velocities of shear and compression wave modes.

  3. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.

    Science.gov (United States)

    Tsubota, Ken-Ichi; Wada, Shigeo; Liu, Hao

    2014-08-01

    Direct numerical simulations of the mechanics of a single red blood cell (RBC) were performed by considering the nonuniform natural state of the elastic membrane. A RBC was modeled as an incompressible viscous fluid encapsulated by an elastic membrane. The in-plane shear and area dilatation deformations of the membrane were modeled by Skalak constitutive equation, while out-of-plane bending deformation was formulated by the spring model. The natural state of the membrane with respect to in-plane shear deformation was modeled as a sphere ([Formula: see text]), biconcave disk shape ([Formula: see text]) and their intermediate shapes ([Formula: see text]) with the nonuniformity parameter [Formula: see text], while the natural state with respect to out-of-plane bending deformation was modeled as a flat plane. According to the numerical simulations, at an experimentally measured in-plane shear modulus of [Formula: see text] and an out-of-plane bending rigidity of [Formula: see text] of the cell membrane, the following results were obtained. (i) The RBC shape at equilibrium was biconcave discoid for [Formula: see text] and cupped otherwise; (ii) the experimentally measured fluid shear stress at the transition between tumbling and tank-treading motions under shear flow was reproduced for [Formula: see text]; (iii) the elongation deformation of the RBC during tank-treading motion from the simulation was consistent with that from in vitro experiments, irrespective of the [Formula: see text] value. Based on our RBC modeling, the three phenomena (i), (ii), and (iii) were mechanically consistent for [Formula: see text]. The condition [Formula: see text] precludes a biconcave discoid shape at equilibrium (i); however, it gives appropriate fluid shear stress at the motion transition under shear flow (ii), suggesting that a combined effect of [Formula: see text] and the natural state with respect to out-of-plane bending deformation is necessary for understanding details of the

  4. Shear stresses around circular cylindrical openings

    NARCIS (Netherlands)

    Hoogenboom, P.C.J.; Van Weelden, C.; Blom, C.M.B.

    2010-01-01

    In this paper stress concentrations are studied around circular cylindrical openings or voids in a linear elastic continuum. The loading is such that a uniform shear stress occurs in the continuum, which is disturbed by the opening. The shear stress is in the direction of the centre axis of the

  5. Modeling fracture in the context of a strain-limiting theory of elasticity: a single anti-plane shear crack

    KAUST Repository

    Rajagopal, K. R.

    2011-01-06

    This paper is the first part of an extended program to develop a theory of fracture in the context of strain-limiting theories of elasticity. This program exploits a novel approach to modeling the mechanical response of elastic, that is non-dissipative, materials through implicit constitutive relations. The particular class of models studied here can also be viewed as arising from an explicit theory in which the displacement gradient is specified to be a nonlinear function of stress. This modeling construct generalizes the classical Cauchy and Green theories of elasticity which are included as special cases. It was conjectured that special forms of these implicit theories that limit strains to physically realistic maximum levels even for arbitrarily large stresses would be ideal for modeling fracture by offering a modeling paradigm that avoids the crack-tip strain singularities characteristic of classical fracture theories. The simplest fracture setting in which to explore this conjecture is anti-plane shear. It is demonstrated herein that for a specific choice of strain-limiting elasticity theory, crack-tip strains do indeed remain bounded. Moreover, the theory predicts a bounded stress field in the neighborhood of a crack-tip and a cusp-shaped opening displacement. The results confirm the conjecture that use of a strain limiting explicit theory in which the displacement gradient is given as a function of stress for modeling the bulk constitutive behavior obviates the necessity of introducing ad hoc modeling constructs such as crack-tip cohesive or process zones in order to correct the unphysical stress and strain singularities predicted by classical linear elastic fracture mechanics. © 2011 Springer Science+Business Media B.V.

  6. Surface Brillouin scattering measurement of the elastic constants of single crystal InAs{sub 0.91}Sb{sub 0.09}

    Energy Technology Data Exchange (ETDEWEB)

    Kotane, L M; Comins, J D; Every, A G [Materials Physics Research Institute, School of Physics, University of the Witwatersrand, Johannesburg, Wits 2050 (South Africa); Botha, J R, E-mail: Lesias.Kotane@wits.ac.z [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2011-01-01

    Surface Brillouin scattering of light has been used to measure the angular dependence of the Rayleigh surface acoustic wave (SAW), pseudo surface acoustic wave (PSAW) and longitudinal lateral wave (LLW) speeds in a (100)-oriented single crystal of the ternary semiconductor alloy InAs{sub 0.91}Sb{sub 0.09}. The wave speed measurements have been used to determine the room temperature values of the elastic constants C{sub 11}, C{sub 12} and C{sub 44} of the alloy. A simple and robust fitting procedure has been implemented for recovering the elastic constants, in which the merit function is constructed from explicit secular functions that determine the surface and lateral wave speeds in the [001] and [011] crystallographic directions. In the fitting, relatively larger weighting factors have been assigned to the SAW and PSAW data because of the greater precision with which the surface modes can be measured as compared with the lateral wave.

  7. Investigation of structural, electronic and anisotropic elastic properties of Ru-doped WB{sub 2} compound by increased valence electron concentration

    Energy Technology Data Exchange (ETDEWEB)

    Surucu, Gokhan, E-mail: g_surucu@yahoo.com [Ahi Evran University, Department of Electric and Energy, 40100, Kirsehir (Turkey); Gazi University, Photonics Application and Research Center, 06500, Ankara (Turkey); Kaderoglu, Cagil [Ankara University, Department of Engineering Physics, 06100, Ankara (Turkey); Deligoz, Engin; Ozisik, Haci [Aksaray University, Department of Physics, 68100, Aksaray (Turkey)

    2017-03-01

    First principles density functional theory (DFT) calculations have been used to investigate the structural, anisotropic elastic and electronic properties of ruthenium doped tungsten-diboride ternary compounds (W{sub 1−x}Ru{sub x}B{sub 2}) for an increasing molar fraction of Ru atom from 0.1 to 0.9 by 0.1. Among the nine different compositions, W{sub 0.3}Ru{sub 0.7}B{sub 2} has been found as the most stable one due to the formation energy and band filling theory calculations. Moreover, the band structures and partial density of states (PDOS) have been computed for each x composition. After obtaining the elastic constants for all x compositions, the secondary results such as Bulk modulus, Young’s modulus, Poisson’s ratio, Shear modulus, and Vickers Hardness of polycrystalline aggregates have been derived and the relevant mechanical properties have been discussed. In addition, the elastic anisotropy has been visualized in detail by plotting the directional dependence of compressibility, Poisson ratio, Young’s and Shear moduli. - Highlights: • Effects of Ru substitution in WB{sub 2} using increased valence electron concentration. • Structural, electronic, mechanic and elastic properties for increasing Ru content. • Considered alloys are incompressible, brittle, stiffer and high hard materials.

  8. First-principles calculation of the elastic constants, the electronic density of states and the ductility mechanism of the intermetallic compounds: YAg, YCu and YRh

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yurong [College of Electromechanical Engineering, Hunan University of Science and Technology, Xiantang 411201 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: wangyuhu2001cn@yahoo.com.cn; Han Shaochang [Department of Applied Physics, Hunan University, Changsha 410082 (China)

    2008-10-01

    First-principles calculations have been used to study the elastic and electronic properties of ductility rare-earth alloy YM (M=Ag, Cu, Rh) systems. The ductility mechanism for these alloys is studied from microscopic aspect, via electronic density of states (DOS). The Fermi energy lies near a local minimum, and the hybridization is stronger than that of the common NiAl alloy, demonstrating that the ductility of these alloys is much better than that of NiAl alloy. Elastic modulus, namely, shear modulus C'=(C{sub 11}-C{sub 12})/2, bulk modulus B and C{sub 44} are calculated by volume-conserving orthorhombic, hydrostatic pressure and tri-axial shear strain, respectively. Moreover, lattice parameters, antiphase boundary (APB) energies and unstable stacking fault energies of these alloys are also studied. The APB energies are greater than the unstable stacking fault energies for these alloy systems, and this is a characteristic of the ductility rare-earth alloy. The APB energies of YRh are the highest ones in these three YM alloys, which make dislocation dissociation difficult. The DOS and APB energy results show that the ductility of YRh may be worst in these three YM systems.

  9. First-principles calculation of the elastic constants, the electronic density of states and the ductility mechanism of the intermetallic compounds: YAg, YCu and YRh

    International Nuclear Information System (INIS)

    Wu Yurong; Hu Wangyu; Han Shaochang

    2008-01-01

    First-principles calculations have been used to study the elastic and electronic properties of ductility rare-earth alloy YM (M=Ag, Cu, Rh) systems. The ductility mechanism for these alloys is studied from microscopic aspect, via electronic density of states (DOS). The Fermi energy lies near a local minimum, and the hybridization is stronger than that of the common NiAl alloy, demonstrating that the ductility of these alloys is much better than that of NiAl alloy. Elastic modulus, namely, shear modulus C'=(C 11 -C 12 )/2, bulk modulus B and C 44 are calculated by volume-conserving orthorhombic, hydrostatic pressure and tri-axial shear strain, respectively. Moreover, lattice parameters, antiphase boundary (APB) energies and unstable stacking fault energies of these alloys are also studied. The APB energies are greater than the unstable stacking fault energies for these alloy systems, and this is a characteristic of the ductility rare-earth alloy. The APB energies of YRh are the highest ones in these three YM alloys, which make dislocation dissociation difficult. The DOS and APB energy results show that the ductility of YRh may be worst in these three YM systems

  10. Inelastic deformations of fault and shear zones in granitic rock

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1986-02-01

    Deformations during heating and cooling of three drifts in granitic rock were influenced by the presence of faults and shear zones. Thermal deformations were significantly larger in sheared and faulted zones than where the rock was jointed, but neither sheared nor faulted. Furthermore, thermal deformations in faulted or sheared rock were not significantly recovered during subsequent cooling, thus a permanent deformation remained. This inelastic response is in contrast with elastic behavior identified in unfaulted and unsheared rock segments. A companion paper indicates that deformations in unsheared or unfaulted rock were effectively modeled as an elastic response. We conclude that permanent deformations occurred in fractures with crushed minerals and fracture filling or gouge materials. Potential mechanisms for this permanent deformation are asperity readjustments during thermal deformations, micro-shearing, asperity crushing and crushing of the secondary fracture filling minerals. Additionally, modulus differences in sheared or faulted rock as compared to more intact rock would result in greater deformations in response to the same thermal loads

  11. Shear Resistance Variations in Experimentally Sheared Mudstone Granules: A Possible Shear-Thinning and Thixotropic Mechanism

    Science.gov (United States)

    Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves

    2017-11-01

    We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.

  12. Laser-ultrasound spectroscopy apparatus and method with detection of shear resonances for measuring anisotropy, thickness, and other properties

    Science.gov (United States)

    Levesque, Daniel; Moreau, Andre; Dubois, Marc; Monchalin, Jean-Pierre; Bussiere, Jean; Lord, Martin; Padioleau, Christian

    2000-01-01

    Apparatus and method for detecting shear resonances includes structure and steps for applying a radiation pulse from a pulsed source of radiation to an object to generate elastic waves therein, optically detecting the elastic waves generated in the object, and analyzing the elastic waves optically detected in the object. These shear resonances, alone or in combination with other information, may be used in the present invention to improve thickness measurement accuracy and to determine geometrical, microstructural, and physical properties of the object. At least one shear resonance in the object is detected with the elastic waves optically detected in the object. Preferably, laser-ultrasound spectroscopy is utilized to detect the shear resonances.

  13. Size-dependent elastic moduli and vibrational properties of fivefold twinned copper nanowires

    Science.gov (United States)

    Zheng, Y. G.; Zhao, Y. T.; Ye, H. F.; Zhang, H. W.

    2014-08-01

    Based on atomistic simulations, the elastic moduli and vibration behaviors of fivefold twinned copper nanowires are investigated in this paper. Simulation results show that the elastic (i.e., Young’s and shear) moduli exhibit size dependence due to the surface effect. The effective Young’s modulus is found to decrease slightly whereas the effective shear modulus increases slightly with the increase in the wire radius. Both moduli tend to approach certain values at a larger radius and can be suitably described by core-shell composite structure models. Furthermore, we show by comparing simulation results and continuum predictions that, provided the effective Young’s and shear moduli are used, classic elastic theory can be applied to describe the small-amplitude vibration of fivefold twinned copper nanowires. Moreover, for the transverse vibration, the Timoshenko beam model is more suitable because shear deformation becomes apparent.

  14. Size-dependent elastic moduli and vibrational properties of fivefold twinned copper nanowires

    International Nuclear Information System (INIS)

    Zheng, Y G; Zhao, Y T; Ye, H F; Zhang, H W

    2014-01-01

    Based on atomistic simulations, the elastic moduli and vibration behaviors of fivefold twinned copper nanowires are investigated in this paper. Simulation results show that the elastic (i.e., Young’s and shear) moduli exhibit size dependence due to the surface effect. The effective Young’s modulus is found to decrease slightly whereas the effective shear modulus increases slightly with the increase in the wire radius. Both moduli tend to approach certain values at a larger radius and can be suitably described by core-shell composite structure models. Furthermore, we show by comparing simulation results and continuum predictions that, provided the effective Young’s and shear moduli are used, classic elastic theory can be applied to describe the small-amplitude vibration of fivefold twinned copper nanowires. Moreover, for the transverse vibration, the Timoshenko beam model is more suitable because shear deformation becomes apparent. (paper)

  15. Structural, elastic, and electronic properties of new 211 MAX phase Nb{sub 2}GeC from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Shein, I.R. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation)

    2013-02-01

    Very recently (2012, Phys. Rev Lett., 109, 035502) a new hexagonal (s.g. P63/mmc, Music-Sharp-Sign 194) ternary phase Nb{sub 2}GeC, which belongs to so-called 211-like MAX phases, was discovered. In order to get a systematic insight into the structural, elastic, and electronic properties of Nb{sub 2}GeC, we used two complementary DFT-based first-principles approaches (as implemented in the VASP and Wien2k packages) to calculate the optimized structural parameters, band structure, densities of state, Fermi surface, and a set of elastic parameters: elastic constants (C{sub ij}), bulk modulus (B), compressibility ({beta}), shear modulus (G), Young's modulus (Y), and elastic anisotropy indexes, which were discussed in comparison with available data. Besides, the inter-atomic bonding picture for Nb{sub 2}GeC was discussed using electron density maps and Bader's charge analysis.

  16. Kelvin Notation for Stabilizing Elastic-Constant Inversion Notation Kelvin pour stabiliser l'inversion de constantes élastiques

    Directory of Open Access Journals (Sweden)

    Dellinger J.

    2006-12-01

    Full Text Available Inverting a set of core-sample traveltime measurements for a complete set of 21 elastic constants is a difficult problem. If the 21 elastic constants are directly used as the inversion parameters, a few bad measurements or an unfortunate starting guess may result in the inversion converging to a physically impossible solution . Even given perfect data, multiple solutions may exist that predict the observed traveltimes equally well. We desire the inversion algorithm to converge not just to a physically possible solution, but to the best(i. e. most physically likely solution of all those allowed. We present a new parameterization that attempts to solve these difficulties. The search space is limited to physically realizable media by making use of the Kelvin eigenstiffness-eigentensor representation of the 6 x 6 elastic stiffness matrix. Instead of 21 stiffnesses, there are 6 eigenstiffness parametersand 15 rotational parameters . The rotational parameters are defined using a Lie-algebra representation that avoids the artificial degeneracies and coordinate-system bias that can occur with standard polar representations. For any choice of these 21 real parameters, the corresponding stiffness matrix is guaranteed to be physically realizable. Furthermore, all physically realizable matrices can be represented in this way. This new parameterization still leaves considerable latitude as to which linear combinations of the Kelvin parameters to use, and how they should be ordered. We demonstrate that by careful choice and ordering of the parameters, the inversion can be relaxedfrom higher to lower symmetry simply by adding a few more parameters at a time. By starting from isotropy and relaxing to the general result in stages (isotropy, transverse isotropy, orthorhombic, general, we expect that the method should find the solution that is closest to isotropy of all those that fit the data. L'inversion d'un ensemble de mesures du temps de parcours d

  17. Phase stability, electronic, elastic and thermodynamic properties of Al-RE intermetallics in Mg-Al-RE alloy: A first principles study

    Directory of Open Access Journals (Sweden)

    H.L. Chen

    2015-09-01

    Full Text Available Electronic structure and elastic properties of Al2Y, Al3Y, Al2Gd and Al3Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory (DFT. The ground state energy and elastic constants of each phase were calculated, the formation enthalpy (ΔH, bulk modulus (B, shear modulus (G, Young's modulus (E, Poisson's ratio (ν and anisotropic coefficient (A were derived. The formation enthalpy shows that Al2RE is more stable than Al3RE, and Al-Y intermetallics have stronger phase stability than Al-Gd intermetallics. The calculated mechanical properties indicate that all these four intermetallics are strong and hard brittle phases, it may lead to the similar performance when deforming due to their similar elastic constants. The total and partial electron density of states (DOS, Mulliken population and metallicity were calculated to analyze the electron structure and bonding characteristics of the phases. Finally, phonon calculation was conducted, and the thermodynamic properties were obtained and further discussed.

  18. Determination of the Elasticity of Breast Tissue during the Menstrual Cycle Using Real-Time Shear Wave Elastography.

    Science.gov (United States)

    Li, Xiang; Wang, Jian-Nan; Fan, Zhi-Ying; Kang, Shu; Liu, Yan-Jun; Zhang, Yi-Xia; Wang, Xue-Mei

    2015-12-01

    We examined breast tissue elasticity during the menstrual cycle using real-time shear wave elastography (RT-SWE), a recent technique developed for soft tissue imaging. Written informed consent for RT-SWE was obtained from all eligible patients, who were healthy women aged between 19 and 52 y. Young's moduli of the breast tissue in the early follicular, late phase and luteal phase were compared. There were no significant differences in the mean, maximum and minimum elasticity values (Emean, Emax and Emin) and standard deviation (ESD). RT-SWE of glandular tissue revealed that ESD was increased in the early follicular phase compared with the luteal phase. Means ± SD of Emin, Emax and Emean in glandular tissue were 5.174 ± 2.138, 8.308 ± 3.166 and 6.593 ± 2.510, respectively, and in adipose tissue, 3.589 ± 2.083, 6.733 ± 3.522 and 4.857 ± 2.564, respectively. There were no significant differences in stiffness between glandular and adipose tissues throughout the menstrual cycle, but glandular tissue stiffness was lower in the luteal phase than in the early follicular phase. On the basis of these observations in normal healthy women, we believe we have obtained sufficient information to establish the baseline changes in human breast elasticity during the menstrual cycle. In the future, we intend to compare the elasticity values of healthy breast tissue with those of breast tissue affected by various pathologies. Our results reveal the significant potential of RT-SWE in the rapid and non-invasive clinical diagnosis of breast diseases, such as breast cancers. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Relation between psi-splitting and microscopic residual shear stresses in x-ray stress measurement on uni-directionally deformed layers

    International Nuclear Information System (INIS)

    Hanabusa, Takao; Fujiwara, Haruo

    1982-01-01

    The psi-splitting behaviors were investigated for the ground and the milled surface layers of both iron and high speed steel in order to find out the relation among microscopic residual shear stresses. For the high speed steel, the X-ray elastic constants and the residual strains were measured on the carbide phase as well as on the matrix phase. It was clarified that the psi-splitting was caused by a combination of the selective nature of X-ray diffractions and the microscopic residual shear stresses within the interior of cells and the carbide particles. The volume fraction occupied by the cell walls and the residual shear stresses sustained by them were estimated from the equilibrium condition of the microscopic residual shear stresses. The distributions of residual stresses over the deformed layers indicate that the thermal effect is dominant in grinding and the mechanical effect is dominant in milling for forming residual stresses. (author)

  20. Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow

    Science.gov (United States)

    Saengow, C.; Giacomin, A. J.

    2017-12-01

    The Oldroyd 8-constant framework for continuum constitutive theory contains a rich diversity of popular special cases for polymeric liquids. In this paper, we use part of our exact solution for shear stress to arrive at unique exact analytical solutions for the normal stress difference responses to large-amplitude oscillatory shear (LAOS) flow. The nonlinearity of the polymeric liquids, triggered by LAOS, causes these responses at even multiples of the test frequency. We call responses at a frequency higher than twice the test frequency higher harmonics. We find the new exact analytical solutions to be compact and intrinsically beautiful. These solutions reduce to those of our previous work on the special case of the corotational Maxwell fluid. Our solutions also agree with our new truncated Goddard integral expansion for the special case of the corotational Jeffreys fluid. The limiting behaviors of these exact solutions also yield new explicit expressions. Finally, we use our exact solutions to see how η∞ affects the normal stress differences in LAOS.

  1. Pressure derivatives of elastic moduli of fused quartz to 10 kb

    Science.gov (United States)

    Peselnick, L.; Meister, R.; Wilson, W.H.

    1967-01-01

    Measurements of the longitudinal and shear moduli were made on fused quartz to 10 kb at 24??5??C. The anomalous behavior of the bulk modulus K at low pressure, ???K ???P 0, at higher pressures. The pressure derivative of the rigidity modulus ???G ???P remains constant and negative for the pressure range covered. A 15-kb hydrostatic pressure vessel is described for use with ultrasonic pulse instrumentation for precise measurements of elastic moduli and density changes with pressure. The placing of the transducer outside the pressure medium, and the use of C-ring pressure seals result in ease of operation and simplicity of design. ?? 1967.

  2. Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study

    Science.gov (United States)

    Wang, Yan; Hao, Chun-Mei; Huang, Hong-Mei; Li, Yan-Ling

    2018-04-01

    The elastic, dynamical, and electronic properties of cubic LiHg and Li3Hg were investigated based on first-principles methods. The elastic constants and phonon spectral calculations confirmed the mechanical and dynamical stability of the materials at ambient conditions. The obtained elastic moduli of LiHg are slightly larger than those of Li3Hg. Both LiHg and Li3Hg are ductile materials with strong shear anisotropy as metals with mixed ionic, covalent, and metallic interactions. The calculated Debye temperatures are 223.5 K and 230.6 K for LiHg and Li3Hg, respectively. The calculated phonon frequency of the T2 g mode in Li3Hg is 326.8 cm-1. The p states from the Hg and Li atoms dominate the electronic structure near the Fermi level. These findings may inspire further experimental and theoretical study on the potential technical and engineering applications of similar alkali metal-based intermetallic compounds.

  3. Automatic estimation of elasticity parameters in breast tissue

    Science.gov (United States)

    Skerl, Katrin; Cochran, Sandy; Evans, Andrew

    2014-03-01

    Shear wave elastography (SWE), a novel ultrasound imaging technique, can provide unique information about cancerous tissue. To estimate elasticity parameters, a region of interest (ROI) is manually positioned over the stiffest part of the shear wave image (SWI). The aim of this work is to estimate the elasticity parameters i.e. mean elasticity, maximal elasticity and standard deviation, fully automatically. Ultrasonic SWI of a breast elastography phantom and breast tissue in vivo were acquired using the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France). First, the SWI within the ultrasonic B-mode image was detected using MATLAB then the elasticity values were extracted. The ROI was automatically positioned over the stiffest part of the SWI and the elasticity parameters were calculated. Finally all values were saved in a spreadsheet which also contains the patient's study ID. This spreadsheet is easily available for physicians and clinical staff for further evaluation and so increase efficiency. Therewith the efficiency is increased. This algorithm simplifies the handling, especially for the performance and evaluation of clinical trials. The SWE processing method allows physicians easy access to the elasticity parameters of the examinations from their own and other institutions. This reduces clinical time and effort and simplifies evaluation of data in clinical trials. Furthermore, reproducibility will be improved.

  4. Elastic properties of icosahedral and decagonal quasicrystals

    International Nuclear Information System (INIS)

    Chernikov, Mikhail A

    2005-01-01

    Problems associated with determining the symmetry properties of the elastic constant tensor of icosahedral and decagonal quasicrystals are reviewed. Notions of elastic isotropy and anisotropy are considered, and their relation to the components of the elastic constant tensor is discussed. The question is addressed of how to determine experimentally whether a system under study is elastically isotropic. Experimental results produced by resonant ultrasound spectroscopy of icosahedral Al-Li-Cu and decagonal Al-Ni-Co single quasicrystals are discussed in detail. (methodological notes)

  5. Diagnostic performance of shear wave elastography of the breast according to scanning orientation.

    Science.gov (United States)

    Kim, Solip; Choi, SeonHyeong; Choi, Yoonjung; Kook, Shin-Ho; Park, Hee Jin; Chung, Eun Chul

    2014-10-01

    To evaluate the influence of the scanning orientation on diagnostic performance measured by the mean elasticity, maximum elasticity, and fat-to-lesion elasticity ratio on ultrasound-based shear wave elastography in differentiating breast cancers from benign lesions. In this study, a total of 260 breast masses from 235 consecutive patients were observed from March 2012 to November 2012. For each lesion, the mean elasticity value, maximum elasticity value, and fat-to-lesion ratio were measured along two orthogonal directions, and all values were compared with pathologic results. There were 59 malignant and 201 benign lesions. Malignant masses showed higher mean elasticity, maximum elasticity, and fat-to-lesion ratio values than benign lesions (P masses; and mean elasticity, 0.392, for anterior mammary fat. Mean elasticity, maximum elasticity, and fat-to-lesion elasticity ratio values were helpful in differentiating benign and malignant breast masses. The scanning orientation did not significantly affect the diagnostic performance of shear wave elastography for breast masses. © 2014 by the American Institute of Ultrasound in Medicine.

  6. Molecular dynamics simulations to calculate glass transition temperature and elastic constants of novel polyethers.

    Science.gov (United States)

    Sarangapani, Radhakrishnan; Reddy, Sreekantha T; Sikder, Arun K

    2015-04-01

    Molecular dynamics simulations studies are carried out on hydroxyl terminated polyethers that are useful in energetic polymeric binder applications. Energetic polymers derived from oxetanes with heterocyclic side chains with different energetic substituents are designed and simulated under the ensembles of constant particle number, pressure, temperature (NPT) and constant particle number, volume, temperature (NVT). Specific volume of different amorphous polymeric models is predicted using NPT-MD simulations as a function of temperature. Plots of specific volume versus temperature exhibited a characteristic change in slope when amorphous systems change from glassy to rubbery state. Several material properties such as Young's, shear, and bulk modulus, Poisson's ratio, etc. are predicted from equilibrated structures and established the structure-property relations among designed polymers. Energetic performance parameters of these polymers are calculated and results reveal that the performance of the designed polymers is comparable to the benchmark energetic polymers like polyNIMMO, polyAMMO and polyBAMO. Overall, it is worthy remark that this molecular simulations study on novel energetic polyethers provides a good guidance on mastering the design principles and allows us to design novel polymers of tailored properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Nonlinear shear wave in a non Newtonian visco-elastic medium

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, D.; Janaki, M. S.; Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Chaudhuri, M. [Max-Planck-Institut fuer extraterrestrische Physik, 85741 Garching (Germany)

    2012-06-15

    An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau-Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries equation. This model has application from laboratory to astrophysical plasmas as well as in biological systems.

  8. Static friction in elastic adhesion contacts in MEMS

    NARCIS (Netherlands)

    Tas, Niels Roelof; Gui, C.; Elwenspoek, Michael Curt

    2003-01-01

    Static friction in a shearing mode can be expressed as the product of the shear strength of the interface and the real contact area. The influence of roughness on friction in elastic adhesion contact is analyzed. The effect of adhesion is included using Maugis' expansion of the Greenwood and

  9. The value of quantitative shear wave elastography in differentiating the cervical lymph nodes in patients with thyroid nodules.

    Science.gov (United States)

    You, Jun; Chen, Juan; Xiang, Feixiang; Song, Yue; Khamis, Simai; Lu, Chengfa; Lv, Qing; Zhang, Yanrong; Xie, Mingxing

    2018-04-01

    This study aimed at evaluating the diagnostic performance of quantitative shear wave elastography (SWE) in differentiating metastatic cervical lymph nodes from benign nodes in patients with thyroid nodules. One hundred and forty-one cervical lymph nodes from 39 patients with thyroid nodules that were diagnosed as papillary thyroid cancer had been imaged with SWE. The shear elasticity modulus, which indicates the stiffness of the lymph nodes, was measured in terms of maximum shear elasticity modulus (maxSM), minimum shear elasticity modulus (minSM), mean shear elasticity modulus (meanSM), and standard deviation (SD) of the shear elasticity modulus. All the patients underwent thyroid surgery, 50 of the suspicious lymph nodes were resected, and 91 lymph nodes were followed up for 6 months. The maxSM value, minSM value, meanSM value, and SD value of the metastatic lymph nodes were significantly higher than those of the benign nodes. The area under the curve of the maxSM value, minSM value, meanSM value, and SD value were 0.918, 0.606, 0.865, and 0.915, respectively. SWE can differentiate metastasis from benign cervical lymph nodes in patients with thyroid nodules, and the maxSM, meanSM, and SD may be valuable quantitative indicators for characterizing cervical lymph nodes.

  10. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    Science.gov (United States)

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-07

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  11. Calculations of single crystal elastic constants for yttria partially stabilised zirconia from powder diffraction data

    Science.gov (United States)

    Lunt, A. J. G.; Xie, M. Y.; Baimpas, N.; Zhang, S. Y.; Kabra, S.; Kelleher, J.; Neo, T. K.; Korsunsky, A. M.

    2014-08-01

    Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.

  12. Low-temperature phase transition in γ-glycine single crystal. Pyroelectric, piezoelectric, dielectric and elastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Tylczyński, Zbigniew, E-mail: zbigtyl@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Busz, Piotr [Institute of Molecular Physics, Polish Academy of Science, Smoluchowskiego 17, 60-179 Poznań (Poland)

    2016-11-01

    Temperature changes in the pyroelectric, piezoelectric, elastic and dielectric properties of γ-glycine crystals were studied in the range 100 ÷ 385 K. The pyroelectric coefficient increases monotonically in this temperature range and its value at RT was compared with that of other crystals having glycine molecules. A big maximum in the d14 component of piezoelectric tensor compared by maximum in attenuation of the resonant face-shear mode were observed at 189 K. The components of the elastic stiffness tensor and other components of the piezoelectric tensor show anomalies at this temperature. The components of electromechanical coupling coefficient determined indicate that γ-glycine is a weak piezoelectric. The real and imaginary part of the dielectric constant measured in the direction perpendicular to the trigonal axis show the relaxation anomalies much before 198 K and the activation energies were calculated. These anomalies were interpreted as a result of changes in the NH{sub 3}{sup +} vibrations through electron-phonon coupling of the so called “dynamical transition”. The anomalies of dielectric constant ε*{sub 11} and piezoelectric tensor component d{sub 14} taking place at 335 K are associated with an increase in ac conductivity caused by charge transfer of protons. - Graphical abstract: Imaginary part of dielectric constant in [100] direction. - Highlights: • Piezoelectric, elastic and dielectric constants anomalies were discovered at 189 K. • These anomalies were interpreted as a result of so called “dynamical transition”. • Relaxational dielectric anomaly was explained by the dynamics of glycine molecules. • Pyroelectric coefficient of γ-glycine was determined in a wide temperature range. • Complex dielectric & piezoelectric anomalies at 335 K were caused by protons hopping.

  13. Effect of Shear Applied During a Pharmaceutical Process on Near Infrared Spectra.

    Science.gov (United States)

    Hernández, Eduardo; Pawar, Pallavi; Rodriguez, Sandra; Lysenko, Sergiy; Muzzio, Fernando J; Romañach, Rodolfo J

    2016-03-01

    This study describes changes observed in the near-infrared (NIR) diffuse reflectance (DR) spectra of pharmaceutical tablets after these tablets were subjected to different levels of strain (exposure to shear) during the mixing process. Powder shearing is important in the mixing of powders that are cohesive. Shear stress is created in a system by moving one surface over another causing displacements in the direction of the moving surface and is part of the mixing dynamics of particulates in many industries including the pharmaceutical industry. In continuous mixing, shear strain is developed within the process when powder particles are in constant movement and can affect the quality attributes of the final product such as dissolution. These changes in the NIR spectra could affect results obtained from NIR calibration models. The aim of the study was to understand changes in the NIR diffuse reflectance spectra that can be associated with different levels of strain developed during blend shearing of laboratory samples. Shear was applied using a Couette cell and tablets were produced using a tablet press emulator. Tablets with different shear levels were measured using NIR spectroscopy in the diffuse reflectance mode. The NIR spectra were baseline corrected to maintain the scattering effect associated with the physical properties of the tablet surface. Principal component analysis was used to establish the principal sources of variation within the samples. The angular dependence of elastic light scattering shows that the shear treatment reduces the size of particles and produces their uniform and highly isotropic distribution. Tablet compaction further reduces the diffuse component of scattering due to realignment of particles. © The Author(s) 2016.

  14. Elasticity of Hard-Spheres-And-Tether Systems

    International Nuclear Information System (INIS)

    Farago, O.; Kantor, Y.

