WorldWideScience

Sample records for shank3 gene leads

  1. SHANK3 as an autism spectrum disorder-associated gene.

    Science.gov (United States)

    Uchino, Shigeo; Waga, Chikako

    2013-02-01

    SHANK3 is a synaptic scaffolding protein enriched in the postsynaptic density of excitatory synapses, and plays important roles in the formation, maturation, and maintenance of synapses. Haploinsufficiency of the SHANK3 gene causes a developmental disorder, 22q13.3 deletion syndrome (known as Phelan-McDermid syndrome), that is characterized by severe expressive language and speech delay, hypotonia, global developmental delay, and autistic behavior. Since several SHANK3 mutations have been identified in a particular phenotypic group in patients with autism spectrum disorder (ASD), the SHANK3 is strongly suspected of being involved in the pathogenesis and neuropathology of ASD. Five CpG-islands have been identified in the SHANK3 gene, and tissue-specific expression of SHANK3 is regulated by DNA methylation in an epigenetic manner. Cumulative evidence has shown that several SHANK3 variants are expressed in the developing rodent brain and that their expression is regulated by DNA methylation of intragenic promoters. We identified novel SHANK3 transcripts whose transcription started at the vicinity of the CpG-island 2 in the mouse brain. Shank3 mutant mice exhibit autistic-like behaviors, including impaired social interaction and repetitive behaviors. In this article we review recent findings in regard to higher brain functions of SHANK3, epigenetic regulation of SHANK3 expression, and SHANK3-related ASD that were obtained from genetic analyses in ASD patients, molecular biological studies using developing mouse brains, and studies of Shank3 mutant mice. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  2. Lack of association between NLGN3, NLGN4, SHANK2 and SHANK3 gene variants and autism spectrum disorder in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Yanyan Liu

    Full Text Available Autism spectrum disorder (ASD is a neurodevelopmental disorder characterized by deficits in social communication, absence or delay in language development, and stereotyped or repetitive behaviors. Genetic studies show that neurexin-neuroligin (NRXN-NLGN pathway genes contribute susceptibility to ASD, which include cell adhesion molecules NLGN3, NLGN4 and scaffolding proteins SHANK2 and SHANK3. Neuroligin proteins play an important role in synaptic function and trans-synaptic signaling by interacting with presynaptic neurexins. Shank proteins are scaffolding molecules of excitatory synapses, which function as central organizers of the postsynaptic density. Sequence level mutations and structural variations in these genes have been identified in ASD cases, while few studies were performed in Chinese population. In this study, we examined the copy numbers of four genes NLGN4, NLGN3, SHANK2, and SHANK3 in 285 ASD cases using multiplex fluorescence competitive polymerase chain reaction (PCR. We also screened the regulatory region including the promoter region and 5'/3' untranslated regions (UTR and the entire coding region of NLGN4 in a cohort of 285 ASD patients and 384 controls by direct sequencing of genomic DNA using the Sanger method. DNA copy number calculation in four genes showed no deletion or duplication in our cases. No missense mutations in NLGN4 were identified in our cohort. Association analysis of 6 common SNPs in NLGN4 did not find significant difference between ASD cases and controls. These findings showed that these genes may not be major disease genes in Chinese ASD cases.

  3. Absence of strong strain effects in behavioral analyses of Shank3-deficient mice

    Directory of Open Access Journals (Sweden)

    Elodie Drapeau

    2014-06-01

    Full Text Available Haploinsufficiency of SHANK3, caused by chromosomal abnormalities or mutations that disrupt one copy of the gene, leads to a neurodevelopmental syndrome called Phelan-McDermid syndrome, symptoms of which can include absent or delayed speech, intellectual disability, neurological changes and autism spectrum disorders. The SHANK3 protein forms a key structural part of the post-synaptic density. We previously generated and characterized mice with a targeted disruption of Shank3 in which exons coding for the ankyrin-repeat domain were deleted and expression of full-length Shank3 was disrupted. We documented specific deficits in synaptic function and plasticity, along with reduced reciprocal social interactions, in Shank3 heterozygous mice. Changes in phenotype owing to a mutation at a single locus are quite frequently modulated by other loci, most dramatically when the entire genetic background is changed. In mice, each strain of laboratory mouse represents a distinct genetic background and alterations in phenotype owing to gene knockout or transgenesis are frequently different across strains, which can lead to the identification of important modifier loci. We have investigated the effect of genetic background on phenotypes of Shank3 heterozygous, knockout and wild-type mice, using C57BL/6, 129SVE and FVB/Ntac strain backgrounds. We focused on observable behaviors with the goal of carrying out subsequent analyses to identify modifier loci. Surprisingly, there were very modest strain effects over a large battery of analyses. These results indicate that behavioral phenotypes associated with Shank3 haploinsufficiency are largely strain-independent.

  4. Copy number variation and association analysis of SHANK3 as a candidate gene for autism in the IMGSAC collection.

    Science.gov (United States)

    Sykes, Nuala H; Toma, Claudio; Wilson, Natalie; Volpi, Emanuela V; Sousa, Inês; Pagnamenta, Alistair T; Tancredi, Raffaella; Battaglia, Agatino; Maestrini, Elena; Bailey, Anthony J; Monaco, Anthony P

    2009-10-01

    SHANK3 is located on chromosome 22q13.3 and encodes a scaffold protein that is found in excitatory synapses opposite the pre-synaptic active zone. SHANK3 is a binding partner of neuroligins, some of whose genes contain mutations in a small subset of individuals with autism. In individuals with autism spectrum disorders (ASDs), several studies have found SHANK3 to be disrupted by deletions ranging from hundreds of kilobases to megabases, suggesting that 1% of individuals with ASDs may have these chromosomal aberrations. To further analyse the involvement of SHANK3 in ASD, we screened the International Molecular Genetic Study of Autism Consortium (IMGSAC) multiplex family sample, 330 families, for SNP association and copy number variants (CNVs) in SHANK3. A collection of 76 IMGSAC Italian probands from singleton families was also examined by multiplex ligation-dependent probe amplification for CNVs. No CNVs or SNP associations were found within the sample set, although sequencing of the gene was not performed. Our data suggest that SHANK3 deletions may be limited to lower functioning individuals with autism.

  5. Proteogenomic Analysis Identifies a Novel Human SHANK3 Isoform

    Directory of Open Access Journals (Sweden)

    Fahad Benthani

    2015-05-01

    Full Text Available Mutations of the SHANK3 gene have been associated with autism spectrum disorder. Individuals harboring different SHANK3 mutations display considerable heterogeneity in their cognitive impairment, likely due to the high SHANK3 transcriptional diversity. In this study, we report a novel interaction between the Mutated in colorectal cancer (MCC protein and a newly identified SHANK3 protein isoform in human colon cancer cells and mouse brain tissue. Hence, our proteogenomic analysis identifies a new human long isoform of the key synaptic protein SHANK3 that was not predicted by the human reference genome. Taken together, our findings describe a potential new role for MCC in neurons, a new human SHANK3 long isoform and, importantly, highlight the use of proteomic data towards the re-annotation of GC-rich genomic regions.

  6. Striatal Transcriptome and Interactome Analysis of Shank3-overexpressing Mice Reveals the Connectivity between Shank3 and mTORC1 Signaling

    Directory of Open Access Journals (Sweden)

    Yeunkum Lee

    2017-06-01

    Full Text Available Mania causes symptoms of hyperactivity, impulsivity, elevated mood, reduced anxiety and decreased need for sleep, which suggests that the dysfunction of the striatum, a critical component of the brain motor and reward system, can be causally associated with mania. However, detailed molecular pathophysiology underlying the striatal dysfunction in mania remains largely unknown. In this study, we aimed to identify the molecular pathways showing alterations in the striatum of SH3 and multiple ankyrin repeat domains 3 (Shank3-overexpressing transgenic (TG mice that display manic-like behaviors. The results of transcriptome analysis suggested that mammalian target of rapamycin complex 1 (mTORC1 signaling may be the primary molecular signature altered in the Shank3 TG striatum. Indeed, we found that striatal mTORC1 activity, as measured by mTOR S2448 phosphorylation, was significantly decreased in the Shank3 TG mice compared to wild-type (WT mice. To elucidate the potential underlying mechanism, we re-analyzed previously reported protein interactomes, and detected a high connectivity between Shank3 and several upstream regulators of mTORC1, such as tuberous sclerosis 1 (TSC1, TSC2 and Ras homolog enriched in striatum (Rhes, via 94 common interactors that we denominated “Shank3-mTORC1 interactome”. We noticed that, among the 94 common interactors, 11 proteins were related to actin filaments, the level of which was increased in the dorsal striatum of Shank3 TG mice. Furthermore, we could co-immunoprecipitate Shank3, Rhes and Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1 proteins from the striatal lysate of Shank3 TG mice. By comparing with the gene sets of psychiatric disorders, we also observed that the 94 proteins of Shank3-mTORC1 interactome were significantly associated with bipolar disorder (BD. Altogether, our results suggest a protein interaction-mediated connectivity between Shank3 and certain upstream

  7. Enhanced Polyubiquitination of Shank3 and NMDA receptor in a mouse model of Autism

    OpenAIRE

    Bangash, M Ali; Park, Joo Min; Melnikova, Tatiana; Wang, Dehua; Jeon, Soo Kyeong; Lee, Deidre; Syeda, Sbaa; Kim, Juno; Kouser, Mehreen; Schwartz, Joshua; Cui, Yiyuan; Zhao, Xia; Speed, Haley E.; Kee, Sara E.; Tu, Jian Cheng

    2011-01-01

    We have created a mouse genetic model that mimics a human mutation of Shank3 that deletes the C-terminus and is associated with autism. Expressed as a single copy [Shank3(+/ΔC) mice], Shank3ΔC protein interacts with the WT gene product and results in >90 % reduction of Shank3 at synapses. This “gain of function” phenotype is linked to increased polyubiquitination of WT Shank3 and its redistribution into proteasomes. Similarly, the NR1 subunit of the NMDA receptor is reduced at synapses with i...

  8. Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism.

    Science.gov (United States)

    Bangash, M Ali; Park, Joo Min; Melnikova, Tatiana; Wang, Dehua; Jeon, Soo Kyeong; Lee, Deidre; Syeda, Sbaa; Kim, Juno; Kouser, Mehreen; Schwartz, Joshua; Cui, Yiyuan; Zhao, Xia; Speed, Haley E; Kee, Sara E; Tu, Jian Cheng; Hu, Jia-Hua; Petralia, Ronald S; Linden, David J; Powell, Craig M; Savonenko, Alena; Xiao, Bo; Worley, Paul F

    2011-05-27

    We have created a mouse genetic model that mimics a human mutation of Shank3 that deletes the C terminus and is associated with autism. Expressed as a single copy [Shank3(+/ΔC) mice], Shank3ΔC protein interacts with the wild-type (WT) gene product and results in >90% reduction of Shank3 at synapses. This "gain-of-function" phenotype is linked to increased polyubiquitination of WT Shank3 and its redistribution into proteasomes. Similarly, the NR1 subunit of the NMDA receptor is reduced at synapses with increased polyubiquitination. Assays of postsynaptic density proteins, spine morphology, and synapse number are unchanged in Shank3(+/ΔC) mice, but the amplitude of NMDAR responses is reduced together with reduced NMDAR-dependent LTP and LTD. Reciprocally, mGluR-dependent LTD is markedly enhanced. Shank3(+/ΔC) mice show behavioral deficits suggestive of autism and reduced NMDA receptor function. These studies reveal a mechanism distinct from haploinsufficiency by which mutations of Shank3 can evoke an autism-like disorder. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. SHANK1 Deletions in Males with Autism Spectrum Disorder.

    Science.gov (United States)

    Sato, Daisuke; Lionel, Anath C; Leblond, Claire S; Prasad, Aparna; Pinto, Dalila; Walker, Susan; O'Connor, Irene; Russell, Carolyn; Drmic, Irene E; Hamdan, Fadi F; Michaud, Jacques L; Endris, Volker; Roeth, Ralph; Delorme, Richard; Huguet, Guillaume; Leboyer, Marion; Rastam, Maria; Gillberg, Christopher; Lathrop, Mark; Stavropoulos, Dimitri J; Anagnostou, Evdokia; Weksberg, Rosanna; Fombonne, Eric; Zwaigenbaum, Lonnie; Fernandez, Bridget A; Roberts, Wendy; Rappold, Gudrun A; Marshall, Christian R; Bourgeron, Thomas; Szatmari, Peter; Scherer, Stephen W

    2012-05-04

    Recent studies have highlighted the involvement of rare (number variations and point mutations in the genetic etiology of autism spectrum disorder (ASD); these variants particularly affect genes involved in the neuronal synaptic complex. The SHANK gene family consists of three members (SHANK1, SHANK2, and SHANK3), which encode scaffolding proteins required for the proper formation and function of neuronal synapses. Although SHANK2 and SHANK3 mutations have been implicated in ASD and intellectual disability, the involvement of SHANK1 is unknown. Here, we assess microarray data from 1,158 Canadian and 456 European individuals with ASD to discover microdeletions at the SHANK1 locus on chromosome 19. We identify a hemizygous SHANK1 deletion that segregates in a four-generation family in which male carriers--but not female carriers--have ASD with higher functioning. A de novo SHANK1 deletion was also detected in an unrelated male individual with ASD with higher functioning, and no equivalent SHANK1 mutations were found in >15,000 controls (p = 0.009). The discovery of apparent reduced penetrance of ASD in females bearing inherited autosomal SHANK1 deletions provides a possible contributory model for the male gender bias in autism. The data are also informative for clinical-genetics interpretations of both inherited and sporadic forms of ASD involving SHANK1. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. Trunk and Shank Position Influences Patellofemoral Joint Stress in the Lead and Trail Limbs During the Forward Lunge Exercise.

    Science.gov (United States)

    Hofmann, Cory L; Holyoak, Derek T; Juris, Paul M

    2017-01-01

    Study Design Controlled laboratory study, repeated-measures design. Background The effects of trunk and shank position on patellofemoral joint stress of the lead limb have been well studied; however, the effects on the trail limb are not well understood. Objectives To test the hypothesis that trunk and shank position may influence patellofemoral joint stress in both limbs during the forward lunge exercise. Methods Patellofemoral kinetics were quantified from 18 healthy participants performing the lunge exercise with different combinations of trunk and shank positions (vertical or forward). A 2-by-3 (limb-by-lunge variation) repeated-measures analysis of variance was performed, using paired t tests for post hoc comparisons. Results The trail limb experienced greater total patellofemoral joint stress relative to the lead limb, regardless of trunk and shank position (Ppatellofemoral joint stress in the trail limb relative to the lead limb (Ppatellofemoral stress in the lead limb (Ppatellofemoral joint loading of both limbs during the forward lunge, with the trail limb generally experiencing greater total joint stress. Restricting forward translation of the lead-limb shank may reduce patellofemoral joint stress at the expense of increased stress in the trail limb. Technique recommendations should consider the demands imposed on both knees during this exercise. J Orthop Sports Phys Ther 2017;47(1):31-40. Epub 4 Nov 2016. doi:10.2519/jospt.2017.6336.

  11. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators

    Directory of Open Access Journals (Sweden)

    Lara J. Duffney

    2015-06-01

    Full Text Available Haploinsufficiency of the Shank3 gene, which encodes a scaffolding protein at glutamatergic synapses, is a highly prevalent and penetrant risk factor for autism. Using combined behavioral, electrophysiological, biochemical, imaging, and molecular approaches, we find that Shank3-deficient mice exhibit autism-like social deficits and repetitive behaviors, as well as the significantly diminished NMDA receptor (NMDAR synaptic function and synaptic distribution in prefrontal cortex. Concomitantly, Shank3-deficient mice have a marked loss of cortical actin filaments, which is associated with the reduced Rac1/PAK activity and increased activity of cofilin, the major actin depolymerizing factor. The social deficits and NMDAR hypofunction are rescued by inhibiting cofilin or activating Rac1 in Shank3-deficient mice and are induced by inhibiting PAK or Rac1 in wild-type mice. These results indicate that the aberrant regulation of synaptic actin filaments and loss of synaptic NMDARs contribute to the manifestation of autism-like phenotypes. Thus, targeting actin regulators provides a strategy for autism treatment.

  12. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: a gradient of severity in cognitive impairments.

    Science.gov (United States)

    Leblond, Claire S; Nava, Caroline; Polge, Anne; Gauthier, Julie; Huguet, Guillaume; Lumbroso, Serge; Giuliano, Fabienne; Stordeur, Coline; Depienne, Christel; Mouzat, Kevin; Pinto, Dalila; Howe, Jennifer; Lemière, Nathalie; Durand, Christelle M; Guibert, Jessica; Ey, Elodie; Toro, Roberto; Peyre, Hugo; Mathieu, Alexandre; Amsellem, Frédérique; Rastam, Maria; Gillberg, I Carina; Rappold, Gudrun A; Holt, Richard; Monaco, Anthony P; Maestrini, Elena; Galan, Pilar; Heron, Delphine; Jacquette, Aurélia; Afenjar, Alexandra; Rastetter, Agnès; Brice, Alexis; Devillard, Françoise; Assouline, Brigitte; Laffargue, Fanny; Lespinasse, James; Chiesa, Jean; Rivier, François; Bonneau, Dominique; Regnault, Beatrice; Zelenika, Diana; Delepine, Marc; Lathrop, Mark; Sanlaville, Damien; Schluth-Bolard, Caroline; Edery, Patrick; Perrin, Laurence; Tabet, Anne Claude; Schmeisser, Michael J; Boeckers, Tobias M; Coleman, Mary; Sato, Daisuke; Szatmari, Peter; Scherer, Stephen W; Rouleau, Guy A; Betancur, Catalina; Leboyer, Marion; Gillberg, Christopher; Delorme, Richard; Bourgeron, Thomas

    2014-09-01

    SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice.

  13. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: a gradient of severity in cognitive impairments.

    Directory of Open Access Journals (Sweden)

    Claire S Leblond

    2014-09-01

    Full Text Available SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD, but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene, and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04% and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice.

  14. High proportion of 22q13 deletions and SHANK3 mutations in Chinese patients with intellectual disability.

    Directory of Open Access Journals (Sweden)

    Xiaohong Gong

    Full Text Available Intellectual disability (ID is a heterogeneous disorder caused by chromosomal abnormalities, monogenic factors and environmental factors. 22q13 deletion syndrome is a genetic disorder characterized by severe ID. Although the frequency of 22q13 deletions in ID is unclear, it is believed to be largely underestimated. To address this issue, we used Affymetrix Human SNP 6.0 array to detect the 22q13 deletions in 234 Chinese unexplained ID patients and 103 controls. After the Quality Control (QC test of raw data, 22q13 deletions were found in four out of 230 cases (1.7%, while absent in parents of the cases and 101 controls. A review of genome-wide microarray studies in ID was performed and the frequency of 22q13 deletions from the literatures was 0.24%, much lower than our report. The overlapping region shared by all 4 cases encompasses the gene SHANK3. A heterozygous de novo nonsense mutation Y1015X of SHANK3 was identified in one ID patient. Cortical neurons were prepared from embryonic mice and were transfected with a control plasmid, shank3 wild-type (WT or mutant plasmids. Overexpression of the Y1015 mutant in neurons significantly affected neurite outgrowth compared with shank3 WT. These findings suggest that 22q13 deletions may be a more frequent cause for Chinese ID patients than previously thought, and the SHANK3 gene is involved in the neurite development.

  15. Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders.

    Science.gov (United States)

    Sala, Carlo; Vicidomini, Cinzia; Bigi, Ilaria; Mossa, Adele; Verpelli, Chiara

    2015-12-01

    Shank/ProSAP proteins are essential to synaptic formation, development, and function. Mutations in the family of SHANK genes are strongly associated with autism spectrum disorders (ASD) and other neurodevelopmental and neuropsychiatric disorders, such as intellectual disability (ID), and schizophrenia. Thus, the term 'Shankopathies' identifies a number of neuronal diseases caused by alteration of Shank protein expression leading to abnormal synaptic development. With this review we want to summarize the major genetic, molecular, behavior and electrophysiological studies that provide new clues into the function of Shanks and pave the way for the discovery of new therapeutic drugs targeted to treat patients with SHANK mutations and also patients affected by other neurodevelopmental and neuropsychiatric disorders. Shank/ProSAP proteins are essential to synaptic formation, development, and function. Mutations in the family of SHANK genes are strongly associated with autism spectrum disorders (ASD) and other neurodevelopmental and neuropsychiatric disorders, such as intellectual disability (ID), and schizophrenia (SCZ). With this review we want to summarize the major genetic, molecular, behavior and electrophysiological studies that provide new clues into the function of Shanks and pave the way for the discovery of new therapeutic drugs targeted to treat patients with SHANK mutations. © 2015 International Society for Neurochemistry.

  16. A RAMP marker linked to the tobacco black shank resistant gene ...

    African Journals Online (AJOL)

    Bulk segregant analysis (BSA) and randomly amplified microsatellite polymorphism (RAMP) were employed to analyze F2 individuals of the Yunyan 317×Hubei 517 to screen and characterize molecular markers linked to black shank resistant gene. A total of 800 arbitrary decamer oligonucleotide primerpairs were used for ...

  17. Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior.

    Directory of Open Access Journals (Sweden)

    Markus Wöhr

    Full Text Available Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1(-/- null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1(-/- mice as compared to wildtype Shank1(+/+ littermate controls. Shank1(-/- pups emitted fewer vocalizations than Shank1(+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1(-/- males deposited fewer scent marks in proximity to female urine than Shank1(+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1(+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1(-/- mice were unaffected, indicating a failure of Shank1(-/- males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1(-/- mice are consistent with a phenotype relevant to social communication deficits in autism.

  18. Communication Impairments in Mice Lacking Shank1: Reduced Levels of Ultrasonic Vocalizations and Scent Marking Behavior

    Science.gov (United States)

    Wöhr, Markus; Roullet, Florence I.; Hung, Albert Y.; Sheng, Morgan; Crawley, Jacqueline N.

    2011-01-01

    Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1 −/− null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1 −/− mice as compared to wildtype Shank1 +/+ littermate controls. Shank1 −/− pups emitted fewer vocalizations than Shank1+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1 −/− males deposited fewer scent marks in proximity to female urine than Shank1+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1 −/− mice were unaffected, indicating a failure of Shank1 −/− males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1 −/− mice are consistent with a phenotype relevant to social communication deficits in autism. PMID:21695253

  19. The spectrum of epilepsy and electroencephalographic abnormalities due to SHANK3 loss-of-function mutations.

    Science.gov (United States)

    Holder, J Lloyd; Quach, Michael M

    2016-10-01

    The coincidence of autism with epilepsy is 27% in those individuals with intellectual disability. 1 Individuals with loss-of-function mutations in SHANK3 have intellectual disability, autism, and variably, epilepsy. 2-5 The spectrum of seizure semiologies and electroencephalography (EEG) abnormalities has never been investigated in detail. With the recent report that SHANK3 mutations are present in approximately 2% of individuals with moderate to severe intellectual disabilities and 1% of individuals with autism, determining the spectrum of seizure semiologies and electrographic abnormalities will be critical for medical practitioners to appropriately counsel the families of patients with SHANK3 mutations. A retrospective chart review was performed of all individuals treated at the Blue Bird Circle Clinic for Child Neurology who have been identified as having either a chromosome 22q13 microdeletion encompassing SHANK3 or a loss-of-function mutation in SHANK3 identified through whole-exome sequencing. For each subject, the presence or absence of seizures, seizure semiology, frequency, age of onset, and efficacy of therapy were determined. Electroencephalography studies were reviewed by a board certified neurophysiologist. Neuroimaging was reviewed by both a board certified pediatric neuroradiologist and child neurologist. There is a wide spectrum of seizure semiologies, frequencies, and severity in individuals with SHANK3 mutations. There are no specific EEG abnormalities found in our cohort, and EEG abnormalities were present in individuals diagnosed with epilepsy and those without history of a clinical seizure. All individuals with a mutation in SHANK3 should be evaluated for epilepsy due to the high prevalence of seizures in this population. The most common semiology is atypical absence seizure, which can be challenging to identify due to comorbid intellectual disability in individuals with SHANK3 mutations; however, no consistent seizure semiology, neuroimaging

  20. Replicable in vivo physiological and behavioral phenotypes of the Shank3B null mutant mouse model of autism.

    Science.gov (United States)

    Dhamne, Sameer C; Silverman, Jill L; Super, Chloe E; Lammers, Stephen H T; Hameed, Mustafa Q; Modi, Meera E; Copping, Nycole A; Pride, Michael C; Smith, Daniel G; Rotenberg, Alexander; Crawley, Jacqueline N; Sahin, Mustafa

    2017-01-01

    Autism spectrum disorder (ASD) is a clinically and biologically heterogeneous condition characterized by social, repetitive, and sensory behavioral abnormalities. No treatments are approved for the core diagnostic symptoms of ASD. To enable the earliest stages of therapeutic discovery and development for ASD, robust and reproducible behavioral phenotypes and biological markers are essential to establish in preclinical animal models. The goal of this study was to identify electroencephalographic (EEG) and behavioral phenotypes that are replicable between independent cohorts in a mouse model of ASD. The larger goal of our strategy is to empower the preclinical biomedical ASD research field by generating robust and reproducible behavioral and physiological phenotypes in animal models of ASD, for the characterization of mechanistic underpinnings of ASD-relevant phenotypes, and to ensure reliability for the discovery of novel therapeutics. Genetic disruption of the SHANK3 gene, a scaffolding protein involved in the stability of the postsynaptic density in excitatory synapses, is thought to be responsible for a relatively large number of cases of ASD. Therefore, we have thoroughly characterized the robustness of ASD-relevant behavioral phenotypes in two cohorts, and for the first time quantified translational EEG activity in Shank3B null mutant mice. In vivo physiology and behavioral assays were conducted in two independently bred and tested full cohorts of Shank3B null mutant ( Shank3B KO) and wildtype littermate control (WT) mice. EEG was recorded via wireless implanted telemeters for 7 days of baseline followed by 20 min of recording following pentylenetetrazol (PTZ) challenge. Behaviors relevant to the diagnostic and associated symptoms of ASD were tested on a battery of established behavioral tests. Assays were designed to reproduce and expand on the original behavioral characterization of Shank3B KO mice. Two or more corroborative tests were conducted within each

  1. Whole genome sequencing reveals a de novo SHANK3 mutation in familial autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Sergio I Nemirovsky

    Full Text Available Clinical genomics promise to be especially suitable for the study of etiologically heterogeneous conditions such as Autism Spectrum Disorder (ASD. Here we present three siblings with ASD where we evaluated the usefulness of Whole Genome Sequencing (WGS for the diagnostic approach to ASD.We identified a family segregating ASD in three siblings with an unidentified cause. We performed WGS in the three probands and used a state-of-the-art comprehensive bioinformatic analysis pipeline and prioritized the identified variants located in genes likely to be related to ASD. We validated the finding by Sanger sequencing in the probands and their parents.Three male siblings presented a syndrome characterized by severe intellectual disability, absence of language, autism spectrum symptoms and epilepsy with negative family history for mental retardation, language disorders, ASD or other psychiatric disorders. We found germline mosaicism for a heterozygous deletion of a cytosine in the exon 21 of the SHANK3 gene, resulting in a missense sequence of 5 codons followed by a premature stop codon (NM_033517:c.3259_3259delC, p.Ser1088Profs*6.We reported an infrequent form of familial ASD where WGS proved useful in the clinic. We identified a mutation in SHANK3 that underscores its relevance in Autism Spectrum Disorder.

  2. Phelan-McDermid syndrome due to SHANK3 mutation in an intellectually disabled adult male: successful treatment with lithium.

    Science.gov (United States)

    Egger, Jos I M; Verhoeven, Willem M A; Groenendijk-Reijenga, Renske; Kant, Sarina G

    2017-09-28

    For 30 years, Phelan and co-workers described a syndrome characterised by neonatal hypotonia, global developmental delay, strongly impaired speech, sleep disturbances and hyperreactivity to sensory stimuli. This Phelan-McDermid syndrome (PMS), also presenting with symptoms from the autism spectrum and a higher risk of developing seizure disorders, may be caused by a deletion of chromosome 22q13 or by a mutation in the SHANK3 gene. Its core psychopathological phenotype comprises symptoms from the bipolar spectrum for which generally treatment with a mood-stabilising anticonvulsant in combination with an atypical antipsychotic seems to be most effective. In addition to two elsewhere published adolescent patients, we here describe in detail the history of an adult male patient with PMS caused by a SHANK3 mutation in whom successive treatment regimens with antipsychotics and mood-stabilising anticonvulsants were all ineffective. Ultimately, addition of lithium to existing olanzapine therapy led to enduring stabilisation of mood and behaviour. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Shank otsustab lahkumise pärast puhkuselt naasmist / Ester Shank

    Index Scriptorium Estoniae

    Šank, Ester, 1956-

    2002-01-01

    Välismaal oma korralist suvepuhkust veetev presidendi pressinõunik Ester Shank ei kinnita riigiametnike ringkondades levivaid kuuldusi, mille kohaselt on ta juba langetanud otsuse Kadrioru lossist lahkuda

  4. Pull-off characteristics of double-shanked compared to single-shanked ligation clips: an animal study

    Directory of Open Access Journals (Sweden)

    Schenk Martin

    2016-09-01

    Full Text Available The use of surgical ligation clips is considered as the gold standard for the closure of vessels, particularly in laparoscopic surgery. The safety of clips is mainly achieved by the deep indentation of the metal bar with a high retention force. A novel double-shanked (DS titanium clip was compared to two single-shanked clips with respect to axial and radial pull-off forces.

  5. Using Gene Ontology to describe the role of the neurexin-neuroligin-SHANK complex in human, mouse and rat and its relevance to autism.

    Science.gov (United States)

    Patel, Sejal; Roncaglia, Paola; Lovering, Ruth C

    2015-06-06

    People with an autistic spectrum disorder (ASD) display a variety of characteristic behavioral traits, including impaired social interaction, communication difficulties and repetitive behavior. This complex neurodevelopment disorder is known to be associated with a combination of genetic and environmental factors. Neurexins and neuroligins play a key role in synaptogenesis and neurexin-neuroligin adhesion is one of several processes that have been implicated in autism spectrum disorders. In this report we describe the manual annotation of a selection of gene products known to be associated with autism and/or the neurexin-neuroligin-SHANK complex and demonstrate how a focused annotation approach leads to the creation of more descriptive Gene Ontology (GO) terms, as well as an increase in both the number of gene product annotations and their granularity, thus improving the data available in the GO database. The manual annotations we describe will impact on the functional analysis of a variety of future autism-relevant datasets. Comprehensive gene annotation is an essential aspect of genomic and proteomic studies, as the quality of gene annotations incorporated into statistical analysis tools affects the effective interpretation of data obtained through genome wide association studies, next generation sequencing, proteomic and transcriptomic datasets.

  6. Hyperactivity and Hypermotivation Associated With Increased Striatal mGluR1 Signaling in a Shank2 Rat Model of Autism

    Directory of Open Access Journals (Sweden)

    Meera E. Modi

    2018-06-01

    Full Text Available Mutations in the SHANK family of genes have been consistently identified in genetic and genomic screens of autism spectrum disorder (ASD. The functional overlap of SHANK with several other ASD-associated genes suggests synaptic dysfunction as a convergent mechanism of pathophysiology in ASD. Although many ASD-related mutations result in alterations to synaptic function, the nature of those dysfunctions and the consequential behavioral manifestations are highly variable when expressed in genetic mouse models. To investigate the phylogenetic conservation of phenotypes resultant of Shank2 loss-of-function in a translationally relevant animal model, we generated and characterized a novel transgenic rat with a targeted mutation of the Shank2 gene, enabling an evaluation of gene-associated phenotypes, the elucidation of complex behavioral phenotypes, and the characterization of potential translational biomarkers. The Shank2 loss-of-function mutation resulted in a notable phenotype of hyperactivity encompassing hypermotivation, increased locomotion, and repetitive behaviors. Mutant rats also expressed deficits in social behavior throughout development and in the acquisition of operant tasks. The hyperactive phenotype was associated with an upregulation of mGluR1 expression, increased dendritic branching, and enhanced long-term depression (LTD in the striatum but opposing morphological and cellular alterations in the hippocampus (HP. Administration of the mGluR1 antagonist JNJ16259685 selectively normalized the expression of striatally mediated repetitive behaviors and physiology but had no effect on social deficits. Finally, Shank2 mutant animals also exhibited alterations in electroencephalography (EEG spectral power and event-related potentials, which may serve as translatable EEG biomarkers of synaptopathic alterations. Our results show a novel hypermotivation phenotype that is unique to the rat model of Shank2 dysfunction, in addition to the

  7. A Major Locus for Quantitatively Measured Shank Skin Color Traits in Korean Native Chicken

    Directory of Open Access Journals (Sweden)

    S. Jin

    2016-11-01

    Full Text Available Shank skin color of Korean native chicken (KNC shows large color variations. It varies from white, yellow, green, bluish or grey to black, whilst in the majority of European breeds the shanks are typically yellow-colored. Three shank skin color-related traits (i.e., lightness [L*], redness [a*], and yellowness [b*] were measured by a spectrophotometer in 585 progeny from 68 nuclear families in the KNC resource population. We performed genome scan linkage analysis to identify loci that affect quantitatively measured shank skin color traits in KNC. All these birds were genotyped with 167 DNA markers located throughout the 26 autosomes. The SOLAR program was used to conduct multipoint variance-component quantitative trait locus (QTL analyses. We detected a major QTL that affects b* value (logarithm of odds [LOD] = 47.5, p = 1.60×10−49 on GGA24 (GGA for Gallus gallus. At the same location, we also detected a QTL that influences a* value (LOD = 14.2, p = 6.14×10−16. Additionally, beta-carotene dioxygenase 2 (BCDO2, the obvious positional candidate gene under the linkage peaks on GGA24, was investigated by the two association tests: i.e., measured genotype association (MGA and quantitative transmission disequilibrium test (QTDT. Significant associations were detected between BCDO2 g.9367 A>C and a* (PMGA = 1.69×10−28; PQTDT = 2.40×10−25. The strongest associations were between BCDO2 g.9367 A>C and b* (PMGA = 3.56×10−66; PQTDT = 1.68×10−65. However, linkage analyses conditional on the single nucleotide polymorphism indicated that other functional variants should exist. Taken together, we demonstrate for the first time the linkage and association between the BCDO2 locus on GGA24 and quantitatively measured shank skin color traits in KNC.

  8. Dual-shank attachment design for omega seals

    International Nuclear Information System (INIS)

    Sattinger, S.S.

    1978-01-01

    An improved apparatus and process is disclosed for attaching welded omega seal segments to reactor heads, standpipes, mechanisms, and plugs which comprises a first shank in combination with a second shank to attach an omega seal at a metal-to-metal interface

  9. Human Pluripotent Stem Cell-derived Cortical Neurons for High Throughput Medication Screening in Autism: A Proof of Concept Study in SHANK3 Haploinsufficiency Syndrome

    Directory of Open Access Journals (Sweden)

    Hélène Darville

    2016-07-01

    Full Text Available Autism spectrum disorders affect millions of individuals worldwide, but their heterogeneity complicates therapeutic intervention that is essentially symptomatic. A versatile yet relevant model to rationally screen among hundreds of therapeutic options would help improving clinical practice. Here we investigated whether neurons differentiated from pluripotent stem cells can provide such a tool using SHANK3 haploinsufficiency as a proof of principle. A library of compounds was screened for potential to increase SHANK3 mRNA content in neurons differentiated from control human embryonic stem cells. Using induced pluripotent stem cell technology, active compounds were then evaluated for efficacy in correcting dysfunctional networks of neurons differentiated from individuals with deleterious point mutations of SHANK3. Among 202 compounds tested, lithium and valproic acid showed the best efficacy at corrected SHANK3 haploinsufficiency associated phenotypes in cellulo. Lithium pharmacotherapy was subsequently provided to one patient and, after one year, an encouraging decrease in autism severity was observed. This demonstrated that pluripotent stem cell-derived neurons provide a novel cellular paradigm exploitable in the search for specific disease-modifying treatments.

  10. Multi-scale simulations of field ion microscopy images—Image compression with and without the tip shank

    International Nuclear Information System (INIS)

    NiewieczerzaŁ, Daniel; Oleksy, CzesŁaw; Szczepkowicz, Andrzej

    2012-01-01

    Multi-scale simulations of field ion microscopy images of faceted and hemispherical samples are performed using a 3D model. It is shown that faceted crystals have compressed images even in cases with no shank. The presence of the shank increases the compression of images of faceted crystals quantitatively in the same way as for hemispherical samples. It is hereby proven that the shank does not influence significantly the local, relative variations of the magnification caused by the atomic-scale structure of the sample. -- Highlights: ► Multi-scale simulations of field ion microscopy images. ► Faceted and hemispherical samples with and without shank. ► Shank causes overall compression, but does not influence local magnification effects. ► Image compression linearly increases with the shank angle. ► Shank changes compression of image of faceted tip in the same way as for smooth sample.

  11. Gender differences in rotation of the shank during single-legged drop landing and its relation to rotational muscle strength of the knee.

    Science.gov (United States)

    Kiriyama, Shinya; Sato, Haruhiko; Takahira, Naonobu

    2009-01-01

    Increased shank rotation during landing has been considered to be one of the factors for noncontact anterior cruciate ligament injuries in female athletes. There have been no known gender differences in rotational knee muscle strength, which is expected to inhibit exaggerated shank rotation. Women have less knee external rotator strength than do men. Lower external rotator strength is associated with increased internal shank rotation at the time of landing. Controlled laboratory study. One hundred sixty-nine healthy young subjects (81 female and 88 male; age, 17.0 +/- 1.0 years) volunteered to participate in this study. The subjects performed single-legged drop landings from a 20-cm height. Femoral and shank kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the joint angles around the knee (flexion/extension, valgus/varus, and internal/external rotation) were calculated. The maximal isometric rotational muscle strength of the knee was measured at 30 degrees of knee flexion in a supine position using a dynamometer. The female subjects had significantly less external shank rotation strength than did the male subjects (P external rotation strength and the peak shank internal rotation angle during landing (r = -0.322, P external rotator strength. This may lead to large shank internal rotation movement during the single-legged drop landing. Improving strength training of the external rotator muscle may help decrease the rates of anterior cruciate ligament injury in female athletes.

  12. Genetic and Functional Analyses of SHANK2 Mutations Suggest a Multiple Hit Model of Autism Spectrum Disorders

    Science.gov (United States)

    Leblond, Claire S.; Heinrich, Jutta; Delorme, Richard; Proepper, Christian; Betancur, Catalina; Huguet, Guillaume; Konyukh, Marina; Chaste, Pauline; Ey, Elodie; Rastam, Maria; Anckarsäter, Henrik; Nygren, Gudrun; Gillberg, I. Carina; Melke, Jonas; Toro, Roberto; Regnault, Beatrice; Fauchereau, Fabien; Mercati, Oriane; Lemière, Nathalie; Skuse, David; Poot, Martin; Holt, Richard; Monaco, Anthony P.; Järvelä, Irma; Kantojärvi, Katri; Vanhala, Raija; Curran, Sarah; Collier, David A.; Bolton, Patrick; Chiocchetti, Andreas; Klauck, Sabine M.; Poustka, Fritz; Freitag, Christine M.; Waltes, Regina; Kopp, Marnie; Duketis, Eftichia; Bacchelli, Elena; Minopoli, Fiorella; Ruta, Liliana; Battaglia, Agatino; Mazzone, Luigi; Maestrini, Elena; Sequeira, Ana F.; Oliveira, Barbara; Vicente, Astrid; Oliveira, Guiomar; Pinto, Dalila; Scherer, Stephen W.; Zelenika, Diana; Delepine, Marc; Lathrop, Mark; Bonneau, Dominique; Guinchat, Vincent; Devillard, Françoise; Assouline, Brigitte; Mouren, Marie-Christine; Leboyer, Marion; Gillberg, Christopher; Boeckers, Tobias M.; Bourgeron, Thomas

    2012-01-01

    Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23–4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11–q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the “multiple hit model” for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD. PMID:22346768

  13. Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Claire S Leblond

    2012-02-01

    Full Text Available Autism spectrum disorders (ASD are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls. We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4% patients and in 16 of 1,090 (1.5% controls (P = 0.004, OR = 2.37, 95% CI = 1.23-4.70. In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013. Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11-q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the "multiple hit model" for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.

  14. Reduced acute nociception and chronic pain in Shank2 ?/? mice

    OpenAIRE

    Ko, Hyoung-Gon; Oh, Seog-Bae; Zhuo, Min; Kaang, Bong-Kiun

    2016-01-01

    Autism spectrum disorder is a debilitating mental illness and social issue. Autism spectrum disorder patients suffer from social isolation, cognitive deficits, compulsive behavior, and sensory deficits, including hyposensitivity to pain. However, recent studies argued that autism spectrum disorder patients show physiological pain response and, in some cases, even extremely intense pain response to harmless stimulation. Recently, Shank gene family was reported as one of the genetic risk factor...

  15. Fertilizer shanks to promote soil decompaction in the seeding operation

    Directory of Open Access Journals (Sweden)

    Marta Sandra Drescher

    Full Text Available ABSTRACT: Intensification of soil compaction process under no-tillage (NT is motivating the search for alternatives to mitigate soil compaction state. This study evaluated changes in soil physical and hydraulic properties caused by seeder with fertilizer shanks at different depths compared with the double discs lagged seeder, to investigate the possibility of soil decompaction by sowing under NT in southern Brazil. The study was conducted in a clayed Oxisol, for 27 years under NT. Treatments were three planting mechanisms: S0.10m: cutting disc combined with shank acting to 0.10m depth; S0.15m: cutting disc combined with shank acting to 0.15m depth and, D0.07m: double discs lagged acting to 0.07m depth in an experimental randomized block design with four replications. We evaluated the soil mechanical resistance, water infiltration rate, soil bulk density, pore size distribution and unsaturated hydraulic conductivity. Results indicated that the use of seeder with fertilizer shanks acting at 0.15m deep promoted the soil decompaction by the reduction of penetration resistance and increase of porosity and unsaturated hydraulic conductivity. To have significant increase in water infiltration rate the fertilizer shanks of the seeder must be deepened to the lower limit of the compacted surface layer.

  16. Gene expression analysis in lymphoblasts derived from patients with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Yasuda Yuka

    2011-05-01

    Full Text Available Abstract Background The autism spectrum disorders (ASDs are complex neurodevelopmental disorders that result in severe and pervasive impairment in the development of reciprocal social interaction and verbal and nonverbal communication skills. In addition, individuals with ASD have stereotypical behavior, interests and activities. Rare mutations of some genes, such as neuroligin (NLGN 3/4, neurexin (NRXN 1, SHANK3, MeCP2 and NHE9, have been reported to be associated with ASD. In the present study, we investigated whether alterations in mRNA expression levels of these genes could be found in lymphoblastoid cell lines derived from patients with ASD. Methods We measured mRNA expression levels of NLGN3/4, NRXN1, SHANK3, MeCP2, NHE9 and AKT1 in lymphoblastoid cells from 35 patients with ASD and 35 healthy controls, as well as from 45 patients with schizophrenia and 45 healthy controls, using real-time quantitative reverse transcriptase polymerase chain reaction assays. Results The mRNA expression levels of NLGN3 and SHANK3 normalized by β-actin or TBP were significantly decreased in the individuals with ASD compared to controls, whereas no difference was found in the mRNA expression level of MeCP2, NHE9 or AKT1. However, normalized NLGN3 and SHANK3 gene expression levels were not altered in patients with schizophrenia, and expression levels of NLGN4 and NRXN1 mRNA were not quantitatively measurable in lymphoblastoid cells. Conclusions Our results provide evidence that the NLGN3 and SHANK3 genes may be differentially expressed in lymphoblastoid cell lines from individuals with ASD compared to those from controls. These findings suggest the possibility that decreased mRNA expression levels of these genes might be involved in the pathophysiology of ASD in a substantial population of ASD patients.

  17. Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies

    Directory of Open Access Journals (Sweden)

    Tasnuva Sarowar

    2016-01-01

    Full Text Available Shank proteins (Shank1, Shank2, and Shank3 act as scaffolding molecules in the postsynaptic density of many excitatory neurons. Mutations in SHANK genes, in particular SHANK2 and SHANK3, lead to autism spectrum disorders (ASD in both human and mouse models. Shank3 proteins are made of several domains—the Shank/ProSAP N-terminal (SPN domain, ankyrin repeats, SH3 domain, PDZ domain, a proline-rich region, and the sterile alpha motif (SAM domain. Via various binding partners of these domains, Shank3 is able to bind and interact with a wide range of proteins including modulators of small GTPases such as RICH2, a RhoGAP protein, and βPIX, a RhoGEF protein for Rac1 and Cdc42, actin binding proteins and actin modulators. Dysregulation of all isoforms of Shank proteins, but especially Shank3, leads to alterations in spine morphogenesis, shape, and activity of the synapse via altering actin dynamics. Therefore, here, we highlight the role of Shank proteins as modulators of small GTPases and, ultimately, actin dynamics, as found in multiple in vitro and in vivo models. The failure to mediate this regulatory role might present a shared mechanism in the pathophysiology of autism-associated mutations, which leads to dysregulation of spine morphogenesis and synaptic signaling.

  18. Is increased residual shank length a competitive advantage for elite transtibial amputee long jumpers?

    Science.gov (United States)

    Nolan, Lee; Patritti, Benjamin L; Stana, Laura; Tweedy, Sean M

    2011-07-01

    The purpose of this study was to evaluate the extent to which residual shank length affects long jump performance of elite athletes with a unilateral transtibial amputation. Sixteen elite, male, long jumpers with a transtibial amputation were videoed while competing in major championships (World Championships 1998, 2002 and Paralympic Games, 2004). The approach, take-off, and landing of each athlete's best jump was digitized to determine residual and intact shank lengths, jump distance, and horizontal and vertical velocity of center of mass at touchdown. Residual shank length ranged from 15 cm to 38 cm. There were weak, nonsignificant relationships between residual shank length and (a) distance jumped (r = 0.30), (b) horizontal velocity (r = 0.31), and vertical velocity (r = 0.05). Based on these results, residual shank length is not an important determinant of long jump performance, and it is therefore appropriate that all long jumpers with transtibial amputation compete in the same class. The relationship between residual shank length and key performance variables was stronger among athletes that jumped off their prosthetic leg (N = 5), and although this result must be interpreted cautiously, it indicates the need for further research.

  19. Presidendiauto jalakäijate teel / Ester Shank

    Index Scriptorium Estoniae

    Šank, Ester, 1956-

    2003-01-01

    Presidendi pressinõunik Ester Shank selgitab, miks president Arnold Rüütel sõitis eskorauto saatel lauluväljakule Andrea Bocelli ja Annely Peebo kontserdile läbi Kadrioru pargi jalakäijate teed mööda

  20. Changes in foot and shank coupling due to alterations in foot strike pattern during running.

    Science.gov (United States)

    Pohl, Michael B; Buckley, John G

    2008-03-01

    Determining if and how the kinematic relationship between adjacent body segments changes when an individual's gait pattern is experimentally manipulated can yield insight into the robustness of the kinematic coupling across the associated joint(s). The aim of this study was to assess the effects on the kinematic coupling between the forefoot, rearfoot and shank during ground contact of running with alteration in foot strike pattern. Twelve subjects ran over-ground using three different foot strike patterns (heel strike, forefoot strike, toe running). Kinematic data were collected of the forefoot, rearfoot and shank, which were modelled as rigid segments. Coupling at the ankle-complex and midfoot joints was assessed using cross-correlation and vector coding techniques. In general good coupling was found between rearfoot frontal plane motion and transverse plane shank rotation regardless of foot strike pattern. Forefoot motion was also strongly coupled with rearfoot frontal plane motion. Subtle differences were noted in the amount of rearfoot eversion transferred into shank internal rotation in the first 10-15% of stance during heel strike running compared to forefoot and toe running, and this was accompanied by small alterations in forefoot kinematics. These findings indicate that during ground contact in running there is strong coupling between the rearfoot and shank via the action of the joints in the ankle-complex. In addition, there was good coupling of both sagittal and transverse plane forefoot with rearfoot frontal plane motion via the action of the midfoot joints.

  1. Flexible neural interfaces with integrated stiffening shank

    Energy Technology Data Exchange (ETDEWEB)

    Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tolosa, Vanessa

    2017-10-17

    A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.

  2. Flexible neural interfaces with integrated stiffening shank

    Science.gov (United States)

    Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tolosa, Vanessa

    2016-07-26

    A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.

  3. Charles Shank, the outgoing director of LBNL, visited CERN on 26 May

    CERN Multimedia

    Patrice Loiez

    2004-01-01

    His tour included visits to the ATLAS experiment's assembly hall, the test-beam facility for many of the experiment's components, and the underground cavern where he saw progress in installation. LBNL is making important contributions to the ATLAS Inner Detector, in particular for the silicon strip and pixel detectors that will sit closest to the interaction region in the Large Hadron Collider (LHC). Shank also visited the assembly hall for the CMS experiment and the test facility for the LHC magnets. Picture 04: Here Shank (right) is seen in the cleanroom facility for the Inner Detector together with Kevin Einsweiler from the Pixel System group at LBNL.

  4. RESEARCH ARTICLE Map the locus of Id for dermal shank melanin ...

    Indian Academy of Sciences (India)

    Navya

    2017-03-24

    Mar 24, 2017 ... pigmentation and 96 Gushi hens with a yellow shank skin color. ... All experimental procedures in this study were approved by the Animal Care and Use ..... Insights into the genetic history of Green-legged Partridgelike fowl: ...

  5. Modal Analysis and Experimental Determination of Optimum Tool Shank Overhang of a Lathe Machine

    Directory of Open Access Journals (Sweden)

    Nabin SARDAR

    2008-12-01

    Full Text Available Vibration of Tool Shank of a cutting tool has large influence on tolerances and surface finish of products. Frequency and amplitude of vibrations depend on the overhang of the shank of the cutting tool. In turning operations, when the tool overhang is about 2 times of the tool height, the amplitude of the vibration is almost zero and dimensional tolerances and surface finish of the product becomes high. In this paper, the above statement is verified firstly by using a finite element analysis of the cutting tool with ANSYS software package and secondly, with experimental verification with a piezoelectric sensor.

  6. In vitro and in vivo activities of eugenol against tobacco black shank caused by Phytophthora nicotianae.

    Science.gov (United States)

    Jing, Changliang; Gou, Jianyu; Han, Xiaobin; Wu, Qian; Zhang, Chengsheng

    2017-10-01

    Phytophthora nicotianae causes serious black shank disease in tobacco. Syringa oblata essential oil and its main components were evaluated to develop an effective and environmentally friendly biocontrol agent. Eugenol, which exhibited the strongest activity, was intensively investigated in vitro and in vivo. The mycelial growth of P. nicotianae was inhibited by eugenol at a minimum inhibitory concentration of 200μgmL -1 , and inhibition occurred in a dose-dependent manner. Extracellular pH and extracellular conductivity results indicated that eugenol increased membrane permeability. Flow cytometry and fluorescent staining results further showed that eugenol disrupted mycelial membranes but did not affect spore membrane integrity. The in vivo results confirmed that treatment of tobacco with various concentrations of eugenol formulations reduced disease incidence and better controlled against the disease. Our results suggested that the ability of eugenol to control tobacco black shank depended on its ability to damage mycelial membranes and that eugenol formulations have potential as an eco-friendly antifungal agent for controlling tobacco blank shank. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hypergeometric continuation of divergent perturbation series: II. Comparison with Shanks transformation and Padé approximation

    International Nuclear Information System (INIS)

    Sanders, Sören; Holthaus, Martin

    2017-01-01

    We explore in detail how analytic continuation of divergent perturbation series by generalized hypergeometric functions is achieved in practice. Using the example of strong-coupling perturbation series provided by the two-dimensional Bose–Hubbard model, we compare hypergeometric continuation to Shanks and Padé techniques, and demonstrate that the former yields a powerful, efficient and reliable alternative for computing the phase diagram of the Mott insulator-to-superfluid transition. In contrast to Shanks transformations and Padé approximations, hypergeometric continuation also allows us to determine the exponents which characterize the divergence of correlation functions at the transition points. Therefore, hypergeometric continuation constitutes a promising tool for the study of quantum phase transitions. (paper)

  8. Hypergeometric continuation of divergent perturbation series: II. Comparison with Shanks transformation and Padé approximation

    Science.gov (United States)

    Sanders, Sören; Holthaus, Martin

    2017-11-01

    We explore in detail how analytic continuation of divergent perturbation series by generalized hypergeometric functions is achieved in practice. Using the example of strong-coupling perturbation series provided by the two-dimensional Bose-Hubbard model, we compare hypergeometric continuation to Shanks and Padé techniques, and demonstrate that the former yields a powerful, efficient and reliable alternative for computing the phase diagram of the Mott insulator-to-superfluid transition. In contrast to Shanks transformations and Padé approximations, hypergeometric continuation also allows us to determine the exponents which characterize the divergence of correlation functions at the transition points. Therefore, hypergeometric continuation constitutes a promising tool for the study of quantum phase transitions.

  9. [Vacuum sealing drainage combined with free skin graft in repairing cutaneous deficiency of traumatic shank amputation stump].

    Science.gov (United States)

    Zhao, Xiao-fei; Li, Chun-you; Jin, Guo-qiang; Ming, Xiao-feng; Wang, Guo-jie

    2014-12-01

    To observe clinical efficacy in treating cutaneous deficiency of traumatic shank amputation stump with full-thickness skin graft combined with vacuum sealing drainage. From September 2009 to December 2012, 15 patients with cutaneous deficiency of traumatic shank amputation stump were treated with full-thickness skin graft combined with vacuum sealing drainage. Among patients, there were 11 males and 4 females with an average age of 41.5 (ranged from 25 to 62) years old. Ten cases were caused by traffic accident and 5 cases were caused by heavy object, 9 cases on left and 6 cases on right. Six patients with smashed wound were treated with debridement and amputation, combined with vacuum aspiration in-emergency; 9 patients caused by infection and necrosis were treated with debridement and amputation, combined with vacuum aspiration, and full-thickness skin graft were performed at stage II. The skin defect area of residual limbs ranged from 40 cm x 20 cm to 25 cm x 15 cm. All patients were followed up from 3 months to 1 year. Full-thickness skin graft of residual limbs were survived,and obtained satisfactory walking function with prosthetic. Residual skin increased thicken, wearproof without rupture and pain. Full-thickness skin graft combined with vacuum sealing drainage in treating cutaneous deficiency of traumatic shank amputation stump could reserve the length of residual limbs, increase survival rate of skin graft with less scar of survival skin, get good wearability and it is conducive to prosthetic wear. It is a simple and easy treatment method.

  10. An Effect of Cadmium and Lead Ions on Escherichia coli with the Cloned Gene for Metallothionein (MT-3) Revealed by Electrochemistry

    International Nuclear Information System (INIS)

    Adam, Vojtech; Chudobova, Dagmar; Tmejova, Katerina; Cihalova, Kristyna; Krizkova, Sona; Guran, Roman; Kominkova, Marketa; Zurek, Michal; Kremplova, Monika; Jimenez, Ana Maria Jimenez; Konecna, Marie

    2014-01-01

    This study was focused on the application of electrochemical methods for studying of bacterial strains Escherichia coli and Escherichia coli expressing human metallothionein gene (MT-3) before and after the application of cadmium and/or lead ions in four concentrations (25, 50, 75 and 150 μM). Bacterial strains Escherichia coli and Escherichia coli expressing human metallothionein gene (MT-3) were used like model organisms for studying of metals influence to metallothionein expression. Metallothionein was isolated using fast protein liquid chromatography and quantified by electrochemical methods. The occurrence of metallothionein in E.coli was confirmed by gel electrophoresis by the presence of the bands at 15 (MT dimer) and 22 kDa (MT trimer). The changes in electrochemical records due to the interactions of metallothioneins (MT-3 and MT-2A) with cadmium and lead ions showed decline of Cat2 signal of MT with the increasing interaction time because of metal ions binding to cysteines. Electrochemical determination also revealed that Cd(II) remains in E. coli cells in the higher amount than Pb (II). Opposite situation was found at E. coli–MT-3 strain. The antimicrobial effect of cadmium ions was determined by IC 50 and was statistically calculated as 39.2 and 95.5 μM for E. coli without cloned MT-3 and E. coli carrying MT-3 gene, respectively. High provided concentration IC 50 in strains after lead ions application (352.5 μM for E. coli without cloning and 207.0 μM for E. coli carrying cloned MT-3 gene) indicates lower toxicity of lead ions on bacterial strains compared to the cadmium ions

  11. Tool Wear Analysis on Five-Axis Flank Milling for Curved Shape Part – Full Flute and Ground Shank End Mill

    Directory of Open Access Journals (Sweden)

    Syahrul Azwan Sundi

    2017-01-01

    Full Text Available This paper is a study on full flute (extra-long tool and ground shank end mill wear analysis by utilizing five-axis CNC to implement flank milling strategy on curved shape part. Five-axis machining eases the user to implement variations of strategy such as flank milling. Flank milling is different from point milling. Point milling cuts materials by using the tip of the tool whereas the flank milling uses the cutting tool body to cut material. The type of cutting tool used was end mill 10 mm diameter with High Speed Steel (HSS material. One factor at a time was utilized to analyze the overall data. Feed rate and spindle speed were the two main factors that been set up equally for both full flute and ground shank end mill. At the end of this research, the qualitative analysis based on tool wear between full flute and ground shank end mill is observed. Generally, both types of cutting tools showed almost the same failure indication such as broken edge or chipped off edge, formation of pinned hole on the surface and serration formation or built-up edge (BUE on the primary flute. However, the results obtained from the enlarged images which were captured by Optical Microscope indicated that, the ground shank end mill is better than the full flute end mill.

  12. Slope Estimation during Normal Walking Using a Shank-Mounted Inertial Sensor

    Directory of Open Access Journals (Sweden)

    Juan C. Álvarez

    2012-08-01

    Full Text Available In this paper we propose an approach for the estimation of the slope of the walking surface during normal walking using a body-worn sensor composed of a biaxial accelerometer and a uniaxial gyroscope attached to the shank. It builds upon a state of the art technique that was successfully used to estimate the walking velocity from walking stride data, but did not work when used to estimate the slope of the walking surface. As claimed by the authors, the reason was that it did not take into account the actual inclination of the shank of the stance leg at the beginning of the stride (mid stance. In this paper, inspired by the biomechanical characteristics of human walking, we propose to solve this issue by using the accelerometer as a tilt sensor, assuming that at mid stance it is only measuring the gravity acceleration. Results from a set of experiments involving several users walking at different inclinations on a treadmill confirm the feasibility of our approach. A statistical analysis of slope estimations shows in first instance that the technique is capable of distinguishing the different slopes of the walking surface for every subject. It reports a global RMS error (per-unit difference between actual and estimated inclination of the walking surface for each stride identified in the experiments of 0.05 and this can be reduced to 0.03 with subject-specific calibration and post processing procedures by means of averaging techniques.

  13. On the Hybrid F1 Characteristics of Physiology, Biochemistry, Product Quality and Resistance to Black Shank in Oriental Tobacco

    Directory of Open Access Journals (Sweden)

    Chen X

    2014-12-01

    Full Text Available Experiments were conducted from 1996 to 1998 at the Hefei Institute of Economics and Technology and at the Oriental Experimental Station of the Zhejiang Province (China. Seven F1 hybrids and three parental varieties of Oriental tobaccos were evaluated for the characteristics of photosynthetic and transpiration rates, esterase isozymes, resistance to black shank, quality and product potential from the 1996-1998 growing seasons. Tobacco leaves had higher photosynthetic rates and many differences among genotypes in the early stage of plant vigorous growth compared with more mature leaves. However, transpiration rates were lower in the younger leaves and greater in the more mature leaves. All the entries had four common bands (B1, B3, B4 and B6 of the esterase isoenzymes. Differences between entries resulted from in having or not having the B2 and B5 bands and color intensity differences of all the bands. These differences could be used to identify individual entries. The F1hybrids Samsun X Toy and Samsun X Argjiro, compared with the CK Samsun control, had obvious heterotic vigor in the characteristics of product, for yield, quality and resistance to black shank. The F1 hybrid Samsun X Toy maintained higher photosynthetic and transpiration rates in the two growth stages compared to other entries. However, the F1hybrid Samsun X Argjiro had higher photosynthetic rates and lower transpiration rates in the early growth stage and the two rates were lower in the later stage, but it maintained higher photosynthetic rates for the whole growth stage. Net photosynthetic rates had a significant positive correlation with yield product, quality and resistance to black shank of the Oriental tobacco F1hybrids.

  14. A user-specific human-machine interaction strategy for a prosthetic shank adapter

    Directory of Open Access Journals (Sweden)

    Stuhlenmiller Florian

    2017-09-01

    Full Text Available For people with lower limb amputation, a user-specific human-machine interaction with their prostheses is required to ensure safe and comfortable assistance. Especially during dynamic turning manoeuvres, users experience high loads at the stump, which decreases comfort and may lead to long-term tissue damage. Preliminary experiments with users wearing a configurable, passive torsional adaptor indicate increased comfort and safety achieved by adaptation of torsional stiffness and foot alignment. Moreover, the results show that the individual preference regarding both parameters depend on gait situation and individual preference. Hence, measured loads in the structure of the prosthesis and subjective feedback regarding comfort and safety during different turning motions are considered in a user-specific human-machine interaction strategy for a prosthetic shank adaptor. Therefore, the interrelations of gait parameters with optimal configuration are stored in an individual preference-setting matrix. Stiffness and foot alignment are actively adjusted to the optimal parameters by a parallel elastic actuator. Two subjects reported that they experienced appropriate variation of stiffness and foot alignment, a noticeable reduction of load at the stump and that they could turn with less effort.

  15. Based on the Hardware Resources Configurable Shanke PLC Building Energy Consumption Detection System

    Directory of Open Access Journals (Sweden)

    Cheng Guanghe

    2017-01-01

    Full Text Available According to the actual situation of the comprehensive office building and the functional requirements of the building energy consumption monitoring and management system, the office building energy consumption monitoring and management system is designed by using the hardware resource configurable Shanke PLC(SKPLC as the data collector. The system uses data bus technology and field data acquisition technology to achieve the building energy consumption data acquisition and management. Practice has proved that energy-saving effect is good.

  16. Blood lead levels, iron metabolism gene polymorphisms and homocysteine: a gene-environment interaction study.

    Science.gov (United States)

    Kim, Kyoung-Nam; Lee, Mee-Ri; Lim, Youn-Hee; Hong, Yun-Chul

    2017-12-01

    Homocysteine has been causally associated with various adverse health outcomes. Evidence supporting the relationship between lead and homocysteine levels has been accumulating, but most prior studies have not focused on the interaction with genetic polymorphisms. From a community-based prospective cohort, we analysed 386 participants (aged 41-71 years) with information regarding blood lead and plasma homocysteine levels. Blood lead levels were measured between 2001 and 2003, and plasma homocysteine levels were measured in 2007. Interactions of lead levels with 42 genotyped single-nucleotide polymorphisms (SNPs) in five genes ( TF , HFE , CBS , BHMT and MTR ) were assessed via a 2-degree of freedom (df) joint test and a 1-df interaction test. In secondary analyses using imputation, we further assessed 58 imputed SNPs in the TF and MTHFR genes. Blood lead concentrations were positively associated with plasma homocysteine levels (p=0.0276). Six SNPs in the TF and MTR genes were screened using the 2-df joint test, and among them, three SNPs in the TF gene showed interactions with lead with respect to homocysteine levels through the 1-df interaction test (plead levels. Blood lead levels were positively associated with plasma homocysteine levels measured 4-6 years later, and three SNPs in the TF gene modified the association. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Sex-based differences in gene expression in hippocampus following postnatal lead exposure

    International Nuclear Information System (INIS)

    Schneider, J.S.; Anderson, D.W.; Sonnenahalli, H.; Vadigepalli, R.

    2011-01-01

    The influence of sex as an effect modifier of childhood lead poisoning has received little systematic attention. Considering the paucity of information available concerning the interactive effects of lead and sex on the brain, the current study examined the interactive effects of lead and sex on gene expression patterns in the hippocampus, a structure involved in learning and memory. Male or female rats were fed either 1500 ppm lead-containing chow or control chow for 30 days beginning at weaning.Blood lead levels were 26.7 ± 2.1 μg/dl and 27.1 ± 1.7 μg/dl for females and males, respectively. The expression of 175 unique genes was differentially regulated between control male and female rats. A total of 167 unique genes were differentially expressed in response to lead in either males or females. Lead exposure had a significant effect without a significant difference between male and female responses in 77 of these genes. In another set of 71 genes, there were significant differences in male vs. female response. A third set of 30 genes was differentially expressed in opposite directions in males vs. females, with the majority of genes expressed at a lower level in females than in males. Highly differentially expressed genes in males and females following lead exposure were associated with diverse biological pathways and functions. These results show that a brief exposure to lead produced significant changes in expression of a variety of genes in the hippocampus and that the response of the brain to a given lead exposure may vary depending on sex. - Highlights: → Postnatal lead exposure has a significant effect on hippocampal gene expression patterns. → At least one set of genes was affected in opposite directions in males and females. → Differentially expressed genes were associated with diverse biological pathways.