    1999-01-01

    Physical properties of a large class of systems ranging from noble gases to polymers and rubber are primarily determined by entropy, while the internal energy plays a minor role. Such systems can be conveniently modeled and numerically studied using ''hard' (i.e., ''infinity-or-zero'') potentials, such as hard sphere repulsive interactions, or inextensible (''tether'') bonds which limit the distance between the bonded monomers, but have zero energy at all permitted distances. The knowledge of elastic constants is very important for understanding the behavior of entropy-dominated systems. Computational methods for determination of the elastic constants in such systems are broadly classified into ''strain'' methods and (fluctuation methods. In the former, the elastic constants are extracted from stress-strain relations, while in the latter they are determined from measurements of stress fluctuations. The fluctuation technique usually enables more accurate and well-controlled determination of the elastic constants since in this method the elastic constants are computed directly from simulations of the un strained system with no need to deform the simulation cell and perform numerical differentiations. For central forces systems, the original ''fluctuation'' formalism can be applied provided the pair potential is twice differentiable. We have extended this formalism to apply to hard-spheres-and-tether models in which this requirement is not fulfilled. We found that for such models the components of the tensor of elastic constants can be related to (two-, three- and four-point) probability densities of contacts between hard spheres and stretched bonds. We have tested our formalism on simple (phantom networks and three-dimensional hard spheres systems

  15. Elastic properties of uniaxial-fiber reinforced composites - General features

    Science.gov (United States)

    Datta, Subhendu; Ledbetter, Hassel; Lei, Ming

    The salient features of the elastic properties of uniaxial-fiber-reinforced composites are examined by considering the complete set of elastic constants of composites comprising isotropic uniaxial fibers in an isotropic matrix. Such materials exhibit transverse-isotropic symmetry and five independent elastic constants in Voigt notation: C(11), C(33), C(44), C(66), and C(13). These C(ij) constants are calculated over the entire fiber-volume-fraction range 0.0-1.0, using a scattered-plane-wave ensemple-average model. Some practical elastic constants such as the principal Young moduli and the principal Poisson ratios are considered, and the behavior of these constants is discussed. Also presented are the results for the four principal sound velocities used to study uniaxial-fiber-reinforced composites: v(11), v(33), v(12), and v(13).

  16. Are rapid changes in brain elasticity possible?

    Science.gov (United States)

    Parker, K. J.

    2017-09-01

    Elastography of the brain is a topic of clinical and preclinical research, motivated by the potential for viscoelastic measures of the brain to provide sensitive indicators of pathological processes, and to assist in early diagnosis. To date, studies of the normal brain and of those with confirmed neurological disorders have reported a wide range of shear stiffness and shear wave speeds, even within similar categories. A range of factors including the shear wave frequency, and the age of the individual are thought to have a possible influence. However, it may be that short term dynamics within the brain may have an influence on the measured stiffness. This hypothesis is addressed quantitatively using the framework of the microchannel flow model, which derives the tissue stiffness, complex modulus, and shear wave speed as a function of the vascular and fluid network in combination with the elastic matrix that comprise the brain. Transformation rules are applied so that any changes in the fluid channels or the elastic matrix can be mapped to changes in observed elastic properties on a macroscopic scale. The results are preliminary but demonstrate that measureable, time varying changes in brain stiffness are possible simply by accounting for vasodynamic or electrochemical changes in the state of any region of the brain. The value of this preliminary exploration is to identify possible mechanisms and order-of-magnitude changes that may be testable in vivo by specialized protocols.

  17. First-principles investigations on structural, elastic, electronic properties and Debye temperature of orthorhombic Ni3Ta under pressure

    Science.gov (United States)

    Li, Pan; Zhang, Jianxin; Ma, Shiyu; Jin, Huixin; Zhang, Youjian; Zhang, Wenyang

    2018-06-01

    The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν are calculated by the Voigt-Reuss-Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature ΘD calculated from elastic modulus increases along with the pressure.

  18. Quantitative assessment of cervical softening during pregnancy in the Rhesus macaque with shear wave elasticity imaging

    Science.gov (United States)

    Rosado-Mendez, Ivan M.; Carlson, Lindsey C.; Woo, Kaitlin M.; Santoso, Andrew P.; Guerrero, Quinton W.; Palmeri, Mark L.; Feltovich, Helen; Hall, Timothy J.

    2018-04-01

    Abnormal parturition, e.g. pre- or post-term birth, is associated with maternal and neonatal morbidity and increased economic burden. This could potentially be prevented by accurate detection of abnormal softening of the uterine cervix. Shear wave elasticity imaging (SWEI) techniques that quantify tissue softness, such as shear wave speed (SWS) measurement, are promising for evaluation of the cervix. Still, interpretation of results can be complicated by biological variability (i.e. spatial variations of cervix stiffness, parity), as well as by experimental factors (i.e. type of transducer, posture during scanning). Here we investigated the ability of SWEI to detect cervical softening, as well as sources of SWS variability that can affect this task, in the pregnant and nonpregnant Rhesus macaque. Specifically, we evaluated SWS differences when imaging the cervix transabdominally with a typical linear array abdominal transducer, and transrectally with a prototype intracavitary linear array transducer. Linear mixed effects (LME) models were used to model SWS as a function of menstrual cycle day (in nonpregnant animals) and gestational age (in pregnant animals). Other variables included parity, shear wave direction, and cervix side (anterior versus posterior). In the nonpregnant cervix, the LME model indicated that SWS increased by 2% (95% confidence interval 0–3%) per day, starting eight days before menstruation. During pregnancy, SWS significantly decreased at a rate of 6% (95% CI 5–7%) per week (intracavitary approach) and 3% (95% CI 2–4%) per week (transabdominal approach), and interactions between the scanning approach and other fixed effects were also significant. These results suggest that, while absolute SWS values are influenced by factors such as scanning approach and SWEI implementation, these sources of variability do not compromise the sensitivity of SWEI to cervical softening. Our results also highlight the importance of standardizing SWEI

  19. Influence of quantum confinement on the carrier contribution to the elastic constants in quantum confined heavily doped non-linear optical and optoelectronic materials: simplified theory and the suggestion for experimental determination

    International Nuclear Information System (INIS)

    Baruah, D; Choudhury, S; Singh, K M; Ghatak, K P

    2007-01-01

    In this paper we study the carrier contribution to elastic constants in quantum confined heavily doped non-linear optical compounds on the basis of a newly formulated electron dispersion law taking into account the anisotropies of the effective electron masses and spin orbit splitting constants together with the proper inclusion of the crystal field splitting in the Hamiltonian within the framework of k.p formalism. All the results of heavily doped three, and two models of Kane for heavily doped III-V materials form special cases of our generalized analysis. It has been found, taking different heavily doped quantum confined materials that, the carrier contribution to the elastic constants increases with increase in electron statistics and decrease in film thickness in ladder like manners for all types of quantum confinements with different numerical values which are totally dependent on the energy band constants. The said contribution is greatest in quantum dots and least in quantum wells together with the fact the heavy doping enhances the said contributions for all types of quantum confined materials. We have suggested an experimental method of determining the carrier contribution to the elastic constants in nanostructured materials having arbitrary band structures

  20. Phase stability and elastic properties of Cr-V alloys

    Science.gov (United States)

    Gao, M. C.; Suzuki, Y.; Schweiger, H.; Doǧan, Ö. N.; Hawk, J.; Widom, M.

    2013-02-01

    V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr-V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson’s ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson’s ratio for bcc Cr-V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.

  1. Phase stability and elastic properties of Cr-V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gao, M C; Suzuki, Y; Schweiger, H; Doğan, Ö N; Hawk, J; Widom, M

    2013-01-23

    V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr–V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson’s ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson’s ratio for bcc Cr–V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.

  2. Field Dependence of Elastic Constants in the Bilayer Manganite: (La1-z Prz )1.2Sr1.8Mn2O7 for z=0.6

    International Nuclear Information System (INIS)

    Nakanishi, Y.; Shimomura, K.; Matasukawa, M.; Yoshizawa, M.; Apost, M.; Suryanarayanan, R.; Revcolevischi, A.

    2003-01-01

    Elastic properties of the Pr-doped bilayer manganite: (La 1-z Pr z ) 1.2 Sr 1.8 Mn 2 O 7 for z=0.6 was investigated by means of the ultrasonic measurement. No remarkable anomaly was observed around the transition temperature in the temperature dependence of C 33 in zero field. A pronounced elastic anomaly, however, has been observed around the magnetic phase transition field Ht in the longitudinal elastic constants C 11 , indicating the phase can be induced in magnetic fields. The transition accompanies a large hysteresis, implying the ordered state to be so-called ''orbital-glass state''. The origin of observed elastic anomalies are discussed in terms of the coupling between elastic strains and magnetic moments of Mn ions, and a change of carrier numbers. (author)

  3. Effective elastic properties of damaged isotropic solids

    International Nuclear Information System (INIS)

    Lee, U Sik

    1998-01-01

    In continuum damage mechanics, damaged solids have been represented by the effective elastic stiffness into which local damage is smoothly smeared. Similarly, damaged solids may be represented in terms of effective elastic compliances. By virtue of the effective elastic compliance representation, it may become easier to derive the effective engineering constants of damaged solids from the effective elastic compliances, all in closed form. Thus, in this paper, by using a continuum modeling approach based on both the principle of strain energy equivalence and the equivalent elliptical micro-crack representation of local damage, the effective elastic compliance and effective engineering constants are derived in terms of the undamaged (virgin) elastic properties and a scalar damage variable for both damaged two-and three-dimensional isotropic solids

  4. Two-dimensional Shear Wave Elastography on Conventional Ultrasound Scanners with Time Aligned Sequential Tracking (TAST) and Comb-push Ultrasound Shear Elastography (CUSE)

    OpenAIRE

    Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao

    2015-01-01

    Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of...

  5. Directional anisotropy, finite size effect and elastic properties of hexagonal boron nitride

    International Nuclear Information System (INIS)

    Thomas, Siby; Ajith, K M; Valsakumar, M C

    2016-01-01

    Classical molecular dynamics simulations have been performed to analyze the elastic and mechanical properties of two-dimensional (2D) hexagonal boron nitride (h-BN) using a Tersoff-type interatomic empirical potential. We present a systematic study of h-BN for various system sizes. Young’s modulus and Poisson’s ratio are found to be anisotropic for finite sheets whereas they are isotropic for the infinite sheet. Both of them increase with system size in accordance with a power law. It is concluded from the computed values of elastic constants that h-BN sheets, finite or infinite, satisfy Born’s criterion for mechanical stability. Due to the the strong in-plane sp 2 bonds and the small mass of boron and nitrogen atoms, h-BN possesses high longitudinal and shear velocities. The variation of bending rigidity with system size is calculated using the Foppl–von Karman approach by coupling the in-plane bending and out-of-plane stretching modes of the 2D h-BN. (paper)

  6. Calculated temperature dependence of elastic constants and phonon dispersion of hcp and bcc beryllium

    Science.gov (United States)

    Hahn, Steven; Arapan, Sergiu; Harmon, Bruce; Eriksson, Olle

    2011-03-01

    Conventional first principle methods for calculating lattice dynamics are unable to calculate high temperature thermophysical properties of materials containing modes that are entropically stabilized. In this presentation we use a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD) to study the hcp to bcc transition (1530 K) in beryllium. The SCAILD method goes beyond the harmonic approximation to include phonon-phonon interactions and produces a temperature-dependent phonon dispersion. In the high temperature bcc structure, phonon-phonon interactions dynamically stabilize the N-point phonon. Fits to the calculated phonon dispersion were used to determine the temperature dependence of the elastic constants in the hcp and bcc phases. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  7. A viscoplastic shear-zone model for episodic slow slip events in oceanic subduction zones

    Science.gov (United States)

    Yin, A.; Meng, L.

    2016-12-01

    Episodic slow slip events occur widely along oceanic subduction zones at the brittle-ductile transition depths ( 20-50 km). Although efforts have been devoted to unravel their mechanical origins, it remains unclear about the physical controls on the wide range of their recurrence intervals and slip durations. In this study we present a simple mechanical model that attempts to account for the observed temporal evolution of slow slip events. In our model we assume that slow slip events occur in a viscoplastic shear zone (i.e., Bingham material), which has an upper static and a lower dynamic plastic yield strength. We further assume that the hanging wall deformation is approximated as an elastic spring. We envision the shear zone to be initially locked during forward/landward motion but is subsequently unlocked when the elastic and gravity-induced stress exceeds the static yield strength of the shear zone. This leads to backward/trenchward motion damped by viscous shear-zone deformation. As the elastic spring progressively loosens, the hanging wall velocity evolves with time and the viscous shear stress eventually reaches the dynamic yield strength. This is followed by the termination of the trenchward motion when the elastic stress is balanced by the dynamic yield strength of the shear zone and the gravity. In order to account for the zig-saw slip-history pattern of typical repeated slow slip events, we assume that the shear zone progressively strengthens after each slow slip cycle, possibly caused by dilatancy as commonly assumed or by progressive fault healing through solution-transport mechanisms. We quantify our conceptual model by obtaining simple analytical solutions. Our model results suggest that the duration of the landward motion increases with the down-dip length and the static yield strength of the shear zone, but decreases with the ambient loading velocity and the elastic modulus of the hanging wall. The duration of the backward/trenchward motion depends

  8. Calculations of single crystal elastic constants for yttria partially stabilised zirconia from powder diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    Lunt, A. J. G., E-mail: alexander.lunt@eng.ox.ac.uk; Xie, M. Y.; Baimpas, N.; Korsunsky, A. M. [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom); Zhang, S. Y.; Kabra, S.; Kelleher, J. [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX (United Kingdom); Neo, T. K. [Specialist Dental Group, Mount Elizabeth Orchard, 3 Mount Elizabeth, #08-03/08-08/08-10, Singapore 228510 (Singapore)

    2014-08-07

    Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.

  9. Evaluation of elastic constants of materials using the frequency spectrum

    International Nuclear Information System (INIS)

    Silva Neto, Ramiro J. da; Baroni, Douglas B.; Bittencourt, Marcelo de S.Q.

    2015-01-01

    The characterization of materials made with the support of non-destructive techniques has great importance in industrial applications. The ultrasonic techniques are distinguished by good resolution to measure small variations of wave velocities as a result of changes in the character suffered by a particular material. In general these ultrasonic techniques are studied in the time domain, which represents an experimental difficulties when thin materials are analyzed, as well as to attenuate the ultrasonic signal drastically. An ultrasonic technique that uses the frequency domain is used in this study aiming to provide good time measurements to calculate the elastic constants of the first order in an aluminum alloy 6351. With the aid of a statistical approach was possible to have good results of tests performed when compared by a time domain technique already well explored in Ultrasound works produced in the Nuclear Engineering Institute Laboratory (LABUS / IEN) and also presented in most of the package, in good agreement with the theoretical model established in literature and used to validate the experiment, which was found in the results with good approximation. The relevance of this work in the nuclear area is associated with the interest to know the mechanical properties of structural components of the nuclear industry, which is currently studied as a rule, resorting to the computer simulations or previously during the operation of the system. (author)

  10. Evaluation of elastic constants of materials using the frequency spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, Ramiro J. da; Baroni, Douglas B.; Bittencourt, Marcelo de S.Q., E-mail: ramirobd@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Departamento de Materiais Nucleares. Laboratorio de Ultrassom

    2015-07-01

    The characterization of materials made with the support of non-destructive techniques has great importance in industrial applications. The ultrasonic techniques are distinguished by good resolution to measure small variations of wave velocities as a result of changes in the character suffered by a particular material. In general these ultrasonic techniques are studied in the time domain, which represents an experimental difficulties when thin materials are analyzed, as well as to attenuate the ultrasonic signal drastically. An ultrasonic technique that uses the frequency domain is used in this study aiming to provide good time measurements to calculate the elastic constants of the first order in an aluminum alloy 6351. With the aid of a statistical approach was possible to have good results of tests performed when compared by a time domain technique already well explored in Ultrasound works produced in the Nuclear Engineering Institute Laboratory (LABUS / IEN) and also presented in most of the package, in good agreement with the theoretical model established in literature and used to validate the experiment, which was found in the results with good approximation. The relevance of this work in the nuclear area is associated with the interest to know the mechanical properties of structural components of the nuclear industry, which is currently studied as a rule, resorting to the computer simulations or previously during the operation of the system. (author)

  11. Effect of plastic deformation and strain history on X-ray elastic constants

    International Nuclear Information System (INIS)

    Iadicola, Mark A.; Foecke, Tim

    2005-01-01

    The use of X-ray diffraction to measure residual stress in a crystalline material is well known. This method is currently being reapplied to the surface measurement of in situ stresses during biaxial straining of sheet metal specimens. This leads to questions of precision and calibration of the method through plastic deformation. Little is known of the change, with plastic work, in the X-ray elastic constants (XECs) that are required by the technique for stress measurement. Experiments to determine the formability of various materials using this stress measurement technique in conjunction with a typical Marciniak test (with the Raghavan variation of specimen shapes) have been performed assuming a constant value for XECs. New results of calibration experiments are presented which admit the possibility of variation of the XECs with plastic strain history and initial texture of the material. Adjustment of the data from the previously performed formability experiments is shown. Additionally, various phenomena are captured including initial yielding, change of XECs with plastic strain level (both with uniaxial and biaxial strain histories), and some of the effects of texture on the technique. This technique has potential application in verification of the assumptions made during other standard testing methods (in-plane biaxial specimen geometries and bulge testing), verifying stress predictions from finite element analyses (i.e. benchmarking experiments such as BM3), analysis of stress states in localized deformation (yield point effects), and tracking of the effect of prestraining on material formability through the process of multistage forming

  12. Hybrid elastic solids

    KAUST Repository

    Lai, Yun; Wu, Ying; Sheng, Ping; Zhang, Zhaoqing

    2011-01-01

    Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.

  13. Hybrid elastic solids

    KAUST Repository

    Lai, Yun

    2011-06-26

    Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.

  14. Phase-shift parametrization and extraction of asymptotic normalization constants from elastic-scattering data

    Science.gov (United States)

    Ramírez Suárez, O. L.; Sparenberg, J.-M.

    2017-09-01

    We introduce a simplified effective-range function for charged nuclei, related to the modified K matrix but differing from it in several respects. Negative-energy zeros of this function correspond to bound states. Positive-energy zeros correspond to resonances and "echo poles" appearing in elastic-scattering phase-shifts, while its poles correspond to multiple-of-π phase shifts. Padé expansions of this function allow one to parametrize phase shifts on large energy ranges and to calculate resonance and bound-state properties in a very simple way, independently of any potential model. The method is first tested on a d -wave 12C+α potential model. It is shown to lead to a correct estimate of the subthreshold-bound-state asymptotic normalization constant (ANC) starting from the elastic-scattering phase shifts only. Next, the 12C+α experimental p -wave and d -wave phase shifts are analyzed. For the d wave, the relatively large error bars on the phase shifts do not allow one to improve the ANC estimate with respect to existing methods. For the p wave, a value agreeing with the 12C(6Li,d )16O transfer-reaction measurement and with the recent remeasurement of the 16Nβ -delayed α decay is obtained, with improved accuracy. However, the method displays two difficulties: the results are sensitive to the Padé-expansion order and the simplest fits correspond to an imaginary ANC, i.e., to a negative-energy "echo pole," the physical meaning of which is still debatable.

  15. Elastic versus acoustic inversion for marine surveys

    Science.gov (United States)

    Mora, Peter; Wu, Zedong

    2018-04-01

    Full Wavefield Inversion (FWI) is a powerful and elegant approach for seismic imaging that is on the way to becoming the method of choice when processing exploration or global seismic data. In the case of processing marine survey data, one may be tempted to assume acoustic FWI is sufficient given that only pressure waves exist in the water layer. In this paper, we pose the question as to whether or not in theory - at least for a hard water bottom case - it should be possible to resolve the shear modulus or S-wave velocity in a marine setting using large offset data. We therefore conduct numerical experiments with idealized marine data calculated with the elastic wave equation. We study two cases, FWI of data due to a diffractor model, and FWI of data due to a fault model. We find that at least in idealized situation, elastic FWI of hard waterbottom data is capable of resolving between the two Lamé parameters λ and μ. Another numerical experiment with a soft waterbottom layer gives the same result. In contrast, acoustic FWI of the synthetic elastic data results in a single image of the first Lamé parameter λ which contains severe artefacts for diffraction data and noticable artefacts for layer reflection data. Based on these results, it would appear that at least, inversions of large offset marine data should be fully elastic rather than acoustic unless it has been demonstrated that for the specific case in question (offsets, model and water depth, practical issues such as soft sediment attenuation of shear waves or computational time), that an acoustic only inversion provides a reasonably good quality of image comparable to that of an elastic inversion. Further research with real data is required to determine the degree to which practical issues such as shear wave attenuation in soft sediments may affect this result.

  16. Magnetoelastic shear wave propagation in pre-stressed anisotropic media under gravity

    Science.gov (United States)

    Kumari, Nirmala; Chattopadhyay, Amares; Singh, Abhishek K.; Sahu, Sanjeev A.

    2017-03-01

    The present study investigates the propagation of shear wave (horizontally polarized) in two initially stressed heterogeneous anisotropic (magnetoelastic transversely isotropic) layers in the crust overlying a transversely isotropic gravitating semi-infinite medium. Heterogeneities in both the anisotropic layers are caused due to exponential variation (case-I) and linear variation (case-II) in the elastic constants with respect to the space variable pointing positively downwards. The dispersion relations have been established in closed form using Whittaker's asymptotic expansion and were found to be in the well-agreement to the classical Love wave equations. The substantial effects of magnetoelastic coupling parameters, heterogeneity parameters, horizontal compressive initial stresses, Biot's gravity parameter, and wave number on the phase velocity of shear waves have been computed and depicted by means of a graph. As a special case, dispersion equations have been deduced when the two layers and half-space are isotropic and homogeneous. The comparative study for both cases of heterogeneity of the layers has been performed and also depicted by means of graphical illustrations.

  17. First-principles study on the elastic properties of B′ and Q phase in Al-Mg-Si (-Cu) alloys

    International Nuclear Information System (INIS)

    Pan, Rong-Kai; Ma Li; Bian Nan; Wang Minghui; Li Pengbo; Tang Biyu; Peng Liming; Ding Wenjiang

    2013-01-01

    First-principles calculations within the density functional theory have been carried out to study the structural, elastic and electronic properties of B′ and Q phases in Al-Mg-Si (-Cu) alloys. The obtained lattice constant a is reduced while c is increased with the addition of Cu into B′ phase Al 3 Mg 9 Si 7 . The lower formation enthalpy of Q phase Al 3 Cu 2 Mg 9 Si 7 shows that the structural stability is improved after the addition of Cu into the B′ phase. The calculated elastic constants C ij with the exception of C 13 for Q phase are larger than for B′ phase. In addition, the derived bulk, shear, Young's modulus and Debye temperature except Poisson's ratio are also significantly increased with Cu addition, indicating that Q phase has a favorable improvement of hardness. The elastic anisotropies of the two phases are discussed in detail using several criteria, showing that the anisotropy degree of B′ phase is larger than of Q phase. The electronic structures show that the two phases possess a mixed bonding character of covalent and ionic, and Cu-Si bonding is beneficial in stabilizing the Q phase due to the hybridization of Cu 3d and Si 3p orbits.

  18. Multi-scale imaging and elastic simulation of carbonates

    Science.gov (United States)

    Faisal, Titly Farhana; Awedalkarim, Ahmed; Jouini, Mohamed Soufiane; Jouiad, Mustapha; Chevalier, Sylvie; Sassi, Mohamed

    2016-05-01

    Digital Rock Physics (DRP) is an emerging technology that can be used to generate high quality, fast and cost effective special core analysis (SCAL) properties compared to conventional experimental techniques and modeling techniques. The primary workflow of DRP conssits of three elements: 1) image the rock sample using high resolution 3D scanning techniques (e.g. micro CT, FIB/SEM), 2) process and digitize the images by segmenting the pore and matrix phases 3) simulate the desired physical properties of the rocks such as elastic moduli and velocities of wave propagation. A Finite Element Method based algorithm, that discretizes the basic Hooke's Law equation of linear elasticity and solves it numerically using a fast conjugate gradient solver, developed by Garboczi and Day [1] is used for mechanical and elastic property simulations. This elastic algorithm works directly on the digital images by treating each pixel as an element. The images are assumed to have periodic constant-strain boundary condition. The bulk and shear moduli of the different phases are required inputs. For standard 1.5" diameter cores however the Micro-CT scanning reoslution (around 40 μm) does not reveal smaller micro- and nano- pores beyond the resolution. This results in an unresolved "microporous" phase, the moduli of which is uncertain. Knackstedt et al. [2] assigned effective elastic moduli to the microporous phase based on self-consistent theory (which gives good estimation of velocities for well cemented granular media). Jouini et al. [3] segmented the core plug CT scan image into three phases and assumed that micro porous phase is represented by a sub-extracted micro plug (which too was scanned using Micro-CT). Currently the elastic numerical simulations based on CT-images alone largely overpredict the bulk, shear and Young's modulus when compared to laboratory acoustic tests of the same rocks. For greater accuracy of numerical simulation prediction, better estimates of moduli inputs

  19. Faraday wave lattice as an elastic metamaterial.

    Science.gov (United States)

    Domino, L; Tarpin, M; Patinet, S; Eddi, A

    2016-05-01

    Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.

  20. Elastic and optical behaviour of some europium monochalcogenides

    International Nuclear Information System (INIS)

    Islam, A.K.M.A.; Shahdatullah, M.S.

    1994-11-01

    A study of the elastic and optical properties of some Eu-monochalcogenides with NaCl structure has been carried out in this paper. Various anharmonic properties e.g. thermal expansion, third order elastic constants, Grueneisen parameter, and the pressure and temperature derivatives of second order elastic constants of EuS and EuO are also studied. A comparison of the calculated elastic and dielectric properties with the available experimental results and other theoretical estimates gives an indication of the applicability of the methods applied. (author). 49 refs, 3 figs, 3 tabs

  1. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity.

    Science.gov (United States)

    Liu, Yu; Liu, Jingfei; Fite, Brett Z; Foiret, Josquin; Ilovitsh, Asaf; Leach, J Kent; Dumont, Erik; Caskey, Charles F; Ferrara, Katherine W

    2017-05-21

    Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such 'supersonic' excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear

  2. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity

    Science.gov (United States)

    Liu, Yu; Liu, Jingfei; Fite, Brett Z.; Foiret, Josquin; Ilovitsh, Asaf; Leach, J. Kent; Dumont, Erik; Caskey, Charles F.; Ferrara, Katherine W.

    2017-05-01

    Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such ‘supersonic’ excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear

  3. Bounds and self-consistent estimates for elastic constants of polycrystals composed of orthorhombics or crystals with higher symmetries.

    Science.gov (United States)

    Berryman, James G

    2011-04-01

    Methods for computing Hashin-Shtrikman bounds and related self-consistent estimates of elastic constants for polycrystals composed of crystals having orthorhombic symmetry have been known for about three decades. However, these methods are underutilized, perhaps because of some perceived difficulties with implementing the necessary computational procedures. Several simplifications of these techniques are introduced, thereby reducing the overall computational burden, as well as the complications inherent in mapping out the Hashin-Shtrikman bounding curves. The self-consistent estimates of the effective elastic constants are very robust, involving a quickly converging iteration procedure. Once these self-consistent values are known, they may then be used to speed up the computations of the Hashin-Shtrikman bounds themselves. It is shown furthermore that the resulting orthorhombic polycrystal code can be used as well to compute both bounds and self-consistent estimates for polycrystals of higher-symmetry tetragonal, hexagonal, and cubic (but not trigonal) materials. The self-consistent results found this way are shown to be the same as those obtained using the earlier methods, specifically those methods designed specially for each individual symmetry type. But the Hashin-Shtrikman bounds found using the orthorhombic code are either the same or (more typically) tighter than those found previously for these special cases (i.e., tetragonal, hexagonal, and cubic). The improvement in the Hashin-Shtrikman bounds is presumably due to the additional degrees of freedom introduced into the available search space.

  4. Applying a Bayesian Approach to Identification of Orthotropic Elastic Constants from Full Field Displacement Measurements

    Directory of Open Access Journals (Sweden)

    Le Riche R.

    2010-06-01

    Full Text Available A major challenge in the identification of material properties is handling different sources of uncertainty in the experiment and the modelling of the experiment for estimating the resulting uncertainty in the identified properties. Numerous improvements in identification methods have provided increasingly accurate estimates of various material properties. However, characterizing the uncertainty in the identified properties is still relatively crude. Different material properties obtained from a single test are not obtained with the same confidence. Typically the highest uncertainty is associated with respect to properties to which the experiment is the most insensitive. In addition, the uncertainty in different properties can be strongly correlated, so that obtaining only variance estimates may be misleading. A possible approach for handling the different sources of uncertainty and estimating the uncertainty in the identified properties is the Bayesian method. This method was introduced in the late 1970s in the context of identification [1] and has been applied since to different problems, notably identification of elastic constants from plate vibration experiments [2]-[4]. The applications of the method to these classical pointwise tests involved only a small number of measurements (typically ten natural frequencies in the previously cited vibration test which facilitated the application of the Bayesian approach. For identifying elastic constants, full field strain or displacement measurements provide a high number of measured quantities (one measurement per image pixel and hence a promise of smaller uncertainties in the properties. However, the high number of measurements represents also a major computational challenge in applying the Bayesian approach to full field measurements. To address this challenge we propose an approach based on the proper orthogonal decomposition (POD of the full fields in order to drastically reduce their

  5. Applying a Bayesian Approach to Identification of Orthotropic Elastic Constants from Full Field Displacement Measurements

    Science.gov (United States)

    Gogu, C.; Yin, W.; Haftka, R.; Ifju, P.; Molimard, J.; Le Riche, R.; Vautrin, A.

    2010-06-01

    A major challenge in the identification of material properties is handling different sources of uncertainty in the experiment and the modelling of the experiment for estimating the resulting uncertainty in the identified properties. Numerous improvements in identification methods have provided increasingly accurate estimates of various material properties. However, characterizing the uncertainty in the identified properties is still relatively crude. Different material properties obtained from a single test are not obtained with the same confidence. Typically the highest uncertainty is associated with respect to properties to which the experiment is the most insensitive. In addition, the uncertainty in different properties can be strongly correlated, so that obtaining only variance estimates may be misleading. A possible approach for handling the different sources of uncertainty and estimating the uncertainty in the identified properties is the Bayesian method. This method was introduced in the late 1970s in the context of identification [1] and has been applied since to different problems, notably identification of elastic constants from plate vibration experiments [2]-[4]. The applications of the method to these classical pointwise tests involved only a small number of measurements (typically ten natural frequencies in the previously cited vibration test) which facilitated the application of the Bayesian approach. For identifying elastic constants, full field strain or displacement measurements provide a high number of measured quantities (one measurement per image pixel) and hence a promise of smaller uncertainties in the properties. However, the high number of measurements represents also a major computational challenge in applying the Bayesian approach to full field measurements. To address this challenge we propose an approach based on the proper orthogonal decomposition (POD) of the full fields in order to drastically reduce their dimensionality. POD is

  6. Shear banding, discontinuous shear thickening, and rheological phase transitions in athermally sheared frictionless disks

    Science.gov (United States)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2017-05-01

    We report on numerical simulations of simple models of athermal, bidisperse, soft-core, massive disks in two dimensions, as a function of packing fraction ϕ , inelasticity of collisions as measured by a parameter Q , and applied uniform shear strain rate γ ˙. Our particles have contact interactions consisting of normally directed elastic repulsion and viscous dissipation, as well as tangentially directed viscous dissipation, but no interparticle Coulombic friction. Mapping the phase diagram in the (ϕ ,Q ) plane for small γ ˙, we find a sharp first-order rheological phase transition from a region with Bagnoldian rheology to a region with Newtonian rheology, and show that the system is always Newtonian at jamming. We consider the rotational motion of particles and demonstrate the crucial importance that the coupling between rotational and translational degrees of freedom has on the phase structure at small Q (strongly inelastic collisions). At small Q , we show that, upon increasing γ ˙, the sharp Bagnoldian-to-Newtonian transition becomes a coexistence region of finite width in the (ϕ ,γ ˙) plane, with coexisting Bagnoldian and Newtonian shear bands. Crossing this coexistence region by increasing γ ˙ at fixed ϕ , we find that discontinuous shear thickening can result if γ ˙ is varied too rapidly for the system to relax to the shear-banded steady state corresponding to the instantaneous value of γ ˙.

  7. Surface phonons and elastic surface waves

    Science.gov (United States)

    Büscher, H.; Klein-Heßling, W.; Ludwig, W.

    Theoretical investigations on the dynamics of the (001), (110) and (111) surfaces of some cubic metals (Ag, Cu, Ni) will be reviewed. Both, lattice dynamical and continuum theoretical results are obtained via a Green's function formalism. The main attitude of this paper is the comparison of our results with experiments and with results obtained via slab-calculations. The calculation of elastic surface waves has been performed using a modified surface-green-function-matching method. We have used two different approaches of calculation the bulk Green's function (a) using the spectral representation and (b) a method, what works on residues. The investigations are carried out using shortrange phenomenological potentials. The atomic force constants in the first surface layers are modified to describe surface phonon anomalies, observed by experiments. In the case of Ag (100) and Ag(110) we conclude that the detection of odd symmetry shear modes by Erskine et al. [1 a, b] was not very accurate.

  8. Surface phonons and elastic surface waves

    International Nuclear Information System (INIS)

    Buescher, H.; Klein-Hessling, W.; Ludwig, W.

    1993-01-01

    Theoretical investigations on the dynamics of the (001), (110) and (111) surfaces of some cubic metals (Ag, Cu, Ni) will be reviewed. Both, lattice dynamical and continuum theoretical results are obtained via a Green's function formalism. The main attitude of this paper is the comparison of our results with experiments and with results obtained via slab-calculations. The calculation of elastic surface waves has been performed using a modified surface-green-function-matching method. We have used two different approaches of calculation the bulk Green's function (a) using the spectral representation and (b) a method, what works on residues. The investigations are carried out using shortrange phenomenological potentials. The atomic force constants in the first surface layers are modified to describe surface phonon anomalies, observed by experiments. In the case of Ag(100) and Ag(110) we conclude that the detection of odd symmetry shear modes by Erskine et al. was not very accurate. (orig.)

  9. A comparative numerical analysis of linear and nonlinear aerodynamic sound generation by vortex disturbances in homentropic constant shear flows

    International Nuclear Information System (INIS)

    Hau, Jan-Niklas; Oberlack, Martin; Chagelishvili, George; Khujadze, George; Tevzadze, Alexander

    2015-01-01

    Aerodynamic sound generation in shear flows is investigated in the light of the breakthrough in hydrodynamics stability theory in the 1990s, where generic phenomena of non-normal shear flow systems were understood. By applying the thereby emerged short-time/non-modal approach, the sole linear mechanism of wave generation by vortices in shear flows was captured [G. D. Chagelishvili, A. Tevzadze, G. Bodo, and S. S. Moiseev, “Linear mechanism of wave emergence from vortices in smooth shear flows,” Phys. Rev. Lett. 79, 3178-3181 (1997); B. F. Farrell and P. J. Ioannou, “Transient and asymptotic growth of two-dimensional perturbations in viscous compressible shear flow,” Phys. Fluids 12, 3021-3028 (2000); N. A. Bakas, “Mechanism underlying transient growth of planar perturbations in unbounded compressible shear flow,” J. Fluid Mech. 639, 479-507 (2009); and G. Favraud and V. Pagneux, “Superadiabatic evolution of acoustic and vorticity perturbations in Couette flow,” Phys. Rev. E 89, 033012 (2014)]. Its source is the non-normality induced linear mode-coupling, which becomes efficient at moderate Mach numbers that is defined for each perturbation harmonic as the ratio of the shear rate to its characteristic frequency. Based on the results by the non-modal approach, we investigate a two-dimensional homentropic constant shear flow and focus on the dynamical characteristics in the wavenumber plane. This allows to separate from each other the participants of the dynamical processes — vortex and wave modes — and to estimate the efficacy of the process of linear wave-generation. This process is analyzed and visualized on the example of a packet of vortex modes, localized in both, spectral and physical, planes. Further, by employing direct numerical simulations, the wave generation by chaotically distributed vortex modes is analyzed and the involved linear and nonlinear processes are identified. The generated acoustic field is anisotropic in the wavenumber

  10. Influence of temperature on elastic properties of caesium cyanide

    International Nuclear Information System (INIS)

    Singh, Preeti; Gaur, N.K.; Singh, R.K.

    2007-01-01

    An extended three body force shell model (ETSM), which incorporates the effects of translational-rotational (TR) coupling, three body interactions (TBI) and anharmonicity, has been applied to investigate the temperature dependence of the second order elastic constants (c ij , i,j=1,2) of CsCN. The elastic constant c 44 obtained by us shows an anomalous behaviour with the variation of temperature. The variations of elastic constants (c 11 , c 12 , c 44 ) with temperature are almost in excellent agreement with Brillouin scattering measured data. We have also evaluated the temperature variations of the third order elastic constants (c ijk ) and the pressure derivatives of the c ij in the CsCN material. However, their values could not be compared due to lack of experimental data. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Temperature dependence of elastic properties of paratellurite

    International Nuclear Information System (INIS)

    Silvestrova, I.M.; Pisarevskii, Y.V.; Senyushenkov, P.A.; Krupny, A.I.

    1987-01-01

    New data are presented on the temperature dependence of the elastic wave velocities, elastic stiffness constants, and thermal expansion of paratellurite. It is shown that the external pressure appreciably influences the elastic properties of TeO 2 , especially the temperature dependence of the elastic modulus connected with the crystal soft mode. (author)

  12. Theory of the mechanical response of focal adhesions to shear flow

    International Nuclear Information System (INIS)

    Biton, Y Y; Safran, S A

    2010-01-01

    The response of cells to shear flow is primarily determined by the asymmetry of the external forces and moments that are sensed by each member of a focal adhesion pair connected by a contractile stress fiber. In the theory presented here, we suggest a physical model in which each member of such a pair of focal adhesions is treated as an elastic body subject to both a myosin-activated contractile force and the shear stress induced by the external flow. The elastic response of a focal adhesion complex is much faster than the active cellular processes that determine the size of the associated focal adhesions and the direction of the complex relative to the imposed flow. Therefore, the complex attains its mechanical equilibrium configuration which may change because of the cellular activity. Our theory is based on the experimental observation that focal adhesions modulate their cross-sectional area in order to attain an optimal shear. Using this assumption, our elastic model shows that such a complex can passively change its orientation to align parallel to the direction of the flow.

  13. Comb-push ultrasound shear elastography of breast masses: initial results show promise.

    Science.gov (United States)

    Denis, Max; Mehrmohammadi, Mohammad; Song, Pengfei; Meixner, Duane D; Fazzio, Robert T; Pruthi, Sandhya; Whaley, Dana H; Chen, Shigao; Fatemi, Mostafa; Alizad, Azra

    2015-01-01

    To evaluate the performance of Comb-push Ultrasound Shear Elastography (CUSE) for classification of breast masses. CUSE is an ultrasound-based quantitative two-dimensional shear wave elasticity imaging technique, which utilizes multiple laterally distributed acoustic radiation force (ARF) beams to simultaneously excite the tissue and induce shear waves. Female patients who were categorized as having suspicious breast masses underwent CUSE evaluations prior to biopsy. An elasticity estimate within the breast mass was obtained from the CUSE shear wave speed map. Elasticity estimates of various types of benign and malignant masses were compared with biopsy results. Fifty-four female patients with suspicious breast masses from our ongoing study are presented. Our cohort included 31 malignant and 23 benign breast masses. Our results indicate that the mean shear wave speed was significantly higher in malignant masses (6 ± 1.58 m/s) in comparison to benign masses (3.65 ± 1.36 m/s). Therefore, the stiffness of the mass quantified by the Young's modulus is significantly higher in malignant masses. According to the receiver operating characteristic curve (ROC), the optimal cut-off value of 83 kPa yields 87.10% sensitivity, 82.61% specificity, and 0.88 for the area under the curve (AUC). CUSE has the potential for clinical utility as a quantitative diagnostic imaging tool adjunct to B-mode ultrasound for differentiation of malignant and benign breast masses.

  14. A method for determination of X-ray elastic constants of materials showing non-linear sin2ψ diagrams and its application to Zn-Ni-alloy electroplate

    International Nuclear Information System (INIS)

    Sasaki, Toshihiko; Kuramoto, Makoto; Yoshioka, Yasuo.

    1990-01-01

    This paper describes the method and the experiment for the determination of the x-ray elastic constants of Zn-Ni-alloy electroplate. For this material, the sin 2 ψ method is not adequate to use because this material shows severely curved sin 2 ψ diagrams. Therefore, a new method developed by the authors was explained first. This new method is effective for materials showing nonlinear sin 2 ψ diagrams. Secondly, the experiment was made on the application of this method to the Zn-Ni-alloy electroplate. And it was found out that the experimental data agreed well to the theory of this method. As a result, the following values were obtained as the x-ray elastic constants of the sample measured: (1+ν)/E=8.44 TPa -1 ν/E=2.02 TPa -1 (author)

  15. Structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 phases from first-principles calculations

    Science.gov (United States)

    Li, X. D.; Li, K.; Wei, C. H.; Han, W. D.; Zhou, N. G.

    2018-06-01

    The structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 are systematically investigated by using first-principles calculations method based on density functional theory (DFT). The calculated formation enthalpies and cohesive energies show that CaSi2 possesses the greatest structural stability and CaSi has the strongest alloying ability. The structural stability of the three phases is compared according to electronic structures. Further analysis on electronic structures indicates that the bonding of these phases exhibits the combinations of metallic, covalent, and ionic bonds. The elastic constants are calculated, and the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor of polycrystalline materials are deduced. Additionally, the thermodynamic properties were theoretically predicted and discussed.

  16. Static friction in elastic adhesive MEMS contacts, models and experiment

    NARCIS (Netherlands)

    Tas, Niels Roelof; Gui, C.; Elwenspoek, Michael Curt

    2000-01-01

    Static friction in shearing mode can be expressed as the product of the shear strength of the interface and the real contact area. The influence of roughness on friction in elastic adhesive contact is analyzed. Special attention is paid to low loading conditions, in which the number of contact

  17. Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics

    Science.gov (United States)

    Motsepa, Tanki; Aziz, Taha; Fatima, Aeeman; Khalique, Chaudry Masood

    2018-03-01

    The optimal investment-consumption problem under the constant elasticity of variance (CEV) model is investigated from the perspective of Lie group analysis. The Lie symmetry group of the evolution partial differential equation describing the CEV model is derived. The Lie point symmetries are then used to obtain an exact solution of the governing model satisfying a standard terminal condition. Finally, we construct conservation laws of the underlying equation using the general theorem on conservation laws.

  18. Zirconium elasticity modules

    International Nuclear Information System (INIS)

    Vavra, G.

    1978-01-01

    Considered are the limit and the intermediate values of the Young modulus E, modulus of shear G and of linear modulus of compression K obtainable at various temperatures (4.2 to 1133 K) for single crystals of α-zirconium. Determined and presented are the corrected isotropic elasticity characteristics of E, G, K over the above range of temperatures of textured and non-textured α-Zr

  19. Nonlinear Elasticity of Borocarbide Superconductor YNi2B2C: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Lili Liu

    2017-01-01

    Full Text Available First-principles calculations combined with homogeneous deformation methods are used to investigate the second- and third-order elastic constants of YNi2B2C with tetragonal structure. The predicted lattice constants and second-order elastic constants of YNi2B2C agree well with the available data. The effective second-order elastic constants are obtained from the second- and third-order elastic constants for YNi2B2C. Based on the effective second-order elastic constants, Pugh’s modulus ratio, Poisson’s ratio, and Vickers hardness of YNi2B2C under high pressure are further investigated. It is shown that the ductility of YNi2B2C increases with increasing pressure.

  20. an elasticity solution for simply suported rectangular plates

    African Journals Online (AJOL)

    MIS

    1983-09-01

    Sep 1, 1983 ... σx, σy, σz. = direct stresses ξxy, ξxz, ξyz. = shear stresses εy, εy, εz. = direct strains rxy, rxz ryz. = shear strains μ. = Poisson's ratio α = rm /Pb. = nπ/2b. R = 2 ... based on Donnell's5 thick plate theory are examined. 2. BASIC EQUATIONS. The general solution of the equations of elasticity can be expressed in.

  1. Pressure effect on the structural, elastic, electronic and optical properties of the Zintl phase KAsSn, first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Guechi, A., E-mail: ab_guechi@yahoo.fr [Institute of Optics and Precision Mechanics, Setif-1 University, 19000 Setif (Algeria); Laboratory of Optoelectronics and Components, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria); Merabet, A. [Institute of Optics and Precision Mechanics, Setif-1 University, 19000 Setif (Algeria); Laboratory of Physics and Mechanics of Metallic Materials, Setif-1 University, 19000 Setif (Algeria); Chegaar, M. [Laboratory of Optoelectronics and Components, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria); Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Guechi, N. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria)

    2015-02-25

    Highlights: • KAsSn is interesting in the materials community due to its complex structure and narrow gap. • Physical properties of KAsSn have not taken much attention in previous studies. • The KAsSn structure is shown to be mechanically stable. • KAsSn is predicted to be brittleness and characterized by a weak elastic anisotropy. • Its high absorption in the U.V. energy range shows its use in the optoelectronic devices. - Abstract: In this work, a first-principles study of ternary Zintl phase KAsSn compound using density-functional theory (DFT) method within the generalized gradient approximation developed by Wu–Cohen (GGA-Wc) has been performed. Based on the optimized structural parameter, the electronic structure, elastic and optical properties have been investigated. The calculated lattice constants agree reasonably with the previous results. The effect of high pressure on the structural parameters has been shown. The elastic constants were calculated and satisfy the stability conditions for hexagonal crystal. These indicate that this compound is stable in the studied pressure regime. The single crystal elastic constants (C{sub ij}) and related properties are calculated using the static finite strain technique, moreover the polycrystalline elastic moduli such as bulk modulus, shear modulus, micro-hardness parameter H{sub ν}, Young’s modulus and Poisson’s ratio were estimated using Voigt, Reuss and Hill’s (VRH) approximations. The elastic anisotropy of the KAsSn was also analyzed. On another hand the Debye temperature was obtained from the average sound velocity. Electronic properties have been studied throughout the calculation of band structure, density of states and charge densities. It is shown that this crystal belongs to the semiconductors with a pseudo gap of about 0.34 eV. Furthermore, in order to clarify the optical transitions of this compound, linear optical functions including the complex dielectric function, refractive index

  2. First-principles study of the structural and elastic properties of AuxV1-x and AuxNb1-x alloys

    Science.gov (United States)

    Al-Zoubi, N.

    2018-04-01

    Ab initio total energy calculations, based on the Exact Muffin-Tin Orbitals (EMTO) method in combination with the coherent potential approximation (CPA), are used to calculate the total energy of AuxV1-x and AuxNb1-x random alloys along the Bain path that connects the body-centred cubic (bcc) and face-centred cubic (fcc) structures as a function of composition x (0 ≤ x ≤ 1). The equilibrium Wigner-Seitz radius and the elastic properties of both systems are determined as a function of composition. Our theoretical prediction in case of pure elements (x = 0 or x = 1) are in good agreement with the available experimental data. For the Au-V system, the equilibrium Wigner-Seitz radius increase as x increases, while for the Au-Nb system, the equilibrium Wigner-Seitz radius is almost constant. The bulk modulus B and C44 for both alloys exhibit nearly parabolic trend. On the other hand, the tetragonal shear elastic constant C‧ decreases as x increases and correlates reasonably well with the structural energy difference between fcc and bcc structures. Our results offer a consistent starting point for further theoretical and experimental studies of the elastic and micromechanical properties of Au-V and Au-Nb systems.

  3. Effect of elastic constants of liquid crystals in their electro-optical properties

    Science.gov (United States)

    Parang, Z.; Ghaffary, T.; Gharahbeigi, M. M.

    Recently following the success of the density functional theory (DFT) in obtaining the structure and thermodynamics of homogeneous and inhomogeneous classical systems such as simple fluids, dipolar fluid and binary hard spheres, this theory was also applied to obtain the density profile of a molecular fluid in between hard planar walls by Kalpaxis and Rickayzen. In the theory of molecular fluids, the direct correlation function (DCF) can be used to calculate the equation of state, free energy, phase transition, elastic constants, etc. It is well known that the hard core molecular models play an important role in understanding complex liquids such as liquid crystals. In this paper, a classical fluid of nonspherical molecules is studied. The required homogeneous (DCF) is obtained by solving Orenstein-Zernike (OZ) integral equation numerically. Some of the molecules in the liquid crystals have a sphere shape and this kind of molecular fluid is considered here. The DCF sphere of the molecular fluid is calculated and it will be shown that the results are in good agreement with the pervious works and the results of computer simulation. Finally the electro-optical properties of ellipsoid liquid crystal using DCF of these molecules are calculated.

  4. Two-dimensional Shear Wave Elastography on Conventional Ultrasound Scanners with Time Aligned Sequential Tracking (TAST) and Comb-push Ultrasound Shear Elastography (CUSE)

    Science.gov (United States)

    Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao

    2014-01-01

    Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2D shear wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a Time Aligned Sequential Tracking (TAST) method for shear wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high PRF shear wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The Comb-push Ultrasound Shear Elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave signal-to-noise-ratio (SNR) and facilitate robust reconstructions of 2D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner (the General Electric LOGIQ E9). A phantom study showed that the shear wave speed measurements from the LOGIQ E9 were in good agreement to the values measured from other 2D shear wave imaging technologies. An inclusion phantom study showed that the LOGIQ E9 had comparable performance to the Aixplorer (Supersonic Imagine) in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the LOGIQ E9 for in vivo 2D shear wave

  5. Vesicle dynamics in shear and capillary flows

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-01-01

    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape

  6. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    Science.gov (United States)

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  7. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    International Nuclear Information System (INIS)

    Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A.

    2015-01-01

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y 3 Al 5 O 12 are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet is mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y 3 Al 5 O 12 and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa

  8. Collusion and the elasticity of demand

    OpenAIRE

    David Collie

    2004-01-01

    The analysis of collusion in infinitely repeated Cournot oligopoly games has generally assumed that demand is linear, but this note uses constant-elasticity demand functions to investigate how the elasticity of demand affects the sustainability of collusion.

  9. Third-order elastic moduli for alkali-halide crystals possessing the sodium chloride structure

    International Nuclear Information System (INIS)

    Ray, U.

    2010-01-01

    The values of third-order elastic moduli for alkali halides, having NaCl-type crystal structure are calculated according to the Born-Mayer potential model, considering the repulsive interactions up to the second nearest neighbours and calculating the values of the potential parameters for each crystal, independently, from the compressibility data. This work presents the first published account of the calculation of the third-order elastic moduli taking the actual value of the potential parameter unlike the earlier works. Third-order elastic constants have been computed for alkali halides at 0 and 300 K. The results of the third-order elastic constants are compared with the available experimental and theoretical data. Very good agreement between experimental and theoretical third-order elastic constant data (except C 123 ) is found. We have also computed the values of the pressure derivatives of second-order elastic constants and Anderson-Grueneisen parameter for alkali halides, which agree reasonably well with the experimental values, indicating the satisfactory nature of our computed data for third-order elastic constants.

  10. Comparison of the surface wave method and the indentation method for measuring the elasticity of gelatin phantoms of different concentrations.

    Science.gov (United States)

    Zhang, Xiaoming; Qiang, Bo; Greenleaf, James

    2011-02-01

    The speed of the surface Rayleigh wave, which is related to the viscoelastic properties of the medium, can be measured by noninvasive and noncontact methods. This technique has been applied in biomedical applications such as detecting skin diseases. Static spherical indentation, which quantifies material elasticity through the relationship between loading force and displacement, has been applied in various areas including a number of biomedical applications. This paper compares the results obtained from these two methods on five gelatin phantoms of different concentrations (5%, 7.5%, 10%, 12.5% and 15%). The concentrations are chosen because the elasticity of such gelatin phantoms is close to that of tissue types such as skin. The results show that both the surface wave method and the static spherical indentation method produce the same values for shear elasticity. For example, the shear elasticities measured by the surface wave method are 1.51, 2.75, 5.34, 6.90 and 8.40kPa on the five phantoms, respectively. In addition, by studying the dispersion curve of the surface wave speed, shear viscosity can be extracted. The measured shear viscosities are 0.00, 0.00, 0.13, 0.39 and 1.22Pa.s on the five phantoms, respectively. The results also show that the shear elasticity of the gelatin phantoms increases linearly with their prepared concentrations. The linear regressions between concentration and shear elasticity have R(2) values larger than 0.98 for both methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Bounds and self-consistent estimates for elastic constants of granular polycrystals composed of orthorhombics or crystal with higher symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J. G.

    2011-02-01

    Methods for computing Hashin-Shtrikman bounds and related self-consistent estimates of elastic constants for polycrystals composed of crystals having orthorhombic symmetry have been known for about three decades. However, these methods are underutilized, perhaps because of some perceived difficulties with implementing the necessary computational procedures. Several simplifications of these techniques are introduced, thereby reducing the overall computational burden, as well as the complications inherent in mapping out the Hashin-Shtrikman bounding curves. The self-consistent estimates of the effective elastic constants are very robust, involving a quickly converging iteration procedure. Once these self-consistent values are known, they may then be used to speed up the computations of the Hashin-Shtrikman bounds themselves. It is shown furthermore that the resulting orthorhombic polycrystal code can be used as well to compute both bounds and self-consistent estimates for polycrystals of higher-symmetry tetragonal, hexagonal, and cubic (but not trigonal) materials. The self-consistent results found this way are shown to be the same as those obtained using the earlier methods, specifically those methods designed specially for each individual symmetry type. But the Hashin-Shtrikman bounds found using the orthorhombic code are either the same or (more typically) tighter than those found previously for these special cases (i.e., tetragonal, hexagonal, and cubic). The improvement in the Hashin-Shtrikman bounds is presumably due to the additional degrees of freedom introduced into the available search space.

  12. Crystal structure and elasticity of Al-bearing phase H under high pressure

    Directory of Open Access Journals (Sweden)

    Guiping Liu

    2018-05-01

    Full Text Available Al has significant effect on properties of minerals. We reported crystal structure and elasticity of phase H, an important potential water reservoir in the mantle, which contains different Al using first principles simulations for understanding the effect of Al on the phase H. The crystal and elastic properties of Al end-member phase H (Al2O4H2 are very different from Mg end-member (MgSiO4H2 phase H and two aluminous phase H (Mg0.875Si0.875Al0.25O4H2 (12.5at%Al and Mg0.75Si0.75Al0.5O4H2 (25at% Al. However differences between Mg end-member phase H and aluminous phase H are slight except for the O-H bond length and octahedron volume. Al located at different crystal positions (original Mg or Si position of aluminous phase H has different AlO6 octahedral volumes. For three Al-bearing phase H, bulk modulus (K, shear modulus (G, compressional wave velocity (Vp and shear wave velocity (Vs increase with increasing Al content. Under high pressure, density of phase H increases with increasing Al content. The Al content affects the symmetry of the phase H and then affects the density and elastic constants of phase H. The total ground energy of phase H also increases with increasing Al content. So an energy barrier for the formation of solid solution of phase H with δ-phase AlOOH is expected. However, if the phase H with δ-phase AlOOH solid solution does exit in the mantle, it may become an important component of the mantle or leads to a low velocity layer at the mantle.

  13. Dynamic response of beams on elastic foundations to impact loading

    International Nuclear Information System (INIS)

    Prasad, B.B.; Sinha, B.P.

    1987-01-01

    The beam considered is a Timoshenko beam in which the effects of rotatory inertia and shear deformations are included and the foundation model consists of Winkler-Zimmermann type having Hookean linear elastic springs. The analysis is very useful for predicting the dynamic response of structural components of aircraft or nuclear reactors or even runways if that component may be mathematically idealized as a beam on elastic foundation. The effect of rotatory inertia and shear deformation is very much pronounced and hence should not be neglected in solving such impact problems. In general the effect of foundation modulus is to further increase the values of frequencies of vibrations. (orig./HP)

  14. Elastic versus acoustic inversion for marine surveys

    KAUST Repository

    Mora, Peter

    2018-04-24

    Full Wavefield Inversion (FWI) is a powerful and elegant approach for seismic imaging that is on the way to becoming the method of choice when processing exploration or global seismic data. In the case of processing marine survey data, one may be tempted to assume acoustic FWI is sufficient given that only pressure waves exist in the water layer. In this paper, we pose the question as to whether or not in theory – at least for a hard water bottom case – it should be possible to resolve the shear modulus or S-wave velocity in a marine setting using large offset data. We therefore conduct numerical experiments with idealized marine data calculated with the elastic wave equation. We study two cases, FWI of data due to a diffractor model, and FWI of data due to a fault model. We find that at least in idealized situation, elastic FWI of hard waterbottom data is capable of resolving between the two Lamé parameters λ and μ. Another numerical experiment with a soft waterbottom layer gives the same result. In contrast, acoustic FWI of the synthetic elastic data results in a single image of the first Lamé parameter λ which contains severe artefacts for diffraction data and noticable artefacts for layer reflection data. Based on these results, it would appear that at least, inversions of large offset marine data should be fully elastic rather than acoustic unless it has been demonstrated that for the specific case in question (offsets, model and water depth, practical issues such as soft sediment attenuation of shear waves or computational time), that an acoustic only inversion provides a reasonably good quality of image comparable to that of an elastic inversion. Further research with real data is required to determine the degree to which practical issues such as shear wave attenuation in soft sediments may affect this result.

  15. Comb-push ultrasound shear elastography of breast masses: initial results show promise.

    Directory of Open Access Journals (Sweden)

    Max Denis

    Full Text Available To evaluate the performance of Comb-push Ultrasound Shear Elastography (CUSE for classification of breast masses.CUSE is an ultrasound-based quantitative two-dimensional shear wave elasticity imaging technique, which utilizes multiple laterally distributed acoustic radiation force (ARF beams to simultaneously excite the tissue and induce shear waves. Female patients who were categorized as having suspicious breast masses underwent CUSE evaluations prior to biopsy. An elasticity estimate within the breast mass was obtained from the CUSE shear wave speed map. Elasticity estimates of various types of benign and malignant masses were compared with biopsy results.Fifty-four female patients with suspicious breast masses from our ongoing study are presented. Our cohort included 31 malignant and 23 benign breast masses. Our results indicate that the mean shear wave speed was significantly higher in malignant masses (6 ± 1.58 m/s in comparison to benign masses (3.65 ± 1.36 m/s. Therefore, the stiffness of the mass quantified by the Young's modulus is significantly higher in malignant masses. According to the receiver operating characteristic curve (ROC, the optimal cut-off value of 83 kPa yields 87.10% sensitivity, 82.61% specificity, and 0.88 for the area under the curve (AUC.CUSE has the potential for clinical utility as a quantitative diagnostic imaging tool adjunct to B-mode ultrasound for differentiation of malignant and benign breast masses.

  16. Quantitative shear wave ultrasound elastography: initial experience in solid breast masses.

    Science.gov (United States)

    Evans, Andrew; Whelehan, Patsy; Thomson, Kim; McLean, Denis; Brauer, Katrin; Purdie, Colin; Jordan, Lee; Baker, Lee; Thompson, Alastair

    2010-01-01

    Shear wave elastography is a new method of obtaining quantitative tissue elasticity data during breast ultrasound examinations. The aims of this study were (1) to determine the reproducibility of shear wave elastography (2) to correlate the elasticity values of a series of solid breast masses with histological findings and (3) to compare shear wave elastography with greyscale ultrasound for benign/malignant classification. Using the Aixplorer® ultrasound system (SuperSonic Imagine, Aix en Provence, France), 53 solid breast lesions were identified in 52 consecutive patients. Two orthogonal elastography images were obtained of each lesion. Observers noted the mean elasticity values in regions of interest (ROI) placed over the stiffest areas on the two elastography images and a mean value was calculated for each lesion. A sub-set of 15 patients had two elastography images obtained by an additional operator. Reproducibility of observations was assessed between (1) two observers analysing the same pair of images and (2) findings from two pairs of images of the same lesion taken by two different operators. All lesions were subjected to percutaneous biopsy. Elastography measurements were correlated with histology results. After preliminary experience with 10 patients a mean elasticity cut off value of 50 kilopascals (kPa) was selected for benign/malignant differentiation. Greyscale images were classified according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS). BI-RADS categories 1-3 were taken as benign while BI-RADS categories 4 and 5 were classified as malignant. Twenty-three benign lesions and 30 cancers were diagnosed on histology. Measurement of mean elasticity yielded an intraclass correlation coefficient of 0.99 for two observers assessing the same pairs of elastography images. Analysis of images taken by two independent operators gave an intraclass correlation coefficient of 0.80. Shear wave elastography versus

  17. Elastic properties and electronic structure of WS{sub 2} under pressure from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Civil Aviation Flight Univ. of China, Guanghan (China). Dept. of Physics; Zeng, Zhao-Yi [Chongqing Normal Univ., Chongqing (China). College of Physics and Electronic Engineering; Liang, Ting; Tang, Mei; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics

    2017-07-01

    The influence of pressure on the elastic and mechanical properties of the hexagonal transition-metal dichalcogenide WS{sub 2} is investigated using the first-principles calculations. With the increase in pressure, the lattice parameters and the volume of WS{sub 2} decrease, which is exactly in agreement with the available experimental data and other calculated results. The elastic constants C{sub ij}, bulk modulus B, shear modulus G, Young's modulus E, and Poisson's ratio σ of WS{sub 2} also increase with pressure. At last, for the first time, the band gaps of energy, the partial density of states, and the total density of states under three different pressures are obtained and analysed. It is found that the band gap of WS{sub 2} decreases from 0.843 to 0 eV when the external pressure varies from 0 to 20 GPa, which implies that WS{sub 2} may transform from semiconductors to semimetal phase at a pressure about 20 GPa.

  18. A Comparative Analysis of the Effective Elastic Constants of ...

    African Journals Online (AJOL)

    Results of various finite element and closed form models developed in the attempt to evaluate and establish accurate values of the Young's modulus, E; the shear modulus G; and the Poisson's ratio,< for laminated composite plates having soft matrix and high fibre volume fraction are discussed in this paper. Their merits and ...

  19. Vitamin A deficiency alters the pulmonary parenchymal elastic modulus and elastic fiber concentration in rats

    Directory of Open Access Journals (Sweden)

    Holmes Amey J

    2005-07-01

    Full Text Available Abstract Background Bronchial hyperreactivity is influenced by properties of the conducting airways and the surrounding pulmonary parenchyma, which is tethered to the conducting airways. Vitamin A deficiency (VAD is associated with an increase in airway hyperreactivity in rats and a decrease in the volume density of alveoli and alveolar ducts. To better define the effects of VAD on the mechanical properties of the pulmonary parenchyma, we have studied the elastic modulus, elastic fibers and elastin gene-expression in rats with VAD, which were supplemented with retinoic acid (RA or remained unsupplemented. Methods Parenchymal mechanics were assessed before and after the administration of carbamylcholine (CCh by determining the bulk and shear moduli of lungs that that had been removed from rats which were vitamin A deficient or received a control diet. Elastin mRNA and insoluble elastin were quantified and elastic fibers were enumerated using morphometric methods. Additional morphometric studies were performed to assess airway contraction and alveolar distortion. Results VAD produced an approximately 2-fold augmentation in the CCh-mediated increase of the bulk modulus and a significant dampening of the increase in shear modulus after CCh, compared to vitamin A sufficient (VAS rats. RA-supplementation for up to 21 days did not reverse the effects of VAD on the elastic modulus. VAD was also associated with a decrease in the concentration of parenchymal elastic fibers, which was restored and was accompanied by an increase in tropoelastin mRNA after 12 days of RA-treatment. Lung elastin, which was resistant to 0.1 N NaOH at 98°, decreased in VAD and was not restored after 21 days of RA-treatment. Conclusion Alterations in parenchymal mechanics and structure contribute to bronchial hyperreactivity in VAD but they are not reversed by RA-treatment, in contrast to the VAD-related alterations in the airways.

  20. Soft-Matter Resistive Sensor for Measuring Shear and Pressure Stresses

    Science.gov (United States)

    Tepayotl-Ramirez, Daniel; Roberts, Peter; Majidi, Carmel

    2013-03-01

    Building on emerging paradigms in soft-matter electronics, we introduce liquid-phase electronic sensors that simultaneously measures elastic pressure and shear deformation. The sensors are com- posed of a sheet of elastomer that is embedded with fluidic channels containing eutectic Gallium- Indium (EGaIn), a metal alloy that is liquid at room temperature. Applying pressure or shear traction to the surface of the surrounding elastomer causes the elastomer to elastically deform and changes the geometry and electrical properties of the embedded liquid-phase circuit elements. We introduce analytic models that predict the electrical response of the sensor to prescribed surface tractions. These models are validated with both Finite Element Analysis (FEA) and experimental measurements.

  1. Effect of Graphite Concentration on Shear-Wave Speed in Gelatin-Based Tissue-Mimicking Phantoms

    Science.gov (United States)

    Anderson, Pamela G.; Rouze, Ned C.; Palmeri, Mark L.