  18. VALIDITY AND REPRODUCIBILITY OF MEASURING THE KINEMATIC COUPLING BEHAVIOR OF CALCANEAL PRONATION/SUPINATION AND SHANK ROTATION DURING WEIGHT BEARING USING AN OPTICAL THREE-DIMENSIONAL MOTION ANALYSIS SYSTEM

    Directory of Open Access Journals (Sweden)

    Masahiro Edo

    2017-12-01

    Full Text Available Background: It’s important to understand the kinematic coupling of calcaneus and shank to optimize the pathological movement of the lower extremity. However, the quantitative indicator to show the kinematic coupling hasn’t been clarified. We measured the angles of calcaneal pronation-to-supination and shank rotation during pronation and supination of both feet in standing position and devised a technique to quantify the kinematic coupling behavior of calcaneal pronation/supination and shank rotation as the linear regression coefficient (kinematic chain ratio: KCR of those measurements. Therefore, we verified the validity and reproducibility of this technique. Methods: This study is a non-comparative cross-sectional study. The KCR, which is an outcome, was measured using an optical three-dimensional motion analysis system in 10 healthy subjects. The coefficient of determination (R² was calculated for the linear regression equation of the angle of calcaneal pronation-to-supination and angle of shank rotation, and the intraclass correlation coefficient (ICC [1,1] was calculated for the KCR during foot pronation and foot supination and for the KCR measured on different days. And also, skin movement artifacts were investigated by measurement of the displacement of bone and body surface markers in one healthy subject. Results: The linear regression equation of calcaneal pronation/supination and the angle of shank rotation included R²≥0.9 for all subjects. The KCR on foot pronation and supination had an ICC(1,1 of 0.95. The KCR measured on different days had an ICC(1,1 of 0.72. Skin movement artifacts were within the allowable range. Conclusion: The validity and reproducibility of this technique were largely good, and the technique can be used to quantify kinematic coupling behavior.

  19. The potential of chitosan combined with chicken shank collagen as scaffold on bone defect regeneration process in Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    Fitria Rahmitasari

    2016-12-01

    Full Text Available Background: In the field of dentistry, alveolar bone damage can be caused by periodontal disease, traumatic injury due to tooth extraction, cyst enucleation, and tumor surgery. One of the ways to regenerate the bone defect is using graft scaffold. Thus, combination of chitosan and collagen can stimulate osteogenesis. Purpose: The aim of this study was to examine the potential of chitosan combined with chicken shank collagen on bone defect regeneration process. Method: Twelve Rattus norvegicus were prepared as animal models in this research. A bone defect was intentionally created at both of the right and left femoral bones of the models. Next, 24 samples were divided into four groups, namely Group 1 using chitosan – collagen scaffold (50:50, Group 2 using chitosan collagen-scaffold (80:20, Group 3 using chitosan scaffold only, and Control Group using 3% CMC-Na. On 14th day, those animals were sacrificed, and histopathological anatomy examination was conducted to observe osteoclast cells. In addition, immunohistochemistry examination was also performed to observe RANKL expressions. Result: There was a significant difference in RANKL expressions among the groups, except between Group 3 using chitosan scaffold only and control group (p value > 0.05. The highest expression of RANKL was found in Group 1 with chitosan – collagen scaffold (50:50, followed by Group 2 with chitosan-collagen scaffold (80:20. Moreover, there was also a significant difference in osteoclast generation, except between Group 1 using chitosan – collagen scaffold (50:50 and Group 2 using chitosan-collagen scaffold (80:20, p value 0.05. Less osteoclast was found in the groups using chitosan – collagen scaffold (Group 1 and Group 2. Conclusion: Combination of chitosan and chicken shank collagen scaffold can improve regeneration process of bone defect in Rattus novergicus animals through increasing of RANKL expressions, and decreasing of osteoclast.

  20. Latest progress of BIGH3 gene in corneal diseases and diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Fan-Qian Song

    2017-03-01

    Full Text Available BIGH3 gene plays an important role in ocular diseases. On the one hand, it is closely related to the occurrence of corneal diseases. BIGH3 gene can inhibit corneal neovascularization, lead to corneal dystrophy, participate in keratoconus formation. On the other hand, it can lead to the formation of neovascularization in diabetic retinopathy. The latest experiments show that TGF beta secreted by macrophages can promote the expression of BIGH3 mRNA and BIGH3 protein, and promote apoptosis of retinal endothelial cells and pericytes, which leads to the formation of neovascularization in diabetic retinopathy. This article will describe the new progress of BIGH3 gene in ocular diseases from several aspects as mentioned above.

  1. Effect of Ducks Yolk and Formic Acid in Fat Liquoring Process on the Physical Quality of Broiler Chicken Shank Chrome Tanning

    Directory of Open Access Journals (Sweden)

    Mustakim Mustakim

    2017-07-01

    Full Text Available The purpose of this study was to find out the effect of ducks yolk and formic acid in fat liquoring process of the tanned skin.  The materials used in this study were 30 pieces of 7 weeks of broiler chicken shank. The study was carried out using completely randomized design. The variables measured were softness, tensile strength and stretch of the tanned skin. Data were analyzed by analysis of variance and followed by Duncan’s Multiple Range Test. The research results showed that the addition of ducks yolk and formic acid didn’t gave significantly affect on the softness (p>0.05, while gave highly significant affect on tensile strength and stretch (p0.05 on the softness and stretch, and have significantly (p<0.05 on the tensile strength of leather. The conclusion of this research the addition of 11% duck yolk and 1% formic acid in fat liquoring is the best treatment for broiler chicken shank chrome tanning on the skin softness (2,667, tensile strength (135,707 kg/cm2, and stretch (37,34%, respectively.

  2. Determination of the Absorbed Doses in Shanks of Interventional Radiologists

    International Nuclear Information System (INIS)

    Golnik, N.; Szczepanski, K.; Tulik, P.; Obryk, B.

    2008-01-01

    Complicated procedures of interventional radiology require usually a much longer investigation time, comparing to the conventional radiography. Moreover, interventional radiology procedures require the presence of the medical staff next to the patient in order to perform the procedure. This results in higher risk for health professionals. Even though these persons reasonably keep away from the primary X ray beam, they are under the effects of scatter radiation due to the interaction of the primary beam with the patient. The protection aprons, thyroid protectors and shielding glasses are used in order to minimize the doses for the staff, but lower parts of legs remain usually unprotected and the absorbed doses in shanks are not recorded. The paper presents the measured values of the absorbed dose in lower extremities of medical staff, involved in the procedures of interventional radiology, completed with the measurements of air kerma under the patient table. Measurements were performed in one of big hospitals in Warsaw during all the procedures performed in six weeks. Majority of the procedures constituted angioplasty or angioplasty with vascular stenting, uterine fibroid embolization and cholangiography. In the angioplasty procedure, imaging techniques are used to guide a balloon-tipped catheter into an artery and advance it to where the vessel is narrow or blocked. The balloon is then inflated to open the vessel, deflated and removed. In vascular stenting, which is often performed with angioplasty, a small wire mesh tube (a stent) is permanently placed in the newly opened artery to help it remain open. In a uterine fibroid embolization procedure, the image guidance is used in order to place an embolic agent (synthetic material) inside one or more of the blood vessels that supply the fibroid tumors with blood. As a result, these vessels become occluded, or closed off, and the fibroid tissue shrinks. Percutaneous transhepatic cholangiography is a way of examining

  3. DMPD: Interferon gene regulation: not all roads lead to Tolls. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16095970 Interferon gene regulation: not all roads lead to Tolls. Jefferies CA, Fit...zgerald KA. Trends Mol Med. 2005 Sep;11(9):403-11. (.png) (.svg) (.html) (.csml) Show Interferon gene regulation: not all roads... lead to Tolls. PubmedID 16095970 Title Interferon gene regulation: not all roads lead to

  4. The percentage of bacterial genes on leading versus lagging strands is influenced by multiple balancing forces

    Science.gov (United States)

    Mao, Xizeng; Zhang, Han; Yin, Yanbin; Xu, Ying

    2012-01-01

    The majority of bacterial genes are located on the leading strand, and the percentage of such genes has a large variation across different bacteria. Although some explanations have been proposed, these are at most partial explanations as they cover only small percentages of the genes and do not even consider the ones biased toward the lagging strand. We have carried out a computational study on 725 bacterial genomes, aiming to elucidate other factors that may have influenced the strand location of genes in a bacterium. Our analyses suggest that (i) genes of some functional categories such as ribosome have higher preferences to be on the leading strands; (ii) genes of some functional categories such as transcription factor have higher preferences on the lagging strands; (iii) there is a balancing force that tends to keep genes from all moving to the leading and more efficient strand and (iv) the percentage of leading-strand genes in an bacterium can be accurately explained based on the numbers of genes in the functional categories outlined in (i) and (ii), genome size and gene density, indicating that these numbers implicitly contain the information about the percentage of genes on the leading versus lagging strand in a genome. PMID:22735706

  5. Induction of Protective Genes Leads to Islet Survival and Function

    Directory of Open Access Journals (Sweden)

    Hongjun Wang

    2011-01-01

    Full Text Available Islet transplantation is the most valid approach to the treatment of type 1 diabetes. However, the function of transplanted islets is often compromised since a large number of β cells undergo apoptosis induced by stress and the immune rejection response elicited by the recipient after transplantation. Conventional treatment for islet transplantation is to administer immunosuppressive drugs to the recipient to suppress the immune rejection response mounted against transplanted islets. Induction of protective genes in the recipient (e.g., heme oxygenase-1 (HO-1, A20/tumor necrosis factor alpha inducible protein3 (tnfaip3, biliverdin reductase (BVR, Bcl2, and others or administration of one or more of the products of HO-1 to the donor, the islets themselves, and/or the recipient offers an alternative or synergistic approach to improve islet graft survival and function. In this perspective, we summarize studies describing the protective effects of these genes on islet survival and function in rodent allogeneic and xenogeneic transplantation models and the prevention of onset of diabetes, with emphasis on HO-1, A20, and BVR. Such approaches are also appealing to islet autotransplantation in patients with chronic pancreatitis after total pancreatectomy, a procedure that currently only leads to 1/3 of transplanted patients being diabetes-free.

  6. 3D silicon neural probe with integrated optical fibers for optogenetic modulation.

    Science.gov (United States)

    Kim, Eric G R; Tu, Hongen; Luo, Hao; Liu, Bin; Bao, Shaowen; Zhang, Jinsheng; Xu, Yong

    2015-07-21

    Optogenetics is a powerful modality for neural modulation that can be useful for a wide array of biomedical studies. Penetrating microelectrode arrays provide a means of recording neural signals with high spatial resolution. It is highly desirable to integrate optics with neural probes to allow for functional study of neural tissue by optogenetics. In this paper, we report the development of a novel 3D neural probe coupled simply and robustly to optical fibers using a hollow parylene tube structure. The device shanks are hollow tubes with rigid silicon tips, allowing the insertion and encasement of optical fibers within the shanks. The position of the fiber tip can be precisely controlled relative to the electrodes on the shank by inherent design features. Preliminary in vivo rat studies indicate that these devices are capable of optogenetic modulation simultaneously with 3D neural signal recording.

  7. Lead facilitates foci formation in a Balb/c-3T3 two-step cell transformation model: role of Ape1 function.

    Science.gov (United States)

    Hernández-Franco, Pablo; Silva, Martín; Franco, Rodrigo; Valverde, Mahara; Rojas, Emilio

    2018-04-01

    Several possible mechanisms have been examined to gain an understanding on the carcinogenic properties of lead, which include among others, mitogenesis, alteration of gene expression, oxidative damage, and inhibition of DNA repair. The aim of the present study was to explore if low concentrations of lead, relevant for human exposure, interfere with Ape1 function, a base excision repair enzyme, and its role in cell transformation in Balb/c-3T3. Lead acetate 5 and 30 μM induced APE1 mRNA and upregulation of protein expression. This increase in mRNA expression is consistent throughout the chronic exposure. Additionally, we also found an impaired function of Ape1 through molecular beacon-based assay. To evaluate the impact of lead on foci formation, a Balb/c-3T3 two-step transformation model was used. Balb/c-3T3 cells were pretreated 1 week with low concentrations of lead before induction of transformation with n-methyl-n-nitrosoguanidine (MNNG) (0.5 μg/mL) and 12-O-tetradecanoylphorbol-13-acetate (TPA) (0.1 μg/mL) (a classical two-step protocol). Morphological cell transformation increased in response to lead pretreatment that was paralleled with an increase in Ape1 mRNA and protein overexpression and an impairment of Ape1 activity and correlating with foci number. In addition, we found that lead pretreatment and MNNG (transformation initiator) increased DNA damage, determined by comet assay. Our data suggest that low lead concentrations (5, 30 μM) could play a facilitating role in cellular transformation, probably through the impaired function of housekeeping genes such as Ape1, leading to DNA damage accumulation and chromosomal instability, one of the most important hallmarks of cancer induced by chronic exposures.

  8. Identifying polymorphisms in the Rattus norvegicus D3 dopamine receptor gene and regulatory region

    NARCIS (Netherlands)

    Smits, B.M.; D'Souza, U.M.; Berezikov, E.; Cuppen, E.; Sluyter, F.

    2004-01-01

    The D(3) dopamine receptor has been implicated in several neuropsychiatric disorders, including schizophrenia, Parkinson's disease and addiction. Sequence variation in the D(3) gene can lead to subtle alteration in receptor structure or gene expression and thus to a different phenotype. In this

  9. Lead nitrate-induced development of hypercholesterolemia in rats: sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis.

    Science.gov (United States)

    Kojima, Misaki; Masui, Toshimitsu; Nemoto, Kiyomitsu; Degawa, Masakuni

    2004-12-01

    Changes in the gene expressions of hepatic enzymes responsible for cholesterol homeostasis were examined during the process of lead nitrate (LN)-induced development of hypercholesterolemia in male rats. Total cholesterol levels in the liver and serum were significantly increased at 3-72 h and 12-72 h, respectively, after LN-treatment (100 micromol/kg, i.v.). Despite the development of hypercholesterolemia, the genes for hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and other enzymes (FPPS, farnesyl diphosphate synthase; SQS, squalene synthase; CYP51, lanosterol 14alpha-demethylase) responsible for cholesterol biosynthesis were activated at 3-24 h and 12-18 h, respectively. On the other hand, the gene expression of cholesterol 7alpha-hydroxylase (CYP7A1), a catabolic enzyme of cholesterol, was remarkably suppressed at 3-72 h. The gene expression levels of cytokines interleukin-1beta (IL-1beta) and TNF-alpha, which activate the HMGR gene and suppress the CYP7A1 gene, were significantly increased at 1-3 h and 3-24 h, respectively. Furthermore, gene activation of SREBP-2, a gene activator of several cholesterogenic enzymes, occurred before the gene activations of FPPS, SQS and CYP51. This is the first report demonstrating sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis in LN-treated male rats. The mechanisms for the altered-gene expressions of hepatic enzymes in LN-treated rats are discussed.

  10. MicroRNA-target gene responses to lead-induced stress in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    He, Qiuling; Zhu, Shuijin; Zhang, Baohong

    2014-09-01

    MicroRNAs (miRNAs) play key roles in plant responses to various metal stresses. To investigate the miRNA-mediated plant response to heavy metals, cotton (Gossypium hirsutum L.), the most important fiber crop in the world, was exposed to different concentrations (0, 25, 50, 100, and 200 µM) of lead (Pb) and then the toxicological effects were investigated. The expression patterns of 16 stress-responsive miRNAs and 10 target genes were monitored in cotton leaves and roots by quantitative real-time PCR (qRT-PCR); of these selected genes, several miRNAs and their target genes are involved in root development. The results show a reciprocal regulation of cotton response to lead stress by miRNAs. The characterization of the miRNAs and the associated target genes in response to lead exposure would help in defining the potential roles of miRNAs in plant adaptation to heavy metal stress and further understanding miRNA regulation in response to abiotic stress.

  11. Improvement of Lead Tolerance of Saccharomyces cerevisiae by Random Mutagenesis of Transcription Regulator SPT3.

    Science.gov (United States)

    Zhu, Liying; Gao, Shan; Zhang, Hongman; Huang, He; Jiang, Ling

    2018-01-01

    Bioremediation of heavy metal pollution with biomaterials such as bacteria and fungi usually suffer from limitations because of microbial sensitivity to high concentration of heavy metals. Herein, we adopted a novel random mutagenesis technique called RAISE to manipulate the transcription regulator SPT3 of Saccharomyces cerevisiae to improve cell lead tolerance. The best strain Mutant VI was selected from the random mutagenesis libraries on account of the growth performance, with higher specific growth rate than the control strain (0.068 vs. 0.040 h -1 ) at lead concentration as high as 1.8 g/L. Combined with the transcriptome analysis of S. cerevisiae, expressing the SPT3 protein was performed to make better sense of the global regulatory effects of SPT3. The data analysis revealed that 57 of S. cerevisiae genes were induced and 113 genes were suppressed, ranging from those for trehalose synthesis, carbon metabolism, and nucleotide synthesis to lead resistance. Especially, the accumulation of intracellular trehalose in S. cerevisiae under certain conditions of stress is considered important to lead resistance. The above results represented that SPT3 was acted as global transcription regulator in the exponential phase of strain and accordingly improved heavy metal tolerance in the heterologous host S. cerevisiae. The present study provides a route to complex phenotypes that are not readily accessible by traditional methods.

  12. Hepatic expression of spermatogenic genes and their transiently remarkable downregulations in Wistar-Kyoto rats in response to lead-nitrate administration: strain-difference in the gene expression patterns.

    Science.gov (United States)

    Nemoto, Kiyomitsu; Ito, Sei; Yoshida, Chiaki; Miyata, Misaki; Kojima, Misaki; Degawa, Masakuni

    2011-06-01

    Administration of lead ion (Pb) to rats and mice affects hepatic functions such as the induction of hepatic cell proliferation and upregulation of cholesterol biosynthesis. To identify the genes for which expression changes in response to Pb-administration, we analyzed hepatic gene expression patterns in stroke-prone spontaneously hypertensive rat (SHRSP), its normotensive control, Wistar-Kyoto rat (WKY), and Spraque-Dawley (SD) rat strains, 3, 6, and 12 hr later after single i.v. injection of lead nitrate (LN) at a dose of 100 µmol using a DNA microarray technique. The data analysis demonstrated that the expression of a great number of genes was transiently and remarkably downregulated 3 hr after LN-injection, and then recovered to control levels only in LN-injected WKY. These normal hepatic expression levels in WKY and SHRSP were much higher than those in SD rats. Furthermore, most of these genes were ones thought to be expressed specifically in the spermatids and/or testes; i.e. genes encoding protamin 1, transition protein 1, and transition protein 2. These findings suggest that the regulation system common to expression of all of these genes could be a target site of Pb-toxic action, at least, in the liver of WKY, and that this system might be similar to the system essential for spermatogenesis, especially spermiogenesis, in the testis. In addition, it appears that clarifying the cause of the difference between the systems of WKY and SHRSP might aid in identifying the pathologic genes in SHRSP. Finally, it will be an important to clarify how the products of the genes related to spermatogenesis, including spermiogenesis, are functional in the livers of WKY and SHRSP.

  13. The Effect of Egg Yolk Chicken Utilization In Fat Liquoring Process to Tensile Strength, Elongation at Break, Water Absorption and Shank Skin Leather Stitch Tear Strength of Combination Tanning (Chrome – Tannine

    Directory of Open Access Journals (Sweden)

    Mustakim Mustakim

    2012-02-01

    Full Text Available The aim of this research were to examine level of egg yolk chicken utilization that effective in fat liquoring process to tensile strength, elongation at break, watter absorptin and stitchtear strength of combination tann (Chrome – tannine of shank skin. The material used were fresh shank skin which seven week old, fresh egg with prserved for not more seven days. Data analyse used  in this study was complete randomice desaign (CRD. The research treatment was level of egg yolk utilization that are 5 % (P1, 7,5 % (P2, 10,0 % (P3 and 12,5 % (P4. Each treatment repeated four times, and the control using 6,0 % paradol HISN oil (%age calculated from the weight of wet blue. The result shown that rates of tensile strength of P1, P2, P3, P4 respectively were 67,93, 88,09, 89,31, 70,00 kg/cm2. Elongation at break by 24,5, 29,5, 30,0, 28,0 %. Watter absorption by 181,54, 146,20, 132,81, 132,56 %, and stritchtear strength by 43,00, 63,80, 69,50, 60,98 kg/cm. The utilization level of egg yolk 10 % could produce a better tensile strength and elongation at break, watter absorption and stitchtearstrength. It was suggested for used as fat liquoring agent in tanning process shsnk., skin leather. Keywords : Fat liquoring, Tensile strength, Elongation at break, Watter absorbtion,Stitchtear strength

  14. RPA Interacts with HIRA and Regulates H3.3 Deposition at Gene Regulatory Elements in Mammalian Cells.

    Science.gov (United States)

    Zhang, Honglian; Gan, Haiyun; Wang, Zhiquan; Lee, Jeong-Heon; Zhou, Hui; Ordog, Tamas; Wold, Marc S; Ljungman, Mats; Zhang, Zhiguo

    2017-01-19

    The histone chaperone HIRA is involved in depositing histone variant H3.3 into distinct genic regions, including promoters, enhancers, and gene bodies. However, how HIRA deposits H3.3 to these regions remains elusive. Through a short hairpin RNA (shRNA) screening, we identified single-stranded DNA binding protein replication protein A (RPA) as a regulator of the deposition of newly synthesized H3.3 into chromatin. We show that RPA physically interacts with HIRA to form RPA-HIRA-H3.3 complexes, and it co-localizes with HIRA and H3.3 at gene promoters and enhancers. Depletion of RPA1, the largest subunit of the RPA complex, dramatically reduces both HIRA association with chromatin and the deposition of newly synthesized H3.3 at promoters and enhancers and leads to altered transcription at gene promoters. These results support a model whereby RPA, best known for its role in DNA replication and repair, recruits HIRA to promoters and enhancers and regulates deposition of newly synthesized H3.3 to these regulatory elements for gene regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Gene Expression Profiles of Main Olfactory Epithelium in Adenylyl Cyclase 3 Knockout Mice

    Directory of Open Access Journals (Sweden)

    Zhenshan Wang

    2015-11-01

    Full Text Available Adenylyl Cyclase 3 (AC3 plays an important role in the olfactory sensation-signaling pathway in mice. AC3 deficiency leads to defects in olfaction. However, it is still unknown whether AC3 deficiency affects gene expression or olfactory signal transduction pathways within the main olfactory epithelium (MOE. In this study, gene microarrays were used to screen differentially expressed genes in MOE from AC3 knockout (AC3−/− and wild-type (AC3+/+ mice. The differentially expressed genes identified were subjected to bioinformatic analysis and verified by qRT-PCR. Gene expression in the MOE from AC3−/− mice was significantly altered, compared to AC3+/+ mice. Of the 41266 gene probes, 3379 had greater than 2-fold fold change in expression levels between AC3−/− and AC3+/+ mice, accounting for 8% of the total gene probes. Of these genes, 1391 were up regulated, and 1988 were down regulated, including 425 olfactory receptor genes, 99 genes that are specifically expressed in the immature olfactory neurons, 305 genes that are specifically expressed in the mature olfactory neurons, and 155 genes that are involved in epigenetic regulation. Quantitative RT-PCR verification of the differentially expressed epigenetic regulation related genes, olfactory receptors, ion transporter related genes, neuron development and differentiation related genes, lipid metabolism and membrane protein transport etc. related genes showed that P75NTR, Hinfp, Gadd45b, and Tet3 were significantly up-regulated, while Olfr370, Olfr1414, Olfr1208, Golf, Faim2, Tsg101, Mapk10, Actl6b, H2BE, ATF5, Kirrrel2, OMP, Drd2 etc. were significantly down-regulated. In summary, AC3 may play a role in proximal olfactory signaling and play a role in the regulation of differentially expressed genes in mouse MOE.

  16. The expression of plasticity-related genes in an acute model of stress is modulated by chronic desipramine in a time-dependent manner within medial prefrontal cortex.

    Science.gov (United States)

    Nava, Nicoletta; Treccani, Giulia; Müller, Heidi Kaastrup; Popoli, Maurizio; Wegener, Gregers; Elfving, Betina

    2017-01-01

    It is well established that stress plays a major role in the pathogenesis of neuropsychiatric diseases. Stress-induced alteration of synaptic plasticity has been hypothesized to underlie the morphological changes observed by neuroimaging in psychiatric patients in key regions such as hippocampus and prefrontal cortex (PFC). We have recently shown that a single acute stress exposure produces significant short-term alterations of structural plasticity within medial PFC. These alterations were partially prevented by previous treatment with chronic desipramine (DMI). In the present study we evaluated the effects of acute Foot-shock (FS)-stress and pre-treatment with the traditional antidepressant DMI on the gene expression of key regulators of synaptic plasticity and structure. Expression of Homer, Shank, Spinophilin, Densin-180, and the small RhoGTPase related gene Rac1 and downstream target genes, Limk1, Cofilin1 and Rock1 were investigated 1 day (1d), 7 d and 14d after FS-stress exposure. We found that DMI specifically increases the short-term expression of Spinophilin, as well as Homer and Shank family genes, and that both acute stress and DMI exert significant long-term effects on mRNA levels of genes involved in spine plasticity. These findings support the knowledge that acute FS stress and antidepressant treatment induce both rapid and sustained time-dependent alterations in structural components of synaptic plasticity in rodent medial PFC. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  17. Targeted inactivation of the murine Abca3 gene leads to respiratory failure in newborns with defective lamellar bodies

    International Nuclear Information System (INIS)

    Hammel, Markus; Michel, Geert; Hoefer, Christina; Klaften, Matthias; Mueller-Hoecker, Josef; Angelis, Martin Hrabe de; Holzinger, Andreas

    2007-01-01

    Mutations in the human ABCA3 gene, encoding an ABC-transporter, are associated with respiratory failure in newborns and pediatric interstitial lung disease. In order to study disease mechanisms, a transgenic mouse model with a disrupted Abca3 gene was generated by targeting embryonic stem cells. While heterozygous animals developed normally and were fertile, individuals homozygous for the altered allele (Abca3-/-) died within one hour after birth from respiratory failure, ABCA3 protein being undetectable. Abca3-/- newborns showed atelectasis of the lung in comparison to a normal gas content in unaffected or heterozygous littermates. Electron microscopy demonstrated the absence of normal lamellar bodies in type II pneumocytes. Instead, condensed structures with apparent absence of lipid content were found. We conclude that ABCA3 is required for the formation of lamellar bodies and lung surfactant function. The phenotype of respiratory failure immediately after birth corresponds to the clinical course of severe ABCA3 mutations in human newborns

  18. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    Energy Technology Data Exchange (ETDEWEB)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-02-15

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  19. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    International Nuclear Information System (INIS)

    Kayaaltı, Zeliha; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-01-01

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  20. Mutational analysis of the HLA-DQ3.2 insulin-dependent diabetes mellitus susceptibility gene

    International Nuclear Information System (INIS)

    Kwok, W.W.; Lotshaw, C.; Milner, E.C.B.; Knitter-Jack, N.; Nepom, G.T.

    1989-01-01

    The human major histocompatibility complex includes approximately 14 class II HLA genes within the HLA-D region, most of which exist in multiple allelic forms. One of these genes, the DQ3.2β gene, accounts for the well-documented association of HLA-DR4 with insulin-dependent diabetes mellitus and is the single allele most highly correlated with this disease. The authors analyzed the amino acid substitutions that lead to the structural differences distinguishing DQ3.2β from its nondiabetogenic, but closely related allele, DQ3.1β. Site-directed mutagenesis of the DQ3.2β gene was used to convert key nucleotides into DQ3.2β codons. Subsequent expression studies of these mutated DQ3.2β clones using retroviral vectors defined amino acid 45 as critical for generating serologic epitopes characterizing the DQw3.1β and DQw3.2β molecules

  1. Mutations in a novel gene with transmembrane domains underlie Usher syndrome type 3.

    Science.gov (United States)

    Joensuu, T; Hämäläinen, R; Yuan, B; Johnson, C; Tegelberg, S; Gasparini, P; Zelante, L; Pirvola, U; Pakarinen, L; Lehesjoki, A E; de la Chapelle, A; Sankila, E M

    2001-10-01

    Usher syndrome type 3 (USH3) is an autosomal recessive disorder characterized by progressive hearing loss, severe retinal degeneration, and variably present vestibular dysfunction, assigned to 3q21-q25. Here, we report on the positional cloning of the USH3 gene. By haplotype and linkage-disequilibrium analyses in Finnish carriers of a putative founder mutation, the critical region was narrowed to 250 kb, of which we sequenced, assembled, and annotated 207 kb. Two novel genes-NOPAR and UCRP-and one previously identified gene-H963-were excluded as USH3, on the basis of mutational analysis. USH3, the candidate gene that we identified, encodes a 120-amino-acid protein. Fifty-two Finnish patients were homozygous for a termination mutation, Y100X; patients in two Finnish families were compound heterozygous for Y100X and for a missense mutation, M44K, whereas patients in an Italian family were homozygous for a 3-bp deletion leading to an amino acid deletion and substitution. USH3 has two predicted transmembrane domains, and it shows no homology to known genes. As revealed by northern blotting and reverse-transcriptase PCR, it is expressed in many tissues, including the retina.

  2. GFR and Blood Lead Levels in Gas Station Workers Based on δ-Alad Gene Polymorphisms

    Directory of Open Access Journals (Sweden)

    Lantip Rujito

    2015-04-01

    showed that the proportion of ALAD genotype for ALAD 1-1, 1-2 and 2-2 were 94.7%, 5.3%, and 0% respectively. The mean of serum levels in homozygous 1-1 was 15.94 ppb and heterozygote 1-2 was 1.15 ppb. GFR of participants ranged from 71.11 mL/min to 185.20 mL/min with a mean of 117.34mL/min. There was no correlation between serum Pb and GFR (p = 0.19. Study also could not determine the correlation between GFR and ALAD gene Polymorphism. Discussion: Study then concluded that there was no correlation between blood lead levels in the GFR on each δ-ALAD genotypes. Keywords: Lead intoxication, GFR, δ-ALAD, gas station workers

  3. Next-generation sequencing identifies transportin 3 as the causative gene for LGMD1F.

    Directory of Open Access Journals (Sweden)

    Annalaura Torella

    Full Text Available Limb-girdle muscular dystrophies (LGMD are genetically and clinically heterogeneous conditions. We investigated a large family with autosomal dominant transmission pattern, previously classified as LGMD1F and mapped to chromosome 7q32. Affected members are characterized by muscle weakness affecting earlier the pelvic girdle and the ileopsoas muscles. We sequenced the whole exome of four family members and identified a shared heterozygous frame-shift variant in the Transportin 3 (TNPO3 gene, encoding a member of the importin-β super-family. The TNPO3 gene is mapped within the LGMD1F critical interval and its 923-amino acid human gene product is also expressed in skeletal muscle. In addition, we identified an isolated case of LGMD with a new missense mutation in the same gene. We localized the mutant TNPO3 around the nucleus, but not inside. The involvement of gene related to the nuclear transport suggests a novel disease mechanism leading to muscular dystrophy.

  4. Relação entre solo e haste sulcadora de semeadora em Latossolo escarificado em diferentes épocas Soil and planter shank relation in an Oxisol chiseled at different times

    Directory of Open Access Journals (Sweden)

    David Peres da Rosa

    2008-03-01

    Full Text Available O objetivo deste estudo foi avaliar a duração dos efeitos da escarificação em Latossolo Vermelho argiloso, pelo estudo da relação entre solo e haste sulcadora de semeadora. Os tratamentos foram: solo sob semeadura direta há 13 anos; solo escarificado há quatro anos (2001; solo escarificado há dois anos (2003; e solo escarificado há seis meses (2005, todos com ou sem tráfego de máquinas agrícolas. Dados de esforço vertical, momento associado à haste sulcadora, área de solo efetivamente mobilizada, resistência específica operacional, macroporosidade, microporosidade, porosidade total e densidade do solo foram coletados, e o esforço de tração na haste sulcadora foi calculado. A demanda de esforços aumentou com o incremento no decurso do tempo de execução da escarificação, e o solo escarificado há seis meses apresentou a menor demanda. O solo escarificado há quatro anos apresentou comportamento similar ao solo sob semeadura direta, e ofereceu a menor área mobilizada e a maior resistência operacional. Nos parâmetros físicos, diferenças foram observadas apenas na camada 0-0,10 m, onde o solo recém escarificado apresentou a maior macroporosidade, e menor microporosidade e densidade do solo. Após quatro anos, não se evidenciou mais o efeito da escarificação na relação entre solo e haste sulcadora.The objective of this study was to evaluate the chiseling effect duration in an Oxisol, based on the study of soil and planter shank relation. The treatments were: no-till for 13 years; four years since chiseling (2001; two years since chiseling (2002; and six months since chiseling (2005, where all treatments were submitted or not to traffic with agricultural machinery. Data about vertical force and moment associated to: shank, soil mobilized area, specific operational resistance, macroporosity, microporosity, total porosity and soil density, were collected, and draught on shank was calculated. Increasing of time since

  5. A polymorphism in AGT and AGTR1 gene is associated with lead-related high blood pressure.

    Science.gov (United States)

    Kim, Hyung-Ki; Lee, Hwayoung; Kwon, Jun-Tack; Kim, Hak-Jae

    2015-12-01

    We investigated the association of polymorphisms in two renin-angiotensin system-related genes, expressed as angiotensinogen (AGT) and angiotensin II type 1 receptor (AGTR1), with blood lead levels and lead-related blood pressure in lead-exposed male workers in Korea. A cross-sectional study involving 808 lead-exposed male workers in Korea was conducted using a restriction fragment length polymorphism-based strategy to differentiate the various genotypes of polymorphisms in the AGT and AGTR1 genes. The association of clinical characteristics with genotypes as modifiers was estimated after adjustment for age, smoking status, drinking status, body mass index and job duration of each subject. Genotype and allele frequencies of the M235T polymorphism in AGT were associated with lead-related high blood pressure status. Moreover, blood lead levels were associated with allele frequencies of the AGT M235T polymorphism. These results suggested that the M/M genotype and M allele of AGT are risk factors for lead-related high blood pressure. © The Author(s) 2014.

  6. A search for RNA insertions and NS3 gene duplication in the genome of cytopathic isolates of bovine viral diarrhea virus

    Directory of Open Access Journals (Sweden)

    V.L. Quadros

    2006-07-01

    Full Text Available Calves born persistently infected with non-cytopathic bovine viral diarrhea virus (ncpBVDV frequently develop a fatal gastroenteric illness called mucosal disease. Both the original virus (ncpBVDV and an antigenically identical but cytopathic virus (cpBVDV can be isolated from animals affected by mucosal disease. Cytopathic BVDVs originate from their ncp counterparts by diverse genetic mechanisms, all leading to the expression of the non-structural polypeptide NS3 as a discrete protein. In contrast, ncpBVDVs express only the large precursor polypeptide, NS2-3, which contains the NS3 sequence within its carboxy-terminal half. We report here the investigation of the mechanism leading to NS3 expression in 41 cpBVDV isolates. An RT-PCR strategy was employed to detect RNA insertions within the NS2-3 gene and/or duplication of the NS3 gene, two common mechanisms of NS3 expression. RT-PCR amplification revealed insertions in the NS2-3 gene of three cp isolates, with the inserts being similar in size to that present in the cpBVDV NADL strain. Sequencing of one such insert revealed a 296-nucleotide sequence with a central core of 270 nucleotides coding for an amino acid sequence highly homologous (98% to the NADL insert, a sequence corresponding to part of the cellular J-Domain gene. One cpBVDV isolate contained a duplication of the NS3 gene downstream from the original locus. In contrast, no detectable NS2-3 insertions or NS3 gene duplications were observed in the genome of 37 cp isolates. These results demonstrate that processing of NS2-3 without bulk mRNA insertions or NS3 gene duplications seems to be a frequent mechanism leading to NS3 expression and BVDV cytopathology.

  7. Characterization of lower-limbs inter-segment coordination during the take-off extension in ski jumping.

    Science.gov (United States)

    Chardonnens, Julien; Favre, Julien; Cuendet, Florian; Gremion, Gérald; Aminian, Kamiar

    2013-08-01

    Take-off, the most important phase in ski jumping, has been primarily studied in terms of spatio-temporal parameters; little is known about its motor control aspects. This study aims to assess the inter-segment coordination of the shank-thigh and thigh-sacrum pairs using the continuous relative phase (CRP). In total 87 jumps were recorded from 33 athletes with an inertial sensor-based system. The CRP curves indicated that the thighs lead the shanks during the first part of take-off extension and that the shanks rotated faster at the take-off extension end. The thighs and sacrum first rotated synchronously, with the sacrum then taking lead, with finally the thighs rotating faster. Five characteristic features were extracted from the CRP and their relationship with jump length was tested. Three features of the shank-thigh pair and one of the thigh-sacrum pair reported a significant association with jump length. It was observed that athletes who achieved longer jumps had their thighs leading their shanks during a longer time, with these athletes also having a more symmetric movement between thighs and sacrum. This study shows that inter-segment coordination during the take-off extension is related to performance and further studies are necessary to contrast its importance with other ski jumping aspects. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Defective Connective Tissue Remodeling in Smad3 Mice Leads to Accelerated Aneurysmal Growth Through Disturbed Downstream TGF-β Signaling

    Directory of Open Access Journals (Sweden)

    I. van der Pluijm, PhD

    2016-10-01

    Smad3 deficiency leads to imbalanced activation of downstream genes, no activation of MMPs in VSMCs, and immune responses resulting in rapid aortic wall dilatation and rupture. Our findings uncover new possibilities for treatment of SMAD3 patients; instead of targeting TGF-β signaling, immune suppression may be more beneficial.

  9. The relationship between selected VDR, HFE and ALAD gene polymorphisms and several basic toxicological parameters among persons occupationally exposed to lead.

    Science.gov (United States)

    Szymańska-Chabowska, Anna; Łaczmański, Łukasz; Jędrychowska, Iwona; Chabowski, Mariusz; Gać, Paweł; Janus, Agnieszka; Gosławska, Katarzyna; Smyk, Beata; Solska, Urszula; Mazur, Grzegorz; Poręba, Rafał

    2015-08-06

    The aim of this study was to find a relationship between polymorphisms of ALAD rs1805313, rs222808, rs1139488, VDR FokI and HFE C282Y and H63D and basic toxicological parameters (lead and ZnPP blood concentration) in people occupationally exposed to lead. We collected data of 101 workers (age 25-63 years) directly exposed to lead. The toxicological lab tests included blood lead, cadmium and ZnPP concentration measurement and arsenic urine concentration measurement. Workers were genotyped for ALAD (rs1805313, rs222808, rs1139488), HFE (C282Y, H63D) and VDR (FokI). Individuals with the lead exposure and coexisting F allel in the locus Fok-I of VDR gene are suspected of higher zinc protoporphyrins concentrations. Workers exposed to the lead with the Y allel in the locus C282Y of the HFE gene are predisposed to lower ZnPP levels and individuals with coexisting H allel in the locus H63D HFE gene are predisposed to lower Pb-B levels. The T allel in the locus rs1805313 of the ALAD gene determines lower Pb-B and ZnPP levels in lead-exposed individuals. The heterozigosity of the locus rs2228083 of the ALAD gene has a strong predilection to higher Pb-B levels. The carriage of the C allel in the locus rs1139488 of the ALAD gene might determine higher Pb-B levels and the heterozigosity of the locus rs1139488 of the ALAD gene might result in higher ZnPP levels. The study revealed relationship between VDR, HFE and ALAD genes polymorphism and basic toxicological parameters in occupationally exposed workers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. New mutation in the mouse Xpd/Ercc2 gene leads to recessive cataracts.

    Directory of Open Access Journals (Sweden)

    Sarah Kunze

    Full Text Available Cataracts are the major eye disorder and have been associated mainly with mutations in lens-specific genes, but cataracts are also frequently associated with complex syndromes. In a large-scale high-throughput ENU mutagenesis screen we analyzed the offspring of paternally treated C3HeB/FeJ mice for obvious dysmorphologies. We identified a mutant suffering from rough coat and small eyes only in homozygotes; homozygous females turned out to be sterile. The mutation was mapped to chromosome 7 between the markers 116J6.1 and D7Mit294;4 other markers within this interval did not show any recombination among 160 F2-mutants. The critical interval (8.6 Mb contains 3 candidate genes (Apoe, Six5, Opa3; none of them showed a mutation. Using exome sequencing, we identified a c.2209T>C mutation in the Xpd/Ercc2 gene leading to a Ser737Pro exchange. During embryonic development, the mutant eyes did not show major changes. Postnatal histological analyses demonstrated small cortical vacuoles; later, cortical cataracts developed. Since XPD/ERCC2 is involved in DNA repair, we checked also for the presence of the repair-associated histone γH2AX in the lens. During the time, when primary lens fiber cell nuclei are degraded, γH2AX was strongly expressed in the cell nuclei; later, it demarcates clearly the border of the lens cortex to the organelle-free zone. Moreover, we analyzed also whether seemingly healthy heterozygotes might be less efficient in repair of DNA damage induced by ionizing radiation than wild types. Peripheral lymphocytes irradiated by 1Gy Cs137 showed 6 hrs after irradiation significantly more γH2AX foci in heterozygotes than in wild types. These findings demonstrate the importance of XPD/ERCC2 not only for lens fiber cell differentiation, but also for the sensitivity to ionizing radiation. Based upon these data, we hypothesize that variations in the human XPD/ERCC2 gene might increase the susceptibility for several disorders besides Xeroderma

  11. Let-7b Regulates Myoblast Proliferation by Inhibiting IGF2BP3 Expression in Dwarf and Normal Chicken

    Science.gov (United States)

    Lin, Shumao; Luo, Wen; Ye, Yaqiong; Bekele, Endashaw J.; Nie, Qinghua; Li, Yugu; Zhang, Xiquan

    2017-01-01

    The sex-linked dwarf chicken is caused by the mutation of growth hormone receptor (GHR) gene and characterized by shorter shanks, lower body weight, smaller muscle fiber diameter and fewer muscle fiber number. However, the precise regulatory pathways that lead to the inhibition of skeletal muscle growth in dwarf chickens still remain unclear. Here we found a let-7b mediated pathway might play important role in the regulation of dwarf chicken skeletal muscle growth. Let-7b has higher expression in the skeletal muscle of dwarf chicken than in normal chicken, and the expression of insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which is a translational activator of IGF2, showed opposite expression trend to let-7b. In vitro cellular assays validated that let-7b directly inhibits IGF2BP3 expression through binding to its 3′UTR region, and the protein level but not mRNA level of IGF2 would be reduced in let-7b overexpressed chicken myoblast. Let-7b can inhibit cell proliferation and induce cell cycle arrest in chicken myoblast through let-7b-IGF2BP3-IGF2 signaling pathway. Additionally, let-7b can also regulate skeletal muscle growth through let-7b-GHR-GHR downstream genes pathway, but this pathway is non-existent in dwarf chicken because of the deletion mutation of GHR 3′UTR. Notably, as the loss binding site of GHR for let-7b, let-7b has enhanced its binding and inhibition on IGF2BP3 in dwarf myoblast, suggesting that the miRNA can balance its inhibiting effect through dynamic regulate its binding to target genes. Collectively, these results not only indicate that let-7b can inhibit skeletal muscle growth through let-7b-IGF2BP3-IGF2 signaling pathway, but also show that let-7b regulates myoblast proliferation by inhibiting IGF2BP3 expression in dwarf and normal chickens. PMID:28736533

  12. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Data Analysis and Visualization (IDAV) and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,' ' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  13. The relationship between selected VDR, HFE and ALAD gene polymorphisms and several basic toxicological parameters among persons occupationally exposed to lead

    International Nuclear Information System (INIS)

    Szymańska-Chabowska, Anna; Łaczmański, Łukasz; Jędrychowska, Iwona; Chabowski, Mariusz; Gać, Paweł; Janus, Agnieszka; Gosławska, Katarzyna; Smyk, Beata; Solska, Urszula; Mazur, Grzegorz; Poręba, Rafał

    2015-01-01

    The aim of this study was to find a relationship between polymorphisms of ALAD rs1805313, rs222808, rs1139488, VDR FokI and HFE C282Y and H63D and basic toxicological parameters (lead and ZnPP blood concentration) in people occupationally exposed to lead. We collected data of 101 workers (age 25–63 years) directly exposed to lead. The toxicological lab tests included blood lead, cadmium and ZnPP concentration measurement and arsenic urine concentration measurement. Workers were genotyped for ALAD (rs1805313, rs222808, rs1139488), HFE (C282Y, H63D) and VDR (FokI). Individuals with the lead exposure and coexisting F allel in the locus Fok-I of VDR gene are suspected of higher zinc protoporphyrins concentrations. Workers exposed to the lead with the Y allel in the locus C282Y of the HFE gene are predisposed to lower ZnPP levels and individuals with coexisting H allel in the locus H63D HFE gene are predisposed to lower Pb-B levels. The T allel in the locus rs1805313 of the ALAD gene determines lower Pb-B and ZnPP levels in lead–exposed individuals. The heterozigosity of the locus rs2228083 of the ALAD gene has a strong predilection to higher Pb-B levels. The carriage of the C allel in the locus rs1139488 of the ALAD gene might determine higher Pb-B levels and the heterozigosity of the locus rs1139488 of the ALAD gene might result in higher ZnPP levels. Conclusion. The study revealed relationship between VDR, HFE and ALAD genes polymorphism and basic toxicological parameters in occupationally exposed workers

  14. Identification of up-regulated genes from the metal-hyperaccumulator aquatic fern Salvinia minima Baker, in response to lead exposure.

    Science.gov (United States)

    Leal-Alvarado, Daniel A; Martínez-Hernández, A; Calderón-Vázquez, C L; Uh-Ramos, D; Fuentes, G; Ramírez-Prado, J H; Sáenz-Carbonell, L; Santamaría, J M

    2017-12-01

    Lead (Pb) is one of the most serious environmental pollutants. The aquatic fern Salvinia minima Baker is capable to hyper-accumulate Pb in their tissues. However, the molecular mechanisms involved in its Pb accumulation and tolerance capacity are not fully understood. In order to investigate the molecular mechanisms that are activated by S. minima in response to Pb, we constructed a suppression subtractive hybridization library (SSH) in response to an exposure to 40μM of Pb(NO 3 ) 2 for 12h. 365 lead-related differentially expressed sequences tags (ESTs) were isolated and sequenced. Among these ESTs, 143 unique cDNA (97 were registered at the GenBank and 46 ESTs were not registered, because they did not meet the GenBank conditions). Those ESTs were identified and classified into 3 groups according to Blast2GO. In terms of metabolic pathways, they were grouped into 29 KEGG pathways. Among the ESTs, we identified some that might be part of the mechanism that this fern may have to deal with this metal, including abiotic-stress-related transcription factors, some that might be involved in tolerance mechanisms such as ROS scavenging, membrane protection, and those of cell homeostasis recovery. To validate the SSH library, 4 genes were randomly selected from the library and analyzed by qRT-PCR. These 4 genes were transcriptionally up-regulated in response to lead in at least one of the two tested tissues (roots and leaves). The present library is one of the few genomics approaches to study the response to metal stress in an aquatic fern, representing novel molecular information and tools to understand the molecular physiology of its Pb tolerance and hyperaccumulation capacity. Further research is required to elucidate the functions of the lead-induced genes that remain classified as unknown, to perhaps reveal novel molecular mechanisms of Pb tolerance and accumulation capacity in aquatic plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Case-only gene-environment interaction between ALAD tagSNPs and occupational lead exposure in prostate cancer.

    Science.gov (United States)

    Neslund-Dudas, Christine; Levin, Albert M; Rundle, Andrew; Beebe-Dimmer, Jennifer; Bock, Cathryn H; Nock, Nora L; Jankowski, Michelle; Datta, Indrani; Krajenta, Richard; Dou, Q Ping; Mitra, Bharati; Tang, Deliang; Rybicki, Benjamin A

    2014-05-01

    Black men have historically had higher blood lead levels than white men in the U.S. and have the highest incidence of prostate cancer in the world. Inorganic lead has been classified as a probable human carcinogen. Lead (Pb) inhibits delta-aminolevulinic acid dehydratase (ALAD), a gene recently implicated in other genitourinary cancers. The ALAD enzyme is involved in the second step of heme biosynthesis and is an endogenous inhibitor of the 26S proteasome, a master system for protein degradation and a current target of cancer therapy. Using a case-only study design, we assessed potential gene-environment (G × E) interactions between lifetime occupational Pb exposure and 11 tagSNPs within ALAD in black (N = 260) and white (N = 343) prostate cancer cases. Two ALAD tagSNPs in high linkage disequilibrium showed significant interaction with high Pb exposure among black cases (rs818684 interaction odds ratio or IOR = 2.73, 95% CI 1.43-5.22, P = 0.002; rs818689 IOR = 2.20, 95% CI 1.15-4.21, P = 0.017) and an additional tagSNP, rs2761016, showed G × E interaction with low Pb exposure (IOR = 2.08, 95% CI 1.13-3.84, P = 0.019). Further, the variant allele of rs818684 was associated with a higher Gleason grade in those with high Pb exposure among both blacks (OR 3.96, 95% CI 1.01-15.46, P = 0.048) and whites (OR 2.95, 95% CI 1.18-7.39, P = 0.020). Genetic variation in ALAD may modify associations between Pb and prostate cancer. Additional studies of ALAD, Pb, and prostate cancer are warranted and should include black men. Prostate 74:637-646, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  16. Allopatric integrations selectively change host transcriptomes, leading to varied expression efficiencies of exotic genes in Myxococcus xanthus.

    Science.gov (United States)

    Zhu, Li-Ping; Yue, Xin-Jing; Han, Kui; Li, Zhi-Feng; Zheng, Lian-Shuai; Yi, Xiu-Nan; Wang, Hai-Long; Zhang, You-Ming; Li, Yue-Zhong

    2015-07-22

    Exotic genes, especially clustered multiple-genes for a complex pathway, are normally integrated into chromosome for heterologous expression. The influences of insertion sites on heterologous expression and allotropic expressions of exotic genes on host remain mostly unclear. We compared the integration and expression efficiencies of single and multiple exotic genes that were inserted into Myxococcus xanthus genome by transposition and attB-site-directed recombination. While the site-directed integration had a rather stable chloramphenicol acetyl transferase (CAT) activity, the transposition produced varied CAT enzyme activities. We attempted to integrate the 56-kb gene cluster for the biosynthesis of antitumor polyketides epothilones into M. xanthus genome by site-direction but failed, which was determined to be due to the insertion size limitation at the attB site. The transposition technique produced many recombinants with varied production capabilities of epothilones, which, however, were not paralleled to the transcriptional characteristics of the local sites where the genes were integrated. Comparative transcriptomics analysis demonstrated that the allopatric integrations caused selective changes of host transcriptomes, leading to varied expressions of epothilone genes in different mutants. With the increase of insertion fragment size, transposition is a more practicable integration method for the expression of exotic genes. Allopatric integrations selectively change host transcriptomes, which lead to varied expression efficiencies of exotic genes.

  17. A 9-year-old-girl with Phelan McDermid Syndrome, who had been diagnosed with an autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Görker I

    2016-12-01

    Full Text Available Phelan McDermid Syndrome (PHMDS (OMIM #606232, is a contiguous gene disorder resulting from deletion of the distal long arm of chromosome 22. The 22q13.3 deletions and mutations that lead to a loss of a functional copy of SHANK3 (OMIM *606230 cause the syndrome, characterized by moderate to profound intellectual disability, severely delayed or absent speech, hypotonia, and autism spectrum disorder (ASD or ASD traits. In this study, we present the case of a 9-year-old girl who had earlier been diagnosed with an ASD. Our findings were a clinically mild intellectual disability, rounded face, pointed chin but no autistic findings. We learned that her neuromotor development was delayed and she had neonatal hypotonia in her history. A heterozygous deletion of MLC1, SBF1, MAPK8IP2, ARSA, SHANK3 and ACR genes, located on 22q13.33, was defined by multiplex ligation-dependent probe amplification (MLPA. Deletion of 22q13.3 (ARSA region was confirmed by a fluorescent in situ hybridization (FISH technique. The 22q13.3 deletion was found to be de novo in our patient, and she was diagnosed with PHMDS. We confirmed the 22q13.3 deletion and also determined a gain of 8p23.3-23.2 by array comparative genomic hybridization (aCGH. Fluorescent in situ hybridization was performed to determine whether the deletion was of parental origin and to identify regions of chromosomes where the extra 8p may have been located. The parents were found to be normal. The extra copy of 8p was observed on 22q in the patient. She is the first case reported in association with the 22q deletion of 8p duplications in the literature.

  18. Variations in CCL3L gene cluster sequence and non-specific gene copy numbers

    Directory of Open Access Journals (Sweden)

    Edberg Jeffrey C

    2010-03-01

    Full Text Available Abstract Background Copy number variations (CNVs of the gene CC chemokine ligand 3-like1 (CCL3L1 have been implicated in HIV-1 susceptibility, but the association has been inconsistent. CCL3L1 shares homology with a cluster of genes localized to chromosome 17q12, namely CCL3, CCL3L2, and, CCL3L3. These genes are involved in host defense and inflammatory processes. Several CNV assays have been developed for the CCL3L1 gene. Findings Through pairwise and multiple alignments of these genes, we have shown that the homology between these genes ranges from 50% to 99% in complete gene sequences and from 70-100% in the exonic regions, with CCL3L1 and CCL3L3 being identical. By use of MEGA 4 and BioEdit, we aligned sense primers, anti-sense primers, and probes used in several previously described assays against pre-multiple alignments of all four chemokine genes. Each set of probes and primers aligned and matched with overlapping sequences in at least two of the four genes, indicating that previously utilized RT-PCR based CNV assays are not specific for only CCL3L1. The four available assays measured median copies of 2 and 3-4 in European and African American, respectively. The concordance between the assays ranged from 0.44-0.83 suggesting individual discordant calls and inconsistencies with the assays from the expected gene coverage from the known sequence. Conclusions This indicates that some of the inconsistencies in the association studies could be due to assays that provide heterogenous results. Sequence information to determine CNV of the three genes separately would allow to test whether their association with the pathogenesis of a human disease or phenotype is affected by an individual gene or by a combination of these genes.

  19. Removal of lead from crude antimony by using NaPo3 as lead elimination reagent

    Directory of Open Access Journals (Sweden)

    Ye L.G.

    2015-01-01

    Full Text Available In order to solve the shortcomings when removing lead from crude antimony in the traditional antimony smelting, a new process was provided using NaPO3 as lead elimination reagent to yield phosphate slag, and it was removed by floating on the surface of the liquid antimony. Reaction mechanism was clarified by using the TG-DTA and XRD techniques and single factor experiments of removal lead from crude antimony were engaged. The results show that PbO and NaPO3 begin endothermic reaction at 863K (590°C, and the reaction mainly form NaPb4(PO43 and NaPbPO4 below 1123K (850°C and above 1123K (850°C, respectively. Sb2O3 and NaPO3 start the reaction at 773K (500°C and generate an antimonic salt compound. The reaction product of the mixture of PbO, Sb2O3 and NaPO3 show that NaPO3 reacted with PbO prior when NaPO3 was insufficient, amorphous antimony glass will be generated only when NaPO3 was adequate. Single factor experiments were taken with NaNO3 as oxidizing agent under argon, effect of reaction time, reaction temperature and dosage of NaPO3 and NaNO3 on smelting results. The average content of lead in refined antimony was 0.05340% and 98.85% of lead were removed under optimal conditions; the content of lead in antimony have meet the requirements of commercial antimony.

  20. Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis

    Directory of Open Access Journals (Sweden)

    Nakamura Shinichiro

    2011-01-01

    Full Text Available Abstract Background Runt-related transcription factor 3 (RUNX3 is known as a tumor suppressor gene for gastric cancer and other cancers, this gene may be involved in the development of hepatocellular carcinoma (HCC. Methods RUNX3 expression was analyzed by immunoblot and immunohistochemistry in HCC cells and tissues, respectively. Hep3B cells, lacking endogenous RUNX3, were introduced with RUNX3 constructs. Cell proliferation was measured using the MTT assay and apoptosis was evaluated using DAPI staining. Apoptosis signaling was assessed by immunoblot analysis. Results RUNX3 protein expression was frequently inactivated in the HCC cell lines (91% and tissues (90%. RUNX3 expression inhibited 90 ± 8% of cell growth at 72 h in serum starved Hep3B cells. Forty-eight hour serum starvation-induced apoptosis and the percentage of apoptotic cells reached 31 ± 4% and 4 ± 1% in RUNX3-expressing Hep3B and control cells, respectively. Apoptotic activity was increased by Bim expression and caspase-3 and caspase-9 activation. Conclusion RUNX3 expression enhanced serum starvation-induced apoptosis in HCC cell lines. RUNX3 is deleted or weakly expressed in HCC, which leads to tumorigenesis by escaping apoptosis.

  1. A novel mutation in the SH3BP2 gene causes cherubism: case report

    Directory of Open Access Journals (Sweden)

    Yu Shi-Feng

    2006-12-01

    Full Text Available Abstract Background Cherubism is a rare hereditary multi-cystic disease of the jaws, characterized by its typical appearance in early childhood, and stabilization and remission after puberty. It is genetically transmitted in an autosomal dominant fashion and the gene coding for SH3-binding protein 2 (SH3BP2 may be involved. Case presentation We investigated a family consisting of 21 members with 3 female affected individuals with cherubism from Northern China. Of these 21 family members, 17 were recruited for the genetic analysis. We conducted the direct sequence analysis of the SH3BP2 gene among these 17 family members. A disease-causing mutation was identified in exon 9 of the gene. It was an A1517G base change, which leads to a D419G amino acid substitution. Conclusion To our knowledge, the A1517G mutation has not been reported previously in cherubism. This finding is novel.

  2. HFE gene variants modify the association between maternal lead burden and infant birthweight: a prospective birth cohort study in Mexico City, Mexico.

    Science.gov (United States)

    Cantonwine, David; Hu, Howard; Téllez-Rojo, Martha Maria; Sánchez, Brisa N; Lamadrid-Figueroa, Héctor; Ettinger, Adrienne S; Mercado-García, Adriana; Hernández-Avila, Mauricio; Wright, Robert O

    2010-07-26

    Neonatal growth is a complex process involving genetic and environmental factors. Polymorphisms in the hemochromatosis (HFE) iron regulatory genes have been shown to modify transport and toxicity of lead which is known to affect birth weight. We investigated the role of HFE C282Y, HFE H63 D, and transferrin (TF) P570 S gene variants in modifying the association of lead and infant birthweight in a cohort of Mexican mother-infant pairs. Subjects were initially recruited between 1994-1995 from three maternity hospitals in Mexico City and 411 infants/565 mothers had archived blood available for genotyping. Multiple linear regression models, stratified by either maternal/infant HFE or TF genotype and then combined with interaction terms, were constructed examining the association of lead and birthweight after controlling for covariates. 3.1%, 16.8% and 17.5% of infants (N=390) and 1.9%, 14.5% and 18.9% of mothers (N=533) carried the HFE C282Y, HFE H63D, and TF P570 S variants, respectively. The presence of infant HFE H63 D variants predicted 110.3 g (95% CI -216.1, -4.6) decreases in birthweight while maternal HFE H63 D variants predicted reductions of 52.0 g (95% CI -147.3 to 43.2). Interaction models suggest that both maternal and infant HFE H63 D genotype may modify tibia lead's effect on infant birthweight in opposing ways. In our interaction models, maternal HFE H63 D variant carriers had a negative association between tibia lead and birthweight. These results suggest that the HFE H63 D genotype modifies lead's effects on infant birthweight in a complex fashion that may reflect maternal-fetal interactions with respect to the metabolism and transport of metals.

  3. Structural influence of gene networks on their inference: analysis of C3NET

    Directory of Open Access Journals (Sweden)

    Emmert-Streib Frank

    2011-06-01

    Full Text Available Abstract Background The availability of large-scale high-throughput data possesses considerable challenges toward their functional analysis. For this reason gene network inference methods gained considerable interest. However, our current knowledge, especially about the influence of the structure of a gene network on its inference, is limited. Results In this paper we present a comprehensive investigation of the structural influence of gene networks on the inferential characteristics of C3NET - a recently introduced gene network inference algorithm. We employ local as well as global performance metrics in combination with an ensemble approach. The results from our numerical study for various biological and synthetic network structures and simulation conditions, also comparing C3NET with other inference algorithms, lead a multitude of theoretical and practical insights into the working behavior of C3NET. In addition, in order to facilitate the practical usage of C3NET we provide an user-friendly R package, called c3net, and describe its functionality. It is available from https://r-forge.r-project.org/projects/c3net and from the CRAN package repository. Conclusions The availability of gene network inference algorithms with known inferential properties opens a new era of large-scale screening experiments that could be equally beneficial for basic biological and biomedical research with auspicious prospects. The availability of our easy to use software package c3net may contribute to the popularization of such methods. Reviewers This article was reviewed by Lev Klebanov, Joel Bader and Yuriy Gusev.

  4. Retroviral-mediated gene transfer of human phenylalanine hydroxylase into NIH 3T3 and hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ledley, F.D.; Grenett, H.E.; McGinnis-Shelnutt, M.; Woo, S.L.C.

    1986-01-01

    Phenylketonuria (PKU) is caused by deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH). A full-length human PAH cDNA sequence has been inserted into pzip-neoSV(X), which is a retroviral vector containing the bacterial neo gene. The recombinant has been transfected into Psi2 cells, which provide synthesis of the retroviral capsid. Recombinant virus was detected in the culture medium of the transfected Psi2 cells, which is capable of transmitting the human PAH gene into mouse NIH 3T3 cells by infection leading to stable incorporation of the recombinant provirus. Infected cells express PAH mRNA, immunoreactive PAH protein, and exhibit pterin-dependent phenylaline hydroxylase activity. The recombinant virus is also capable of infecting a mouse hepatoma cell line that does not normal synthesize PAH. PAH activity is present in the cellular extracts and the entire hydroxylation system is reconstituted in the hepatoma cells infected with the recombinant viruses. Thus, recombinant viruses containing human PAH cDNA provide a means for introducing functional PAH into mammalian cells of hepatic origin and can potentially be introduced into whole animals as a model for somatic gene therapy for PKU.

  5. Self-cytoplasmic DNA upregulates the mutator enzyme APOBEC3A leading to chromosomal DNA damage.

    Science.gov (United States)

    Suspène, Rodolphe; Mussil, Bianka; Laude, Hélène; Caval, Vincent; Berry, Noémie; Bouzidi, Mohamed S; Thiers, Valérie; Wain-Hobson, Simon; Vartanian, Jean-Pierre

    2017-04-07

    Foreign and self-cytoplasmic DNA are recognized by numerous DNA sensor molecules leading to the production of type I interferons. Such DNA agonists should be degraded otherwise cells would be chronically stressed. Most human APOBEC3 cytidine deaminases can initiate catabolism of cytoplasmic mitochondrial DNA. Using the human myeloid cell line THP-1 with an interferon inducible APOBEC3A gene, we show that cytoplasmic DNA triggers interferon α and β production through the RNA polymerase III transcription/RIG-I pathway leading to massive upregulation of APOBEC3A. By catalyzing C→U editing in single stranded DNA fragments, the enzyme prevents them from re-annealing so attenuating the danger signal. The price to pay is chromosomal DNA damage in the form of CG→TA mutations and double stranded DNA breaks which, in the context of chronic inflammation, could drive cells down the path toward cancer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Transcriptome Profiling of Louisiana iris Root and Identification of Genes Involved in Lead-Stress Response

    Directory of Open Access Journals (Sweden)

    Songqing Tian

    2015-11-01

    Full Text Available Louisiana iris is tolerant to and accumulates the heavy metal lead (Pb. However, there is limited knowledge of the molecular mechanisms behind this feature. We describe the transcriptome of Louisiana iris using Illumina sequencing technology. The root transcriptome of Louisiana iris under control and Pb-stress conditions was sequenced. Overall, 525,498 transcripts representing 313,958 unigenes were assembled using the clean raw reads. Among them, 43,015 unigenes were annotated and their functions classified using the euKaryotic Orthologous Groups (KOG database. They were divided into 25 molecular families. In the Gene Ontology (GO database, 50,174 unigenes were categorized into three GO trees (molecular function, cellular component and biological process. After analysis of differentially expressed genes, some Pb-stress-related genes were selected, including biosynthesis genes of chelating compounds, metal transporters, transcription factors and antioxidant-related genes. This study not only lays a foundation for further studies on differential genes under Pb stress, but also facilitates the molecular breeding of Louisiana iris.