    2011-01-01

    Elasticity-based imaging modalities are becoming popular diagnostic tools in clinical practice. Gelatin-based, tissue mimicking phantoms that contain graphite as the acoustic scattering material are commonly used in testing and validating elasticity-imaging methods to quantify tissue stiffness. The gelatin bloom strength and concentration are used to control phantom stiffness. While it is known that graphite concentration can be modulated to control acoustic attenuation, the impact of graphite concentrationon phantom elasticity has not been characterized in these gelatin phantoms. This work investigates the impact of graphite concentration on phantom shear stiffness as characterized by shear-wave speed measurements using impulsive acoustic-radiation-force excitations. Phantom shear-wave speed increased by 0.83 (m/s)/(dB/(cm MHz)) when increasing the attenuation coefficient slope of the phantom material through increasing graphite concentration. Therefore, gelatin-phantom stiffness can be affected by the conventional ways that attenuation is modulated through graphite concentration in these phantoms. PMID:21710828

  2. Elastic, electronic properties and intra-atomic bonding in orthorhombic and tetragonal polymorphs of BaZn2As2 from first-principles calculations

    International Nuclear Information System (INIS)

    Shein, I.R.; Ivanovskii, A.L.

    2014-01-01

    Highlights: • α and β polymorphs of BaZn 2 As 2 as a parent phase of the new DMSs are examined. • Structural, elastic, electronic properties are evaluated from first principles. • Inter-atomic bonding picture is discussed. -- Abstract: Very recently, on the example of hole- and spin-doped BaZn 2 As 2 , quite an unexpected area of potential applications of 122-like phases was proposed as a promising platform for searching the new diluted magnetic semiconductors (DMSs) (2013; K. Zhao, et al, Nature Commun. 4:1442). Herein, by means of the first-principles calculations, we have examined in detail the basic structural, elastic, electronic properties and the peculiarities of the inter-atomic bonding in α and β polymorphs of 122-like BaZn 2 As 2 – a parent phase of the new DMSs. Our characterization of these materials covers the optimized structural parameters, the main elastic parameters (elastic constants, bulk, shear, and Young’s moduli, Poisson’s ratio, anisotropy indexes, and Pugh’s criterion), as well as electronic bands and densities of electronic states

  3. Metodologia para o cálculo dos módulos de elasticidade longitudinal e transversal em vigas de madeira de dimensões estruturais Methodology used to determine the shear and longitudinal modulus of elasticity in timber beams

    Directory of Open Access Journals (Sweden)

    André Luis Christoforo

    2013-04-01

    Full Text Available Este trabalhou objetiva apresentar uma metodologia analítica para o cálculo dos módulos de elasticidade longitudinal (E e transversal (G em vigas de madeira de dimensões estruturais, segundo o emprego das teorias de vigas de Euler Bernoulli e Timoshenko, sendo utilizado o ensaio de flexão estática a três pontos. As madeiras testadas foram o Pinus elliottii e a Corymbia citriodora. Os resultados encontrados relevaram ser o módulo de elasticidade longitudinal 18,70 vezes superior ao módulo transversal do Pinus elliottii e 21,2 superior ao módulo transversal do Corymbia citriodora, sendo estes compatíveis quando comparada a relação entre E e G estabelecida pela norma Brasileira ABNT NBR 7190:1997 (Projeto de Estruturas de Madeira, que define ser o módulo de elasticidade longitudinal vinte vezes superior ao transversal.This paper proposed a test method to obtain the shear (G and longitudinal (E modulus of elasticity in timber beams with structural dimensions, based on the static three-points bending tests and the Euler Bernoulli and Timoshenko beams theories. The woods tested were the Corymbia citriodora and Pinus elliottii. The results revealed that the longitudinal modulus of elasticity of Pinus elliottii is 18.70 greater than the shear modulus, and 21.16 greater than the shear modulus of Corymbia citriodora, being consistent this results when compared to the proposed by the Brazilian standard ABNT NBR 7190:1997 (Design of Wood Structures, being the longitudinal modulus of elasticity twenty times greater than the shear modulus.

  4. Comparison and Combination of Strain and Shear Wave Elastography of Breast Masses for Differentiation of Benign and Malignant Lesions by Quantitative Assessment: Preliminary Study.

    Science.gov (United States)

    Seo, Mirinae; Ahn, Hye Shin; Park, Sung Hee; Lee, Jong Beum; Choi, Byung Ihn; Sohn, Yu-Mee; Shin, So Youn

    2018-01-01

    To compare the diagnostic performance of strain and shear wave elastography of breast masses for quantitative assessment in differentiating benign and malignant lesions and to evaluate the diagnostic accuracy of combined strain and shear wave elastography. Between January and February 2016, 37 women with 45 breast masses underwent both strain and shear wave ultrasound (US) elastographic examinations. The American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) final assessment on B-mode US imaging was assessed. We calculated strain ratios for strain elastography and the mean elasticity value and elasticity ratio of the lesion to fat for shear wave elastography. Diagnostic performances were compared by using the area under the receiver operating characteristic curve (AUC). The 37 women had a mean age of 47.4 years (range, 20-79 years). Of the 45 lesions, 20 were malignant, and 25 were benign. The AUCs for elasticity values on strain and shear wave elastography showed no significant differences (strain ratio, 0.929; mean elasticity, 0.898; and elasticity ratio, 0.868; P > .05). After selectively downgrading BI-RADS category 4a lesions based on strain and shear wave elastographic cutoffs, the AUCs for the combined sets of B-mode US and elastography were improved (B-mode + strain, 0.940; B-mode + shear wave; 0.964; and B-mode, 0.724; P shear wave elastography showed significantly higher diagnostic accuracy than each individual elastographic modality (P = .031). These preliminary results showed that strain and shear wave elastography had similar diagnostic performance. The addition of strain and shear wave elastography to B-mode US improved diagnostic performance. The combination of strain and shear wave elastography results in a higher diagnostic yield than each individual elastographic modality. © 2017 by the American Institute of Ultrasound in Medicine.

  5. Friction of polymer hydrogels studied by resonance shear measurements.

    Science.gov (United States)

    Ren, Huai-Yin; Mizukami, Masashi; Tanabe, Tadao; Furukawa, Hidemitsu; Kurihara, Kazue

    2015-08-21

    The friction between an elastomer and a hard surface typically has two contributors, i.e., the interfacial and deformation components. The friction of viscoelastic hydrogel materials has been extensively studied between planar gel and planar substrate surfaces from the viewpoint of an interfacial interaction. However, the geometry of the contact in practical applications is much more complex. The contribution of geometric and elastic deformation terms of a gel to friction could not be neglected. In this study, we used resonance shear measurements (RSMs) for characterizing the shear response of a glass sphere on a flat polymer hydrogel, a double network (DN) gel of 2-acrylamide-2-methylpropanesulfonic acid and N,N-dimethylacrylamide. The contact mechanics conformed to the Johnson-Kendall-Roberts theory. The observed resonance curves exhibited rather sharp peaks when the DN gel and the silica sphere were brought into contact, and their intensity and frequency increased with the increase in the normal load. We proposed a simple physical model of the shearing system, and the elastic (k2) and viscous (b2) parameters of the interface between a silica sphere and a flat DN gel were obtained. The friction force from elastic deformation and viscous dissipation terms was then estimated using the obtained parameters. It was revealed that the elastic parameter (k2) increased up to 1780 N m(-1) at a normal load of 524 mN, while the viscous parameter (b2) was zero or quite low (friction force between a flat DN gel and a silica sphere in air was dominated by the elastic term due to the local deformation by contact with the silica sphere. By adding water, the elastic parameter (k2) remained the same, while the viscous parameter (b2) slightly increased. However, the viscous term fviscous was still much smaller than felastic. To the best of our knowledge, this study was the first quantitative estimation of the contribution of the elastic deformation term to the friction in the case

  6. Elastic-plastic dynamic analysis of a reactor building

    International Nuclear Information System (INIS)

    Umemura, Hajime; Tanaka, Hiroshi.

    1976-01-01

    The basic characteristics of the dynamic response of a reactor building to severe earthquake ground motion are very important for the evaluation of the safety of nuclear plant systems. A computer program for elastic-plastic dynamic analysis of reactor buildings using lumped mass models is developed. The box and cylindrical walls of boiling water reactor buildings are treated as vertical beams. The nonlinear moment-rotation and shear force-shear deformation relationships of walls are based in part upon the experiments of prototype structures. The geometrical non-linearity of the soil rocking spring due to foundation separation is also considered. The nonlinear equation of motion is expressed in incremental form using tangent stiffness matrices, following the algorithm developed by E.L. Wilson et al. The damping matrix in the equation is formulated as the combination of the energy evaluation method and Penzien-Wilson's approach to accomodate the different characteristics of soil and building damping. The analysis examples and the comparison of elastic and elastic-plastic analysis results are presented. (auth.)

  7. Uniqueness theorems in linear elasticity

    CERN Document Server

    Knops, Robin John

    1971-01-01

    The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...

  8. Local and Modal Damage Indicators for Reinforced Concrete Shear Frames Subject to Earthquakes

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Abbott, J.

    Local, modal and overall damage indicators for reinforced concrete shear frames subject to seismic excitation are defined and studied. Each storey of the shear frame is represented by a Clough and Johnston hysteretic oscillator with degrading elastic fraction of the restoring force. The local max...

  9. Comparison of strain and shear wave elastography for qualitative and quantitative assessment of breast masses in the same population.

    Science.gov (United States)

    Kim, Hyo Jin; Kim, Sun Mi; Kim, Bohyoung; La Yun, Bo; Jang, Mijung; Ko, Yousun; Lee, Soo Hyun; Jeong, Heeyeong; Chang, Jung Min; Cho, Nariya

    2018-04-18

    We investigated addition of strain and shear wave elastography to conventional ultrasonography for the qualitative and quantitative assessment of breast masses; cut-off points were determined for strain ratio, elasticity ratio, and visual score for differentiating between benign and malignant masses. In all, 108 masses from 94 patients were evaluated with strain and shear wave elastography and scored for suspicion of malignancy, visual score, strain ratio, and elasticity ratio. The diagnostic performance between ultrasonography alone and ultrasonography combined with either type of elastography was compared; cut-off points were determined for strain ratio, elasticity ratio, and visual score. Of the 108 masses, 44 were malignant and 64 were benign. The areas under the curves were significantly higher for strain and shear wave elastography-supplemented ultrasonography (0.839 and 0.826, respectively; P = 0.656) than for ultrasonography alone (0.764; P = 0.018 and 0.035, respectively). The diagnostic performances of strain and elasticity ratios were similar when differentiating benign from malignant masses. Cut-off values for strain ratio, elasticity ratio, and visual scores for strain and shear wave elastography were 2.93, 4, 3, and 2, respectively. Both forms of elastography similarly improved the diagnostic performance of conventional ultrasonography in the qualitative and quantitative assessment of breast masses.

  10. Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory

    Science.gov (United States)

    Ghadiri, Majid; Safarpour, Hamed

    2016-09-01

    In this paper, size-dependent effect of an embedded magneto-electro-elastic (MEE) nanoshell subjected to thermo-electro-magnetic loadings on free vibration behavior is investigated. Also, the surrounding elastic medium has been considered as the model of Winkler characterized by the spring. The size-dependent MEE nanoshell is investigated on the basis of the modified couple stress theory. Taking attention to the first-order shear deformation theory (FSDT), the modeled nanoshell and its equations of motion are derived using principle of minimum potential energy. The accuracy of the presented model is validated with some cases in the literature. Finally, using the Navier-type method, an analytical solution of governing equations for vibration behavior of simply supported MEE cylindrical nanoshell under combined loadings is presented and the effects of material length scale parameter, temperature changes, external electric potential, external magnetic potential, circumferential wave numbers, constant of spring, shear correction factor and length-to-radius ratio of the nanoshell on natural frequency are identified. Since there has been no research about size-dependent analysis MEE cylindrical nanoshell under combined loadings based on FSDT, numerical results are presented to be served as benchmarks for future analysis of MEE nanoshells using the modified couple stress theory.

  11. Elastic representation surfaces of unidirectional graphite/epoxy composites

    International Nuclear Information System (INIS)

    Kriz, R.D.; Ledbetter, H.M.

    1985-01-01

    Unidirectional graphite/epoxy composites exhibit high elastic anisotropy and unusual geometrical features in their elastic-property polar diagrams. From the five-component transverse-isotropic elastic-stiffness tensor we compute and display representation surfaces for Young's modulus, torsional modulus, linear compressibility, and Poisson's ratios. Based on Christoffel-equation solutions, we describe some unusual elastic-wave-surface topological features. Musgrave considered in detail the differences between phase-velocity and group-velocity surfaces arising from high elastic anisotropy. For these composites, we find effects similar to, but more dramatic than, Musgrave's. Some new, unexpected results for graphite/epoxy include: a shear-wave velocity that exceeds a longitudinal velocity in the plane transverse to the fiber; a wave that changes polarization character from longitudinal to transverse as the propagation direction sweeps from the fiber axis to the perpendicular axis

  12. The dynamics of a shear band

    Science.gov (United States)

    Giarola, Diana; Capuani, Domenico; Bigoni, Davide

    2018-03-01

    A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.

  13. Size effect of the elastic modulus of rectangular nanobeams: Surface elasticity effect

    International Nuclear Information System (INIS)

    Yao Hai-Yan; Fan Wen-Liang; Yun Guo-Hong

    2013-01-01

    The size-dependent elastic property of rectangular nanobeams (nanowires or nanoplates) induced by the surface elasticity effect is investigated by using a developed modified core-shell model. The effect of surface elasticity on the elastic modulus of nanobeams can be characterized by two surface related parameters, i.e., inhomogeneous degree constant and surface layer thickness. The analytical results show that the elastic modulus of the rectangular nanobeam exhibits a distinct size effect when its characteristic size reduces below 100 nm. It is also found that the theoretical results calculated by a modified core-shell model have more obvious advantages than those by other models (core-shell model and core-surface model) by comparing them with relevant experimental measurements and computational results, especially when the dimensions of nanostructures reduce to a few tens of nanometers. (condensed matter: structural, mechanical, and thermal properties)

  14. Structural, electronic and elastic properties of potassium hexatitanate crystal from first-principles calculations

    International Nuclear Information System (INIS)

    Hua Manyu; Li Yimin; Long Chunguang; Li Xia

    2012-01-01

    The structural, electronic and elastic properties of potassium hexatitanate (K 2 Ti 6 O 13 ) whisker were investigated using first-principles calculations. The calculated cell parameters of K 2 Ti 6 O 13 including lattice constants and atomic positions are in good agreement with the experimental data. The obtained formation enthalpy (-61.1535 eV/atom) and cohesive energy (-137.4502 eV/atom) are both negative, showing its high structural stability. Further analysis of the electronic structures shows that the potassium hexatitanate is a wide-band semiconductor. Within K 2 Ti 6 O 13 crystal, the Ti---O bonding interactions are stronger than that of K---O, while no apparent K---Ti bonding interactions can be observed. The structural stability of K 2 Ti 6 O 13 was closely associated with the covalent bond interactions between Ti (d) and O (p) orbits. Further calculations on elastic properties show that K 2 Ti 6 O 13 is a high stiffness and brittle material with small anisotropy in shear and compression.

  15. Quantification the Effect of the Thickness of Thin Films on their Elastic Parameters

    International Nuclear Information System (INIS)

    Gacem, A.; Doghmane, A.; Hadjoub, Z

    2011-01-01

    The determination of the characteristics and properties of thin films deposited on substrates is necessary in any device application in various fields. Adequate mechanical properties are highly required for the majority of surface waves and semiconductor devices. In this context, modelling the ultrasonic-material interaction, we present results of simulation curves of acoustic signatures for multiple thin film/substrate combinations. The results obtained on several structures (Al, SiO 2 , ZnO, Cu, AlN, SiC and Cr)/(Al 2 O 3 , Si, Cu or Quartz) showed a velocity dispersion of the Rayleigh wave as a function of layer thickness. The development of a theoretical calculation model based on the acoustic behaviour of these structures has enabled us to quantify the dispersive evolution (positive and negative) density. Thus, we have established a universal relationship describing the density-thickness variation. In addition, networks of dispersion curves, representing the evolution of elasticity modulus (Young and shear), were determined. These charts can be used to extract the influence of thickness of layers on the variation of elastic constants.(author)

  16. Shear-wave elastography for breast masses: local shear wave speed (m/sec) versus Young modulus (kPa).

    Science.gov (United States)

    Youk, Ji Hyun; Son, Eun Ju; Park, Ah Young; Kim, Jeong-Ah

    2014-01-01

    To evaluate and compare the performance of shear-wave elastography (SWE) for breast masses using the local shear wave speed (m/sec) vs. Young modulus (kPa). A total of 130 breast lesions in 123 women who underwent SWE before ultrasound- guided core needle biopsy or surgical excision were included. With the region-of-interest placed over the stiffest areas of the lesion on SWE, the quantitative mean, maximum, and standard deviation (SD) of the elasticity values were measured in kPa and m/sec for each lesion. The SD was also measured with the region-of-interest including the whole breast lesion (wSD). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of each elasticity value measured in kPa and m/sec were compared. Of the 130 lesions, 49 (37.7%) were malignant and 81 (62.3%) were benign. The AUCs for the mean, maximum, and SD of the elasticity values using kPa and m/sec did not differ significantly: mean, 0.974 vs. 0.974; maximum, 0.960 vs. 0.976; SD, 0.916 vs. 0.916. However, the AUC for wSD showed a significant difference: 0.964 (kPa) vs. 0.960 (m/sec) (P=0.036). There was no significant difference in the sensitivity and specificity of the mean, maximum, and wSD of the elasticity values. However, the specificity of the SD was significantly different between the two different measurements: 95.1% (kPa) vs. 87.7% (m/sec) (P=0.031). The quantitative elasticity values measured in kPa and m/sec on SWE showed good diagnostic performance. The specificity of the SD and AUC of the wSD measured in kPa were significantly higher than those measured in m/sec.

  17. Shear-wave elastography for breast masses: local shear wave speed (m/sec) versus Young modulus (kPa)

    Energy Technology Data Exchange (ETDEWEB)

    Youk, Ji Hyun; Son, Eun Ju; Park, Ah Young; Kim, Jeong Ah [Dept. of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-03-15

    To evaluate and compare the performance of shear-wave elastography (SWE) for breast masses using the local shear wave speed (m/sec) vs. Young modulus (kPa). A total of 130 breast lesions in 123 women who underwent SWE before ultrasound- guided core needle biopsy or surgical excision were included. With the region-of-interest placed over the stiffest areas of the lesion on SWE, the quantitative mean, maximum, and standard deviation (SD) of the elasticity values were measured in kPa and m/sec for each lesion. The SD was also measured with the region-of-interest including the whole breast lesion (wSD). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of each elasticity value measured in kPa and m/sec were compared. Of the 130 lesions, 49 (37.7%) were malignant and 81 (62.3%) were benign. The AUCs for the mean, maximum, and SD of the elasticity values using kPa and m/sec did not differ significantly: mean, 0.974 vs. 0.974; maximum, 0.960 vs. 0.976; SD, 0.916 vs. 0.916. However, the AUC for wSD showed a significant difference: 0.964 (kPa) vs. 0.960 (m/sec) (P=0.036). There was no significant difference in the sensitivity and specificity of the mean, maximum, and wSD of the elasticity values. However, the specificity of the SD was significantly different between the two different measurements: 95.1% (kPa) vs. 87.7% (m/sec) (P=0.031). The quantitative elasticity values measured in kPa and m/sec on SWE showed good diagnostic performance. The specificity of the SD and AUC of the wSD measured in kPa were significantly higher than those measured in m/sec.

  18. Shear-wave elastography for breast masses: local shear wave speed (m/sec) versus Young modulus (kPa)

    International Nuclear Information System (INIS)

    Youk, Ji Hyun; Son, Eun Ju; Park, Ah Young; Kim, Jeong Ah

    2014-01-01

    To evaluate and compare the performance of shear-wave elastography (SWE) for breast masses using the local shear wave speed (m/sec) vs. Young modulus (kPa). A total of 130 breast lesions in 123 women who underwent SWE before ultrasound- guided core needle biopsy or surgical excision were included. With the region-of-interest placed over the stiffest areas of the lesion on SWE, the quantitative mean, maximum, and standard deviation (SD) of the elasticity values were measured in kPa and m/sec for each lesion. The SD was also measured with the region-of-interest including the whole breast lesion (wSD). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of each elasticity value measured in kPa and m/sec were compared. Of the 130 lesions, 49 (37.7%) were malignant and 81 (62.3%) were benign. The AUCs for the mean, maximum, and SD of the elasticity values using kPa and m/sec did not differ significantly: mean, 0.974 vs. 0.974; maximum, 0.960 vs. 0.976; SD, 0.916 vs. 0.916. However, the AUC for wSD showed a significant difference: 0.964 (kPa) vs. 0.960 (m/sec) (P=0.036). There was no significant difference in the sensitivity and specificity of the mean, maximum, and wSD of the elasticity values. However, the specificity of the SD was significantly different between the two different measurements: 95.1% (kPa) vs. 87.7% (m/sec) (P=0.031). The quantitative elasticity values measured in kPa and m/sec on SWE showed good diagnostic performance. The specificity of the SD and AUC of the wSD measured in kPa were significantly higher than those measured in m/sec.

  19. Elasticity of Tantalum to 105 Gpa using a stress and angle-resolved x-ray diffraction

    International Nuclear Information System (INIS)

    Cynn, H; Yoo, C S

    1999-01-01

    Determining the mechanical properties such as elastic constants of metals at Mbar pressures has been a difficult task in experiment. Following the development of anisotropic elastic theory by Singh et al.[l], Mao et a1.[2] have recently developed a novel experimental technique to determine the elastic constants of Fe by using the stress and energy-dispersive x-ray diffraction (SEX). In this paper, we present an improved complementary technique, stress and angle-resolved x-ray diffraction (SAX), which we have applied to determine the elastic constants of tantalum to 105 GPa. The extrapolation of the tantalum elastic data shows an excellent agreement with the low-pressure ultrasonic data[3]. We also discuss the improvement of this SAX method over the previous SEX.[elastic constant, anisotropic elastic theory, angle-dispersive synchrotron x-ray diffraction, mechanical properties

  20. Microstructural evolution of a model, shear-banding micellar solution during shear startup and cessation.

    Science.gov (United States)

    López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J

    2014-04-01

    We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations.

  1. Confocal microscopy of colloidal dispersions in shear flow using a counter-rotating cone-plate shear cell

    International Nuclear Information System (INIS)

    Derks, Didi; Wisman, Hans; Blaaderen, Alfons van; Imhof, Arnout

    2004-01-01

    We report on novel possibilities for studying colloidal suspensions in a steady shear field in real space. Fluorescence confocal microscopy is combined with the use of a counter-rotating cone-plate shear cell. This allows imaging of individual particles in the bulk of a sheared suspension in a stationary plane. Moreover, this plane of zero velocity can be moved in the velocity gradient direction while keeping the shear rate constant. The colloidal system under study consists of rhodamine labelled PMMA spheres in a nearly density and refractive index matched mixture of cyclohexylbromide and cis-decalin. We show measured flow profiles in both the fluid and the crystalline phase and find indications for shear banding in the case of a sheared crystal. Furthermore, we show that, thanks to the counter-rotating principle of the cone-plate shear cell, a layer of particles in the bulk of a sheared crystalline suspension can be imaged for a prolonged time, with the result that their positions can be tracked

  2. A new type of surface acoustic waves in solids due to nonlinear elasticity

    International Nuclear Information System (INIS)

    Mozhaev, V.G.

    1988-12-01

    It is shown that in nonlinear elastic semi-infinite medium possessing a property of self focusing of shear waves, besides bulk non-linear shear waves, new surface acoustic waves exist, localization of which near the boundary is entirely due to nonlinear effects. (author). 8 refs

  3. First-principles study of structural stabilities, elastic and electronic properties of transition metal monocarbides (TMCs) and mononitrides (TMNs)

    Energy Technology Data Exchange (ETDEWEB)

    Rached, H.; Rached, D.; Benalia, S. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Reshak, A.H., E-mail: maalidph@yahoo.co.uk [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Rabah, M. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique de la Matière (LPQ3M), université de Mascara, Mascara 29000 (Algeria); Bin Omran, S. [Department of Physics and Astronomy, Faculty of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2013-12-16

    The structural stabilities, elastic and electronic properties of 5d transition metal mononitrides (TMNs) XN with (X = Ir, Os, Re, W and Ta) and 5d transition metal monocarbides (TMCs) XC with (X = Ir, Os, Re and Ta) were investigated using the full-potential linear muffin-tin orbital (FP-LMTO) method, in the framework of the density functional theory (DFT) within the local density approximation (LDA) for the exchange correlation functional. The ground state quantities such as the lattice parameter, bulks modulus and its pressure derivatives for the six considered crystal structures, Rock-salt (B1), CsCl (B2), zinc-blend (B3), Wurtzite (B4), NiAs (B8{sub 1}) and the tungsten carbides (B{sub h}) are calculated. The elastic constants of TMNs and TMCs compounds in its different stable phases are determined by using the total energy variation with strain technique. The elastic modulus for polycrystalline materials, shear modulus (G), Young's modulus (E), and Poisson's ratio (ν) are calculated. The Debye temperature (θ{sub D}) and sound velocities (v{sub m}) were also derived from the obtained elastic modulus. The analysis of the hardness of the herein studied compounds classifies OsN – (B4 et B8{sub 1}), ReN – (B8{sub 1}), WN – (B8{sub 1}) and OsC – (B8{sub 1}) as superhard materials. Our results for the band structure and densities of states (DOS), show that TMNs and TMCs compounds in theirs energetically and mechanically stable phase has metallic characteristic with strong covalent nature Metal–Nonmetal elements. - Highlights: • Structural stabilities, elastic, electronic properties of 5d TMNs XN are investigated. • 5d TMCs XC with (X = Ir, Os, Re and Ta) were investigated. • The ground state properties for the six considered crystal structure are calculated. • The elastic constants of TMNs and TMCs in its different stable phases are determined. • The elastic modulus for polycrystalline materials, G, E, and ν are calculated.

  4. Membrane elastic properties and cell function.

    Directory of Open Access Journals (Sweden)

    Bruno Pontes

    Full Text Available Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.

  5. A Linear Theory for Pretwisted Elastic Beams

    DEFF Research Database (Denmark)

    Krenk, Steen

    1983-01-01

    contains a general system of differential equations and gives explicit solutions for homogenous extension, torsion, and bending. The theory accounts explicitly for the shear center, the elastic center, and the axis of pretwist. The resulting torsion-extension coupling is in agreement with a recent...

  6. Three dimensional vibration and bending analysis of carbon nanotubes embedded in elastic medium based on theory of elasticity

    Directory of Open Access Journals (Sweden)

    M. Shaban

    Full Text Available This paper studies free vibration and bending behavior of singlewalled carbon nanotubes (SWCNTs embedded on elastic medium based on three-dimensional theory of elasticity. To accounting the size effect of carbon nanotubes, non-local theory is adopted to shell model. The nonlocal parameter is incorporated into all constitutive equations in three dimensions. The surrounding medium is modeled as two-parameter elastic foundation. By using Fourier series expansion in axial and circumferential direction, the set of coupled governing equations are reduced to the ordinary differential equations in thickness direction. Then, the state-space method as an efficient and accurate method is used to solve the resulting equations analytically. Comprehensive parametric studies are carried out to show the influences of the nonlocal parameter, radial and shear elastic stiffness, thickness-to-radius ratio and radiusto-length ratio.

  7. Elasticity theory of ultrathin nanofilms

    International Nuclear Information System (INIS)

    Li, Jiangang; Yun, Guohong; Narsu, B; Yao, Haiyan

    2015-01-01

    A self-consistent theoretical scheme for describing the elastic behavior of ultrathin nanofilms (UTNFs) was proposed. Taking into account the lower symmetry of an UTNF compared to its bulk counterpart, additional elastic and magnetoelastic parameters were introduced to model the elasticity rigorously. The applications of current theory to several elastic and magnetoelastic systems gave excellent agreement with experiments. More importantly, the surface elastic and magnetoelastic parameters used to fit the experimental results are physically reasonable and in close agreement with those obtained from experiment and simulation. This fact suggests that the additional elastic (magnetoelastic) constants due to symmetry breaking are of great importance in theoretical description of the mechanical properties of UTNFs. And we proved that the elasticity of UTNFs should be described by a three-dimensional model just including the intrinsic surface and bulk parameters, but not the effective surface parameters. It is believed that the theory reported here is a universal strategy for elasticity and magnetoelasticity of ultrathin films. (paper)

  8. Evidence for anisotropic polar nanoregions in relaxor Pb(Mg1/3Nb2/3)O3: A neutron study of the elastic constants and anomalous TA phonon damping in PMN

    Science.gov (United States)

    Stock, C.; Gehring, P. M.; Hiraka, H.; Swainson, I.; Xu, Guangyong; Ye, Z.-G.; Luo, H.; Li, J.-F.; Viehland, D.

    2012-09-01

    We use neutron inelastic scattering to characterize the acoustic phonons in the relaxor Pb(Mg1/3Nb2/3)O3 (PMN) and demonstrate the presence of a highly anisotropic damping mechanism that is directly related to short-range polar correlations. For a large range of temperatures above Tc˜210 K, where dynamic, short-range polar correlations are present, acoustic phonons propagating along [11¯0] and polarized along [110] (TA2 phonons) are overdamped and softened across most of the Brillouin zone. By contrast, acoustic phonons propagating along [100] and polarized along [001] (TA1 phonons) are overdamped and softened for a more limited range of wave vectors q. The anisotropy and temperature dependence of the acoustic phonon energy linewidth Γ are directly correlated with neutron diffuse scattering cross section, indicating that polar nanoregions are the cause of the anomalous behavior. The damping and softening vanish for q→0, i.e., for long-wavelength acoustic phonons near the zone center, which supports the notion that the anomalous damping is a result of the coupling between the relaxational component of the diffuse scattering and the harmonic TA phonons. Therefore, these effects are not due to large changes in the elastic constants with temperature because the elastic constants correspond to the long-wavelength limit. We compare the elastic constants we measure to those from Brillouin scattering experiments and to values reported for pure PbTiO3. We show that while the values of C44 are quite similar, those for C11 and C12 are significantly less in PMN and result in a softening of (C11-C12) over PbTiO3. The elastic constants also show an increased elastic anisotropy [2C44/(C11-C12)] in PMN versus that in PbTiO3. These results are suggestive of an instability to TA2 acoustic fluctuations in PMN and other relaxor ferroelectrics. We discuss our results in the context of the current debate over the “waterfall” effect and show that they are inconsistent with

  9. TH-A-207B-00: Shear-Wave Imaging and a QIBA US Biomarker Update

    International Nuclear Information System (INIS)

    2016-01-01

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging

  10. TH-A-207B-00: Shear-Wave Imaging and a QIBA US Biomarker Update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging

  11. Sub-Micrometer Zeolite Films on Gold-Coated Silicon Wafers with Single-Crystal-Like Dielectric Constant and Elastic Modulus

    Energy Technology Data Exchange (ETDEWEB)

    Tiriolo, Raffaele [Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Rangnekar, Neel [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Zhang, Han [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Shete, Meera [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Bai, Peng [Department of Chemistry and Chemistry Theory Center, University of Minnesota, 207 Pleasant St SE Minneapolis MN 55455 USA; Nelson, John [Characterization Facility, University of Minnesota, 12 Shepherd Labs, 100 Union St. S.E. Minneapolis MN 55455 USA; Karapetrova, Evguenia [Surface Scattering and Microdiffraction, X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave, Building 438-D002 Argonne IL 60439 USA; Macosko, Christopher W. [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Siepmann, Joern Ilja [Department of Chemistry and Chemistry Theory Center, University of Minnesota, 207 Pleasant St SE Minneapolis MN 55455 USA; Lamanna, Ernesto [Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Lavano, Angelo [Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Tsapatsis, Michael [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA

    2017-05-08

    A low-temperature synthesis coupled with mild activation produces zeolite films exhibiting low dielectric constant (low-k) matching the theoretically predicted and experimentally measured values for single crystals. This synthesis and activation method allows for the fabrication of a device consisting of a b-oriented film of the pure-silica zeolite MFI (silicalite-1) supported on a gold-coated silicon wafer. The zeolite seeds are assembled by a manual assembly process and subjected to optimized secondary growth conditions that do not cause corrosion of the gold underlayer, while strongly promoting in-plane growth. The traditional calcination process is replaced with a non-thermal photochemical activation to ensure preservation of an intact gold layer. The dielectric constant (k), obtained through measurement of electrical capacitance in a metal-insulator-metal configuration, highlights the ultralow k approximate to 1.7 of the synthetized films, which is among the lowest values reported for an MFI film. There is large improvement in elastic modulus of the film (E approximate to 54 GPa) over previous reports, potentially allowing for integration into silicon wafer processing technology.

  12. Evaluating interfacial shear stresses in composite hollo

    Directory of Open Access Journals (Sweden)

    Aiham Adawi

    2016-09-01

    Full Text Available Analytical evaluation of the interfacial shear stresses for composite hollowcore slabs with concrete topping is rare in the literature. Adawi et al. (2014 estimated the interfacial shear stiffness coefficient (ks that governs the behavior of the interface between hollowcore slabs and the concrete topping using push-off tests. This parameter is utilized in this paper to provide closed form solutions for the differential equations governing the behavior of simply supported composite hollowcore slabs. An analytical solution based on the deformation compatibility of the composite section and elastic beam theory, is developed to evaluate the shear stresses along the interface. Linear finite element modeling of the full-scale tests presented in Adawi et al. (2015 is also conducted to validate the developed analytical solution. The proposed analytical solution was found to be adequate in estimating the magnitude of horizontal shear stress in the studied composite hollowcore slabs.