  7. Antihelium-3 production in lead-lead collisions at 158 A GeV/c

    International Nuclear Information System (INIS)

    Arsenescu, R; Baglin, C; Beck, H P; Borer, K; Bussiere, A; Elsener, K; Gorodetzky, Ph; Guillaud, J P; Kabana, S; Klingenberg, R; Lehmann, G; Linden, T; Lohmann, K D; Mommsen, R; Moser, U; Pretzl, K; Schacher, J; Spiwoks, R; Tuominiemi, J; Weber, M

    2003-01-01

    The NA-52 experiment measured particle and antiparticle yields at 0 deg production angle over a wide range in rapidity in lead-lead (Pb-Pb) collisions at 158 A GeV/c with a minimum bias trigger. Besides O(10 6 ) antiprotons and O(10 3 ) antideuterons a total of five antihelium-3 were found. The resulting invariant differential production cross sections at p t ≅0 GeV/c turn out to be E (d 3 σ)/(dp 3 ) = (2.5 ± 1.8) x 10 -7 bc 3 GeV -2 at a rapidity of y = 3.4 in the laboratory system and (5.9 ± 3.4) x 10 -8 bc 3 GeV -2 at y = 4.0. The results are discussed in the framework of a simple coalescence model

  8. From Bill Shankly to the Huffington Post: How to Increase Critical Thinking in Experimental Psychology Course?

    Directory of Open Access Journals (Sweden)

    Emilie eLacot

    2016-04-01

    Full Text Available Although critical thinking and source checking are basic prerequisites to become a psychologist, or a scientist, it is usually difficult to have students interested in experimental methods courses. Most first year students are tempted not to attend these courses. Such behaviors are reinforced by arguments that everybody is different and people are not numbers. Consequently, students have difficulties to develop source and evidence checking skills, and may be more prone to believe in any supposed expert. This paper presents two ways to involve students during lectures and seminars. The first method consists in presenting, during the initial lecture of the year, a fake scientific concept which students will believe as true. This phenomenon is called the Bill Shankly syndrome and it only exists if someone believes that the information is given by a serious lecturer, presenting oneself as a world-class researcher. The second method consists in training students to become reviewers using evidence checking of a mainstream media article which promises scientifically proven ways to be happy. The use of these methods may stimulate students’ interest in research methods and its practical applications from week one.

  9. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23 (Fgf23) concentrations and hyperphosphatemia despite increased Fgf23 expression.

    Science.gov (United States)

    Ichikawa, Shoji; Sorenson, Andrea H; Austin, Anthony M; Mackenzie, Donald S; Fritz, Timothy A; Moh, Akira; Hui, Siu L; Econs, Michael J

    2009-06-01

    Familial tumoral calcinosis is characterized by ectopic calcifications and hyperphosphatemia. The disease is caused by inactivating mutations in fibroblast growth factor 23 (FGF23), Klotho (KL), and uridine diphosphate-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). In vitro studies indicate that GALNT3 O-glycosylates a phosphaturic hormone, FGF23, and prevents its proteolytic processing, thereby allowing secretion of intact FGF23. In this study we generated mice lacking the Galnt3 gene, which developed hyperphosphatemia without apparent calcifications. In response to hyperphosphatemia, Galnt3-deficient mice had markedly increased Fgf23 expression in bone. However, compared with wild-type and heterozygous littermates, homozygous mice had only about half of circulating intact Fgf23 levels and higher levels of C-terminal Fgf23 fragments in bone. Galnt3-deficient mice also exhibited an inappropriately normal 1,25-dihydroxyvitamin D level and decreased alkaline phosphatase activity. Furthermore, renal expression of sodium-phosphate cotransporters and Kl were elevated in Galnt3-deficient mice. Interestingly, there were sex-specific phenotypes; only Galnt3-deficient males showed growth retardation, infertility, and significantly increased bone mineral density. In summary, ablation of Galnt3 impaired secretion of intact Fgf23, leading to decreased circulating Fgf23 and hyperphosphatemia, despite increased Fgf23 expression. Our findings indicate that Galnt3-deficient mice have a biochemical phenotype of tumoral calcinosis and provide in vivo evidence that Galnt3 plays an essential role in proper secretion of Fgf23 in mice.

  10. Maternal hemochromatosis gene H63D single-nucleotide polymorphism and lead levels of placental tissue, maternal and umbilical cord blood

    Energy Technology Data Exchange (ETDEWEB)

    Kayaalti, Zeliha, E-mail: kayaalti@ankara.edu.tr [Ankara University, Institute of Forensic Sciences, Ankara (Turkey); Kaya-Akyüzlü, Dilek [Ankara University, Institute of Forensic Sciences, Ankara (Turkey); Söylemez, Esma [Ankara University, Institute of Forensic Sciences, Ankara (Turkey); Middle Black Sea Passage Generation of Agricultural Research Station Director, Tokat (Turkey); Söylemezoğlu, Tülin [Ankara University, Institute of Forensic Sciences, Ankara (Turkey)

    2015-07-15

    Human hemochromatosis protein (HFE), a major histocompatibility complex class I-like integral membrane protein, participates in the down regulation of intestinal iron absorption by binding to transferrin receptor (TR). HFE competes with transferrin-bound iron for the TR and thus reduces uptake of iron into cells. On the other hand, a lack of HFE increases the intestinal absorption of iron similarly to iron deficiency associated with increasing in absorption and deposition of lead. During pregnancy, placenta cannot prevent transfer lead to the fetus; even low-level lead poisoning causes neurodevelopmental toxicity in children. The aim of this study was to determine the association between the maternal HFE H63D single-nucleotide polymorphism and lead levels in placental tissue, maternal blood and umbilical cord bloods. The study population comprised 93 mother–placenta pairs. Venous blood from mother was collected to investigate lead levels and HFE polymorphism that was detected by standard PCR–RFLP technique. Cord bloods and placentas were collected for lead levels which were analyzed by dual atomic absorption spectrometer system. The HFE H63D genotype frequencies of mothers were found as 75.3% homozygote typical (HH), 23.6% heterozygote (HD) and 1.1% homozygote atypical (DD). Our study results showed that the placental tissue, umbilical cord and maternal blood lead levels of mothers with HD+DD genotypes were significantly higher than those with HH genotype (p<0.05). The present study indicated for the first time that mothers with H63D gene variants have higher lead levels of their newborn's placentas and umbilical cord bloods. - Highlights: • Mothers with H63D gene variants have higher lead levels of their newborn's umbilical cord blood. • Unborn child of women with HD+DD genotypes may be at increased risk of internal exposure to lead. • Maternal HFE status may have an effect on increased placenta, maternal and cord blood lead levels.

  11. Maternal hemochromatosis gene H63D single-nucleotide polymorphism and lead levels of placental tissue, maternal and umbilical cord blood

    International Nuclear Information System (INIS)

    Kayaalti, Zeliha; Kaya-Akyüzlü, Dilek; Söylemez, Esma; Söylemezoğlu, Tülin

    2015-01-01

    Human hemochromatosis protein (HFE), a major histocompatibility complex class I-like integral membrane protein, participates in the down regulation of intestinal iron absorption by binding to transferrin receptor (TR). HFE competes with transferrin-bound iron for the TR and thus reduces uptake of iron into cells. On the other hand, a lack of HFE increases the intestinal absorption of iron similarly to iron deficiency associated with increasing in absorption and deposition of lead. During pregnancy, placenta cannot prevent transfer lead to the fetus; even low-level lead poisoning causes neurodevelopmental toxicity in children. The aim of this study was to determine the association between the maternal HFE H63D single-nucleotide polymorphism and lead levels in placental tissue, maternal blood and umbilical cord bloods. The study population comprised 93 mother–placenta pairs. Venous blood from mother was collected to investigate lead levels and HFE polymorphism that was detected by standard PCR–RFLP technique. Cord bloods and placentas were collected for lead levels which were analyzed by dual atomic absorption spectrometer system. The HFE H63D genotype frequencies of mothers were found as 75.3% homozygote typical (HH), 23.6% heterozygote (HD) and 1.1% homozygote atypical (DD). Our study results showed that the placental tissue, umbilical cord and maternal blood lead levels of mothers with HD+DD genotypes were significantly higher than those with HH genotype (p<0.05). The present study indicated for the first time that mothers with H63D gene variants have higher lead levels of their newborn's placentas and umbilical cord bloods. - Highlights: • Mothers with H63D gene variants have higher lead levels of their newborn's umbilical cord blood. • Unborn child of women with HD+DD genotypes may be at increased risk of internal exposure to lead. • Maternal HFE status may have an effect on increased placenta, maternal and cord blood lead levels.

  12. A Single Dose of LSD Does Not Alter Gene Expression of the Serotonin 2A Receptor Gene (HTR2A) or Early Growth Response Genes (EGR1-3) in Healthy Subjects

    Science.gov (United States)

    Dolder, Patrick C.; Grünblatt, Edna; Müller, Felix; Borgwardt, Stefan J.; Liechti, Matthias E.

    2017-01-01

    Rationale: Renewed interest has been seen in the use of lysergic acid diethylamide (LSD) in psychiatric research and practice. The repeated use of LSD leads to tolerance that is believed to result from serotonin (5-HT) 5-HT2A receptor downregulation. In rats, daily LSD administration for 4 days decreased frontal cortex 5-HT2A receptor binding. Additionally, a single dose of LSD acutely increased expression of the early growth response genes EGR1 and EGR2 in rat and mouse brains through 5-HT2A receptor stimulation. No human data on the effects of LSD on gene expression has been reported. Therefore, we investigated the effects of single-dose LSD administration on the expression of the 5-HT2A receptor gene (HTR2A) and EGR1-3 genes. Methods: mRNA expression levels were analyzed in whole blood as a peripheral biomarker in 15 healthy subjects before and 1.5 and 24 h after the administration of LSD (100 μg) and placebo in a randomized, double-blind, placebo-controlled, cross-over study. Results: LSD did not alter the expression of the HTR2A or EGR1-3 genes 1.5 and 24 h after administration compared with placebo. Conclusion: No changes were observed in the gene expression of LSD’s primary target receptor gene or genes that are implicated in its downstream effects. Remaining unclear is whether chronic LSD administration alters gene expression in humans. PMID:28701958

  13. Dopamine signaling leads to loss of Polycomb repression and aberrant gene activation in experimental parkinsonism.

    Directory of Open Access Journals (Sweden)

    Erik Södersten

    2014-09-01

    Full Text Available Polycomb group (PcG proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation. The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP experiments showed that increased H3K27me3S28p was accompanied by reduced PcG binding to regulatory regions of genes. An analysis of the genome wide distribution of L-DOPA-induced H3K27me3S28 phosphorylation by ChIP sequencing (ChIP-seq in combination with expression analysis by RNA-sequencing (RNA-seq showed that the induction of H3K27me3S28p correlated with increased expression of a subset of PcG repressed genes. We found that induction of H3K27me3S28p persisted during chronic L-DOPA administration to parkisonian mice and correlated with aberrant gene expression. We propose that dopaminergic transmission can activate PcG repressed genes in the adult brain and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease.

  14. Identification of late O{sub 3}-responsive genes in Arabidopsis thaliana by cDNA microarray analysis

    Energy Technology Data Exchange (ETDEWEB)

    D' Haese, D. [Univ. of Antwerp, Dept. of Biology, Antwerp (BE) and Univ. of Newcastle, School of Biology and Psychology, Div. of Biology, Newcastle-Upon-Tyne (United Kingdom); Horemans, N.; Coen, W. De; Guisez, Y. [Univ. of Antwerp, Dept. of Biology, Antwerp (Belgium)

    2006-09-15

    To better understand the response of a plant to 0{sub 3} stress, an integrated microarray analysis was performed on Arabidopsis plants exposed during 2 days to purified air or 150 nl l{sup -1} O{sub 3}, 8 h day-l. Agilent Arabidopsis 2 Oligo Microarrays were used of which the reliability was confirmed by quantitative real-time PCR of nine randomly selected genes. We confirmed the O{sub 3} responsiveness of heat shock proteins (HSPs), glutathione-S-tranferases and genes involved in cell wall stiffening and microbial defence. Whereas, a previous study revealed that during an early stage of the O{sub 3} stress response, gene expression was strongly dependent on jasmonic acid and ethylene, we report that at a later stage (48 h) synthesis of jasrnonic acid and ethylene was downregulated. In addition, we observed the simultaneous induction of salicylic acid synthesis and genes involved in programmed cell death and senescence. Also typically, the later stage of the response to O{sub 3} appeared to be the induction of the complete pathway leading to the biosynthesis of anthocyanin diglucosides and the induction of thioredoxin-based redox control. Surprisingly absent in the list of induced genes were genes involved in ASC-dependent antioxidation, few of which were found to be induced after 12 h of 0{sub 3} exposure in another study. We discuss these and other particular results of the microarray analysis and provide a map depicting significantly affected genes and their pathways highlighting their interrelationships and subcellular localization. (au)

  15. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    Science.gov (United States)

    Smeester, Lisa; Yosim, Andrew E.; Nye, Monica D.; Hoyo, Cathrine; Murphy, Susan K.; Fry, Rebecca C.

    2014-01-01

    Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, and lead. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology. PMID:24921406

  16. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    Directory of Open Access Journals (Sweden)

    Lisa Smeester

    2014-06-01

    Full Text Available Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR, some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  17. In silico prediction of functional loss of cst3 gene in hereditary cerebral amyloid angiopathy

    Directory of Open Access Journals (Sweden)

    Piyush Choudhary

    2013-12-01

    Full Text Available The computational identification of missense mutation in CST3 (CYSTATIN 3 or CYSTATIN C gene has been done in the present study. The missense mutations in the CST3 gene will leads to hereditary cerebral amyloid angiopathy The initiation of the analysis was done with SIFT followed by POLYPHEN-2 and I-Mutant 2.0 using 24 variants of CST3 gene of Homo sapiens which were derived from dbSNP. The analysis showed that 5 variants (Y60C, C123Y, L19P, Y88C, L94Q were found to be less stable and damaging by SIFT, POLYPHEN-2 and I-MUTANT2.0. Furthermore the outputs of SNP & GO are collaborated with PHD-SNP (Predictor of Human Deleterious-Single Nucleotide Polymorphism and PANTHER to predict 5 variants (Y60C, Y88C, C123Y, L19P, and L94Q having clinical impact in causing the disease. These findings will be certainly helpful for the present medical practitioners for the treatment of cerebral amyloid angiopathy.

  18. Gender-related difference in altered gene expression of a sterol regulatory element binding protein, SREBP-2, by lead nitrate in rats: correlation with development of hypercholesterolemia.

    Science.gov (United States)

    Kojima, Misaki; Degawa, Masakuni

    2006-01-01

    Changes in gene expression levels of hepatic sterol regulatory element binding protein-2 (SREBP-2) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) after a single i.v. injection of lead nitrate (LN, 100 micromol kg(-1) body weight) were examined comparatively by real time reverse transcriptase-polymerase chain reaction (RT-PCR) in male and female rats. Significant increases in the gene expression level of SREBP-2, a transcription factor for the HMGR gene, occurred at 6-12 h in male and at 24-36 h in female rats after LN-treatment. The gene expression level of HMGR, a rate-limiting enzyme for cholesterol biosynthesis, significantly increased at 3-48 h in male rats and 12-48 h in female rats. Subsequently, significant increases in the amount of hepatic total cholesterol in male and female rats were also observed at 3-48 h and 24-48 h, respectively. The present findings demonstrate that increases in gene expressions of hepatic SREBP-2 and HMGR and the amount of hepatic total cholesterol by LN occur earlier in male rats than in the females, and that increases in the gene expression level of HMGR and the amount of hepatic total cholesterol occur prior to the increase in the gene expression level of SREBP-2 in either sex of rats. Copyright (c) 2006 John Wiley & Sons, Ltd.

  19. Down-regulation of osmotin (PR5) gene by virus-induced gene silencing (VIGS) leads to susceptibility of resistant Piper colubrinum Link. to the oomycete pathogen Phytophthora capsici Leonian.

    Science.gov (United States)

    Anu, K; Jessymol, K K; Chidambareswaren, M; Gayathri, G S; Manjula, S

    2015-06-01

    Piper colubrinum Link., a distant relative of Piper nigrum L., is immune to the oomycete pathogen Phytophthora capsici Leonian that causes 'quick wilt' in cultivated black pepper (P. nigrum). The osmotin, PR5 gene homologue, earlier identified from P. colubrinum, showed significant overexpression in response to pathogen and defense signalling molecules. The present study focuses on the functional validation of P. colubrinum osmotin (PcOSM) by virus induced gene silencing (VIGS) using Tobacco Rattle Virus (TRV)-based vector. P. colubrinum plants maintained under controlled growth conditions in a growth chamber were infiltrated with Agrobacterium carrying TRV empty vector (control) and TRV vector carrying PcOSM. Three weeks post infiltration, viral movement was confirmed in newly emerged leaves of infiltrated plants by RT-PCR using TRV RNA1 and TRV RNA2 primers. Semi-quantitative RT-PCR confirmed significant down-regulation of PcOSM gene in TRV-PcOSM infiltrated plant compared with the control plants. The control and silenced plants were challenged with Phytophthora capsici which demonstrated that knock-down of PcOSM in P. colubrinum leads to increased fungal mycelial growth in silenced plants compared to control plants, which was accompanied by decreased accumulation of H2O2 as indicated by 3,3'-diaminobenzidine (DAB) staining. Thus, in this study, we demonstrated that Piper colubrinum osmotin gene is required for resisting P. capsici infection and has possible role in hypersensitive cell death response and oxidative burst signaling during infection.

  20. STAT3 Target Genes Relevant to Human Cancers

    International Nuclear Information System (INIS)

    Carpenter, Richard L.; Lo, Hui-Wen

    2014-01-01

    Since its discovery, the STAT3 transcription factor has been extensively studied for its function as a transcriptional regulator and its role as a mediator of development, normal physiology, and pathology of many diseases, including cancers. These efforts have uncovered an array of genes that can be positively and negatively regulated by STAT3, alone and in cooperation with other transcription factors. Through regulating gene expression, STAT3 has been demonstrated to play a pivotal role in many cellular processes including oncogenesis, tumor growth and progression, and stemness. Interestingly, recent studies suggest that STAT3 may behave as a tumor suppressor by activating expression of genes known to inhibit tumorigenesis. Additional evidence suggested that STAT3 may elicit opposing effects depending on cellular context and tumor types. These mixed results signify the need for a deeper understanding of STAT3, including its upstream regulators, parallel transcription co-regulators, and downstream target genes. To help facilitate fulfilling this unmet need, this review will be primarily focused on STAT3 downstream target genes that have been validated to associate with tumorigenesis and/or malignant biology of human cancers

  1. Synaptic proteins and receptors defects in autism spectrum disorders

    OpenAIRE

    Chen, Jianling; Yu, Shunying; Fu, Yingmei; Li, Xiaohong

    2014-01-01

    Recent studies have found that hundreds of genetic variants, including common and rare variants, rare and de novo mutations, and common polymorphisms have contributed to the occurrence of autism spectrum disorders (ASDs). The mutations in a number of genes such as neurexin, neuroligin, postsynaptic density protein 95 (PSD-95), SH3 and multiple ankyrin repeat domains 3 (SHANK3), synapsin, gephyrin, cadherin (CDH) and protocadherin (PCDH), thousand-and-one-amino acid 2 kinase (TAOK2), and conta...

  2. Tumor necrosis factor-alpha-independent downregulation of hepatic cholesterol 7alpha-hydroxylase gene in mice treated with lead nitrate.

    Science.gov (United States)

    Kojima, Misaki; Sekikawa, Kenji; Nemoto, Kiyomitsu; Degawa, Masakuni

    2005-10-01

    We previously reported that lead nitrate (LN), an inducer of hepatic tumor necrosis factor-alpha (TNF-alpha), downregulated gene expression of cholesterol 7alpha-hydroxylase. Herein, to clarify the role of TNF-alpha in LN-induced downregulation of cholesterol 7alpha-hydroxylase, effects of LN on gene expression of hepatic cholesterol 7alpha-hydroxylase (Cyp7a1) in TNF-alpha-knockout (KO) and TNF-alpha-wild-type (WT) mice were comparatively examined. Gene expression of hepatic Cyp7a1 in both WT and KO mice decreased to less than 5% of the corresponding controls at 6-12 h after treatment with LN (100 mumol/kg body weight, iv). Levels of hepatic TNF-alpha protein in either WT or KO mice were below the detection limit, although expression levels of the TNF-alpha gene markedly increased at 6 h in WT mice by LN treatment, but not in KO mice. In contrast, in both WT and KO mice, levels of hepatic IL-1beta protein, which is known to be a suppressor of the cholesterol 7alpha-hydroxylase gene in hamsters, were significantly increased 3-6 h after LN treatment. Furthermore, LN-induced downregulation of the Cyp7a1 gene did not necessarily result from altered gene expression of hepatic transcription factors, including positive regulators (liver X receptor alpha, retinoid X receptor alpha, fetoprotein transcription factor, and hepatocyte nuclear factor 4alpha) and a negative regulator small heterodimer partner responsible for expression of the Cyp7a1 gene. The present findings indicated that LN-induced downregulation of the Cyp7a1 gene in mice did not necessarily occur through a TNF-alpha-dependent pathway and might occur mainly through an IL-1beta-dependent pathway.

  3. Lead-resistant strain KQBT-3 inoculants of Tricholoma lobayensis Heim that enhance remediation of lead-contaminated soil.

    Science.gov (United States)

    Li, Ying; Qin, Chui-Xin; Gao, Biyu; Hu, Yuanjia; Xu, Heng

    2015-01-01

    To enhance lead-detoxifying efficiency of Tricholoma lobayensis Heim, one lead-resistant strain KQBT-3 (Bacillus thuringiensis) was applied owing to its excellent ability to tolerate Pb. KQBT-3 domesticated in liquid medium with increasing lead concentrations could tolerate Pb(NO3)2 up to a concentration of 800 mg L(-1). Pot experiments showed that the KQBT-3 not only could promote the growth of T. lobayensis, but also could enhance its Pb accumulation ability under heavy metal stress. Biomass and accumulation of Pb increased 47.3% and 33.2%, respectively. In addition, after inoculation of KQBT-3, the significant decrease of malondialdehyde indicated KQBT-3 could alleviate lipid peroxidation in T. lobayensis. What is interesting is that superoxide dismutase and peroxidase activities in T. lobayensis inoculated with KQBT-3 were increased, and the maximum increasing rate was 121.71% and 117.29%, respectively. However, the catalase activity increased slightly. This revealed that inoculating KQBT-3 further induced oxidative response in T. lobayensis due to Pb accumulation. Therefore, the present work showed that KQBT-3 made a major contribution to promote growth and lead uptake of T. lobayensis and alleviate the oxidative stress. This kind of auxiliary effect on macrofungi can be developed into a novel bioremediation strategy.

  4. Identification of the 14-3-3 gene family in Rafflesia cantleyi

    Science.gov (United States)

    Rosli, Khadijah; Wan, Kiew-Lian

    2018-04-01

    Rafflesia is known to be the largest flower in the world. Due to its size and appearance, it is considered to be very unique. Little is known about the molecular biology of this rare parasitic flowering plant as it is very difficult to locate and has a short life-span as a flower. Physiological activities in plants are regulated by signalling regulators such as the members of the 14-3-3 gene family. The number of members of this gene family varies in plants and there are thirteen known members in Arabidopsis thaliana. Their role is to bind to phosphorylated targets to complete signal transduction processes. Sequence comparison using BLAST of transcriptome data from three different Rafflesia cantleyi floral bud stages against the Swissprot database revealed 27 transcripts annotated as members of this gene family. All of the transcripts were expressed during floral bud stage 1 (S1) while 14 and four transcripts were expressed during floral bud stages 2 (S2) and 3 (S3), respectively. Significant downregulation was recorded for six and nine transcripts at S1 vs. S2 and S2 vs. S3 respectively. This gene family may play a critical role as signalling regulators during the development of Rafflesia floral bud.

  5. New insight on FGFR3-related chondrodysplasias molecular physiopathology revealed by human chondrocyte gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Laurent Schibler

    Full Text Available Endochondral ossification is the process by which the appendicular skeleton, facial bones, vertebrae and medial clavicles are formed and relies on the tight control of chondrocyte maturation. Fibroblast growth factor receptor (FGFR3 plays a role in bone development and maintenance and belongs to a family of proteins which differ in their ligand affinities and tissue distribution. Activating mutations of the FGFR3 gene lead to craniosynostosis and multiple types of skeletal dysplasia with varying degrees of severity: thanatophoric dysplasia (TD, achondroplasia and hypochondroplasia. Despite progress in the characterization of FGFR3-mediated regulation of cartilage development, many aspects remain unclear. The aim and the novelty of our study was to examine whole gene expression differences occurring in primary human chondrocytes isolated from normal cartilage or pathological cartilage from TD-affected fetuses, using Affymetrix technology. The phenotype of the primary cells was confirmed by the high expression of chondrocytic markers. Altered expression of genes associated with many cellular processes was observed, including cell growth and proliferation, cell cycle, cell adhesion, cell motility, metabolic pathways, signal transduction, cell cycle process and cell signaling. Most of the cell cycle process genes were down-regulated and consisted of genes involved in cell cycle progression, DNA biosynthesis, spindle dynamics and cytokinesis. About eight percent of all modulated genes were found to impact extracellular matrix (ECM structure and turnover, especially glycosaminoglycan (GAG and proteoglycan biosynthesis and sulfation. Altogether, the gene expression analyses provide new insight into the consequences of FGFR3 mutations in cell cycle regulation, onset of pre-hypertrophic differentiation and concomitant metabolism changes. Moreover, impaired motility and ECM properties may also provide clues about growth plate disorganization. These

  6. Imprinted genes and the environment: links to the toxic metals arsenic, cadmium, lead and mercury.

    Science.gov (United States)

    Smeester, Lisa; Yosim, Andrew E; Nye, Monica D; Hoyo, Cathrine; Murphy, Susan K; Fry, Rebecca C

    2014-06-11

    Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  7. Testis-Specific Histone Variant H3t Gene Is Essential for Entry into Spermatogenesis

    Directory of Open Access Journals (Sweden)

    Jun Ueda

    2017-01-01

    Full Text Available Cellular differentiation is associated with dynamic chromatin remodeling in establishing a cell-type-specific epigenomic landscape. Here, we find that mouse testis-specific and replication-dependent histone H3 variant H3t is essential for very early stages of spermatogenesis. H3t gene deficiency leads to azoospermia because of the loss of haploid germ cells. When differentiating spermatogonia emerge in normal spermatogenesis, H3t appears and replaces the canonical H3 proteins. Structural and biochemical analyses reveal that H3t-containing nucleosomes are more flexible than the canonical nucleosomes. Thus, by incorporating H3t into the genome during spermatogonial differentiation, male germ cells are able to enter meiosis and beyond.

  8. Altered expression of the TCR signaling related genes CD3 and FcεRIγ in patients with aplastic anemia

    Directory of Open Access Journals (Sweden)

    Li Bo

    2012-03-01

    Full Text Available Abstract Background Aplastic anemia (AA is characterized by pancytopenia and bone marrow hypoplasia, which results from immune-mediated hematopoiesis suppression. Understanding the pathophysiology of the immune system, particularly T cells immunity, has led to improved AA treatment over the past decades. However, primary and secondary failure after immunosuppressive therapy is frequent. Thus, knowledge of the immune mechanisms leading to AA is crucial to fundamentally understand the disease. Findings To elucidate the T cell receptor (TCR signal transduction features in AA, the expression levels of CD3γ, δ, ε and ζ chain and FcεRIγ genes, which are involved in TCR signal transduction, and the negative correlation of the expression levels between the CD3ζ and FcεRIγ genes in T cells from peripheral blood mononuclear cells (PBMCs were analyzed. Real-time RT-PCR using the SYBR Green method was used to detect the expression level of these genes in PBMCs from 18 patients with AA and 14 healthy individuals. The β2microglobulin gene (β2M was used as an endogenous reference. The expression levels of the CD3γ, CD3δ, CD3ε and CD3ζ genes in patients with AA were significantly increased compared to a healthy control group, whereas the FcεRIγ gene expression level was significantly decreased in patients with AA in comparison with the healthy control group. Moreover, the negative correlation of the expression levels between the CD3ζ and FcεRIγ genes was lost. Conclusions To our knowledge, this is the first report of the CD3γ, CD3δ, CD3ε, CD3ζ and FcεRIγ gene expression in patients with AA. The abnormally expressed TCR signaling related genes may relate to T cells dysfunction in AA.

  9. In silico analysis of miRNA-mediated gene regulation in OCA and OA genes.

    Science.gov (United States)

    Kamaraj, Balu; Gopalakrishnan, Chandrasekhar; Purohit, Rituraj

    2014-12-01

    Albinism is an autosomal recessive genetic disorder due to low secretion of melanin. The oculocutaneous albinism (OCA) and ocular albinism (OA) genes are responsible for melanin production and also act as a potential targets for miRNAs. The role of miRNA is to inhibit the protein synthesis partially or completely by binding with the 3'UTR of the mRNA thus regulating gene expression. In this analysis, we predicted the genetic variation that occurred in 3'UTR of the transcript which can be a reason for low melanin production thus causing albinism. The single nucleotide polymorphisms (SNPs) in 3'UTR cause more new binding sites for miRNA which binds with mRNA which leads to inhibit the translation process either partially or completely. The SNPs in the mRNA of OCA and OA genes can create new binding sites for miRNA which may control the gene expression and lead to hypopigmentation. We have developed a computational procedure to determine the SNPs in the 3'UTR region of mRNA of OCA (TYR, OCA2, TYRP1 and SLC45A2) and OA (GPR143) genes which will be a potential cause for albinism. We identified 37 SNPs in five genes that are predicted to create 87 new binding sites on mRNA, which may lead to abrogation of the translation process. Expression analysis confirms that these genes are highly expressed in skin and eye regions. It is well supported by enrichment analysis that these genes are mainly involved in eye pigmentation and melanin biosynthesis process. The network analysis also shows how the genes are interacting and expressing in a complex network. This insight provides clue to wet-lab researches to understand the expression pattern of OCA and OA genes and binding phenomenon of mRNA and miRNA upon mutation, which is responsible for inhibition of translation process at genomic levels.

  10. Mathematical modelling of distribution of genes the damage of which leads to oncologic diseases in human population

    Directory of Open Access Journals (Sweden)

    М. А. Бондаренко

    2016-07-01

    Full Text Available Carcinogenesis is subject of the research. The research aims at creating the mathematical model of carcinogenesis allowing assessing the distribution in human population of the genes which when damaged lead to oncology diseases. The main task is to build a probability mathematical model describing the quasistationary equilibrium of two contrary processes, and namely: 1 the process of reduction in population of the number of the aforesaid genes due to their mutative damage; 2 increase in population of the number of these genes due to the fact that persons with a few genes of the kind in their genotype acquire oncological diseases with higher probability at early stages of their lives and do not manage to reproduce themselves before they die, and so the growth of the total population size is more due to the reproduction of individuals with a high number of the a-genes. Assessment of the distribution of these genes in the population was carried out by determining the probability that a randomly selected individual from the population has one of the possible values (according to the literature, from 0 to 8 of the aforementioned genes.

  11. Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation.

    Directory of Open Access Journals (Sweden)

    Amy V Pointon

    2010-09-01

    Full Text Available Doxorubicin is one of the most effective anti-cancer drugs but its use is limited by cumulative cardiotoxicity that restricts lifetime dose. Redox damage is one of the most accepted mechanisms of toxicity, but not fully substantiated. Moreover doxorubicin is not an efficient redox cycling compound due to its low redox potential. Here we used genomic and chemical systems approaches in vivo to investigate the mechanisms of doxorubicin cardiotoxicity, and specifically test the hypothesis of redox cycling mediated cardiotoxicity.Mice were treated with an acute dose of either doxorubicin (DOX (15 mg/kg or 2,3-dimethoxy-1,4-naphthoquinone (DMNQ (25 mg/kg. DMNQ is a more efficient redox cycling agent than DOX but unlike DOX has limited ability to inhibit gene transcription and DNA replication. This allowed specific testing of the redox hypothesis for cardiotoxicity. An acute dose was used to avoid pathophysiological effects in the genomic analysis. However similar data were obtained with a chronic model, but are not specifically presented. All data are deposited in the Gene Expression Omnibus (GEO. Pathway and biochemical analysis of cardiac global gene transcription and mRNA translation data derived at time points from 5 min after an acute exposure in vivo showed a pronounced effect on electron transport chain activity. This led to loss of ATP, increased AMPK expression, mitochondrial genome amplification and activation of caspase 3. No data gathered with either compound indicated general redox damage, though site specific redox damage in mitochondria cannot be entirely discounted.These data indicate the major mechanism of doxorubicin cardiotoxicity is via damage or inhibition of the electron transport chain and not general redox stress. There is a rapid response at transcriptional and translational level of many of the genes coding for proteins of the electron transport chain complexes. Still though ATP loss occurs with activation caspase 3 and these

  12. 5' Analysis of the soybean leghaemoglobin lbc(3) gene

    DEFF Research Database (Denmark)

    Stougaard, J; Sandal, N N; Grøn, A

    1987-01-01

    The soybean leghaemoglobin lbc(3) gene promoter was analysed in transgenic Lotus corniculatus plants. Hybrid-promoter constructions and 5' deletions were studied using chimeric genes composed of the various promoters, the chloramphenicol acetyltransferase (CAT) coding sequence and the lbc(3) 3...

  13. Lead-oriented synthesis: Investigation of organolithium-mediated routes to 3-D scaffolds and 3-D shape analysis of a virtual lead-like library.

    Science.gov (United States)

    Lüthy, Monique; Wheldon, Mary C; Haji-Cheteh, Chehasnah; Atobe, Masakazu; Bond, Paul S; O'Brien, Peter; Hubbard, Roderick E; Fairlamb, Ian J S

    2015-06-01

    Synthetic routes to six 3-D scaffolds containing piperazine, pyrrolidine and piperidine cores have been developed. The synthetic methodology focused on the use of N-Boc α-lithiation-trapping chemistry. Notably, suitably protected and/or functionalised medicinal chemistry building blocks were synthesised via concise, connective methodology. This represents a rare example of lead-oriented synthesis. A virtual library of 190 compounds was then enumerated from the six scaffolds. Of these, 92 compounds (48%) fit the lead-like criteria of: (i) -1⩽AlogP⩽3; (ii) 14⩽number of heavy atoms⩽26; (iii) total polar surface area⩾50Å(2). The 3-D shapes of the 190 compounds were analysed using a triangular plot of normalised principal moments of inertia (PMI). From this, 46 compounds were identified which had lead-like properties and possessed 3-D shapes in under-represented areas of pharmaceutical space. Thus, the PMI analysis of the 190 member virtual library showed that whilst scaffolds which may appear on paper to be 3-D in shape, only 24% of the compounds actually had 3-D structures in the more interesting areas of 3-D drug space. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. APC loss in breast cancer leads to doxorubicin resistance via STAT3 activation.

    Science.gov (United States)

    VanKlompenberg, Monica K; Leyden, Emily; Arnason, Anne H; Zhang, Jian-Ting; Stefanski, Casey D; Prosperi, Jenifer R

    2017-11-28

    Resistance to chemotherapy is one of the leading causes of death from breast cancer. We recently established that loss of Adenomatous Polyposis Coli (APC) in the Mouse Mammary Tumor Virus - Polyoma middle T (MMTV-PyMT) transgenic mouse model results in resistance to cisplatin or doxorubicin-induced apoptosis. Herein, we aim to establish the mechanism that is responsible for APC-mediated chemotherapeutic resistance. Our data demonstrate that MMTV-PyMT; Apc Min/+ cells have increased signal transducer and activator of transcription 3 (STAT3) activation. STAT3 can be constitutively activated in breast cancer, maintains the tumor initiating cell (TIC) population, and upregulates multidrug resistance protein 1 (MDR1). The activation of STAT3 in the MMTV-PyMT; Apc Min/+ model is independent of interleukin 6 (IL-6); however, enhanced EGFR expression in the MMTV-PyMT; Apc Min/+ cells may be responsible for the increased STAT3 activation. Inhibiting STAT3 with a small molecule inhibitor A69 in combination with doxorubicin, but not cisplatin, restores drug sensitivity. A69 also decreases doxorubicin enhanced MDR1 gene expression and the TIC population enhanced by loss of APC. In summary, these results have revealed the molecular mechanisms of APC loss in breast cancer that can guide future treatment plans to counteract chemotherapeutic resistance.

  15. The phytochemical 3,3'-diindolylmethane decreases expression of AR-controlled DNA damage repair genes through repressive chromatin modifications and is associated with DNA damage in prostate cancer cells.

    Science.gov (United States)

    Palomera-Sanchez, Zoraya; Watson, Gregory W; Wong, Carmen P; Beaver, Laura M; Williams, David E; Dashwood, Roderick H; Ho, Emily

    2017-09-01

    Androgen receptor (AR) is a transcription factor involved in normal prostate physiology and prostate cancer (PCa) development. 3,3'-Diindolylmethane (DIM) is a promising phytochemical agent against PCa that affects AR activity and epigenetic regulators in PCa cells. However, whether DIM suppresses PCa via epigenetic regulation of AR target genes is unknown. We assessed epigenetic regulation of AR target genes in LNCaP PCa cells and showed that DIM treatment led to epigenetic suppression of AR target genes involved in DNA repair (PARP1, MRE11, DNA-PK). Decreased expression of these genes was accompanied by an increase in repressive chromatin marks, loss of AR occupancy and EZH2 recruitment to their regulatory regions. Decreased DNA repair gene expression was associated with an increase in DNA damage (γH2Ax) and up-regulation of genomic repeat elements LINE1 and α-satellite. Our results suggest that DIM suppresses AR-dependent gene transcription through epigenetic modulation, leading to DNA damage and genome instability in PCa cells. Published by Elsevier Inc.

  16. Loss of the homologous recombination gene rad51 leads to Fanconi anemia-like symptoms in zebrafish.

    Science.gov (United States)

    Botthof, Jan Gregor; Bielczyk-Maczyńska, Ewa; Ferreira, Lauren; Cvejic, Ana

    2017-05-30

    RAD51 is an indispensable homologous recombination protein, necessary for strand invasion and crossing over. It has recently been designated as a Fanconi anemia (FA) gene, following the discovery of two patients carrying dominant-negative mutations. FA is a hereditary DNA-repair disorder characterized by various congenital abnormalities, progressive bone marrow failure, and cancer predisposition. In this report, we describe a viable vertebrate model of RAD51 loss. Zebrafish rad51 loss-of-function mutants developed key features of FA, including hypocellular kidney marrow, sensitivity to cross-linking agents, and decreased size. We show that some of these symptoms stem from both decreased proliferation and increased apoptosis of embryonic hematopoietic stem and progenitor cells. Comutation of p53 was able to rescue the hematopoietic defects seen in the single mutants, but led to tumor development. We further demonstrate that prolonged inflammatory stress can exacerbate the hematological impairment, leading to an additional decrease in kidney marrow cell numbers. These findings strengthen the assignment of RAD51 as a Fanconi gene and provide more evidence for the notion that aberrant p53 signaling during embryogenesis leads to the hematological defects seen later in life in FA. Further research on this zebrafish FA model will lead to a deeper understanding of the molecular basis of bone marrow failure in FA and the cellular role of RAD51.

  17. Relationship between Gene Body DNA Methylation and Intragenic H3K9me3 and H3K36me3 Chromatin Marks

    OpenAIRE

    Hahn, Maria A.; Wu, Xiwei; Li, Arthur X.; Hahn, Torsten; Pfeifer, Gerd P.

    2011-01-01

    To elucidate the relationship between intragenic DNA methylation and chromatin marks, we performed epigenetic profiling of chromosome 19 in human bronchial epithelial cells (HBEC) and in the colorectal cancer cell line HCT116 as well as its counterpart with double knockout of DNMT1 and DNMT3B (HCT116-DKO). Analysis of H3K36me3 profiles indicated that this intragenic mark of active genes is associated with two categories of genes: (i) genes with low CpG density and H3K9me3 in the gene body or ...

  18. Lead induces DNA damage and alteration of ALAD and antioxidant genes mRNA expression in construction site workers.

    Science.gov (United States)

    Akram, Zertashia; Riaz, Sadaf; Kayani, Mahmood Akhtar; Jahan, Sarwat; Ahmad, Malik Waqar; Ullah, Muhammad Abaid; Wazir, Hizbullah; Mahjabeen, Ishrat

    2018-01-16

    Oxidative stress and DNA damage are considered as possible mechanisms involved in lead toxicity. To test this hypothesis, DNA damage and expression variations of aminolevulinic acid dehydratase (ALAD), superoxide dismutase 2 (SOD2), and 8-oxoguanine DNA glycosylase 2a (OGG1-2a) genes was studied in a cohort of 100 exposed workers and 100 controls with comet assay and real-time polymerse chain reaction (PCR). Results indicated that increased number of comets was observed in exposed workers versus controls (p gene.

  19. A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro

    Directory of Open Access Journals (Sweden)

    Craig L. Parfett

    2017-06-01

    Full Text Available An emerging vision for toxicity testing in the 21st century foresees in vitro assays assuming the leading role in testing for chemical hazards, including testing for carcinogenicity. Toxicity will be determined by monitoring key steps in functionally validated molecular pathways, using tests designed to reveal chemically-induced perturbations that lead to adverse phenotypic endpoints in cultured human cells. Risk assessments would subsequently be derived from the causal in vitro endpoints and concentration vs. effect data extrapolated to human in vivo concentrations. Much direct experimental evidence now shows that disruption of epigenetic processes by chemicals is a carcinogenic mode of action that leads to altered gene functions playing causal roles in cancer initiation and progression. In assessing chemical safety, it would therefore be advantageous to consider an emerging class of carcinogens, the epigenotoxicants, with the ability to change chromatin and/or DNA marks by direct or indirect effects on the activities of enzymes (writers, erasers/editors, remodelers and readers that convey the epigenetic information. Evidence is reviewed supporting a strategy for in vitro hazard identification of carcinogens that induce toxicity through disturbance of functional epigenetic pathways in human somatic cells, leading to inactivated tumour suppressor genes and carcinogenesis. In the context of human cell transformation models, these in vitro pathway measurements ensure high biological relevance to the apical endpoint of cancer. Four causal mechanisms participating in pathways to persistent epigenetic gene silencing were considered: covalent histone modification, nucleosome remodeling, non-coding RNA interaction and DNA methylation. Within these four interacting mechanisms, 25 epigenetic toxicity pathway components (SET1, MLL1, KDM5, G9A, SUV39H1, SETDB1, EZH2, JMJD3, CBX7, CBX8, BMI, SUZ12, HP1, MPP8, DNMT1, DNMT3A, DNMT3B, TET1, MeCP2, SETDB2, BAZ2

  20. Co-operation of the transcription factor hepatocyte nuclear factor-4 with Sp1 or Sp3 leads to transcriptional activation of the human haem oxygenase-1 gene promoter in a hepatoma cell line.

    Science.gov (United States)

    Takahashi, Shigeru; Matsuura, Naomi; Kurokawa, Takako; Takahashi, Yuji; Miura, Takashi

    2002-11-01

    We reported previously that the 5'-flanking region (nucleotides -1976 to -1655) of the human haem oxygenase-1 ( hHO-1 ) gene enhances hHO-1 promoter activity in human hepatoma HepG2 cells, but not in HeLa cells [Takahashi, Takahashi, Ito, Nagano, Shibahara and Miura (1999) Biochim. Biophys. Acta 1447, 231-235]. To define more precisely the regulatory elements involved, in the present study we have functionally dissected this region and localized the enhancer to a 50 bp fragment (-1793 to -1744). Site-direct mutagenesis analysis revealed that two regions were responsible for this enhancer activity, i.e. a hepatocyte nuclear factor-4 (HNF-4) homologous region and a GC box motif homologous region. Mutation in either region alone moderately decreased enhancer activity. However, mutations in both regions reduced promoter activity to the basal level. Electrophoretic mobility-shift assays demonstrated that the P5-2 fragment (-1793 to -1744) interacted with at least two nuclear factors, i.e. HNF-4 and Sp1/Sp3. Co-transfection experiments using Drosophila SL2 cells revealed that HNF-4 and Sp1/Sp3 synergistically stimulated the enhancer activity of the P5-2 fragment. These results indicate that co-operation of HNF-4 with Sp1 or Sp3 leads to the activation of hHO-1 gene expression in hepatoma cells.

  1. Altered lipid homeostasis in Drosophila InsP3 receptor mutants leads to obesity and hyperphagia

    Directory of Open Access Journals (Sweden)

    Manivannan Subramanian

    2013-05-01

    Obesity is a complex metabolic disorder that often manifests with a strong genetic component in humans. However, the genetic basis for obesity and the accompanying metabolic syndrome is poorly defined. At a metabolic level, obesity arises from an imbalance between the nutritional intake and energy utilization of an organism. Mechanisms that sense the metabolic state of the individual and convey this information to satiety centers help achieve this balance. Mutations in genes that alter or modify such signaling mechanisms are likely to lead to either obese individuals, who in mammals are at high risk for diabetes and cardiovascular disease, or excessively thin individuals with accompanying health problems. Here we show that Drosophila mutants for an intracellular calcium signaling channel, the inositol 1,4,5-trisphosphate receptor (InsP3R store excess triglycerides in their fat bodies and become unnaturally obese on a normal diet. Although excess insulin signaling can rescue obesity in InsP3R mutants to some extent, we show that it is not the only cause of the defect. Through mass spectrometric analysis of lipids we find that homeostasis of storage and membrane lipids are altered in InsP3R mutants. Possibly as a compensatory mechanism, InsP3R mutant adults also feed excessively. Thus, reduced InsP3R function alters lipid metabolism and causes hyperphagia in adults. Together, the metabolic and behavioral changes lead to obesity. Our results implicate altered InsP3 signaling as a previously unknown causative factor for metabolic syndrome in humans. Importantly, our studies also suggest preventive dietary interventions.

  2. MUTATIONS IN THE ARX GENE: CLINICAL, ELECTROENCEPHALOGRAPHIC AND NEUROIMAGING FEATURES IN 3 PATIENTS

    Directory of Open Access Journals (Sweden)

    I. V. Ivanova

    2017-01-01

    Full Text Available The Aristaless-related homeobox (ARX gene is a member of the paired-type homeodomain transcription factor family with critical roles in embryonic development, particularly in the developing brain. Mutations in ARX gene demonstrate striking intra- and interfamilial pleiotropy together with genetic heterogeneity and lead to a broad spectrum of diseases. They give rise to 4 key phenotypic features: a different types of brain malformation, abnormal genitalia, epilepsy and intellectual disability. Authors present 3 clinical cases: a girl with duplication on the short arm of X-chromosome (Xp11.22-p22.33, which include genes ARX and CDKL5; a girl and a boy with a missense mutation in ARX gene that have not been previously described (chrX:25031522C>A, causes the substitution of an amino acid in the 197 protein position (p.Gly197Val, NM_139058.2. All patients suffer from severe epilepsy, that is refractory to antiepileptic drugs, and all of them have different degrees of psychomotor delay. The patients with missense mutation also have movement disorders: stereotypic movements in the girl and choreo athetosis and dystonia in the boy. Electroencephalographic abnormalities have been identified in all patients, and there were not significant abnormalities on magnetic resonance imaging in all cases. The described cases broaden the clinical spectrum of mutations in ARX gene.

  3. Recurrent Gene Duplication Leads to Diverse Repertoires of Centromeric Histones in Drosophila Species.

    Science.gov (United States)

    Kursel, Lisa E; Malik, Harmit S

    2017-06-01

    Despite their essential role in the process of chromosome segregation in most eukaryotes, centromeric histones show remarkable evolutionary lability. Not only have they been lost in multiple insect lineages, but they have also undergone gene duplication in multiple plant lineages. Based on detailed study of a handful of model organisms including Drosophila melanogaster, centromeric histone duplication is considered to be rare in animals. Using a detailed phylogenomic study, we find that Cid, the centromeric histone gene, has undergone at least four independent gene duplications during Drosophila evolution. We find duplicate Cid genes in D. eugracilis (Cid2), in the montium species subgroup (Cid3, Cid4) and in the entire Drosophila subgenus (Cid5). We show that Cid3, Cid4, and Cid5 all localize to centromeres in their respective species. Some Cid duplicates are primarily expressed in the male germline. With rare exceptions, Cid duplicates have been strictly retained after birth, suggesting that they perform nonredundant centromeric functions, independent from the ancestral Cid. Indeed, each duplicate encodes a distinct N-terminal tail, which may provide the basis for distinct protein-protein interactions. Finally, we show some Cid duplicates evolve under positive selection whereas others do not. Taken together, our results support the hypothesis that Drosophila Cid duplicates have subfunctionalized. Thus, these gene duplications provide an unprecedented opportunity to dissect the multiple roles of centromeric histones. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Optimal elastic coupling in form of one mechanical spring to improve energy efficiency of walking bipedal robots

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Fabian; Römer, Ulrich, E-mail: ulrich.roemer@kit.edu; Fidlin, Alexander; Seemann, Wolfgang [Institute of Engineering Mechanics, Karlsruhe Institute of Technology (Germany)

    2016-11-15

    This paper presents a method to optimize the energy efficiency of walking bipedal robots by more than 80 % in a speed range from 0.3 to 2.3 m/s using elastic couplings—mechanical springs with movement speed independent parameters. The considered planar robot consists of a trunk, two two-segmented legs, two actuators in the hip joints, two actuators in the knee joints and an elastic coupling between the shanks. It is modeled as underactuated system to make use of its natural dynamics and feedback controlled via input–output linearization. A numerical optimization of the joint angle trajectories as well as the elastic couplings is performed to minimize the average energy expenditure over the whole speed range. The elastic couplings increase the swing leg motion’s natural frequency thus making smaller steps more efficient which reduce the impact loss at the touchdown of the swing leg. The process of energy turnover is investigated in detail for the robot with and without elastic coupling between the shanks. Furthermore, the influences of the elastic couplings’ topology and of joint friction are analyzed. It is shown that the optimization of the robot’s motion and elastic coupling towards energy efficiency leads to a slightly slower convergence rate of the controller, yet no loss of stability, but a lower sensitivity with respect to disturbances. The optimal elastic coupling discovered via numerical optimization is a linear torsion spring with transmissions between the shanks. A design proposal for this elastic coupling—which does not affect the robot’s trunk and parallel shank motion and can be used to enhance an existing robot—is given for planar as well as spatial robots.

  5. Arabidopsis ATRX Modulates H3.3 Occupancy and Fine-Tunes Gene Expression

    KAUST Repository

    Duc, Céline

    2017-07-07

    Histones are essential components of the nucleosome, the major chromatin subunit that structures linear DNA molecules and regulates access of other proteins to DNA. Specific histone chaperone complexes control the correct deposition of canonical histones and their variants to modulate nucleosome structure and stability. In this study, we characterize the Arabidopsis Alpha Thalassemia-mental Retardation X-linked (ATRX) ortholog and show that ATRX is involved in histone H3 deposition. Arabidopsis ATRX mutant alleles are viable, but show developmental defects and reduced fertility. Their combination with mutants of the histone H3.3 chaperone HIRA (Histone Regulator A) results in impaired plant survival, suggesting that HIRA and ATRX function in complementary histone deposition pathways. Indeed, ATRX loss of function alters cellular histone H3.3 pools and in consequence modulates the H3.1/H3.3 balance in the cell. H3.3 levels are affected especially at genes characterized by elevated H3.3 occupancy, including the 45S ribosomal DNA (45S rDNA) loci, where loss of ATRX results in altered expression of specific 45S rDNA sequence variants. At the genome-wide scale, our data indicate that ATRX modifies gene expression concomitantly to H3.3 deposition at a set of genes characterized both by elevated H3.3 occupancy and high expression. Altogether, our results show that ATRX is involved in H3.3 deposition and emphasize the role of histone chaperones in adjusting genome expression.

  6. Scaling proprioceptor gene transcription by retrograde NT3 signaling.

    Directory of Open Access Journals (Sweden)

    Jun Lee

    Full Text Available Cell-type specific intrinsic programs instruct neuronal subpopulations before target-derived factors influence later neuronal maturation. Retrograde neurotrophin signaling controls neuronal survival and maturation of dorsal root ganglion (DRG sensory neurons, but how these potent signaling pathways intersect with transcriptional programs established at earlier developmental stages remains poorly understood. Here we determine the consequences of genetic alternation of NT3 signaling on genome-wide transcription programs in proprioceptors, an important sensory neuron subpopulation involved in motor reflex behavior. We find that the expression of many proprioceptor-enriched genes is dramatically altered by genetic NT3 elimination, independent of survival-related activities. Combinatorial analysis of gene expression profiles with proprioceptors isolated from mice expressing surplus muscular NT3 identifies an anticorrelated gene set with transcriptional levels scaled in opposite directions. Voluntary running experiments in adult mice further demonstrate the maintenance of transcriptional adjustability of genes expressed by DRG neurons, pointing to life-long gene expression plasticity in sensory neurons.

  7. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    Science.gov (United States)

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Molecular characterization of barley 3H semi-dwarf genes.

    Directory of Open Access Journals (Sweden)

    Haobing Li

    Full Text Available The barley chromosome 3H accommodates many semi-dwarfing genes. To characterize these genes, the two-rowed semi-dwarf Chinese barley landrace 'TX9425' was crossed with the Australian barley variety 'Franklin' to generate a doubled haploid (DH population, and major QTLs controlling plant height have been identified in our previous study. The major QTL derived from 'TX9425' was targeted to investigate the allelism of the semi-dwarf gene uzu in barley. Twelve sets of near-isogenic lines and a large NILF2 fine mapping population segregating only for the dwarfing gene from 'TX9425' were developed. The semi-dwarfing gene in 'TX9425' was located within a 2.8 cM region close to the centromere on chromosome 3H by fine mapping. Molecular cloning and sequence analyses showed that the 'TX9425'-derived allele contained a single nucleotide substitution from A to G at position 2612 of the HvBRI1 gene. This was apparently the same mutation as that reported in six-rowed uzu barley. Markers co-segregating with the QTL were developed from the sequence of the HvBRI1 gene and were validated in the 'TX9425'/'Franklin' DH population. The other major dwarfing QTL derived from the Franklin variety was distally located on chromosome 3HL and co-segregated with the sdw1 diagnostic marker hv20ox2. A third dwarfing gene, expressed only in winter-sown trials, was identified and located on chromosome 3HS. The effects and interactions of these dwarfing genes under different growing conditions are discussed. These results improve our understanding of the genetic mechanisms controlling semi-dwarf stature in barley and provide diagnostic markers for the selection of semi-dwarfness in barley breeding programs.

  9. H3K27me3 and H3K4me3 chromatin environment at super-induced dehydration stress memory genes of Arabidopsis thaliana.

    Science.gov (United States)

    Liu, Ning; Fromm, Michael; Avramova, Zoya

    2014-03-01

    Pre-exposure to a stress may alter the plant's cellular, biochemical, and/or transcriptional responses during future encounters as a 'memory' from the previous stress. Genes increasing transcription in response to a first dehydration stress, but producing much higher transcript levels in a subsequent stress, represent the super-induced 'transcription memory' genes in Arabidopsis thaliana. The chromatin environment (histone H3 tri-methylations of Lys 4 and Lys 27, H3K4me3, and H3K27me3) studied at five dehydration stress memory genes revealed existence of distinct memory-response subclasses that responded differently to CLF deficiency and displayed different transcriptional activities during the watered recovery periods. Among the most important findings is the novel aspect of the H3K27me3 function observed at specific dehydration stress memory genes. In contrast to its well-known role as a chromatin repressive mechanism at developmentally regulated genes, H3K27me3 did not prevent transcription from the dehydration stress-responding genes. The high H3K27me3 levels present during transcriptionally inactive states did not interfere with the transition to active transcription and with H3K4me3 accumulation. H3K4me3 and H3K27me3 marks function independently and are not mutually exclusive at the dehydration stress-responding memory genes.

  10. Deficiency in nucleotide excision repair family gene activity, especially ERCC3, is associated with non-pigmented hair fiber growth.

    Directory of Open Access Journals (Sweden)

    Mei Yu

    Full Text Available We conducted a microarray study to discover gene expression patterns associated with a lack of melanogenesis in non-pigmented hair follicles (HF by microarray. Pigmented and non-pigmented HFs were collected and micro-dissected into the hair bulb (HB and the upper hair sheaths (HS including the bulge region. In comparison to pigmented HS and HBs, nucleotide excision repair (NER family genes ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, XPA, NTPBP, HCNP, DDB2 and POLH exhibited statistically significantly lower expression in non- pigmented HS and HBs. Quantitative PCR verified microarray data and identified ERCC3 as highly differentially expressed. Immunohistochemistry confirmed ERCC3 expression in HF melanocytes. A reduction in ERCC3 by siRNA interference in human melanocytes in vitro reduced their tyrosinase production ability. Our results suggest that loss of NER gene function is associated with a loss of melanin production capacity. This may be due to reduced gene transcription and/or reduced DNA repair in melanocytes which may eventually lead to cell death. These results provide novel information with regard to melanogenesis and its regulation.

  11. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    International Nuclear Information System (INIS)

    Wu, Mingsong; Tu, Tao; Huang, Yunchao; Cao, Yi

    2013-01-01

    To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. The

  12. GAPDH-mediated posttranscriptional regulations of sodium channel Scn1a and Scn3a genes under seizure and ketogenic diet conditions.

    Science.gov (United States)

    Lin, Guo-Wang; Lu, Ping; Zeng, Tao; Tang, Hui-Ling; Chen, Yong-Hong; Liu, Shu-Jing; Gao, Mei-Mei; Zhao, Qi-Hua; Yi, Yong-Hong; Long, Yue-Sheng

    2017-02-01

    Abnormal expressions of sodium channel SCN1A and SCN3A genes alter neural excitability that are believed to contribute to the pathogenesis of epilepsy, a long-term risk of recurrent seizures. Ketogenic diet (KD), a high-fat and low-carbohydrate treatment for difficult-to-control (refractory) epilepsy in children, has been suggested to reverse gene expression patterns. Here, we reveal a novel role of GAPDH on the posttranscriptional regulation of mouse Scn1a and Scn3a expressions under seizure and KD conditions. We show that GAPDH binds to a conserved region in the 3' UTRs of human and mouse SCN1A and SCN3A genes, which decreases and increases genes' expressions by affecting mRNA stability through SCN1A 3' UTR and SCN3A 3' UTR, respectively. In seizure mice, the upregulation and phosphorylation of GAPDH enhance its binding to the 3' UTR, which lead to downregulation of Scn1a and upregulation of Scn3a. Furthermore, administration of KD generates β-hydroxybutyric acid which rescues the abnormal expressions of Scn1a and Scn3a by weakening the GAPDH's binding to the element. Taken together, these data suggest that GAPDH-mediated expression regulation of sodium channel genes may be associated with epilepsy and the anticonvulsant action of KD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Involvement of interleukin-1 in lead nitrate-induced hypercholesterolemia in mice.

    Science.gov (United States)

    Kojima, Misaki; Ashino, Takashi; Yoshida, Takemi; Iwakura, Yoichiro; Degawa, Masakuni

    2012-01-01

    Hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and cholesterol 7α-hydroxylase (Cyp7a1) are rate-limiting enzymes for cholesterol biosynthesis and catabolism, respectively. Involvement of inflammatory cytokines, particularly interleukin-1 (IL-1), in alterations of HMGR and Cyp7a1 gene expression during development of lead nitrate (LN)-induced hypercholesterolemia was examined in IL-1α/β-knockout (IL-1-KO) and wild-type (WT) mice. Lead nitrate treatment of WT mice led to not only a marked downregulation of the Cyp7a1 gene at 6-12 h, but also a significant upregulation of the HMGR gene at 12 h. However, such changes were not observed at significant levels in IL-1-KO mice, although a slight, transient downregulation of the Cyp7a1 gene and a minimal upregulation of the HMGR gene occurred at 6 h and 24 h, respectively. Consequently, LN treatment led to development of hypercholesterolemia at 24 h in WT mice, but not in IL-1-KO mice. Furthermore, in WT mice, significant LN-mediated increases were observed at 3-6 h in hepatic IL-1 levels, which can modulate gene expression of Cyp7a1 and HMGR. These findings indicate that, in mice, LN-mediated increases in hepatic IL-1 levels contribute, at least in part, to altered expressions of Cyp7a1 and HMGR genes, and eventually to hypercholesterolemia development.

  14. Phelan-McDermid syndrome in two adult brothers: atypical bipolar disorder as its psychopathological phenotype?

    Directory of Open Access Journals (Sweden)

    Verhoeven WMA

    2012-04-01

    Full Text Available Willem MA Verhoeven1,2, Jos IM Egger1,3,4, Marjolein H Willemsen5, Gert JM de Leijer6, Tjitske Kleefstra51Vincent van Gogh Institute for Psychiatry, Centre of Excellence for Neuropsychiatry, Venray, 2Erasmus University Medical Centre, Department of Psychiatry, Rotterdam, 3Donders Centre for Cognition, Radboud University Nijmegen, Nijmegen, 4Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, 5Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, 6Dichterbij, Institutes for Intellectual Disabilities, Gennep, The NetherlandsAbstract: The 22q13.3 deletion, or Phelan-McDermid syndrome, is characterized by global intellectual disability, generalized hypotonia, severely delayed or absent speech associated with features of autism spectrum disorder, and minor dysmorphisms. Its behavioral phenotype comprises sleep disturbances, communication deficits, and motor perseverations. Data on psychological dysfunctions are so far not available. Previous studies have suggested that the loss of one copy of the gene SH3 and multiple ankyrin repeat domains 3 (SHANK3 is related to the neurobehavioral phenotype. Additional genes proximal to SHANK3 are also likely to play a role in the phenotype of patients with larger deletions. The present paper describes two adult brothers with an identical 2.15 Mb 22qter (22q13.32q13.33 deletion, of whom the youngest was referred for evaluation of recurrent mood changes. In both patients, magnetic resonance imaging of the brain showed hypoplasia of the vermis cerebelli. Extensive clinical examinations led to a final diagnosis of atypical bipolar disorder, of which symptoms fully remitted during treatment with a mood stabilizer. In the older brother, a similar psychopathological picture appeared to be present, although less severe and with a later onset. It is concluded that the behavioral phenotype of the 22q13.3 deletion syndrome comprises absent or delayed speech and perseverations

  15. A Hybrid CFHR3-1 Gene Causes Familial C3 Glomerulopathy.

    LENUS (Irish Health Repository)

    Malik, Talat H

    2012-07-01

    Controlled activation of the complement system, a key component of innate immunity, enables destruction of pathogens with minimal damage to host tissue. Complement factor H (CFH), which inhibits complement activation, and five CFH-related proteins (CFHR1-5) compose a family of structurally related molecules. Combined deletion of CFHR3 and CFHR1 is common and confers a protective effect in IgA nephropathy. Here, we report an autosomal dominant complement-mediated GN associated with abnormal increases in copy number across the CFHR3 and CFHR1 loci. In addition to normal copies of these genes, affected individuals carry a unique hybrid CFHR3-1 gene. In addition to identifying an association between these genetic observations and complement-mediated kidney disease, these results provide insight into the protective role of the combined deletion of CFHR3 and CFHR1 in IgA nephropathy.

  16. Nutritionally driven differential gene expression leads to heterochronic brain development in honeybee castes.

    Directory of Open Access Journals (Sweden)

    Lívia Maria Moda

    Full Text Available The differential feeding regimes experienced by the queen and worker larvae of the honeybee Apis mellifera shape a complex endocrine response cascade that ultimately gives rise to differences in brain morphologies. Brain development analyzed at the morphological level from the third (L3 through fifth (L5 larval instars revealed an asynchrony between queens and workers. In the feeding phase of the last larval instar (L5F, two well-formed structures, pedunculi and calyces, are identifiable in the mushroom bodies of queens, both of which are not present in workers until a later phase (spinning phase, L5S. Genome-wide expression analyses and normalized transcript expression experiments monitoring specific genes revealed that this differential brain development starts earlier, during L3. Analyzing brains from L3 through L5S1 larvae, we identified 21 genes with caste-specific transcription patterns (e.g., APC-4, GlcAT-P, fax, kr-h1 and shot, which encode proteins that are potentially involved in the development of brain tissues through controlling the cell proliferation rate (APC4, kr-h1 and fasciculation (GlcAT-P, fax, and shot. Shot, whose expression is known to be required for axon extension and cell proliferation, was found to be transcribed at significantly higher levels in L4 queens compared with worker larvae. Moreover, the protein encoded by this gene was immunolocalized to the cytoplasm of cells near the antennal lobe neuropiles and proximal to the Kenyon cells in the brains of L4 queens. In conclusion, during the larval period, the brains of queens are larger and develop more rapidly than workers' brains, which represents a developmental heterochrony reflecting the effect of the differential feeding regime of the two castes on nervous system development. Furthermore, this differential development is characterized by caste-specific transcriptional profiles of a set of genes, thus pointing to a link between differential nutrition and

  17. Nutritionally driven differential gene expression leads to heterochronic brain development in honeybee castes.

    Science.gov (United States)

    Moda, Lívia Maria; Vieira, Joseana; Guimarães Freire, Anna Cláudia; Bonatti, Vanessa; Bomtorin, Ana Durvalina; Barchuk, Angel Roberto; Simões, Zilá Luz Paulino

    2013-01-01

    The differential feeding regimes experienced by the queen and worker larvae of the honeybee Apis mellifera shape a complex endocrine response cascade that ultimately gives rise to differences in brain morphologies. Brain development analyzed at the morphological level from the third (L3) through fifth (L5) larval instars revealed an asynchrony between queens and workers. In the feeding phase of the last larval instar (L5F), two well-formed structures, pedunculi and calyces, are identifiable in the mushroom bodies of queens, both of which are not present in workers until a later phase (spinning phase, L5S). Genome-wide expression analyses and normalized transcript expression experiments monitoring specific genes revealed that this differential brain development starts earlier, during L3. Analyzing brains from L3 through L5S1 larvae, we identified 21 genes with caste-specific transcription patterns (e.g., APC-4, GlcAT-P, fax, kr-h1 and shot), which encode proteins that are potentially involved in the development of brain tissues through controlling the cell proliferation rate (APC4, kr-h1) and fasciculation (GlcAT-P, fax, and shot). Shot, whose expression is known to be required for axon extension and cell proliferation, was found to be transcribed at significantly higher levels in L4 queens compared with worker larvae. Moreover, the protein encoded by this gene was immunolocalized to the cytoplasm of cells near the antennal lobe neuropiles and proximal to the Kenyon cells in the brains of L4 queens. In conclusion, during the larval period, the brains of queens are larger and develop more rapidly than workers' brains, which represents a developmental heterochrony reflecting the effect of the differential feeding regime of the two castes on nervous system development. Furthermore, this differential development is characterized by caste-specific transcriptional profiles of a set of genes, thus pointing to a link between differential nutrition and differential

  18. Association of transforming growth factor-ß3 gene polymorphism ...

    African Journals Online (AJOL)

    Genotyping for the TGF-β3 gene using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and BslI restriction endonuclease showed a mutation in 294-bp fragment located on the fourth intron of chromosome 5. Polymorphism in TGF-β3 gene was significantly (P < 0.1) associated with ...

  19. Depletion of autophagy-related genes ATG3 and ATG5 in Tenebrio molitor leads to decreased survivability against an intracellular pathogen, Listeria monocytogenes.

    Science.gov (United States)

    Tindwa, Hamisi; Jo, Yong Hun; Patnaik, Bharat Bhusan; Noh, Mi Young; Kim, Dong Hyun; Kim, Iksoo; Han, Yeon Soo; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung

    2015-01-01

    Macroautophagy (autophagy) is an evolutionarily conserved catabolic process involved in physiological and developmental processes including cell survival, death, and innate immunity. Homologues of most of 36 originally discovered autophagy-related (ATG) genes in yeast have been characterized in higher eukaryotes including insects. In this study, the homologues of ATG3 (TmATG3) and ATG5 (TmATG5) were isolated from the coleopteran beetle, Tenebrio molitor by expressed sequence tag and RNAseq approaches. The cDNA of TmATG3 and TmATG5 comprise open-reading frame sizes of 963 and 792 bp encoding polypeptides of 320 and 263 amino acid residues, respectively. TmATG3 and TmATG5 mRNA are expressed in all developmental stages, and mainly in fat body and hemocytes of larvae. TmATG3 and TmATG5 showed an overall sequence identity of 58-95% to other insect Atg proteins. There exist clear one-to-one orthologs of TmATG3 and TmATG5 in Tribolium and that they clustered together in the gene tree. Depletion of TmATG3 and TmATG5 by RNA interference led to a significant reduction in survival ability of T. molitor larvae against an intracellular pathogen, Listeria monocytogenes. Six days post-Listeria challenge, the survival rate in the dsEGFP-injected (where EGFP is enhanced green fluorescent protein) control larvae was significantly higher (55%) compared to 4 and 3% for TmATG3 and TmATG5 double-stranded RNA injected larvae, respectively. These data suggested that TmATG3 and TmATG5 may play putative role in mediating autophagy-based clearance of Listeria in T. molitor model. © 2014 Wiley Periodicals, Inc.

  20. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters

    Directory of Open Access Journals (Sweden)

    Tina eNetzker

    2015-04-01

    Full Text Available Microorganisms form diverse multispecies communities in various ecosystems. The high abundance of fungal and bacterial species in these consortia results in specific communication between the microorganisms. A key role in this communication is played by secondary metabolites (SMs, which are also called natural products. Recently, it was shown that interspecies ‘talk’ between microorganisms represents a physiological trigger to activate silent gene clusters leading to the formation of novel SMs by the involved species. This review focuses on mixed microbial cultivation, mainly between bacteria and fungi, with a special emphasis on the induced formation of fungal SMs in co-cultures. In addition, the role of chromatin remodeling in the induction is examined, and methodical perspectives for the analysis of natural products are presented. As an example for an intermicrobial interaction elucidated at the molecular level, we discuss the specific interaction between the filamentous fungi Aspergillus nidulans and Aspergillus fumigatus with the soil bacterium Streptomyces rapamycinicus, which provides an excellent model system to enlighten molecular concepts behind regulatory mechanisms and will pave the way to a novel avenue of drug discovery through targeted activation of silent SM gene clusters through co-cultivations of microorganisms.

  1. bmr3, a third multidrug transporter gene of Bacillus subtilis.

    OpenAIRE

    Ohki, R; Murata, M

    1997-01-01

    A third multidrug transporter gene named bmr3 was cloned from Bacillus subtilis. Although Bmr3 shows relatively low homology to Bmr and Blt, the substrate specificities of these three transporters overlap. Northern hybridization analysis showed that expression of the bmr3 gene was dependent on the growth phase.

  2. Nonsense mutations in the PAX3 gene cause Waardenburg syndrome type I in two Chinese patients.

    Science.gov (United States)

    Yang, Shu-Zhi; Cao, Ju-Yang; Zhang, Rui-Ning; Liu, Li-Xian; Liu, Xin; Zhang, Xin; Kang, Dong-Yang; Li, Mei; Han, Dong-Yi; Yuan, Hui-Jun; Yang, Wei-Yan

    2007-01-05

    Waardenburg syndrome type I (WS1) is an autosomal dominant disorder characterized by sensorineural hearing loss, pigmental abnormalities of the eye, hair and skin, and dystopia canthorum. The gene mainly responsible for WS1 is PAX3 which is involved in melanocytic development and survival. Mutations of PAX3 have been reported in familiar or sporadic patients with WS1 in several populations of the world except Chinese. In order to explore the genetic background of Chinese WS1 patients, a mutation screening of PAX3 gene was carried out in four WS1 pedigrees. A questionnaire survey and comprehensive clinical examination were conducted in four Chinese pedigrees of WS1. Genomic DNA from each patient and their family members was extracted and exons of PAX3 were amplified by PCR. PCR fragments were ethanol-purified and sequenced in both directions on an ABI_Prism 3100 DNA sequencer with the BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sequences were obtained and aligned to the wild type sequence of PAX3 with the GeneTool program. Two nonsense PAX3 mutations have been found in the study population. One is heterozygous for a novel nonsense mutation S209X. The other is heterozygous for a previously reported mutation in European population R223X. Both mutations create stop codons leading to truncation of the PAX3 protein. This is the first demonstration of PAX3 mutations in Chinese WS1 patients and one of the few examples of an identical mutation of PAX3 occurred in different populations.

  3. CMC blade with pressurized internal cavity for erosion control

    Science.gov (United States)

    Garcia-Crespo, Andres; Goike, Jerome Walter

    2016-02-02

    A ceramic matrix composite blade for use in a gas turbine engine having an airfoil with leading and trailing edges and pressure and suction side surfaces, a blade shank secured to the lower end of each airfoil, one or more interior fluid cavities within the airfoil having inlet flow passages at the lower end which are in fluid communication with the blade shank, one or more passageways in the blade shank corresponding to each one of the interior fluid cavities and a fluid pump (or compressor) that provides pressurized fluid (nominally cool, dry air) to each one of the interior fluid cavities in each airfoil. The fluid (e.g., air) is sufficient in pressure and volume to maintain a minimum fluid flow to each of the interior fluid cavities in the event of a breach due to foreign object damage.

  4. Functions, structure, and read-through alternative splicing of feline APOBEC3 genes

    Science.gov (United States)

    Münk, Carsten; Beck, Thomas; Zielonka, Jörg; Hotz-Wagenblatt, Agnes; Chareza, Sarah; Battenberg, Marion; Thielebein, Jens; Cichutek, Klaus; Bravo, Ignacio G; O'Brien, Stephen J; Lochelt, Martin; Yuhki, Naoya

    2008-01-01

    Background Over the past years a variety of host restriction genes have been identified in human and mammals that modulate retrovirus infectivity, replication, assembly, and/or cross-species transmission. Among these host-encoded restriction factors, the APOBEC3 (A3; apolipoprotein B mRNA-editing catalytic polypeptide 3) proteins are potent inhibitors of retroviruses and retrotransposons. While primates encode seven of these genes (A3A to A3H), rodents carry only a single A3 gene. Results Here we identified and characterized several A3 genes in the genome of domestic cat (Felis catus) by analyzing the genomic A3 locus. The cat genome presents one A3H gene and three very similar A3C genes (a-c), probably generated after two consecutive gene duplications. In addition to these four one-domain A3 proteins, a fifth A3, designated A3CH, is expressed by read-through alternative splicing. Specific feline A3 proteins selectively inactivated only defined genera of feline retroviruses: Bet-deficient feline foamy virus was mainly inactivated by feA3Ca, feA3Cb, and feA3Cc, while feA3H and feA3CH were only weakly active. The infectivity of Vif-deficient feline immunodeficiency virus and feline leukemia virus was reduced only by feA3H and feA3CH, but not by any of the feA3Cs. Within Felidae, A3C sequences show significant adaptive selection, but unexpectedly, the A3H sequences present more sites that are under purifying selection. Conclusion Our data support a complex evolutionary history of expansion, divergence, selection and individual extinction of antiviral A3 genes that parallels the early evolution of Placentalia, becoming more intricate in taxa in which the arms race between host and retroviruses is harsher. PMID:18315870

  5. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression.

    Science.gov (United States)

    Zhang, Xun; Gejman, Roger; Mahta, Ali; Zhong, Ying; Rice, Kimberley A; Zhou, Yunli; Cheunsuchon, Pornsuk; Louis, David N; Klibanski, Anne

    2010-03-15

    Meningiomas are common tumors, representing 15% to 25% of all central nervous system tumors. NF2 gene inactivation on chromosome 22 has been shown as an early event in tumorigenesis; however, few factors underlying tumor growth and progression have been identified. The chromosomal abnormalities of 14q32 are often associated with meningioma pathogenesis and progression; therefore, it has been proposed that an as yet unidentified tumor suppressor is present at this locus. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 which encodes a noncoding RNA with an antiproliferative function. We found that MEG3 mRNA is highly expressed in normal arachnoidal cells. However, MEG3 is not expressed in the majority of human meningiomas or the human meningioma cell lines IOMM-Lee and CH157-MN. There is a strong association between loss of MEG3 expression and tumor grade. Allelic loss at the MEG3 locus is also observed in meningiomas, with increasing prevalence in higher grade tumors. In addition, there is an increase in CpG methylation within the promoter and the imprinting control region of MEG3 gene in meningiomas. Functionally, MEG3 suppresses DNA synthesis in both IOMM-Lee and CH157-MN cells by approximately 60% in bromodeoxyuridine incorporation assays. Colony-forming efficiency assays show that MEG3 inhibits colony formation in CH157-MN cells by approximately 80%. Furthermore, MEG3 stimulates p53-mediated transactivation in these cell lines. Therefore, these data are consistent with the hypothesis that MEG3, which encodes a noncoding RNA, may be a tumor suppressor gene at chromosome 14q32 involved in meningioma progression via a novel mechanism.

  6. Structured association analysis leads to insight into Saccharomyces cerevisiae gene regulation by finding multiple contributing eQTL hotspots associated with functional gene modules.

    Science.gov (United States)

    Curtis, Ross E; Kim, Seyoung; Woolford, John L; Xu, Wenjie; Xing, Eric P

    2013-03-21

    Association analysis using genome-wide expression quantitative trait locus (eQTL) data investigates the effect that genetic variation has on cellular pathways and leads to the discovery of candidate regulators. Traditional analysis of eQTL data via pairwise statistical significance tests or linear regression does not leverage the availability of the structural information of the transcriptome, such as presence of gene networks that reveal correlation and potentially regulatory relationships among the study genes. We employ a new eQTL mapping algorithm, GFlasso, which we have previously developed for sparse structured regression, to reanalyze a genome-wide yeast dataset. GFlasso fully takes into account the dependencies among expression traits to suppress false positives and to enhance the signal/noise ratio. Thus, GFlasso leverages the gene-interaction network to discover the pleiotropic effects of genetic loci that perturb the expression level of multiple (rather than individual) genes, which enables us to gain more power in detecting previously neglected signals that are marginally weak but pleiotropically significant. While eQTL hotspots in yeast have been reported previously as genomic regions controlling multiple genes, our analysis reveals additional novel eQTL hotspots and, more interestingly, uncovers groups of multiple contributing eQTL hotspots that affect the expression level of functional gene modules. To our knowledge, our study is the first to report this type of gene regulation stemming from multiple eQTL hotspots. Additionally, we report the results from in-depth bioinformatics analysis for three groups of these eQTL hotspots: ribosome biogenesis, telomere silencing, and retrotransposon biology. We suggest candidate regulators for the functional gene modules that map to each group of hotspots. Not only do we find that many of these candidate regulators contain mutations in the promoter and coding regions of the genes, in the case of the Ribi group

  7. Competitive biosorption of different forms of lead [Pb(NO 3 ) 2 and ...

    African Journals Online (AJOL)

    Spirulina platensis growth parameters [chlorophyll a (chl a) and dry-wet weight] effects on proline content, lead accumulation and the combined effect of the different forms of lead [Pb (NO3)2, Pb (CH3COO)2] and pH (6 to 8) were investigated for 192 h. The accumulation and form of lead were determined to be effective on ...

  8. EcoGene 3.0.

    Science.gov (United States)

    Zhou, Jindan; Rudd, Kenneth E

    2013-01-01

    EcoGene (http://ecogene.org) is a database and website devoted to continuously improving the structural and functional annotation of Escherichia coli K-12, one of the most well understood model organisms, represented by the MG1655(Seq) genome sequence and annotations. Major improvements to EcoGene in the past decade include (i) graphic presentations of genome map features; (ii) ability to design Boolean queries and Venn diagrams from EcoArray, EcoTopics or user-provided GeneSets; (iii) the genome-wide clone and deletion primer design tool, PrimerPairs; (iv) sequence searches using a customized EcoBLAST; (v) a Cross Reference table of synonymous gene and protein identifiers; (vi) proteome-wide indexing with GO terms; (vii) EcoTools access to >2000 complete bacterial genomes in EcoGene-RefSeq; (viii) establishment of a MySql relational database; and (ix) use of web content management systems. The biomedical literature is surveyed daily to provide citation and gene function updates. As of September 2012, the review of 37 397 abstracts and articles led to creation of 98 425 PubMed-Gene links and 5415 PubMed-Topic links. Annotation updates to Genbank U00096 are transmitted from EcoGene to NCBI. Experimental verifications include confirmation of a CTG start codon, pseudogene restoration and quality assurance of the Keio strain collection.

  9. EcoGene 3.0

    Science.gov (United States)

    Zhou, Jindan; Rudd, Kenneth E.

    2013-01-01

    EcoGene (http://ecogene.org) is a database and website devoted to continuously improving the structural and functional annotation of Escherichia coli K-12, one of the most well understood model organisms, represented by the MG1655(Seq) genome sequence and annotations. Major improvements to EcoGene in the past decade include (i) graphic presentations of genome map features; (ii) ability to design Boolean queries and Venn diagrams from EcoArray, EcoTopics or user-provided GeneSets; (iii) the genome-wide clone and deletion primer design tool, PrimerPairs; (iv) sequence searches using a customized EcoBLAST; (v) a Cross Reference table of synonymous gene and protein identifiers; (vi) proteome-wide indexing with GO terms; (vii) EcoTools access to >2000 complete bacterial genomes in EcoGene-RefSeq; (viii) establishment of a MySql relational database; and (ix) use of web content management systems. The biomedical literature is surveyed daily to provide citation and gene function updates. As of September 2012, the review of 37 397 abstracts and articles led to creation of 98 425 PubMed-Gene links and 5415 PubMed-Topic links. Annotation updates to Genbank U00096 are transmitted from EcoGene to NCBI. Experimental verifications include confirmation of a CTG start codon, pseudogene restoration and quality assurance of the Keio strain collection. PMID:23197660

  10. Third-order nonlinearity of Er3+-doped lead phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C. C. [Universidade Federal do Ceara, Ceara, Brazil; Guedes Da Silva, Ilde [ORNL; Siqueira, J. P. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Misoguti, L. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Zilio, S. C. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Boatner, Lynn A [ORNL

    2010-01-01

    The third-order optical susceptibility and dispersion of the linear refractive index of Er3+-doped lead phosphate glass were measured in the wavelength range between 400 and 1940 nm by using the spectrally resolved femtosecond Maker fringes technique. The nonlinear refractive index obtained from the third-order susceptibility was found to be five times higher than that of silica, indicating that Er3+-doped lead phosphate glass is a potential candidate to be used as the base component for the fabrication of photonic devices. For comparison purposes, the Z-scan technique was also employed to obtain the values of the nonlinear refractive index of E-doped lead phosphate glass at several wavelengths, and the values obtained using the two techniques agree to within 15%.

  11. Trichloroethylene-induced gene expression and DNA methylation changes in B6C3F1 mouse liver.

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    Full Text Available Trichloroethylene (TCE, widely used as an organic solvent in the industry, is a common contaminant in air, soil, and water. Chronic TCE exposure induced hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE (0, 100, 500 and 1000 mg/kg b.w. per day for 5 days. After 5 days TCE treatment at a dose level of 1000 mg/kg b.w., a total of 431 differentially expressed genes were identified in mouse liver by microarray, of which 291 were up-regulated and 140 down-regulated. The expression changed genes were involved in key signal pathways including PPAR, proliferation, apoptosis and homologous recombination. Notably, the expression level of a number of vital genes involved in the regulation of DNA methylation, such as Utrf1, Tet2, DNMT1, DNMT3a and DNMT3b, were dysregulated. Although global DNA methylation change was not detected in the liver of mice exposed to TCE, the promoter regions of Cdkn1a and Ihh were found to be hypo- and hypermethylated respectively, which correlated negatively with their mRNA expression changes. Furthermore, the gene expression and DNA methylation changes induced by TCE were dose dependent. The overall data indicate that TCE exposure leads to aberrant DNA methylation changes, which might alter the expression of genes involved in the TCE-induced liver tumorgenesis.

  12. Investigation of PAX3/7-FKHR fusion genes and IGF2 gene expression in rhabdomyosarcoma tumors.

    Science.gov (United States)

    de Souza, Robson Ramos; Oliveira, Indhira Dias; Caran, Eliana Maria Monteiro; Alves, Maria Teresa de Seixas; Abib, Simone; Toledo, Silvia Regina Caminada

    2012-12-01

    The purpose of our study was to investigate the prevalence of the PAX3/7-FKHR fusion genes and quantify the IGF2 gene expression in rhabdomyosarcoma (RMS) samples. Soft tissue sarcomas account 5% of childhood cancers and 50% of them are RMS. Morphological evaluation of pediatric RMS has defined two histological subtypes, embryonal (ERMS) and alveolar (ARMS). Chromosomal analyses have demonstrated two translocations associated with ARMS, resulting in the PAX3/7-FKHR rearrangements. Reverse transcriptase-polymerase chain reaction (RT-PCR) is extremely useful in the diagnosis of ARMS positive for these rearrangements. Additionally, several studies have shown a significant involvement of IGF pathway in the pathogenesis of RMS. The presence of PAX3/7-FKHR gene fusions was studied in 25 RMS samples from patients attending the IOP-GRAACC/UNIFESP and three RMS cell lines by RT-PCR. IGF2 gene expression was quantified by qPCR and related with clinic pathological parameters. Of the 25 samples, nine (36%) were ARMS and 16 (64%) were ERMS. PAX3/7-FKHR gene fusions expression was detected in 56% of ARMS tumor samples. IGF2 overexpression was observed in 80% of samples and could indicate an important role of this pathway in RMS biology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Association of porcine UCP3 gene polymorphisms with fatness traits ...

    African Journals Online (AJOL)

    Administrator

    2011-04-25

    Apr 25, 2011 ... ... for fatness traits in pig. Polymorphism in UCP3 gene may change the function ... NM_214049) and human UCP3 gene DNA sequence (GenBank accession No. NC_000011). ..... Sleep, 29: 645-649. Zhao J, Li H, Kong X, ...

  14. DNA methylation and gene expression of HIF3A

    DEFF Research Database (Denmark)

    Main, Ailsa Maria; Gillberg, Linn; Jacobsen, Anna Louisa

    2016-01-01

    from 48 families, from whom we had SAT and muscle biopsies. DNA methylation of four CpG sites in the HIF3A promoter was analyzed in the blood and SAT by pyrosequencing, and HIF3A gene expression was analyzed in SAT and muscle by qPCR. An index of whole-body insulin sensitivity was estimated from oral...... individuals, and whether HIF3A gene expression in SAT and skeletal muscle biopsies showed associations with BMI and insulin resistance. Furthermore, we aimed to investigate gender specificity and heritability of these traits. METHODS: We studied 137 first-degree relatives of type 2 diabetes (T2D) patients...... glucose tolerance tests. RESULTS: BMI was associated with HIF3A methylation at one CpG site in the blood, and there was a positive association between the blood and SAT methylation levels at a different CpG site within the individuals. The SAT methylation level did not correlate with HIF3A gene expression...

  15. Abscisic acid affects transcription of chloroplast genes via protein phosphatase 2C-dependent activation of nuclear genes: repression by guanosine-3'-5'-bisdiphosphate and activation by sigma factor 5.

    Science.gov (United States)

    Yamburenko, Maria V; Zubo, Yan O; Börner, Thomas

    2015-06-01

    Abscisic acid (ABA) represses the transcriptional activity of chloroplast genes (determined by run-on assays), with the exception of psbD and a few other genes in wild-type Arabidopsis seedlings and mature rosette leaves. Abscisic acid does not influence chloroplast transcription in the mutant lines abi1-1 and abi2-1 with constitutive protein phosphatase 2C (PP2C) activity, suggesting that ABA affects chloroplast gene activity by binding to the pyrabactin resistance (PYR)/PYR1-like or regulatory component of ABA receptor protein family (PYR/PYL/RCAR) and signaling via PP2Cs and sucrose non-fermenting protein-related kinases 2 (SnRK2s). Further we show by quantitative PCR that ABA enhances the transcript levels of RSH2, RSH3, PTF1 and SIG5. RelA/SpoT homolog 2 (RSH2) and RSH3 are known to synthesize guanosine-3'-5'-bisdiphosphate (ppGpp), an inhibitor of the plastid-gene-encoded chloroplast RNA polymerase. We propose, therefore, that ABA leads to an inhibition of chloroplast gene expression via stimulation of ppGpp synthesis. On the other hand, sigma factor 5 (SIG5) and plastid transcription factor 1 (PTF1) are known to be necessary for the transcription of psbD from a specific light- and stress-induced promoter (the blue light responsive promoter, BLRP). We demonstrate that ABA activates the psbD gene by stimulation of transcription initiation at BLRP. Taken together, our data suggest that ABA affects the transcription of chloroplast genes by a PP2C-dependent activation of nuclear genes encoding proteins involved in chloroplast transcription. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  16. Transcripts of the NADH-dehydrogenase subunit 3 gene are differentially edited in Oenothera mitochondria.

    Science.gov (United States)

    Schuster, W; Wissinger, B; Unseld, M; Brennicke, A

    1990-01-01

    A number of cytosines are altered to be recognized as uridines in transcripts of the nad3 locus in mitochondria of the higher plant Oenothera. Such nucleotide modifications can be found at 16 different sites within the nad3 coding region. Most of these alterations in the mRNA sequence change codon identities to specify amino acids better conserved in evolution. Individual cDNA clones differ in their degree of editing at five nucleotide positions, three of which are silent, while two lead to codon alterations specifying different amino acids. None of the cDNA clones analysed is maximally edited at all possible sites, suggesting slow processing or lowered stringency of editing at these nucleotides. Differentially edited transcripts could be editing intermediates or could code for differing polypeptides. Two edited nucleotides in an open reading frame located upstream of nad3 change two amino acids in the deduced polypeptide. Part of the well-conserved ribosomal protein gene rps12 also encoded downstream of nad3 in other plants, is lost in Oenothera mitochondria by recombination events. The functional rps12 protein must be imported from the cytoplasm since the deleted sequences of this gene are not found in the Oenothera mitochondrial genome. The pseudogene sequence is not edited at any nucleotide position. Images Fig. 3. Fig. 4. Fig. 7. PMID:1688531

  17. Hypomethylation of inflammatory genes (COX2, EGR1, and SOCS3) and increased urinary 8-nitroguanine in arsenic-exposed newborns and children

    Energy Technology Data Exchange (ETDEWEB)

    Phookphan, Preeyaphan; Navasumrit, Panida [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok (Thailand); Post-graduate Program in Environmental Toxicology, Chulabhorn Graduate Institute, Laksi, Bangkok (Thailand); Center of Excellence on Environmental Health, Toxicology (EHT), Office of the Higher Education Commission, Ministry of Education (Thailand); Waraprasit, Somchamai; Promvijit, Jeerawan; Chaisatra, Krittinee; Ngaotepprutaram, Thitirat [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok (Thailand); Ruchirawat, Mathuros, E-mail: mathuros@cri.or.th [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok (Thailand); Center of Excellence on Environmental Health, Toxicology (EHT), Office of the Higher Education Commission, Ministry of Education (Thailand)

    2017-02-01

    Early-life exposure to arsenic increases risk of developing a variety of non-malignant and malignant diseases. Arsenic-induced carcinogenesis may be mediated through epigenetic mechanisms and pathways leading to inflammation. Our previous study reported that prenatal arsenic exposure leads to increased mRNA expression of several genes related to inflammation, including COX2, EGR1, and SOCS3. This study aimed to investigate the effects of arsenic exposure on promoter DNA methylation and mRNA expression of these inflammatory genes (COX2, EGR1, and SOCS3), as well as the generation of 8-nitroguanine, which is a mutagenic DNA lesion involved in inflammation-related carcinogenesis. Prenatally arsenic-exposed newborns had promoter hypomethylation of COX2, EGR1, and SOCS3 in cord blood lymphocytes (p < 0.01). A follow-up study in these prenatally arsenic-exposed children showed a significant hypomethylation of these genes in salivary DNA (p < 0.01). In vitro experiments confirmed that arsenite treatment at short-term high doses (10–100 μM) and long-term low doses (0.5–1 μM) in human lymphoblasts (RPMI 1788) caused promoter hypomethylation of these genes, which was in concordance with an increase in their mRNA expression. Additionally, the level of urinary 8-nitroguanine was significantly higher (p < 0.01) in exposed newborns and children, by 1.4- and 1.8-fold, respectively. Arsenic accumulation in toenails was negatively correlated with hypomethylation of these genes and positively correlated with levels of 8-nitroguanine. These results indicated that early-life exposure to arsenic causes hypomethylation of COX2, EGR1, and SOCS3, increases mRNA expression of these genes, and increases 8-nitroguanine formation. These effects may be linked to mechanisms of arsenic-induced inflammation and cancer development later in life. - Highlight: • Early-life arsenic exposure caused promoter hypomethylation of COX2, EGR1 and SOCS3. • Hypomethylation of these genes is

  18. Hypomethylation of inflammatory genes (COX2, EGR1, and SOCS3) and increased urinary 8-nitroguanine in arsenic-exposed newborns and children

    International Nuclear Information System (INIS)

    Phookphan, Preeyaphan; Navasumrit, Panida; Waraprasit, Somchamai; Promvijit, Jeerawan; Chaisatra, Krittinee; Ngaotepprutaram, Thitirat; Ruchirawat, Mathuros

    2017-01-01

    Early-life exposure to arsenic increases risk of developing a variety of non-malignant and malignant diseases. Arsenic-induced carcinogenesis may be mediated through epigenetic mechanisms and pathways leading to inflammation. Our previous study reported that prenatal arsenic exposure leads to increased mRNA expression of several genes related to inflammation, including COX2, EGR1, and SOCS3. This study aimed to investigate the effects of arsenic exposure on promoter DNA methylation and mRNA expression of these inflammatory genes (COX2, EGR1, and SOCS3), as well as the generation of 8-nitroguanine, which is a mutagenic DNA lesion involved in inflammation-related carcinogenesis. Prenatally arsenic-exposed newborns had promoter hypomethylation of COX2, EGR1, and SOCS3 in cord blood lymphocytes (p < 0.01). A follow-up study in these prenatally arsenic-exposed children showed a significant hypomethylation of these genes in salivary DNA (p < 0.01). In vitro experiments confirmed that arsenite treatment at short-term high doses (10–100 μM) and long-term low doses (0.5–1 μM) in human lymphoblasts (RPMI 1788) caused promoter hypomethylation of these genes, which was in concordance with an increase in their mRNA expression. Additionally, the level of urinary 8-nitroguanine was significantly higher (p < 0.01) in exposed newborns and children, by 1.4- and 1.8-fold, respectively. Arsenic accumulation in toenails was negatively correlated with hypomethylation of these genes and positively correlated with levels of 8-nitroguanine. These results indicated that early-life exposure to arsenic causes hypomethylation of COX2, EGR1, and SOCS3, increases mRNA expression of these genes, and increases 8-nitroguanine formation. These effects may be linked to mechanisms of arsenic-induced inflammation and cancer development later in life. - Highlight: • Early-life arsenic exposure caused promoter hypomethylation of COX2, EGR1 and SOCS3. • Hypomethylation of these genes is

  19. DIFFERENTIAL EXPRESSION OF GENES UNDER CONTROL OF THE MATING-TYPE GENES IN THE SECONDARY MYCELIUM OF SCHIZOPHYLLUM-COMMUNE

    NARCIS (Netherlands)

    ASGEIRSDOTTIR, SA; VANWETTER, MA; WESSELS, JGH

    The Schizophyllum commune SC3 gene, which encodes a hydrophobin that coats aerial hyphae, is expressed in both monokaryons and dikaryons. The dikaryons were formed by mating two monokaryons with different MATA and MATB genes, leading to activation of the MATA- and MATB-controlled pathways (MATA-on

  20. The retinoblastoma gene is frequently altered leading to loss of expression in primary breast tumours.

    Science.gov (United States)

    Varley, J M; Armour, J; Swallow, J E; Jeffreys, A J; Ponder, B A; T'Ang, A; Fung, Y K; Brammar, W J; Walker, R A

    1989-06-01

    We have analysed the organisation of the retinoblastoma (RB1) gene in 77 primary breast carcinomas, in metastatic tissue derived from 16 of those primary tumours, and in a variety of benign breast lesions. Expression of RB1 was also assessed in most samples by immunohistochemical detection of the RB1 protein in tissue sections. Structural abnormalities to RB1 were detected in DNA from 15/77 (19%) of primary breast carcinomas examined. Where DNA was available from metastatic tissue derived from such primary tumours, the same aberration could be detected. No alterations were seen in benign breast lesions. 16/56 (29%) of tumours examined for expression by immunohistochemical methods showed a proportion of tumour cells to be completely negative for the RB1 protein. All tumours in which a structural alteration to RB1 was detected had a proportion of negative cells, except for one case where all cells were positive. Several primary tumour samples were identified where there was no detectable structural change to the gene, but there was loss of expression in some tumour cells. The data presented here demonstrate that changes to the RB1 gene leading to loss of expression of both alleles are frequent in primary human breast tumours.

  1. Assessment of human pregnane X receptor involvement in pesticide-mediated activation of CYP3A4 gene.

    Science.gov (United States)

    Matsubara, Tsutomu; Noracharttiyapot, Wachiraporn; Toriyabe, Takayoshi; Yoshinari, Kouichi; Nagata, Kiyoshi; Yamazoe, Yasushi

    2007-05-01

    Assessment of foreign chemical inducibility on CYP3A4 is necessary to optimize drug therapies. The properties of chemicals such as pesticides, however, are not well investigated. In the present study, properties of various pesticides on human CYP3A4 induction have been tested using HepG2-derived cells stably expressing the CYP3A4 promoter/enhancer (3-1-10 cells) and the human pregnane X receptor (hPXR)-small interfering RNA (siRNA) system. Among the examined pesticides, 13 pesticides were observed to activate the CYP3A4 gene. Surprisingly, pyributicarb was found to increase the CYP3A4 reporter activity at 0.1 to 1 microM more strongly than typical CYP3A4 inducer rifampicin. Expression of hPXR-siRNA clearly diminished the pyributicarb-stimulated CYP3A4 reporter activity in 3-1-10 cells and decreased the endogenous CYP3A4 mRNA levels in HepG2 cells. Pyributicarb caused enhancement of CYP3A4-derived reporter activity in mouse livers introduced with hPXR by adenovirus. These results indicate pyributicarb as a potent activator of CYP3A4 gene, suggesting the existence of pesticides leading to CYP3A4 induction in our environment.

  2. Design and characterizations of two novel cellulases through single-gene shuffling of Cel12A (EG3) gene from Trichoderma reseei.

    Science.gov (United States)

    Yenenler, Asli; Sezerman, Osman Ugur

    2016-06-01

    Cellulases have great potential to be widely used for industrial applications. In general, naturally occurring cellulases are not optimized and limited to meet the industrial needs. These limitations lead to demand for novel cellulases with enhanced enzymatic properties. Here, we describe the enzymatic and structural properties of two novel enzymes, EG3_S1 and EG3_S2, obtained through the single-gene shuffling approach of Cel12A(EG3) gene from Trichoderma reseei EG3_S1 and EG3_S2 shuffled enzymes display 59 and 75% identity in protein sequence with respect to native, respectively. Toward 4-MUC, the minimum activity of EG3_S1 was reported as 5.9-fold decrease in native at 35°C, whereas the maximum activity of EG3_S2 was reported as 15.4-fold increase in native activity at 40°C. Also, the diminished enzyme activity of EG3_S1 was reported within range of 0.6- to 0.8-fold of native and within range of 0.5- to 0.7-fold of native toward CMC and Na-CMC, respectively. For EG3_S2 enzyme, the improved enzymatic activities within range of 1.1- to 1.4-fold of native and within range of 1.1- to 1.6-fold of native were reported toward CMC and Na-CMC, respectively. Moreover, we have reported 6.5-fold increase in the kcat/Km ratio of EG3_S2 with respect to native and suggested EG3_S2 enzyme as more efficient catalysis for hydrolysis reactions than its native counterpart. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Bistable expression of virulence genes in salmonella leads to the formation of an antibiotic-tolerant subpopulation.

    Directory of Open Access Journals (Sweden)

    Markus Arnoldini

    2014-08-01

    Full Text Available Phenotypic heterogeneity can confer clonal groups of organisms with new functionality. A paradigmatic example is the bistable expression of virulence genes in Salmonella typhimurium, which leads to phenotypically virulent and phenotypically avirulent subpopulations. The two subpopulations have been shown to divide labor during S. typhimurium infections. Here, we show that heterogeneous virulence gene expression in this organism also promotes survival against exposure to antibiotics through a bet-hedging mechanism. Using microfluidic devices in combination with fluorescence time-lapse microscopy and quantitative image analysis, we analyzed the expression of virulence genes at the single cell level and related it to survival when exposed to antibiotics. We found that, across different types of antibiotics and under concentrations that are clinically relevant, the subpopulation of bacterial cells that express virulence genes shows increased survival after exposure to antibiotics. Intriguingly, there is an interplay between the two consequences of phenotypic heterogeneity. The bet-hedging effect that arises through heterogeneity in virulence gene expression can protect clonal populations against avirulent mutants that exploit and subvert the division of labor within these populations. We conclude that bet-hedging and the division of labor can arise through variation in a single trait and interact with each other. This reveals a new degree of functional complexity of phenotypic heterogeneity. In addition, our results suggest a general principle of how pathogens can evade antibiotics: Expression of virulence factors often entails metabolic costs and the resulting growth retardation could generally increase tolerance against antibiotics and thus compromise treatment.

  4. T-box and homeobox genes from the ctenophore Pleurobrachia pileus: comparison of Brachyury, Tbx2/3 and Tlx in basal metazoans and bilaterians.

    Science.gov (United States)

    Martinelli, Cosimo; Spring, Jürg

    2005-09-12

    Most animals are classified as Bilateria and only four phyla are still extant as outgroups, namely Porifera, Placozoa, Cnidaria and Ctenophora. These non-bilaterians were not considered to have a mesoderm and hence mesoderm-specific genes. However, the T-box gene Brachyury could be isolated from sponges, placozoans and cnidarians. Here, we describe the first Brachyury and a Tbx2/3 homologue from a ctenophore. In addition, analysing T-box and homeobox genes under comparable conditions in all four basal phyla lead to the discovery of novel T-box genes in sponges and cnidarians and a Tlx homeobox gene in the ctenophore Pleurobrachia pileus. The conservation of the T-box and the homeobox genes suggest that distinct subfamilies with different roles in bilaterians were already split in non-bilaterians.

  5. Can Thrifty Gene(s or Predictive Fetal Programming for Thriftiness Lead to Obesity?

    Directory of Open Access Journals (Sweden)

    Ulfat Baig

    2011-01-01

    Full Text Available Obesity and related disorders are thought to have their roots in metabolic “thriftiness” that evolved to combat periodic starvation. The association of low birth weight with obesity in later life caused a shift in the concept from thrifty gene to thrifty phenotype or anticipatory fetal programming. The assumption of thriftiness is implicit in obesity research. We examine here, with the help of a mathematical model, the conditions for evolution of thrifty genes or fetal programming for thriftiness. The model suggests that a thrifty gene cannot exist in a stable polymorphic state in a population. The conditions for evolution of thrifty fetal programming are restricted if the correlation between intrauterine and lifetime conditions is poor. Such a correlation is not observed in natural courses of famine. If there is fetal programming for thriftiness, it could have evolved in anticipation of social factors affecting nutrition that can result in a positive correlation.

  6. Vitamin D3 deficiency increases DNA damage and modify the expression of genes associated with hypertension in normotensive and hypertensive rats

    Directory of Open Access Journals (Sweden)

    Carla Silva Machado

    2015-05-01

    Full Text Available Vitamin D3 is a lipophilic micronutrient obtained from the diet (salmon, sardines, mackerel and cod liver oil or by the conversion of 7-dehydrocholesterol on skin after exposure to UVB radiation. This vitamin participates in several cellular processes, contributes to the maintenance of calcium concentrations, acts on phosphorus absorption, and is also related to the development and progression of chronic diseases. In hypertension, it is known that vitamin D3 act on renin-angiotensin-aldosterone system, regulates the gene expression and can induce or attenuate oxidative DNA damage. Vitamin D3 deficiency is present in 30-50% of human population (Pilz et al., 2009, and has been associated with increase of chromosomal instability and DNA damage (Nair-Shalliker; Armstrong; Fenech, 2012. Since experimental and clinical studies have suggested a relationship between vitamin D3 and blood pressure, the aim of this study was to evaluate whether vitamin D3 deficiency or supplementation lead to an increase or decrease in DNA damage, regulates the expression of genes associated with hypertension and changes the systolic blood pressure. Spontaneously hypertensive rats (SHR, used as a model of human essential hypertension, and their normotensive controls (Wistar Kyoto – WKY were fed a control diet (vitamin D3 at 1.000 UI/kg, a deficient diet (vitamin D3 at 0 UI/kg or a supplemented diet (vitamin D3 at 10.000 UI/kg for 12 weeks. DNA damage was assessed by comet assay in cardiac muscle tissue and blood tissue, following the methodology proposed by Singh et al. (1988 and Tice et al. (2000; gene expression of 84 genes was assessed by RT2ProfilerTM PCR Array in cardiac muscle tissue; and systolic blood pressure was measured weekly by a noninvasive method using tail plethysmography. In SHR and WKY rats, vitamin D3 deficiency increased DNA damage in the blood tissue and did not change the DNA damage in cardiac muscle tissue; vitamin D3 supplementation maintained the

  7. Separate base usages of genes located on the leading and lagging strands in Chlamydia muridarum revealed by the Z curve method

    Directory of Open Access Journals (Sweden)

    Yu Xiu-Juan

    2007-10-01

    Full Text Available Abstract Background The nucleotide compositional asymmetry between the leading and lagging strands in bacterial genomes has been the subject of intensive study in the past few years. It is interesting to mention that almost all bacterial genomes exhibit the same kind of base asymmetry. This work aims to investigate the strand biases in Chlamydia muridarum genome and show the potential of the Z curve method for quantitatively differentiating genes on the leading and lagging strands. Results The occurrence frequencies of bases of protein-coding genes in C. muridarum genome were analyzed by the Z curve method. It was found that genes located on the two strands of replication have distinct base usages in C. muridarum genome. According to their positions in the 9-D space spanned by the variables u1 – u9 of the Z curve method, K-means clustering algorithm can assign about 94% of genes to the correct strands, which is a few percent higher than those correctly classified by K-means based on the RSCU. The base usage and codon usage analyses show that genes on the leading strand have more G than C and more T than A, particularly at the third codon position. For genes on the lagging strand the biases is reverse. The y component of the Z curves for the complete chromosome sequences show that the excess of G over C and T over A are more remarkable in C. muridarum genome than in other bacterial genomes without separating base and/or codon usages. Furthermore, for the genomes of Borrelia burgdorferi, Treponema pallidum, Chlamydia muridarum and Chlamydia trachomatis, in which distinct base and/or codon usages have been observed, closer phylogenetic distance is found compared with other bacterial genomes. Conclusion The nature of the strand biases of base composition in C. muridarum is similar to that in most other bacterial genomes. However, the base composition asymmetry between the leading and lagging strands in C. muridarum is more significant than that in

  8. A gene prenature ovarian failure associated with eyelid malformation maps to chromosomes 3q22-q23

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    Premature ovarian failure and XX gonadal dysgenesis leading to female infertility have been reported in association with an autosomal dominantly inherited malformation of the eyelids: blepharophimosis-ptosis-epicanthus inversus syndrome (BPES; MIM 110100). This association distinguishes BPES type I from BPES type II, in which affected females are fertile and the transmission occurs through both sexes. Recently, a gene responsible for BPES type II has been mapped to chromosome 3q22-q23, and the critical region for the gene location has been reduced to the interval between loci D3S1615 and D3S1316. Hitherto, however, no information regarding the localization of the gene for BPES type I, in which female ovarian failure is associated with eyelid malformation, has been available. We have studied two independent families affected with BPES type I, including a total of 12 affected individuals (6 infertile women) and 6 healthy relatives. The diagnostic criteria for the ophthalmological anomaly included (1) reduced horizontal diameter of palpebral fissures, (2) drooping of the upper eyelids, and (3) an abnormal skinfold running from the lower lids. Telecanthus and a flat nasal bridge were present in most cases. In both families the disease was transmitted only by the male, and no affected woman of childbearing age was fertile. 12 refs., 2 figs., 1 tab.

  9. WAFs lead molting retardation of naupliar stages with down-regulated expression profiles of chitin metabolic pathway and related genes in the copepod Tigriopus japonicus.

    Science.gov (United States)

    Hwang, Dae-Sik; Lee, Min-Chul; Kyung, Do-Hyun; Kim, Hui-Su; Han, Jeonghoon; Kim, Il-Chan; Puthumana, Jayesh; Lee, Jae-Seong

    2017-03-01

    Oil pollution is considered being disastrous to marine organisms and ecosystems. As molting is critical in the developmental process of arthropods in general and copepods, in particular, the impact will be adverse if the target of spilled oil is on molting. Thus, we investigated the harmful effects of water accommodated fractions (WAFs) of crude oil with an emphasis on inhibition of chitin metabolic pathways related genes and developmental retardation in the copepod Tigriopus japonicus. Also, we analysed the ontology and domain of chitin metabolic pathway genes and mRNA expression patterns of developmental stage-specific genes. Further, the developmental retardation followed by transcriptional modulations in nuclear receptor genes (NR) and chitin metabolic pathway-related genes were observed in the WAFs-exposed T. japonicus. As a result, the developmental time was found significantly (P<0.05) delayed in response to 40% WAFs in comparison with that of control. Moreover, the NR gene, HR3 and chitinases (CHT9 and CHT10) were up-regulated in N4-5 stages, while chitin synthase genes (CHS-1, CHS-2-1, and CHS-2-2) down-regulated in response to WAFs. In brief, a high concentration of WAFs repressed nuclear receptor genes but elicited activation of some of the transcription factors at low concentration of WAFs, resulting in suppression of chitin synthesis. Thus, we suggest that WAF can lead molting retardation of naupliar stages in T. japonicus through down-regulations of chitin metabolism. These findings will provide a better understanding of the mode of action of chitin biosynthesis associated with molting mechanism in WAF-exposed T. japonicus. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. MTA3 regulates CGB5 and Snail genes in trophoblast

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States); Miyazaki, Jun [Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Fujita Health University, Toyoake (Japan); Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake (Japan); Nishizawa, Haruki [Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Fujita Health University, Toyoake (Japan); Kurahashi, Hiroki [Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake (Japan); Leach, Richard, E-mail: Richard.Leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group, Grand Rapids, MI 49503 (United States); Wang, Kai, E-mail: Kai.Wang@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States)

    2013-04-19

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed in the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA3

  11. MTA3 regulates CGB5 and Snail genes in trophoblast

    International Nuclear Information System (INIS)

    Chen, Ying; Miyazaki, Jun; Nishizawa, Haruki; Kurahashi, Hiroki; Leach, Richard; Wang, Kai

    2013-01-01

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed in the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA3

  12. The Obesity-Linked Gene Nudt3 Drosophila Homolog Aps Is Associated With Insulin Signaling.

    Science.gov (United States)

    Williams, Michael J; Eriksson, Anders; Shaik, Muksheed; Voisin, Sarah; Yamskova, Olga; Paulsson, Johan; Thombare, Ketan; Fredriksson, Robert; Schiöth, Helgi B

    2015-09-01

    Several genome-wide association studies have linked the Nudix hydrolase family member nucleoside diphosphate-linked moiety X motif 3 (NUDT3) to obesity. However, the manner of NUDT3 involvement in obesity is unknown, and NUDT3 expression, regulation, and signaling in the central nervous system has not been studied. We performed an extensive expression analysis in mice, as well as knocked down the Drosophila NUDT3 homolog Aps in the nervous system, to determine its effect on metabolism. Detailed in situ hybridization studies in the mouse brain revealed abundant Nudt3 mRNA and protein expression throughout the brain, including reward- and feeding-related regions of the hypothalamus and amygdala, whereas Nudt3 mRNA expression was significantly up-regulated in the hypothalamus and brainstem of food-deprived mice. Knocking down Aps in the Drosophila central nervous system, or a subset of median neurosecretory cells, known as the insulin-producing cells (IPCs), induces hyperinsulinemia-like phenotypes, including a decrease in circulating trehalose levels as well as significantly decreasing all carbohydrate levels under starvation conditions. Moreover, lowering Aps IPC expression leads to a decreased ability to recruit these lipids during starvation. Also, loss of neuronal Aps expression caused a starvation susceptibility phenotype while inducing hyperphagia. Finally, the loss of IPC Aps lowered the expression of Akh, Ilp6, and Ilp3, genes known to be inhibited by insulin signaling. These results point toward a role for this gene in the regulation of insulin signaling, which could explain the robust association with obesity in humans.

  13. 2-Methyl-3-buten-2-ol (MBO) synthase expression in Nostoc punctiforme leads to over production of phytols.

    Science.gov (United States)

    Gupta, Dinesh; Ip, Tina; Summers, Michael L; Basu, Chhandak

    2015-01-01

    Phytol is a diterpene alcohol of medicinal importance and it also has potential to be used as biofuel. We found over production of phytol in Nostoc punctiforme by expressing a 2-Methyl-3-buten-2-ol (MBO) synthase gene. MBO synthase catalyzes the conversion of dimethylallyl pyrophosphate (DMAPP) into MBO, a volatile hemiterpene alcohol, in Pinus sabiniana. The result of enhanced phytol production in N. punctiforme, instead of MBO, could be explained by one of the 2 models: either the presence of a native prenyltransferase enzyme with a broad substrate specificity, or appropriation of a MBO synthase metabolic intermediate by a native geranyl diphosphate (GDP) synthase. In this work, an expression vector with an indigenous petE promoter for gene expression in the cyanobacterium N. punctiforme was constructed and MBO synthase gene expression was successfully shown using reverse transcriptase (RT)-PCR and SDS-PAGE. Gas chromatography--mass spectrophotometry (GC-MS) was performed to confirm phytol production from the transgenic N. punctiforme strains. We conclude that the expression of MBO synthase in N. punctiforme leads to overproduction of an economically important compound, phytol. This study provides insights about metabolic channeling of isoprenoids in cyanobacteria and also illustrates the challenges of bioengineering non-native hosts to produce economically important compounds.

  14. Cry3A δ-endotoxin gene mutagenized for enhanced toxicity

    African Journals Online (AJOL)

    Bacillus thuringiensis Cry3A gene was redesigned for high expression in Norwegian spruce and the sequence was slightly modified to allow for simple N- and C- terminal deletions and domain II loop 1 exchange for synthetic oligos. Modified Cry3A toxins from 13 variants of the synthetic gene were expressed in Escherichia ...

  15. Transgenic Cotton Plants Expressing the HaHR3 Gene Conferred Enhanced Resistance to Helicoverpa armigera and Improved Cotton Yield.

    Science.gov (United States)

    Han, Qiang; Wang, Zhenzhen; He, Yunxin; Xiong, Yehui; Lv, Shun; Li, Shupeng; Zhang, Zhigang; Qiu, Dewen; Zeng, Hongmei

    2017-08-30

    RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3 , a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA- HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing ds HaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera . Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls.

  16. Identification and characterisation of the angiotensin converting enzyme-3 (ACE3 gene: a novel mammalian homologue of ACE

    Directory of Open Access Journals (Sweden)

    Phelan Anne

    2007-06-01

    Full Text Available Abstract Background Mammalian angiotensin converting enzyme (ACE plays a key role in blood pressure regulation. Although multiple ACE-like proteins exist in non-mammalian organisms, to date only one other ACE homologue, ACE2, has been identified in mammals. Results Here we report the identification and characterisation of the gene encoding a third homologue of ACE, termed ACE3, in several mammalian genomes. The ACE3 gene is located on the same chromosome downstream of the ACE gene. Multiple sequence alignment and molecular modelling have been employed to characterise the predicted ACE3 protein. In mouse, rat, cow and dog, the predicted protein has mutations in some of the critical residues involved in catalysis, including the catalytic Glu in the HEXXH zinc binding motif which is Gln, and ESTs or reverse-transcription PCR indicate that the gene is expressed. In humans, the predicted ACE3 protein has an intact HEXXH motif, but there are other deletions and insertions in the gene and no ESTs have been identified. Conclusion In the genomes of several mammalian species there is a gene that encodes a novel, single domain ACE-like protein, ACE3. In mouse, rat, cow and dog ACE3, the catalytic Glu is replaced by Gln in the putative zinc binding motif, indicating that in these species ACE3 would lack catalytic activity as a zinc metalloprotease. In humans, no evidence was found that the ACE3 gene is expressed and the presence of deletions and insertions in the sequence indicate that ACE3 is a pseudogene.

  17. Lead induces similar gene expression changes in brains of gestationally exposed adult mice and in neurons differentiated from mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Francisco Javier Sánchez-Martín

    Full Text Available Exposure to environmental toxicants during embryonic life causes changes in the expression of developmental genes that may last for a lifetime and adversely affect the exposed individual. Developmental exposure to lead (Pb, an ubiquitous environmental contaminant, causes deficits in cognitive functions and IQ, behavioral effects, and attention deficit hyperactivity disorder (ADHD. Long-term effects observed after early life exposure to Pb include reduction of gray matter, alteration of myelin structure, and increment of criminal behavior in adults. Despite growing research interest, the molecular mechanisms responsible for the effects of lead in the central nervous system are still largely unknown. To study the molecular changes due to Pb exposure during neurodevelopment, we exposed mice to Pb in utero and examined the expression of neural markers, neurotrophins, transcription factors and glutamate-related genes in hippocampus, cortex, and thalamus at postnatal day 60. We found that hippocampus was the area where gene expression changes due to Pb exposure were more pronounced. To recapitulate gestational Pb exposure in vitro, we differentiated mouse embryonic stem cells (ESC into neurons and treated ESC-derived neurons with Pb for the length of the differentiation process. These neurons expressed the characteristic neuronal markers Tubb3, Syp, Gap43, Hud, Ngn1, Vglut1 (a marker of glutamatergic neurons, and all the glutamate receptor subunits, but not the glial marker Gafp. Importantly, several of the changes observed in Pb-exposed mouse brains in vivo were also observed in Pb-treated ESC-derived neurons, including those affecting expression of Ngn1, Bdnf exon IV, Grin1, Grin2D, Grik5, Gria4, and Grm6. We conclude that our ESC-derived model of toxicant exposure during neural differentiation promises to be a useful model to analyze mechanisms of neurotoxicity induced by Pb and other environmental agents.

  18. Interplay between organic cations and inorganic framework and incommensurability in hybrid lead-halide perovskite CH3NH3PbBr3

    Science.gov (United States)

    Guo, Yinsheng; Yaffe, Omer; Paley, Daniel W.; Beecher, Alexander N.; Hull, Trevor D.; Szpak, Guilherme; Owen, Jonathan S.; Brus, Louis E.; Pimenta, Marcos A.

    2017-09-01

    Organic-inorganic coupling in the hybrid lead-halide perovskite is a central issue in rationalizing the outstanding photovoltaic performance of these emerging materials. Here, we compare and contrast the evolution of the structure and dynamics of hybrid CH3NH3PbBr3 and inorganic CsPbBr3 lead-halide perovskites with temperature, using Raman spectroscopy and single-crystal x-ray diffraction. Results reveal a stark contrast between their order-disorder transitions, which are abrupt for the hybrid whereas smooth for the inorganic perovskite. X-ray diffraction observes an intermediate incommensurate phase between the ordered and the disordered phases in CH3NH3PbBr3 . Low-frequency Raman scattering captures the appearance of a sharp soft mode in the incommensurate phase, ascribed to the theoretically predicted amplitudon mode. Our work highlights the interaction between the structural dynamics of organic cation CH3NH3+ and the lead-halide framework, and unravels the competition between tendencies for the organic and inorganic moieties to minimize energy in the incommensurate phase of the hybrid perovskite structure.

  19. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3.

    Science.gov (United States)

    Han, Mira V; Thomas, Gregg W C; Lugo-Martinez, Jose; Hahn, Matthew W

    2013-08-01

    Current sequencing methods produce large amounts of data, but genome assemblies constructed from these data are often fragmented and incomplete. Incomplete and error-filled assemblies result in many annotation errors, especially in the number of genes present in a genome. This means that methods attempting to estimate rates of gene duplication and loss often will be misled by such errors and that rates of gene family evolution will be consistently overestimated. Here, we present a method that takes these errors into account, allowing one to accurately infer rates of gene gain and loss among genomes even with low assembly and annotation quality. The method is implemented in the newest version of the software package CAFE, along with several other novel features. We demonstrate the accuracy of the method with extensive simulations and reanalyze several previously published data sets. Our results show that errors in genome annotation do lead to higher inferred rates of gene gain and loss but that CAFE 3 sufficiently accounts for these errors to provide accurate estimates of important evolutionary parameters.

  20. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance [version 1; referees: 5 approved

    Directory of Open Access Journals (Sweden)

    Marie-Claude N. Laffitte

    2016-09-01

    Full Text Available Leishmania has a plastic genome, and drug pressure can select for gene copy number variation (CNV. CNVs can apply either to whole chromosomes, leading to aneuploidy, or to specific genomic regions. For the latter, the amplification of chromosomal regions occurs at the level of homologous direct or inverted repeated sequences leading to extrachromosomal circular or linear amplified DNAs. This ability of Leishmania to respond to drug pressure by CNVs has led to the development of genomic screens such as Cos-Seq, which has the potential of expediting the discovery of drug targets for novel promising drug candidates.

  1. The relationship between Prostate CAncer gene 3 (PCA3) and prostate cancer significance

    NARCIS (Netherlands)

    van Poppel, Hein; Haese, Alexander; Graefen, Markus; de la Taille, Alexandre; Irani, Jacques; de Reijke, Theo; Remzi, Mesut; Marberger, Michael

    2012-01-01

    OBJECTIVE To evaluate the relationship between Prostate CAncer gene 3 (PCA3) and prostate cancer significance. PATIENTS AND METHODS Clinical data from two multi-centre European open-label, prospective studies evaluating the clinical utility of the PCA3 assay in guiding initial and repeat biopsy

  2. Association of HS6ST3 gene polymorphisms with obesity and ...

    Indian Academy of Sciences (India)

    The heparan sulfate 6-O-sulfotransferase 3 (HS6ST3) gene is involved in heparan sulphate and heparin metabolism, and has been reported to be associated with diabetic retinopathy in type 2 diabetes. We hypothesized that HS6ST3 gene polymorphisms might play an important role in obesity and related phenotypes (such ...

  3. Arabidopsis ATRX Modulates H3.3 Occupancy and Fine-Tunes Gene Expression

    KAUST Repository

    Duc, Cé line; Benoit, Matthias; Dé tourné , Gwé naë lle; Simon, Lauriane; Poulet, Axel; Jung, Matthieu; Veluchamy, Alaguraj; Latrasse, David; Le Goff, Samuel; Cotterell, Sylviane; Tatout, Christophe; Benhamed, Moussa; Probst, Aline V.

    2017-01-01

    , including the 45S ribosomal DNA (45S rDNA) loci, where loss of ATRX results in altered expression of specific 45S rDNA sequence variants. At the genome-wide scale, our data indicate that ATRX modifies gene expression concomitantly to H3.3 deposition at a set

  4. Texturation of lead-free BaTiO3-based piezoelectric ceramics

    OpenAIRE

    Ngueteu-Kamlo , A; Levassort , F; Pham Thi , M; Marchet , Pascal

    2014-01-01

    International audience; Nowadays, piezoelectric ceramics are integrated in a wide range of devices, in particular in ultrasonic applications (underwater sonar systems, medical imaging, non-destructive testing…). Most of them use Pb(Zr,Ti)O3 (PZT). However, due to health care and environmental problems, lead content must be reduced in such applications [1]. Recent reviews demonstrated that few lead-free materials families can be considered: the alkaline-niobates (K0.5Na0.5NbO3), the alkaline-b...

  5. An experimental study of BIGH3 gene mutations in the patients with corneal dystrophies

    International Nuclear Information System (INIS)

    Jin Tao; Zou Liuhe; Yang Ling

    2004-01-01

    Objective: To evaluate BIGH3 gene mutations in Chinese patents with corneal dystrophies. Methods: 2ml peripheral venous blood was collected from 15 patients with granular corneal dystrophies and 5 normal subjects. Leucocytes DNA was extracted with standard method. With two pairs of oligonucleotide primers, exon 4 and exon 12 of the BIGH3 gene were amplified using the polymerase chain reaction. Amplified DNA fragments were purified and sequenced directly. Results: Mutations in BIGH3 gene were detected in all the patients with corneal dystrophies. BIGH3 gene mutations were not found in normal subjects. 12 patients with Avellino corneal dystrophy had the missense mutation R124H in the BIGH3 gene. 3 patients with granular corneal dystrophy had the missense mutation R555W in the BIGH3 gene. Conclusion: R124H and R555W mutations in BIGH3 gene were also found in the Chinese patients with Avellino and granular corneal dystrophies. In China, Avellino corneal dystrophy associated with the R124H mutation is the most common form in the corneal dystrophies resulted by BIGH3 gene mutions. Condon 124 and 555 are also the hot spots for the mutations in the BIGH3 gene in the Chinese patients with corneal dystrophies. Molecular genetic analysis may be repuired for proper diagnosis and subclassification of corneal dystrophies. (authors)

  6. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Milton, Flora Aparecida [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Cvoro, Aleksandra [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Amato, Angelica A. [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Sieglaff, Douglas H.; Filgueira, Carly S.; Arumanayagam, Anithachristy Sigamani [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Caro Alves de Lima, Maria do; Rocha Pitta, Ivan [Laboratório de Planejamento e Síntese de Fármacos – LPSF, Universidade Federal de Pernambuco (Brazil); Assis Rocha Neves, Francisco de [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Webb, Paul, E-mail: pwebb@HoustonMethodist.org [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States)

    2015-08-28

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation.

  7. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Milton, Flora Aparecida; Cvoro, Aleksandra; Amato, Angelica A.; Sieglaff, Douglas H.; Filgueira, Carly S.; Arumanayagam, Anithachristy Sigamani; Caro Alves de Lima, Maria do; Rocha Pitta, Ivan; Assis Rocha Neves, Francisco de; Webb, Paul

    2015-01-01

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation

  8. [Toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect].

    Science.gov (United States)

    Liao, R Y; Liu, S

    2016-06-20

    To investigate the toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect. The normal human liver cells (L02 cells) and liver cells with CYP3A4 gene defect were exposed to trichloroethylene at different doses (0.0, 0.4, 0.8, 1.6, 3.2, and 6.4 mmol/L). CCK8 assay and RT-qPCR were used to measure cell viability and changes in the expression of apoptosis genes and oncogenes. After being exposed to trichloroethylene at doses of 1.6, 3.2, and 6.4 mmol/L, the liver cells with CYP3A4 gene defect showed significantly higher cell viability than L02 cells (0.91±0.06/0.89±0.05/0.85±0.07 vs 0.80±0.04/0.73±0.06/0.67±0.07, Ptrichloroethylene groups showed significant increases in the expression of the apoptosis genes caspase-3, caspase-8, and caspase-9 (PTrichloroethylene exposure has a less effect on the expression of apoptosis genes and oncogenes in liver cells with CYP3A4 gene defect than in normal human liver cells, suggesting that CYP3A4 gene defect reduces the inductive effect of trichloroethylene on apoptosis genes and oncogenes.

  9. NCKX3 was compensated by calcium transporting genes and bone resorption in a NCKX3 KO mouse model.

    Science.gov (United States)

    Yang, Hyun; Ahn, Changhwan; Shin, Eun-Kyeong; Lee, Ji-Sun; An, Beum-Soo; Jeung, Eui-Bae

    2017-10-15

    Gene knockout is the most powerful tool for determination of gene function or permanent modification of the phenotypic characteristics of an animal. Existing methods for gene disruption are limited by their efficiency, time required for completion and potential for confounding off-target effects. In this study, a rapid single-step approach to knockout of a targeted gene in mice using zinc-finger nucleases (ZFNs) was demonstrated for generation of mutant (knockout; KO) alleles. Specifically, ZFNs to target the sodium/calcium/potassium exchanger3 (NCKX3) gene in C57bl/6j were designed using the concept of this approach. NCKX3 KO mice were generated and the phenotypic characterization and molecular regulation of active calcium transporting genes was assessed when mice were fed different calcium diets during growth. General phenotypes such as body weight and plasma ion level showed no distinct abnormalities. Thus, the potassium/sodium/calcium exchanger of NCKX3 KO mice proceeded normally in this study. As a result, the compensatory molecular regulation of this mechanism was elucidated. Renal TRPV5 mRNA of NCKX3 KO mice increased in both male and female mice. Expression of TRPV6 mRNA was only down-regulated in the duodenum of male KO mice. Renal- and duodenal expression of PTHR and VDR were not changed; however, GR mRNA expression was increased in the kidney of NCKX3 KO mice. Depletion of the NCKX3 gene in a KO mouse model showed loss of bone mineral contents and increased plasma parathyroid hormone, suggesting that NCKX3 may play a role in regulating calcium homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Genes Responsive to Low-Intensity Pulsed Ultrasound in MC3T3-E1 Preosteoblast Cells

    Directory of Open Access Journals (Sweden)

    Yoshiaki Tabuchi

    2013-11-01

    Full Text Available Although low-intensity pulsed ultrasound (LIPUS has been shown to enhance bone fracture healing, the underlying mechanism of LIPUS remains to be fully elucidated. Here, to better understand the molecular mechanism underlying cellular responses to LIPUS, we investigated gene expression profiles in mouse MC3T3-E1 preosteoblast cells exposed to LIPUS using high-density oligonucleotide microarrays and computational gene expression analysis tools. Although treatment of the cells with a single 20-min LIPUS (1.5 MHz, 30 mW/cm2 did not affect the cell growth or alkaline phosphatase activity, the treatment significantly increased the mRNA level of Bglap. Microarray analysis demonstrated that 38 genes were upregulated and 37 genes were downregulated by 1.5-fold or more in the cells at 24-h post-treatment. Ingenuity pathway analysis demonstrated that the gene network U (up contained many upregulated genes that were mainly associated with bone morphology in the category of biological functions of skeletal and muscular system development and function. Moreover, the biological function of the gene network D (down, which contained downregulated genes, was associated with gene expression, the cell cycle and connective tissue development and function. These results should help to further clarify the molecular basis of the mechanisms of the LIPUS response in osteoblast cells.