  13. Density functional calculations of elastic properties of portlandite, Ca(OH)(2)

    DEFF Research Database (Denmark)

    Laugesen, Jakob Lund

    2005-01-01

    The elastic constants of portlandite, Ca(OH)(2), are calculated by use of density functional theory. A lattice optimization of an infinite (periodic boundary conditions) lattice is performed on which strains are applied. The elastic constants are extracted by minimizing Hooke's law of linear...

  14. Adaptation of generalized Hill inequalities to anisotropic elastic ...

    African Journals Online (AJOL)

    user

    Thallium manganese chloride(TIMnCl 3 ). 101.4. 16.5. 32.2. 5.2 For Isotropic Media. For some materials, it is possible to make approaches from cubic symmetry to isotropic symmetry. With cubic symmetry, three independent elastic constants are needed. If the medium is elastically isotropic, the elastic properties are ...

  15. Teaching nonlinear dynamics through elastic cords

    International Nuclear Information System (INIS)

    Chacon, R; Galan, C A; Sanchez-Bajo, F

    2011-01-01

    We experimentally studied the restoring force of a length of stretched elastic cord. A simple analytical expression for the restoring force was found to fit all the experimental results for different elastic materials. Remarkably, this analytical expression depends upon an elastic-cord characteristic parameter which exhibits two limiting values corresponding to two nonlinear springs with different Hooke's elastic constants. Additionally, the simplest model of elastic cord dynamics is capable of exhibiting a great diversity of nonlinear phenomena, including bifurcations and chaos, thus providing a suitable alternative model system for discussing the basic essentials of nonlinear dynamics in the context of intermediate physics courses at university level.

  16. First-principles study on the phase transition, elastic properties and electronic structure of Pt3Al alloys under high pressure

    International Nuclear Information System (INIS)

    Liu, Yanjun; Huang, Huawei; Pan, Yong; Zhao, Guanghui; Liang, Zheng

    2014-01-01

    Highlights: • The phase transition of Pt 3 Al alloys occurs at 60 GPa. • The elastic modulus of Pt 3 Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt 3 Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt 3 Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at E F decrease. The cubic Pt 3 Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure

  17. Structural, elastic, mechanical and thermodynamic properties of Terbium oxide: First-principles investigations

    Directory of Open Access Journals (Sweden)

    Samah Al-Qaisi

    Full Text Available First-principles investigations of the Terbium oxide TbO are performed on structural, elastic, mechanical and thermodynamic properties. The investigations are accomplished by employing full potential augmented plane wave FP-LAPW method framed within density functional theory DFT as implemented in the WIEN2k package. The exchange-correlation energy functional, a part of the total energy functional, is treated through Perdew Burke Ernzerhof scheme of the Generalized Gradient Approximation PBEGGA. The calculations of the ground state structural parameters, like lattice constants a0, bulk moduli B and their pressure derivative B′ values, are done for the rock-salt RS, zinc-blende ZB, cesium chloride CsCl, wurtzite WZ and nickel arsenide NiAs polymorphs of the TbO compound. The elastic constants (C11, C12, C13, C33, and C44 and mechanical properties (Young’s modulus Y, Shear modulus S, Poisson’s ratio σ, Anisotropic ratio A and compressibility β, were also calculated to comprehend its potential for valuable applications. From our calculations, the RS phase of TbO compound was found strongest one mechanically amongst the studied cubic structures whereas from hexagonal phases, the NiAs type structure was found stronger than WZ phase of the TbO. To analyze the ductility of the different structures of the TbO, Pugh’s rule (B/SH and Cauchy pressure (C12–C44 approaches are used. It was found that ZB, CsCl and WZ type structures of the TbO were of ductile nature with the obvious dominance of the ionic bonding while RS and NiAs structures exhibited brittle nature with the covalent bonding dominance. Moreover, Debye temperature was calculated for both cubic and hexagonal structures of TbO in question by averaging the computed sound velocities. Keywords: DFT, TbO, Elastic properties, Thermodynamic properties

  18. Elastic stability of thick auxetic plates

    International Nuclear Information System (INIS)

    Lim, Teik-Cheng

    2014-01-01

    Auxetic materials and structures exhibit a negative Poisson’s ratio while thick plates encounter shear deformation, which is not accounted for in classical plate theory. This paper investigates the effect of a negative Poisson’s ratio on thick plates that are subjected to buckling loads, taking into consideration the shear deformation using Mindlin plate theory. Using a highly accurate shear correction factor that allows for the effect of Poisson’s ratio, the elastic stability of circular and square plates are evaluated in terms of dimensionless parameters, namely the Mindlin-to-Kirchhoff critical buckling load ratio and Mindlin critical buckling load factors. Results for thick square plates reveal that both parameters increase as the Poisson’s ratio becomes more negative. In the case of thick circular plates, the Mindlin-to-Kirchhoff critical buckling load ratios and the Mindlin critical buckling load factors increase and decrease, respectively, as the Poisson’s ratio becomes more negative. The results obtained herein show that thick auxetic plates behave as thin conventional plates, and therefore suggest that the classical plate theory can be used to evaluate the elastic stability of thick plates if the Poisson’s ratio of the plate material is sufficiently negative. The results also suggest that materials with highly negative Poisson’s ratios are recommended for square plates, but not circular plates, that are subjected to buckling loads. (paper)

  19. Elastic properties of gamma-Pu by resonant ultrasound spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Migliori, Albert [Los Alamos National Laboratory; Betts, J [Los Alamos National Laboratory; Trugman, A [Los Alamos National Laboratory; Mielke, C H [Los Alamos National Laboratory; Mitchell, J N [Los Alamos National Laboratory; Ramos, M [Los Alamos National Laboratory; Stroe, I [WORXESTER, MA

    2009-01-01

    Despite intense experimental and theoretical work on Pu, there is still little understanding of the strange properties of this metal. We used resonant ultrasound spectroscopy method to investigate the elastic properties of pure polycrystalline Pu at high temperatures. Shear and longitudinal elastic moduli of the {gamma}-phase of Pu were determined simultaneously and the bulk modulus was computed from them. A smooth linear and large decrease of all elastic moduli with increasing temperature was observed. We calculated the Poisson ratio and found that it increases from 0.242 at 519K to 0.252 at 571K.

  20. Elastic spheres can walk on water.

    Science.gov (United States)

    Belden, Jesse; Hurd, Randy C; Jandron, Michael A; Bower, Allan F; Truscott, Tadd T

    2016-02-04

    Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.

  1. First-Principle Calculations for Elastic and Thermodynamic Properties of Diamond

    International Nuclear Information System (INIS)

    Fu Zhijian; Chen Xiangrong; Gou Qingquan; Ji Guangfu

    2009-01-01

    The elastic constants and thermodynamic properties of diamond are investigated by using the CRYSTAL03 program. The lattice parameters, the bulk modulus, the heat capacity, the Grueneisen parameter, and the Debye temperature are obtained. The results are in good agreement with the available experimental and theoretical data. Moreover, the relationship between V/V 0 and pressure, the elastic constants under high pressure are successfully obtained. Especially, the elastic constants of diamond under high pressure are firstly obtained theoretically. At the same time, the variations of the thermal expansion α with pressure P and temperature Tare obtained systematically in the ranges of 0-870 GPa and 0-1600 K. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Electromyographic Comparison of Squats Using Constant or Variable Resistance.

    Science.gov (United States)

    Andersen, Vidar; Steiro Fimland, Marius; Knutson Kolnes, Maria; Jensen, Susanne; Laume, Martine; Hole Saeterbakken, Atle

    2016-12-01

    Andersen, V, Fimland, MS, Kolnes, MK, Jensen, S, Laume, M and Saeterbakken, AH. Electromyographic comparison of squats using constant or variable resistance. J Strength Cond Res 30(12): 3456-3463, 2016-The aim of the study was to compare the electromyographic (EMG) activity of vastus lateralis, vastus medialis, rectus femoris, and biceps femoris when performing the squat with constant resistance or variable resistance with 2 or 4 elastic bands, respectively, contributing with a mean of 39 and 73% of the total loads. Nineteen resistance-trained women performed 6 repetition maximum using 3 different experimental conditions: free weights (FW), free weights + 2 elastic bands (FW + 2EB), and free weights + 4 elastic bands (FW + 4EB). During analyses, each repetition was divided into 6 phases: upper (more extended knee), middle, and lower phase of the descending and ascending movements. Increased activation in the upper parts of the movement was observed for both variable resistance conditions compared with constant resistance (9-51%, p squat using free weights in combination with elastic bands seems to be preferable compared with free weights alone and more so with a high contribution from variable resistance to the total load.

  3. Elastic-Plastic Behavior of U6Nb under Ramp Wave Loading

    International Nuclear Information System (INIS)

    Hayes, D. B.; Gray, G. T. III; Hixson, R. S.; Hall, C. A.

    2006-01-01

    When uranium-niobium (6 wt.%) alloy is shock loaded, the expected elastic precursor is absent. A prior model attributed this absence to shear-induced twinning and the concomitant shear stress reduction that prevented the shocked material from reaching the plastic yield point. In the present study, carefully prepared U6Nb was subjected to shock loading to verify the adequacy of the prior model. Other samples were loaded with a ramp pressure pulse with strain rate large enough so that significant twinning would not occur during the experiment. Backward integration analyses of these latter experiments' back surface motion give stress-strain loading paths in U6Nb that suggest ordinary elastic-plastic flow. Some of the U6Nb was pre-strained by cold rolling in an effort to further ensure that twinning did not affect wave propagation. Shock and ramp loadings yielded similar results to the baseline material except, as expected, they are consistent with a higher yield stress and twinning shear stress threshold

  4. Falling balls and simple shearing strain

    International Nuclear Information System (INIS)

    Brun, J L; Pacheco, A F

    2006-01-01

    The problem of particles falling under gravity allows us to relate Hamiltonian mechanics to such different subjects as elasticity and fluid mechanics. It is with this in mind that mechanics gives us the opportunity of introducing, in a rather simple and unusual form, some concepts such as vorticity, the incompressibility condition or simple shear strain to physics students at the undergraduate level

  5. Hardrock Elastic Physical Properties: Birch's Seismic Parameter Revisited

    Science.gov (United States)

    Wu, M.; Milkereit, B.

    2014-12-01

    Identifying rock composition and properties is imperative in a variety of fields including geotechnical engineering, mining, and petroleum exploration, in order to accurately make any petrophysical calculations. Density is, in particular, an important parameter that allows us to differentiate between lithologies and estimate or calculate other petrophysical properties. It is well established that compressional and shear wave velocities of common crystalline rocks increase with increasing densities (i.e. the Birch and Nafe-Drake relationships). Conventional empirical relations do not take into account S-wave velocity. Physical properties of Fe-oxides and massive sulfides, however, differ significantly from the empirical velocity-density relationships. Currently, acquiring in-situ density data is challenging and problematic, and therefore, developing an approximation for density based on seismic wave velocity and elastic moduli would be beneficial. With the goal of finding other possible or better relationships between density and the elastic moduli, a database of density, P-wave velocity, S-wave velocity, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio was compiled based on a multitude of lab samples. The database is comprised of isotropic, non-porous metamorphic rock. Multi-parameter cross plots of the various elastic parameters have been analyzed in order to find a suitable parameter combination that reduces high density outliers. As expected, the P-wave velocity to S-wave velocity ratios show no correlation with density. However, Birch's seismic parameter, along with the bulk modulus, shows promise in providing a link between observed compressional and shear wave velocities and rock densities, including massive sulfides and Fe-oxides.

  6. Determination of the reduced matrix of the piezoelectric, dielectric, and elastic material constants for a piezoelectric material with C∞ symmetry.

    Science.gov (United States)

    Sherrit, Stewart; Masys, Tony J; Wiederick, Harvey D; Mukherjee, Binu K

    2011-09-01

    We present a procedure for determining the reduced piezoelectric, dielectric, and elastic coefficients for a C(∞) material, including losses, from a single disk sample. Measurements have been made on a Navy III lead zirconate titanate (PZT) ceramic sample and the reduced matrix of coefficients for this material is presented. In addition, we present the transform equations, in reduced matrix form, to other consistent material constant sets. We discuss the propagation of errors in going from one material data set to another and look at the limitations inherent in direct calculations of other useful coefficients from the data.

  7. Comparison of Elasticity Values of the Right Lobe of the Liver of ...

    African Journals Online (AJOL)

    2017-05-22

    May 22, 2017 ... Comparison of Elasticity Values of the Right Lobe of the Liver of. Normal Weight and Morbidly Obese ... better than the other types for diffuse organ diseases. Another advantage of shear wave ... 20 ¦ Issue 5 ¦ May 2017. Aksoy, et al.: The elasticity of the liver of normal weighted and morbid obese patients.

  8. Sheared Electroconvective Instability

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  9. Electronic, elastic and optical properties of ZnGeP{sub 2} semiconductor under hydrostatic pressures

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, S.K.; Kumar, V., E-mail: vkumar52@hotmail.com

    2014-03-15

    The electronic, elastic and optical properties of zinc germanium phosphide, ZnGeP{sub 2}, semiconductor have been studied using local density approximation (LDA) method within the density functional theory (DFT). The lattice constants (a and c), band structure, density of states (DOS), bulk modulus (B) and pressure derivative of bulk modulus (B′) have been discussed. The value of pseudo-direct band gap (E{sub g}) at Γ point has been calculated. The pressure dependences of elastic stiffness coefficients (C{sub ij}), Zener anisotropy factor (A), Poisson's ratio (ν), Young modulus (Y) and shear modulus (G) have also been calculated. The ratio of B/G shows that that ZnGeP{sub 2} is ductile in nature. The optical properties have been discussed in detail under three different pressures in the energy range 0–22 eV. The calculated values of all parameters are compared with the available experimental values and the values reported by different workers. Reasonably good agreement has been obtained between them.

  10. Effect of fluid elasticity on the numerical stability of high-resolution schemes for high shearing contraction flows using OpenFOAM

    Directory of Open Access Journals (Sweden)

    T. Chourushi

    2017-01-01

    Full Text Available Viscoelastic fluids due to their non-linear nature play an important role in process and polymer industries. These non-linear characteristics of fluid, influence final outcome of the product. Such processes though look simple are numerically challenging to study, due to the loss of numerical stability. Over the years, various methodologies have been developed to overcome this numerical limitation. In spite of this, numerical solutions are considered distant from accuracy, as first-order upwind-differencing scheme (UDS is often employed for improving the stability of algorithm. To elude this effect, some works been reported in the past, where high-resolution-schemes (HRS were employed and Deborah number was varied. However, these works are limited to creeping flows and do not detail any information on the numerical stability of HRS. Hence, this article presents the numerical study of high shearing contraction flows, where stability of HRS are addressed in reference to fluid elasticity. Results suggest that all HRS show some order of undue oscillations in flow variable profiles, measured along vertical lines placed near contraction region in the upstream section of domain, at varied elasticity number E≈5. Furthermore, by E, a clear relationship between numerical stability of HRS and E was obtained, which states that the order of undue oscillations in flow variable profiles is directly proportional to E.

  11. How to keep your pants on: historic metamaterials and elasticity before the invention of elastic

    Science.gov (United States)

    Matsumoto, Elisabetta A.; Mahadevan, L.

    2015-03-01

    How do you create stretching from an inextensible material? Remarkably, the centuries-old embroidery technique known as smocking accomplishes just this. With the recent explosion of origami-based engineering, the search is on for a set of design principles to generate materials with prescribed mechanical properties. This quickly becomes a complex mathematical question due to the strict constraints of rigid origami imposed by the inextensibility of paper. Softening these constraints by considering woven fabrics, which have two orthogonal inextensible directions and a skewed soft shear mode, opens up a zoo of possible configurations. We explore the emergence of elastic properties in smocked fabrics as functions of both fabric elasticity and smocking pattern.

  12. Marangoni elasticity of flowing soap films

    OpenAIRE

    Kim, Ildoo; Mandre, Shreyas

    2016-01-01

    We measure the Marangoni elasticity of a flowing soap film to be 22 dyne/cm irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows non-destructive measurement of flowing soap film elasticity, and the value 22 dyne/cm ...

  13. First-principles calculations of structural, elastic, and electronic properties of trigonal ZnSnO{sub 3} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi-Jun, E-mail: qijunliu@home.swjtu.edu.cn [School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031 (China); Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Qin, Han; Jiao, Zhen; Liu, Fu-Sheng [School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031 (China); Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Liu, Zheng-Tang [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China)

    2016-09-01

    First-principles calculations of the structural, elastic, mechanical and electronic properties of ilmenite-type ZnSnO{sub 3} under pressure have been investigated in the present paper. Our calculated lattice constants at zero pressure are in agreement with the published theoretical and experimental data. The elastic constants at zero and high pressure have been obtained, which are used to discuss the mechanical stability of ilmenite-type ZnSnO{sub 3}. The mechanical properties such as bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio under pressure have been studied. Electronic properties show that ilmenite-type ZnSnO{sub 3} is shown to be a direct bandgap of 1.063 (GGA-PW91)/3.977 (PBE0) eV. The bandgap increases with the increasing pressure. Moreover, the partial density of states has been analyzed to explain the increased bandgap. - Highlights: • Physical properties of ilmenite-type ZnSnO{sub 3} under pressure have been investigated. • Ilmenite-type ZnSnO{sub 3} behaves in a ductile manner. • Ilmenite-type ZnSnO{sub 3} is a direct bandgap compound with 3.977 eV. • Bandgap of Ilmenite-type ZnSnO{sub 3} increases with the increasing pressure.

  14. Etude hydromecanique d'une fracture en cisaillement sous contrainte normale constante

    Science.gov (United States)

    Lamontagne, Eric

    This research study deals with the effects of shear direction and injection flow rate on the flow directional anisotropy for a given normal stress. It presents experimental works on hydromechanical shear behaviour of a fracture under constant normal stress conditions that permits the characterisation of the intrinsic hydraulic transmissivity in relation with the directional anisotropy of the roughness morphology on the fracture surfaces. Tests were performed on mortar replicas of a natural fracture so that the fracture roughness and void space geometry were kept the same for each test. The experimental work program was performed through direct shear tests on the fracture replicas in four shear directions under four constant normal stress levels. The application of the normal stress was followed by several injections of fluid under constant flow rate. Then, for each defined shear displacement, several injections of fluid were done at different flow rate but under constant flow rate. The test results show that: (1) for the whole shear tests, the global intrinsic transmissivity is included within an enveloping zone of about one order of size. The transmissivity curves within the enveloping zone has a particularity to increase about two orders of size in the first millimetre of shear displacement and subsequently stabilised rapidly; (2) the highest dilatancy do not correspond necessarily with the highest intrinsic transmissivity so that, the behaviour of the global intrinsic transmissivity is not directly proportional to the fracture dilatancy during shear; (3) after the peak shear stress, the divergence is more marked between the global intrinsic transmissivity curves at various flow rate; (4) after peak shear strength and the beginning of asperity degradation, the gradual passage to residual friction shear behaviour causes a directional flow anisotropy and a reorientation of the flow chenalisation direction sub perpendicularly to the shear direction; (5) the

  15. Instabilities in dynamic anti-plane sliding of an elastic layer on a dissimilar elastic half-space

    Science.gov (United States)

    Kunnath, R.

    2012-12-01

    The stability of dynamic anti-plane sliding at an interface between an elastic layer and an elastic half-space with dissimilar elastic properties is studied. Friction at the interface is assumed to follow a rate- and state-dependent law, with a positive instantaneous dependence on slip velocity and a rate weakening behavior in the steady state. The perturbations are of the form exp(ikx+pt), where k is the wavenumber, x is the coordinate along the interface, p is the time response to the perturbation and t is time. The results of the stability analysis are shown in Figs. 1 and 2 with the velocity weakening parameter b/a=5, shear wave speed ratio cs'/cs=1.2, shear modulus ratio μ'/μ=1.2 and non-dimensional layer thickness H=100. The normalized instability growth rate and normalized phase velocity are plotted as a function of wavenumber. Fig.1 is for a non-dimensional unperturbed slip velocity ɛ=5 (rapid sliding) while Fig. 2 is for ɛ=0.05 (slow sliding). The results show the destabilization of interfacial waves. For slow sliding, destabilization of interfacial waves is still seen, indicating that the quasi-static approximation to slow sliding is not valid. This is in agreement with the result of Ranjith (Int. J. Solids and Struct., 2009, 46, 3086-3092) who predicted an instability of long-wavelength Love waves in slow sliding.

  16. A new dedicated finite element for push-over analysis of reinforced concrete shear wall systems

    Directory of Open Access Journals (Sweden)

    Delal Doğru ORMANCI

    2016-06-01

    Full Text Available In this study, a finite element which has been analyzed based on anisotropic behavior of reinforced shear walls is developed. Element stiffness matrices were varied based on whether the element is in the tension or the compression zone of the cross-section. Nonlinear behavior of reinforced shear wall model is investigated under horizontal loads. This behavior is defined with a similar approach to plastic hinge assumption in frame structures that the finite element behaves lineer elastic between joints and plastic deformations are concentrated on joints as vertical plastic displacements. According to this acceptance, plastic behavior of reinforced shear wall occurs when the vertical strain reaches elastic strain limit. In the definition of finite element, displacement functions are chosen considering that the partition of shear walls just at floor levels, are enough for solution. Results of this study are compared with the solution obtained from a different computer programme and experimental results.

  17. First-principles calculations for elastic properties of OsB2 under pressure

    International Nuclear Information System (INIS)

    Yang Junwei; Chen Xiangrong; Luo Fen; Ji Guangfu

    2009-01-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.

  18. First-principles calculations for elastic properties of OsB 2 under pressure

    Science.gov (United States)

    Yang, Jun-Wei; Chen, Xiang-Rong; Luo, Fen; Ji, Guang-Fu

    2009-11-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.

  19. Hydrodynamic mobility of a sphere moving on the centerline of an elastic tube

    Science.gov (United States)

    Daddi-Moussa-Ider, Abdallah; Lisicki, Maciej; Gekle, Stephan

    2017-11-01

    Elastic channels are an important component of many soft matter systems, in which hydrodynamic interactions with confining membranes determine the behavior of particles in flow. In this work, we derive analytical expressions for Green's functions associated with a point-force (Stokeslet) directed parallel or perpendicular to the axis of an elastic cylindrical channel exhibiting resistance against shear and bending. We then compute the leading order self- and pair mobility functions of particles on the cylinder axis, finding that the mobilities are primarily determined by membrane shear and that bending does not play a significant role. In the quasi-steady limit of vanishing frequency, the particle self- and pair mobilities near a no-slip hard cylinder are recovered only if the membrane possesses a non-vanishing shear rigidity. We further compute the membrane deformation, finding that deformation is generally more pronounced in the axial (radial) directions, for the motion along (perpendicular to) the cylinder centerline, respectively. Our analytical calculations for Green's functions in an elastic cylinder can serve as a fundamental building block for future studies and are verified by fully resolved boundary integral simulations where very good agreement is obtained.

  20. Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic

    Directory of Open Access Journals (Sweden)

    John D. Clayton

    2014-07-01

    Full Text Available A nonlinear continuum phase field theory is developed to describe amorphization of crystalline elastic solids under shear and/or pressure loading. An order parameter describes the local degree of crystallinity. Elastic coefficients can depend on the order parameter, inelastic volume change may accompany the transition from crystal to amorphous phase, and transitional regions parallel to bands of amorphous material are penalized by interfacial surface energy. Analytical and simple numerical solutions are obtained for an idealized isotropic version of the general theory, for an element of material subjected to compressive and/or shear loading. Solutions compare favorably with experimental evidence and atomic simulations of amorphization in boron carbide, demonstrating the tendency for structural collapse and strength loss with increasing shear deformation and superposed pressure.

  1. Quantitative Lesion-to-Fat Elasticity Ratio Measured by Shear-Wave Elastography for Breast Mass: Which Area Should Be Selected as the Fat Reference?

    Science.gov (United States)

    Youk, Ji Hyun; Son, Eun Ju; Gweon, Hye Mi; Han, Kyung Hwa; Kim, Jeong-Ah

    2015-01-01

    To investigate whether the diagnostic performance of lesion-to-fat elasticity ratio (Eratio) was affected by the location of the reference fat. For 257 breast masses in 250 women who underwent shear-wave elastography before biopsy or surgery, multiple Eratios were measured with a fixed region-of-interest (ROI) in the mass along with multiple ROIs over the surrounding fat in different locations. Logistic regression analysis was used to determine that Eratio was independently associated with malignancy adjusted for the location of fat ROI (depth, laterality, and distance from lesion or skin). Mean (Emean) and maximum (Emax) elasticity values of fat were divided into four groups according to their interquartile ranges. Diagnostic performance of each group was evaluated using the area under the ROC curve (AUC). False diagnoses of Eratio were reviewed for ROIs on areas showing artifactual high or low stiffness and analyzed by logistic regression analysis to determine variables (associated palpable abnormality, lesion size, the vertical distance from fat ROI to skin, and elasticity values of lesion or fat) independently associated with false results. Eratio was independently associated with malignancy adjusted for the location of fat ROI (P<0.0001). Among four groups of fat elasticity values, the AUC showed no significant difference (<25th percentile, 25th percentile~median, median~75th percentile, and ≥75th percentile; 0.973, 0.982, 0.967, and 0.954 for Emean; 0.977, 0.967, 0.966, and 0.957 for Emax). Fat elasticity values were independently associated with false results of Eratio with the cut-off of 3.18 from ROC curve (P<0.0001). ROIs were set on fat showing artifactual high stiffness in 90% of 10 false negatives and on lesion showing vertical striped artifact or fat showing artifactual low stiffness in 77.5% of 71 false positives. Eratio shows good diagnostic performance regardless of the location of reference fat, except when it is placed in areas of artifacts.

  2. Quantitative Lesion-to-Fat Elasticity Ratio Measured by Shear-Wave Elastography for Breast Mass: Which Area Should Be Selected as the Fat Reference?

    Directory of Open Access Journals (Sweden)

    Ji Hyun Youk

    Full Text Available To investigate whether the diagnostic performance of lesion-to-fat elasticity ratio (Eratio was affected by the location of the reference fat.For 257 breast masses in 250 women who underwent shear-wave elastography before biopsy or surgery, multiple Eratios were measured with a fixed region-of-interest (ROI in the mass along with multiple ROIs over the surrounding fat in different locations. Logistic regression analysis was used to determine that Eratio was independently associated with malignancy adjusted for the location of fat ROI (depth, laterality, and distance from lesion or skin. Mean (Emean and maximum (Emax elasticity values of fat were divided into four groups according to their interquartile ranges. Diagnostic performance of each group was evaluated using the area under the ROC curve (AUC. False diagnoses of Eratio were reviewed for ROIs on areas showing artifactual high or low stiffness and analyzed by logistic regression analysis to determine variables (associated palpable abnormality, lesion size, the vertical distance from fat ROI to skin, and elasticity values of lesion or fat independently associated with false results.Eratio was independently associated with malignancy adjusted for the location of fat ROI (P<0.0001. Among four groups of fat elasticity values, the AUC showed no significant difference (<25th percentile, 25th percentile~median, median~75th percentile, and ≥75th percentile; 0.973, 0.982, 0.967, and 0.954 for Emean; 0.977, 0.967, 0.966, and 0.957 for Emax. Fat elasticity values were independently associated with false results of Eratio with the cut-off of 3.18 from ROC curve (P<0.0001. ROIs were set on fat showing artifactual high stiffness in 90% of 10 false negatives and on lesion showing vertical striped artifact or fat showing artifactual low stiffness in 77.5% of 71 false positives.Eratio shows good diagnostic performance regardless of the location of reference fat, except when it is placed in areas of

  3. Multi-Channel Optical Coherence Elastography Using Relative and Absolute Shear-Wave Time of Flight

    DEFF Research Database (Denmark)

    Elyas, Eli; Grimwood, Alex; Erler, Janine Terra

    2017-01-01

    a commercial four-channel swept-source OCT system. Shear-wave time of arrival (TOA) was detected by tracking the axial OCT-speckle motion using cross-correlation methods. Shear-wave speed was then calculated from inter-channel differences of TOA for a single burst (the relative TOA method) and compared......Elastography, the imaging of elastic properties of soft tissues, is well developed for macroscopic clinical imaging of soft tissues and can provide useful information about various pathological processes which is complementary to that provided by the original modality. Scaling down...... of this technique should ply the field of cellular biology with valuable information with regard to elastic properties of cells and their environment. This paper evaluates the potential to develop such a tool by modifying a commercial optical coherence tomography (OCT) device to measure the speed of shear waves...

  4. Shear-induced partial translational ordering of a colloidal solid

    Science.gov (United States)

    Ackerson, B. J.; Clark, N. A.

    1984-08-01

    Highly charged submicrometer plastic spheres suspended in water at low ionic strength will order spontaneously into bcc crystals or polycrystals. A simple linear shear orients and disorders these crystals by forcing (110) planes to stack normal to the shear gradient and to slide relative to each other with a direction parallel to the solvent flow. In this paper we analyze in detail the disordering and flow processes occurring beyond the intrinsic elastic limit of the bcc crystal. We are led to a model in which the flow of a colloidal crystal is interpreted as a fundamentally different process from that found in atomic crystals. In the colloidal crystal the coupling of particle motion to the background fluid forces a homogeneous flow, where every layer is in motion relative to its neighboring layers. In contrast, the plastic flow in an atomic solid is defect mediated flow. At the lowest applied stress, the local bcc order in the colloidal crystal exhibits shear strains both parallel and perpendicular to the direction of the applied stress. The magnitude of these deformations is estimated using the configurational energy for bcc and distorted bcc crystals, assuming a screened Coulomb pair interaction between colloidal particles. As the applied stress is increased, the intrinsic elastic limit of the crystal is exceeded and the crystal begins to flow with adjacent layers executing an oscillatory path governed by the balance of viscous and screened Coulomb forces. The path takes the structure from the bcc1 and bcc2 twins observed at zero shear to a distorted two-dimensional hcp structure at moderate shear rates, with a loss of interlayer registration as the shear is increased. This theoretical model is consistent with other experimental observations, as well.

  5. Piezoelectric excitation of elastic waves in centrosymmetrical potassium tantalate crystal

    International Nuclear Information System (INIS)

    Smolenskij, G.A.; Lemanov, V.V.; Sotnikov, A.V.; Syrnikov, P.P.; Yushin, N.K.

    1981-01-01

    Experiment results on excitation of elastic oscillations in potassium tantalate crystals are considered. The experiment has been conducted by usual for supersonic measurements technique: an impulse of the variable electric field has been applied to one of plane-parallel sample end-faces, at the same end-face signals corresponding to elastic pulses propagating in the crystal have been detected. Basic radiopulses parameters: basic frequency 30 MHz, duration 1-2 μs, pulse recurrence frequency 500 Hz, power 10 W. The investigation carried out has shown that the application to the sample at T=80 K temperature of constant external electrical field parallel to direction of elastic wave propagation leads to hysteresis dependence of elastic waves amplitude on the external voltage value. With temperature increase the hysteresis loop is deformed. It has been found when investigating temperature dependence of elastic wave amplitude that in the absence of external constant electrical field in short-circuited by constant current samples the oxillation excitation effect disappears at T approximately equal to 200 K. An essential influence on the elastic wave amplitude value is exerted by illumination of the crystal surface by light with 360-630 nm wave length. At T 130 K bacaee of photovoltaic effect in illuminated samples [ru

  6. Structural, elastic and electronic properties of C14-type Al{sub 2}M (M=Mg, Ca, Sr and Ba) Laves phases

    Energy Technology Data Exchange (ETDEWEB)

    Lishi, Ma; Yonghua, Duan, E-mail: duanyh@kmust.edu.cn; Runyue, Li

    2017-02-15

    The structural and mechanical properties, Debye temperatures and anisotropic sound velocities of the Laves phases Al{sub 2}M (M=Mg, Ca, Sr and Ba) with C14-type structure were investigated using the first-principles corresponding calculations. The corresponding calculated structural parameters and formation enthalpies are in good agreement with the available theoretical values, and Al{sub 2}Ca has the best phase stability. The mechanical properties, including elastic constants, bulk modulus B, shear modulus G, Young’s modulus E, and Poisson ratio ν, were deduced within the Voigt-Reuss-Hill approximation. The brittleness and ductility were estimated by the values of Poisson ratio, B/G and Cauchy pressure. Moreover, the elastic anisotropy was investigated by calculating and discussing several anisotropy indexes. Finally, the electronic structures were used to illustrate the bonding characteristics of C14-Al{sub 2}M (M=Mg, Ca, Sr and Ba) phases.

  7. Remarks on orthotropic elastic models applied to wood

    Directory of Open Access Journals (Sweden)

    Nilson Tadeu Mascia

    2006-09-01

    Full Text Available Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal, R( radial and T(tangential are coincident with the Cartesian axes (x, y, z, is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young´s modulus and shear modulus, with fiber orientation are presented.

  8. Resolution of axial shear strain elastography

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Righetti, Raffaella; Krouskop, Thomas A; Ophir, Jonathan

    2006-01-01

    The technique of mapping the local axial component of the shear strain due to quasi-static axial compression is defined as axial shear strain elastography. In this paper, the spatial resolution of axial shear strain elastography is investigated through simulations, using an elastically stiff cylindrical lesion embedded in a homogeneously softer background. Resolution was defined as the smallest size of the inclusion for which the strain value at the inclusion/background interface was greater than the average of the axial shear strain values at the interface and inside the inclusion. The resolution was measured from the axial shear strain profile oriented at 45 0 to the axis of beam propagation, due to the absence of axial shear strain along the normal directions. The effects of the ultrasound system parameters such as bandwidth, beamwidth and transducer element pitch along with signal processing parameters such as correlation window length (W) and axial shift (ΔW) on the estimated resolution were investigated. The results show that the resolution (at 45 0 orientation) is determined by the bandwidth and the beamwidth. However, the upper bound on the resolution is limited by the larger of the beamwidth and the window length, which is scaled inversely to the bandwidth. The results also show that the resolution is proportional to the pitch and not significantly affected by the axial window shift

  9. Thermal convection of viscoelastic shear-thinning fluids

    International Nuclear Information System (INIS)

    Albaalbaki, Bashar; Khayat, Roger E; Ahmed, Zahir U

    2016-01-01

    The Rayleigh–Bénard convection for non-Newtonian fluids possessing both viscoelastic and shear-thinning behaviours is examined. The Phan-Thien–Tanner (PTT) constitutive equation is implemented to model the non-Newtonian character of the fluid. It is found that while the shear-thinning and viscoelastic effects could annihilate one another for the steady roll flow, presence of both behaviours restricts the roll stability limit significantly compared to the cases when the fluid is either inelastic shear-thinning or purely viscoelastic with constant viscosity. (paper)

  10. Real-time shear wave elastography may predict autoimmune thyroid disease.

    Science.gov (United States)

    Vlad, Mihaela; Golu, Ioana; Bota, Simona; Vlad, Adrian; Timar, Bogdan; Timar, Romulus; Sporea, Ioan

    2015-05-01

    To evaluate and compare the values of the elasticity index as measured by shear wave elastography in healthy subjects and in patients with autoimmune thyroid disease, in order to establish if this investigation can predict the occurrence of autoimmune thyroid disease. A total of 104 cases were included in the study group: 91 women (87.5%), out of which 52 (50%) with autoimmune thyroid disease diagnosed by specific tests and 52 (50%) healthy volunteers, matched for age and gender. For all the subjects, three measurements were performed on each thyroid lobe and a mean value was calculated. The data were expressed in kPa. The investigation was performed with an Aixplorer system (SuperSonic Imagine, France), using a linear high-resolution 15-4 MHz transducer. The mean value for the elasticity index was similar in the right and the left thyroid lobes, both in normal subjects and in patients with autoimmune thyroid disease: 19.6 ± 6.6 vs. 19.5 ± 6.8 kPa, p = 0.92, and 26.6 ± 10.0 vs. 25.8 ± 11.7 kPa, p = 0.71, respectively. This parameter was significantly higher in patients with autoimmune thyroid disease than in controls (p < 0.001). For a cut-off value of 22.3 kPa, which resulted in the highest sum of sensitivity and specificity, the elasticity index assessed by shear wave elastography had a sensitivity of 59.6% and a specificity of 76.9% (AUROC = 0.71; p < 0.001) for predicting the presence of autoimmune thyroid disease. Quantitative elasticity index measured by shear wave elastography was significantly higher in autoimmune thyroid disease than in normal thyroid parenchyma and may predict the presence of autoimmune thyroid disease.

  11. Temperature-dependent elastic properties of Ti{sub 1−x}Al{sub x}N alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shulumba, Nina [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Functional Materials, Saarland University, D-66123 Saarbrücken (Germany); Hellman, Olle [Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125 (United States); Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Rogström, Lina; Raza, Zamaan; Tasnádi, Ferenc; Odén, Magnus [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Abrikosov, Igor A. [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Materials Modeling and Development Laboratory, NUST “MISIS,” 119049 Moscow (Russian Federation); LACOMAS Laboratory, Tomsk State University, 634050 Tomsk (Russian Federation)

    2015-12-07

    Ti{sub 1−x}Al{sub x}N is a technologically important alloy that undergoes a process of high temperature age-hardening that is strongly influenced by its elastic properties. We have performed first principles calculations of the elastic constants and anisotropy using the symmetry imposed force constant temperature dependent effective potential method, which include lattice vibrations and therefore the effects of temperature, including thermal expansion and intrinsic anharmonicity. These are compared with in situ high temperature x-ray diffraction measurements of the lattice parameter. We show that anharmonic effects are crucial to the recovery of finite temperature elasticity. The effects of thermal expansion and intrinsic anharmonicity on the elastic constants are of the same order, and cannot be considered separately. Furthermore, the effect of thermal expansion on elastic constants is such that the volume change induced by zero point motion has a significant effect. For TiAlN, the elastic constants soften non-uniformly with temperature: C{sub 11} decreases substantially when the temperature increases for all compositions, resulting in an increased anisotropy. These findings suggest that an increased Al content and annealing at higher temperatures will result in a harder alloy.

  12. How Credible Are Shrinking Wage Elasticities of Married Women Labour Supply?

    Directory of Open Access Journals (Sweden)

    Duo Qin

    2015-12-01

    Full Text Available This paper delves into the well-known phenomenon of shrinking wage elasticities for married women in the US over recent decades. The results of a novel model experimental approach via sample data ordering unveil considerable heterogeneity across different wage groups. Yet, surprisingly constant wage elasticity estimates are maintained within certain wage groups over time. In addition to those constant wage elasticity estimates, we find that the composition of working women into different wage groups has changed considerably, resulting in shrinking wage elasticity estimates at the aggregate level. These findings would be impossible to obtain had we not dismantled and discarded the instrumental variable estimation route.

  13. Influence of Elastic Anisotropy on Extended Dislocation Nodes

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, B

    1971-09-15

    The interaction forces between the partial dislocations forming an extended dislocation node are calculated using elasticity theory for anisotropic media.s are carried out for nodes of screw, edge and mixed character in Ag, which has an anisotropy ratio A equal to 3, and in a hypothetic material with A = 1 and the same shear modulus as Ag. The results are compared with three previous theories using isotropic elasticity theory. As expected, in Ag the influence of anisotropy is of the same order as the uncertainty due to the dislocation core energy

  14. Rayleigh wave effects in an elastic half-space.

    Science.gov (United States)

    Aggarwal, H. R.

    1972-01-01

    Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.

  15. Effect of Calcifications on Breast Ultrasound Shear Wave Elastography: An Investigational Study.

    Science.gov (United States)

    Gregory, Adriana; Mehrmohammadi, Mohammad; Denis, Max; Bayat, Mahdi; Stan, Daniela L; Fatemi, Mostafa; Alizad, Azra

    2015-01-01

    To investigate the effects of macrocalcifications and clustered microcalcifications associated with benign breast masses on shear wave elastography (SWE). SuperSonic Imagine (SSI) and comb-push ultrasound shear elastography (CUSE) were performed on three sets of phantoms to investigate how calcifications of different sizes and distributions influence measured elasticity. To demonstrate the effect in vivo, three female patients with benign breast masses associated with mammographically-identified calcifications were evaluated by CUSE. Apparent maximum elasticity (Emax) estimates resulting from individual macrocalcifications (with diameters of 2mm, 3mm, 5mm, 6mm, 9mm, 11mm, and 15mm) showed values over 50 kPa for all cases, which represents more than 100% increase over background (~21kPa). We considered a 2cm-diameter circular region of interest for all phantom experiments. Mean elasticity (Emean) values varied from 26 kPa to 73 kPa, depending on the macrocalcification size. Highly dense clusters of microcalcifications showed higher Emax values than clusters of microcalcification with low concentrations, but the difference in Emean values was not significant. Our results demonstrate that the presence of large isolated macrocalcifications and highly concentrated clusters of microcalcifications can introduce areas with apparent high elasticity in SWE. Considering that benign breast masses normally have significantly lower elasticity values than malignant tumors, such areas with high elasticity appearing due to presence of calcification in benign breast masses may lead to misdiagnosis.

  16. Effect of Calcifications on Breast Ultrasound Shear Wave Elastography: An Investigational Study.

    Directory of Open Access Journals (Sweden)

    Adriana Gregory

    Full Text Available To investigate the effects of macrocalcifications and clustered microcalcifications associated with benign breast masses on shear wave elastography (SWE.SuperSonic Imagine (SSI and comb-push ultrasound shear elastography (CUSE were performed on three sets of phantoms to investigate how calcifications of different sizes and distributions influence measured elasticity. To demonstrate the effect in vivo, three female patients with benign breast masses associated with mammographically-identified calcifications were evaluated by CUSE.Apparent maximum elasticity (Emax estimates resulting from individual macrocalcifications (with diameters of 2mm, 3mm, 5mm, 6mm, 9mm, 11mm, and 15mm showed values over 50 kPa for all cases, which represents more than 100% increase over background (~21kPa. We considered a 2cm-diameter circular region of interest for all phantom experiments. Mean elasticity (Emean values varied from 26 kPa to 73 kPa, depending on the macrocalcification size. Highly dense clusters of microcalcifications showed higher Emax values than clusters of microcalcification with low concentrations, but the difference in Emean values was not significant.Our results demonstrate that the presence of large isolated macrocalcifications and highly concentrated clusters of microcalcifications can introduce areas with apparent high elasticity in SWE. Considering that benign breast masses normally have significantly lower elasticity values than malignant tumors, such areas with high elasticity appearing due to presence of calcification in benign breast masses may lead to misdiagnosis.

  17. Empirical correlation among the dynamic elastic constants and the waves P and S velocities in rocks; Correlaciones empiricas entre las constantes elasticas dinamicas y las velocidades de las ondas P y S de las rocas

    Energy Technology Data Exchange (ETDEWEB)

    Contreras Lopez, Enrique [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-12-31

    Departing from the analysis of a data base on the velocities of the compression waves (V{sub p}) and the transverse waves (V{sub s}) in a group of 97 specimens of sedimentary, igneous and metamorphic rocks, the existence of four types of empirical correlation very well entailed between the dynamic elastic constants and the velocities V{sub p} and V{sub s}. These correlation allow the estimation with a very close approximation the elastic dynamic constants without the need of having available of the complete set of data (V{sub p}, V{sub s} and total density) that is normally required for its determination. The identified correlation is mathematically expressed by means of adjustment equations that reproduce in all of the cases the experimental values with a standard error of estimation within 10%, for the universe of rocks studied and with much less error for different specific lithological groups. The application methodologies of the correlation found for different cases of practical interest, are described. [Espanol] A partir del analisis de una base de datos experimentales sobre la velocidad de las ondas compresionales (V{sub p}) y de las ondas transversales (V{sub s}) de un conjunto de 97 especimenes de rocas sedimentarias, igneas y metamorficas, se identifica la existencia de cuatro tipos de correlaciones empiricas muy bien comportadas entre las constantes elasticas dinamicas y las velocidades V{sub p} y V{sub s}. Estas correlaciones permiten estimar con muy buena aproximacion las constantes elasticas dinamicas de las rocas sin tener que disponer del conjunto completo de datos (V{sub p}, V{sub s} y densidad total) que normalmente se requieren para su determinacion. Las correlaciones identificadas se expresan matematicamente mediante ecuaciones de ajuste que reproducen en todos los casos los valores experimentales con un error estandar de estimacion dentro de 10% para el universo de las rocas estudiadas, y con mucho menor error para diferentes grupos litologicos

  18. Empirical correlation among the dynamic elastic constants and the waves P and S velocities in rocks; Correlaciones empiricas entre las constantes elasticas dinamicas y las velocidades de las ondas P y S de las rocas

    Energy Technology Data Exchange (ETDEWEB)

    Contreras Lopez, Enrique [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    Departing from the analysis of a data base on the velocities of the compression waves (V{sub p}) and the transverse waves (V{sub s}) in a group of 97 specimens of sedimentary, igneous and metamorphic rocks, the existence of four types of empirical correlation very well entailed between the dynamic elastic constants and the velocities V{sub p} and V{sub s}. These correlation allow the estimation with a very close approximation the elastic dynamic constants without the need of having available of the complete set of data (V{sub p}, V{sub s} and total density) that is normally required for its determination. The identified correlation is mathematically expressed by means of adjustment equations that reproduce in all of the cases the experimental values with a standard error of estimation within 10%, for the universe of rocks studied and with much less error for different specific lithological groups. The application methodologies of the correlation found for different cases of practical interest, are described. [Espanol] A partir del analisis de una base de datos experimentales sobre la velocidad de las ondas compresionales (V{sub p}) y de las ondas transversales (V{sub s}) de un conjunto de 97 especimenes de rocas sedimentarias, igneas y metamorficas, se identifica la existencia de cuatro tipos de correlaciones empiricas muy bien comportadas entre las constantes elasticas dinamicas y las velocidades V{sub p} y V{sub s}. Estas correlaciones permiten estimar con muy buena aproximacion las constantes elasticas dinamicas de las rocas sin tener que disponer del conjunto completo de datos (V{sub p}, V{sub s} y densidad total) que normalmente se requieren para su determinacion. Las correlaciones identificadas se expresan matematicamente mediante ecuaciones de ajuste que reproducen en todos los casos los valores experimentales con un error estandar de estimacion dentro de 10% para el universo de las rocas estudiadas, y con mucho menor error para diferentes grupos litologicos

  19. Correlations between elastic moduli and properties in bulk metallic glasses

    International Nuclear Information System (INIS)

    Wang Weihua

    2006-01-01

    A survey of the elastic, mechanical, fragility, and thermodynamic properties of bulk metallic glasses (BMGs) and glass-forming liquids is presented. It is found that the elastic moduli of BMGs have correlations with the glass transition temperature, melting temperature, mechanical properties, and even liquid fragility. On the other hand, the elastic constants of available BMGs show a rough correlation with a weighted average of the elastic constants for the constituent elements. Although the theoretical and physical reasons for the correlations are to be clarified, these correlations could assist in understanding the long-standing issues of glass formation and the nature of glass and simulate the work of theorists. Based on the correlation, we show that the elastic moduli can assist in selecting alloying components for controlling the elastic properties and glass-forming ability of the BMGs and thus can guide BMG design. As case study, we report the formation of the families of rare-earth-based BMGs with controllable properties

  20. Pricing perpetual American options under multiscale stochastic elasticity of variance

    International Nuclear Information System (INIS)

    Yoon, Ji-Hun

    2015-01-01

    Highlights: • We study the effects of the stochastic elasticity of variance on perpetual American option. • Our SEV model consists of a fast mean-reverting factor and a slow mean-revering factor. • A slow scale factor has a very significant impact on the option price. • We analyze option price structures through the market prices of elasticity risk. - Abstract: This paper studies pricing the perpetual American options under a constant elasticity of variance type of underlying asset price model where the constant elasticity is replaced by a fast mean-reverting Ornstein–Ulenbeck process and a slowly varying diffusion process. By using a multiscale asymptotic analysis, we find the impact of the stochastic elasticity of variance on the option prices and the optimal exercise prices with respect to model parameters. Our results enhance the existing option price structures in view of flexibility and applicability through the market prices of elasticity risk

  1. Goods-Time Elasticity of Substitution in Health Production.

    Science.gov (United States)

    Du, Juan; Yagihashi, Takeshi

    2017-11-01

    We examine how inputs for health production, in particular, medical care and health-enhancing time, are combined to improve health. The estimated elasticity of substitution from a constant elasticity of substitution production function is significantly less than one for the working-age population, rejecting the unit elasticity of substitution used in previous studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Acoustic waves in unbounded shear flows

    International Nuclear Information System (INIS)

    Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.; Rogava, A.D.

    1996-05-01

    The linear evolution of acoustic waves in fluid flow with constant density and uniform shear of velocity is investigated. The process of the mean flow energy extraction by the three-dimensional acoustic waves which is due to the non-normality of linear dynamics in shear flows is analyzed. The thorough examination of the dynamics of different physical quantities, specifying the wave evolution, is outlined. The revealing of the behaviour becomes possible owing to the nonmodal approach that has been extensively used in the study of the perturbations evolution in shear flows since the beginning of the nineties. In addition, a detailed analyses of the physics of shear energy gain by vortex and acoustic perturbations is presented. (author). 28 refs, 7 figs

  3. Shear and loading in channels: Oscillatory shearing and edge currents of superconducting vortices

    Science.gov (United States)

    Wambaugh, J. F.; Marchesoni, F.; Nori, Franco

    2003-04-01

    Via computer simulations we study the motion of quantized magnetic flux-lines, or vortices, confined to a straight pin-free channel in a strong-pinning superconducting sample. We find that, when a constant current is applied across this system, a very unusual oscillatory shearing appears, in which the vortices moving at the edges of the channel periodically trail behind and then suddenly leapfrog past the vortices moving in the inner rows. For small enough driving forces, this oscillatory shearing dynamic phase is replaced by a continuous shearing phase in which the distance between initially-nearby vortices grows in time, quickly destroying the order of the lattice. An animation of this novel “oscillatory leapfrogging shear” effect of the vortex edge currents appears in http://www-personal.engin.umich.edu/˜nori/channel/

  4. Elastic properties of graphite and interstitial defects

    International Nuclear Information System (INIS)

    Ayasse, J.-B.

    1977-01-01

    The graphite elastic constants C 33 and C 44 , reflecting the interaction of the graphitic planes, were experimentally measured as a function of irradiation and temperature. A model of non-central strength atomic interaction was established to explain the experimental results obtained. This model is valid at zero temperature. The temperature dependence of the elastic properties was analyzed. The influence of the elastic property variations on the specific heat of the lattice at very low temperature was investigated [fr

  5. Evaluation of stress distribution due to shearing in non-oriented electrical steel by using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Yoshiaki Zaizen

    2016-05-01

    Full Text Available The influence of the shearing process on the iron loss of non-oriented electrical steels with grain sizes of 10 μm-150 μm was investigated. The deterioration ratio of iron loss was clearly smaller in sample with small grain sizes. The droop height, reflecting the amount of plastic deformation, displayed a good relationship with the deterioration of iron loss under the effect of the material grain size. To clarify the strain distribution around the sheared edge, the elastic strain in a sheet sample with the thickness of 0.30 mm and grain size of 10 μm was evaluated by using synchrotron radiation. The width of the region of elastic strain due to shearing was two or three times of the material thickness. The results of the plastic strain distribution obtained by the measurements were then used to estimate the iron loss deterioration rate in 5 mm width sheared samples. The estimated loss deteriotation coincided with the actual measured iron loss.

  6. Evaluation of stress distribution due to shearing in non-oriented electrical steel by using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zaizen, Yoshiaki, E-mail: y-zaizen@jfe-steel.co.jp; Omura, Takeshi; Senda, Kunihiro [Steel Research Laboratory, JFE Steel Corporation, Kawasakidori 1,Mizushima, Kurashiki,712-8511 (Japan); Fukumura, Masaru [Steel Research Laboratory, JFE Steel Corporation, Kawasaki, Kanagawa 210-0855 (Japan); Toda, Hiroaki [Steel Business Planning Dept, JFE Steel Corporation, Tokyo 100-0011 (Japan)

    2016-05-15

    The influence of the shearing process on the iron loss of non-oriented electrical steels with grain sizes of 10 μm-150 μm was investigated. The deterioration ratio of iron loss was clearly smaller in sample with small grain sizes. The droop height, reflecting the amount of plastic deformation, displayed a good relationship with the deterioration of iron loss under the effect of the material grain size. To clarify the strain distribution around the sheared edge, the elastic strain in a sheet sample with the thickness of 0.30 mm and grain size of 10 μm was evaluated by using synchrotron radiation. The width of the region of elastic strain due to shearing was two or three times of the material thickness. The results of the plastic strain distribution obtained by the measurements were then used to estimate the iron loss deterioration rate in 5 mm width sheared samples. The estimated loss deteriotation coincided with the actual measured iron loss.

  7. Marangoni elasticity of flowing soap films

    Science.gov (United States)

    Kim, Ildoo; Mandre, Shreyas

    2017-08-01

    We measure the Marangoni elasticity of a flowing soap film to be 22 mN/m irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed, and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows nondestructive measurement of flowing soap film elasticity and the value 22 mN/m is likely applicable to other similarly constructed flowing soap films.

  8. On the concept of elasticity used in some fast reactor accident analysis codes

    International Nuclear Information System (INIS)

    Malmberg, T.

    1975-01-01

    The analysis presented restricts attention to the elastic part of the elastic-plastic equation used in several Fast Reactor Accident Analysis Codes and originally applied by M.L. Wilkins: Calculation of Elastic-Plastic Flow, UCRL-7322, Rev. 1, Jan 1969. It is shown that the used elasticity concept is within the frame of hypo-elasticity. On the basis of a test found by Bernstein it is proven that the state of stress is generally depending on the path of deformation. Therefore this concept of elasticity is not compatible with finite elasticity. For several deformation processes this special hypo-elastic constitutive equation is integrated to give a stress-strain relation. The path-dependence of this relation is demonstrated. Further the phenomenon of hypo-elastic yield under shear deformation is pointed out. The relevance to modelling material behaviour in primary containment analysis is discussed. (Auth.)

  9. Haptic Edge Detection Through Shear

    Science.gov (United States)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  10. First-principles calculations for elastic properties of OsB{sub 2} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Yang Junwei [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Chen Xiangrong, E-mail: x.r.chen@tom.co [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 (China); Luo Fen [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Ji Guangfu [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900 (China)

    2009-11-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB{sub 2} are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB{sub 2} under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB{sub 2} tend to increase with increasing pressure. It is predicted that OsB{sub 2} is not a superhard material from our calculations.

  11. Elastic anisotropy and low-temperature thermal expansion in the shape memory alloy Cu-Al-Zn.

    Science.gov (United States)

    Kuruvilla, Santhosh Potharay; Menon, C S

    2008-04-01

    Cu-based shape memory alloys are known for their technologically important pseudo-elastic and shapememory properties, which are intimately associated with the martensitic transformation. A combination of deformation theory and finite-strain elasticity theory has been employed to arrive at the expressions for higher order elastic constants of Cu-Al-Zn based on Keating's approach. The second- and third-order elastic constants are in good agreement with the measurements. The aggregate elastic properties like bulk modulus, pressure derivatives, mode Grüneisen parameters of the elastic waves, low temperature limit of thermal expansion, and the Anderson-Grüneisen parameter are also presented.

  12. Simulations of a stretching bar using a plasticity model from the shear transformation zone theory

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris H.; Gibou, Frederic

    2010-06-05

    An Eulerian simulation is developed to study an elastoplastic model of amorphous materials that is based upon the shear transformation zone theory developed by Langer and coworkers. In this theory, plastic deformation is controlled by an effective temperature that measures the amount of configurational disorder in the material. The simulation is used to model ductile fracture in a stretching bar that initially contains a small notch, and the effects of many of the model parameters are examined. The simulation tracks the shape of the bar using the level set method. Within the bar, a finite difference discretization is employed that makes use of the essentially non-oscillatory (ENO) scheme. The system of equations is moderately stiff due to the presence of large elastic constants, and one of the key numerical challenges is to accurately track the level set and construct extrapolated field values for use in boundary conditions. A new approach to field extrapolation is discussed that is second order accurate and requires a constant amount of work per gridpoint.

  13. Nonlinear analysis of flexible plates lying on elastic foundation

    Directory of Open Access Journals (Sweden)

    Trushin Sergey

    2017-01-01

    Full Text Available This article describes numerical procedures for analysis of flexible rectangular plates lying on elastic foundation. Computing models are based on the theory of plates with account of transverse shear deformations. The finite difference energy method of discretization is used for reducing the initial continuum problem to finite dimensional problem. Solution procedures for nonlinear problem are based on Newton-Raphson method. This theory of plates and numerical methods have been used for investigation of nonlinear behavior of flexible plates on elastic foundation with different properties.

  14. Quantifying the Elastic Property of Nine Thigh Muscles Using Magnetic Resonance Elastography.

    Science.gov (United States)

    Chakouch, Mashhour K; Charleux, Fabrice; Bensamoun, Sabine F

    2015-01-01

    Pathologies of the muscles can manifest different physiological and functional changes. To adapt treatment, it is necessary to characterize the elastic property (shear modulus) of single muscles. Previous studies have used magnetic resonance elastography (MRE), a technique based on MRI technology, to analyze the mechanical behavior of healthy and pathological muscles. The purpose of this study was to develop protocols using MRE to determine the shear modulus of nine thigh muscles at rest. Twenty-nine healthy volunteers (mean age = 26 ± 3.41 years) with no muscle abnormalities underwent MRE tests (1.5 T MRI). Five MRE protocols were developed to quantify the shear moduli of the nine following thigh muscles at rest: rectus femoris (RF), vastus medialis (VM), vastus intermedius (VI), vastus lateralis (VL), sartorius (Sr), gracilis (Gr), semimembranosus (SM), semitendinosus (ST), and biceps (BC). In addition, the shear modulus of the subcutaneous adipose tissue was analyzed. The gracilis, sartorius, and semitendinosus muscles revealed a significantly higher shear modulus (μ_Gr = 6.15 ± 0.45 kPa, μ_ Sr = 5.15 ± 0.19 kPa, and μ_ ST = 5.32 ± 0.10 kPa, respectively) compared to other tissues (from μ_ RF = 3.91 ± 0.16 kPa to μ_VI = 4.23 ± 0.25 kPa). Subcutaneous adipose tissue had the lowest value (μ_adipose tissue = 3.04 ± 0.12 kPa) of all the tissues tested. The different elasticities measured between the tissues may be due to variations in the muscles' physiological and architectural compositions. Thus, the present protocol could be applied to injured muscles to identify their behavior of elastic property. Previous studies on muscle pathology found that quantification of the shear modulus could be used as a clinical protocol to identify pathological muscles and to follow-up effects of treatments and therapies. These data could also be used for modelling purposes.

  15. Determination of the dynamic elastic constants of recycled aggregate concrete

    Science.gov (United States)

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    Nowadays, construction and demolition waste constitutes a major portion of the total solid waste production in the world. Due to both environmental and economical reasons, an increasing interest concerning the use of recycled aggregate to replace aggregate from natural sources is generated. This paper presents an investigation on the properties of recycled aggregate concrete. Concrete mixes are prepared using recycled aggregates at a substitution level between 0 and 100% of the total coarse aggregate. The influence of this replacement on strengthened concrete's properties is being investigated. The properties estimated are: density and dynamic modulus of elasticity at the age of both 7 and 28 days. Also, flexural strength of 28 days specimens is estimated. The determination of the dynamic elastic modulus was made using the ultrasonic pulse velocity method. The results reveal that the existence of recycled aggregates affects the properties of concrete negatively; however, in low levels of substitution the influence of using recycled aggregates is almost negligible. Concluding, the controlled use of recycled aggregates in concrete production may help solve a vital environmental issue apart from being a solution to the problem of inadequate concrete aggregates.

  16. On transformation shear of precipitated zirconia particles

    International Nuclear Information System (INIS)

    Zhang, J.M.; Lam, K.Y.

    1993-01-01

    A model is proposed to investigate the transformation shear of the precipitated zirconia particles which undergo a stress-induced lattice transformation from tetragonal to monoclinic symmetry. Kinematically admissible twinning planes and the corresponding twinning elements are determined according to the continuum theory of dispacive phase transformation. It is postulated that only one twinning mode prevails in each transformed particle and that the minimization of elastic strain energy change dictates the morphology of the transformed variants. The transformation shear is determined by the twinning mode and the volume fraction of the corresponding variant. Numerical calculations show that each of the six kinematically admissible twinning modes may be kinematically favorable and therefore operate in constrained particle. The actual transformation shear in a transformed particle is shown to be dependent on the transformation stress, on the particle shape as well as on the lattice orientation relative to the principal axes of the ellipsoidal particle

  17. Elastic fiber-mediated enthesis in the human middle ear.

    Science.gov (United States)

    Kawase, Tetsuaki; Shibata, Shunichi; Katori, Yukio; Ohtsuka, Aiji; Murakami, Gen; Fujimiya, Mineko

    2012-10-01

    Adaptation to constant vibration (acoustic oscillation) is likely to confer a specific morphology at the bone-tendon and bone-ligament interfaces at the ear ossicles, which therefore represent an exciting target of enthesis research. We histologically examined (i) the bone attachments of the tensor tympani and stapedius muscles and (ii) the annular ligament of the incudostapedial joint obtained from seven elderly donated cadavers. Notably, both aldehyde-fuchsin and elastic-Masson staining demonstrated that the major fibrous component of the entheses was not collagen fibers but mature elastic fibers. The positive controls for elastic fiber staining were the arterial wall elastic laminae included in the temporal bone materials. The elastic fibers were inserted deeply into the type II collagen-poor fibrocartilage covering the ear ossicles. The muscle tendons were composed of an outer thin layer of collagen fibers and an inner thick core of elastic fibers near the malleus or stapes. In the unique elastic fiber-mediated entheses, hyaluronan, versican and fibronectin were expressed strongly along the elastic fibers. The hyaluronan seemed to act as a friction-reducing lubricant for the elastic fibers. Aggrecan was labeled strongly in a disk- or plica-like fibrous mass on the inner side of the elastic fiber-rich ligament, possibly due to compression stress from the ligament. Tenascin-c was not evident in the entheses. The elastic fiber-mediated entheses appeared resistant to tissue destruction in an environment exposed to constant vibration. The morphology was unlikely to be the result of age-related degeneration. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society.

  18. On the concept of elasticity used in some fast reactor accident analysis codes

    International Nuclear Information System (INIS)

    Malmberg, T.

    1975-01-01

    The analysis to be presented will restrict attention to the elastic part of the elastic-plastic constitutive equation used in several Fast Reactor Accident Analysis Codes and originally applied by M.L. Wilkins: Calculation of Elastic-Plastic Flow, UCRL-7322, Rev. 1, Jan. 1969. It is shown that the used elasticity concept is within the frame of hypo-elasticity. On the basis of a test found by Bernstein it is proven that the state of stress is generally depending on the path of deformation. Therefore this concept of elasticity is not compatible with finite elasticity. For several simple deformation processes this special hypo-elastic constitutive equation is integrated to give a stress-strain relation. The path-dependence of this relation is demonstrated. Further the phenomenon of hypo-elastic yield under shear deformation is pointed out. The relevance to modelling material behaviour in primary containment analysis is discussed

  19. Are the dynamics of silicate glasses and glass-forming liquids embedded in their elastic properties?

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Mauro, John C.

    According to the elastic theory of the glass transition, the dynamics of glasses and glass-forming liquids are controlled by the evolution of shear modulus. In particular, the elastic shoving model expresses dynamics in terms of an activation energy required to shove aside the surrounding atoms......, which is determined by the shear modulus. First, we here present an in situ high-temperature Brillouin spectroscopy test of the shoving model near the glass transition of eight aluminosilicate glass-forming systems. We find that the measured viscosity data agree qualitatively with the measured...... temperature dependence of shear moduli, as predicted by the shoving model. However, the model systematically underpredicts the values of fragility. Second, we also present a thorough test of the shoving model for predicting the low temperature dynamics of an aluminosilicate glass system. This is done...

  20. Structural, electronic, elastic and thermal properties of Li{sub 2}AgSb. First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ji-Hong [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Longdong Univ., Qingyang (China). College of Physics and Electronic Engineering; Zhu, Xu-Hui [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Sichuan Univ., Chengdu (China). Key Laboratory of High Energy Density Physics and Technology of Ministry of Education; Ji, Guang-Fu [Chinese Academy of Engineering Physics, Mianyang (China). National Key Laboratory of Shock Wave and Detonation Physics

    2015-07-01

    Based on the first-principles density functional theory calculations combined with the quasi-harmonic Debye model, the pressure dependencies of the structural, elastic, electronic and thermal properties of Li{sub 2}AgSb were systematically investigated. The calculated lattice parameters and unit cell volume of Li{sub 2}AgSb at the ground state were in good agreement with the available experimental data. The obtained elastic constants, the bulk modulus and the shear modulus revealed that Li{sub 2}AgSb is mechanically stable and behaves in a ductile manner under the applied pressure. The elasticity-relevant properties, the Young's modulus and the Poisson's ratio showed that pressure can enhance the stiffness of Li{sub 2}AgSb and that Li{sub 2}AgSb is mechanically stable up to 20 GPa. The characteristics of the band structure and the partial density of states of Li{sub 2}AgSb were analysed, showing that Li{sub 2}AgSb is a semiconductor with a direct band gap of 217 meV at 0 GPa and that the increasing pressure can make the band structure of Li{sub 2}AgSb become an indirect one. Studies have shown that, unlike temperature, pressure has little effect on the heat capacity and the thermal expansion coefficient of Li{sub 2}AgSb.