  11. Epstein-Barr virus-induced gene 3 (EBI3) polymorphisms and expression are associated with susceptibility to pulmonary tuberculosis.

    Science.gov (United States)

    Zheng, Ruijuan; Liu, Haipeng; Song, Peng; Feng, Yonghong; Qin, Lianhua; Huang, Xiaochen; Chen, Jianxia; Yang, Hua; Liu, Zhonghua; Cui, Zhenglin; Hu, Zhongyi; Ge, Baoxue

    2015-07-01

    Tuberculosis (TB) remains a major global health problem and host genetic factors play a critical role in susceptibility and resistance to TB. The aim of this study was to identify novel candidate genes associated with TB susceptibility. We performed a population-based case-control study to genotype 13 tag SNPs spanning Epstein-Barr virus-induced gene 3 (EBI3), colony stimulating factor 2 (CSF2), IL-4, interferon beta 1 (IFNB1), chemokine (C-X-C motif) ligand 14 (CXCL14) and myeloid differentiation primary response gene 88 (Myd88) genes in 435 pulmonary TB patients and 375 health donors from China. We observed that EBI3 gene rs4740 polymorphism was associated with susceptibility to pulmonary tuberculosis (PTB) and the allele G was associated with a protective effect against PTB. Furthermore, EBI3 deficiency led to reduced bacterial burden and histopathological impairment in the lung of mice infected with Mycobacterium bovis BCG. Meanwhile, higher abundance of EBI3 was observed in the granuloma of PTB patients and in the lung tissue of BCG-infected mice. Of note, the expression of EBI3 in macrophages was remarkably induced by mycobacteria infection at both mRNA and protein level. In conclusion, EBI3 gene rs4740 polymorphism is closely associated with susceptibility to PTB and the elevation and enrichment of EBI3 in the lung which at least partially derived from macrophages may contribute to the exacerbation of mycobacterial infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Allelic variants of melanocortin 3 receptor gene (MC3R) and weight loss in obesity

    DEFF Research Database (Denmark)

    L. Santos, José; De la Cruz, Rolando; Holst, Claus

    2011-01-01

    receptor gene (MC3R) have been associated with childhood obesity, higher BMI Z-score and elevated body fat percentage compared to non-carriers. The aim of this study is to assess the association in adults between allelic variants of MC3R with weight loss induced by energy-restricted diets.......The melanocortin system plays an important role in energy homeostasis. Mice genetically deficient in the melanocortin-3 receptor gene have a normal body weight with increased body fat, mild hypophagia compared to wild-type mice. In humans, Thr6Lys and Val81Ile variants of the melanocortin-3...

  13. Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer

    OpenAIRE

    Shen, Hui; Fridley, Brooke L.; Song, Honglin; Lawrenson, Kate; Cunningham, Julie M.; Ramus, Susan J.; Cicek, Mine S.; Tyrer, Jonathan; Stram, Douglas; Larson, Melissa C.; Köbel, Martin; Ziogas, Argyrios; Zheng, Wei; Yang, Hannah P.; Wu, Anna H.

    2013-01-01

    HNF1B is overexpressed in clear cell epithelial ovarian cancer, and we observed epigenetic silencing in serous epithelial ovarian cancer, leading us to hypothesize that variation in this gene differentially associates with epithelial ovarian cancer risk according to histological subtype. Here we comprehensively map variation in HNF1B with respect to epithelial ovarian cancer risk and analyse DNA methylation and expression profiles across histological subtypes. Different single-nucleotide poly...

  14. Leading infrared logarithms and vacuum structure of QCD3

    International Nuclear Information System (INIS)

    Guendelman, E.I.

    1990-01-01

    QCD 3 is a superrenormalizable, massless theory; therefore off-mass-shell infrared divergences appear in the loop expansion. This paper shows how certain infrared divergences can be subtracted by changing the boundary conditions in the functional integral, letting the vector potentials approach non-zero constant values at infinity. Infrared divergences, in the Green's functions, come together with powers of logarithms of the external momenta, and among the infrared divergences we deal with, there are those that give rise to the leading and first subleading logarithms. The authors show how for two-point functions it is possible to sum the leading and first subleading logarithms to all orders. This procedure defines a nonperturbative approximation for QCD 3 . The authors find that in the ultraviolet region these summations are well defined, while in the infrared region, some additional prescription is needed to make sense out of them

  15. Histidine-rich protein 2 (pfhrp2) and pfhrp3 gene deletions in Plasmodium falciparum isolates from select sites in Brazil and Bolivia.

    Science.gov (United States)

    Rachid Viana, Giselle Maria; Akinyi Okoth, Sheila; Silva-Flannery, Luciana; Lima Barbosa, Danielle Regina; Macedo de Oliveira, Alexandre; Goldman, Ira F; Morton, Lindsay C; Huber, Curtis; Anez, Arletta; Dantas Machado, Ricardo Luiz; Aranha Camargo, Luís Marcelo; Costa Negreiros do Valle, Suiane; Marins Póvoa, Marinete; Udhayakumar, Venkatachalam; Barnwell, John W

    2017-01-01

    More than 80% of available malaria rapid diagnostic tests (RDTs) are based on the detection of histidine-rich protein-2 (PfHRP2) for diagnosis of Plasmodium falciparum malaria. Recent studies have shown the genes that code for this protein and its paralog, histidine-rich protein-3 (PfHRP3), are absent in parasites from the Peruvian Amazon Basin. Lack of PfHRP2 protein through deletion of the pfhrp2 gene leads to false-negative RDT results for P. falciparum. We have evaluated the extent of pfhrp2 and pfhrp3 gene deletions in a convenience sample of 198 isolates from six sites in three states across the Brazilian Amazon Basin (Acre, Rondonia and Para) and 25 isolates from two sites in Bolivia collected at different times between 2010 and 2012. Pfhrp2 and pfhrp3 gene and their flanking genes on chromosomes 7 and 13, respectively, were amplified from 198 blood specimens collected in Brazil. In Brazil, the isolates collected in Acre state, located in the western part of the Brazilian Amazon, had the highest percentage of deletions for pfhrp2 25 (31.2%) of 79, while among those collected in Rondonia, the prevalence of pfhrp2 gene deletion was only 3.3% (2 out of 60 patients). In isolates from Para state, all parasites were pfhrp2-positive. In contrast, we detected high proportions of isolates from all 3 states that were pfhrp3-negative ranging from 18.3% (11 out of 60 samples) to 50.9% (30 out of 59 samples). In Bolivia, only one of 25 samples (4%) tested had deleted pfhrp2 gene, while 68% (17 out of 25 samples) were pfhrp3-negative. Among the isolates tested, P. falciparum pfhrp2 gene deletions were present mainly in those from Acre State in the Brazilian Amazon. These results indicate it is important to reconsider the use of PfHRP2-based RDTs in the western region of the Brazilian Amazon and to implement appropriate surveillance systems to monitor pfhrp2 gene deletions in this and other parts of the Amazon region.

  16. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Guoyue, E-mail: yuanguoyue@hotmail.com [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Jia, Jue; Di, Liangliang [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Zhou, Libin [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China); Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Li, Lianxi [Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, 600, Yishan Road, Shanghai 200233 (China); Yang, Ying [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China); Mao, Chaoming [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Chen, Mingdao, E-mail: mingdaochensh@yahoo.com [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CRP increases TNF-{alpha} and IL-6 genes expression in matured 3T3-L1 adipocytes. Black-Right-Pointing-Pointer CRP suppresses adiponectin, leptin and PPAR-{gamma} mRNA levels in matured 3T3-L1 cells. Black-Right-Pointing-Pointer Wortmannin reverses effects of CRP on adiponectin, TNF-{alpha} and leptin mRNA levels. Black-Right-Pointing-Pointer CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-{gamma}) genes expression and raised tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-{alpha} and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-{alpha}, leptin, IL-6 and PPAR-{gamma} genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  17. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Yuan, Guoyue; Jia, Jue; Di, Liangliang; Zhou, Libin; Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang; Li, Lianxi; Yang, Ying; Mao, Chaoming; Chen, Mingdao

    2012-01-01

    Highlights: ► CRP increases TNF-α and IL-6 genes expression in matured 3T3-L1 adipocytes. ► CRP suppresses adiponectin, leptin and PPAR-γ mRNA levels in matured 3T3-L1 cells. ► Wortmannin reverses effects of CRP on adiponectin, TNF-α and leptin mRNA levels. ► CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-γ) genes expression and raised tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-α and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-α, leptin, IL-6 and PPAR-γ genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  18. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis.

    Science.gov (United States)

    Wang, Likai; Zhang, Fan; Rode, Siddharth; Chin, Kevin K; Ko, Eun Esther; Kim, Jonghwan; Iyer, Vishwanath R; Qiao, Hong

    2017-07-17

    Histone acetylation and deacetylation are essential for gene regulation and have been implicated in the regulation of plant hormone responses. Many studies have indicated the role of histone acetylation in ethylene signaling; however, few studies have investigated how ethylene signaling regulates the genomic landscape of chromatin states. Recently, we found that ethylene can specifically elevate histone H3K14 acetylation and the non-canonical histone H3K23 acetylation in etiolated seedlings and the gene activation is positively associated with the elevation of H3K14Ac and H3K23Ac in response to ethylene. To assess the role of H3K9, H3K14, and H3K23 histone modifications in the ethylene response, we examined how ethylene regulates histone acetylation and the transcriptome at global level and in ethylene regulated genes both in wild type (Col-0) and ein2-5 seedlings. Our results revealed that H3K9Ac, H3K14Ac, and H3K23Ac are preferentially enriched around the transcription start sites and are positively correlated with gene expression levels in Col-0 and ein2-5 seedlings both with and without ethylene treatment. In the absence of ethylene, no combinatorial effect of H3K9Ac, H3K14Ac, and H3K23Ac on gene expression was detected. In the presence of ethylene, however, combined enrichment of the three histone acetylation marks was associated with high gene expression levels, and this ethylene-induced change was EIN2 dependent. In addition, we found that ethylene-regulated genes are expressed at medium or high levels, and a group of ethylene regulated genes are marked by either one of H3K9Ac, H3K14Ac or H3K23Ac. In this group of genes, the levels of H3K9Ac were altered by ethylene, but in the absence of ethylene the levels of H3K9Ac and peak breadths are distinguished in up- and down- regulated genes. In the presence of ethylene, the changes in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expressions. Our study reveals that

  19. The effect of the hemochromatosis (HFE) genotype on lead load and iron metabolism among lead smelter workers.

    Science.gov (United States)

    Fan, Guangqin; Du, Guihua; Li, Huijun; Lin, Fen; Sun, Ziyong; Yang, Wei; Feng, Chang; Zhu, Gaochun; Li, Yanshu; Chen, Ying; Jiao, Huan; Zhou, Fankun

    2014-01-01

    Both an excess of toxic lead (Pb) and an essential iron disorder have been implicated in many diseases and public health problems. Iron metabolism genes, such as the hemochromatosis (HFE) gene, have been reported to be modifiers for lead absorption and storage. However, the HFE gene studies among the Asian population with occupationally high lead exposure are lacking. To explore the modifying effects of the HFE genotype (wild-type, H63D variant and C282Y variant) on the Pb load and iron metabolism among Asian Pb-workers with high occupational exposure. Seven hundred and seventy-one employees from a lead smelter manufacturing company were tested to determine their Pb intoxication parameters, iron metabolic indexes and identify the HFE genotype. Descriptive and multivariate analyses were conducted. Forty-five H63D variant carriers and no C282Y variant carrier were found among the 771 subjects. Compared with subjects with the wild-type genotype, H63D variant carriers had higher blood lead levels, even after controlling for factors such as age, sex, marriage, education, smoking and lead exposure levels. Multivariate analyses also showed that the H63D genotype modifies the associations between the blood lead levels and the body iron burden/transferrin. No C282Y variant was found in this Asian population. The H63D genotype modified the association between the lead and iron metabolism such that increased blood lead is associated with a higher body iron content or a lower transferrin in the H63D variant. It is indicated that H63D variant carriers may be a potentially highly vulnerable sub-population if they are exposed to high lead levels occupationally.

  20. Association study between schizophrenia and dopamine D3 receptor gene polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Toshihisa; Takahashi, Makoto; Maeda, Masaya [Niigata Univ. (Japan)] [and others

    1996-07-26

    Crocq et al. reported the existence of an association between schizophrenia and homozygosity of a BalI polymorphism in the first exon of the dopamine D3 receptor (DRD3) gene. In response to this report, further studies were conducted; however, these studies yielded conflicting results. In the present study, we examined 100 unrelated Japanese schizophrenics and 100 normal controls to determine any association between this polymorphism and schizophrenia. Results suggest that neither allele nor genotype frequencies of the DRD3 gene in the schizophrenics as a whole are significantly different from those of the controls. Further, we found no association between any allele or genotype and any clinical subtype based on family history of schizophrenia and age-at-onset. A significantly high frequency of homozygosity of a dopamine D3 receptor gene allele was not observed in the schizophrenics as a whole, or in clinical subtypes. Our results suggest that an association between the dopamine D3 receptor gene and schizophrenia is unlikely to exist. 26 refs., 1 tab.

  1. Structural and functional studies of FKHR-PAX3, a reciprocal fusion gene of the t(2;13 chromosomal translocation in alveolar rhabdomyosarcoma.

    Directory of Open Access Journals (Sweden)

    Qiande Hu

    Full Text Available Alveolar rhabdomyosarcoma (ARMS is an aggressive pediatric cancer of skeletal muscle. More than 70% of ARMS tumors carry balanced t(2;13 chromosomal translocation that leads to the production of two novel fusion genes, PAX3-FKHR and FKHR-PAX3. While the PAX3-FKHR gene has been intensely studied, the reciprocal FKHR-PAX3 gene has rarely been described. We report here the cloning and functional characterization of the FKHR-PAX3 gene as the first step towards a better understanding of its potential impact on ARMS biology. From RH30 ARMS cells, we detected and isolated three versions of FKHR-PAX3 cDNAs whose C-terminal sequences corresponded to PAX3c, PAX3d, and PAX3e isoforms. Unlike the nuclear-specific localization of PAX3-FKHR, the reciprocal FKHR-PAX3 proteins stayed predominantly in the cytoplasm. FKHR-PAX3 potently inhibited myogenesis in both non-transformed myoblast cells and ARMS cells. We showed that FKHR-PAX3 was not a classic oncogene but could act as a facilitator in oncogenic pathways by stabilizing PAX3-FKHR expression, enhancing cell proliferation, clonogenicity, anchorage-independent growth, and matrix adhesion in vitro, and accelerating the onset of tumor formation in xenograft mouse model in vivo. In addition to these pro-oncogenic behaviors, FKHR-PAX3 also negatively affected cell migration and invasion in vitro and lung metastasis in vivo. Taken together, these functional characteristics suggested that FKHR-PAX3 might have a critical role in the early stage of ARMS development.

  2. Potential gene regulatory role for cyclin D3 in muscle cells

    Indian Academy of Sciences (India)

    Using chromatin immunoprecipitation assays, we demonstrated that expression of cyclin D3 in undifferentiated myoblasts altered histone epigenetic marks at promoters of muscle-specific genes like MyoD, Pax7, myogenin and muscle creatine kinase but not non-muscle genes. Cyclin D3 expression also reduced the mRNA ...

  3. Association between shortage of energy supply and nuclear gene mutations leading to carcinomatous transformation.

    Science.gov (United States)

    DU, Jianping

    2016-01-01

    Anaerobic bacteria use glycolysis, an oxygen-independent metabolic pathway, whereas energy metabolism in the evolved eukaryotic cell is performed via oxidative phosphorylation, with all eukaryotic cell activities depending upon high energy consumption. However, in cancer cells evolving from eukaryotic cells, the energy metabolism switches from oxidative phosphorylation to glycolysis. The shortage of energy supply induces cancer cells to acquire specific characteristics. Base pair renewal is the most energy-consuming process in the cell, and shortage of energy supply may lead to errors in this process; the more prominent the shortage in energy supply, the more errors are likely to occur in base pair renewal, resulting in gene mutations and expression of cancer cell characteristics. Thus, shortage of energy supply is associated with carcinomatous transformation.

  4. Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice

    DEFF Research Database (Denmark)

    Xu, T; Bianco, P; Fisher, L W

    1998-01-01

    The resilience and strength of bone is due to the orderly mineralization of a specialized extracellular matrix (ECM) composed of type I collagen (90%) and a host of non-collagenous proteins that are, in general, also found in other tissues. Biglycan (encoded by the gene Bgn) is an ECM proteoglycan...... apparently normal at birth, these mice display a phenotype characterized by a reduced growth rate and decreased bone mass due to the absence of Bgn. To our knowledge, this is the first report in which deficiency of a non-collagenous ECM protein leads to a skeletal phenotype that is marked by low bone mass...... that becomes more obvious with age. These mice may serve as an animal model to study the role of ECM proteins in osteoporosis....

  5. 76 FR 56147 - Certain Steel Nails From the People's Republic of China: Preliminary Results and Preliminary...

    Science.gov (United States)

    2011-09-12

    ... or galvanized finish, a ring, fluted or spiral shank, an actual length of 0.500'' to 8'', inclusive... umbrella head), a smooth or spiral shank, a galvanized finish, an actual length of 1.75'' to 3'', inclusive... methodology if the merchandise is exported from an NME and the information does not permit the calculation of...

  6. 76 FR 23559 - Certain Steel Nails From the United Arab Emirates: Initiation of Antidumping Duty Investigation

    Science.gov (United States)

    2011-04-27

    ... the same methodology as described with respect to DWE. The petitioner also made a circumstance-of-sale... to the nail, having a bright or galvanized finish, a ring, fluted or spiral shank, an actual length... as an umbrella head), a smooth or spiral shank, a galvanized finish, an actual length of 1.75'' to 3...

  7. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters

    Science.gov (United States)

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124

  8. Association between polymorphisms of the IKZF3 gene and systemic lupus erythematosus in a Chinese Han population.

    Directory of Open Access Journals (Sweden)

    Xinze Cai

    Full Text Available OBJECTIVE: It has been reported that IKAROS family of zinc finger 3 (IKZF3-deficient mice spontaneously develop human systemic lupus erythematosus (SLE-like phenotypes and produce anti-dsDNA Ab leading to immune complex-mediated glomerulonephritis. Polymorphism of the IKZF3 gene corresponds with the susceptibility to several immune-related diseases. Our intention was to establish an association between polymorphisms in the IKZF3 gene and SLE in the Chinese Han population. METHODS: The study involved obtaining blood samples for DNA extraction and genotyping the 4 selected single-nucleotide polymorphisms (SNPs in IKZF3, including rs12150079, rs9909593, rs907091, and rs2872507, by performing PCR restriction fragment length polymorphism analysis (PCR-RFLP. A group of 366 SLE patients were compared to 455 healthy controls. RESULTS: A significant decrease in frequencies of the rs907091 CC genotype and C allele appeared in the SLE patients unlike that observed in the controls (p = 0.001 and 0.015, respectively. The frequencies of the rs12150079 genotype and allele were different between the SLE patients and the control individuals, although the significance was only marginal (p = 0.046 and 0.049, respectively. In addition, a significantly low frequency of the GGCG haplotype was observed in the SLE patients, suggesting that it may provide protection against SLE (p = 0.011. CONCLUSION: To the best of our knowledge, this is the first study to demonstrate an important association between polymorphisms in IKZF3 and SLE in the Chinese Han population. A strong association between rs907091 in the IKZF3 gene and SLE was identified.

  9. Detection of cfxA2, cfxA3, and cfxA6 genes in beta-lactamase producing oral anaerobes

    Directory of Open Access Journals (Sweden)

    Buhle BINTA

    2016-04-01

    Full Text Available ABSTRACT Purpose The aim of this study was to identify β-lactamase-producing oral anaerobic bacteria and screen them for the presence of cfxA and BlaTEM genes that are responsible for β-lactamase production and resistance to β-lactam antibiotics. Material and Methods Periodontal pocket debris samples were collected from 48 patients with chronic periodontitis and anaerobically cultured on blood agar plates with and without β-lactam antibiotics. Presumptive β-lactamase-producing isolates were evaluated for definite β-lactamase production using the nitrocefin slide method and identified using the API Rapid 32A system. Antimicrobial susceptibility was performed using disc diffusion and microbroth dilution tests as described by CLSI Methods. Isolates were screened for the presence of the β-lactamase-TEM (BlaTEM and β-lactamase-cfxA genes using Polymerase Chain Reaction (PCR. Amplified PCR products were sequenced and the cfxA gene was characterized using Genbank databases. Results Seventy five percent of patients carried two species of β-lactamase-producing anaerobic bacteria that comprised 9.4% of the total number of cultivable bacteria. Fifty one percent of β-lactamase-producing strains mainly Prevotella, Porphyromonas, and Bacteroides carried the cfxA gene, whereas none of them carried blaTEM. Further characterization of the cfxA gene showed that 76.7% of these strains carried the cfxA2 gene, 14% carried cfxA3, and 9.3% carried cfxA6. The cfxA6 gene was present in three Prevotella spp. and in one Porphyromonas spp. Strains containing cfxA genes (56% were resistant to the β-lactam antibiotics. Conclusion This study indicates that there is a high prevalence of the cfxA gene in β-lactamase-producing anaerobic oral bacteria, which may lead to drug resistance and treatment failure.

  10. Novel germline mutation (Leu512Met) in the thyrotropin receptor gene (TSHR) leading to sporadic non-autoimmune hyperthyroidism.

    Science.gov (United States)

    Roberts, Stephanie A; Moon, Jennifer E; Dauber, Andrew; Smith, Jessica R

    2017-03-01

    Primary nonautoimmune hyperthyroidism is a rare cause of neonatal hyperthyroidism. This results from an activating mutation in the thyrotropin-receptor (TSHR). It can be inherited in an autosomal dominant manner or occur sporadically as a de novo mutation. Affected individuals display a wide phenotype from severe neonatal to mild subclinical hyperthyroidism. We describe a 6-month-old boy with a de novo mutation in the TSHR gene who presented with accelerated growth, enlarging head circumference, tremor and thyrotoxicosis. Genomic DNA from the patient's and parents' peripheral blood leukocytes was extracted. Exons 9 and 10 of the TSHR gene were amplified by PCR and sequenced. Sequencing exon 10 of the TSHR gene revealed a novel heterozygous missense mutation substituting cytosine to adenine at nucleotide position 1534 in the patient's peripheral blood leukocytes. This leads to a substitution of leucine to methionine at amino acid position 512. The mutation was absent in the parents. In silico modeling by PolyPhen-2 and SIFT predicted the mutation to be deleterious. The p.Leu512Met mutation (c.1534C>A) of the TSHR gene has not been previously described in germline or somatic mutations. This case presentation highlights the possibility of mild thyrotoxicosis in affected individuals and contributes to the understanding of sporadic non-autoimmune primary hyperthyroidism.

  11. Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration

    NARCIS (Netherlands)

    Simpson, Claire L.; Lemmens, Robin; Miskiewicz, Katarzyna; Broom, Wendy J.; Hansen, Valerie K.; van Vught, Paul W. J.; Landers, John E.; Sapp, Peter; Van Den Bosch, Ludo; Knight, Joanne; Neale, Benjamin M.; Turner, Martin R.; Veldink, Jan H.; Ophoff, Roel A.; Tripathi, Vineeta B.; Beleza, Ana; Shah, Meera N.; Proitsi, Petroula; Van Hoecke, Annelies; Carmeliet, Peter; Horvitz, H. Robert; Leigh, P. Nigel; Shaw, Christopher E.; van den Berg, Leonard H.; Sham, Pak C.; Powell, John F.; Verstreken, Patrik; Brown, Robert H.; Robberecht, Wim; Al-Chalabi, Ammar

    2009-01-01

    Amyotrophic lateral sclerosis (ALS) is a spontaneous, relentlessly progressive motor neuron disease, usually resulting in death from respiratory failure within 3 years. Variation in the genes SOD1 and TARDBP accounts for a small percentage of cases, and other genes have shown association in both

  12. Leading edge analysis of transcriptomic changes during pseudorabies virus infection.

    Science.gov (United States)

    Fleming, Damarius S; Miller, Laura C

    2016-12-01

    Eight RNA samples taken from the tracheobronchial lymph nodes (TBLN) of pigs that were either infected or non-infected with a feral isolate of porcine pseudorabies virus (PRV) were used to investigate changes in gene expression related to the pathogen. The RNA was processed into fastq files for each library prior to being analyzed using Illumina Digital Gene Expression Tag Profiling sequences (DGETP) which were used as the downstream measure of differential expression. Analyzed tags consisted of 21 base pair sequences taken from time points 1, 3, 6, and 14 days' post infection (dpi) that generated 1,927,547 unique tag sequences. Tag sequences were analyzed for differential transcript expression and gene set enrichment analysis (GSEA) to uncover transcriptomic changes related to PRV pathology progression. In conjunction with the DGETP and GSEA, the study also incorporated use of leading edge analysis to help link the TBLN transcriptome data to clinical progression of PRV at each of the sampled time points. The purpose of this manuscript is to provide useful background on applying the leading edge analysis to GSEA and expression data to help identify genes considered to be of high biological interest. The data in the form of fastq files has been uploaded to the NCBI Gene Expression Omnibus (GEO) (GSE74473) database.

  13. Evaluating the genotoxic effects of workers exposed to lead using micronucleus assay, comet assay and TCR gene mutation test

    International Nuclear Information System (INIS)

    Chen Zhijian; Lou Jianlin; Chen Shijie; Zheng Wei; Wu Wei; Jin Lifen; Deng Hongping; He Jiliang

    2006-01-01

    To evaluate the genotoxic effects of lead (Pb) exposure, 25 workers in a workplace producing storage battery were monitored for three genetic end-points using micronucleus (MN) assay, comet assay and TCR gene mutation test. Twenty-five controls were matched with workers according to age, gender and smoking. The air Pb concentration in the workplace was 1.26 mg/m 3 . All subjects were measured for Pb concentration of blood by atom absorption spectrophotometry. The mean Pb concentration of blood in workers (0.32 mg/l) was significantly higher than that in controls (0.02 mg/l). The results of MN test showed that the mean micronuclei rate (MNR) and mean micronucleated cells rate (MCR) in workers were 9.04 ± 1.51 per mille and 7.76 ± 1.23 per mille , respectively, which were significantly higher than those (2.36 ± 0.42 per mille and 1.92 ± 0.31 per mille ) in controls (P -4 and 1.74 ± 0.17 x 10 -4 , respectively, there was no significant difference between workers and controls (P > 0.05). The results of our study indicated that the genetic damage was detectable in 25 workers occupationally exposed to lead

  14. Poly(3-Hydroxybutyrate) Synthesis Genes in Azotobacter sp. Strain FA8

    OpenAIRE

    Pettinari, M. Julia; Vázquez, Gustavo J.; Silberschmidt, Daniel; Rehm, Bernd; Steinbüchel, Alexander; Méndez, Beatriz S.

    2001-01-01

    Genes responsible for the synthesis of poly(3-hydroxybutyrate) (PHB) in Azotobacter sp. FA8 were cloned and analyzed. A PHB polymerase gene (phbC) was found downstream from genes coding for β-ketothiolase (phbA) and acetoacetyl-coenzyme A reductase (phbB). A PHB synthase mutant was obtained by gene inactivation and used for genetic studies. The phbC gene from this strain was introduced into Ralstonia eutropha PHB-4 (phbC-negative mutant), and the recombinant accumulated PHB when either glucos...

  15. Single gene microdeletions and microduplication of 3p26.3 in three unrelated families

    DEFF Research Database (Denmark)

    Kashevarova, Anna A; Nazarenko, Lyudmila P; Schultz-Pedersen, Soren

    2014-01-01

    contain several protein-coding genes and regulatory elements, complicating the understanding of genotype-phenotype correlations. We report two siblings with ID and an unrelated patient with atypical autism who had 3p26.3 microdeletions and one intellectually disabled patient with a 3p26.3 microduplication...

  16. Virus-Induced Silencing of Key Genes Leads to Differential Impact on Withanolide Biosynthesis in the Medicinal Plant, Withania somnifera.

    Science.gov (United States)

    Agarwal, Aditya Vikram; Singh, Deeksha; Dhar, Yogeshwar Vikram; Michael, Rahul; Gupta, Parul; Chandra, Deepak; Trivedi, Prabodh Kumar

    2018-02-01

    Withanolides are a collection of naturally occurring, pharmacologically active, secondary metabolites synthesized in the medicinally important plant, Withania somnifera. These bioactive molecules are C28-steroidal lactone triterpenoids and their synthesis is proposed to take place via the mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways through the sterol pathway using 24-methylene cholesterol as substrate flux. Although the phytochemical profiles as well as pharmaceutical activities of Withania extracts have been well studied, limited genomic information and difficult genetic transformation have been a major bottleneck towards understanding the participation of specific genes in withanolide biosynthesis. In this study, we used the Tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) approach to study the participation of key genes from MVA, MEP and triterpenoid biosynthesis for their involvement in withanolide biosynthesis. TRV-infected W. somnifera plants displayed unique phenotypic characteristics and differential accumulation of total Chl as well as carotenoid content for each silenced gene suggesting a reduction in overall isoprenoid synthesis. Comprehensive expression analysis of putative genes of withanolide biosynthesis revealed transcriptional modulations conferring the presence of complex regulatory mechanisms leading to withanolide biosynthesis. In addition, silencing of genes exhibited modulated total and specific withanolide accumulation at different levels as compared with control plants. Comparative analysis also suggests a major role for the MVA pathway as compared with the MEP pathway in providing substrate flux for withanolide biosynthesis. These results demonstrate that transcriptional regulation of selected Withania genes of the triterpenoid biosynthetic pathway critically affects withanolide biosynthesis, providing new horizons to explore this process further, in planta.

  17. Effect of gene transfer of Chlorella vulgaris n-3 fatty acid desaturase ...

    African Journals Online (AJOL)

    Chlorella vulgaris had the gene of n-3 fatty acid desaturase (CvFad3) which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs) or to convert n-6 to n-3 PUFAs. The objective of this study was to examine whether the CvFad3 gene from C. vulgaris can be functionally expressed in mammalian cells and ...

  18. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types

    Science.gov (United States)

    Lin, Chen-Ching; Zhao, Junfei; Jia, Peilin; Li, Wen-Hsiung; Zhao, Zhongming

    2015-01-01

    Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics. PMID:26352260

  19. An obesity-associated gut microbiome reprograms the intestinal epigenome and leads to altered colonic gene expression.

    Science.gov (United States)

    Qin, Yufeng; Roberts, John D; Grimm, Sara A; Lih, Fred B; Deterding, Leesa J; Li, Ruifang; Chrysovergis, Kaliopi; Wade, Paul A

    2018-01-23

    The gut microbiome, a key constituent of the colonic environment, has been implicated as an important modulator of human health. The eukaryotic epigenome is postulated to respond to environmental stimuli through alterations in chromatin features and, ultimately, gene expression. How the host mediates epigenomic responses to gut microbiota is an emerging area of interest. Here, we profile the gut microbiome and chromatin characteristics in colon epithelium from mice fed either an obesogenic or control diet, followed by an analysis of the resultant changes in gene expression. The obesogenic diet shapes the microbiome prior to the development of obesity, leading to altered bacterial metabolite production which predisposes the host to obesity. This microbiota-diet interaction leads to changes in histone modification at active enhancers that are enriched for binding sites for signal responsive transcription factors. These alterations of histone methylation and acetylation are associated with signaling pathways integral to the development of colon cancer. The transplantation of obesogenic diet-conditioned microbiota into germ free mice, combined with an obesogenic diet, recapitulates the features of the long-term diet regimen. The diet/microbiome-dependent changes are reflected in both the composition of the recipient animals' microbiome as well as in the set of transcription factor motifs identified at diet-influenced enhancers. These findings suggest that the gut microbiome, under specific dietary exposures, stimulates a reprogramming of the enhancer landscape in the colon, with downstream effects on transcription factors. These chromatin changes may be associated with those seen during colon cancer development.

  20. 1,25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype.

    Science.gov (United States)

    Széles, Lajos; Keresztes, Gábor; Töröcsik, Dániel; Balajthy, Zoltán; Krenács, László; Póliska, Szilárd; Steinmeyer, Andreas; Zuegel, Ulrich; Pruenster, Monika; Rot, Antal; Nagy, László

    2009-02-15

    Activation of vitamin D receptor (VDR) by 1,25-dihydroxyvitamin D(3) (1,25-vitD) reprograms dendritic cells (DC) to become tolerogenic. Previous studies suggested that 1,25-vitD could inhibit the changes brought about by differentiation and maturation of DCs. Underpinning the described phenotypic and functional alterations, there must be 1,25-vitD-coordinated transcriptional events. However, this transcriptional program has not been systematically investigated, particularly not in a developmental context. Hence, it has not been explored how 1,25-vitD-regulated genes, particularly the ones bringing about the tolerogenic phenotype, are connected to differentiation. We conducted global gene expression analysis followed by comprehensive quantitative PCR validation to clarify the interrelationship between 1,25-vitD and differentiation-driven gene expression patterns in developing human monocyte-derived and blood myeloid DCs. In this study we show that 1,25-vitD regulates a large set of genes that are not affected by differentiation. Interestingly, several genes, impacted both by the ligand and by differentiation, appear to be regulated by 1,25-vitD independently of the developmental context. We have also characterized the kinetics of generation of 1,25-vitD by using three early and robustly regulated genes, the chemokine CCL22, the inhibitory receptors CD300LF and CYP24A1. We found that monocyte-derived DCs are able to turn on 1,25-vitD sensitive genes in early phases of differentiation if the precursor is present. Our data collectively suggest that exogenous or endogenously generated 1,25-vitD regulates a large set of its targets autonomously and not via inhibition of differentiation and maturation, leading to the previously characterized tolerogenic state.

  1. Silencing of flavanone-3-hydroxylase in apple (Malus × domestica Borkh.) leads to accumulation of flavanones, but not to reduced fire blight susceptibility.

    Science.gov (United States)

    Flachowsky, Henryk; Halbwirth, Heidi; Treutter, Dieter; Richter, Klaus; Hanke, Magda-Viola; Szankowski, Iris; Gosch, Christian; Stich, Karl; Fischer, Thilo C

    2012-02-01

    Transgenic antisense flavanone-3-hydroxylase apple plants were produced to mimic the effect of the agrochemical prohexadione-Ca on apple leaves. This enzyme inhibitor for 2-oxoglutarate dependent dioxygenases is used as a growth retardant and for control of secondary fire blight of leaves. Like using the agent, silencing of flavanone-3-hydroxylase leads to an accumulation of flavanones in leaves, but in contrast not to the formation of 3-deoxyflavonoids. In prohexadione-Ca treated leaves the 3-deoxyflavonoid luteoforol is formed from accumulating flavanones, acting as an antimicrobial compound against the fire blight pathogen Erwinia amylovora. Seemingly, the silencing of just one of the 2-oxoglutarate dependent dioxygenases (in apple also flavonol synthase and anthocyanidin synthase take part downstream in the pathway) does not provide a sufficiently high ratio of flavanones to dihydroflavonols. This seems to be needed to let the dihydroflavonol-4-reductase/flavanone-4-reductase enzyme reduce flavanones to luteoforol, and to let this be reduced by the leucoanthocyanidin-4-reductase/3-deoxyleucoanthocyanidin-4-reductase, each acting with their respective weak secondary activities. Accordingly, also the intended inducible resistance to fire blight by prohexadione-Ca is not observed with the antisense flavanone-3-hydroxylase apple plants. On the other hand, for most transgenic lines with strong flavanone-4-reductase down-regulation, up-regulation of gene expression for the other flavonoid genes was found. This provides further evidence for the feedback regulation of flavonoid gene expression having been previously reported for the prohexadione-Ca inhibited apple plants. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  2. Mutation of the S and 3c genes in genomes of feline coronaviruses.

    Science.gov (United States)

    Oguma, Keisuke; Ohno, Megumi; Yoshida, Mayuko; Sentsui, Hiroshi

    2018-05-17

    Feline coronavirus (FCoV) is classified into two biotypes based on its pathogenicity in cats: a feline enteric coronavirus of low pathogenicity and a highly virulent feline infectious peritonitis virus. It has been suspected that FCoV alters its biotype via mutations in the viral genome. The S and 3c genes of FCoV have been considered the candidates for viral pathogenicity conversion. In the present study, FCoVs were analyzed for the frequency and location of mutations in the S and 3c genes from faecal samples of cats in an animal shelter and the faeces, effusions, and tissues of cats that were referred to veterinary hospitals. Our results indicated that approximately 95% FCoVs in faeces did not carry mutations in the two genes. However, 80% FCoVs in effusion samples exhibited mutations in the S and 3c genes with remainder displaying a mutation in the S or 3c gene. It was also suggested that mutational analysis of the 3c gene could be useful for studying the horizontal transmission of FCoVs in multi-cat environments.

  3. The effect of the hemochromatosis (HFE genotype on lead load and iron metabolism among lead smelter workers.

    Directory of Open Access Journals (Sweden)

    Guangqin Fan

    Full Text Available Both an excess of toxic lead (Pb and an essential iron disorder have been implicated in many diseases and public health problems. Iron metabolism genes, such as the hemochromatosis (HFE gene, have been reported to be modifiers for lead absorption and storage. However, the HFE gene studies among the Asian population with occupationally high lead exposure are lacking.To explore the modifying effects of the HFE genotype (wild-type, H63D variant and C282Y variant on the Pb load and iron metabolism among Asian Pb-workers with high occupational exposure.Seven hundred and seventy-one employees from a lead smelter manufacturing company were tested to determine their Pb intoxication parameters, iron metabolic indexes and identify the HFE genotype. Descriptive and multivariate analyses were conducted.Forty-five H63D variant carriers and no C282Y variant carrier were found among the 771 subjects. Compared with subjects with the wild-type genotype, H63D variant carriers had higher blood lead levels, even after controlling for factors such as age, sex, marriage, education, smoking and lead exposure levels. Multivariate analyses also showed that the H63D genotype modifies the associations between the blood lead levels and the body iron burden/transferrin.No C282Y variant was found in this Asian population. The H63D genotype modified the association between the lead and iron metabolism such that increased blood lead is associated with a higher body iron content or a lower transferrin in the H63D variant. It is indicated that H63D variant carriers may be a potentially highly vulnerable sub-population if they are exposed to high lead levels occupationally.

  4. Maternally Expressed Gene 3, an imprinted non-coding RNA gene, is associated with meningioma pathogenesis and progression

    Science.gov (United States)

    Zhang, Xun; Gejman, Roger; Mahta, Ali; Zhong, Ying; Rice, Kimberley A.; Zhou, Yunli; Cheunsuchon, Pornsuk; Louis, David N.; Klibanski, Anne

    2010-01-01

    Meningiomas are common tumors, representing 15-25% of all central nervous system tumors. NF2 gene inactivation on chromosome 22 has been shown as an early event in tumorigenesis; however, few factors underlying tumor growth and progression have been identified. Chromosomal abnormalities of 14q32 are often associated with meningioma pathogenesis and progression; therefore it has been proposed that an as yet unidentified tumor suppressor is present at this locus. MEG3 is an imprinted gene located at 14q32 that encodes a non-coding RNA with an anti-proliferative function. We found that MEG3 mRNA is highly expressed in normal arachnoidal cells. However, MEG3 is not expressed in the majority of human meningiomas or the human meningioma cell lines IOMM-Lee and CH157-MN. There is a strong association between loss of MEG3 expression and tumor grade. Allelic loss at the MEG3 locus is also observed in meningiomas, with increasing prevalence in higher grade tumors. In addition, there is an increase in CpG methylation within the promoter and the imprinting control region of MEG3 gene in meningiomas. Functionally, MEG3 suppresses DNA synthesis in both IOMM-Lee and CH157-MN cells by approximately 60% in BrdU incorporation assays. Colony-forming efficiency assays show that MEG3 inhibits colony formation in CH157-MN cells by approximately 80%. Furthermore, MEG3 stimulates p53-mediated transactivation in these cell lines. Therefore, these data are consistent with the hypothesis that MEG3, which encodes a non-coding RNA, may be a tumor suppressor gene at chromosome 14q32 involved in meningioma progression via a novel mechanism. PMID:20179190

  5. Doping with lead of single crystals of solid solutions of Sbsub(1,5)Bisub(0,5)Tlsub(3)-Bisub(2)Sesub(3)

    International Nuclear Information System (INIS)

    Abrikosov, N.Kh.; Ivanova, L.D.; Polikarpova, N.V.; Galechyan, M.G.

    1984-01-01

    By the Czochralski method with liquid phase additional feeding single crystals of solid solutions of the Sbsub(1.5)Bisub(0.5)Tesub(3)-Bisub(2)Sesub(3) system with 0, 10 and 15 mol.% of Bi 2 Se 3 content doped with lead up to 1.37 at/cm 3 are grown. Lead content in crystals and alloys is determined by the atom-abmethod using the scale of standard solutions. It has been found that the effective coefficient of lead distribution in investigated solutions is approximately 0.5. It is shown that lead addition leads to increase of electric conductivity and heat conductivity and decrease of thermoelectric coeffcient at the expense of current carriers concentration growth, the lead in crystals of solid solutions of the Sbsub(1.5)Bisub(0.5)Tesub(3)-Bisub(2)Sesub(3) system being a single charge acceptor

  6. Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer

    DEFF Research Database (Denmark)

    Shen, Hui; Fridley, Brooke L; Song, Honglin

    2013-01-01

    HNF1B is overexpressed in clear cell epithelial ovarian cancer, and we observed epigenetic silencing in serous epithelial ovarian cancer, leading us to hypothesize that variation in this gene differentially associates with epithelial ovarian cancer risk according to histological subtype. Here we...... comprehensively map variation in HNF1B with respect to epithelial ovarian cancer risk and analyse DNA methylation and expression profiles across histological subtypes. Different single-nucleotide polymorphisms associate with invasive serous (rs7405776 odds ratio (OR)=1.13, P=3.1 × 10(-10)) and clear cell (rs......11651755 OR=0.77, P=1.6 × 10(-8)) epithelial ovarian cancer. Risk alleles for the serous subtype associate with higher HNF1B-promoter methylation in these tumours. Unmethylated, expressed HNF1B, primarily present in clear cell tumours, coincides with a CpG island methylator phenotype affecting numerous...

  7. Effect of sequential surface irrigations on field-scale emissions of 1,3-dichloropropene.

    Science.gov (United States)

    Yates, S R; Knuteson, J; Ernst, F F; Zheng, W; Wang, Q

    2008-12-01

    A field experiment was conducted to measure subsurface movement and volatilization of 1,3-dichloropropene (1,3-D) after shank injection to an agricultural soil. The goal of this study was to evaluate the effect of sprinkler irrigation on the emissions of 1,3-D to the atmosphere and is based on recent research that has shown that saturating the soil pore space reduces gas-phase diffusion and leads to reduced volatilization rates. Aerodynamic, integrated horizontal flux, and theoretical profile shape methods were used to estimate fumigant volatilization rates and total emission losses. These methods provide estimates of the volatilization rate based on measurements of wind speed, temperature, and 1,3-D concentration in the atmosphere. The volatilization rate was measured continuously for 16 days, and the daily peak volatilization rates for the three methods ranged from 18 to 60 microg m(-2) s(-1). The total 13-D mass entering the atmosphere was approximately 44-68 kg ha(-1), or 10-15% of the applied active ingredient This represents approximately 30-50% reduction in the total emission losses compared to conventional fumigant applications in field and field-plot studies. Significant reduction in volatilization of 1,3-D was observed when five surface irrigations were applied to the field, one immediately after fumigation followed by daily irrigations.

  8. Association of HS6ST3 gene polymorphisms with obesity and triglycerides: gene x gender interaction.

    Science.gov (United States)

    Wang, Ke-Sheng; Wang, Liang; Liu, Xuefeng; Zeng, Min

    2013-12-01

    The heparan sulfate 6-O-sulfotransferase 3 (HS6ST3) gene is involved in heparan sulphate and heparin metabolism, and has been reported to be associated with diabetic retinopathy in type 2 diabetes.We hypothesized that HS6ST3 gene polymorphisms might play an important role in obesity and related phenotypes (such as triglycerides). We examined genetic associations of 117 single-nucleotide polymorphisms (SNPs) within the HS6ST3 gene with obesity and triglycerides using two Caucasian samples: the Marshfield sample (1442 obesity cases and 2122 controls), and the Health aging and body composition (Health ABC) sample (305 cases and 1336 controls). Logistic regression analysis of obesity as a binary trait and linear regression analysis of triglycerides as a continuous trait, adjusted for age and sex, were performed using PLINK. Single marker analysis showed that six SNPs in the Marshfield sample and one SNP in the Health ABC sample were associated with obesity (P triglycerides in the Marshfield sample (P triglycerides in the Marshfield sample. These findings contribute new insights into the pathogenesis of obesity and triglycerides and demonstrate the importance of gender differences in the aetiology.

  9. Haplotypes in the APOA1-C3-A4-A5 gene cluster affect plasma lipids in both humans and baboons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian-fei; Liu, Xin; O' Connell, Jeff; Peng, Ze; Krauss, Ronald M.; Rainwater, David L.; VandeBerg, John L.; Rubin, Edward M.; Cheng, Jan-Fang; Pennacchio, Len A.

    2003-09-15

    Genetic studies in non-human primates serve as a potential strategy for identifying genomic intervals where polymorphisms impact upon human disease-related phenotypes. It remains unclear, however, whether independently arising polymorphisms in orthologous regions of non-human primates leads to similar variation in a quantitative trait found in both species. To explore this paradigm, we studied a baboon apolipoprotein gene cluster (APOA1/C3/A4/A5) for which the human gene orthologs have well established roles in influencing plasma HDL-cholesterol and triglyceride concentrations. Our extensive polymorphism analysis of this 68 kb gene cluster in 96 pedigreed baboons identified several haplotype blocks each with limited diversity, consistent with haplotype findings in humans. To determine whether baboons, like humans, also have particular haplotypes associated with lipid phenotypes, we genotyped 634 well characterized baboons using 16 haplotype tagging SNPs. Genetic analysis of single SNPs, as well as haplotypes, revealed an association of APOA5 and APOC3 variants with HDL cholesterol and triglyceride concentrations, respectively. Thus, independent variation in orthologous genomic intervals does associate with similar quantitative lipid traits in both species, supporting the possibility of uncovering human QTL genes in a highly controlled non-human primate model.

  10. HvCKX2 gene silencing by biolistic or Agrobacterium-mediated transformation in barley leads to different phenotypes.

    Science.gov (United States)

    Zalewski, Wojciech; Orczyk, Wacław; Gasparis, Sebastian; Nadolska-Orczyk, Anna

    2012-11-07

    CKX genes encode cytokinin dehydrogenase enzymes (CKX), which metabolize cytokinins in plants and influence developmental processes. The genes are expressed in different tissues and organs during development; however, their exact role in barley is poorly understood. It has already been proven that RNA interference (RNAi)-based silencing of HvCKX1 decreased the CKX level, especially in those organs which showed the highest expression, i.e. developing kernels and roots, leading to higher plant productivity and higher mass of the roots [1]. The same type of RNAi construct was applied to silence HvCKX2 and analyze the function of the gene. Two cultivars of barley were transformed with the same silencing and selection cassettes by two different methods: biolistic and via Agrobacterium. The mean Agrobacterium-mediated transformation efficiency of Golden Promise was 3.47% (±2.82). The transcript level of HvCKX2 in segregating progeny of T(1) lines was decreased to 34%. The reduction of the transcript in Agrobacterium-derived plants resulted in decreased CKX activity in the developing and developed leaves as well as in 7 DAP (days after pollination) spikes. The final phenotypic effect was increased productivity of T(0) plants and T(1) lines. Higher productivity was the result of the higher number of seeds and higher grain yield. It was also correlated with the higher 1000 grain weight, increased (by 7.5%) height of the plants and higher (from 0.5 to 2) numbers of spikes. The transformation efficiency of Golden Promise after biolistic transformation was more than twice as low compared to Agrobacterium. The transcript level in segregating progeny of T(1) lines was decreased to 24%. Otherwise, the enzyme activity found in the leaves of the lines after biolistic transformation, especially in cv. Golden Promise, was very high, exceeding the relative level of the control lines. These unbalanced ratios of the transcript level and the activity of the CKX enzyme negatively

  11. ZCURVE 3.0: identify prokaryotic genes with higher accuracy as well as automatically and accurately select essential genes

    Science.gov (United States)

    Hua, Zhi-Gang; Lin, Yan; Yuan, Ya-Zhou; Yang, De-Chang; Wei, Wen; Guo, Feng-Biao

    2015-01-01

    In 2003, we developed an ab initio program, ZCURVE 1.0, to find genes in bacterial and archaeal genomes. In this work, we present the updated version (i.e. ZCURVE 3.0). Using 422 prokaryotic genomes, the average accuracy was 93.7% with the updated version, compared with 88.7% with the original version. Such results also demonstrate that ZCURVE 3.0 is comparable with Glimmer 3.02 and may provide complementary predictions to it. In fact, the joint application of the two programs generated better results by correctly finding more annotated genes while also containing fewer false-positive predictions. As the exclusive function, ZCURVE 3.0 contains one post-processing program that can identify essential genes with high accuracy (generally >90%). We hope ZCURVE 3.0 will receive wide use with the web-based running mode. The updated ZCURVE can be freely accessed from http://cefg.uestc.edu.cn/zcurve/ or http://tubic.tju.edu.cn/zcurveb/ without any restrictions. PMID:25977299

  12. Two potential hookworm DAF-16 target genes, SNR-3 and LPP-1: gene structure, expression profile, and implications of a cis-regulatory element in the regulation of gene expression.

    Science.gov (United States)

    Gao, Xin; Goggin, Kevin; Dowling, Camille; Qian, Jason; Hawdon, John M

    2015-01-08

    Hookworms infect nearly 700 million people, causing anemia and developmental stunting in heavy infections. Little is known about the genomic structure or gene regulation in hookworms, although recent publication of draft genome assemblies has allowed the first investigations of these topics to be undertaken. The transcription factor DAF-16 mediates multiple developmental pathways in the free living nematode Caenorhabditis elegans, and is involved in the recovery from the developmentally arrested L3 in hookworms. Identification of downstream targets of DAF-16 will provide a better understanding of the molecular mechanism of hookworm infection. Genomic Fragment 2.23 containing a DAF-16 binding element (DBE) was used to identify overlapping complementary expressed sequence tags (ESTs). These sequences were used to search a draft assembly of the Ancylostoma caninum genome, and identified two neighboring genes, snr-3 and lpp-1, in a tail-to-tail orientation. Expression patterns of both genes during parasitic development were determined by qRT-PCR. DAF-16 dependent cis-regulatory activity of fragment 2.23 was investigated using an in vitro reporter system. The snr-3 gene spans approximately 5.6 kb in the genome and contains 3 exons and 2 introns, and contains the DBE in its 3' untranslated region. Downstream from snr-3 in a tail-to-tail arrangement is the gene lpp-1. The lpp-1 gene spans more than 6 kb and contains 10 exons and 9 introns. The A. caninum genome contains 2 apparent splice variants, but there are 7 splice variants in the A. ceylanicum genome. While the gene order is similar, the gene structures of the hookworm genes differ from their C. elegans orthologs. Both genes show peak expression in the late L4 stage. Using a cell culture based expression system, fragment 2.23 was found to have both DAF-16-dependent promoter and enhancer activity that required an intact DBE. Two putative DAF-16 targets were identified by genome wide screening for DAF-16 binding

  13. Association and expression analyses of the Ucp2 and Ucp3 gene ...

    Indian Academy of Sciences (India)

    YANING WANG

    gest a broader hypothesis for further research into the role of Ucp2 and Ucp3 genes, ... Materials and methods ... CT method. Qualitative trait loci (QTL) pyramiding analysis ... type of the Ucp3 gene exhibited better performance in the aspect of ...

  14. Ultrasonic Transducer Fabricated Using Lead-Free BFO-BTO+Mn Piezoelectric 1-3 Composite

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2015-05-01

    Full Text Available Mn-doped 0.7BiFeO3-0.3BaTiO3 (BFO-0.3BTO+Mn 1% mol lead-free piezoelectric ceramic were fabricated by traditional solid state reaction. The phase structure, microstructure, and ferroelectric properties were investigated. Additionally, lead-free 1–3 composites with 60% volume fraction of BFO-BTO+Mn ceramic were fabricated for ultrasonic transducer applications by a conventional dice-and-fill method. The BFO-BTO+Mn 1-3 composite has a higher electromechanical coupling coefficient (kt = 46.4% and lower acoustic impedance (Za ~ 18 MRayls compared with that of the ceramic. Based on this, lead-free piezoelectric ceramic composite, single element ultrasonic transducer with a center frequency of 2.54 MHz has been fabricated and characterized. The single element transducer exhibits good performance with a broad bandwidth of 53%. The insertion loss of the transducer was about 33.5 dB.

  15. MicroRNA-124-3p expression and its prospective functional pathways in hepatocellular carcinoma: A quantitative polymerase chain reaction, gene expression omnibus and bioinformatics study.

    Science.gov (United States)

    He, Rong-Quan; Yang, Xia; Liang, Liang; Chen, Gang; Ma, Jie

    2018-04-01

    The present study aimed to explore the potential clinical significance of microRNA (miR)-124-3p expression in the hepatocarcinogenesis and development of hepatocellular carcinoma (HCC), as well as the potential target genes of functional HCC pathways. Reverse transcription-quantitative polymerase chain reaction was performed to evaluate the expression of miR-124-3p in 101 HCC and adjacent non-cancerous tissue samples. Additionally, the association between miR-124-3p expression and clinical parameters was also analyzed. Differentially expressed genes identified following miR-124-3p transfection, the prospective target genes predicted in silico and the key genes of HCC obtained from Natural Language Processing (NLP) were integrated to obtain potential target genes of miR-124-3p in HCC. Relevant signaling pathways were assessed with protein-protein interaction (PPI) networks, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein Annotation Through Evolutionary Relationships (PANTHER) pathway enrichment analysis. miR-124-3p expression was significantly reduced in HCC tissues compared with expression in adjacent non-cancerous liver tissues. In HCC, miR-124-3p was demonstrated to be associated with clinical stage. The mean survival time of the low miR-124-3p expression group was reduced compared with that of the high expression group. A total of 132 genes overlapped from differentially expressed genes, miR-124-3p predicted target genes and NLP identified genes. PPI network construction revealed a total of 109 nodes and 386 edges, and 20 key genes were identified. The major enriched terms of three GO categories included regulation of cell proliferation, positive regulation of cellular biosynthetic processes, cell leading edge, cytosol and cell projection, protein kinase activity, transcription activator activity and enzyme binding. KEGG analysis revealed pancreatic cancer, prostate cancer and non-small cell lung cancer as the

  16. Despina Hatzifotiadou: ALICE Master Class 3 - Theory: strangeness enhancement; centrality of lead-lead collisions; efficiency, yield, background etc

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    This is the 3rd of 4 short online videos. It explains what is: strangeness enhancement; centrality of lead-lead collisions; efficiency, yield, background etc. More details and related links on this indico event page. In more detail: What is Physics Master Classes Students after morning lectures, run programmes in the afternoon to do measurements. These tutorials are about how to use the software required to do these measurements. Background info and examples  Looking for strange particles with ALICE http://aliceinfo.cern.ch/Public/MasterCL/MasterClassWebpage.html Introduction to first part of the exercise : what are strange particles, V0 decays, invariant mass. Demonstration of the software for the 1st part of the exercise - visual identification of V0s Introduction to second part of the exercise : strangeness enhancement; centrality of lead-lead collisions; explanation of efficiency, yield, background etc Demonstration of the software for the 2nd part of the exercise - invariant mass spectr...

  17. Novel germline mutation (Leu512Met) in the thyrotropin receptor gene (TSHR) leading to sporadic non-autoimmune hyperthyroidism

    Science.gov (United States)

    Roberts, Stephanie A.; Moon, Jennifer E.; Dauber, Andrew; Smith, Jessica R.

    2018-01-01

    Background Primary nonautoimmune hyperthyroidism is a rare cause of neonatal hyperthyroidism. This results from an activating mutation in the thyrotropin-receptor (TSHR). It can be inherited in an autosomal dominant manner or occur sporadically as a de novo mutation. Affected individuals display a wide phenotype from severe neonatal to mild subclinical hyperthyroidism. We describe a 6-month-old boy with a de novo mutation in the TSHR gene who presented with accelerated growth, enlarging head circumference, tremor and thyrotoxicosis. Methods Genomic DNA from the patient’s and parents’ peripheral blood leukocytes was extracted. Exons 9 and 10 of the TSHR gene were amplified by PCR and sequenced. Results Sequencing exon 10 of the TSHR gene revealed a novel heterozygous missense mutation substituting cytosine to adenine at nucleotide position 1534 in the patient’s peripheral blood leukocytes. This leads to a substitution of leucine to methionine at amino acid position 512. The mutation was absent in the parents. In silico modeling by PolyPhen-2 and SIFT predicted the mutation to be deleterious. Conclusions The p.Leu512Met mutation (c.l534C>A) of the TSHR gene has not been previously described in germline or somatic mutations. This case presentation highlights the possibility of mild thyrotoxicosis in affected individuals and contributes to the understanding of sporadic non-autoimmune primary hyperthyroidism. PMID:28195550

  18. Complete depletion of primordial germ cells in an All-female fish leads to Sex-biased gene expression alteration and sterile All-male occurrence.

    Science.gov (United States)

    Liu, Wei; Li, Shi-Zhu; Li, Zhi; Wang, Yang; Li, Xi-Yin; Zhong, Jian-Xiang; Zhang, Xiao-Juan; Zhang, Jun; Zhou, Li; Gui, Jian-Fang

    2015-11-18

    Gynogenesis is one of unisexual reproduction modes in vertebrates, and produces all-female individuals with identical genetic background. In sexual reproduction vertebrates, the roles of primordial germ cells on sexual dimorphism and gonadal differentiation have been largely studied, and two distinct functional models have been proposed. However, the role of primordial germ cells remains unknown in unisexual animals, and it is also unclear whether the functional models in sexual reproduction animals are common in unisexual animals. To solve these puzzles, we attempt to utilize the gynogenetic superiority of polyploid Carassius gibelio to create a complete germ cell-depleted gonad model by a similar morpholino-mediated knockdown approach used in other examined sexual reproduction fishes. Through the germ cell-depleted gonad model, we have performed comprehensive and comparative transcriptome analysis, and revealed a complete alteration of sex-biased gene expression. Moreover, the expression alteration leads to up-regulation of testis-biased genes and down-regulation of ovary-biased genes, and results in the occurrence of sterile all-males with testis-like gonads and secondary sex characteristics in the germ cell-depleted gynogenetic Carassius gibelio. Our current results have demonstrated that unisexual gynogenetic embryos remain keeping male sex determination information in the genome, and the complete depletion of primordial germ cells in the all-female fish leads to sex-biased gene expression alteration and sterile all-male occurrence.

  19. Identification and characterisation of the angiotensin converting enzyme-3 (ACE3) gene: a novel mammalian homologue of ACE

    OpenAIRE

    Rella, Monika; Elliot, Joann L; Revett, Timothy J; Lanfear, Jerry; Phelan, Anne; Jackson, Richard M; Turner, Anthony J; Hooper, Nigel M

    2007-01-01

    Abstract Background Mammalian angiotensin converting enzyme (ACE) plays a key role in blood pressure regulation. Although multiple ACE-like proteins exist in non-mammalian organisms, to date only one other ACE homologue, ACE2, has been identified in mammals. Results Here we report the identification and characterisation of the gene encoding a third homologue of ACE, termed ACE3, in several mammalian genomes. The ACE3 gene is located on the same chromosome downstream of the ACE gene. Multiple ...

  20. Effect of Lead on Human Middle Ear Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Shin Hye Kim

    2018-01-01

    Full Text Available Lead is a ubiquitous metal in the environment, but no studies have examined lead toxicity on the middle ear. Here, we investigated lead toxicity and its mechanism in human middle ear epithelial cells (HMEECs. Moreover, we investigated the protective effects of amniotic membrane extract (AME and chorionic membrane extract (CME against lead toxicity in HMEECs. Cell viability was analyzed using the cell counting kit, and reactive oxygen species (ROS activity was measured using a cellular ROS detection kit. After lead(II acetate trihydrate treatment, mRNA levels of various genes were assessed by semiquantitative real-time polymerase chain reaction. Following treatment with AME or CME after lead exposure, the changes in cell viability, ROS activity, and gene expression were analyzed. Exposure to >100 μg/mL of lead(II acetate trihydrate caused a significant decrease in cell viability and increased ROS production in HMEECs. Lead exposure significantly increased the mRNA expression of genes encoding inflammatory cytokines and mucins. Administration of AME or CME restored cell viability, reduced ROS activity, and ameliorated mRNA levels. Our findings suggest that environmental lead exposure is related to the development of otitis media, and AME and CME may have antioxidative and anti-inflammatory effects against lead toxicity.

  1. Overexpression of the Squalene Epoxidase Gene Alone and in Combination with the 3-Hydroxy-3-methylglutaryl Coenzyme A Gene Increases Ganoderic Acid Production in Ganoderma lingzhi.

    Science.gov (United States)

    Zhang, De-Huai; Jiang, Lu-Xi; Li, Na; Yu, Xuya; Zhao, Peng; Li, Tao; Xu, Jun-Wei

    2017-06-14

    The squalene epoxidase (SE) gene from the biosynthetic pathway of ganoderic acid (GA) was cloned and overexpressed in Ganoderma lingzhi. The strain that overexpressed the SE produced approximately 2 times more GA molecules than the wild-type (WT) strain. Moreover, SE overexpression upregulated lanosterol synthase gene expression in the biosynthetic pathway. These results indicated that SE stimulates GA accumulation. Then, the SE and 3-hydroxy-3-methylglutaryl coenzyme A (HMGR) genes were simultaneously overexpressed in G. lingzhi. Compared with the individual overexpression of SE or HMGR, the combined overexpression of the two genes further enhanced individual GA production. The overexpressing strain produced maximum GA-T, GA-S, GA-Mk, and GA-Me contents of 90.4 ± 7.5, 35.9 ± 5.4, 6.2 ± 0.5, and 61.8 ± 5.8 μg/100 mg dry weight, respectively. These values were 5.9, 4.5, 2.4, and 5.8 times higher than those produced by the WT strain. This is the first example of the successful manipulation of multiple biosynthetic genes to improve GA content in G. lingzhi.

  2. Efeito da profundidade de trabalho das hastes sulcadoras de uma semeadora-adubadora na patinagem, na força de tração e no consumo de combustível de um trator agrícola Effects of work operation depth of shanks in a seeder-fertilizer on slip, traction force and fuel consumption of a tractor

    Directory of Open Access Journals (Sweden)

    Marcos Antonio Zambillo Palma

    2010-10-01

    are unnecessary. However, there are many problems regarding compaction of the surface layers of soils due to machinery traffic and crop-livestock integration. The solution found by the farmers is the change of the double disc on the seeders for the shanks, which operate deeper. Therefore, this work aimed to evaluate different operation depths of the shank, analyzing the fuel consumption, traction force, slip index, draw-bar leverage, specific consumption of fuel and the theoretical field capacity of a tractor pulling a seeder-fertilizer over a soil compacted due to crop-livestock integration. The treatments were composed of four depths of the shanks, which were placed operating 100, 150, 200 and 250 mm deep. The experiments were carried out in randomized blocks design with four treatments and three repetitions at the Engineering Department of the Federal University of Lavras. The results showed that the increasing of operation depth of the shanks in a compacted soil increases the fuel consumption, the slip index and the leverage on the draw-bar. But when the shanks operated 50 mm beyond the most compacted layer, the traction force and the slip index have decreased, increasing the theoretical field capacity.

  3. Discovering hidden relationships between renal diseases and regulated genes through 3D network visualizations

    Directory of Open Access Journals (Sweden)

    Bhavnani Suresh K

    2010-11-01

    Full Text Available Abstract Background In a recent study, two-dimensional (2D network layouts were used to visualize and quantitatively analyze the relationship between chronic renal diseases and regulated genes. The results revealed complex relationships between disease type, gene specificity, and gene regulation type, which led to important insights about the underlying biological pathways. Here we describe an attempt to extend our understanding of these complex relationships by reanalyzing the data using three-dimensional (3D network layouts, displayed through 2D and 3D viewing methods. Findings The 3D network layout (displayed through the 3D viewing method revealed that genes implicated in many diseases (non-specific genes tended to be predominantly down-regulated, whereas genes regulated in a few diseases (disease-specific genes tended to be up-regulated. This new global relationship was quantitatively validated through comparison to 1000 random permutations of networks of the same size and distribution. Our new finding appeared to be the result of using specific features of the 3D viewing method to analyze the 3D renal network. Conclusions The global relationship between gene regulation and gene specificity is the first clue from human studies that there exist common mechanisms across several renal diseases, which suggest hypotheses for the underlying mechanisms. Furthermore, the study suggests hypotheses for why the 3D visualization helped to make salient a new regularity that was difficult to detect in 2D. Future research that tests these hypotheses should enable a more systematic understanding of when and how to use 3D network visualizations to reveal complex regularities in biological networks.

  4. Behavioral and Biological Effects of Housing Conditions and Stress in Male Rats - Relevance to Heart Disease

    Science.gov (United States)

    2006-08-01

    Baum, Gatchel, & Krantz, 1997; Park, Cambell , & Diamond, 2001; Bauer, Perks, Lightman, & Shanks, 2001). These categories of findings are consistent...Henriksson, & Mohammad, 1997; Baum, Gatchel, & Krantz, 1997; Park, Cambell , & Diamond, 2001; Bauer, Perks, Lightman, & Shanks, 2001; Bielajew...Biobehavioral Review, 25(3), 219-33. Park, C. R., Cambell , A. M., & Diamond, D. M. (2001). Chronic psychosocial stress impairs learning and memory and

  5. Histone H3 Serine 28 Is Essential for Efficient Polycomb-Mediated Gene Repression in Drosophila

    Directory of Open Access Journals (Sweden)

    Philip Yuk Kwong Yung

    2015-06-01

    Full Text Available Trimethylation at histone H3K27 is central to the polycomb repression system. Juxtaposed to H3K27 is a widely conserved phosphorylatable serine residue (H3S28 whose function is unclear. To assess the importance of H3S28, we generated a Drosophila H3 histone mutant with a serine-to-alanine mutation at position 28. H3S28A mutant cells lack H3S28ph on mitotic chromosomes but support normal mitosis. Strikingly, all methylation states of H3K27 drop in H3S28A cells, leading to Hox gene derepression and to homeotic transformations in adult tissues. These defects are not caused by active H3K27 demethylation nor by the loss of H3S28ph. Biochemical assays show that H3S28A nucleosomes are a suboptimal substrate for PRC2, suggesting that the unphosphorylated state of serine 28 is important for assisting in the function of polycomb complexes. Collectively, our data indicate that the conserved H3S28 residue in metazoans has a role in supporting PRC2 catalysis.

  6. Correlation between endometriosis combined with infertility and STAT3 gene polymorphisms

    Directory of Open Access Journals (Sweden)

    Juan Hu

    2016-05-01

    Full Text Available Objective: To investigate the correlation between STAT3 gene polymorphisms and endometriosis complicated with infertility. Methods: A total of 35 patients with endometriosis complicated with infertility and 35 cases of healthy volunteer from October 2014 to October 2015 in our hospital were selected as research objects. STAT3 gene polymorphisms of all objects were detected by PCR-RFLP method. Results: Polymorphic sites of STAT3 gene rs2293152 were expressed as three genotypes, namely, CC, GC, and GG. There were 18 cases, 10 cases and 7 cases of type CC, GC and GG in the observation group, accounted for 51.43%, 28.57% and 20.00%, respectively. There were 29 cases, 3 cases and 3 cases of type CC, GC and GG in the control group, accounted for 82.86%, 8.57% and 8.57%. There was a statistically difference` between the two groups. The frequency of C and G allele in the observation group and the control group were 65.71%, 34.29% and 87.14%, 12.86%, respectively. There were statistically significant differences between two groups. In addition, compared with the CC genotype, genotype G might increase the risk of the disease. Conclusions: The susceptibility of endometriosis complicated with infertility may be associated with STAT3 gene polymorphism and women who carried the G allele may have an increased the risk of the disease.

  7. Leading edge analysis of transcriptomic changes during pseudorabies virus infection

    Directory of Open Access Journals (Sweden)

    Damarius S. Fleming

    2016-12-01

    Full Text Available Eight RNA samples taken from the tracheobronchial lymph nodes (TBLN of pigs that were either infected or non-infected with a feral isolate of porcine pseudorabies virus (PRV were used to investigate changes in gene expression related to the pathogen. The RNA was processed into fastq files for each library prior to being analyzed using Illumina Digital Gene Expression Tag Profiling sequences (DGETP which were used as the downstream measure of differential expression. Analyzed tags consisted of 21 base pair sequences taken from time points 1, 3, 6, and 14 days' post infection (dpi that generated 1,927,547 unique tag sequences. Tag sequences were analyzed for differential transcript expression and gene set enrichment analysis (GSEA to uncover transcriptomic changes related to PRV pathology progression. In conjunction with the DGETP and GSEA, the study also incorporated use of leading edge analysis to help link the TBLN transcriptome data to clinical progression of PRV at each of the sampled time points. The purpose of this manuscript is to provide useful background on applying the leading edge analysis to GSEA and expression data to help identify genes considered to be of high biological interest. The data in the form of fastq files has been uploaded to the NCBI Gene Expression Omnibus (GEO (GSE74473 database.

  8. A lead-scintillating fiber calorimeter to increase L3 hermeticity

    CERN Document Server

    Basti, G

    1997-01-01

    A lead-scintillating fiber calorimeter has been built to fill the gap between endcap and barrel of the L3 BGO electromagnetic calorimeter. We report details of the construction, as well as results from test-beam and simulation.

  9. Unusual Gene Order and Organization of the Sea Urchin HoxCluster

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Paul M.; Lucas, Susan; Cameron, R. Andrew; Rowen,Lee; Nesbitt, Ryan; Bloom, Scott; Rast, Jonathan P.; Berney, Kevin; Arenas-Mena, Cesar; Martinez, Pedro; Davidson, Eric H.; Peterson, KevinJ.; Hood, Leroy

    2005-05-10

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is : 5'-Hox1,2, 3, 11/13c, 11/13b, '11/13a, 9/10, 8, 7, 6, 5 - 3)'. The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  10. Leading change: 3--implementation.

    Science.gov (United States)

    Kerridge, Joanna

    The potential for all staff to contribute to service improvement, irrespective of discipline, role or function, is outlined in the 2011 NHS leadership framework. This advocates developing the skills of the entire workforce to create a climate of continuous service improvement. As nurses are often required to take the lead in managing change in clinical practice, this final article in a three-part series focuses on implementing ande potentia reviewing change.

  11. A novel miR-371a-5p-mediated pathway, leading to BAG3 upregulation in cardiomyocytes in response to epinephrine, is lost in Takotsubo cardiomyopathy.

    Science.gov (United States)

    d'Avenia, M; Citro, R; De Marco, M; Veronese, A; Rosati, A; Visone, R; Leptidis, S; Philippen, L; Vitale, G; Cavallo, A; Silverio, A; Prota, C; Gravina, P; De Cola, A; Carletti, E; Coppola, G; Gallo, S; Provenza, G; Bossone, E; Piscione, F; Hahne, M; De Windt, L J; Turco, M C; De Laurenzi, V

    2015-10-29

    Molecular mechanisms protecting cardiomyocytes from stress-induced death, including tension stress, are essential for cardiac physiology and defects in these protective mechanisms can result in pathological alterations. Bcl2-associated athanogene 3 (BAG3) is expressed in cardiomyocytes and is a component of the chaperone-assisted autophagy pathway, essential for homeostasis of mechanically altered cells. BAG3 ablation in mice results in a lethal cardiomyopathy soon after birth and mutations of this gene have been associated with different cardiomyopathies including stress-induced Takotsubo cardiomyopathy (TTC). The pathogenic mechanism leading to TTC has not been defined, but it has been suggested that the heart can be damaged by excessive epinephrine (epi) spillover in the absence of a protective mechanism. The aim of this study was to provide more evidence for a role of BAG3 in the pathogenesis of TTC. Therefore, we sequenced BAG3 gene in 70 TTC patients and in 81 healthy donors with the absence of evaluable cardiovascular disease. Mutations and polymorphisms detected in the BAG3 gene included a frequent nucleotide change g2252c in the BAG3 3'-untranslated region (3'-UTR) of Takotsubo patients (PBAG3 upregulation on exposure to epi through an ERK-dependent upregulation of miR-371a-5p. In conclusion, the presence of a g2252c polymorphism in the BAG3 3'-UTR determines loss of miR-371a-5p binding and results in an altered response to epi, potentially representing a new molecular mechanism that contributes to TTC pathogenesis.

  12. Dominant Drop mutants are gain-of-function alleles of the muscle segment homeobox gene (msh) whose overexpression leads to the arrest of eye development.

    Science.gov (United States)

    Mozer, B A

    2001-05-15

    Dominant Drop (Dr) mutations are nearly eyeless and have additional recessive phenotypes including lethality and patterning defects in eye and sensory bristles due to cis-regulatory lesions in the cell cycle regulator string (stg). Genetic analysis demonstrates that the dominant small eye phenotype is the result of separate gain-of-function mutations in the closely linked muscle segment homeobox (msh) gene, encoding a homeodomain transcription factor required for patterning of muscle and nervous system. Reversion of the Dr(Mio) allele was coincident with the generation of lethal loss-of-function mutations in msh in cis, suggesting that the dominant eye phenotype is the result of ectopic expression. Molecular genetic analysis revealed that two dominant Dr alleles contain lesions upstream of the msh transcription start site. In the Dr(Mio) mutant, a 3S18 retrotransposon insertion is the target of second-site mutations (P-element insertions or deletions) which suppress the dominant eye phenotype following reversion. The pattern of 3S18 expression and the absence of msh in eye imaginal discs suggest that transcriptional activation of the msh promoter accounts for ectopic expression. Dr dominant mutations arrest eye development by blocking the progression of the morphogenetic furrow leading to photoreceptor cell loss via apoptosis. Gal4-mediated ubiquitous expression of msh in third-instar larvae was sufficient to arrest the morphogenetic furrow in the eye imaginal disc and resulted in lethality prior to eclosion. Dominant mutations in the human msx2 gene, one of the vertebrate homologs of msh, are associated with craniosynostosis, a disease affecting cranial development. The Dr mutations are the first example of gain-of-function mutations in the msh/msx gene family identified in a genetically tractible model organism and may serve as a useful tool to identify additional genes that regulate this class of homeodomain proteins. Copyright 2001 Academic Press.

  13. A PKC-MARCKS-PI3K regulatory module links Ca2+ and PIP3 signals at the leading edge of polarized macrophages.

    Directory of Open Access Journals (Sweden)

    Brian P Ziemba

    Full Text Available The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a two pathway activators-PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b three pathway inhibitors-wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c four leading edge activity sensors-AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while

  14. A PKC-MARCKS-PI3K regulatory module links Ca2+ and PIP3 signals at the leading edge of polarized macrophages.

    Science.gov (United States)

    Ziemba, Brian P; Falke, Joseph J

    2018-01-01

    The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a) two pathway activators-PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b) three pathway inhibitors-wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c) four leading edge activity sensors-AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while inhibitors

  15. Operator dependent choice of prostate cancer biopsy has limited impact on a gene signature analysis for the highly expressed genes IGFBP3 and F3 in prostate cancer epithelial cells.

    Directory of Open Access Journals (Sweden)

    Zhuochun Peng

    Full Text Available BACKGROUND: Predicting the prognosis of prostate cancer disease through gene expression analysis is receiving increasing interest. In many cases, such analyses are based on formalin-fixed, paraffin embedded (FFPE core needle biopsy material on which Gleason grading for diagnosis has been conducted. Since each patient typically has multiple biopsy samples, and since Gleason grading is an operator dependent procedure known to be difficult, the impact of the operator's choice of biopsy was evaluated. METHODS: Multiple biopsy samples from 43 patients were evaluated using a previously reported gene signature of IGFBP3, F3 and VGLL3 with potential prognostic value in estimating overall survival at diagnosis of prostate cancer. A four multiplex one-step qRT-PCR test kit, designed and optimized for measuring the signature in FFPE core needle biopsy samples was used. Concordance of gene expression levels between primary and secondary Gleason tumor patterns, as well as benign tissue specimens, was analyzed. RESULTS: The gene expression levels of IGFBP3 and F3 in prostate cancer epithelial cell-containing tissue representing the primary and secondary Gleason patterns were high and consistent, while the low expressed VGLL3 showed more variation in its expression levels. CONCLUSION: The assessment of IGFBP3 and F3 gene expression levels in prostate cancer tissue is independent of Gleason patterns, meaning that the impact of operator's choice of biopsy is low.

  16. EFEK POLIMORFISME GENA GSTP-1 TERHADAP AKTIVITAS GLUTATION S-TRANSFERASE (GST PADA INDIVIDU TERPAPAR LOGAM BERAT TIMBAL (Effect of GSTP-1 Gene Polymorphismson Glutation S- Transferase (GST Activity in Heavy Metals Lead-Exposed Individual

    Directory of Open Access Journals (Sweden)

    Hernayanti Hernayanti

    2015-11-01

    Full Text Available ABSTRAK Gena GSTP-1 merupakan penghasil enzim glutation S- transferase (GST, yang berfungsi dalam proses detoksifikasi senyawa toksik di hati. Faktor keberadaan polimorfisme gena GSTP-1 akan menyebabkan penurunan ekspresi GST, sehingga proses detoksifikasi terhadap senyawa toksik akan terhambat. Kerentanan terhadap paparan senyawa toksik pada manusia akan meningkat apabila dijumpai polimorfisme gena. Salah satu senyawa toksik yang dapat menghambat aktivitas GST adalah timbal (Pb, terutama dalam bentuk tetra ethyl lead (TEL. Tujuan penelitian adalah untuk mengetahui pengaruh polimorfisme gena GSTP-1 terhadap aktivitas GST pada individu terpapar Pb, yang diwakili pekerja bengkel mobil. Faktor keberadaan polimorfisme gena individu ditentukan dengan metode PCR-RFLP dan enzim restriksi BsmA1. Parameter yang diukur adalah kadar Pb dan aktivitas GST. Analisis molekuler gena GSTP-1 dilakukan secara deskriptif. Data kadar Pb dan aktivitas GST dianalisis dengan uji t independent. Hasil analisis gena GSTP-1 dari 40 orang subyek kasus setelah dilakukan digesti dengan enzim BsmA1, ditemukan sebanyak 10 orang individu dengan polimorfisme Ile105Val gena GSTP 1 atau sekitar 25% dengan genotip Ile-Val, sedangkan 30 orang atau 75% ditemukan tanpa polimorfisme dengan genotip Ile-Ile. Pita DNA individu dengan polimorfisme terpotong menjadi 3 fragmen sepanjang 176, 91 dan 85 pp (mutan heterozygot, sedangkan tanpa polimorfisme terletak pada 176 bp. Subyek kasus dengan polimorfisme gena GSTP-1 memiliki kadar Pb lebih tinggi dan aktivitas GST lebih rendah dibandingkan individu non polimorfisme. Telah terbukti bahwa polimorfisme gena GSTP-1 menyebabkan penurunan ekspresi enzim GST. Pada individu terpapar Pb dengan polimorfisme gena GSTP-1 memiliki aktivitas GST lebih rendah dibandingkan individu tanpa polimorfisme. ABSTRACT GSTP-1 gene regulates the expression of gluthation S-transferase enzyme, which role in detoxification of toxicant on liver. If the polymorphisms

  17. Influence of the experimental design of gene expression studies on the inference of gene regulatory networks: environmental factors

    Directory of Open Access Journals (Sweden)

    Frank Emmert-Streib

    2013-02-01

    Full Text Available The inference of gene regulatory networks gained within recent years a considerable interest in the biology and biomedical community. The purpose of this paper is to investigate the influence that environmental conditions can exhibit on the inference performance of network inference algorithms. Specifically, we study five network inference methods, Aracne, BC3NET, CLR, C3NET and MRNET, and compare the results for three different conditions: (I observational gene expression data: normal environmental condition, (II interventional gene expression data: growth in rich media, (III interventional gene expression data: normal environmental condition interrupted by a positive spike-in stimulation. Overall, we find that different statistical inference methods lead to comparable, but condition-specific results. Further, our results suggest that non-steady-state data enhance the inferability of regulatory networks.

  18. The preparation of a novel layered lead titanate and its conversion to the perovskite lead titanate PbTiO3

    NARCIS (Netherlands)

    Blake, G.R.; Armstrong, A.R.; Sastre, E.; Wright, P.A.

    2001-01-01

    A novel layered lead titanate with the approximate composition PbTiO2(CO3)0.3(NO3)0.35(OH) has been synthesized hydrothermally under acidic conditions. The structure has been solved and refined from X-ray and neutron powder diffraction data in the space group P -3 1 m, with cell dimensions a =

  19. ZCURVE 3.0: identify prokaryotic genes with higher accuracy as well as automatically and accurately select essential genes.

    Science.gov (United States)

    Hua, Zhi-Gang; Lin, Yan; Yuan, Ya-Zhou; Yang, De-Chang; Wei, Wen; Guo, Feng-Biao

    2015-07-01

    In 2003, we developed an ab initio program, ZCURVE 1.0, to find genes in bacterial and archaeal genomes. In this work, we present the updated version (i.e. ZCURVE 3.0). Using 422 prokaryotic genomes, the average accuracy was 93.7% with the updated version, compared with 88.7% with the original version. Such results also demonstrate that ZCURVE 3.0 is comparable with Glimmer 3.02 and may provide complementary predictions to it. In fact, the joint application of the two programs generated better results by correctly finding more annotated genes while also containing fewer false-positive predictions. As the exclusive function, ZCURVE 3.0 contains one post-processing program that can identify essential genes with high accuracy (generally >90%). We hope ZCURVE 3.0 will receive wide use with the web-based running mode. The updated ZCURVE can be freely accessed from http://cefg.uestc.edu.cn/zcurve/ or http://tubic.tju.edu.cn/zcurveb/ without any restrictions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Combination of targeting gene-viro therapy with recombinant Fowl-pox viruses with HN and VP3 genes on mouse osteosarcoma.

    Science.gov (United States)

    Zhang, Z-Y; Wang, L-Q; Fu, C-F; Li, X; Cui, Z-L; Zhang, J-Y; Xue, S-H; Sun, N; Xu, F

    2013-03-01

    Osteosarcoma is an aggressive cancerous neoplasm arising from primitive transformed cells of mesenchymal origin that exhibit osteoblastic differentiation and produce malignant osteoid. With the rapid development of tumor molecular biology, gene and viral therapy, a highly promising strategy for the treatment, has shown some therapeutic effects. To study the strategy of cooperative cancer gene therapy, previously, we explored the antitumor effects of recombinant Fowl-pox viruses (FPVs) with both HN (hemagglutinin-neuramidinase) and VP3 genes on mouse osteosarcoma. We constructed vFV-HN, vFV-VP3 and vFV-HN-VP3 inserting CAV VP3 gene, NDV HN gene into fowlpox virus. S180 osteosarcoma were transfected with Recombinant Fowl-pox viruses (FPVs). These cell lines stably expressing tagged proteins were selected by culturing in medium containing puromycin (2 µg/ml) and confirmed by immunoblotting and immunostaining. S180 osteosarcoma model with BALB/c mice and nude mice were established and the vFPV viruses as control, vFV-HN, vFV-VP3, vFV-HN-VP3 were injected into the tumor directly. The rate of tumor growth, tumor suppression and the sialic acid levels in serum were examined and the tumor tissues were analyzed by the method of immunohistochemistry. Flow cytometric analysis was performed using a FACSCalibur flow cytometer. A total of 100,000 events were analyzed for each sample and the experiment was repeated at least twice. Our data indicated that vFV-HN, vFV-VP3 and vFV-HN-VP3 all had growth inhibition effects, the inhibition rate of vFV-HN-VP3 group was 51.7%, which was higher than that of vFV-HN, vFV-VP3 group and control group (p genes into mouse osteosarcoma cancer cells can cause cell a specificity anti-tumor immune activity, suppress tumor growth, and increase the survival rate of the tumor within host.

  1. A mechanism of leading-edge protrusion in the absence of Arp2/3 complex.

    Science.gov (United States)

    Suraneni, Praveen; Fogelson, Ben; Rubinstein, Boris; Noguera, Philippe; Volkmann, Niels; Hanein, Dorit; Mogilner, Alex; Li, Rong

    2015-03-01

    Cells employ protrusive leading edges to navigate and promote their migration in diverse physiological environments. Classical models of leading-edge protrusion rely on a treadmilling dendritic actin network that undergoes continuous assembly nucleated by the Arp2/3 complex, forming ruffling lamellipodia. Recent work demonstrated, however, that, in the absence of the Arp2/3 complex, fibroblast cells adopt a leading edge with filopodia-like protrusions (FLPs) and maintain an ability to move, albeit with altered responses to different environmental signals. We show that formin-family actin nucleators are required for the extension of FLPs but are insufficient to produce a continuous leading edge in fibroblasts lacking Arp2/3 complex. Myosin II is concentrated in arc-like regions of the leading edge in between FLPs, and its activity is required for coordinated advancement of these regions with formin-generated FLPs. We propose that actomyosin contraction acting against membrane tension advances the web of arcs between FLPs. Predictions of this model are verified experimentally. The dependence of myosin II in leading-edge advancement helps explain the previously reported defect in directional movement in the Arpc3-null fibroblasts. We provide further evidence that this defect is cell autonomous during chemotaxis. © 2015 Suraneni et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A.; Mukhopadhyay, Aindrila; Joachimiak, Marcin P.; Drury, Elliott C.; Redding, Alyssa M.; Yen, Huei-Che B.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Keasling, Jay D.; Wall, Judy D.

    2008-10-27

    Hypothetical and conserved hypothetical genes account for>30percent of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved hypothetical (9.5percent) along with 887 hypothetical genes (24.4percent). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to determine which genes were expressed and provide a more functionally based annotation. To accomplish this, expression profiles of 1234 hypothetical and conserved genes were used from transcriptomic datasets of 11 environmental stresses, complemented with shotgun LC-MS/MS and AMT tag proteomic data. Genes were divided into putatively polycistronic operons and those predicted to be monocistronic, then classified by basal expression levels and grouped according to changes in expression for one or multiple stresses. 1212 of these genes were transcribed with 786 producing detectable proteins. There was no evidence for expression of 17 predicted genes. Except for the latter, monocistronic gene annotation was expanded using the above criteria along with matching Clusters of Orthologous Groups. Polycistronic genes were annotated in the same manner with inferences from their proximity to more confidently annotated genes. Two targeted deletion mutants were used as test cases to determine the relevance of the inferred functional annotations.

  3. Evaluation of applicability of lead damper to 3-dimensional isolation system based on loading tests

    International Nuclear Information System (INIS)

    Matsuda, Akihiro

    2003-01-01

    To develop a damper for 3-dimensional base isolation system, horizontal and vertical mechanical properties, effect of loading frequency on vertical mechanical properties, coupled properties between horizontal and vertical directions, stability performance due to cyclic deformation are evaluated experimentally using scale models of lead damper originally developed for horizontal base isolation system. Loading test results are summarized as follows; 1) The lead damper has good vertical damping performance, in that the vertical yield load of the lead damper is three times as large as that for the horizontal direction, and the lead damper shows plastic behavior in the small deformation region. 2) The lead damper shows enough stability for static vertical displacement of ±40 mm. 3) the lead damper shows high stability performance for dynamic cyclic loading test using motions of isolation layer calculated by earthquake response analysis of FBR building subjected to S2-earthquake motion. Thus, applicability of the lead damper to 3-dimensional isolation system is shown from these results. (author)

  4. Evaluation of Reference Genes to Analyze Gene Expression in Silverside Odontesthes humensis Under Different Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Tony L. R. Silveira

    2018-03-01

    Full Text Available Some mammalian reference genes, which are widely used to normalize the qRT-PCR, could not be used for this purpose due to its high expression variation. The normalization with false reference genes leads to misinterpretation of results. The silversides (Odontesthes spp. has been used as models for evolutionary, osmoregulatory and environmental pollution studies but, up to now, there are no studies about reference genes in any Odontesthes species. Furthermore, many studies on silversides have used reference genes without previous validations. Thus, present study aimed to was to clone and sequence potential reference genes, thereby identifying the best ones in Odontesthes humensis considering different tissues, ages and conditions. For this purpose, animals belonging to three ages (adults, juveniles, and immature were exposed to control, Roundup®, and seawater treatments for 24 h. Blood samples were subjected to flow-cytometry and other collected tissues to RNA extraction; cDNA synthesis; molecular cloning; DNA sequencing; and qRT-PCR. The candidate genes tested included 18s, actb, ef1a, eif3g, gapdh, h3a, atp1a, and tuba. Gene expression results were analyzed using five algorithms that ranked the candidate genes. The flow-cytometry data showed that the environmental challenges could trigger a systemic response in the treated fish. Even during this systemic physiological disorder, the consensus analysis of gene expression revealed h3a to be the most stable gene expression when only the treatments were considered. On the other hand, tuba was the least stable gene in the control and gapdh was the least stable in both Roundup® and seawater groups. In conclusion, the consensus analyses of different tissues, ages, and treatments groups revealed that h3a is the most stable gene whereas gapdh and tuba are the least stable genes, even being considered two constitutive genes.

  5. Aberrant activity of NKL homeobox gene NKX3-2 in a T-ALL subset

    Science.gov (United States)

    Meyer, Corinna; Kaufmann, Maren; Zaborski, Margarete; MacLeod, Roderick A. F.; Drexler, Hans G.

    2018-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a hematopoietic malignancy originating from T-cell progenitors in which differentiation is blocked at early stages. Physiological expression of specific NKL homeobox genes obeys a hematopoietic NKL-code implicated in the process of lymphopoiesis while in differentiated T-cells these genes are silenced. We propose that this developmental expression pattern underlies the observation that NKL homeobox genes are the most ubiquitous group of transcription factors deregulated in T-ALL, including TLX1, TLX3, NKX2-5 and NKX3-1. Here, we describe a novel member of the NKL homeobox gene subclass, NKX3-2 (BAPX1), which is aberrantly activated in 18% of pediatric T-ALL patients analyzed while being normally expressed in developing spleen. Identification of NKX3-2 expression in T-ALL cell line CCRF-CEM qualified these cells to model its deregulation and function in a leukemic context. Genomic and chromosomal analyses demonstrated normal configuration of the NKX3-2 locus at chromosome 4p15, thus excluding cytogenetic dysregulation. Comparative expression profiling analysis of NKX3-2 patient data revealed deregulated activity of BMP- and MAPK-signalling. These candidate pathways were experimentally confirmed to mediate aberrant NKX3-2 expression. We also show that homeobox gene SIX6, plus MIR17HG and GATA3 are downstream targets of NKX3-2 and plausibly contribute to the pathogenesis of this malignancy by suppressing T-cell differentiation. Finally, NKL homeobox gene NKX2-5 was activated by NKX3-2 in CCRF-CEM and by FOXG1 in PEER, representing mutually inhibitory activators of this translocated oncogene. Together, our findings reveal a novel oncogenic NKL homeobox gene subclass member which is aberrantly expressed in a large subset of T-ALL patients and participates in a deregulated gene network likely to arise in developing spleen. PMID:29746601

  6. Polycomb Group Protein Displacement and Gene Activation through MSK-Dependent H3K27me3S28 Phosphorylation

    DEFF Research Database (Denmark)

    Gehani, Simmi Suman; Agrawal-Singh, Shuchi; Dietrich, Nikolaj

    2010-01-01

    Epigenetic regulation of chromatin structure is essential for the expression of genes determining cellular specification and function. The Polycomb repressive complex 2 (PRC2) di- and trimethylates histone H3 on lysine 27 (H3K27me2/me3) to establish repression of specific genes in embryonic stem ...

  7. A PCA3 gene-based transcriptional amplification system targeting primary prostate cancer

    OpenAIRE

    Neveu, Bertrand; Jain, Pallavi; T?tu, Bernard; Wu, Lily; Fradet, Yves; Pouliot, Fr?d?ric

    2015-01-01

    Targeting specifically primary prostate cancer (PCa) cells for immune therapy, gene therapy or molecular imaging is of high importance. The PCA3 long non-coding RNA is a unique PCa biomarker and oncogene that has been widely studied. This gene has been mainly exploited as an accurate diagnostic urine biomarker for PCa detection. In this study, the PCA3 promoter was introduced into a new transcriptional amplification system named the 3-Step Transcriptional Amplification System (PCA3-3STA) and ...

  8. Potential gene regulatory role for cyclin D3 in muscle cells

    Indian Academy of Sciences (India)

    2015-06-27

    Jun 27, 2015 ... D3-expressing cells on induction of differentiation. 2. Materials and .... 2 –ΔΔCt method was used for quantification and each gene ..... of pluripotency genes known to be silenced by deposition of ..... embryonic stem cells.

  9. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    International Nuclear Information System (INIS)

    Amano, Yosuke; Ishikawa, Rie; Sakatani, Toshio; Ichinose, Junji; Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori; Nakajima, Jun; Nagase, Takahide; Ohishi, Nobuya; Takai, Daiya

    2015-01-01

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss of contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization

  10. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yosuke; Ishikawa, Rie; Sakatani, Toshio [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Ichinose, Junji [Department of Cardiothoracic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Nakajima, Jun [Department of Cardiothoracic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Nagase, Takahide; Ohishi, Nobuya [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Takai, Daiya, E-mail: dtakai-ind@umin.ac.jp [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Department of Clinical Laboratory, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2015-02-13

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss of contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization.

  11. Variant in GALNT3 Gene Linked with Reduced Coronary Artery Disease Risk in Chinese Population.

    Science.gov (United States)

    Guo, Liwei; Li, Duan; Li, Mengting; Li, Lin; Huang, Yanmei

    2017-07-01

    Our previous study found expression of GALNT3 gene was reduced in coronary artery disease (CAD) patients, and it contributed to endothelial injury by regulating apoptosis and matrix metalloproteinase (MMP) expression. GALNT3 gene may be a potential target for future therapeutic intervention of CAD. However, none reports linking the GALNT3 gene to susceptibility of CAD. This study investigated the variant associations of GALNT3 gene and CAD. Thirteen single nucleotide polymorphism (SNP) in and around the GALNT3 gene were tagged and analyzed in CAD patients (n = 1515) and control individuals (n = 5019), and the SNPs with CAD were tested with multiple logistic regression analysis in an additive genetic model (with one degree of freedom) after adjusting for age and sex. Expression of GALNT3 gene was detected by real-time PCR and Western blot. Luciferase reporter assays were used to detect the allele-specific effect of rs4621175 on transcriptional activity. Two GALNT3 markers, rs13427924 and rs4621175, were significantly associated with CAD (odds ratio [OR] = 0.87, p = 1.01 × 10 -3 and OR = 0.75, p = 2.51 × 10 -4 , respectively), and the risk A allele of rs4621175 was associated with lower GALNT3 expression in both mRNA and protein level; also, A allele showed decreased reporter activity. In addition, we found the level of GALNT3 negatively correlated with MMP-2 gene expression. This study identified GALNT3 as a novel gene that rendered patients susceptible to CAD, and the A allele of a disease-associated variant rs4621175 linked reduced CAD risk through decreased GALNT3 expression. These results confirmed the role of GALNT3 gene in CAD and provided new insights into the genetic regulation of the GALNT3 gene with respect to the pathogenesis of CAD.

  12. Embryonic expression of zebrafish MiT family genes tfe3b, tfeb, and tfec.

    Science.gov (United States)

    Lister, James A; Lane, Brandon M; Nguyen, Anhthu; Lunney, Katherine

    2011-11-01

    The MiT family comprises four genes in mammals: Mitf, Tfe3, Tfeb, and Tfec, which encode transcription factors of the basic-helix-loop-helix/leucine zipper class. Mitf is well-known for its essential role in the development of melanocytes, however the functions of the other members of this family, and of interactions between them, are less well understood. We have now characterized the complete set of MiT genes from zebrafish, which totals six instead of four. The zebrafish genome contain two mitf (mitfa and mitfb), two tfe3 (tfe3a and tfe3b), and single tfeb and tfec genes; this distribution is shared with other teleosts. We present here the sequence and embryonic expression patterns for the zebrafish tfe3b, tfeb, and tfec genes, and identify a new isoform of tfe3a. These findings will assist in elucidating the roles of the MiT gene family over the course of vertebrate evolution. Copyright © 2011 Wiley-Liss, Inc.

  13. Gene-expression signature regulated by the KEAP1-NRF2-CUL3 axis is associated with a poor prognosis in head and neck squamous cell cancer.

    Science.gov (United States)

    Namani, Akhileshwar; Matiur Rahaman, Md; Chen, Ming; Tang, Xiuwen

    2018-01-06

    NRF2 is the key regulator of oxidative stress in normal cells and aberrant expression of the NRF2 pathway due to genetic alterations in the KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2 like 2)-CUL3 (cullin 3) axis leads to tumorigenesis and drug resistance in many cancers including head and neck squamous cell cancer (HNSCC). The main goal of this study was to identify specific genes regulated by the KEAP1-NRF2-CUL3 axis in HNSCC patients, to assess the prognostic value of this gene signature in different cohorts, and to reveal potential biomarkers. RNA-Seq V2 level 3 data from 279 tumor samples along with 37 adjacent normal samples from patients enrolled in the The Cancer Genome Atlas (TCGA)-HNSCC study were used to identify upregulated genes using two methods (altered KEAP1-NRF2-CUL3 versus normal, and altered KEAP1-NRF2-CUL3 versus wild-type). We then used a new approach to identify the combined gene signature by integrating both datasets and subsequently tested this signature in 4 independent HNSCC datasets to assess its prognostic value. In addition, functional annotation using the DAVID v6.8 database and protein-protein interaction (PPI) analysis using the STRING v10 database were performed on the signature. A signature composed of a subset of 17 genes regulated by the KEAP1-NRF2-CUL3 axis was identified by overlapping both the upregulated genes of altered versus normal (251 genes) and altered versus wild-type (25 genes) datasets. We showed that increased expression was significantly associated with poor survival in 4 independent HNSCC datasets, including the TCGA-HNSCC dataset. Furthermore, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and PPI analysis revealed that most of the genes in this signature are associated with drug metabolism and glutathione metabolic pathways. Altogether, our study emphasizes the discovery of a gene signature regulated by the KEAP1-NRF2-CUL3 axis which is strongly associated with

  14. Contribution of DNA double-strand break repair gene XRCC3 genotypes to oral cancer susceptibility in Taiwan.

    Science.gov (United States)

    Tsai, Chia-Wen; Chang, Wen-Shin; Liu, Juhn-Cherng; Tsai, Ming-Hsui; Lin, Cheng-Chieh; Bau, Da-Tian

    2014-06-01

    The DNA repair gene X-ray repair cross complementing protein 3 (XRCC3) is thought to play a major role in double-strand break repair and in maintaining genomic stability. Very possibly, defective double-strand break repair of cells can lead to carcinogenesis. Therefore, a case-control study was performed to reveal the contribution of XRCC3 genotypes to individual oral cancer susceptibility. In this hospital-based research, the association of XRCC3 rs1799794, rs45603942, rs861530, rs3212057, rs1799796, rs861539, rs28903081 genotypes with oral cancer risk in a Taiwanese population was investigated. In total, 788 patients with oral cancer and 956 age- and gender-matched healthy controls were genotyped. The results showed that there was significant differential distribution among oral cancer and controls in the genotypic (p=0.001428) and allelic (p=0.0013) frequencies of XRCC3 rs861539. As for the other polymorphisms, there was no difference between case and control groups. In gene-lifestyle interaction analysis, we have provided the first evidence showing that there is an obvious joint effect of XRCC3 rs861539 genotype with individual areca chewing habits on oral cancer risk. In conclusion, the T allele of XRCC3 rs861539, which has an interaction with areca chewing habit in oral carcinogenesis, may be an early marker for oral cancer in Taiwanese. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Overexpression of AtSTO1 leads to improved salt tolerance in Populus tremula × P. alba

    Science.gov (United States)

    Shaneka S. Lawson; Charles H. Michler

    2014-01-01

    One of the major abiotic stress conditions limiting healthy growth of trees is salinity stress. The use of gene manipulation for increased tolerance to abiotic stress has been successful in many plant species. Overexpression of the Arabidopsis SALT TOLERANT1 (STO1) gene leads to increased concentrations of 9-cis-epoxycarotenoid dioxygenase3, a vital...

  16. Prevalence of pfhrp2 and pfhrp3 gene deletions in Puerto Lempira, Honduras.

    Science.gov (United States)

    Abdallah, Joseph F; Okoth, Sheila Akinyi; Fontecha, Gustavo A; Torres, Rosa Elena Mejia; Banegas, Engels I; Matute, María Luisa; Bucheli, Sandra Tamara Mancero; Goldman, Ira F; de Oliveira, Alexandre Macedo; Barnwell, John W; Udhayakumar, Venkatachalam

    2015-01-21

    Recent studies have demonstrated the deletion of the histidine-rich protein 2 (PfHRP2) gene (pfhrp2) in field isolates of Plasmodium falciparum, which could result in false negative test results when PfHRP2-based rapid diagnostic tests (RDTs) are used for malaria diagnosis. Although primary diagnosis of malaria in Honduras is determined based on microscopy, RDTs may be useful in remote areas. In this study, it was investigated whether there are deletions of the pfhrp2, pfhrp3 and their respective flanking genes in 68 P. falciparum parasite isolates collected from the city of Puerto Lempira, Honduras. In addition, further investigation considered the possible correlation between parasite population structure and the distribution of these gene deletions by genotyping seven neutral microsatellites. Sixty-eight samples used in this study, which were obtained from a previous chloroquine efficacy study, were utilized in the analysis. All samples were genotyped for pfhrp2, pfhrp3 and flanking genes by PCR. The samples were then genotyped for seven neutral microsatellites in order to determine the parasite population structure in Puerto Lempira at the time of sample collection. It was found that all samples were positive for pfhrp2 and its flanking genes on chromosome 8. However, only 50% of the samples were positive for pfhrp3 and its neighboring genes while the rest were either pfhrp3-negative only or had deleted a combination of pfhrp3 and its neighbouring genes on chromosome 13. Population structure analysis predicted that there are at least two distinct parasite population clusters in this sample population. It was also determined that a greater proportion of parasites with pfhrp3-(and flanking gene) deletions belonged to one cluster compared to the other. The findings indicate that the P. falciparum parasite population in the municipality of Puerto Lempira maintains the pfhrp2 gene and that PfHRP2-based RDTs could be considered for use in this region; however

  17. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data.

    Science.gov (United States)

    Huynh-Thu, Vân Anh; Geurts, Pierre

    2018-02-21

    The elucidation of gene regulatory networks is one of the major challenges of systems biology. Measurements about genes that are exploited by network inference methods are typically available either in the form of steady-state expression vectors or time series expression data. In our previous work, we proposed the GENIE3 method that exploits variable importance scores derived from Random forests to identify the regulators of each target gene. This method provided state-of-the-art performance on several benchmark datasets, but it could however not specifically be applied to time series expression data. We propose here an adaptation of the GENIE3 method, called dynamical GENIE3 (dynGENIE3), for handling both time series and steady-state expression data. The proposed method is evaluated extensively on the artificial DREAM4 benchmarks and on three real time series expression datasets. Although dynGENIE3 does not systematically yield the best performance on each and every network, it is competitive with diverse methods from the literature, while preserving the main advantages of GENIE3 in terms of scalability.

  18. CLAVATA3-like genes are differentially expressed in grape vine (Vitis vinifera) tissues.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Nukumizu, Yuka; Wada, Takuji; Sawa, Shinichiro; Tetsumura, Takuya

    2013-10-15

    The CLAVATA3 (CLV3)/endosperm surrounding region [(ESR) CLE] peptides function as intercellular signaling molecules that regulate various physiological and developmental processes in diverse plant species. We identified five CLV3-like genes from grape vine (Vitis vinifera var. Pinot Noir): VvCLE 6, VvCLE 25-1, VvCLE 25-2, VvCLE 43 and VvCLE TDIF. These CLV3-like genes encode short proteins containing 43-128 amino acids. Except VvCLE TDIF, grape vine CLV3-like proteins possess a consensus amino acid sequence known as the CLE domain. Phylogenic analysis suggests that the VvCLE 6, VvCLE25-1, VvCLE25-2 and VvCLE43 genes have evolved from a single common ancestor to the Arabidopsis CLV3 gene. Expression analyses showed that the five grape CLV3-like genes are expressed in leaves, stems, roots and axillary buds with significant differences in their levels of expression. For example, while all of them were strongly expressed in axillary buds, VvCLE6 and VvCLE43 expression prevailed in roots, and VvCLE25-1, VvCLE25-2 and VvCLE TDIF expression in stems. The differential expression of the five grape CLV3-like peptides suggests that they play different roles in different organs and developmental stages. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Combining multiple hypothesis testing and affinity propagation clustering leads to accurate, robust and sample size independent classification on gene expression data

    Directory of Open Access Journals (Sweden)

    Sakellariou Argiris

    2012-10-01

    Full Text Available Abstract Background A feature selection method in microarray gene expression data should be independent of platform, disease and dataset size. Our hypothesis is that among the statistically significant ranked genes in a gene list, there should be clusters of genes that share similar biological functions related to the investigated disease. Thus, instead of keeping N top ranked genes, it would be more appropriate to define and keep a number of gene cluster exemplars. Results We propose a hybrid FS method (mAP-KL, which combines multiple hypothesis testing and affinity propagation (AP-clustering algorithm along with the Krzanowski & Lai cluster quality index, to select a small yet informative subset of genes. We applied mAP-KL on real microarray data, as well as on simulated data, and compared its performance against 13 other feature selection approaches. Across a variety of diseases and number of samples, mAP-KL presents competitive classification results, particularly in neuromuscular diseases, where its overall AUC score was 0.91. Furthermore, mAP-KL generates concise yet biologically relevant and informative N-gene expression signatures, which can serve as a valuable tool for diagnostic and prognostic purposes, as well as a source of potential disease biomarkers in a broad range of diseases. Conclusions mAP-KL is a data-driven and classifier-independent hybrid feature selection method, which applies to any disease classification problem based on microarray data, regardless of the available samples. Combining multiple hypothesis testing and AP leads to subsets of genes, which classify unknown samples from both, small and large patient cohorts with high accuracy.

  20. The evolution and appearance of C3 duplications in fish originate an exclusive teleost c3 gene form with anti-inflammatory activity.

    Directory of Open Access Journals (Sweden)

    Gabriel Forn-Cuní

    Full Text Available The complement system acts as a first line of defense and promotes organism homeostasis by modulating the fates of diverse physiological processes. Multiple copies of component genes have been previously identified in fish, suggesting a key role for this system in aquatic organisms. Herein, we confirm the presence of three different previously reported complement c3 genes (c3.1, c3.2, c3.3 and identify five additional c3 genes (c3.4, c3.5, c3.6, c3.7, c3.8 in the zebrafish genome. Additionally, we evaluate the mRNA expression levels of the different c3 genes during ontogeny and in different tissues under steady-state and inflammatory conditions. Furthermore, while reconciling the phylogenetic tree with the fish species tree, we uncovered an event of c3 duplication common to all teleost fishes that gave rise to an exclusive c3 paralog (c3.7 and c3.8. These paralogs showed a distinct ability to regulate neutrophil migration in response to injury compared with the other c3 genes and may play a role in maintaining the balance between inflammatory and homeostatic processes in zebrafish.

  1. Expression and imprinting of DIO3 and DIO3OS genes in Holstein ...

    Indian Academy of Sciences (India)

    Navya

    2016-10-18

    Oct 18, 2016 ... expressed from the paternal allele, while the DIO3OS transcript is ..... interactions, or via transcriptional occlusion mechanisms (e.g. Kanduri ... The IG-DMR is associated with proper imprinting of linked genes on the maternal.

  2. Investigation into Regeneration Mechanism of Hydroalcoholic Lavender (Lavandula officianalis Extract through the Evaluation of NT3 Gene Expression after Sciatic Nerve Compression in Rats

    Directory of Open Access Journals (Sweden)

    Fereshteh Naderi Allaf

    2017-05-01

    Full Text Available Abstract Background: Retrograde transport to the alpha motoneurons causes spinal degeneration. The neurotrophic factor (NT3 increases the number of myelinated axons in the dorsal root, leads to differentiation and survival of sensory neurons, parasympathetic motoneurons and prevents cell death. Lavender is a plant in the family Lamiaceae which is reported to have antioxidant, antispasmodic, diuretic, anti-asthmatic, refrigerant, and antipyretic effects. This study examined NT3 gene expression changes after sciatic nerve compression in rats, in the presence of Lavandula officinalis extract. Materials and Methods: Lavender Soxhlet hydroalcoholic extraction was prepared. 36 male Wistar rats were randomly divided into 3 groups including control, compression and treatment (compression group + hydroalcoholic extract of Lavender injections 75mg/kg groups. In controls the muscle was opened without damage to gain access to the sciatic nerve. In compression and treatment groups, the sciatic nerve (right leg was compressed. The extract was injected intraperitoneally in two occasions. A biopsy was taken from the spinal cord segments L4-L6 on day 28, total RNA was extracted and cDNA was synthesized and NT3 gene expression changes were analyzed by ANOVA test by using SPSS software. Results: The results showed that NT3 gene expression had a significant reduction in compression group compared to the control group (p<0.001 and it had a significant increase in treatment group compared with the compression group (p<0.001. Conclusion: A significant increase in gene expression shows that Lavandula officinalis hydroalcoholic extract improves nerve regeneration via NT3 gene expression.

  3. Opposing roles of STAT4 and Dnmt3a in Th1 gene regulation

    Science.gov (United States)

    Pham, Duy; Yu, Qing; Walline, Crystal C.; Muthukrishnan, Rajarajeswari; Blum, Janice S.; Kaplan, Mark H.

    2013-01-01

    The Signal Transducer and Activator of Transcription factor STAT4 is a critical regulator of Th1 differentiation and inflammatory disease. Yet, how STAT4 regulates gene expression is still unclear. In this report, we define a STAT4-dependent sequence of events including H3K4 methylation, Jmjd3 association with STAT4 target loci, and a Jmjd3-dependent decrease in H3K27 trimethylation and DNA methyltransferase (Dnmt) 3a association with STAT4 target loci. Dnmt3a has an obligate role in repressing Th1 gene expression, and in Th1 cultures deficient in both STAT4 and Dnmt3a, there is recovery in the expression of a subset of Th1 genes that is sufficient to increase IFNγ production. Moreover, although STAT4-deficient mice are protected from the development of EAE, mice deficient in STAT4 and conditionally-deficient in Dnmt3a in T cells develop paralysis. Th1 genes that are de-repressed in the absence of Dnmt3a have greater induction following the ectopic expression of the Th1-associated transcription factors T-bet and Hlx1. Together, these data demonstrate that STAT4 and Dnmt3a play opposing roles in regulating Th1 gene expression, and that one mechanism for STAT4-dependent gene programming is in establishing a de-repressed genetic state susceptible to transactivation by additional fate-determining transcription factors. PMID:23772023

  4. Omega-3 fatty acid desaturase gene family from two ω-3 sources, Salvia hispanica and Perilla frutescens: Cloning, characterization and expression.

    Directory of Open Access Journals (Sweden)

    Yufei Xue

    Full Text Available Omega-3 fatty acid desaturase (ω-3 FAD, D15D is a key enzyme for α-linolenic acid (ALA biosynthesis. Both chia (Salvia hispanica and perilla (Perilla frutescens contain high levels of ALA in seeds. In this study, the ω-3 FAD gene family was systematically and comparatively cloned from chia and perilla. Perilla FAD3, FAD7, FAD8 and chia FAD7 are encoded by single-copy (but heterozygous genes, while chia FAD3 is encoded by 2 distinct genes. Only 1 chia FAD8 sequence was isolated. In these genes, there are 1 to 6 transcription start sites, 1 to 8 poly(A tailing sites, and 7 introns. The 5'UTRs of PfFAD8a/b contain 1 to 2 purine-stretches and 2 pyrimidine-stretches. An alternative splice variant of ShFAD7a/b comprises a 5'UTR intron. Their encoded proteins harbor an FA_desaturase conserved domain together with 4 trans-membrane helices and 3 histidine boxes. Phylogenetic analysis validated their identity of dicot microsomal or plastidial ω-3 FAD proteins, and revealed some important evolutionary features of plant ω-3 FAD genes such as convergent evolution across different phylums, single-copy status in algae, and duplication events in certain taxa. The qRT-PCR assay showed that the ω-3 FAD genes of two species were expressed at different levels in various organs, and they also responded to multiple stress treatments. The functionality of the ShFAD3 and PfFAD3 enzymes was confirmed by yeast expression. The systemic molecular and functional features of the ω-3 FAD gene family from chia and perilla revealed in this study will facilitate their use in future studies on genetic improvement of ALA traits in oilseed crops.

  5. Omega-3 fatty acid desaturase gene family from two ω-3 sources, Salvia hispanica and Perilla frutescens: Cloning, characterization and expression

    Science.gov (United States)

    Xue, Yufei; Chen, Baojun; Win, Aung Naing; Fu, Chun; Lian, Jianping; Liu, Xue; Wang, Rui; Zhang, Xingcui

    2018-01-01

    Omega-3 fatty acid desaturase (ω-3 FAD, D15D) is a key enzyme for α-linolenic acid (ALA) biosynthesis. Both chia (Salvia hispanica) and perilla (Perilla frutescens) contain high levels of ALA in seeds. In this study, the ω-3 FAD gene family was systematically and comparatively cloned from chia and perilla. Perilla FAD3, FAD7, FAD8 and chia FAD7 are encoded by single-copy (but heterozygous) genes, while chia FAD3 is encoded by 2 distinct genes. Only 1 chia FAD8 sequence was isolated. In these genes, there are 1 to 6 transcription start sites, 1 to 8 poly(A) tailing sites, and 7 introns. The 5’UTRs of PfFAD8a/b contain 1 to 2 purine-stretches and 2 pyrimidine-stretches. An alternative splice variant of ShFAD7a/b comprises a 5’UTR intron. Their encoded proteins harbor an FA_desaturase conserved domain together with 4 trans-membrane helices and 3 histidine boxes. Phylogenetic analysis validated their identity of dicot microsomal or plastidial ω-3 FAD proteins, and revealed some important evolutionary features of plant ω-3 FAD genes such as convergent evolution across different phylums, single-copy status in algae, and duplication events in certain taxa. The qRT-PCR assay showed that the ω-3 FAD genes of two species were expressed at different levels in various organs, and they also responded to multiple stress treatments. The functionality of the ShFAD3 and PfFAD3 enzymes was confirmed by yeast expression. The systemic molecular and functional features of the ω-3 FAD gene family from chia and perilla revealed in this study will facilitate their use in future studies on genetic improvement of ALA traits in oilseed crops. PMID:29351555

  6. Identifying Regulatory Patterns at the 3'end Regions of Over-expressed and Under-expressed Genes

    KAUST Repository

    Othoum, Ghofran K

    2013-05-01

    Promoters, neighboring regulatory regions and those extending further upstream of the 5’end of genes, are considered one of the main components affecting the expression status of genes in a specific phenotype. More recently research by Chen et al. (2006, 2012) and Mapendano et al. (2010) demonstrated that the 3’end regulatory regions of genes also influence gene expression. However, the association between the regulatory regions surrounding 3’end of genes and their over- or under-expression status in a particular phenotype has not been systematically studied. The aim of this study is to ascertain if regulatory regions surrounding the 3’end of genes contain sufficient regulatory information to correlate genes with their expression status in a particular phenotype. Over- and under-expressed ovarian cancer (OC) genes were used as a model. Exploratory analysis of the 3’end regions were performed by transforming the annotated regions using principal component analysis (PCA), followed by clustering the transformed data thereby achieving a clear separation of genes with different expression status. Additionally, several classification algorithms such as Naïve Bayes, Random Forest and Support Vector Machine (SVM) were tested with different parameter settings to analyze the discriminatory capacity of the 3’end regions of genes related to their gene expression status. The best performance was achieved using the SVM classification model with 10-fold cross-validation that yielded an accuracy of 98.4%, sensitivity of 99.5% and specificity of 92.5%. For gene expression status for newly available instances, based on information derived from the 3’end regions, an SVM predictive model was developed with 10-fold cross-validation that yielded an accuracy of 67.0%, sensitivity of 73.2% and specificity of 61.0%. Moreover, building an SVM with polynomial kernel model to PCA transformed data yielded an accuracy of 83.1%, sensitivity of 92.5% and specificity of 74.8% using

  7. Identifying Regulatory Patterns at the 3'end Regions of Over-expressed and Under-expressed Genes

    KAUST Repository

    Othoum, Ghofran K

    2013-01-01

    Promoters, neighboring regulatory regions and those extending further upstream of the 5’end of genes, are considered one of the main components affecting the expression status of genes in a specific phenotype. More recently research by Chen et al. (2006, 2012) and Mapendano et al. (2010) demonstrated that the 3’end regulatory regions of genes also influence gene expression. However, the association between the regulatory regions surrounding 3’end of genes and their over- or under-expression status in a particular phenotype has not been systematically studied. The aim of this study is to ascertain if regulatory regions surrounding the 3’end of genes contain sufficient regulatory information to correlate genes with their expression status in a particular phenotype. Over- and under-expressed ovarian cancer (OC) genes were used as a model. Exploratory analysis of the 3’end regions were performed by transforming the annotated regions using principal component analysis (PCA), followed by clustering the transformed data thereby achieving a clear separation of genes with different expression status. Additionally, several classification algorithms such as Naïve Bayes, Random Forest and Support Vector Machine (SVM) were tested with different parameter settings to analyze the discriminatory capacity of the 3’end regions of genes related to their gene expression status. The best performance was achieved using the SVM classification model with 10-fold cross-validation that yielded an accuracy of 98.4%, sensitivity of 99.5% and specificity of 92.5%. For gene expression status for newly available instances, based on information derived from the 3’end regions, an SVM predictive model was developed with 10-fold cross-validation that yielded an accuracy of 67.0%, sensitivity of 73.2% and specificity of 61.0%. Moreover, building an SVM with polynomial kernel model to PCA transformed data yielded an accuracy of 83.1%, sensitivity of 92.5% and specificity of 74.8% using

  8. Expression of Nanog gene promotes NIH3T3 cell proliferation

    International Nuclear Information System (INIS)

    Zhang Jingyu; Wang Xia; Chen Bing; Suo Guangli; Zhao Yanhong; Duan Ziyuan; Dai Jianwu

    2005-01-01

    Cells are the functional elements in tissue engineering and regenerative medicine. A large number of cells are usually needed for these purposes. However, there are numbers of limitations for in vitro cell proliferation. Nanog is an important self-renewal determinant in embryonic stem cells. However, it remains unknown whether Nanog will influence the cell cycle and cell proliferation of mature cells. In this study, we expressed Nanog in NIH3T3 cells and showed that expression of Nanog in NIH3T3 promoted cells to enter into S phase and enhanced cell proliferation. This suggests that Nanog gene might function in a similar fashion in mature cells as in ES cells. In addition, it may provide an approach for in vitro cell expansion

  9. An intronic deletion in the PROM1 gene leads to autosomal recessive cone-rod dystrophy.

    Science.gov (United States)

    Eidinger, Osnat; Leibu, Rina; Newman, Hadas; Rizel, Leah; Perlman, Ido; Ben-Yosef, Tamar

    2015-01-01

    To investigate the genetic basis for autosomal recessive cone-rod dystrophy (CRD) in a consanguineous Israeli Jewish family. Patients underwent a detailed ophthalmic evaluation, including eye examination, visual field testing, optical coherence tomography (OCT), and electrophysiological tests, electroretinography (ERG) and visual evoked potential (VEP). Genome-wide homozygosity mapping using a single nucleotide polymorphism (SNP) array was performed to identify homozygous regions shared among two of the affected individuals. Mutation screening of the underlying gene was performed with direct sequencing. In silico and in vitro analyses were used to predict the effect of the identified mutation on splicing. The affected family members are three siblings who have various degrees of progressive visual deterioration, glare, color vision abnormalities, and night vision difficulties. Visual field tests revealed central scotomas of different extension. Cone and rod ERG responses were reduced, with cones more severely affected. Homozygosity mapping revealed several homozygous intervals shared among two of the affected individuals. One included the PROM1 gene. Sequence analysis of the 26 coding exons of PROM1 in one affected individual revealed no mutations in the coding sequence or in intronic splice sites. However, in intron 21, proximate to the intron-exon junction, we observed a homozygous 10 bp deletion between positions -26 and -17 (c.2281-26_-17del). The deletion was linked to a known SNP, c.2281-6C>G. The deletion cosegregated with the disease in the family, and was not detected in public databases or in 101 ethnically-matched control individuals. In silico analysis predicted that this deletion would lead to altered intron 21 splicing. Bioinformatic analysis predicted that a recognition site for the SRSF2 splicing factor is located within the deleted sequence. The in vitro splicing assay demonstrated that c.2281-26_-17del leads to complete exon 22 skipping. A novel

  10. Gene mutation in ATM/PI3K region of nasopharyngeal carcinoma cell lines

    International Nuclear Information System (INIS)

    Wang Hongmei; Wu Xinyao; Xia Yunfei

    2002-01-01

    Objective: To define the correlation between nasopharyngeal carcinoma (NPC) cell radiosensitivity and gene mutation in the ATM/PI3K coding region. Methods: The gene mutation in the ATM/PI3K region of nasopharyngeal carcinoma cell lines which vary in radiosensitivity, was monitored by reverse transcription-polymerase chain reaction (RT-PCR) and fluorescence-marked ddNTP cycle sequencing technique. Results: No gene mutation was detected in the ATM/PI3K region of either CNE1 or CNE2. Conclusion: Disparity in intrinsic radiosensitivity between different NPC cell lines depends on some other factors and mechanism without being related to ATM/PI3K mutations

  11. The KDM5 family is required for activation of pro-proliferative cell cycle genes during adipocyte differentiation

    DEFF Research Database (Denmark)

    Brier, Ann-Sofie B; Loft, Anne; Madsen, Jesper G S

    2017-01-01

    The KDM5 family of histone demethylases removes the H3K4 tri-methylation (H3K4me3) mark frequently found at promoter regions of actively transcribed genes and is therefore generally considered to contribute to corepression. In this study, we show that knockdown (KD) of all expressed members...... of the KDM5 family in white and brown preadipocytes leads to deregulated gene expression and blocks differentiation to mature adipocytes. KDM5 KD leads to a considerable increase in H3K4me3 at promoter regions; however, these changes in H3K4me3 have a limited effect on gene expression per se. By contrast......, genome-wide analyses demonstrate that KDM5A is strongly enriched at KDM5-activated promoters, which generally have high levels of H3K4me3 and are associated with highly expressed genes. We show that KDM5-activated genes include a large set of cell cycle regulators and that the KDM5s are necessary...

  12. Dopamine signaling leads to loss of Polycomb repression and aberrant gene activation in experimental parkinsonism

    DEFF Research Database (Denmark)

    Södersten, Erik; Feyder, Michael; Lerdrup, Mads

    2014-01-01

    . Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation....... The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP) experiments showed that increased H3K27me3S28p...

  13. AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy.

    Science.gov (United States)

    Dinculescu, Astra; Stupay, Rachel M; Deng, Wen-Tao; Dyka, Frank M; Min, Seok-Hong; Boye, Sanford L; Chiodo, Vince A; Abrahan, Carolina E; Zhu, Ping; Li, Qiuhong; Strettoi, Enrica; Novelli, Elena; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe; Smith, W Clay; Hauswirth, William W

    2016-01-01

    Usher syndrome type III (USH3A) is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1) gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.

  14. Mutational Analysis of TAC3 and TACR3 Genes in Patients with Idiopathic Central Pubertal Disorders

    Science.gov (United States)

    Tusset, Cintia; Noel, Sekoni D.; Trarbach, Ericka B.; Silveira, Letícia F. G.; Jorge, Alexander A. L.; Brito, Vinicius N.; Cukier, Priscila; Seminara, Stephanie B.; de Mendonça, Berenice B.; Kaiser, Ursula B.; Latronico, Ana Claudia

    2013-01-01

    Aim To investigate the presence of variants in the TAC3 and TACR3 genes, which encode NKB and its receptor (NK3R), respectively, in a large cohort of patients with idiopathic central pubertal disorders. Patients and Methods Two hundred and thirty seven patients were studied: 114 with central precocious puberty (CPP), 73 with normosmic isolated hypogonadotropic hypogonadism (IHH) and 50 with constitutional delay of growth and puberty (CDGP). The control group consisted of 150 Brazilian individuals with normal pubertal development. Genomic DNA was extracted from peripheral blood and the entire coding region of both TAC3 and TACR3 genes were amplified and automatically sequenced. Results We identified one variant (p.A63P) in NKB and four variants, p.G18D, p.L58L (c.172C>T), p.W275* and p.A449S in NK3R, which were absent in the control group. The p.A63P variant was identified in a girl with CPP, and p.A449S in a girl with CDGP. The known p.G18D, p.L58L and p.W275* variants were identified in three unrelated males with normosmic IHH. Conclusion Rare variants in the TAC3 and TACR3 genes were identified in patients with central pubertal disorders. Loss-of-function variants of TACR3 were associated with the normosmic IHH phenotype. PMID:23329188

  15. In vivo expression of the lacY gene in two segments leads to functional lac permease

    International Nuclear Information System (INIS)

    Bibi, E.; Kaback, H.R.

    1990-01-01

    The lacY gene of Escherichia coli was cut into two approximately equal-size fragments with Afl II and subcloned individually or together under separate lac operator/promoters in plasmid pT7-5. Under these conditions, lac permease is expressed in two portions: (i) the N-terminal portion (the N terminus, the first six putative transmembrane helices, and most of putative loop 7) and (ii) the C-terminal portion (the last six putative transmembrane helices and the C terminus). Cells harboring pT7-5 encoding both fragments transport lactose at about 30% the rate of cells expressing intact permease to a comparable steady-state level of accumulation. In contrast, cells expressing either half of the permease independently do not transport lactose. As judged by [ 35 S]methionine labeling and immunoblotting, intact permease in completely absent from the membrane of cells expressing lacY fragments either individually or together. Thus, transport activity must result from an association between independently synthesized pieces of lac permease. When the gene fragments are expressed individually, the N-terminal portion of the permease is observed inconsistently, and the C-terminal portion is not observed. When the gene fragments are expressed together, polypeptides identified as the N- and C-terminal moieties of the permease are found in the membrane. It is concluded that the N- or C-terminal halves of lac permease are proteolyzed when synthesized independently and that association between the two complementing polypeptides leads to a more stable, catalytically active complex

  16. Studies on guanidinated N-3-aminopropyl methacrylamide-N-2-hydroxypropyl methacrylamide co-polymers as gene delivery carrier.

    Science.gov (United States)

    Qin, Zhu; Liu, Wei; Guo, Liang; Li, Xinsong

    2012-01-01

    Guanidinated N-3-aminopropyl methacrylamide (APMA)-N-2-hydroxypropyl methacrylamide (HPMA) co-polymers were prepared and evaluated to develop novel non-viral gene transfection carriers. The co-polymers were synthesized via radical co-polymerization of APMA and HPMA followed by total guanidination of amino groups, which employed guanidinated APMA (GPMA) for increasing cell-penetrating and HPMA as the positive shielding content. The molecular weight of guanidinated APMA-HPMA co-polymers (GPMA-HPMA) was determined by static light scattering. Furthermore, cytotoxicity and transfection experiments of GPMA-HPMA/pDNA complexes were conducted. A significant decrease of their parent cytotoxicity and an efficient transfection at relative low charge ratios were observed. The cellular distribution of most GPMA-HPMA/pDNA complexes was partially localized in the nucleus, as indicated by confocal laser scanning microscopy. The guanidination strategy employed may lead to non-viral gene delivery carriers that combine satisfactory transfection efficiency and cytotoxicity, which contribute to their cell-penetrating ability.

  17. The development and application of a multiple gene co-silencing system using endogenous URA3 as a reporter gene in Ganoderma lucidum.

    Directory of Open Access Journals (Sweden)

    Dashuai Mu

    Full Text Available Ganoderma lucidum is one of the most important medicinal mushrooms; however, molecular genetics research on this species has been limited due to a lack of reliable reverse genetic tools. In this study, the endogenous orotidine 5'-monophosphate decarboxylase gene (URA3 was cloned as a silencing reporter, and four gene-silencing methods using hairpin, sense, antisense, and dual promoter constructs, were introduced into G. lucidum through a simple electroporation procedure. A comparison and evaluation of silencing efficiency demonstrated that all of the four methods differentially suppressed the expression of URA3. Our data unequivocally indicate that the dual promoter silencing vector yields the highest rate of URA3 silencing compared with other vectors (up to 81.9%. To highlight the advantages of the dual promoter system, we constructed a co-silencing system based on the dual promoter method and succeeded in co-silencing URA3 and laccase in G. lucidum. The reduction of the mRNA levels of the two genes were correlated. Thus, the screening efficiency for RNAi knockdown of multiple genes may be improved by the co-silencing of an endogenous reporter gene. The molecular tools developed in this study should facilitate the isolation of genes and the characterization of the functions of multiple genes in this pharmaceutically important species, and these tools should be highly useful for the study of other basidiomycetes.