  1. Elastic properties of Fe-bearing wadsleyite at high pressures

    Science.gov (United States)

    Mao, Z.; Jacobsen, S. D.; Jiang, F.; Smyth, J. R.; Holl, C. M.; Frost, D. J.; Duffy, T.

    2009-12-01

    The elastic properties of wadsleyite, thought to be the dominant phase from 410 to 520-km depth in the mantle, are essential to interpret the seismic images and profiles in the transition zone. Our previous experimental measurements showed that elasticity of Mg2SiO4 wadsleyite can be significantly reduced by hydration at high pressures (e.g. Mao et al., 2008a,b). These results provide the first constraints on the effect of hydration on the high-pressure sound velocities of wadsleyite, and are significantly important for identifying the potential hydrogen rich region in the Earth’s transition zone. Since mantle wadsleyite contains ~10 mol.% Fe, it is more important to investigate the combined effect of Fe and hydration on the elastic properties of wadsleyite. Here, we measured the single-crystal elasticity of wadsleyite with 1.0 wt.% H2O, Mg1.73Fe0.19SiO4H0.16, up to 12 GPa using Brillouin scattering. At ambient conditions, the aggregate bulk modulus, KS0, and shear modulus, G0, are 158.4(5) GPa and 99.2(3) GPa, respectively. Including the results of current and previous studies, we find that the elasticity of wadsleyite decreases linearly with Fe and H2O content according to relations (in GPa): KS0 = 171(3)-13.0(8)CH2O, G0 = 112(2)-8.8(3)CH2O-40(10)XFe, where CH2O is the concentration of hydrogen expressed as weight percent H2O, and XFe is the Fe molar fraction (XFe = Fe/(Mg+Fe)). Further high-pressure measurements showed that the presence of 1 wt.% H2O in Fe-bearing wadsleyite increases the pressure derivative of the shear modulus from 1.5(1) to 1.9(1). But Fe-bearing wadsleyite with this amount of H2O might have a similar pressure derivative of the bulk modulus (4.8(1)) similar to the corresponding anhydrous phase. Using our results, we computed the sound velocities of wadsleyite with 1 wt.% H2O up to 12 GPa at 300 K. Compared to Fe-bearing anhydrous wadsleyite, 1 wt.% H2O causes a 1.5(4)% reduction in the compressional velocity at 12 GPa, and a 1

  2. Converging shocks in elastic-plastic solids.

    Science.gov (United States)

    Ortega, A López; Lombardini, M; Hill, D J

    2011-11-01

    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the

  3. Ultrafast imaging of cell elasticity with optical microelastography.

    Science.gov (United States)

    Grasland-Mongrain, Pol; Zorgani, Ali; Nakagawa, Shoma; Bernard, Simon; Paim, Lia Gomes; Fitzharris, Greg; Catheline, Stefan; Cloutier, Guy

    2018-01-30

    Elasticity is a fundamental cellular property that is related to the anatomy, functionality, and pathological state of cells and tissues. However, current techniques based on cell deformation, atomic force microscopy, or Brillouin scattering are rather slow and do not always accurately represent cell elasticity. Here, we have developed an alternative technique by applying shear wave elastography to the micrometer scale. Elastic waves were mechanically induced in live mammalian oocytes using a vibrating micropipette. These audible frequency waves were observed optically at 200,000 frames per second and tracked with an optical flow algorithm. Whole-cell elasticity was then mapped using an elastography method inspired by the seismology field. Using this approach we show that the elasticity of mouse oocytes is decreased when the oocyte cytoskeleton is disrupted with cytochalasin B. The technique is fast (less than 1 ms for data acquisition), precise (spatial resolution of a few micrometers), able to map internal cell structures, and robust and thus represents a tractable option for interrogating biomechanical properties of diverse cell types. Copyright © 2018 the Author(s). Published by PNAS.

  4. TH-A-207B-02: QIBA Ultrasound Elasticity Imaging System Biomarker Qualification and User Testing of Systems

    International Nuclear Information System (INIS)

    Garra, B.

    2016-01-01

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging

  5. TH-A-207B-02: QIBA Ultrasound Elasticity Imaging System Biomarker Qualification and User Testing of Systems

    Energy Technology Data Exchange (ETDEWEB)

    Garra, B. [FDA, Silver Spring, MD (United States)

    2016-06-15

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging

  6. First-principles study on the phase transition, elastic properties and electronic structure of Pt{sub 3}Al alloys under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanjun [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Huang, Huawei [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power of China, Chengdu, Sichuan 610041 (China); Pan, Yong, E-mail: yongpanyn@163.com [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming 650106 (China); Zhao, Guanghui; Liang, Zheng [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)

    2014-06-01

    Highlights: • The phase transition of Pt{sub 3}Al alloys occurs at 60 GPa. • The elastic modulus of Pt{sub 3}Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt{sub 3}Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt{sub 3}Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at E{sub F} decrease. The cubic Pt{sub 3}Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure.

  7. Measurement of high temperature elastic moduli of an 18Cr-9Ni-2.95 Cu-0.58 Nb-0.1C (Wt %) austenitic stainless steel

    Science.gov (United States)

    Tripathy, Haraprasanna; Hajra, Raj Narayan; Sudha, C.; Raju, S.; Saibaba, Saroja

    2018-04-01

    The Young's modulus (E) and Shear modulus (G) of an indigenously developed 18Cr-9Ni-0.1C-2.95 Cu-0.58Nb (wt %) austenitic stainless steel has been evaluated in the temperature range 298 K to 1273 K (25 °C to 1000 °C), using Impulse excitation technique (IET). The Bulk modulus (K) and the poison's ratio have been estimated from the measured values of E and G. It is observed that the elastic constants (E, G and K) are found to decrease in a nonlinear fashion with increase in temperature. The Cu precipitation is found to influence the elastic moduli of the steel in the cooling cycle. The observed elastic moduli are fitted to 3rd order polynomial equations in order to describe the temperature dependence of E, G, K moduli in the temperature range 298-1273 K (25 °C to 1000 °C). The room temperature values of E,G and K moduli is found to be 207, 82 and 145 GPa respectively for the present steel.

  8. Shear-coupled grain-boundary migration dependence on normal strain/stress

    Science.gov (United States)

    Combe, N.; Mompiou, F.; Legros, M.

    2017-08-01

    In specific conditions, grain-boundary (GB) migration occurs in polycrystalline materials as an alternative vector of plasticity compared to the usual dislocation activity. The shear-coupled GB migration, the expected most efficient GB based mechanism, couples the GB motion to an applied shear stress. Stresses on GB in polycrystalline materials seldom have, however, a unique pure shear component. This work investigates the influence of a normal strain on the shear coupled migration of a Σ 13 (320 )[001 ] GB in a copper bicrystal using atomistic simulations. We show that the yield shear stress inducing the GB migration strongly depends on the applied normal stress. Beyond, the application of a normal stress on this GB qualitatively modifies the GB migration: while the Σ 13 (320 )[001 ] GB shear couples following the 〈110 〉 migration mode without normal stress, we report the observation of the 〈010 〉 mode under a sufficiently high tensile normal stress. Using the nudge elastic band method, we uncover the atomistic mechanism of this 〈010 〉 migration mode and energetically characterize it.

  9. Atomistic simulation of the structural and elastic properties of ...

    Indian Academy of Sciences (India)

    experimental data and previous theoretical results, showing no phase transition ... and theoretical [2,9–11] studies have been dedicated to deter- ..... [33] introduced a simple relationship that empirically links the plastic properties of materials with their elastic moduli. The shear modulus G represents the resistance to plastic.

  10. Importance of physical vs. chemical interactions in surface shear rheology

    NARCIS (Netherlands)

    Wierenga, P.A.; Kosters, H.A.; Egmond, M.R.; Voragen, A.G.J.; Jongh, de H.H.J.

    2006-01-01

    The stability of adsorbed protein layers against deformation has in literature been attributed to the formation of a continuous gel-like network. This hypothesis is mostly based on measurements of the increase of the surface shear elasticity with time. For several proteins this increase has been

  11. First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    International Nuclear Information System (INIS)

    Yun-Jiang, Wang; Chong-Yu, Wang

    2009-01-01

    A model system consisting of Ni[001](100)/Ni 3 Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni 3 Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni 3 Al multilayer can be well predicted by the Voigt–Reuss–Hill rule of mixtures. (classical areas of phenomenology)

  12. To optimal elasticity of adhesives mimicking gecko foot-hairs

    International Nuclear Information System (INIS)

    Filippov, A.E.; Popov, V.

    2006-01-01

    Artificial structure of a plate with elastic fibers interacting with rough fractal surface by Van der Waals forces is simulated numerically to find an optimal relation between the system parameters. The force balance equations are solved numerically for different values of elastic constant and variable surface roughness. An optimal elasticity is found to provide maximum cohesion force between the plate and surface. It is shown that high flexibility of the fibers is not always good to efficiency of the system, artificial adhesives must be made from stiff enough polymers. If the ellasticity is close to an optimum, the force is almost constant at a wide interval of the surface roughness. It is desirable to make system adaptive to wide spectrum of applications

  13. First-principles calculation on the thermodynamic and elastic properties of precipitations in Al-Cu alloys

    Science.gov (United States)

    Sun, Dongqiang; Wang, Yongxin; Zhang, Xinyi; Zhang, Minyu; Niu, Yanfei

    2016-12-01

    First-principles calculations based on density functional theory was used to investigate the structural, thermodynamic and elastic properties of precipitations, θ″, θ‧ and θ, in Al-Cu alloys. The values of lattice constants accord with experimental results well. The structural stability of θ is the best, followed by θ‧ and θ″. In addition, due to the highest bulk modulus, shear modulus and Young's modulus, θ possesses the best reinforcement effect in precipitation hardening process considered only from mechanical properties of perfect crystal. According to the values of B/G, Poisson's ratio and C11-C12, θ‧ has the worst ductility, while θ″ has the best ductility, the ductility of θ is in the middle. The ideal tensile strength of θ″, θ‧ and θ calculated along [100] and [001] directions are 20.87 GPa, 23.11 GPa and 24.70 GPa respectively. The analysis of electronic structure suggests that three precipitations all exhibit metallic character, and number of bonding electrons and bonding strength are the nature of different thermodynamic and elastic properties for θ″, θ‧ and θ.

  14. Stress field of a near-surface basal screw dislocation in elastically anisotropic hexagonal crystals

    Directory of Open Access Journals (Sweden)

    Valeri S. Harutyunyan

    2017-11-01

    Full Text Available In this study, we derive and analyze the analytical expressions for stress components of the dislocation elastic field induced by a near-surface basal screw dislocation in a semi-infinite elastically anisotropic material with hexagonal crystal lattice. The variation of above stress components depending on “free surface–dislocation” distance (i.e., free surface effect is studied by means of plotting the stress distribution maps for elastically anisotropic crystals of GaN and TiB2 that exhibit different degrees of elastic anisotropy. The dependence both of the image force on a screw dislocation and the force of interaction between two neighboring basal screw dislocations on the “free surface–dislocation” distance is analyzed as well. The influence of elastic anisotropy on the latter force is numerically analyzed for GaN and TiB2 and also for crystals of such highly elastically-anisotropic materials as Ti, Zn, Cd, and graphite. The comparatively stronger effect of the elastic anisotropy on dislocation-induced stress distribution quantified for TiB2 is attributed to the higher degree of elastic anisotropy of this compound in comparison to that of the GaN. For GaN and TiB2, the dislocation stress distribution maps are highly influenced by the free surface effect at “free surface–dislocation” distances roughly smaller than ≈15 and ≈50 nm, respectively. It is found that, for above indicated materials, the relative decrease of the force of interaction between near-surface screw dislocations due to free surface effect is in the order Ti > GaN > TiB2 > Zn > Cd > Graphite that results from increase of the specific shear anisotropy parameter in the reverse order Ti < GaN < TiB2 < Zn < Cd < Graphite. The results obtained in this study are also applicable to the case when a screw dislocation is situated in the “thin film–substrate” system at a (0001 basal interface between the film and substrate provided that the elastic constants

  15. Constitutive relations in multidimensional isotropic elasticity and their restrictions to subspaces of lower dimensions

    Science.gov (United States)

    Georgievskii, D. V.

    2017-07-01

    The mechanical meaning and the relationships among material constants in an n-dimensional isotropic elastic medium are discussed. The restrictions of the constitutive relations (Hooke's law) to subspaces of lower dimension caused by the conditions that an m-dimensional strain state or an m-dimensional stress state (1 ≤ m < n) is realized in the medium. Both the terminology and the general idea of the mathematical construction are chosen by analogy with the case n = 3 and m = 2, which is well known in the classical plane problem of elasticity theory. The quintuples of elastic constants of the same medium that enter both the n-dimensional relations and the relations written out for any m-dimensional restriction are expressed in terms of one another. These expressions in terms of the known constants, for example, of a three-dimensional medium, i.e., the classical elastic constants, enable us to judge the material properties of this medium immersed in a space of larger dimension.

  16. Improved measurements of elastic properties at acoustic resonant frequencies

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Ritchie, I.G.; Shillinglaw, A.J.

    1976-01-01

    The choice of specimens of rectangular cross section for determination of dynamic elastic moduli by the resonant bar technique is often dictated by specimen fabrication problems. The specimen of rectangular cross section lends itself to accurate determination of elastic vibration shapes by a method in which a simple noncontacting optical transducer is used. The unequivocal indexing of the various vibration modes obtained in this way more than compensates for the added computational difficulties associated with rectangular geometry. The approximations used in the calculations of Young's modulus and the shear modulus for bars of rectangular cross section are tested experimentally and it is shown that high precision can be obtained. Determinations of changes in dynamic elastic moduli with temperature or stress are also described. (author)

  17. Shear modulation experiments with ECCD on TCV

    International Nuclear Information System (INIS)

    Cirant, S.; Alberti, S.; Gandini, F.; Behn, R.; Goodman, T.P.; Nikkola, P.

    2006-01-01

    Anomalous electron transport is determined by turbulence, which in turn is affected by magnetic shear. A novel application of electron cyclotron current drive (ECCD), aiming at localized shear modulation, has been applied on the TCV tokamak for experiments on shear-dependent electron transport. Pairs of EC beams, absorbed at the same radius, with one oriented for co- and the other for counter-injection, are modulated out of phase in order to force a local modulation of current-density at constant input power. Off-axis deposition (ρ dep = 0.24) is performed to avoid the central region, where the low heat flux would make transport analysis difficult. In addition some sawteeth control is achieved in this way. A significant impact on local shear is achieved with I ECCD ∼ 0.1I OH , even when the modulation period is much shorter than the current diffusion time across the whole plasma radius. The main result is that although source (heat and particle) terms are constant, both electron density and temperature are modulated during alternated ECCD. Once equilibrium effects are taken into account for appropriate mapping of Thomson scattering measurements onto flux coordinates, modulation of T e and electron pressure, peaked on-axis, is confirmed at all radii internal to EC deposition. The best confinement occurs for co-injection, in which case a local decrease (∼55%) in the magnetic shear causes a decrease in the electron thermal diffusivity of a similar amount (∼65%)

  18. Notes on hyperscaling violating Lifshitz and shear diffusion

    Science.gov (United States)

    Kolekar, Kedar S.; Mukherjee, Debangshu; Narayan, K.

    2017-07-01

    We explore in greater detail our investigations of shear diffusion in hyperscaling violating Lifshitz theories in Phys. Lett. B 760, 86 (2016), 10.1016/j.physletb.2016.06.046. This adapts and generalizes the membrane-paradigm-like analysis of Kovtun, Son, and Starinets for shear gravitational perturbations in the near horizon region given certain self-consistent approximations, leading to the shear diffusion constant on an appropriately defined stretched horizon. In theories containing a gauge field, some of the metric perturbations mix with some of the gauge field perturbations and the above analysis is somewhat more complicated. We find a similar near-horizon analysis can be obtained in terms of new field variables involving a linear combination of the metric and the gauge field perturbation resulting in a corresponding diffusion equation. Thereby as before, for theories with Lifshitz and hyperscaling violating exponents z , θ satisfying z <4 -θ in four bulk dimensions, our analysis here results in a similar expression for the shear diffusion constant with power-law scaling with temperature suggesting universal behavior in relation to the viscosity bound. For z =4 -θ , we find logarithmic behavior.

  19. Performance of shear-wave elastography for breast masses using different region-of-interest (ROI) settings.

    Science.gov (United States)

    Youk, Ji Hyun; Son, Eun Ju; Han, Kyunghwa; Gweon, Hye Mi; Kim, Jeong-Ah

    2018-07-01

    Background Various size and shape of region of interest (ROI) can be applied for shear-wave elastography (SWE). Purpose To investigate the diagnostic performance of SWE according to ROI settings for breast masses. Material and Methods To measure elasticity for 142 lesions, ROIs were set as follows: circular ROIs 1 mm (ROI-1), 2 mm (ROI-2), and 3 mm (ROI-3) in diameter placed over the stiffest part of the mass; freehand ROIs drawn by tracing the border of mass (ROI-M) and the area of peritumoral increased stiffness (ROI-MR); and circular ROIs placed within the mass (ROI-C) and to encompass the area of peritumoral increased stiffness (ROI-CR). Mean (E mean ), maximum (E max ), and standard deviation (E SD ) of elasticity values and their areas under the receiver operating characteristic (ROC) curve (AUCs) for diagnostic performance were compared. Results Means of E mean and E SD significantly differed between ROI-1, ROI-2, and ROI-3 ( P Shear-wave elasticity values and their diagnostic performance vary based on ROI settings and elasticity indices. E max is recommended for the ROIs over the stiffest part of mass and an ROI encompassing the peritumoral area of increased stiffness is recommended for elastic heterogeneity of mass.

  20. Dynamic elastic moduli of rocks under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Schock, R N [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Elastic moduli are determined as a function of confining pressure to 10 kb on rocks in which Plowshare shots are to be fired. Numerical simulation codes require accurate information on the mechanical response of the rock medium to various stress levels in order to predict cavity dimensions. The theoretical treatment of small strains in an elastic medium relates the propagation velocity of compressional and shear waves to the elastic moduli. Velocity measurements can provide, as unique code input data, the rigidity modulus, Poisson' ratio and the shear wave velocity, as well as providing checks on independent determinations of the other moduli. Velocities are determined using pulsed electro-mechanical transducers and measuring the time-of-flight in the rock specimen. A resonant frequency of 1 MHz is used to insure that the wavelength exceeds the average grain dimension and is subject to bulk rock properties. Data obtained on a variety of rock types are presented and analyzed. These data are discussed in terms of their relationship to moduli measured by static methods as well as the effect of anisotropy, porosity, and fractures. In general, fractured rocks with incipient cracks show large increases in velocity and moduli in the first 1 to 2 kb of compression as a result of the closing of these voids. After this, the velocities increase much more slowly. Dynamic moduli for these rocks are often 10% higher than corresponding static moduli at low pressure, but this difference decreases as the voids are closed until the moduli agree within experimental error. The discrepancy at low pressure is a result of the elastic energy in the wave pulse being propagated around cracks, with little effect on propagation velocity averaged over the entire specimen. (author)

  1. Dynamic elastic moduli of rocks under pressure

    International Nuclear Information System (INIS)

    Schock, R.N.

    1970-01-01

    Elastic moduli are determined as a function of confining pressure to 10 kb on rocks in which Plowshare shots are to be fired. Numerical simulation codes require accurate information on the mechanical response of the rock medium to various stress levels in order to predict cavity dimensions. The theoretical treatment of small strains in an elastic medium relates the propagation velocity of compressional and shear waves to the elastic moduli. Velocity measurements can provide, as unique code input data, the rigidity modulus, Poisson' ratio and the shear wave velocity, as well as providing checks on independent determinations of the other moduli. Velocities are determined using pulsed electro-mechanical transducers and measuring the time-of-flight in the rock specimen. A resonant frequency of 1 MHz is used to insure that the wavelength exceeds the average grain dimension and is subject to bulk rock properties. Data obtained on a variety of rock types are presented and analyzed. These data are discussed in terms of their relationship to moduli measured by static methods as well as the effect of anisotropy, porosity, and fractures. In general, fractured rocks with incipient cracks show large increases in velocity and moduli in the first 1 to 2 kb of compression as a result of the closing of these voids. After this, the velocities increase much more slowly. Dynamic moduli for these rocks are often 10% higher than corresponding static moduli at low pressure, but this difference decreases as the voids are closed until the moduli agree within experimental error. The discrepancy at low pressure is a result of the elastic energy in the wave pulse being propagated around cracks, with little effect on propagation velocity averaged over the entire specimen. (author)

  2. Effect of rotation on the elastic moduli of solid 4He

    Science.gov (United States)

    Tsuiki, T.; Takahashi, D.; Murakawa, S.; Okuda, Y.; Kono, K.; Shirahama, K.

    2018-02-01

    We report measurements of elastic moduli of hcp solid 4He down to 15 mK when the samples are rotated unidirectionally. Recent investigations have revealed that the elastic behavior of solid 4He is dominated by gliding of dislocations and pinning of them by 3He impurities, which move in the solidlike Bloch waves (impuritons). Motivated by the recent controversy of torsional oscillator studies, we have performed direct measurements of shear and Young's moduli of annular solid 4He using pairs of quarter-circle-shape piezoelectric transducers (PZTs) while the whole apparatus is rotated with angular velocity Ω up to 4 rad/s. We have found that shear modulus μ is suppressed by rotation below 80 mK, when shear strain applied by PZT exceeds a critical value, above which μ decreases because the shear strain unbinds dislocations from 3He impurities. The rotation-induced decrement of μ at Ω =4 rad/s is about 14.7(12.3)% of the total change of temperature dependent μ for solid samples of pressure 3.6(5.4) MPa. The decrements indicate that the probability of pinning of 3He on dislocation segment G decreases by several orders of magnitude. We propose that the motion of 3He impuritons under rotation becomes strongly anisotropic by the Coriolis force, resulting a decrease in G for dislocation lines aligning parallel to the rotation axis.

  3. Elastic properties and spectroscopic studies of Na 2 O–ZnO–B 2 O 3 ...

    Indian Academy of Sciences (India)

    Elastic properties, 11B MAS–NMR and IR spectroscopic studies have been employed to study the structure of Na2O–ZnO–B2O3 glasses. Sound velocities and elastic moduli such as longitudinal, Young's, bulk and shear modulus have been measured at a frequency of 10 MHz as a function of ZnO concentration.

  4. Investigation on the elastic properties of Gd-Sc-Al garnet by the Mandelstam-Brillouin light scattering method

    International Nuclear Information System (INIS)

    Zharikov, E.V.; Zagumennyj, A.I.; Kitaeva, V.F.; Lutts, G.B.; Terskov, D.B.

    1991-01-01

    The Gd-Sc-Al garnet (GSAG) crystals grown from the melt with composition Gd 2.88 Sc 1.89 Al 3.23 O 12 , were investigated. The GSAG doped with chromium was also studied. The Mandelstam-Brillouin (MB) light scattering in the GSAG crystals was observed. The garnet elastic components were determined using the data on the MB component shifts, the products of the elastic constants by molar volume were calculated as well. The GSAG is elastically anisotropic. The doping addition introduction do not cause noticeable change in the elastic properties. The obtained values of elastic constants and their combinations for GSAG were compared with the data for aluminium and gallium garnets. The comparison has shown that the values of elastic constants for GSAG is closer to those for Gd-Sc-Ga garnet than to the corresponding values for the Y-Al one

  5. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Science.gov (United States)

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  6. Stressed-deformed state of mountain rocks in elastic stage and between elasticity

    Directory of Open Access Journals (Sweden)

    Samedov A.M.

    2017-12-01

    Full Text Available The problems of the stress-strain state of rocks in the elastic stage and beyond the elastic limits, and the ways of schematizing the tension and compression diagrams were reviewed in the article. To simplify calculations outside the elastic range, the tension (compression diagrams are usually schematized, i.e. are replaced by curved smooth lines having a fairly simple mathematical expression and at the same time well coinciding with the experimentally obtained diagrams. When diagram is to be schematized, it is necessary to take a constant temperature of superheated water steam if a rock test is planned in a relaxed form. Note that when the diagram is schematizing, the difference between the limits of proportionality and fluidity is erased. This allows the limit of proportionality to be considered the limit of fluidity. Schematicization can be carried out in the area where the tensile strength (compression is planned to be destroyed with the established weakening of rocks by exposure to water steam or chemical reagents. Samples of rocks in natural form were tested and weakened by means of superheated water steam (220 °C and more and chemical reagents for tension and compression. The data are obtained, the diagrams of deformation are constructed and schematized in the elastic stage and beyond the elastic limit. Based on the schematic diagrams of deformation, the components of stress and strain were composed in the elastic stage and beyond the elastic limit. It is established in the publication that rocks under compression and stretching deform, both within the elastic stage, and beyond the limits of elasticity. This could be seen when the samples, both in natural and in weakened state, with superheated water steam (more than 220 °C or chemical reagents were tested. In their natural form, they are mainly deformed within the elastic stage and are destroyed as a brittle material, and in a weakened form they can deform beyond the elastic stage and

  7. Elasticity, electronic properties and hardness of MoC investigated by first principles calculations

    International Nuclear Information System (INIS)

    Liu, YangZhen; Jiang, YeHua; Feng, Jing; Zhou, Rong

    2013-01-01

    The crystal structure, cohesive energy, formation enthalpy, mechanical anisotropy, electronic properties and hardness of α−MoC, β−MoC and γ−MoC are investigated by the first-principles calculations. The elastic constants and the bulk moduli, shear moduli, Young's moduli are calculated. The Young's modulus values of α−MoC, β−MoC and γ−MoC are 395.6 GPa, 551.2 GPa and 399.5 GPa, respectively. The surface constructions of Young's moduli identify the mechanical anisotropy of molybdenum carbide, and the results show that anisotropy of α−MoC is stronger than others. The electronic structure indicates that the bonding behaviors of MoC are the combinations of covalent and metallic bonds. The hardness of β−MoC is obviously higher than those of α−MoC and γ−MoC

  8. Constitutive Modelling of Resins in the Compliance Domain

    Science.gov (United States)

    Klasztorny, M.

    2004-07-01

    A rheological HWKK/H model for resins is developed taking into consideration the up-to-date analyses of experimental results. Constitutive compliance equations of linear are formulated for this model in the shear/bulk form, which describes, among other things, the first-rank reversible isothermal creep. The shear (distorsional) deformations are simulated with three independent stress history functions of fractional and normal exponential types. The volume deformations are simulated as perfectly elastic. The model is described by two elastic and six viscoelastic constants, namely three long-term creep coefficients and three retardation times. The constitutive compliance equations of viscoealsticity for resins are also formulated in the coupled form. Formulae for converting the constants of shear/bulk (uncoupled) viscoelasticity into the constants of coupled viscoelasticity are given too. An algorithm for identifying the material constants, based on the creep of uniaxially tensioned bar samples, is formulated in a way that gives unique results. The material constants are fiund for Epidian 53 epoxy and Polimal 109 polyester resins. The creep processes, simulated based on the experimental data, are presented graphically for both the resins examined.

  9. Investigation of Rheological Properties of Blended Cement Pastes Using Rotational Viscometer and Dynamic Shear Rheometer

    Directory of Open Access Journals (Sweden)

    Yoo Jae Kim

    2018-01-01

    Full Text Available To successfully process concrete, it is necessary to predict and control its flow behavior. However, the workability of concrete is not completely measured or specified by current standard tests. Furthermore, it is only with a clear picture of cement hydration and setting that full prediction and control of concrete performance can be generalized. In order to investigate the rheological properties of blended cement pastes, a rotational viscometer (RV was used to determine the flow characteristics of ordinary and blended pastes to provide assurance that it can be pumped and handled. Additionally, a dynamic shear rheometer (DSR was used to characterize both the viscous and elastic components of pastes. Ordinary Portland cement paste and blended pastes (slag, fly ash, and silica fume were investigated in this study. The stress and strain of the blended specimens were measured by the DSR, which characterizes both viscous and elastic behaviors by measuring the complex shear modulus (the ratio of total shear stress to total shear strain and phase angle (an indicator of the relative amounts of recoverable and nonrecoverable deformation of materials. Cement pastes generally exhibit different rheological behaviors with respect to age, mineral admixture type, and cement replacement level.

  10. Quantitative measurement of elasticity of the appendix using shear wave elastography in patients with suspected acute appendicitis.

    Directory of Open Access Journals (Sweden)

    Seung-Whan Cha

    Full Text Available Shear wave elastography (SWE has not been studied for diagnosing appendicitis. We postulated that an inflamed appendix would become stiffer than a normal appendix. We evaluated the elastic modulus values (EMV by SWE in healthy volunteers, patients without appendicitis, and patients with appendicitis. We also evaluated diagnostic ability of SWE for differentiating an inflamed from a normal appendix in patients with suspected appendicitis.Forty-one patients with clinically suspected acute appendicitis and 11 healthy volunteers were prospectively enrolled. Gray-scale ultrasonography (US, SWE and multi-slice computed tomography (CT were performed. The EMV was measured in the anterior, medial, and posterior appendiceal wall using SWE, and the highest value (kPa was recorded.Patients were classified into appendicitis (n = 30 and no appendicitis groups (n = 11. One case of a negative appendectomy was detected. The median EMV was significantly higher in the appendicitis group (25.0 kPa compared to that in the no appendicitis group (10.4 kPa or in the healthy controls (8.3 kPa (p<0.001. Among SWE and other US and CT features, CT was superior to any conventional gray-scale US feature or SWE. Either the CT diameter criterion or combined three CT features predicted true positive in 30 and true negative in 11 cases and yielded 100% sensitivity and 100% specificity. An EMV of 12.5 kPa for the stiffest region of the appendix predicted true positive in 28, true negative in 11, and false negative in two cases. The EMV (≥12.5 kPa yielded 93% sensitivity and 100% specificity.Our results suggest that EMV by SWE helps distinguish an inflamed from a normal appendix. Given that SWE has high specificity, quantitative measurement of the elasticity of the appendix may provide complementary information, in addition to morphologic features on gray-scale US, in the diagnosis of appendicitis.

  11. CLASSICAL AREAS OF PHENOMENOLOGY: First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    Science.gov (United States)

    Wang, Yun-Jiang; Wang, Chong-Yu

    2009-10-01

    A model system consisting of Ni[001](100)/Ni3Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni3Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni3Al multilayer can be well predicted by the Voigt-Reuss-Hill rule of mixtures.

  12. FP-LAPW study of structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ekta, E-mail: jainekta05@gmail.com [Department of Physics, Government M. L. B. Girls P. G. Autonomous College, Bhopal-462002 (India); Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in [Department of Physics, Sarojini Naidu Government Girls P. G. Autonomous College, Bhopal-462016 (India); Sanyal, S. P., E-mail: sps.physicsbu@gmail.com [Department of Physics, Barkatullah University, Bhopal-462026 (India)

    2016-05-06

    The structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic compound in B{sub 2}-type (CsCl) structure have been investigated using first-principles calculations. The exchange-correlation term was treated within generalized gradient approximation. Ground state properties i.e. lattice constants (a{sub 0}), bulk modulus (B) and first-order pressure derivative of bulk modulus (B’) are presented. The density of states are derived which show the metallic character of present compound. Our results for C{sub 11}, C{sub 12} and C{sub 44} agree well with previous theoretical data. Using Pugh’s criteria (B/G{sub H} < 1.75), brittle character of AlFe is satisfied. In addition shear modulus (G{sub H}), Young’s modulus (E), sound wave velocities and Debye temperature (θ{sub D}) have also been estimated.

  13. Material model for shear of the buffer - evaluation of laboratory test results

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Dueck, Ann; Johannesson, Lars-Erik

    2010-12-01

    The report describes the material model of bentonite used for analysing a rock shear through a deposition hole. The old model used in SR-Can has been considerably changed. The new reference model that has been developed for SR-Site is described and motivated. The relevant properties of the buffer that affect the response to a rock shear are (in addition to the bentonite type) the density (which yields a swelling pressure), the shear strength, the stiffness before the maximum shear stress is reached and the shear rate, which also affects the shear strength. Since the shear caused by an earthquake is very fast and the hydraulic conductivity of the bentonite is very low there is no possibility for the pore water in the water saturated bentonite to be redistributed. Since the compressibility of water and particles are negligible, the bentonite can be modelled as a solid material that cannot change volume but only exhibit shear deformations. A proper and simple model that behaves accordingly is a model with von Mises' stress modelled as a function of the strain (stress-strain model). The model is elastic-plastic with an E-modulus that determines the behaviour until the material starts yielding whereupon the plastic strain is modelled as a function of von Mises' stress and added to the elastic strain. Included in the model is also a strain rate dependency of the stress-strain relation, which ranges between the strain rates 10 -6 1/s 3 1/s. The reference material model is derived from a large number of laboratory tests made on different bentonites at different strain rates, densities and with different techniques. Since it cannot be excluded that the exchangeable cat-ions in the Na-bentonite MX-80 is exchanged to calcium-ions the Ca-bentonite Deponit CaN is proposed to be used as reference material. The overall conclusion is that a relevant and probably also slightly conservative material model of Ca-converted MX-80 is derived, presented and well motivated

  14. Mathematically Simulated Elastic Characteristics of the Composite Reinforced by Spherical Inclusions

    Directory of Open Access Journals (Sweden)

    E. S. Sergeeva

    2017-01-01

    Full Text Available Composite materials are widely used in engineering, especially in constructions working under simultaneous intensive mechanical and thermal loads. In the industry the main requirements for materials are restrictions on the elastic characteristics, such as bulk modulus and shear modulus.Composite materials consist of a base material, a so-called binder (matrix, and reinforcing inclusions. The composite matrix defines a method for the composite manufacturing and must meet a set of operational and technological requirements. The most commonly used types are a metal matrix and a polymer one, because of the relative ease of manufacture, good wettability, and chemical resistance.Reinforcing inclusions can be of different nature (boron, crystalline, etc. and shape (spherical, lamellar, fiber. Lately, active researches have been conducted with the nanostructural elements (fullerenes, single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs plates, nanoclusters used as the filler.There are various ways of modeling the elastic properties of the composites. The most common are numerical methods using a finite element method and analytical methods.In simulation of composite characteristics, in addition to the properties of its components, a reinforcing structure plays an important role.The paper considers an obtained isotropic composite with a metal matrix reinforced by the spherical nanoclusters of randomly oriented SWNTs with a reinforcement scheme similar to the cubic crystal lattice. Numerical modeling and analytical methods were used.For the numerical solution two types of periodic structure of the material were obtained: a cube with eight parts of the ball in the corners of a cube and a sphere in the center. For each of the periodic cells a representative volume is selected in which, using the kinematic and force boundary conditions, have been implemented two types of stress-strain state, namely stretching along one axis and shear. For

  15. Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Zhang Chenli; Shen Huishen

    2008-01-01

    Molecular dynamics simulation is performed on a double-walled carbon nanotube (DWCNT) to predict its elastic properties based on a double-walled shear deformable shell model. By direct buckling measurement, we present here a method for uniquely determining the effective wall thickness for the shell model. Accounting for two different kinds of DWCNTs by adding an inner or outer tube to a fiducial tube, the mechanical properties of DWCNTs are carefully investigated as compared with those of the fiducial tube. It is found that the predicted values of Young's and shear moduli depend strongly on the construction and helicity of DWCNTs, while the dependence on nanotube length is relatively small. The results also confirm that the temperature variation has a significant effect on the elastic properties of DWCNTs

  16. Constitutive Modelling of Resins in the Stiffness Domain

    Science.gov (United States)

    Klasztorny, M.

    2004-09-01

    An analytic method for inverting the constitutive compliance equations of viscoelasticity for resins is developed. These equations describe the HWKK/H rheological model, which makes it possible to simulate, with a good accuracy, short-, medium- and long-term viscoelastic processes in epoxy and polyester resins. These processes are of first-rank reversible isothermal type. The time histories of deviatoric stresses are simulated with three independent strain history functions of fractional and normal exponential types. The stiffness equations are described by two elastic and six viscoelastic constants having a clear physic meaning (three long-term relaxation coefficients and three relaxation times). The time histories of axiatoric stresses are simulated as perfectly elastic. The inversion method utilizes approximate constitutive stiffness equations of viscoelasticity for the HWKK/H model. The constitutive compliance equations for the model are a basis for determining the exact complex shear stiffness, whereas the approximate constitutive stiffness equations are used for determining the approximate complex shear stiffness. The viscoelastic constants in the stiffness domain are derived by equating the exact and approximate complex shear stiffnesses. The viscoelastic constants are obtained for Epidian 53 epoxy and Polimal 109 polyester resins. The accuracy of the approximate constitutive stiffness equations are assessed by comparing the approximate and exact complex shear stiffnesses. The constitutive stiffness equations for the HWKK/H model are presented in uncoupled (shear/bulk) and coupled forms. Formulae for converting the constants of shear viscoelasticity into the constants of coupled viscoelasticity are given as well.

  17. EFFECTS OF PARENT ARTERY SEGMENTATION AND ANEURISMALWALL ELASTICITY ON PATIENT-SPECIFIC HEMODYNAMIC SIMULATIONS

    Institute of Scientific and Technical Information of China (English)

    CHEN Jia-liang; DING Guang-hong; YANG Xin-jian; LI Hai-yun

    2011-01-01

    It is well known that hemodynamics and wall tension play an important role in the formation,growth and rupture of aneurysms.In the present study,the authors investigated the influence of parent artery segmentation and aneurismal-wall elasticity on patient-specific hemodynamic simulations with two patient-specific eases of cerebral aneurysms.Realistic models of the aneurysms were constructed from 3-D angiography images and blood flow dynamics was studied under physiologically representative waveform of inflow.For each aneurysm three computational models were constructed:Model 1 with more extensive upstream parent artery with the rigid arterial and aneurismal wall,Model 2 with the partial upstream parent artery with the elastic arterial and aneurismal wall,Model 3 with more extensive upstream parent artery with the rigid wall for arterial wall far from the aneurysm and the elastic wall for arterial wall near the aneurysm.The results show that Model 1 could predict complex intra-aneurismal flow patterns and wall shear stress distribution in the aneurysm,but is unable to give aneurismal wall deformation and tension,Model 2 demonstrates aneurismal wall deformation and tension,but fails to properly model inflow pattern contributed by the upstream parent artery,resulting in local misunderstanding Wall Shear Stress (WSS) distribution,Model 3 can overcome limitations of the former two models,and give an overall and accurate analysis on intra-aneurismal flow patterns,wall shear stress distribution,aneurismal-wall deformation and tension.Therefore we suggest that the proper length of extensive upstream parent artery and aneuri-smal-wall elasticity should be considered carefully in establishing computational model to predict the intra-aneurismal hemodynamic and wall tension.

  18. Boron nitride elastic and thermal properties. Irradiation effects

    International Nuclear Information System (INIS)

    Jager, Bernard.

    1977-01-01

    The anisotropy of boron nitride (BN) and especially thermal and elastic properties were studied. Specific heat and thermal conductivity between 1.2 and 300K, thermal conductivity between 4 and 350K and elastic constants C 33 and C 44 were measured. BN was irradiated with electrons at 77K and with neutrons at 27K to determine properties after irradiation [fr

  19. Effect of pathological heterogeneity on shear wave elasticity imaging in the staging of deep venous thrombosis.

    Directory of Open Access Journals (Sweden)

    Xiaona Liu

    Full Text Available We aimed to observe the relationship between the pathological components of a deep venous thrombus (DVT, which was divided into three parts, and the findings on quantitative ultrasonic shear wave elastography (SWE to increase the accuracy of thrombus staging in a rabbit model.A flow stenosis-induced vein thrombosis model was used, and the thrombus was divided into three parts (head, body and tail, which were associated with corresponding observation points. Elasticity was quantified in vivo using SWE over a 2-week period. A quantitative pathologic image analysis (QPIA was performed to obtain the relative percentages of the components of the main clots.DVT maturity occurred at 2 weeks, and the elasticity of the whole thrombus and the three parts (head, body and tail showed an increasing trend, with the Young's modulus values varying from 2.36 ± 0.41 kPa to 13.24 ± 1.71 kPa; 2.01 ± 0.28 kPa to 13.29 ± 1.48 kPa; 3.27 ± 0.57 kPa to 15.91 ± 2.05 kPa; and 1.79 ± 0.36 kPa to 10.51 ± 1.61 kPa, respectively. Significant increases occurred on different days for the different parts: the head showed significant increases on days 4 and 6; the body showed significant increases on days 4 and 7; and the tail showed significant increases on days 3 and 6. The QPIA showed that the thrombus composition changed dynamically as the thrombus matured, with the fibrin and calcium salt deposition gradually increasing and the red blood cells (RBCs and platelet trabecula gradually decreasing. Significant changes were observed on days 4 and 7, which may represent the transition points for acute, sub-acute and chronic thrombi. Significant heterogeneity was observed between and within the thrombi.Variations in the thrombus components were generally consistent between the SWE and QPIA. Days 4 and 7 after thrombus induction may represent the transition points for acute, sub-acute and chronic thrombi in rabbit models. A dynamic examination of the same part of the thrombus

  20. Effect of pathological heterogeneity on shear wave elasticity imaging in the staging of deep venous thrombosis.

    Science.gov (United States)

    Liu, Xiaona; Li, Na; Wen, Chaoyang

    2017-01-01

    We aimed to observe the relationship between the pathological components of a deep venous thrombus (DVT), which was divided into three parts, and the findings on quantitative ultrasonic shear wave elastography (SWE) to increase the accuracy of thrombus staging in a rabbit model. A flow stenosis-induced vein thrombosis model was used, and the thrombus was divided into three parts (head, body and tail), which were associated with corresponding observation points. Elasticity was quantified in vivo using SWE over a 2-week period. A quantitative pathologic image analysis (QPIA) was performed to obtain the relative percentages of the components of the main clots. DVT maturity occurred at 2 weeks, and the elasticity of the whole thrombus and the three parts (head, body and tail) showed an increasing trend, with the Young's modulus values varying from 2.36 ± 0.41 kPa to 13.24 ± 1.71 kPa; 2.01 ± 0.28 kPa to 13.29 ± 1.48 kPa; 3.27 ± 0.57 kPa to 15.91 ± 2.05 kPa; and 1.79 ± 0.36 kPa to 10.51 ± 1.61 kPa, respectively. Significant increases occurred on different days for the different parts: the head showed significant increases on days 4 and 6; the body showed significant increases on days 4 and 7; and the tail showed significant increases on days 3 and 6. The QPIA showed that the thrombus composition changed dynamically as the thrombus matured, with the fibrin and calcium salt deposition gradually increasing and the red blood cells (RBCs) and platelet trabecula gradually decreasing. Significant changes were observed on days 4 and 7, which may represent the transition points for acute, sub-acute and chronic thrombi. Significant heterogeneity was observed between and within the thrombi. Variations in the thrombus components were generally consistent between the SWE and QPIA. Days 4 and 7 after thrombus induction may represent the transition points for acute, sub-acute and chronic thrombi in rabbit models. A dynamic examination of the same part of the thrombus may be

  1. Sphere interaction in bounded shear flow of Oldroyd-B fluids

    Science.gov (United States)

    Chiu, Shang-Huan; Pan, Tsorng-Whay; Glowinski, Roland

    2017-11-01

    It is well-known that, up to the initial sphere displacement, binary encounters of spheres in bounded shear flow of a Newtonian fluid can have either swapping or non-swapping trajectories under creeping flow conditions. The motion of dilute sphere suspensions in bounded shear flow of Oldroyd-B fluids at zero Reynolds number has been studied. The pass and return trajectories of the two ball mass centers in a two wall driven shear flow are similar to those in a Newtonian fluid; but they lose the symmetry due to the effect of elastic force arising from viscoelastic fluids. A tumbling chain of two balls (a dipole) may occur, depending on the value of the Weissenberg number and the initial vertical displacement of the ball mass center to the middle plane between two walls. The two ball tumbling motion has also been compared with that of an ellipsoid in bounded shear flow Oldroyd-B fluids. This work was supported by NSF (Grant DMS-1418308).

  2. Elastic properties and short-range structural order in mixed network former glasses.

    Science.gov (United States)

    Wang, Weimin; Christensen, Randilynn; Curtis, Brittany; Hynek, David; Keizer, Sydney; Wang, James; Feller, Steve; Martin, Steve W; Kieffer, John

    2017-06-21

    Elastic properties of alkali containing glasses are of great interest not only because they provide information about overall structural integrity but also they are related to other properties such as thermal conductivity and ion mobility. In this study, we investigate two mixed-network former glass systems, sodium borosilicate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)SiO 2 ] and sodium borogermanate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)GeO 2 ] glasses. By mixing network formers, the network topology can be changed while keeping the network modifier concentration constant, which allows for the effect of network structure on elastic properties to be analyzed over a wide parametric range. In addition to non-linear, non-additive mixed-glass former effects, maxima are observed in longitudinal, shear and Young's moduli with increasing atomic number density. By combining results from NMR spectroscopy and Brillouin light scattering with a newly developed statistical thermodynamic reaction equilibrium model, it is possible to determine the relative proportions of all network structural units. This new analysis reveals that the structural characteristic predominantly responsible for effective mechanical load transmission in these glasses is a high density of network cations coordinated by four or more bridging oxygens, as it provides for establishing a network of covalent bonds among these cations with connectivity in three dimensions.

  3. Elasticity of phase-Pi (Al3Si2O7(OH)3) - A hydrous aluminosilicate phase

    Science.gov (United States)

    Peng, Ye; Mookherjee, Mainak; Hermann, Andreas; Bajgain, Suraj; Liu, Songlin; Wunder, Bernd

    2017-08-01

    Phase-Pi (Al3Si2O7(OH)3) is an aluminosilicate hydrous mineral and is likely to be stable in hydrated sedimentary layers of subducting slabs. Phase-Pi is likely to be stable between the depths of 60 and 200 km and is likely to transport water into the Earth's interior. Here, we use first principles simulations based on density functional theory to explore the crystal structure at high-pressure, equation of state, and full elastic stiffness tensor as a function of pressure. We find that the pressure volume results could be described by a finite strain fit with V0 , K0 , and K0‧ being 310.3 Å3, 133 GPa, and 3.6 respectively. At zero pressure, the full elastic stiffness tensor shows significant anisotropy with the diagonal principal components C11 , C22 , and C33 being 235, 292, 266 GPa respectively, the diagonal shear C44 , C55 , and C66 being 86, 92, and 87 GPa respectively, and the off-diagonal stiffness C12 , C13 , C14 ,C15 , C16 , C23 , C24 , C25 , C26 , C34 , C35 , C36 , C45 , C46 , and C56 being 73, 78, 6, -30, 15, 61, 17, 2, 1, -13, -15, 6, 3, 1, and 3 GPa respectively. The zero pressure, shear modulus, G0 and its pressure derivative, G0 ‧ are 90 GPa and 1.9 respectively. Upon compression, hydrogen bonding in phase-Pi shows distinct behavior, with some hydrogen bonds weakening and others strengthening. The latter eventually undergo symmetrization, at pressure greater (>40 GPa) than the thermodynamic stability of phase-Pi. Full elastic constant tensors indicate that phase-Pi is very anisotropic with AVP ∼22.4% and AVS ∼23.7% at 0 GPa. Our results also indicate that the bulk sound velocity of phase-Pi is slower than that of the high-pressure hydrous aluminosilicate phase, topaz-OH.

  4. Elastic properties of porous low-k dielectric nano-films

    Science.gov (United States)

    Zhou, W.; Bailey, S.; Sooryakumar, R.; King, S.; Xu, G.; Mays, E.; Ege, C.; Bielefeld, J.

    2011-08-01

    Low-k dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric for interconnects in state of the art integrated circuits. In order to further reduce interconnect RC delays, additional reductions in k for these low-k materials are being pursued via the introduction of controlled levels of porosity. The main challenge for such dielectrics is the substantial reduction in elastic properties that accompanies the increased pore volume. We report on Brillouin light scattering measurements used to determine the elastic properties of these films at thicknesses well below 200 nm, which are pertinent to their introduction into present ultralarge scale integrated technology. The observation of longitudinal and transverse standing wave acoustic resonances and their transformation into traveling waves with finite in-plane wave vectors provides for a direct non-destructive measure of the principal elastic constants that characterize the elastic properties of these porous nano-scale films. The mode dispersion further confirms that for porosity levels of up to 25%, the reduction in the dielectric constant does not result in severe degradation in the Young's modulus and Poisson's ratio of the films.

  5. Use of shear wave elastography to differentiate benign and malignant breast lesions.

    Science.gov (United States)

    Çebi Olgun, Deniz; Korkmazer, Bora; Kılıç, Fahrettin; Dikici, Atilla Süleyman; Velidedeoğlu, Mehmet; Aydoğan, Fatih; Kantarcı, Fatih; Yılmaz, Mehmet Halit

    2014-01-01

    We aimed to determine the correlations between the elasticity values of solid breast masses and histopathological findings to define cutoff elasticity values differentiating malignant from benign lesions. A total of 115 solid breast lesions of 109 consecutive patients were evaluated prospectively using shear wave elastography (SWE). Two orthogonal elastographic images of each lesion were obtained. Minimum, mean, and maximum elasticity values were calculated in regions of interest placed over the stiffest areas on the two images; we also calculated mass/fat elasticity ratios. Correlation of elastographic measurements with histopathological results were studied. Eighty-three benign and thirty-two malignant lesions were histopathologically diagnosed. The minimum, mean, and maximum elasticity values, and the mass/fat elasticity ratios of malignant lesions, were significantly higher than those of benign lesions. The cutoff value was 45.7 kPa for mean elasticity (sensitivity, 96%; specificity, 95%), 54.3 kPa for maximum elasticity (sensitivity, 95%; specificity, 94%), 37.1 kPa for minimum elasticity (sensitivity, 96%; specificity, 95%), and 4.6 for the mass/fat elasticity ratio (sensitivity, 97%; specificity, 95%). SWE yields additional valuable quantitative data to ultrasonographic examination on solid breast lesions. SWE may serve as a complementary tool for diagnosis of breast lesions. Long-term clinical studies are required to accurately select lesions requiring biopsy.

  6. Reply to Comment on 'On the importance of the free energy for elasticity under pressure'

    International Nuclear Information System (INIS)

    Marcus, P M; Qiu, S L

    2004-01-01

    All criticisms by Steinle-Neumann and Cohen of the correctness of our calculations of equilibrium structure and elastic constants under pressure from the Gibbs free energy are answered and the criticisms are rejected. The difference between the free energy and the internal energy as functions of structure is described to clarify the use of the free energy. The meaning of elastic constants in a system under pressure is discussed in order to derive the basic quadratic expansion of the free energy in the strains. The coefficients in the expansion are the elastic constants under pressure and are in agreement with well-known work. We give reasons why calculations based on the Gibbs free energy are simpler and more accurate than the usual calculations based on minima of the energy at constant volume. (reply)

  7. Shear flow in smectic A liquid crystals

    International Nuclear Information System (INIS)

    Stewart, I W; Stewart, F

    2009-01-01

    This paper considers the onset of a shear-induced instability in a sample of smectic A liquid crystal. Unlike many previous models, the usual director n need not necessarily coincide with the local smectic layer normal a; the traditional Oseen constraint (∇xa=0) is not imposed when flow is present. A recent dynamic theory for smectic A (Stewart 2007 Contin. Mech. Thermodyn. 18 343-60) will be used to examine a stationary instability in a simple model when the director reorientation and smectic layer distortions are, firstly, assumed not to be coupled to the velocity and, secondly, are supposed coupled to the velocity. A critical shear rate at which the onset of the instability occurs will be identified, together with an accompanying critical director tilt angle and critical wavenumber for the associated smectic layer undulations. Despite some critical phenomena being largely unaffected by any coupling to the flow, it will be shown that the influence of some material parameters, especially the smectic layer compression constant B 0 and the coupling constant B 1 , upon the critical shear rate and critical tilt angle can be greatly affected by flow.

  8. First-principles prediction of structural, elastic, electronic and thermodynamic properties of the cubic SrUO{sub 3}-Perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Sahli, B. [Laboratoire de Génie Physique, Université Ibn Khaldoun, Tiaret, 14000 (Algeria); Laboratoire des Matériaux Magnétiques, Université Djillali Liabés, Sidi Bel-Abbes 22000 (Algeria); Bouafia, H., E-mail: hamza.tssm@gmail.com [Laboratoire de Génie Physique, Université Ibn Khaldoun, Tiaret, 14000 (Algeria); Abidri, B.; Abdellaoui, A. [Laboratoire des Matériaux Magnétiques, Université Djillali Liabés, Sidi Bel-Abbes 22000 (Algeria); Hiadsi, S.; Akriche, A. [Laboratoire de Microscope Electronique et Sciences des Matériaux, Université des Sciences et de la Technologie Mohamed Boudiaf, département de Génie Physique, BP1505 El m’naouar, Oran (Algeria); Benkhettou, N.; Rached, D. [Laboratoire des Matériaux Magnétiques, Université Djillali Liabés, Sidi Bel-Abbes 22000 (Algeria)

    2015-06-25

    Highlights: • The ground state properties of SrUO{sub 3}-Perovskite were investigated. • Elastic constants and their related parameters were calculated. • Electronic properties are treated using GGA-PBEsol + U approach. - Abstract: In this paper, we investigate bulk properties of the cubic SrUO{sub 3}-Perovskite in their nonmagnetic (NM), antiferromagnetic (AFM) and ferromagnetic (FM) states using all-electron self consistent Full Potential Augmented Plane Waves plus local orbital (FP-(L)APW + lo) method within PBEsol Generalized Gradiant density approximations. Our calculation allowed us to predict that the more stable magnetic state of the cubic SrUO{sub 3}-Perovskite is that of the ferromagnetic (FM). This work is the first prediction of elastic constants and their related parameters (Young modulus, shear modulus, Poisson ratio, Zener anisotropy and the Debye temperature) for this cubic compound using Mehl method. We have employed the GGA(PBEsol) and GGA(PBEsol) + U to investigate the electronic band structure, density of states and electronic charge density of SrUO{sub 3}-Perovskite. The electronic band structure calculations revealed that SrUO{sub 3} exhibits metallic behavior. On the other hand the charge density plots for [1 1 0] direction indicates a strong ionic character along the Sr–O bond while the U–O bond has strong covalent character. Finally, we have analyzed the thermodynamic properties using the quasi-harmonic Debye model to complete the fundamental characterization of cubic SrUO{sub 3}-Perovskite.

  9. The effect of inclusions on macroscopic composite elasticity: A systematic finite-element analysis of constituent and bulk elastic properties

    International Nuclear Information System (INIS)

    Yoneda, A; Sohag, F H

    2010-01-01

    The bulk physical properties of composite systems are difficult to predict - even when the properties of the constituent materials in the system are well known. We conducted a finite-element method simulation to examine the inclusion effect by substituting an inclusion phase (second phase) into a host phase (first phase). We have organized the simulation results as a function of the elasticity of host and inclusion phases. In this procedure, special attention was paid to the initial change of elastic constants as the inclusion volume ratio was varied. To accomplish this, we introduced a new parameter D ij defined as the derivatives of the normalized stiffness elastic constant over the inclusion volume ratio. We succeeded in obtaining useful systematic formulations for D ij . These formulations are expected to be applicable to the study of composite systems in many disciplines, such as geophysics, mechanics, material engineering, and biology. The present results provide much more effective constraints on the physical properties of composite systems, like rocks, than traditional methods, such as the Voigt-Reuss bounds.

  10. Hysteretic MDOF Model to Quantify Damage for RC Shear Frames Subject to Earthquakes

    DEFF Research Database (Denmark)

    Köylüoglu, H. Ugur; Nielsen, Søren R.K.; Cakmak, Ahmet S.

    A hysteretic mechanical formulation is derived to quantify local, modal and overall damage in reinforced concrete (RC) shear frames subject to seismic excitation. Each interstorey is represented by a Clough and Johnston (1966) hysteretic constitutive relation with degrading elastic fraction of th...... shear frame is subject to simulated earthquake excitations, which are modelled as a stationary Gaussian stochastic process with Kanai-Tajimi spectrum, multiplied by an envelope function. The relationship between local, modal and overall damage indices is investigated statistically....

  11. Elastic wave excitation in centrosymmetric strontium titanate crystals

    International Nuclear Information System (INIS)

    Yushin, N.K.; Sotnikov, A.V.

    1980-01-01

    The main experimental dependencies are measured and the excitation mechanism of elastic waves in centrosymmetric crystals is established. The surface generation of three-dimensional elastic waves of the 30 MHz frequency in strontium titanate crystals is observed and studied. Elastic wave excitation is observed in the 4 350 K temperature range. The efficiency of hysteresis excitation depends on the external electric field. The effect of light irradiation on the amplitude of excited elastic waves is observed. It is shown that escitation is connected with linearization of electrostriction by the constant electric field appearing in a near-surface crystal layer due to phenomena in the Schottky barrier and appearance of electretic near-electrode layers

  12. Quasi-elastic high-pressure waves in 2024 Al and Cu

    International Nuclear Information System (INIS)

    Morris, C.E.; Fritz, J.N.; Holian, B.L.

    1981-01-01

    Release waves from the back of a plate slap experiment are used to estimate the longitudinal modulus, bulk modulus and shear strength of the metal in the state produced by a symmetric collision. The velocity of the interface between the metal target and a window material is measured by the axially symmetric magnetic (ASM) probe. Wave profiles for initial states up to 90 GPa for 2024 Al and up to 150 GPa for Cu have been obtained. Elastic perfectly-plastic (EPP) theory cannot account for the results. A relatively simple quasi-elastic plastic (QEP) model can

  13. Elastic constants of non-modulated Ni-Mn-Ga martensite

    Czech Academy of Sciences Publication Activity Database

    Sedlák, Petr; Seiner, Hanuš; Bodnárová, Lucie; Heczko, Oleg; Landa, Michal

    2017-01-01

    Roč. 136, July (2017), s. 20-23 ISSN 1359-6462 R&D Projects: GA ČR GA17-00062S Institutional support: RVO:61388998 ; RVO:68378271 Keywords : acoustic methods * elastic behavior * ferromagnetic shape memory alloys * martensitic phase transformation Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D) Impact factor: 3.747, year: 2016 http://ac.els-cdn.com/S1359646217301768/1-s2.0-S1359646217301768-main.pdf?_tid=9b99b306-4a83-11e7-8ec6-00000aacb35e&acdnat=1496731657_35d3b5f3132e926d5bc8c6043961bb6d

  14. 3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.

    Science.gov (United States)

    Orescanin, Marko; Wang, Yue; Insana, Michael

    2011-02-01

    The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogeneous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.

  15. Detection and monitoring of shear crack growth using S-P conversion of seismic waves

    Science.gov (United States)

    Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    A diagnostic method for monitoring shear crack initiation, propagation, and coalescence in rock is key for the detection of major rupture events, such as slip along a fault. Active ultrasonic monitoring was used in this study to determine the precursory signatures to shear crack initiation in pre-cracked rock. Prismatic specimens of Indiana limestone (203x2101x638x1 mm) with two pre-existing parallel flaws were subjected to uniaxial compression. The flaws were cut through the thickness of the specimen using a scroll saw. The length of the flaws was 19.05 mm and had an inclination angle with respect to the loading direction of 30o. Shear wave transducers were placed on each side of the specimen, with polarization parallel to the loading direction. The shear waves, given the geometry of the flaws, were normally incident to the shear crack forming between the two flaws during loading. Shear crack initiation and propagation was detected on the specimen surface using digital image correlation (DIC), while initiation inside the rock was monitored by measuring full waveforms of the transmitted and reflected shear (S) waves across the specimen. Prior to the detection of a shear crack on the specimen surface using DIC, transmitted S waves were converted to compressional (P) waves. The emergence of converted S-P wave occurs because of the presence of oriented microcracks inside the rock. The microcracks coalesce and form the shear crack observed on the specimen surface. Up to crack coalescence, the amplitude of the converted waves increased with shear crack propagation. However, the amplitude of the transmitted shear waves between the two flaws did not change with shear crack initiation and propagation. This is in agreement with the conversion of elastic waves (P- to S-wave or S- to P-wave) observed by Nakagawa et al., (2000) for normal incident waves. Elastic wave conversions are attributed to the formation of an array of oriented microcracks that dilate under shear stress

  16. Shear wave elastography for breast masses is highly reproducible.

    Science.gov (United States)

    Cosgrove, David O; Berg, Wendie A; Doré, Caroline J; Skyba, Danny M; Henry, Jean-Pierre; Gay, Joel; Cohen-Bacrie, Claude

    2012-05-01

    To evaluate intra- and interobserver reproducibility of shear wave elastography (SWE) for breast masses. For intraobserver reproducibility, each observer obtained three consecutive SWE images of 758 masses that were visible on ultrasound. 144 (19%) were malignant. Weighted kappa was used to assess the agreement of qualitative elastographic features; the reliability of quantitative measurements was assessed by intraclass correlation coefficients (ICC). For the interobserver reproducibility, a blinded observer reviewed images and agreement on features was determined. Mean age was 50 years; mean mass size was 13 mm. Qualitatively, SWE images were at least reasonably similar for 666/758 (87.9%). Intraclass correlation for SWE diameter, area and perimeter was almost perfect (ICC ≥ 0.94). Intraobserver reliability for maximum and mean elasticity was almost perfect (ICC = 0.84 and 0.87) and was substantial for the ratio of mass-to-fat elasticity (ICC = 0.77). Interobserver agreement was moderate for SWE homogeneity (κ = 0.57), substantial for qualitative colour assessment of maximum elasticity (κ = 0.66), fair for SWE shape (κ = 0.40), fair for B-mode mass margins (κ = 0.38), and moderate for B-mode mass shape (κ = 0.58), orientation (κ = 0.53) and BI-RADS assessment (κ = 0.59). SWE is highly reproducible for assessing elastographic features of breast masses within and across observers. SWE interpretation is at least as consistent as that of BI-RADS ultrasound B-mode features. • Shear wave ultrasound elastography can measure the stiffness of breast tissue • It provides a qualitatively and quantitatively interpretable colour-coded map of tissue stiffness • Intraobserver reproducibility of SWE is almost perfect while intraobserver reproducibility of SWE proved to be moderate to substantial • The most reproducible SWE features between observers were SWE image homogeneity and maximum elasticity.

  17. Far-infrared elastic scattering proposal for the Avogadro Project's silicon spheres

    Science.gov (United States)

    Humayun, Muhammad Hamza; Khan, Imran; Azeem, Farhan; Chaudhry, Muhammad Rehan; Gökay, Ulaş Sabahattin; Murib, Mohammed Sharif; Serpengüzel, Ali

    2018-05-01

    Avogadro constant determines the number of particles in one mole of a substance, thus relating the molar mass of the substance to the mass of this substance. Avogadro constant is related to Système Internationale base units by defining the very concept of chemical quantity. Revisions of the base units created a need to redefine the Avogadro constant, where a collaborative work called the Avogadro Project is established to employ optical interferometry to measure the diameter of high quality 100 mm silicon spheres. We propose far-infrared spectroscopy for determining the Avogadro constant by using elastic scattering from the 100 mm Avogadro Project silicon spheres. Similar spectroscopic methods are already in use in the near-infrared, relating whispering gallery modes of the 1 mm silicon spheres to the diameter of the spheres. We present numerical simulations in the far-infrared and the near-infrared, as well as spatially scaled down elastic scattering measurements in the near-infrared. These numerical and experimental results show that, the diameter measurements of 100 mm single crystal silicon spheres with elastic scattering in the far-infrared can be considered as an alternative to optical interferometry.

  18. DYNAMIC RESPONSE OF THICK PLATES ON TWO PARAMETER ELASTIC FOUNDATION UNDER TIME VARIABLE LOADING

    OpenAIRE

    Ozgan, Korhan; Daloglu, Ayse T.

    2014-01-01

    In this paper, behavior of foundation plates with transverse shear deformation under time variable loading is presented using modified Vlasov foundation model. Finite element formulation of thick plates on elastic foundation is derived by using an 8-noded finite element based on Mindlin plate theory. Selective reduced integration technique is used to avoid shear locking problem which arises when smaller plate thickness is considered for the evaluation of the stiffness matrices. After comparis...

  19. Static Analysis of Laminated Composite Plate using New Higher Order Shear Deformation Plate Theory

    Directory of Open Access Journals (Sweden)

    Ibtehal Abbas Sadiq

    2017-02-01

    Full Text Available In the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The modal of the present work has been verified by comparing the results of shape functions with that were obtained by other workers. Result shows the good agreement with 3D elasticity solution and that published by other researchers.

  20. Microstructural evolution in inhomogeneous elastic media

    International Nuclear Information System (INIS)

    Jou, H.J.; Leo, P.H.; Lowengrub, J.S.

    1997-01-01

    We simulate the diffusional evolution of microstructures produced by solid state diffusional transformations in elastically stressed binary alloys in two dimensions. The microstructure consists of arbitrarily shaped precipitates embedded coherently in an infinite matrix. The precipitate and matrix are taken to be elastically isotropic, although they may have different elastic constants (elastically inhomogeneous). Both far-field applied strains and mismatch strains between the phases are considered. The diffusion and elastic fields are calculated using the boundary integral method, together with a small scale preconditioner to remove ill-conditioning. The precipitate-matrix interfaces are tracked using a nonstiff time updating method. The numerical method is spectrally accurate and efficient. Simulations of a single precipitate indicate that precipitate shapes depend strongly on the mass flux into the system as well as on the elastic fields. Growing shapes (positive mass flux) are dendritic while equilibrium shapes (zero mass flux) are squarish. Simulations of multiparticle systems show complicated interactions between precipitate morphology and the overall development of microstructure (i.e., precipitate alignment, translation, merging, and coarsening). In both single and multiple particle simulations, the details of the microstructural evolution depend strongly o the elastic inhomogeneity, misfit strain, and applied fields. 57 refs., 24 figs