  18. GNAI3: Another Candidate Gene to Screen in Persons with Ocular Albinism

    Science.gov (United States)

    Young, Alejandra; Sader, Avery; Farber, Debora B.

    2016-01-01

    Ocular albinism type 1 (OA), caused by mutations in the OA1 gene, encodes a G-protein coupled receptor, OA1, localized in melanosomal membranes of the retinal pigment epithelium (RPE). This disorder is characterized by both RPE macro-melanosomes and abnormal decussation of ganglion cell axons at the brain’s optic chiasm. We demonstrated previously that Oa1 specifically activates Gαi3, which also signals in the Oa1 transduction pathway that regulates melanosomal biogenesis. In this study, we screened the human Gαi3 gene, GNAI3, in DNA samples from 26 patients who had all clinical characteristics of OA but in whom a specific mutation in the OA1 gene had not been found, and in 6 normal control individuals. Using the Agilent HaloPlex Target Enrichment System and next-generation sequencing (NGS) on the Illumina MiSeq platform, we identified 518 variants after rigorous filtering. Many of these variants were corroborated by Sanger sequencing. Overall, 98.8% coverage of the GNAI3 gene was obtained by the HaloPlex amplicons. Of all variants, 6 non-synonymous and 3 synonymous were in exons, 41 in a non-coding exon embedded in the 3’ untranslated region (UTR), 6 in the 5’ UTR, and 462 in introns. These variants included novel SNVs, insertions, deletions, and a frameshift mutation. All were found in at least one patient but none in control samples. Using computational methods, we modeled the GNAI3 protein and its non-synonymous exonic mutations and determined that several of these may be the cause of disease in the patients studied. Thus, we have identified GNAI3 as a second gene possibly responsible for X-linked ocular albinism. PMID:27607449

  19. GNAI3: Another Candidate Gene to Screen in Persons with Ocular Albinism.

    Directory of Open Access Journals (Sweden)

    Alejandra Young

    Full Text Available Ocular albinism type 1 (OA, caused by mutations in the OA1 gene, encodes a G-protein coupled receptor, OA1, localized in melanosomal membranes of the retinal pigment epithelium (RPE. This disorder is characterized by both RPE macro-melanosomes and abnormal decussation of ganglion cell axons at the brain's optic chiasm. We demonstrated previously that Oa1 specifically activates Gαi3, which also signals in the Oa1 transduction pathway that regulates melanosomal biogenesis. In this study, we screened the human Gαi3 gene, GNAI3, in DNA samples from 26 patients who had all clinical characteristics of OA but in whom a specific mutation in the OA1 gene had not been found, and in 6 normal control individuals. Using the Agilent HaloPlex Target Enrichment System and next-generation sequencing (NGS on the Illumina MiSeq platform, we identified 518 variants after rigorous filtering. Many of these variants were corroborated by Sanger sequencing. Overall, 98.8% coverage of the GNAI3 gene was obtained by the HaloPlex amplicons. Of all variants, 6 non-synonymous and 3 synonymous were in exons, 41 in a non-coding exon embedded in the 3' untranslated region (UTR, 6 in the 5' UTR, and 462 in introns. These variants included novel SNVs, insertions, deletions, and a frameshift mutation. All were found in at least one patient but none in control samples. Using computational methods, we modeled the GNAI3 protein and its non-synonymous exonic mutations and determined that several of these may be the cause of disease in the patients studied. Thus, we have identified GNAI3 as a second gene possibly responsible for X-linked ocular albinism.

  20. Identification of Hematopoietic Stem Cell Engraftment Genes in Gene Therapy Studies.

    Science.gov (United States)

    Powers, John M; Trobridge, Grant D

    2013-09-01

    Hematopoietic stem cell (HSC) therapy using replication-incompetent retroviral vectors is a promising approach to provide life-long correction for genetic defects. HSC gene therapy clinical studies have resulted in functional cures for several diseases, but in some studies clonal expansion or leukemia has occurred. This is due to the dyregulation of endogenous host gene expression from vector provirus insertional mutagenesis. Insertional mutagenesis screens using replicating retroviruses have been used extensively to identify genes that influence oncogenesis. However, retroviral mutagenesis screens can also be used to determine the role of genes in biological processes such as stem cell engraftment. The aim of this review is to describe the potential for vector insertion site data from gene therapy studies to provide novel insights into mechanisms of HSC engraftment. In HSC gene therapy studies dysregulation of host genes by replication-incompetent vector proviruses may lead to enrichment of repopulating clones with vector integrants near genes that influence engraftment. Thus, data from HSC gene therapy studies can be used to identify novel candidate engraftment genes. As HSC gene therapy use continues to expand, the vector insertion site data collected will be of great interest to help identify novel engraftment genes and may ultimately lead to new therapies to improve engraftment.

  1. HSD3B and gene-gene interactions in a pathway-based analysis of genetic susceptibility to bladder cancer.

    Directory of Open Access Journals (Sweden)

    Angeline S Andrew

    Full Text Available Bladder cancer is the 4(th most common cancer among men in the U.S. We analyzed variant genotypes hypothesized to modify major biological processes involved in bladder carcinogenesis, including hormone regulation, apoptosis, DNA repair, immune surveillance, metabolism, proliferation, and telomere maintenance. Logistic regression was used to assess the relationship between genetic variation affecting these processes and susceptibility in 563 genotyped urothelial cell carcinoma cases and 863 controls enrolled in a case-control study of incident bladder cancer conducted in New Hampshire, U.S. We evaluated gene-gene interactions using Multifactor Dimensionality Reduction (MDR and Statistical Epistasis Network analysis. The 3'UTR flanking variant form of the hormone regulation gene HSD3B2 was associated with increased bladder cancer risk in the New Hampshire population (adjusted OR 1.85 95%CI 1.31-2.62. This finding was successfully replicated in the Texas Bladder Cancer Study with 957 controls, 497 cases (adjusted OR 3.66 95%CI 1.06-12.63. The effect of this prevalent SNP was stronger among males (OR 2.13 95%CI 1.40-3.25 than females (OR 1.56 95%CI 0.83-2.95, (SNP-gender interaction P = 0.048. We also identified a SNP-SNP interaction between T-cell activation related genes GATA3 and CD81 (interaction P = 0.0003. The fact that bladder cancer incidence is 3-4 times higher in males suggests the involvement of hormone levels. This biologic process-based analysis suggests candidate susceptibility markers and supports the theory that disrupted hormone regulation plays a role in bladder carcinogenesis.

  2. Role of LOX3 Gene in Alleviating Adverse Effects of Drought and Pathogens in Rice

    Institute of Scientific and Technical Information of China (English)

    LIU Nan-nan; JIANG Ling; ZHANG Wen-wei; LIU Ling-long; ZHAI Hu-qu; WAN Jian-min

    2008-01-01

    Lipoxygenase 3 (LOX3) is a major component of the LOX isozymes in mature rice seeds. To investigate the role of LOX3 gene under stresses, a plant expression vector containing antisense cDNA of LOX3 was constructed. Rice varieties Wuyunjing 7 and Kasalath were transformed by the Agrobacterium-mediated method and transgenic rice plants were generated. PCR and Southern blot results showed that the antisense LOX3 gene was integrated into the rice genome. Analyses of embryo LOX3 deletion and semi-quantitative RT-PCR confirmed the antisense suppression of LOX3 gene in transgenic plants. The T2 antisense plants of LOX3 were sensitive to drought stress, rice blast and bacterial blight compared with non-transgenic plants. These results suggest that the LOX3 gene might function in response to stresses.

  3. Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian).

    Science.gov (United States)

    Li, Mei-Ying; Xu, Bi-Yu; Liu, Ju-Hua; Yang, Xiao-Liang; Zhang, Jian-Bin; Jia, Cai-Hong; Ren, Li-Cheng; Jin, Zhi-Qiang

    2012-02-01

    To investigate the regulation of 14-3-3 proteins in banana (Musa acuminata L. AAA group, cv. Brazilian) fruit postharvest ripening, four cDNAs encoding 14-3-3 proteins were isolated from banana and designated as Ma-14-3-3a, Ma-14-3-3c, Ma-14-3-3e, and Ma-14-3-3i, respectively. Amino acid sequence alignment showed that the four 14-3-3 proteins shared a highly conserved core structure and variable C-terminal as well as N-terminal regions with 14-3-3 proteins from other plant species. Phylogenetic analysis revealed that the four 14-3-3 genes belong to the non-ε groups. They were differentially and specifically expressed in various tissues. Real-time RT-PCR analysis indicated that these four genes function differentially during banana fruit postharvest ripening. Three genes, Ma-14-3-3a, Ma-14-3-3c, and Ma-14-3-3e, were significantly induced by exogenous ethylene treatment. However, gene function differed in naturally ripened fruits. Ethylene could induce Ma-14-3-3c expression during postharvest ripening, but expression patterns of Ma-14-3-3a and Ma-14-3-3e suggest that these two genes appear to be involved in regulating ethylene biosynthesis during fruit ripening. No obvious relationship emerged between Ma-14-3-3i expression in naturally ripened and 1-MCP (1-methylcyclopropene)-treated fruit groups during fruit ripening. These results indicate that the 14-3-3 proteins might be involved in various regulatory processes of banana fruit ripening. Further studies will mainly focus on revealing the detailed biological mechanisms of these four 14-3-3 genes in regulating banana fruit postharvest ripening.

  4. Directed mutagenesis in Candida albicans: one-step gene disruption to isolate ura3 mutants

    International Nuclear Information System (INIS)

    Kelly, R.; Miller, S.M.; Kurtz, M.B.; Kirsch, D.R.

    1987-01-01

    A method for introducing specific mutations into the diploid Candida albicans by one-step gene disruption and subsequent UV-induced recombination was developed. The cloned C. albicans URA3 gene was disrupted with the C. albicans ADE2 gene, and the linearized DNA was used for transformation of two ade2 mutants, SGY-129 and A81-Pu. Both an insertional inactivation of the URA3 gene and a disruption which results in a 4.0-kilobase deletion were made. Southern hybridization analyses demonstrated that the URA3 gene was disrupted on one of the chromosomal homologs in 15 of the 18 transformants analyzed. These analyses also revealed restriction site dimorphism of EcoRI at the URA3 locus which provides a unique marker to distinguish between chromosomal homologs. This enabled us to show that either homolog could be disrupted and that disrupted transformants of SGY-129 contained more than two copies of the URA3 locus. The A81-Pu transformants heterozygous for the ura3 mutations were rendered homozygous and Ura- by UV-induced recombination. The homozygosity of a deletion mutant and an insertion mutant was confirmed by Southern hybridization. Both mutants were transformed to Ura+ with plasmids containing the URA3 gene and in addition, were resistant to 5-fluoro-orotic acid, a characteristic of Saccharomyces cerevisiae ura3 mutants as well as of orotidine-5'-phosphate decarboxylase mutants of other organisms

  5. ABI3 mediates dehydration stress recovery response in Arabidopsis thaliana by regulating expression of downstream genes.

    Science.gov (United States)

    Bedi, Sonia; Sengupta, Sourabh; Ray, Anagh; Nag Chaudhuri, Ronita

    2016-09-01

    ABI3, originally discovered as a seed-specific transcription factor is now implicated to act beyond seed physiology, especially during abiotic stress. In non-seed plants, ABI3 is known to act in desiccation stress signaling. Here we show that ABI3 plays a role in dehydration stress response in Arabidopsis. ABI3 gene was upregulated during dehydration stress and its expression was maintained during subsequent stress recovery phases. Comparative gene expression studies in response to dehydration stress and stress recovery were done with genes which had potential ABI3 binding sites in their upstream regulatory regions. Such studies showed that several genes including known seed-specific factors like CRUCIFERIN1, CRUCIFERIN3 and LEA-group of genes like LEA76, LEA6, DEHYDRIN LEA and LEA-LIKE got upregulated in an ABI3-dependent manner, especially during the stress recovery phase. ABI3 got recruited to regions upstream to the transcription start site of these genes during dehydration stress response through direct or indirect DNA binding. Interestingly, ABI3 also binds to its own promoter region during such stress signaling. Nucleosomes covering potential ABI3 binding sites in the upstream sequences of the above-mentioned genes alter positions, and show increased H3 K9 acetylation during stress-induced transcription. ABI3 thus mediates dehydration stress signaling in Arabidopsis through regulation of a group of genes that play a role primarily during stress recovery phase. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Lead-Related Genetic Loci, Cumulative Lead Exposure and Incident Coronary Heart Disease: The Normative Aging Study

    Science.gov (United States)

    Weisskopf, Marc G.; Sparrow, David; Schwartz, Joel; Hu, Howard; Park, Sung Kyun

    2016-01-01

    Background Cumulative exposure to lead is associated with cardiovascular outcomes. Polymorphisms in the δ-aminolevulinic acid dehydratase (ALAD), hemochromatosis (HFE), heme oxygenase-1 (HMOX1), vitamin D receptor (VDR), glutathione S-transferase (GST) supergene family (GSTP1, GSTT1, GSTM1), apolipoprotein E (APOE),angiotensin II receptor-1 (AGTR1) and angiotensinogen (AGT) genes, are believed to alter toxicokinetics and/or toxicodynamics of lead. Objectives We assessed possible effect modification by genetic polymorphisms in ALAD, HFE, HMOX1, VDR, GSTP1, GSTT1, GSTM1, APOE, AGTR1 and AGT individually and as the genetic risk score (GRS) on the association between cumulative lead exposure and incident coronary heart disease (CHD) events. Methods We used K-shell-X-ray fluorescence to measure bone lead levels. GRS was calculated on the basis of 22 lead-related loci. We constructed Cox proportional hazard models to compute adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for incident CHD. We applied inverse probability weighting to account for potential selection bias due to recruitment into the bone lead sub-study. Results Significant effect modification was found by VDR, HMOX1, GSTP1, APOE, and AGT genetic polymorphisms when evaluated individually. Further, the bone lead-CHD associations became larger as GRS increases. After adjusting for potential confounders, a HR of CHD was 2.27 (95%CI: 1.50–3.42) with 2-fold increase in patella lead levels, among participants in the top tertile of GRS. We also detected an increasing trend in HRs across tertiles of GRS (p-trend = 0.0063). Conclusions Our findings suggest that lead-related loci as a whole may play an important role in susceptibility to lead-related CHD risk. These findings need to be validated in a separate cohort containing bone lead, lead-related genetic loci and incident CHD data. PMID:27584680

  7. Expression of AQP3 gene in chronic atrophic and chronic superficial gastritis patients

    Directory of Open Access Journals (Sweden)

    Shijun Zhang

    2007-12-01

    Full Text Available BACKGROUND: Most studies about aquaporin 3 (AQP3 in the gastrointestinal tract were carried out on both in vivo and in vitro. The role of AQP3-mediated water transport in human gastrointestinal tract is still unclear. Our aim in this study was to explore the expression of AQP3 gene in chronic atrophic gastritis (CAG and chronic superficial gastritis (CSG atients and to determine its possible function in the development of gastritis.
    METHODS: Twenty-two outpatients diagnosed as CSG and 12 outpatients diagnosed as CAG were selected randomly. Ten cases of healthy individuals were selected as normal control group. In all cases, AQP3 gene expression of gastric mucosa was detected by fluorescence quantitative polymerase chain reaction (FQ-PCR.
    RESULTS: The AQP3 gene expression was significantly higher in gastric mucosa of CSG and healthy individuals than that in CAG (P<0.01. However, there was no significant difference in the AQP3 gene expression between helicobacter pylori positive patients and helicobacter pylori negative patients (P>0.05.
    CONCLUSIONS: AQP3 expression might play certain role in the occurrence and development of gastritis.
    KEY WORDS: Aquaporin 3, chronic superficial gastritis, chronic atrophic gastritis.

  8. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Science.gov (United States)

    Zhang, Zhichun; Tian, Hua; Lv, Ping; Wang, Weiping; Jia, Zhuqing; Wang, Sainan; Zhou, Chunyan; Gao, Xuejun

    2015-01-01

    Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  9. 1,25-Dihydroxyvitamin D3 regulates genes responsible for detoxification in intestine

    International Nuclear Information System (INIS)

    Kutuzova, Galina D.; DeLuca, Hector F.

    2007-01-01

    1α,25-Dihydroxyvitamin D 3 (1,25-(OH) 2 D 3 ), the biologically active form of vitamin D 3 , not only plays a major role in mammalian calcium and phosphorous homeostasis but also exerts pleiotropic effects on cell proliferation, differentiation and the immune system. Further, vitamin D is believed to play a significant role in the prevention of colon, prostate, and breast cancer and in reducing the risk of autoimmune diseases. To gain insight into the mechanism whereby vitamin D can have such diverse actions, we have employed microarray technology. We studied the effect of a single dose of 1,25-(OH) 2 D 3 on gene expression in the intestine of vitamin D-deficient rats. Within 6 h, 1,25-(OH) 2 D 3 stimulates the expression of several phase I and phase II biotransformation genes. There is also an increased expression of antioxidant genes. These results support the idea that vitamin D is a significant factor in detoxification and protection against environmental toxins

  10. Analysis of Complement C3 Gene Reveals Susceptibility to Severe Preeclampsia

    Directory of Open Access Journals (Sweden)

    A. Inkeri Lokki

    2017-05-01

    Full Text Available Preeclampsia (PE is a common vascular disease of pregnancy with genetic predisposition. Dysregulation of the complement system has been implicated, but molecular mechanisms are incompletely understood. In this study, we determined the potential linkage of severe PE to the most central complement gene, C3. Three cohorts of Finnish patients and controls were recruited for a genetic case-control study. Participants were genotyped using Sequenom genotyping and Sanger sequencing. Initially, we studied 259 Finnish patients with severe PE and 426 controls from the Southern Finland PE and the Finnish population-based PE cohorts. We used a custom-made single nucleotide polymorphism (SNP genotyping assay consisting of 98 SNPs in 18 genes that encode components of the complement system. Following the primary screening, C3 was selected as the candidate gene and consequently Sanger sequenced. Fourteen SNPs from C3 were also genotyped by a Sequenom panel in 960 patients with severe PE and 705 controls, including already sequenced individuals. Three of the 43 SNPs observed within C3 were associated with severe PE: rs2287845 (p = 0.038, OR = 1.158, rs366510 (p = 0.039, OR = 1.158, and rs2287848 (p = 0.041, OR = 1.155. We also discovered 16 SNP haplotypes with extreme linkage disequilibrium in the middle of the gene with a protective (p = 0.044, OR = 0.628 or a predisposing (p = 0.011, OR = 2.110 effect to severe PE depending on the allele combination. Genetic variants associated with PE are located in key domains of C3 and could thereby influence the function of C3. This is, as far as we are aware, the first candidate gene in the complement system with an association to a clinically relevant PE subphenotype, severe PE. The result highlights a potential role for the complement system in the pathogenesis of PE and may help in defining prognostic and therapeutic subgroups of preeclamptic women.

  11. bc-GenExMiner 3.0: new mining module computes breast cancer gene expression correlation analyses.

    Science.gov (United States)

    Jézéquel, Pascal; Frénel, Jean-Sébastien; Campion, Loïc; Guérin-Charbonnel, Catherine; Gouraud, Wilfried; Ricolleau, Gabriel; Campone, Mario

    2013-01-01

    We recently developed a user-friendly web-based application called bc-GenExMiner (http://bcgenex.centregauducheau.fr), which offered the possibility to evaluate prognostic informativity of genes in breast cancer by means of a 'prognostic module'. In this study, we develop a new module called 'correlation module', which includes three kinds of gene expression correlation analyses. The first one computes correlation coefficient between 2 or more (up to 10) chosen genes. The second one produces two lists of genes that are most correlated (positively and negatively) to a 'tested' gene. A gene ontology (GO) mining function is also proposed to explore GO 'biological process', 'molecular function' and 'cellular component' terms enrichment for the output lists of most correlated genes. The third one explores gene expression correlation between the 15 telomeric and 15 centromeric genes surrounding a 'tested' gene. These correlation analyses can be performed in different groups of patients: all patients (without any subtyping), in molecular subtypes (basal-like, HER2+, luminal A and luminal B) and according to oestrogen receptor status. Validation tests based on published data showed that these automatized analyses lead to results consistent with studies' conclusions. In brief, this new module has been developed to help basic researchers explore molecular mechanisms of breast cancer. DATABASE URL: http://bcgenex.centregauducheau.fr

  12. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks.

    Science.gov (United States)

    Guo, Liyuan; Wang, Jing

    2018-01-04

    Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element-target gene pairs (E-G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Optical analysis of RE(3+) (RE = Pr(3) (+) , Er(3) (+) and Nd(3) (+) ):cadmium lead boro tellurite glasses.

    Science.gov (United States)

    Giridhar, P; Bhushana Reddy, M; Neelima, G; Ramanaiah, R; Nagamuni Reddy, K; Sahadeva Reddy, V; Sudhakar Reddy, B

    2016-09-01

    This article reports on the optical characterization of Pr(3) (+) -, Er(3) (+) - and Nd(3) (+) -doped cadmium lead boro tellurite (CLBT) glasses prepared using the melt quenching method. The visible-near infrared (Vis-NIR) absorption spectra of these glasses were analyzed systematically. On measuring the NIR emission spectra of Er(3) (+) :CLBT glasses, a broad emission band centered at 1536 nm ((4) I13 /2  → (4) I15 /2 ) was observed, as were three NIR emission bands at 900 nm ((4) F3 /2  → (4) I9 /2 ), 1069 nm ((4) F3 /2  → (4) I11 /2 ) and 1338 nm ((4) F3 /2  → (4) I13 /2 ) from Nd(3) (+) :CLBT glasses and an NIR emission band at 1334 nm ((1) G4  → (3) H5 ) from Pr(3) (+) :CLBT glasses at an excitation wavelength (λex ) of 514.5 nm (Ar(+) laser). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Association of HS6ST3 gene polymorphisms with obesity and ...

    Indian Academy of Sciences (India)

    Supplementary data: Association of HS6ST3 gene polymorphisms with obesity and triglycerides: gene × gender interaction. Ke-Sheng Wang, Liang Wang, Xuefeng Liu and Min Zeng. J. Genet. 92, 395–402. Table 1. Associations of 117 SNPs with obesity in the Health ABC and Marshfield samples. Minor. OR Health.

  15. Effect of dietary lead on intestinal nutrient transporters mRNA expression in broiler chickens.

    Science.gov (United States)

    Ebrahimi, Roohollah; Faseleh Jahromi, Mohammad; Liang, Juan Boo; Soleimani Farjam, Abdoreza; Shokryazdan, Parisa; Idrus, Zulkifli

    2015-01-01

    Lead- (Pb-) induced oxidative stress is known to suppress growth performance and feed efficiency in broiler chickens. In an attempt to describe the specific underlying mechanisms of such phenomenon we carried out the current study. Ninety-six one-day-old broiler chicks were randomly assigned to 2 dietary treatment groups of 6 pen replicates, namely, (i) basal diet containing no lead supplement (control) and (ii) basal diet containing 200 mg lead acetate/kg of diet. Following 3 weeks of experimental period, jejunum samples were collected to examine the changes in gene expression of several nutrient transporters, antioxidant enzymes, and heat shock protein 70 (Hsp70) using quantitative real-time PCR. The results showed that addition of lead significantly decreased feed intake, body weight gain, and feed efficiency. Moreover, with the exception of GLUT5, the expression of all sugar, peptide, and amino acid transporters was significantly downregulated in the birds under Pb induced oxidative stress. Exposure to Pb also upregulated the antioxidant enzymes gene expression together with the downregulation of glutathione S-transferase and Hsp70. In conclusion, it appears that Pb-induced oxidative stress adversely suppresses feed efficiency and growth performance in chicken and the possible underlying mechanism for such phenomenon is downregulation of major nutrient transporter genes in small intestine.

  16. Pre-thymic somatic mutation leads to high mutant frequency at hypoxanthine-guanine phosphoribosyltransferase gene

    Energy Technology Data Exchange (ETDEWEB)

    Jett, J. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    While characterizing the background mutation spectrum of the Hypoxathine-guanine phosphoribosyltransferase (HPRT) gene in a healthy population, an outlier with a high mutant frequency of thioguanine resistant lymphocytes was found. When studied at the age of 46, this individual had been smoking 60 cigarettes per day for 38 years. His mutant frequency was calculated at 3.6 and 4.2x10{sup {minus}4} for two sampling periods eight months apart. Sequencing analysis of the HPRT gene in his mutant thioguanine resistant T lymphocytes was done to find whether the cells had a high rate of mutation, or if the mutation was due to a single occurrence of mutation and, if so, when in the T lymphocyte development the mutation occurred. By T-cell receptor analysis it has been found that out of 35 thioguanine resistant clones there was no dominant gamma T cell receptor gene rearrangement. During my appointment in the Science & Engineering Research Semester, I found that 34 of those clones have the same base substitution of G{yields}T at cDNA position 197. Due to the consistent mutant frequency from both sampling periods and the varying T cell receptors, the high mutant frequency cannot be due to recent proliferation of a mature mutant T lymphocyte. From the TCR and DNA sequence analysis we conclude that the G{yields}T mutation must have occurred in a T lymphocyte precursor before thymic differentiation so that the thioguanine resistant clones share the same base substitution but not the same gamma T cell receptor gene.

  17. Effects of nickel treatment on H3K4 trimethylation and gene expression.

    Directory of Open Access Journals (Sweden)

    Kam-Meng Tchou-Wong

    Full Text Available Occupational exposure to nickel compounds has been associated with lung and nasal cancers. We have previously shown that exposure of the human lung adenocarcinoma A549 cells to NiCl(2 for 24 hr significantly increased global levels of trimethylated H3K4 (H3K4me3, a transcriptional activating mark that maps to the promoters of transcribed genes. To further understand the potential epigenetic mechanism(s underlying nickel carcinogenesis, we performed genome-wide mapping of H3K4me3 by chromatin immunoprecipitation and direct genome sequencing (ChIP-seq and correlated with transcriptome genome-wide mapping of RNA transcripts by massive parallel sequencing of cDNA (RNA-seq. The effect of NiCl(2 treatment on H3K4me3 peaks within 5,000 bp of transcription start sites (TSSs on a set of genes highly induced by nickel in both A549 cells and human peripheral blood mononuclear cells were analyzed. Nickel exposure increased the level of H3K4 trimethylation in both the promoters and coding regions of several genes including CA9 and NDRG1 that were increased in expression in A549 cells. We have also compared the extent of the H3K4 trimethylation in the absence and presence of formaldehyde crosslinking and observed that crosslinking of chromatin was required to observe H3K4 trimethylation in the coding regions immediately downstream of TSSs of some nickel-induced genes including ADM and IGFBP3. This is the first genome-wide mapping of trimethylated H3K4 in the promoter and coding regions of genes induced after exposure to NiCl(2. This study may provide insights into the epigenetic mechanism(s underlying the carcinogenicity of nickel compounds.

  18. Exploring Plant Co-Expression and Gene-Gene Interactions with CORNET 3.0.

    Science.gov (United States)

    Van Bel, Michiel; Coppens, Frederik

    2017-01-01

    Selecting and filtering a reference expression and interaction dataset when studying specific pathways and regulatory interactions can be a very time-consuming and error-prone task. In order to reduce the duplicated efforts required to amass such datasets, we have created the CORNET (CORrelation NETworks) platform which allows for easy access to a wide variety of data types: coexpression data, protein-protein interactions, regulatory interactions, and functional annotations. The CORNET platform outputs its results in either text format or through the Cytoscape framework, which is automatically launched by the CORNET website.CORNET 3.0 is the third iteration of the web platform designed for the user exploration of the coexpression space of plant genomes, with a focus on the model species Arabidopsis thaliana. Here we describe the platform: the tools, data, and best practices when using the platform. We indicate how the platform can be used to infer networks from a set of input genes, such as upregulated genes from an expression experiment. By exploring the network, new target and regulator genes can be discovered, allowing for follow-up experiments and more in-depth study. We also indicate how to avoid common pitfalls when evaluating the networks and how to avoid over interpretation of the results.All CORNET versions are available at http://bioinformatics.psb.ugent.be/cornet/ .

  19. Gene expression profiling leads to discovery of correlation of matrix metalloproteinase 11 and heparanase 2 in breast cancer progression

    International Nuclear Information System (INIS)

    Fu, Junjie; Khaybullin, Ravil; Zhang, Yanping; Xia, Amy; Qi, Xin

    2015-01-01

    In order to identify biomarkers involved in breast cancer, gene expression profiling was conducted using human breast cancer tissues. Total RNAs were extracted from 150 clinical patient tissues covering three breast cancer subtypes (Luminal A, Luminal B, and Triple negative) as well as normal tissues. The expression profiles of a total of 50,739 genes were established from a training set of 32 samples using the Agilent Sure Print G3 Human Gene Expression Microarray technology. Data were analyzed using Agilent Gene Spring GX 12.6 software. The expression of several genes was validated using real-time RT-qPCR. Data analysis with Agilent GeneSpring GX 12.6 software showed distinct expression patterns between cancer and normal tissue samples. A group of 28 promising genes were identified with ≥ 10-fold changes of expression level and p-values < 0.05. In particular, MMP11 and HPSE2 were closely examined due to the important roles they play in cancer cell growth and migration. Real-time RT-qPCR analyses of both training and testing sets validated the gene expression profiles of MMP11 and HPSE2. Our findings identified these 2 genes as a novel breast cancer biomarker gene set, which may facilitate the diagnosis and treatment in breast cancer clinical therapies

  20. Association between FOXO3A gene polymorphisms and human longevity: a meta-analysis

    OpenAIRE

    Bao, Ji-Ming; Song, Xian-Lu; Hong, Ying-Qia; Zhu, Hai-Li; Li, Cui; Zhang, Tao; Chen, Wei; Zhao, Shan-Chao; Chen, Qing

    2014-01-01

    Numerous studies have shown associations between the FOXO3A gene, encoding the forkhead box O3 transcription factor, and human or specifically male longevity. However, the associations of specific FOXO3A polymorphisms with longevity remain inconclusive. We performed a meta-analysis of existing studies to clarify these potential associations. A comprehensive search was conducted to identify studies of FOXO3A gene polymorphisms and longevity. Pooled odds ratios (ORs) and 95% confidence interval...

  1. Methylation of WTH3, a possible drug resistant gene, inhibits p53 regulated expression

    International Nuclear Information System (INIS)

    Tian, Kegui; Wang, Yuezeng; Huang, Yu; Sun, Boqiao; Li, Yuxin; Xu, Haopeng

    2008-01-01

    Previous results showed that over-expression of the WTH3 gene in MDR cells reduced MDR1 gene expression and converted their resistance to sensitivity to various anticancer drugs. In addition, the WTH3 gene promoter was hypermethylated in the MCF7/AdrR cell line and primary drug resistant breast cancer epithelial cells. WTH3 was also found to be directly targeted and up regulated by the p53 gene. Furthermore, over expression of the WTH3 gene promoted the apoptotic phenotype in various host cells. To further confirm WTH3's drug resistant related characteristics, we recently employed the small hairpin RNA (shRNA) strategy to knockdown its expression in HEK293 cells. In addition, since the WTH3 promoter's p53-binding site was located in a CpG island that was targeted by methylation, we were interested in testing the possible effect this epigenetic modification had on the p53 transcription factor relative to WTH3 expression. To do so, the in vitro methylation method was utilized to examine the p53 transgene's influence on either the methylated or non-methylated WTH3 promoter. The results generated from the gene knockdown strategy showed that reduction of WTH3 expression increased MDR1 expression and elevated resistance to Doxorubicin as compared to the original control cells. Data produced from the methylation studies demonstrated that DNA methylation adversely affected the positive impact of p53 on WTH3 promoter activity. Taken together, our studies provided further evidence that WTH3 played an important role in MDR development and revealed one of its transcription regulatory mechanisms, DNA methylation, which antagonized p53's positive impact on WTH3 expression

  2. Mutation update of transcription factor genes FOXE3, HSF4, MAF, and PITX3 causing cataracts and other developmental ocular defects.

    Science.gov (United States)

    Anand, Deepti; Agrawal, Smriti A; Slavotinek, Anne; Lachke, Salil A

    2018-04-01

    Mutations in the transcription factor genes FOXE3, HSF4, MAF, and PITX3 cause congenital lens defects including cataracts that may be accompanied by defects in other components of the eye or in nonocular tissues. We comprehensively describe here all the variants in FOXE3, HSF4, MAF, and PITX3 genes linked to human developmental defects. A total of 52 variants for FOXE3, 18 variants for HSF4, 20 variants for MAF, and 19 variants for PITX3 identified so far in isolated cases or within families are documented. This effort reveals FOXE3, HSF4, MAF, and PITX3 to have 33, 16, 18, and 7 unique causal mutations, respectively. Loss-of-function mutant animals for these genes have served to model the pathobiology of the associated human defects, and we discuss the currently known molecular function of these genes, particularly with emphasis on their role in ocular development. Finally, we make the detailed FOXE3, HSF4, MAF, and PITX3 variant information available in the Leiden Online Variation Database (LOVD) platform at https://www.LOVD.nl/FOXE3, https://www.LOVD.nl/HSF4, https://www.LOVD.nl/MAF, and https://www.LOVD.nl/PITX3. Thus, this article informs on key variants in transcription factor genes linked to cataract, aphakia, corneal opacity, glaucoma, microcornea, microphthalmia, anterior segment mesenchymal dysgenesis, and Ayme-Gripp syndrome, and facilitates their access through Web-based databases. © 2018 Wiley Periodicals, Inc.

  3. An intronic mutation c.6430-3C>G in the F8 gene causes splicing efficiency and premature termination in hemophilia A.

    Science.gov (United States)

    Xia, Zunjing; Lin, Jie; Lu, Lingping; Kim, Chol; Yu, Ping; Qi, Ming

    2018-06-01

    : Hemophilia A is a bleeding disorder caused by coagulation factor VIII protein deficiency or dysfunction, which is classified into severe, moderate, and mild according to factor clotting activity. An overwhelming majority of missense and nonsense mutations occur in exons of F8 gene, whereas mutations in introns can also be pathogenic. This study aimed to investigate the effect of an intronic mutation, c.6430-3C>G (IVS22-3C>G), on pre-mRNA splicing of the F8 gene. We applied DNA and cDNA sequencing in a Chinese boy with hemophilia A to search if any pathogenic mutation in the F8 gene. Functional analysis was performed to investigate the effect of an intronic mutation at the transcriptional level. Human Splicing Finder and PyMol were also used to predict its effect. We found the mutation c.6430-3C>G (IVS22-3C>G) in the F8 gene in the affected boy, with his mother being a carrier. cDNA from the mother and pSPL3 splicing assay showed that the mutation IVS22-3C>G results in a two-nucleotide AG inclusion at the 3' end of intron 22 and leads to a truncated coagulation factor VIII protein, with partial loss of the C1 domain and complete loss of the C2 domain. The in-silico tool predicted that the mutation induces altered pre-mRNA splicing by using a cryptic acceptor site in intron 22. The IVS22-3C>G mutation was confirmed to affect pre-mRNA splicing and produce a truncated protein, which reduces the stability of binding between the F8 protein and von Willebrand factor carrier protein due to the loss of an interaction domain.

  4. Isolation and characterization of PEP3, a gene required for vacuolar biogenesis in Saccharomyces cerevisiae.

    OpenAIRE

    Preston, R A; Manolson, M F; Becherer, K; Weidenhammer, E; Kirkpatrick, D; Wright, R; Jones, E W

    1991-01-01

    The Saccharomyces cerevisiae PEP3 gene was cloned from a wild-type genomic library by complementation of the carboxypeptidase Y deficiency in a pep3-12 strain. Subclone complementation results localized the PEP3 gene to a 3.8-kb DNA fragment. The DNA sequence of the fragment was determined; a 2,754-bp open reading frame predicts that the PEP3 gene product is a hydrophilic, 107-kDa protein that has no significant similarity to any known protein. The PEP3 predicted protein has a zinc finger (CX...

  5. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Directory of Open Access Journals (Sweden)

    Zhichun Zhang

    Full Text Available Mutation of distal-less homeobox 3 (DLX3 is responsible for human tricho-dento-osseous syndrome (TDO with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  6. Radio-induced genes

    International Nuclear Information System (INIS)

    Rigaud, O.; Kazmaier, M.

    2000-01-01

    The monitoring system of the DNA integrity of an irradiated cell does not satisfy oneself to recruit the enzymes allowing the repair of detected damages. It sends an alarm signal whom transmission leads to the activation of specific genes in charge of stopping the cell cycle, the time to make the repair works, or to lead to the elimination of a too much damaged cell. Among the numerous genes participating to the monitoring of cell response to irradiation, the target genes of the mammalian P53 protein are particularly studied. Caretaker of the genome, this protein play a central part in the cell response to ionizing radiations. this response is less studied among plants. A way to tackle it is to be interested in the radioinduced genes identification in the vegetal cell, while taking advantage of knowledge got in the animal field. The knowledge of the complete genome of the arabette (arabidopsis thaliana), the model plant and the arising of new techniques allow to lead this research at a previously unknown rhythm in vegetal biology. (N.C.)

  7. Effect of High Thermal Manipulations during Early and Late Embryogenesis on Asymmetry for Broilers

    Directory of Open Access Journals (Sweden)

    Sezai Alkan

    2015-10-01

    Full Text Available The aim of this study was to determine the effect of thermal manipulations during early and late embryogenesis on asymmetry in terms of sides of shank length, shank width and face length of broilers. Incubation conditions were 37.5°C and 55% relative humidity for control group throughout the incubation period until the 19th days. In the thermally treated eggs during early embryogenesis (8-10 days, incubation temperature was increased to 41°C and relative humidity to 65% for 3 hours (12.00-15.00 on the 8th-10th days of incubation. Also, in the late embryogenesis stage (16-18 days incubation temperature was increased to 41°C and relative humidity to 65 % for 3 hours (12.00-15.00 on the 16th-18th days of incubation. Total 16 chickens were selected at randomly from all experimental groups to determine the asymmetry. The weekly left and right sides of shank length, shank width and face length of chickens were measured from 7 days of age to 35 days of age, and relative asymmetry values were calculated. There was no significant difference among the groups in point of relative asymmetry. Asymmetry values were reduced due to aging.

  8. Expressional and Biochemical Characterization of Rice Disease Resistance Gene Xa3/Xa26 Family

    Institute of Scientific and Technical Information of China (English)

    Songjie Xu; Yinglong Cao; Xianghua Li; Shiping Wang

    2007-01-01

    The rice (Oryza sativa L.) Xa3/Xa26 gene, conferring race-specific resistance to bacterial blight disease and encoding a leucine-rich repeat (LRR) receptor kinase-like protein, belongs to a multigene family consisting of tandem clustered homologous genes, colocalizing with several uncharacterized genes for resistance to bacterial blight or fungal blast. To provide more information on the expressional and biochemical characteristics of the Xa3/Xa26 family, we analyzed the family members. Four Xa3/Xa26 family members in the indica rice variety Teqing, which carries a bacterial blight resistance gene with a chromosomal location tightly linked to Xa3/Xa26, and five Xa3/Xa26 family members in the japonica rice variety Nipponbare, which carries at least one uncharacterized blast resistance gene, were constitutively expressed in leaf tissue. The result suggests that some of the family members may be candidates of these uncharacterized resistance genes. At least five putative N-glycosylation sites in the LRR domain of XA3/XA26 protein are not glycosylated. The XA3/XA26 and its family members MRKa and MRKc all possess the consensus sequences of paired cysteines, which putatively function in dimerization of the receptor proteins for signal transduction, immediately before the first LRR and immediately after the last LRR. However, no homo-dimer between the XA3/XA26 molecules or hetero-dimer between XA3/XA26 and MRKa or MRKc were formed, indicating that XA3/XA26 protein might function either as a monomer or a hetero-dimer formed with other protein outside of the XA3/XA26 family. These results provide valuable information for further extensive investigation into this multiple protein family.

  9. An original SERPINA3 gene cluster: Elucidation of genomic organization and gene expression in the Bos taurus 21q24 region

    Directory of Open Access Journals (Sweden)

    Ouali Ahmed

    2008-04-01

    Full Text Available Abstract Background The superfamily of serine proteinase inhibitors (serpins is involved in numerous fundamental biological processes as inflammation, blood coagulation and apoptosis. Our interest is focused on the SERPINA3 sub-family. The major human plasma protease inhibitor, α1-antichymotrypsin, encoded by the SERPINA3 gene, is homologous to genes organized in clusters in several mammalian species. However, although there is a similar genic organization with a high degree of sequence conservation, the reactive-centre-loop domains, which are responsible for the protease specificity, show significant divergences. Results We provide additional information by analyzing the situation of SERPINA3 in the bovine genome. A cluster of eight genes and one pseudogene sharing a high degree of identity and the same structural organization was characterized. Bovine SERPINA3 genes were localized by radiation hybrid mapping on 21q24 and only spanned over 235 Kilobases. For all these genes, we propose a new nomenclature from SERPINA3-1 to SERPINA3-8. They share approximately 70% of identity with the human SERPINA3 homologue. In the cluster, we described an original sub-group of six members with an unexpected high degree of conservation for the reactive-centre-loop domain, suggesting a similar peptidase inhibitory pattern. Preliminary expression analyses of these bovSERPINA3s showed different tissue-specific patterns and diverse states of glycosylation and phosphorylation. Finally, in the context of phylogenetic analyses, we improved our knowledge on mammalian SERPINAs evolution. Conclusion Our experimental results update data of the bovine genome sequencing, substantially increase the bovSERPINA3 sub-family and enrich the phylogenetic tree of serpins. We provide new opportunities for future investigations to approach the biological functions of this unusual subset of serine proteinase inhibitors.

  10. Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations.

    Directory of Open Access Journals (Sweden)

    Marie Demion

    Full Text Available RATIONALE: TRPM4 is a non-selective Ca2+-activated cation channel expressed in the heart, particularly in the atria or conduction tissue. Mutations in the Trpm4 gene were recently associated with several human conduction disorders such as Brugada syndrome. TRPM4 channel has also been implicated at the ventricular level, in inotropism or in arrhythmia genesis due to stresses such as ß-adrenergic stimulation, ischemia-reperfusion, and hypoxia re-oxygenation. However, the physiological role of the TRPM4 channel in the healthy heart remains unclear. OBJECTIVES: We aimed to investigate the role of the TRPM4 channel on whole cardiac function with a Trpm4 gene knock-out mouse (Trpm4-/- model. METHODS AND RESULTS: Morpho-functional analysis revealed left ventricular (LV eccentric hypertrophy in Trpm4-/- mice, with an increase in both wall thickness and chamber size in the adult mouse (aged 32 weeks when compared to Trpm4+/+ littermate controls. Immunofluorescence on frozen heart cryosections and qPCR analysis showed no fibrosis or cellular hypertrophy. Instead, cardiomyocytes in Trpm4-/- mice were smaller than Trpm4+/+with a higher density. Immunofluorescent labeling for phospho-histone H3, a mitosis marker, showed that the number of mitotic myocytes was increased 3-fold in the Trpm4-/-neonatal stage, suggesting hyperplasia. Adult Trpm4-/- mice presented multilevel conduction blocks, as attested by PR and QRS lengthening in surface ECGs and confirmed by intracardiac exploration. Trpm4-/-mice also exhibited Luciani-Wenckebach atrioventricular blocks, which were reduced following atropine infusion, suggesting paroxysmal parasympathetic overdrive. In addition, Trpm4-/- mice exhibited shorter action potentials in atrial cells. This shortening was unrelated to modifications of the voltage-gated Ca2+ or K+ currents involved in the repolarizing phase. CONCLUSIONS: TRPM4 has pleiotropic roles in the heart, including the regulation of conduction and cellular

  11. Identification of coagulation gene 3′UTR variants that are potentially regulated by microRNAs

    NARCIS (Netherlands)

    Vossen, Carla Y.; van Hylckama Vlieg, Astrid; Teruel-Montoya, Raúl; Salloum-Asfar, Salam; de Haan, Hugoline G.; Corral, Javier; Reitsma, Pieter H.; Koeleman, Bobby P.C.; Martínez, Constantino

    2017-01-01

    MicroRNAs have been recognized as critical regulators of gene expression and might affect the risk of venous thrombosis. We aimed to identify 3′ untranslated region (UTR) variants in coagulation genes that influence coagulation factor levels and venous thrombosis risk. The 3′UTR of coagulation genes

  12. Evolutionary and polymorphism analyses reveal the central role of BTN3A2 in the concerted evolution of the BTN3 gene family.

    Science.gov (United States)

    Afrache, Hassnae; Pontarotti, Pierre; Abi-Rached, Laurent; Olive, Daniel

    2017-06-01

    The butyrophilin 3 (BTN3) receptors are implicated in the T lymphocytes regulation and present a wide plasticity in mammals. In order to understand how these genes have been diversified, we studied their evolution and show that the three human BTN3 are the result of two successive duplications in Primates and that the three genes are present in Hominoids and the Old World Monkey groups. A thorough phylogenetic analysis reveals a concerted evolution of BTN3 characterized by a strong and recurrent homogenization of the region encoding the signal peptide and the immunoglobulin variable (IgV) domain in Hominoids, where the sequences of BTN3A1 or BTN3A3 are replaced by BTN3A2 sequence. In human, the analysis of the diversity of these genes in 1683 individuals representing 26 worldwide populations shows that the three genes are polymorphic, with more than 46 alleles for each gene, and marked by extreme homogenization of the IgV sequences. The same analysis performed for the BTN2 genes shows also a concerted evolution; however, it is not as strong and recurrent as for BTN3. This study shows that BTN3 receptors are marked by extreme concerted evolution at the IgV domain and that BTN3A2 plays a central role in this evolution.

  13. A renal epithelioid angiomyolipoma/perivascular epithelioid cell tumor with TFE3 gene break visualized by FISH.

    Science.gov (United States)

    Ohe, Chisato; Kuroda, Naoto; Hes, Ondrej; Michal, Michal; Vanecek, Tomas; Grossmann, Petr; Tanaka, Yukichi; Tanaka, Mio; Inui, Hidekazu; Komai, Yoshihiro; Matsuda, Tadashi; Uemura, Yoshiko

    2012-12-01

    We present a case of renal epithelioid angiomyolipoma (eAML)/perivascular epithelioid cell tumor (PEComa) with a TFE3 gene break visible by fluorescence in situ hybridization (FISH). Histologically, the tumor was composed of mainly epithelioid cells forming solid arrangements with small foci of spindle cells. In a small portion of the tumor, neoplastic cells displayed nuclear pleomorphism, such as polygonal and enlarged vesicular nuclei with prominent nucleoli. Marked vascularity was noticeable in the background, and perivascular hyaline sclerosis was also seen. Immunohistochemically, neoplastic cells were diffusely positive for α-smooth muscle actin and melanosome in the cytoplasm. Nuclei of many neoplastic cells were positive for TFE3. FISH analysis of the TFE3 gene break using the Poseidon TFE3 (Xp11) Break probe revealed positive results. Reverse transcriptase-polymerase chain reactions (RT-PCR) for ASPL/TFE3, PRCC/TFE3, CLTC/TFE3, PSF/TFE3, and NonO/TFE3 gene fusions all revealed negative results. This is the first reported case of renal eAML/PEComa with a TFE3 gene break, and it has unique histological findings as compared to previously reported TFE3 gene fusion-positive PEComas. Pathologists should recognize that PEComa with TFE3 gene fusion can arise even in the kidney.

  14. EGR3 Immediate Early Gene and the Brain-Derived Neurotrophic Factor in Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Bianca Pfaffenseller

    2018-02-01

    Full Text Available Bipolar disorder (BD is a severe psychiatric illness with a consistent genetic influence, involving complex interactions between numerous genes and environmental factors. Immediate early genes (IEGs are activated in the brain in response to environmental stimuli, such as stress. The potential to translate environmental stimuli into long-term changes in brain has led to increased interest in a potential role for these genes influencing risk for psychiatric disorders. Our recent finding using network-based approach has shown that the regulatory unit of early growth response gene 3 (EGR3 of IEGs family was robustly repressed in postmortem prefrontal cortex of BD patients. As a central transcription factor, EGR3 regulates an array of target genes that mediate critical neurobiological processes such as synaptic plasticity, memory and cognition. Considering that EGR3 expression is induced by brain-derived neurotrophic factor (BDNF that has been consistently related to BD pathophysiology, we suggest a link between BDNF and EGR3 and their potential role in BD. A growing body of data from our group and others has shown that peripheral BDNF levels are reduced during mood episodes and also with illness progression. In this same vein, BDNF has been proposed as an important growth factor in the impaired cellular resilience related to BD. Taken together with the fact that EGR3 regulates the expression of the neurotrophin receptor p75NTR and may also indirectly induce BDNF expression, here we propose a feed-forward gene regulatory network involving EGR3 and BDNF and its potential role in BD.

  15. Mutations in the maize zeta-carotene desaturase gene lead to viviparous kernel.

    Directory of Open Access Journals (Sweden)

    Yan Chen

    Full Text Available Preharvest sprouting reduces the maize quality and causes a significant yield loss in maize production. vp-wl2 is a Mutator (Mu-induced viviparous mutant in maize, causing white or pale yellow kernels, dramatically reduced carotenoid and ABA content, and a high level of zeta-carotene accumulation. Here, we reported the cloning of the vp-wl2 gene using a modified digestion-ligation-amplification method (DLA. The results showed that an insertion of Mu9 in the first intron of the zeta-carotene desaturase (ZDS gene results in the vp-wl2 mutation. Previous studies have suggested that ZDS is likely the structural gene of the viviparous9 (vp9 locus. Therefore, we performed an allelic test using vp-wl2 and three vp9 mutants. The results showed that vp-wl2 is a novel allele of the vp9 locus. In addition, the sequences of ZDS gene were identified in these three vp9 alleles. The vp-wl2 mutant gene was subsequently introgressed into four maize inbred lines, and a viviparous phenotype was observed with yield losses from 7.69% to 13.33%.

  16. Mediator subunit MED1 is a T3-dependent and T3-independent coactivator on the thyrotropin β gene promoter

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Keiji; Oda, Kasumi; Mizuta, Shumpei; Ishino, Ruri; Urahama, Norinaga; Hasegawa, Natsumi [Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 (Japan); Roeder, Robert G. [Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Ito, Mitsuhiro, E-mail: itomi@med.kobe-u.ac.jp [Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 (Japan); Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Department of Family and Community Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 654-0142 (Japan); Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 159-8555 (Japan)

    2013-10-11

    Highlights: •MED1 is a bona fide T3-dependent coactivator on TSHB promoter. •Mice with LxxLL-mutant MED1 have attenuated TSHβ mRNA and thyroid hormone levels. •MED1 activates TSHB promoter T3-dependently in cultured cells. •T3-dependent MED1 action is enhanced when SRC1/SRC2 or HDAC2 is downregulated. •MED1 is also a T3-independent GATA2/Pit1 coactivator on TSHB promoter. -- Abstract: The MED1 subunit of the Mediator transcriptional coregulator complex is a nuclear receptor-specific coactivator. A negative feedback mechanism of thyroid-stimulating hormone (TSH, or thyrotropin) expression in the thyrotroph in the presence of triiodothyronine (T3) is employed by liganded thyroid hormone receptor β (TRβ) on the TSHβ gene promoter, where conventional histone-modifying coactivators act as corepressors. We now provide evidence that MED1 is a ligand-dependent positive cofactor on this promoter. TSHβ gene transcription was attenuated in MED1 mutant mice in which the nuclear receptor-binding ability of MED1 was specifically disrupted. MED1 stimulated GATA2- and Pit1-mediated TSHβ gene promoter activity in a ligand-independent manner in cultured cells. MED1 also stimulated transcription from the TSHβ gene promoter in a T3-dependent manner. The transcription was further enhanced when the T3-dependent corepressors SRC1, SRC2, and HDAC2 were downregulated. Hence, MED1 is a T3-dependent and -independent coactivator on the TSHβ gene promoter.

  17. AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy.

    Directory of Open Access Journals (Sweden)

    Astra Dinculescu

    Full Text Available Usher syndrome type III (USH3A is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1 gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.

  18. Implicit learning: What does it all mean - Response

    OpenAIRE

    Shanks, D. R.; StJohn, M. F.

    1996-01-01

    In the original target article (Shanks & St. John 1994), one of our principal conclusions was that there is almost no evidence that learning can occur outside awareness. The continuing commentaries raise some interesting questions, especially about the definition of learning, but do not lead us to abandon our conclusion.

  19. Charactering the ZFAND3 gene mapped in the sex-determining locus in hybrid tilapia (Oreochromis spp.)

    Science.gov (United States)

    Ma, Keyi; Liao, Minghui; Liu, Feng; Ye, Baoqing; Sun, Fei; Yue, Gen Hua

    2016-01-01

    Zinc finger AN1-type domain 3 (ZFAND3) is essential for spermatogenesis in mice. However, its function in teleosts remains unclear. In this study, we characterized the ZFAND3 gene (termed as OsZFAND3) in an important food fish, tilapia. The OsZFAND3 cDNA sequence is 1,050 bp in length, containing an ORF of 615 bp, which encodes a putative peptide of 204 amino acid residues. Quantitative real-time PCR revealed that the OsZFAND3 transcripts were exclusively expressed in the testis and ovary. In situ hybridization showed that the high expression of OsZFAND3 transcripts was predominantly localized in the spermatocyte and spermatid. These results suggest that OsZFAND3 is involved in male germ cell maturation. Three single nucleotide polymorphisms (SNPs) were detected in the introns of OsZFAND3. The OsZFAND3 gene was mapped in the sex-determining locus on linkage group 1 (LG1). The three SNPs in the OsZFAND3 gene were strictly associated with sex phenotype, suggesting that the OsZFAND3 gene is tightly linked to the sex-determining locus. Our study provides new insights into the functions of the OsZFAND3 gene in tilapia and a foundation for further detailed analysis of the OsZFAND3 gene in sex determination and differentiation. PMID:27137111

  20. msh/Msx gene family in neural development.

    Science.gov (United States)

    Ramos, Casto; Robert, Benoît

    2005-11-01

    The involvement of Msx homeobox genes in skull and tooth formation has received a great deal of attention. Recent studies also indicate a role for the msh/Msx gene family in development of the nervous system. In this article, we discuss the functions of these transcription factors in neural-tissue organogenesis. We will deal mainly with the interactions of the Drosophila muscle segment homeobox (msh) gene with other homeobox genes and the repressive cascade that leads to neuroectoderm patterning; the role of Msx genes in neural-crest induction, focusing especially on the differences between lower and higher vertebrates; their implication in patterning of the vertebrate neural tube, particularly in diencephalon midline formation. Finally, we will examine the distinct activities of Msx1, Msx2 and Msx3 genes during neurogenesis, taking into account their relationships with signalling molecules such as BMP.

  1. Infection of cats with atypical feline coronaviruses harbouring a truncated form of the canine type I non-structural ORF3 gene.

    Science.gov (United States)

    Le Poder, Sophie; Pham-Hung d'Alexandry d'Orangiani, Anne-Laure; Duarte, Lidia; Fournier, Annie; Horhogea, Cristina; Pinhas, Carine; Vabret, Astrid; Eloit, Marc

    2013-12-01

    Feline and canine coronaviruses (FCoV and CCoV, respectively) are common pathogens of cats and dogs sometimes leading to lethal infections named feline infectious peritonitis (FIP) and canine pantropic coronavirus infection. FCoV and CCoV are each subdivided into two serotypes, FCoV-I/II and CCoV-I/II. A phylogenetic relationship is evident between, on one hand, CCoV-I/FCoV-I, and on the other hand, CCoV-II/FCoV-II, suggesting that interspecies transmission can occur. The aim of the present study was to evaluate the prevalence of coronavirus (CoV)-infected cats according to their contact with dogs and to genetically analyse the CoV strains infecting cats. From 2003 to 2009, we collected 88 faecal samples from healthy cats and 11 ascitic fluids from FIP cats. We investigated the possible contact with dog in the household and collected dogs samples if appropriate. Out of 99 cat samples, 26 were coronavirus positive, with six cats living with at least one dog, thus showing that contact with dogs does not appear as a predisposing factor for cats CoV infections. Molecular and phylogenetic analyses of FCoV strains were conducted using partial N and S sequences. Six divergent strains were identified with the N gene clustering with CCoV-I whereas the 3' end of S was related to FCoV-I. Further analysis on those six samples was attempted by researching the presence of the ORF3 gene, the latter being peculiar to CCoV-I to date. We succeeded to amplify the ORF3 gene in five samples out of six. Thus, our data strongly suggest the circulation of atypical FCoV strains harbouring the CCoV-I ORF3 gene among cats. Moreover, the ORF3 genes recovered from the feline strains exhibited shared deletions, never described before, suggesting that these deletions could be critical in the adaptation of these strains to the feline host. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Quantifying coordination among the rearfoot, midfoot, and forefoot segments during running.

    Science.gov (United States)

    Takabayashi, Tomoya; Edama, Mutsuaki; Yokoyama, Erika; Kanaya, Chiaki; Kubo, Masayoshi

    2018-03-01

    Because previous studies have suggested that there is a relationship between injury risk and inter-segment coordination, quantifying coordination between the segments is essential. Even though the midfoot and forefoot segments play important roles in dynamic tasks, previous studies have mostly focused on coordination between the shank and rearfoot segments. This study aimed to quantify coordination among rearfoot, midfoot, and forefoot segments during running. Eleven healthy young men ran on a treadmill. The coupling angle, representing inter-segment coordination, was calculated using a modified vector coding technique. The coupling angle was categorised into four coordination patterns. During the absorption phase, rearfoot-midfoot coordination in the frontal planes was mostly in-phase (rearfoot and midfoot eversion with similar amplitudes). The present study found that the eversion of the midfoot with respect to the rearfoot was comparable in magnitude to the eversion of the rearfoot with respect to the shank. A previous study has suggested that disruption of the coordination between the internal rotation of the shank and eversion of the rearfoot leads to running injuries such as anterior knee pain. Thus, these data might be used in the future to compare to individuals with foot deformities or running injuries.

  3. Engineering low-cadmium rice through stress-inducible expression of OXS3-family member genes.

    Science.gov (United States)

    Wang, Changhu; Guo, Weili; Cai, Xingzhe; Li, Ruyu; Ow, David W

    2018-04-21

    Cadmium (Cd) as a carcinogen poses a great threat to food security and public health through plant-derived foods such as rice, the staple for nearly half of the world's population. We have previously reported that overexpression of truncated gene fragments derived from the rice genes OsO3L2 and OsO3L3 could reduce Cd accumulation in transgenic rice. However, we did not test the full length genes due to prior work in Arabidopsis where overexpression of these genes caused seedling lethality. Here, we report on limiting the overexpression of OsO3L2 and OsO3L3 through the use of the stress- inducible promoter RD29B. However, despite generating 625 putative transformants, only 7 lines survived as T1 seedlings and only 1 line of each overexpressed OsO3L2 or OsO3L3-produced T2 progeny. The T2 homozygotes from these 2 lines showed the same effect of reducing accumulation of Cd in root and shoot as well as in T3 grain. As importantly, the concentrations of essential metals copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) were unaffected. Analysis of the expression profile suggested that low Cd accumulation may be due to high expression of OsO3L2 and OsO3L3 in the root tip region. Cellular localization of OsO3L2 and OsO3L3 indicate that they are histone H2A interacting nuclear proteins in vascular cells and especially in the root tip region. It is possible that interaction with histone H2A modifies chromatin to regulate downstream gene expression. Copyright © 2018. Published by Elsevier B.V.

  4. The rose (Rosa hybrida) NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    Science.gov (United States)

    Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein

  5. The rose (Rosa hybrida NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Guimei Jiang

    Full Text Available Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida, RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose Rh

  6. [Mutation analysis of FGFR3 gene in a family featuring hereditary dwarfism].

    Science.gov (United States)

    Zhang, Qiong; Jiang, Hai-ou; Quan, Qing-li; Li, Jun; He, Ting; Huang, Xue-shuang

    2011-12-01

    To investigate the clinical symptoms and potential mutation in FGFR3 gene for a family featuring hereditary dwarfism in order to attain diagnosis and provide prenatal diagnosis. Five patients and two unaffected relatives from the family, in addition with 100 healthy controls, were recruited. Genome DNA was extracted. Exons 10 and 13 of the FGFR3 gene were amplified using polymerase chain reaction (PCR). PCR products were sequenced in both directions. All patients had similar features including short stature, short limbs, lumbar hyperlordosis but normal craniofacial features. A heterozygous mutation G1620T (N540K) was identified in the cDNA from all patients but not in the unaffected relatives and 100 control subjects. A heterozygous G380R mutation was excluded. The hereditary dwarfism featured by this family has been caused by hypochondroplasia (HCH) due to a N540K mutation in the FGFR3 gene.

  7. Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis.

    Science.gov (United States)

    Bank-Wolf, Barbara Regina; Stallkamp, Iris; Wiese, Svenja; Moritz, Andreas; Tekes, Gergely; Thiel, Heinz-Jürgen

    2014-10-10

    The genes encoding accessory proteins 3a, 3b, 3c, 7a and 7b, the S2 domain of the spike (S) protein gene and the membrane (M) protein gene of feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV) samples were amplified, cloned and sequenced. For this faeces and/or ascites samples from 19 cats suffering from feline infectious peritonitis (FIP) as well as from 20 FECV-infected healthy cats were used. Sequence comparisons revealed that 3c genes of animals with FIP were heavily affected by nucleotide deletions and point mutations compared to animals infected with FECV; these alterations resulted either in early termination or destruction of the translation initiation codon. Two ascites-derived samples of cats with FIP which displayed no alterations of ORF3c harboured mutations in the S2 domain of the S protein gene which resulted in amino acid exchanges or deletions. Moreover, changes in 3c were often accompanied by mutations in S2. In contrast, in samples obtained from faeces of healthy cats, the ORF3c was never affected by such mutations. Similarly ORF3c from faecal samples of the cats with FIP was mostly intact and showed only in a few cases the same mutations found in the respective ascites samples. The genes encoding 3a, 3b, 7a and 7b displayed no mutations linked to the feline coronavirus (FCoV) biotype. The M protein gene was found to be conserved between FECV and FIPV samples. Our findings suggest that mutations of 3c and spike protein genes correlate with the occurrence of FIP. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. PLEIOTROPIC EFFECT OF Rht3 DWARFING GENE ON SOME TRAITS OF WHEAT (Tr. aestivum L. em Thell

    Directory of Open Access Journals (Sweden)

    M. Jošt

    2001-06-01

    Full Text Available True-isogenic lines, differing only in the semi-dominant Rht3 dwarfing gene, were developed from the cross 'Tom Thumb x Bankuty 1201' during 17 years of continuous selection on heterozygous semi-dwarf plant. The effect of double (Rht3 Rht3 = full-dwarf, single (Rht3 rht3 =semi-dwarf, or no dwarfing gene (rht3 rht3 = tall dosage on some plant, seed, and flour quality traits were observed in the isogenic lines during two years field experiment, planted by 'honey-comb design' at Kri`evci, Croatia. Significant main effect of Rht3 gene was in shortening of plant height by 54% and 28% in double and single gene dosage respectively. Full-dwarf genotype (Rht3 Rht3 had by 12% more heads/plant, but the other yield components as number of grains/head, and grain weight/head were lower by 25 and 28% respectively, resulting in significantly lower grain yield/plant (-27%. However, this also could be a secondary side effect of prolonged vegetation influenced by doubled Rht3 gene. There was no significant effect on flour protein content. Double gene effect was strong and significant for maximum dough viscosity measured by amylograph in BU (101%. In our environment full dwarf (Rht3 Rht3 has no agronomic value, but single gene dosage could be of commercial interest in hybrid wheat breeding.

  9. Modular turbine airfoil and platform assembly with independent root teeth

    Science.gov (United States)

    Campbell, Christian X; Davies, Daniel O; Eng, Darryl

    2013-07-30

    A turbine airfoil (22E-H) extends from a shank (23E-H). A platform (30E-H) brackets or surrounds a first portion of the shank (23E-H). Opposed teeth (33, 35) extend laterally from the platform (30E-H) to engage respective slots (50) in a disk. Opposed teeth (25, 27) extend laterally from a second portion of the shank (29) that extends below the platform (30E-H) to engage other slots (52) in the disk. Thus the platform (30E-H) and the shank (23E-H) independently support their own centrifugal loads via their respective teeth. The platform may be formed in two portions (32E-H, 34E-H), that are bonded to each other at matching end-walls (37) and/or via pins (36G) passing through the shank (23E-H). Coolant channels (41, 43) may pass through the shank beside the pins (36G).

  10. Blood lead concentrations in 1-3 year old Lebanese children: a cross-sectional study.

    Science.gov (United States)

    Nuwayhid, Iman; Nabulsi, Mona; Muwakkit, Samar; Kouzi, Sarah; Salem, George; Mikati, Mohamed; Ariss, Majd

    2003-04-15

    Childhood lead poisoning has not made the list of national public health priorities in Lebanon. This study aims at identifying the prevalence and risk factors for elevated blood lead concentrations (B-Pb >or= 100 microg/L) among 1-3 year old children. It also examines the need for universal blood lead screening. This is a cross-sectional study of 281 well children, presenting to the pediatric ambulatory services at the American University of Beirut Medical Center in 1997-98. Blood was drawn on participating children for lead analysis and a structured questionnaire was introduced to mothers asking about social, demographic, and residence characteristics, as well as potential risk factors for lead exposure. Children with B-Pb >or= 100 microg/L were compared to those with B-Pb or= 100 microg/L. Logistic regression analysis showed that elevated B-Pb was associated with paternal manual jobs (odds ratio [OR]: 4.74), residence being located in high traffic areas (OR: 4.59), summer season (OR: 4.39), using hot tap water for cooking (OR: 3.96), exposure to kohl (OR: 2.40), and living in older buildings (OR: 2.01). Lead screening should be offered to high-risk children. With the recent ban of leaded gasoline in Lebanon, emphasis should shift to other sources of exposure in children.

  11. Electrical transport in low-lead (1-x)BaTiO3–xPbMg1/3Nb2/3O3 ceramics

    Institute of Scientific and Technical Information of China (English)

    J. SUCHANICZ; K. KONIECZNY; K. ŚWIERCZEK; M. LIPIŃSKI; M. KARPIERZ; D. SITKO; H. CZTERNASTEK; K. KLUCZEWSKA

    2017-01-01

    Low-lead (1-x)BaTiO3–xPbMg1/3Nb2/3O3 ceramics (x = 0, 0.025, 0.05, 0.075, 0.1, and 0.15) were prepared by the conventional oxide mixed sintering process, and their optical band gap, Seebeck coefficient, ac ( σac ) and dc ( σdc ) conductivities as a function of temperature were investigated for the first time. It was found that all samples have p-type conductivity. The low-frequency (20 Hz–2 MHz) ac conductivity obeys a power law σac ~ ωs , which is characteristic for disordered materials. The frequency exponent s is a decreasing function of temperature and tends to zero at high temperature. σac is proportional to ω0.07 – ω0.31 in the low-frequency region and to ω0.51 – ω0.98 in the high-temperature region. The temperature dependence of the dc conductivity showed a change in slope around the temperature at which the phase transition appeared. Both ac and dc conductivities showed a thermally activated character and possessed linear parts with different activation energies and some irregular changes. It was found that the hopping charge carriers dominate at low temperature and small polarons and oxygen vacancies dominate at higher temperature. (1-x)BaTiO3–xPbMg1/3Nb2/3O3 ceramics are expected to be promising new candidate for low-lead electronic materials.

  12. Localisation of Neuregulin 1-{beta}3 to different sub-nuclear structures alters gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ming; Trim, Carol M.; Gullick, William J., E-mail: w.j.gullick@kent.ac.uk

    2011-02-15

    Neuregulins are growth factors that signal via the ErbB3 and ErbB4 receptors. Here we show using immunohistochemistry that they are often expressed in the nucleus of a range of tumour types including soft tissue and breast. The Neuregulin 1 type I-{beta}3 (NRG1-{beta}3) isoform localises to two sub-nuclear compartments in animal cells, nucleoli and spliceosomes. We used NRG1-{beta}3 tagged with photoactivatable GFP and demonstrated that this re-localised from nucleoli to spliceosomes over 90 min. Tyrosine kinase activity was not required for retaining the NRG1-{beta}3 within the nucleus. Mutation of the lysines 14 and 16 or 15 and 16 together prevented nucleolar uptake while four positively charged residues were identified which were required for spliceosome uptake. Molecular modelling suggests that three of these may form a binding site. We showed using a kinome array that NRG1-{beta}3 and a mutant exclusively localising to spliceosomes increased phosphorylation and/or expression of the HER4 and HER2 receptors. Using a transcriptomic analysis the same two constructs induced expression of several messenger RNAs and we confirmed the increased expression at the protein level of the most highly induced, Heat Shock Protein 70B'. These results suggest that Neuregulin activates receptor signalling in spliceosomes leading to altered gene expression.

  13. Localisation of Neuregulin 1-β3 to different sub-nuclear structures alters gene expression

    International Nuclear Information System (INIS)

    Wang, Ming; Trim, Carol M.; Gullick, William J.

    2011-01-01

    Neuregulins are growth factors that signal via the ErbB3 and ErbB4 receptors. Here we show using immunohistochemistry that they are often expressed in the nucleus of a range of tumour types including soft tissue and breast. The Neuregulin 1 type I-β3 (NRG1-β3) isoform localises to two sub-nuclear compartments in animal cells, nucleoli and spliceosomes. We used NRG1-β3 tagged with photoactivatable GFP and demonstrated that this re-localised from nucleoli to spliceosomes over 90 min. Tyrosine kinase activity was not required for retaining the NRG1-β3 within the nucleus. Mutation of the lysines 14 and 16 or 15 and 16 together prevented nucleolar uptake while four positively charged residues were identified which were required for spliceosome uptake. Molecular modelling suggests that three of these may form a binding site. We showed using a kinome array that NRG1-β3 and a mutant exclusively localising to spliceosomes increased phosphorylation and/or expression of the HER4 and HER2 receptors. Using a transcriptomic analysis the same two constructs induced expression of several messenger RNAs and we confirmed the increased expression at the protein level of the most highly induced, Heat Shock Protein 70B'. These results suggest that Neuregulin activates receptor signalling in spliceosomes leading to altered gene expression.

  14. Genome-Wide Identification and Comparative Analysis of the 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase (HMGR Gene Family in Gossypium

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2018-01-01

    Full Text Available Terpenes are the largest and most diverse class of secondary metabolites in plants and play a very important role in plant adaptation to environment. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR is a rate-limiting enzyme in the process of terpene biosynthesis in the cytosol. Previous study found the HMGR genes underwent gene expansion in Gossypium raimondii, but the characteristics and evolution of the HMGR gene family in Gossypium genus are unclear. In this study, genome-wide identification and comparative study of HMGR gene family were carried out in three Gossypium species with genome sequences, i.e., G. raimondii, Gossypium arboreum, and Gossypium hirsutum. In total, nine, nine and 18 HMGR genes were identified in G. raimondii, G. arboreum, and G. hirsutum, respectively. The results indicated that the HMGR genes underwent gene expansion and a unique gene cluster containing four HMGR genes was found in all the three Gossypium species. The phylogenetic analysis suggested that the expansion of HMGR genes had occurred in their common ancestor. There was a pseudogene that had a 10-bp deletion resulting in a frameshift mutation and could not be translated into functional proteins in G. arboreum and the A-subgenome of G. hirsutum. The expression profiles of the two pseudogenes showed that they had tissue-specific expression. Additionally, the expression pattern of the pseudogene in the A-subgenome of G. hirsutum was similar to its paralogous gene in the D-subgenome of G. hirsutum. Our results provide useful information for understanding cytosolic terpene biosynthesis in Gossypium species.

  15. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    International Nuclear Information System (INIS)

    Kao, C T; Chen, C C; Cheong, U-I; Liu, S L; Huang, T H

    2014-01-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics. (paper)

  16. DGIdb 3.0: a redesign and expansion of the drug-gene interaction database.

    Science.gov (United States)

    Cotto, Kelsy C; Wagner, Alex H; Feng, Yang-Yang; Kiwala, Susanna; Coffman, Adam C; Spies, Gregory; Wollam, Alex; Spies, Nicholas C; Griffith, Obi L; Griffith, Malachi

    2018-01-04

    The drug-gene interaction database (DGIdb, www.dgidb.org) consolidates, organizes and presents drug-gene interactions and gene druggability information from papers, databases and web resources. DGIdb normalizes content from 30 disparate sources and allows for user-friendly advanced browsing, searching and filtering for ease of access through an intuitive web user interface, application programming interface (API) and public cloud-based server image. DGIdb v3.0 represents a major update of the database. Nine of the previously included 24 sources were updated. Six new resources were added, bringing the total number of sources to 30. These updates and additions of sources have cumulatively resulted in 56 309 interaction claims. This has also substantially expanded the comprehensive catalogue of druggable genes and anti-neoplastic drug-gene interactions included in the DGIdb. Along with these content updates, v3.0 has received a major overhaul of its codebase, including an updated user interface, preset interaction search filters, consolidation of interaction information into interaction groups, greatly improved search response times and upgrading the underlying web application framework. In addition, the expanded API features new endpoints which allow users to extract more detailed information about queried drugs, genes and drug-gene interactions, including listings of PubMed IDs, interaction type and other interaction metadata.

  17. Collisions in soccer kicking

    DEFF Research Database (Denmark)

    Andersen, Thomas Bull; Dörge, Henrik C.; Thomsen, Franz Ib

    1999-01-01

    An equation to describe the velocity of the soccer ball after the collision with a foot was derived. On the basis of experimental results it was possible to exclude certain factors and only describe the angular momentum of the system, consisting of the shank, the foot and the ball, leading...

  18. Chromosomal locations of three human nuclear genes (RPSM12, TUFM, and AFG3L1) specifying putative components of the mitochondrial gene expression apparatus.

    Science.gov (United States)

    Shah, Z H; Migliosi, V; Miller, S C; Wang, A; Friedman, T B; Jacobs, H T

    1998-03-15

    We have mapped the chromosomal locations of three human nuclear genes for putative components of the apparatus of mitochondrial gene expression, using a combination of in situ hybridization and interspecies hybrid mapping. The genes RPMS12 (mitoribosomal protein S12, a conserved protein component of the mitoribosomal accuracy center), TUFM (mitochondrial elongation factor EF-Tu), and AFG3L1 (similar to the yeast genes Afg3 and Rca1 involved in the turnover of mistranslated or misfolded mtDNA-encoded polypeptides) were initially characterized by a combination of database sequence analysis, PCR, cloning, and DNA sequencing. RPMS12 maps to chromosome 19q13.1, close to the previously mapped gene for autosomal dominant hearing loss DFNA4. The TUFM gene is located on chromosome 16p11.2, with a putative pseudogene or variant (TUFML) located very close to the centromere of chromosome 17. AFG3L1 is located on chromosome 16q24, very close to the telomere. By virtue of their inferred functions in mitochondria, these genes should be regarded as candidates of disorders sharing features with mitochondrial disease syndromes, such as sensorineural deafness, diabetes, and retinopathy.

  19. LPS injection reprograms the expression and the 3' UTR of a CAP gene by alternative polyadenylation and the formation of a GAIT element in Ciona intestinalis.

    Science.gov (United States)

    Vizzini, Aiti; Bonura, Angela; Longo, Valeria; Sanfratello, Maria Antonietta; Parrinello, Daniela; Cammarata, Matteo; Colombo, Paolo

    2016-09-01

    The diversification of cellular functions is one of the major characteristics of multicellular organisms which allow cells to modulate their gene expression, leading to the formation of transcripts and proteins with different functions and concentrations in response to different stimuli. CAP genes represent a widespread family of proteins belonging to the cysteine-rich secretory protein, antigen 5 and pathogenesis-related 1 superfamily which, it has been proposed, play key roles in the infection process and the modulation of immune responses in host animals. The ascidian Ciona intestinalis represents a group of proto-chordates with an exclusively innate immune system that has been widely studied in the field of comparative and developmental immunology. Using this biological system, we describe the identification of a novel APA mechanism by which an intronic polyadenylation signal is activated by LPS injection, leading to the formation of a shorter CAP mRNA capable of expressing the first CAP exon plus 19 amino acid residues whose sequence is contained within the first intron of the annotated gene. Furthermore, such an APA event causes the expression of a translational controlling cis-acting GAIT element which is not present in the previously isolated CAP isoform and identified in the 3'-UTR of other immune-related genes, suggesting an intriguing scenario in which both transcriptional and post-transcriptional control mechanisms are involved in the activation of the CAP gene during inflammatory response in C. intestinalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Glycogen Synthase Kinase-3 regulates IGFBP-1 gene transcription through the Thymine-rich Insulin Response Element

    Directory of Open Access Journals (Sweden)

    Marquez Rodolfo

    2004-09-01

    Full Text Available Abstract Background Hepatic expression of several gene products involved in glucose metabolism, including phosphoenolpyruvate carboxykinase (PEPCK, glucose-6-phosphatase (G6Pase and insulin-like growth factor binding protein-1 (IGFBP-1, is rapidly and completely inhibited by insulin. This inhibition is mediated through the regulation of a DNA element present in each of these gene promoters, that we call the Thymine-rich Insulin Response Element (TIRE. The insulin signalling pathway that results in the inhibition of these gene promoters requires the activation of phosphatidylinositol 3-kinase (PI 3-kinase. However, the molecules that connect PI 3-kinase to these gene promoters are not yet fully defined. Glycogen Synthase Kinase 3 (GSK-3 is inhibited following activation of PI 3-kinase. We have shown previously that inhibitors of GSK-3 reduce the activity of two TIRE-containing gene promoters (PEPCK and G6Pase, whose products are required for gluconeogenesis. Results In this report we demonstrate that in H4IIE-C3 cells, four distinct classes of GSK-3 inhibitor mimic the effect of insulin on a third TIRE-containing gene, IGFBP-1. We identify the TIRE as the minimum requirement for inhibition by these agents, and demonstrate that the target of GSK-3 is unlikely to be the postulated TIRE-binding protein FOXO-1. Importantly, overexpression of GSK-3 in cells reduces the insulin regulation of TIRE activity as well as endogenous IGFBP-1 expression. Conclusions These results implicate GSK-3 as an intermediate in the pathway from the insulin receptor to the TIRE. Indeed, this is the first demonstration of an absolute requirement for GSK-3 inhibition in insulin regulation of gene transcription. These data support the potential use of GSK-3 inhibitors in the treatment of insulin resistant states such as Type 2 diabetes mellitus, but suggest that it will be important to identify all TIRE-containing genes to assess potential side effects of these agents.

  1. Diagnosing CADASIL using MRI: evidence from families with known mutations of Notch 3 gene

    International Nuclear Information System (INIS)

    Chawda, S.J.; Lange, R.P.J. de; St-Clair, D.; Hourihan, M.D.; Halpin, S.F.S.

    2000-01-01

    Clinical data and MRI findings are presented on 18 subjects from two families with neuropathologically confirmed CADASIL. DNA analysis revealed mutations in exon 4 of Notch 3 gene in both families. All family members with mutations in Notch 3 gene had extensive abnormalities on MRI, principally lesions in the white matter of the frontal lobes and in the external capsules. Of several family members in whom a diagnosis of CADASIL was suspected on the basis of minor symptoms, one had MRI changes consistent with CADASIL; none of these cases carried a mutation in the Notch 3 gene. MRI and clinical features that may alert the radiologist to the diagnosis of CADASIL are reviewed. However, a wide differential diagnosis exists for the MRI appearances of CADASIL, including multiple sclerosis and small-vessel disease secondary to hypertension. The definitive diagnosis cannot be made on MRI alone and requires additional evidence, where available, from a positive family history and by screening DNA for mutations of Notch 3 gene. (orig.)

  2. MSX1 gene in the etiology orofacial deformities

    Directory of Open Access Journals (Sweden)

    Anna Paradowska-Stolarz

    2015-12-01

    Full Text Available The muscle segment homeobox (MSX1 gene plays a crucial role in epithelial-mesenchymal tissue interactions in craniofacial development. It plays a regulative role in cellular proliferation, differentiation and cell death. The human MSX1 domain was also found in cow (Bt 302906, mouse (Mm 123311, rat (Rn13592001, chicken (Gg 170873 and clawed toad (XI 547690. Cleft lip and palate is the most common anomaly of the facial part of the skull. The etiology is not fully understood, but it is believed that the key role is played by the genetic factor activated by environmental factors. Among the candidate genes whose mutations could lead to formation of the cleft, the MSX1 homeobox gene is mentioned. Mutations in the gene MSX1 can lead to isolated cleft deformities, but also cause other dismorphic changes. Among the most frequently mentioned is loss of permanent tooth buds (mostly of less than 4 teeth – hypodontia, including second premolars. Mutations of MSX1 are observed in the Pierre- Robin sequence, which may be one of the features of congenital defects or is observed as an isolated defect. Mutation of the gene can lead to the occurrence of a rare congenital defect Wiktop (dental-nail syndrome. Deletion of a fragment MSX1 (4p16.3 located in the WHS critical region, may be a cause of some symptoms of Wolf-Hirschhorn syndrome.

  3. Unexpected identification of a recurrent mutation in the DLX3 gene causing amelogenesis imperfecta.

    Science.gov (United States)

    Kim, Y-J; Seymen, F; Koruyucu, M; Kasimoglu, Y; Gencay, K; Shin, T J; Hyun, H-K; Lee, Z H; Kim, J-W

    2016-05-01

    To identify the molecular genetic aetiology of a family with autosomal dominant amelogenesis imperfecta (AI). DNA samples were collected from a six-generation family, and the candidate gene approach was used to screen for the enamelin (ENAM) gene. Whole-exome sequencing and linkage analysis with SNP array data identified linked regions, and candidate gene screening was performed. Mutational analysis revealed a mutation (c.561_562delCT and p.Tyr188Glnfs*13) in the DLX3 gene. After finding a recurrent DLX3 mutation, the clinical phenotype of the family members was re-examined. The proband's mother had pulp elongation in the third molars. The proband had not hair phenotype, but her cousin had curly hair at birth. In this study, we identified a recurrent 2-bp deletional DLX3 mutation in a new family. The clinical phenotype was the mildest one associated with the DLX3 mutations. These results will advance the understanding of the functional role of DLX3 in developmental processes. © 2016 The Authors. Oral Diseases Published by John Wiley & Sons Ltd.

  4. Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yuan eShen

    2014-06-01

    Full Text Available Histone H3 lysine 4 trimethylation (H3K4me3 has been shown to be involved in stress-responsive gene expression and gene priming in plants. However, the role of H3K4me3 resetting in the processes is not clear. In this work we studied the expression and function of Arabidopsis H3K4 demethylase gene JMJ15. We show that the expression of JMJ15 was relatively low and was limited to a number of tissues during vegetative growth but was higher in young floral organs. Over-expression of the gene in gain-of-function mutants reduced the plant height with accumulation of lignin in stems, while the loss-of-function mutation did not produce any visible phenotype. The gain-of-function mutants showed enhanced salt tolerance, whereas the loss-of-function mutant was more sensitive to salt compared to the wild type. Transcriptomic analysis revealed that over-expression of JMJ15 down-regulated many genes which are preferentially marked by H3K4me3 and H3K4me2. Many of the down-regulated genes encode transcription regulators involved in stress responses. The data suggest that increased JMJ15 levels may regulate the gene expression program that enhances stress tolerance.

  5. The evaluation of angiotensin-converting enzyme (ACE) gene I/D and IL-4 gene intron 3 VNTR polymorphisms in coronary artery disease.

    Science.gov (United States)

    Basol, Nursah; Celik, Atac; Karakus, Nevin; Ozturk, Sibel Demir; Ozsoy, Sibel Demir; Yigit, Serbulent

    2014-01-01

    Genetic polymorphism is a strong risk factor for coronary artery disease (CAD). In the present study, our aim was to evaluate angiotensin-converting enzyme (ACE) gene I/D polymorphism and interleukin-4 (IL-4) gene Intron 3 variable number of tandem repeat (VNTR) polymorphism in CAD. One hundred and twenty-four CAD patients and one hundred and twenty-three controls were enrolled. Genomic DNA was isolated and genotyped using polymerase chain reaction (PCR) analyses. The risk associated with inheriting the combined genotypes for the two polymorphisms were evaluated and it was found that the individuals who were P2P2-homozygous at IL-4 gene intron 3 VNTR and DD-homozygous at ACE gene I/D have a higher risk of developing CAD. Although, there is no correlation between IL4 VNTR polymorphism and ACE gene polymorphism and CAD, there is a strong association between CAD and co-existence of IL-4 VNTR and ACE gene polymorphisms in the Turkish population. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Gamma-ray shielding effect of Gd3+ doped lead barium borate glasses

    Science.gov (United States)

    Kummathi, Harshitha; Naveen Kumar, P.; Vedavathi T., C.; Abhiram, J.; Rajaramakrishna, R.

    2018-05-01

    The glasses of the batch xPbO: 10BaO: (90-x)B2O3: 0.2Gd2O3 (x = 40,45,50 mol %) were prepared by melt-quench technique. The work emphasizes on gamma ray shielding effect on doped lead glasses. The role of Boron is significant as it acts as better neutron attenuator as compared with any other materials, as the thermal neutron cross-sections are high for Gadolinium, 0.2 mol% is chosen as the optimum concentration for this matrix, as higher the concentration may lead to further increase as it produces secondary γ rays due to inelastic neutron scattering. Shielding effects were studied using Sodium Iodide (NaI) - Scintillation Gamma ray spectrometer. It was found that at higher concentration of lead oxide (PbO) in the matrix, higher the attenuation which can be co-related with density. Infra-red (I.R.) spectra reveals that the conversion of Lose triangles to tight tetrahedral structure results in enhancement of shielding properties. The Differential Scanning Calorimeter (D.S.C.) study also reveals that the increase in glass forming range increases the stability which in-turn results in inter-conversion of BO3 to BO4 units such that the density of glass increases with increase in PbO content, resulting in much stable and efficient gamma ray shielding glasses.

  7. Scavenger receptor deficiency leads to more complex atherosclerotic lesions in APOE3Leiden transgenic mice

    NARCIS (Netherlands)

    Winther, M.P.J. de; Gijbels, M.J.J.; Dijk, K.W. van; Gorp, P.J.J. van; Suzuki, H.; Kodama, T.; Frants, R.R.; Havekes, L.M.; Hofker, M.H.

    1999-01-01

    Apolipoprotein (apo) E3Leiden is a dysfunctional apo E variant associated with familial dysbetalipoproteinemia in humans. Transgenic mice carrying the APOE3Leiden gene develop hyperlipidemia and are highly susceptible to diet-induced atherosclerosis. An early step in atherosclerosis is foam cell

  8. Structural organization of glycophorin A and B genes: Glycophorin B gene evolved by homologous recombination at Alu repeat sequences

    International Nuclear Information System (INIS)

    Kudo, Shinichi; Fukuda, Minoru

    1989-01-01

    Glycophorins A (GPA) and B (GPB) are two major sialoglycoproteins of the human erythrocyte membrane. Here the authors present a comparison of the genomic structures of GPA and GPB developed by analyzing DNA clones isolated from a K562 genomic library. Nucleotide sequences of exon-intron junctions and 5' and 3' flanking sequences revealed that the GPA and GPB genes consist of 7 and 5 exons, respectively, and both genes have >95% identical sequence from the 5' flanking region to the region ∼ 1 kilobase downstream from the exon encoding the transmembrane regions. In this homologous part of the genes, GPB lacks one exon due to a point mutation at the 5' splicing site of the third intron, which inactivates the 5' cleavage event of splicing and leads to ligation of the second to the fourth exon. Following these very homologous sequences, the genomic sequences for GPA and GPB diverge significantly and no homology can be detected in their 3' end sequences. The analysis of the Alu sequences and their flanking direct repeat sequences suggest that an ancestral genomic structure has been maintained in the GPA gene, whereas the GPB gene has arisen from the acquisition of 3' sequences different from those of the GPA gene by homologous recombination at the Alu repeats during or after gene duplication

  9. Positive relationship between p42.3 gene and inflammation in chronic non-atrophic gastritis.

    Science.gov (United States)

    Chen, Ping; Cui, Yun; Fu, Qing Yan; Lu, You Yong; Fang, Jing Yuan; Chen, Xiao Yu

    2015-10-01

    Gastric cancer (GC) is a typical type of inflammation-related tumor. The p42.3 gene is shown to be highly expressed in GC, but its association with gastritis remains unknown. We aimed to explore the relationship between gastric inflammation and p42.3 gene in vitro and in vivo. Normal gastric epithelial cells (GES-1) were treated with Helicobacter pylori (H. pylori) and tumor necrosis factor (TNF)-α. Total cell mRNA and protein were extracted and collected, and polymerase chain reaction and Western blot were performed to determine the relative expression of p42.3 gene. In total, 291 biopsy samples from patients with chronic non-atrophic gastritis were collected and immunohistochemistry was used to measure the p42.3 protein expression. The association between p42.3 protein expression and the clinicopathological characteristics of these patients were analyzed. Both H. pylori and TNF-α significantly enhanced the p42.3 protein expression in GES-1 cells in a time and dose-dependent manner. In addition, p42.3 gene expression was positively associated with the severity of gastric mucosal inflammation and H. pylori infection (P = 0.000). Its expression was significantly more common in severe gastric inflammation and in H. pylori-infected cases. p42.3 gene expression is associated with gastric mucosal inflammation that can be upregulated by TNF-α and H. pylori infection. © 2015 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  10. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis

    DEFF Research Database (Denmark)

    Vroemen, Casper W; Mordhorst, Andreas P; Albrecht, Cathy

    2003-01-01

    From an enhancer trap screen for genes expressed in Arabidopsis embryos, we identified a gene expressed from the octant stage onward in the boundary between the two presumptive cotyledons and in a variety of postembryonic organ and meristem boundaries. This gene, CUP-SHAPED COTYLEDON3 (CUC3...

  11. [Polymorphism of CD209 and TLR3 genes in populations of North Eurasia].

    Science.gov (United States)

    Barkhash, A V; Babenko, V N; Voevoda, M I; Romaschenko, A G

    2016-06-01

    The DC-SIGN (dendritic cell-specific intercellular adhesion molecule (ICAM)-3-grabbing non-integrin) and TLR3 (toll-like receptor 3) proteins are key effectors of the innate immunity and particularly play an important role in the organism’s antiviral defense as pattern-recognition receptors. Previously, we demonstrated that certain genotypes and alleles of single nucleotide polymorphisms (SNPs) rs2287886 (G/A) in the promoter region of the CD209 gene (encoding DC-SIGN) and rs3775291 (G/A, Leu412Phe) in the exon 4 of the TLR3 gene are associated with human predisposition to tick-borne encephalitis in the Russian population. In the present work, the distribution of genotype and allele frequencies for these SNPs was studied in seven populations of North Eurasia, including Caucasians (Russians and Germans (from Altai region)), Central Asian Mongoloids (Altaians, Khakass, Tuvinians, and Shorians), and Arctic Mongoloids (Chukchi). It was found that the CD209 gene rs2287886 SNP A/A genotype and A allele, as well as the TLR3 gene rs3775291 SNP G/G genotype and G allele (the frequencies of which in our previous studies were increased in tick-borne encephalitis patients as compared with the population control (Russian citizens of Novosibirsk)), are preserved with a high frequency in Central Asian Mongoloids (who for a long time regularly came in contact with tick-borne encephalitis virus in places of their habitation). We suggested that predisposition to tick-borne encephalitis in Central Asian Mongoloid populations can be predetermined by a different set of genes and their polymorphisms than in the Russian population.

  12. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar.

    Science.gov (United States)

    González, Ana M; Godoy, Luís; Santalla, Marta

    2017-11-23

    Few quantitative trait loci have been mapped for resistance to Pseudomonas syringae pv. phaseolicola in common bean. Two F₂ populations were developed from the host differential UI3 cultivar. The objective of this study was to further characterize the resistance to races 1, 5, 7 and 9 of Psp included in UI3. Using a QTL mapping approach, 16 and 11 main-effect QTLs for pod and primary leaf resistance were located on LG10, explaining up to 90% and 26% of the phenotypic variation, respectively. The homologous genomic region corresponding to primary leaf resistance QTLs detected tested positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL), Natural Resistance Associated Macrophage (NRAMP) and Pentatricopeptide Repeat family (PPR) proteins. It is worth noting that the main effect QTLs for resistance in pod were located inside a 3.5 Mb genomic region that included the Phvul.010G021200 gene, which encodes a protein that has the highest sequence similarity to the RIN4 gene of Arabidopsis, and can be considered an important candidate gene for the organ-specific QTLs identified here. These results support that resistance to Psp from UI3 might result from the immune response activated by combinations of R proteins, and suggest the guard model as an important mechanism in pod resistance to halo blight. The candidate genes identified here warrant functional studies that will help in characterizing the actual defense gene(s) in UI3 genotype.

  13. Lead zirconate (PbZrO3 embedded in natural rubber as electroactive elastomer composites

    Directory of Open Access Journals (Sweden)

    Anuvat Sirivat

    2014-11-01

    Full Text Available Perovskite lead zirconate (PbZrO3 was synthesized in an orthorhombic form at a temperature below the Curie temperature, TC. The orthorhombic form is a noncentrosymmetric structure which is capable of spontaneous polarization. Fourier transform infrared (FTIR spectra and X-ray diffraction (XRD patterns confirm the successful synthesis of the lead zirconate; and scanning electron microscopy (SEM micrographs indicate that PbZrO3 particles are moderately dispersed in the natural rubber (NR matrix. Without an electrical field, the particles merely act as a ferroelectric filler, which can absorb and store additional stress. Under an electrical field, particle-induced dipole moments are generated, leading to interparticle interaction and a substantial increase in the storage modulus. At a small amount of lead zirconate particulates present in the natural rubber matrix, at a volume fraction of 0.007306, the electrical conductivity increases dramatically by nearly two orders of magnitude at the electrical frequency of 500 kHz.

  14. Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae).

    Science.gov (United States)

    Zhang, Rui; Guo, Chunce; Zhang, Wengen; Wang, Peipei; Li, Lin; Duan, Xiaoshan; Du, Qinggao; Zhao, Liang; Shan, Hongyan; Hodges, Scott A; Kramer, Elena M; Ren, Yi; Kong, Hongzhi

    2013-03-26

    Absence of petals, or being apetalous, is usually one of the most important features that characterizes a group of flowering plants at high taxonomic ranks (i.e., family and above). The apetalous condition, however, appears to be the result of parallel or convergent evolution with unknown genetic causes. Here we show that within the buttercup family (Ranunculaceae), apetalous genera in at least seven different lineages were all derived from petalous ancestors, indicative of parallel petal losses. We also show that independent petal losses within this family were strongly associated with decreased or eliminated expression of a single floral organ identity gene, APETALA3-3 (AP3-3), apparently owing to species-specific molecular lesions. In an apetalous mutant of Nigella, insertion of a transposable element into the second intron has led to silencing of the gene and transformation of petals into sepals. In several naturally occurring apetalous genera, such as Thalictrum, Beesia, and Enemion, the gene has either been lost altogether or disrupted by deletions in coding or regulatory regions. In Clematis, a large genus in which petalous species evolved secondarily from apetalous ones, the gene exhibits hallmarks of a pseudogene. These results suggest that, as a petal identity gene, AP3-3 has been silenced or down-regulated by different mechanisms in different evolutionary lineages. This also suggests that petal identity did not evolve many times independently across the Ranunculaceae but was lost in numerous instances. The genetic mechanisms underlying the independent petal losses, however, may be complex, with disruption of AP3-3 being either cause or effect.

  15. The role of STAT3 in leading the crosstalk between human cancers and the immune system.

    Science.gov (United States)

    Wang, Yu; Shen, Yicheng; Wang, Sinan; Shen, Qiang; Zhou, Xuan

    2018-02-28

    The development and progression of human cancers are continuously and dynamically regulated by intrinsic and extrinsic factors. As a converging point of multiple oncogenic pathways, signal transducer and activator of transcription 3 (STAT3) is constitutively activated both in tumor cells and tumor-infiltrated immune cells. Activated STAT3 persistently triggers tumor progression through direct regulation of oncogenic gene expression. Apart from its oncogenic role in regulating gene expression in tumor cells, STAT3 also paves the way for human cancer growth through immunosuppression. Activated STAT3 in immune cells results in inhibition of immune mediators and promotion of immunosuppressive factors. Therefore, STAT3 modulates the interaction between tumor cells and host immunity. Accumulating evidence suggests that targeting STAT3 may enhance anti-cancer immune responses and rescue the suppressed immunologic microenvironment in tumors. Taken together, STAT3 has emerged as a promising target in cancer immunotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Identification and functional analysis of pheromone and receptor genes in the B3 mating locus of Pleurotus eryngii.

    Science.gov (United States)

    Kim, Kyung-Hee; Kang, Young Min; Im, Chak Han; Ali, Asjad; Kim, Sun Young; Je, Hee-Jeong; Kim, Min-Keun; Rho, Hyun Su; Lee, Hyun Sook; Kong, Won-Sik; Ryu, Jae-San

    2014-01-01

    Pleurotus eryngii has recently become a major cultivated mushroom; it uses tetrapolar heterothallism as a part of its reproductive process. Sexual development progresses only when the A and B mating types are compatible. Such mating incompatibility occasionally limits the efficiency of breeding programs in which crossing within loci-shared strains or backcrossing strategies are employed. Therefore, understanding the mating system in edible mushroom fungi will help provide a short cut in the development of new strains. We isolated and identified pheromone and receptor genes in the B3 locus of P. eryngii and performed a functional analysis of the genes in the mating process by transformation. A genomic DNA library was constructed to map the entire mating-type locus. The B3 locus was found to contain four pheromone precursor genes and four receptor genes. Remarkably, receptor PESTE3.3.1 has just 34 amino acid residues in its C-terminal cytoplasmic region; therefore, it seems likely to be a receptor-like gene. Real-time quantitative RT-PCR (real-time qRT-PCR) revealed that most pheromone and receptor genes showed significantly higher expression in monokaryotic cells than dikaryotic cells. The pheromone genes PEphb3.1 and PEphb3.3 and the receptor gene PESTE3.3.1 were transformed into P5 (A3B4). The transformants were mated with a tester strain (A4B4), and the progeny showed clamp connections and a normal fruiting body, which indicates the proposed role of these genes in mating and fruiting processes. This result also confirms that PESTE3.3.1 is a receptor gene. In this study, we identified pheromone and receptor genes in the B3 locus of P. eryngii and found that some of those genes appear to play a role in the mating and fruiting processes. These results might help elucidate the mechanism of fruiting differentiation and improve breeding efficiency.

  17. Rare codons effect on expression of recombinant gene cassette in Escherichia coli BL21(DE3

    Directory of Open Access Journals (Sweden)

    Aghil Esmaeili-Bandboni

    2017-11-01

    Full Text Available Objective: To demonstrate the sensitivity of expression of fusion genes to existence of a large number of rare codons in recombinant gene sequenced. Methods: Primers for amplification of cholera toxin B, Shiga toxin B and gfp genes were designed by Primer3 software and synthesized. All of these 3 genes were cloned. Then the genes were fused together by restriction sites and enzymatic method. Two linkers were used as a flexible bridge in connection of these genes. Results: Cloning and fusion of cholera toxin B, Shiga toxin B and gfp genes were done correctly. After that, expression of the recombinant gene construction was surveyed. Conclusions: According to what was seen, because of the accumulation of 12 rare codons of Shiga toxin B and 19 rare codons of cholera toxin B in this gene cassette, the expression of the recombinant gene cassette, in Escherichia coli BL21, failed.

  18. Histone methylation mediates plasticity of human FOXP3(+) regulatory T cells by modulating signature gene expressions.

    Science.gov (United States)

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-03-01

    CD4(+) FOXP3(+) regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4(+) CD25(high) CD127(low/-) Treg cells convert to two subpopulations with distinctive FOXP3(+) and FOXP3(-) phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. © 2013 John Wiley & Sons Ltd.

  19. Histone methylation mediates plasticity of human FOXP3+ regulatory T cells by modulating signature gene expressions

    Science.gov (United States)

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-01-01

    CD4+ FOXP3+ regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4+ CD25high CD127low/− Treg cells convert to two subpopulations with distinctive FOXP3+ and FOXP3− phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. PMID:24152290

  20. Tbx2/3 is an essential mediator within the Brachyury gene network during Ciona notochord development.

    Science.gov (United States)

    José-Edwards, Diana S; Oda-Ishii, Izumi; Nibu, Yutaka; Di Gregorio, Anna

    2013-06-01

    T-box genes are potent regulators of mesoderm development in many metazoans. In chordate embryos, the T-box transcription factor Brachyury (Bra) is required for specification and differentiation of the notochord. In some chordates, including the ascidian Ciona, members of the Tbx2 subfamily of T-box genes are also expressed in this tissue; however, their regulatory relationships with Bra and their contributions to the development of the notochord remain uncharacterized. We determined that the notochord expression of Ciona Tbx2/3 (Ci-Tbx2/3) requires Ci-Bra, and identified a Ci-Tbx2/3 notochord CRM that necessitates multiple Ci-Bra binding sites for its activity. Expression of mutant forms of Ci-Tbx2/3 in the developing notochord revealed a role for this transcription factor primarily in convergent extension. Through microarray screens, we uncovered numerous Ci-Tbx2/3 targets, some of which overlap with known Ci-Bra-downstream notochord genes. Among the Ci-Tbx2/3 notochord targets are evolutionarily conserved genes, including caspases, lineage-specific genes, such as Noto4, and newly identified genes, such as MLKL. This work sheds light on a large section of the notochord regulatory circuitry controlled by T-box factors, and reveals new components of the complement of genes required for the proper formation of this structure.

  1. High expression of the circadian gene mPer2 diminishes the radiosensitivity of NIH 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.; Liu, Y.Y.; Zhu, B.; Li, Y.; Hua, H.; Wang, Y.H.; Zhang, J.; Jiang, Z.; Wang, Z.R. [Sichuan University, Chengdu (China). West China Medical Center. Health Ministry Key Lab. of Chronobiology], e-mail: wangzhengrong@126.com

    2009-10-15

    Period2 is a core circadian gene, which not only maintains the circadian rhythm of cells but also regulates some organic functions. We investigated the effects of mPeriod2 (mPer2) expression on radiosensitivity in normal mouse cells exposed to {sup 60}Co-{gamma}-rays. NIH 3T3 cells were treated with 12-O-tetradecanoyl phorbol-13-acetate (TPA) to induce endogenous mPer2 expression or transfected with pcDNA3.1(+)-mPer2 and irradiated with {sup 6}0Co-{gamma}-rays, and then analyzed by several methods such as flow cytometry, colony formation assay, RT-PCR, and immunohistochemistry. Flow cytometry and colony formation assay revealed that irradiated NIH 3T3 cells expressing high levels of mPer2 showed a lower death rate (TPA: 24 h 4.3% vs 12 h 6.8% and control 9.4%; transfection: pcDNA3.1-mPer2 3.7% vs pcDNA3.1 11.3% and control 8.2%), more proliferation and clonogenic survival (TPA: 121.7 {+-} 6.51 vs 66.0 {+-} 3.51 and 67.7 {+-} 7.37; transfection: 121.7 {+-} 6.50 vs 65.3 {+-} 3.51 and 69.0 {+-} 4.58) both when treated with TPA and transfected with mPer2. RT-PCR analysis showed an increased expression of bax, bcl-2, p53, cmyc, mre11, and nbs1, and an increased proportionality of bcl-2/bax in the irradiated cells at peak mPer2 expression compared with cells at trough mPer2 expression and control cells. However, no significant difference in rad50 expression was observed among the three groups of cells. Immunohistochemistry also showed increased protein levels of P53, BAX and proliferating cell nuclear antigen in irradiated cells with peak mPer2 levels. Thus, high expression of the circadian gene mPer2 may reduce the radiosensitivity of NIH 3T3 cells. For this effect, mPer2 may directly or indirectly regulate the expressions of cell proliferation- and apoptosis-related genes and DNA repair-related genes. (author)

  2. High expression of the circadian gene mPer2 diminishes the radiosensitivity of NIH 3T3 cells

    International Nuclear Information System (INIS)

    Chang, L.; Liu, Y.Y.; Zhu, B.; Li, Y.; Hua, H.; Wang, Y.H.; Zhang, J.; Jiang, Z.; Wang, Z.R.

    2009-01-01

    Period2 is a core circadian gene, which not only maintains the circadian rhythm of cells but also regulates some organic functions. We investigated the effects of mPeriod2 (mPer2) expression on radiosensitivity in normal mouse cells exposed to 60 Co-γ-rays. NIH 3T3 cells were treated with 12-O-tetradecanoyl phorbol-13-acetate (TPA) to induce endogenous mPer2 expression or transfected with pcDNA3.1(+)-mPer2 and irradiated with 6 0Co-γ-rays, and then analyzed by several methods such as flow cytometry, colony formation assay, RT-PCR, and immunohistochemistry. Flow cytometry and colony formation assay revealed that irradiated NIH 3T3 cells expressing high levels of mPer2 showed a lower death rate (TPA: 24 h 4.3% vs 12 h 6.8% and control 9.4%; transfection: pcDNA3.1-mPer2 3.7% vs pcDNA3.1 11.3% and control 8.2%), more proliferation and clonogenic survival (TPA: 121.7 ± 6.51 vs 66.0 ± 3.51 and 67.7 ± 7.37; transfection: 121.7 ± 6.50 vs 65.3 ± 3.51 and 69.0 ± 4.58) both when treated with TPA and transfected with mPer2. RT-PCR analysis showed an increased expression of bax, bcl-2, p53, cmyc, mre11, and nbs1, and an increased proportionality of bcl-2/bax in the irradiated cells at peak mPer2 expression compared with cells at trough mPer2 expression and control cells. However, no significant difference in rad50 expression was observed among the three groups of cells. Immunohistochemistry also showed increased protein levels of P53, BAX and proliferating cell nuclear antigen in irradiated cells with peak mPer2 levels. Thus, high expression of the circadian gene mPer2 may reduce the radiosensitivity of NIH 3T3 cells. For this effect, mPer2 may directly or indirectly regulate the expressions of cell proliferation- and apoptosis-related genes and DNA repair-related genes. (author)

  3. Reversible air-induced optical and electrical modulation of methylammonium lead bromide (MAPbBr3) single crystals

    Science.gov (United States)

    Zhang, Huotian; Liu, Yiting; Lu, Haizhou; Deng, Wan; Yang, Kang; Deng, Zunyi; Zhang, Xingmin; Yuan, Sijian; Wang, Jiao; Niu, Jiaxin; Zhang, Xiaolei; Jin, Qingyuan; Feng, Hongjian; Zhan, Yiqiang; Zheng, Lirong

    2017-09-01

    The photoluminescence (PL) variations of organic-inorganic hybrid lead halide perovskites in different atmospheres are well documented, while the fundamental mechanism still lacks comprehensive understandings. This study reports the reversible optical and electrical properties of methylammonium lead bromide (MAPbBr3 or CH3NH3PbBr3) single crystals caused by air infiltration. With the change in the surrounding atmosphere from air to vacuum, the PL intensity of perovskite single crystals decreases, while the conductivity increases. By means of first-principles computational studies, the shallow trap states are considered as key elements in PL and conductivity changes. These results have important implications for the characterization and application of organic-inorganic hybrid lead halide perovskites in vacuum.

  4. MicroRNA genes and their target 3'-untranslated regions are infrequently somatically mutated in ovarian cancers.

    Directory of Open Access Journals (Sweden)

    Georgina L Ryland

    Full Text Available MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3'-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case. One mutation was located in the mature miRNA, and three mutations were predicted to alter the secondary structure of the miRNA transcript. Screening of the 3'-untranslated region of 18 candidate cancer genes identified one mutation in each of AKT2, EGFR, ERRB2 and CTNNB1. The functional effect of these mutations is unclear, as expression data available for AKT2 and EGFR showed no increase in gene transcript. Mutations in miRNA genes and 3'-untranslated regions are thus uncommon in ovarian cancer.

  5. Homozygous mutation in the NPHP3 gene causing foetal nephronophthisis

    DEFF Research Database (Denmark)

    Abdullah, Uzma; Farooq, Muhammad; Fatima, Ambrin

    2017-01-01

    We present a case of a foetal sonographic finding of hyper-echogenic kidneys, which led to a strategic series of genetic tests and identified a homozygous mutation (c.424C > T, p. R142*) in the NPHP3 gene. Our study provides a rare presentation of NPHP3-related ciliopathy and adds to the mutation...

  6. Association of MC3R gene polymorphisms with body weight in the red fox and comparative gene organization in four canids.

    Science.gov (United States)

    Skorczyk, A; Flisikowski, K; Szydlowski, M; Cieslak, J; Fries, R; Switonski, M

    2011-02-01

    There are five genes encoding melanocortin receptors. Among canids, the genes have mainly been studied in the dog (MC1R, MC2R and MC4R). The MC4R gene has also been analysed in the red fox. In this report, we present a study of chromosome localization, comparative sequence analysis and polymorphism of the MC3R gene in the dog, red fox, arctic fox and Chinese raccoon dog. The gene was localized by FISH to the following chromosome: 24q24-25 in the dog, 14p16 in the red fox, 18q13 in the arctic fox and NPP4p15 in the Chinese raccoon dog. A high identity level of the MC3R gene sequences was observed among the species, ranging from 96.0% (red fox--Chinese raccoon dog) to 99.5% (red fox--arctic fox). Altogether, eight polymorphic sites were found in the red fox, six in the Chinese raccoon dog and two in the dog, while the arctic fox appeared to be monomorphic. In addition, association of several polymorphisms with body weight was analysed in red foxes (the number of genotyped animals ranged from 319 to 379). Two polymorphisms in the red fox, i.e. a silent substitution c.957A>C and c.*185C>T in the 3'-flanking sequence, showed a significant association (P < 0.01) with body weight. © 2010 The Authors, Animal Genetics © 2010 Stichting International Foundation for Animal Genetics.

  7. Localization of the xeroderma pigmentosum group B-correcting gene ERCC-3 to human chromosome 2q21.

    NARCIS (Netherlands)

    G. Weeda (Geert); J. Wiegant; M. van der Ploeg; A.H.M. Geurts van Kessel (Ad); A.J. van der Eb; J.H.J. Hoeijmakers (Jan)

    1991-01-01

    textabstractThe human excision-repair gene ERCC3 was cloned after DNA-mediated gene transfer to the uv-sensitive Chinese hamster ovary mutant cell line 27-1, a member of complementation group 3 of the excision-defective rodent cell lines. The ERCC3 gene specifically corrects the DNA repair defect of

  8. Identification of a novel CLRN1 gene mutation in Usher syndrome type 3: two case reports.

    Science.gov (United States)

    Yoshimura, Hidekane; Oshikawa, Chie; Nakayama, Jun; Moteki, Hideaki; Usami, Shin-Ichi

    2015-05-01

    This study examines the CLRN1 gene mutation analysis in Japanese patients who were diagnosed with Usher syndrome type 3 (USH3) on the basis of clinical findings. Genetic analysis using massively parallel DNA sequencing (MPS) was conducted to search for 9 causative USH genes in 2 USH3 patients. We identified the novel pathogenic mutation in the CLRN1 gene in 2 patients. The missense mutation was confirmed by functional prediction software and segregation analysis. Both patients were diagnosed as having USH3 caused by the CLRN1 gene mutation. This is the first report of USH3 with a CLRN1 gene mutation in Asian populations. Validating the presence of clinical findings is imperative for properly differentiating among USH subtypes. In addition, mutation screening using MPS enables the identification of causative mutations in USH. The clinical diagnosis of this phenotypically variable disease can then be confirmed. © The Author(s) 2015.

  9. Blood Lead Concentrations in 1–3 Year Old Lebanese Children: A Cross-sectional study

    Directory of Open Access Journals (Sweden)

    Salem George

    2003-04-01

    Full Text Available Abstract Background Childhood lead poisoning has not made the list of national public health priorities in Lebanon. This study aims at identifying the prevalence and risk factors for elevated blood lead concentrations (B-Pb ≥ 100 μg/L among 1–3 year old children. It also examines the need for universal blood lead screening. Methods This is a cross-sectional study of 281 well children, presenting to the pediatric ambulatory services at the American University of Beirut Medical Center in 1997–98. Blood was drawn on participating children for lead analysis and a structured questionnaire was introduced to mothers asking about social, demographic, and residence characteristics, as well as potential risk factors for lead exposure. Children with B-Pb ≥ 100 μg/L were compared to those with B-Pb Results Mean B-Pb was 66.0 μg/L (median 60.0; range 10–160; standard deviation 26.3 with 39 (14% children with B-Pb ≥ 100 μg/L. Logistic regression analysis showed that elevated B-Pb was associated with paternal manual jobs (odds ratio [OR]: 4.74, residence being located in high traffic areas (OR: 4.59, summer season (OR: 4.39, using hot tap water for cooking (OR: 3.96, exposure to kohl (OR: 2.40, and living in older buildings (OR: 2.01. Conclusion Lead screening should be offered to high-risk children. With the recent ban of leaded gasoline in Lebanon, emphasis should shift to other sources of exposure in children.

  10. Blood Lead Concentrations in 1–3 Year Old Lebanese Children: A Cross-sectional study

    Science.gov (United States)

    Nuwayhid, Iman; Nabulsi, Mona; Muwakkit, Samar; Kouzi, Sarah; Salem, George; Mikati, Mohamed; Ariss, Majd

    2003-01-01

    Background Childhood lead poisoning has not made the list of national public health priorities in Lebanon. This study aims at identifying the prevalence and risk factors for elevated blood lead concentrations (B-Pb ≥ 100 μg/L) among 1–3 year old children. It also examines the need for universal blood lead screening. Methods This is a cross-sectional study of 281 well children, presenting to the pediatric ambulatory services at the American University of Beirut Medical Center in 1997–98. Blood was drawn on participating children for lead analysis and a structured questionnaire was introduced to mothers asking about social, demographic, and residence characteristics, as well as potential risk factors for lead exposure. Children with B-Pb ≥ 100 μg/L were compared to those with B-Pb < 100 μg/L. Results Mean B-Pb was 66.0 μg/L (median 60.0; range 10–160; standard deviation 26.3) with 39 (14%) children with B-Pb ≥ 100 μg/L. Logistic regression analysis showed that elevated B-Pb was associated with paternal manual jobs (odds ratio [OR]: 4.74), residence being located in high traffic areas (OR: 4.59), summer season (OR: 4.39), using hot tap water for cooking (OR: 3.96), exposure to kohl (OR: 2.40), and living in older buildings (OR: 2.01). Conclusion Lead screening should be offered to high-risk children. With the recent ban of leaded gasoline in Lebanon, emphasis should shift to other sources of exposure in children. PMID:12780938

  11. Guidelines for the naming of genes, gene products, and mutants in the opportunistic protists.

    Science.gov (United States)

    Limper, Andrew H; Weiss, Louis M

    2011-01-01

    The opportunistic protists encompass a wide diversity of organisms including Pneumocystis, Toxoplasma, cryptosporidia, microsporidia, and related genera. Recent advances in the molecular biology and cellular biochemistry of these organisms have led to the identification of an ever growing numbers of key genes and their cognate proteins. Until now, these molecules have not been designated using any consistent nomenclature system, leading to considerable confusion. The participants of the 11th International Workshop on Opportunistic Protists met on August 3, 2010 to reach consensus of a nomenclature system for genes, gene products, and mutants in the opportunistic protists. The following summary reports the consensus agreement to move toward a unified nomenclature system for these organisms. The system is adapted from that used for Saccharomyces cerevisiae. © 2011 The Author(s). Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.

  12. Up-regulation of the alligator CYP3A77 gene by toxaphene and dexamethasone and its short term effect on plasma testosterone concentrations

    International Nuclear Information System (INIS)

    Gunderson, M.P.; Kohno, S.; Blumberg, B.; Iguchi, T.; Guillette, L.J.

    2006-01-01

    = 0.77, negative) transcripts, which suggests that the expression of these genes is related to plasma T in alligators. In light of our findings, we hypothesized that higher steady state CYP3A77 (and possibly SXR) gene expression would be observed in alligators collected from Lake Apopka, a polluted lake containing organochlorine compounds known to induce CYP3A isoforms in other taxa. Therefore, we measured basal levels of CYP3A77 and SXR gene transcripts in wild juvenile alligators collected from Orange Lake (reference lake), Lake Woodruff (reference lake), and Lake Apopka (contaminated lake). We found that no differences existed in CYP3A77 or SXR gene expression among animals from the lakes sampled suggesting that exposure to organochlorine compounds at concentrations present in Lake Apopka does not lead to variation in the expression of these genes, although capture stress could be interfering with these results since the glucocorticoid dexamethasone induces CYP3A77 transcript in alligators

  13. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar

    Directory of Open Access Journals (Sweden)

    Ana M. González

    2017-11-01

    Full Text Available Few quantitative trait loci have been mapped for resistance to Pseudomonas syringae pv. phaseolicola in common bean. Two F2 populations were developed from the host differential UI3 cultivar. The objective of this study was to further characterize the resistance to races 1, 5, 7 and 9 of Psp included in UI3. Using a QTL mapping approach, 16 and 11 main-effect QTLs for pod and primary leaf resistance were located on LG10, explaining up to 90% and 26% of the phenotypic variation, respectively. The homologous genomic region corresponding to primary leaf resistance QTLs detected tested positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL, Natural Resistance Associated Macrophage (NRAMP and Pentatricopeptide Repeat family (PPR proteins. It is worth noting that the main effect QTLs for resistance in pod were located inside a 3.5 Mb genomic region that included the Phvul.010G021200 gene, which encodes a protein that has the highest sequence similarity to the RIN4 gene of Arabidopsis, and can be considered an important candidate gene for the organ-specific QTLs identified here. These results support that resistance to Psp from UI3 might result from the immune response activated by combinations of R proteins, and suggest the guard model as an important mechanism in pod resistance to halo blight. The candidate genes identified here warrant functional studies that will help in characterizing the actual defense gene(s in UI3 genotype.

  14. Stratification of clear cell renal cell carcinoma (ccRCC) genomes by gene-directed copy number alteration (CNA) analysis.

    Science.gov (United States)

    Thiesen, H-J; Steinbeck, F; Maruschke, M; Koczan, D; Ziems, B; Hakenberg, O W

    2017-01-01

    Tumorigenic processes are understood to be driven by epi-/genetic and genomic alterations from single point mutations to chromosomal alterations such as insertions and deletions of nucleotides up to gains and losses of large chromosomal fragments including products of chromosomal rearrangements e.g. fusion genes and proteins. Overall comparisons of copy number alterations (CNAs) presented in 48 clear cell renal cell carcinoma (ccRCC) genomes resulted in ratios of gene losses versus gene gains between 26 ccRCC Fuhrman malignancy grades G1 (ratio 1.25) and 20 G3 (ratio 0.58). Gene losses and gains of 15762 CNA genes were mapped to 795 chromosomal cytoband loci including 280 KEGG pathways. CNAs were classified according to their contribution to Fuhrman tumour gradings G1 and G3. Gene gains and losses turned out to be highly structured processes in ccRCC genomes enabling the subclassification and stratification of ccRCC tumours in a genome-wide manner. CNAs of ccRCC seem to start with common tumour related gene losses flanked by CNAs specifying Fuhrman grade G1 losses and CNA gains favouring grade G3 tumours. The appearance of recurrent CNA signatures implies the presence of causal mechanisms most likely implicated in the pathogenesis and disease-outcome of ccRCC tumours distinguishing lower from higher malignant tumours. The diagnostic quality of initial 201 genes (108 genes supporting G1 and 93 genes G3 phenotypes) has been successfully validated on published Swiss data (GSE19949) leading to a restricted CNA gene set of 171 CNA genes of which 85 genes favour Fuhrman grade G1 and 86 genes Fuhrman grade G3. Regarding these gene sets overall survival decreased with the number of G3 related gene losses plus G3 related gene gains. CNA gene sets presented define an entry to a gene-directed and pathway-related functional understanding of ongoing copy number alterations within and between individual ccRCC tumours leading to CNA genes of prognostic and predictive value.

  15. [PAX3 gene mutation analysis for two Waardenburg syndrome type Ⅰ families and their prenatal diagnosis].

    Science.gov (United States)

    Bai, Y; Liu, N; Kong, X D; Yan, J; Qin, Z B; Wang, B

    2016-12-07

    Objective: To analyze the mutations of PAX3 gene in two Waardenburg syndrome type Ⅰ (WS1) pedigrees and make prenatal diagnosis for the high-risk 18-week-old fetus. Methods: PAX3 gene was first analyzed by Sanger sequencing and multiplex ligation-dependent probe amplification(MLPA) for detecting pathogenic mutation of the probands of the two pedigrees. The mutations were confirmed by MLPA and Sanger in parents and unrelated healthy individuals.Prenatal genetic diagnosis for the high-risk fetus was performed by amniotic fluid cell after genotyping. Results: A heterozygous PAX3 gene gross deletion (E7 deletion) was identified in all patients from WS1-01 family, and not found in 20 healthy individuals.Prenatal diagnosis in WS1-01 family indicated that the fetus was normal. Molecular studies identified a novel deletion mutation c. 1385_1386delCT within the PAX3 gene in all affected WS1-02 family members, but in none of the unaffected relatives and 200 healthy individuals. Conclusions: PAX3 gene mutation is etiological for two WS1 families. Sanger sequencing plus MLPA is effective and accurate for making gene diagnosis and prenatal diagnosis.

  16. De novo characterization of the Iris lactea var. chinensis transcriptome and an analysis of genes under cadmium or lead exposure.

    Science.gov (United States)

    Gu, Chun-Sun; Liu, Liang-Qin; Deng, Yan-Ming; Zhang, Yong-Xia; Wang, Zhi-Quan; Yuan, Hai-Yan; Huang, Su-Zhen

    2017-10-01

    Iris lactea var. chinensis (I. lactea var. chinensis) is tolerant to accumulations of cadmium (Cd) and lead (Pb). In this study, the transcriptome of I. lactea var. chinensis was investigated under Cd or Pb stresses. Using the gene ontology database, 31,974 unigenes were classified into biological process, cellular component and molecular function. In total, 13,132 unigenes were involved in enriched Encyclopedia of Genes and Genomes (KEGG) metabolic pathways, and the expression levels of 5904 unigenes were significantly changed after exposure to Cd or Pb stresses. Of these, 974 were co-up-regulated and 1281 were co-down-regulated under the two stresses. The transcriptome expression profiles of I. lactea var. chinensis under Cd or Pb stresses obtained in this study provided a resource for identifying common mechanisms in the detoxification of different heavy metals. Furthermore, the identified unigenes may be used for the genetic breeding of heavy-metal tolerant plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Interference, heterogeneity and disease gene mapping

    Energy Technology Data Exchange (ETDEWEB)

    Keats, B. [Louisiana State Univ. Medical Center, New Orleans, LA (United States)

    1996-12-31

    The Human Genome Project has had a major impact on genetic research over the past five years. The number of mapped genes is now over 3,000 compared with approximately 1,600 in 1989 and only about 260 ten years before that. The realization that extensive variation could be detected in anonymous DNA segments greatly enhanced the potential for mapping by linkage analysis. Previously, linkage studies had depended on polymorphisms that could be detected in red blood cell antigens, proteins (revealed by electrophoresis and isoelectric focusing), and cytogenetic heteromorphisms. The identification of thousands of polymorphic DNA markers throughout the human genome has led to the construction of high density genetic linkage maps. These maps provide the data necessary to test hypotheses concerning differences in recombination rates and levels of interference. They are also important for disease gene mapping because the existence of these genes must be inferred from the phenotype. Showing linkage of a disease gene to a DNA marker is the first step towards isolating the disease gene, determining its protein product, and developing effective therapies. However, interpretation of results is not always straightforward. Factors such as etiological heterogeneity and undetected irregular segregation can lead to confusing linkage results and incorrect conclusions about the locations of disease genes. This paper will discuss these phenomena and present examples that illustrate the problems, as well as approaches to dealing with them. 23 refs., 3 figs., 3 tabs.

  18. Diverse effects of lead nitrate on the proliferation, differentiation, and gene expression of stem cells isolated from a dental origin.

    Science.gov (United States)

    Abdullah, Mariam; Rahman, Fazliny Abd; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Abu Kasim, Noor Hayaty; Musa, Sabri

    2014-01-01

    Lead (Pb(2+)) exposure continues to be a significant public health problem. Therefore, it is vital to have a continuous epidemiological dataset for a better understanding of Pb(2+) toxicity. In the present study, we have exposed stem cells isolated from deciduous and permanent teeth, periodontal ligament, and bone marrow to five different types of Pb(2+) concentrations (160, 80, 40, 20, and 10 µM) for 24 hours to identify the adverse effects of Pb(2+) on the proliferation, differentiation, and gene expression on these cell lines. We found that Pb(2+) treatment altered the morphology and adhesion of the cells in a dose-dependent manner. There were no significant changes in terms of cell surface phenotypes. Cells exposed to Pb(2+) continued to differentiate into chondrogenesis and adipogenesis, and a severe downregulation was observed in osteogenesis. Gene expression studies revealed a constant expression of key markers associated with stemness (Oct 4, Rex 1) and DNA repair enzyme markers, but downregulation occurred with some ectoderm and endoderm markers, demonstrating an irregular and untimely differentiation trail. Our study revealed for the first time that Pb(2+) exposure not only affects the phenotypic characteristics but also induces significant alteration in the differentiation and gene expression in the cells.

  19. Diverse Effects of Lead Nitrate on the Proliferation, Differentiation, and Gene Expression of Stem Cells Isolated from a Dental Origin

    Directory of Open Access Journals (Sweden)

    Mariam Abdullah

    2014-01-01

    Full Text Available Lead (Pb2+ exposure continues to be a significant public health problem. Therefore, it is vital to have a continuous epidemiological dataset for a better understanding of Pb2+ toxicity. In the present study, we have exposed stem cells isolated from deciduous and permanent teeth, periodontal ligament, and bone marrow to five different types of Pb2+ concentrations (160, 80, 40, 20, and 10 µM for 24 hours to identify the adverse effects of Pb2+ on the proliferation, differentiation, and gene expression on these cell lines. We found that Pb2+ treatment altered the morphology and adhesion of the cells in a dose-dependent manner. There were no significant changes in terms of cell surface phenotypes. Cells exposed to Pb2+ continued to differentiate into chondrogenesis and adipogenesis, and a severe downregulation was observed in osteogenesis. Gene expression studies revealed a constant expression of key markers associated with stemness (Oct 4, Rex 1 and DNA repair enzyme markers, but downregulation occurred with some ectoderm and endoderm markers, demonstrating an irregular and untimely differentiation trail. Our study revealed for the first time that Pb2+ exposure not only affects the phenotypic characteristics but also induces significant alteration in the differentiation and gene expression in the cells.

  20. Basal transcription of APOBEC3G is regulated by USF1 gene in hepatocyte

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yanli [Department of Infectious Diseases, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China); Li, Hui [The Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science Technology, Wuhan, 430000 (China); Zhang, Xiaoju [Department of Respiratory Medicine, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China); Shang, Jia [Department of Infectious Diseases, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China); Kang, Yi, E-mail: kykangyi@163.com [Department of Infectious Diseases, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China)

    2016-01-29

    Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, A3G) exert antiviral defense as an important factor of innate immunity. A variety of cytokines such as IFN-γ,IL2,IL15,IL7 could induce the transcription of A3G. However, the regulation of other nuclear factor on the transcription of A3G have not been reported at the present. To gain new insights into the transcriptional regulation of this restriction factor, we cloned and characterized the promoter region of A3G and investigate the modulation of USF1 gene on the transcription of A3G. We identified a 232 bp region that was sufficient to regulate the activity of full promoter. Transcriptional start sites (TSS) were identified by the luciferase reporter assays of plasmids containing full or shorter fragments of the A3G promoter. The results demonstrated that the core promoter of A3G is located within the region -159/-84 relative to the TSS. Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position -91/-86 relative to the major TSS) and was abolished after mutation of this DNA element. USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte, and the identified E-box represented a binding site for the USF1. - Highlights: • The core promoter of A3G is located within the region −159/−84 relative to the TSS. • Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position −91/−86 relative to the major TSS). • USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte.

  1. Basal transcription of APOBEC3G is regulated by USF1 gene in hepatocyte

    International Nuclear Information System (INIS)

    Zeng, Yanli; Li, Hui; Zhang, Xiaoju; Shang, Jia; Kang, Yi

    2016-01-01

    Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, A3G) exert antiviral defense as an important factor of innate immunity. A variety of cytokines such as IFN-γ,IL2,IL15,IL7 could induce the transcription of A3G. However, the regulation of other nuclear factor on the transcription of A3G have not been reported at the present. To gain new insights into the transcriptional regulation of this restriction factor, we cloned and characterized the promoter region of A3G and investigate the modulation of USF1 gene on the transcription of A3G. We identified a 232 bp region that was sufficient to regulate the activity of full promoter. Transcriptional start sites (TSS) were identified by the luciferase reporter assays of plasmids containing full or shorter fragments of the A3G promoter. The results demonstrated that the core promoter of A3G is located within the region -159/-84 relative to the TSS. Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position -91/-86 relative to the major TSS) and was abolished after mutation of this DNA element. USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte, and the identified E-box represented a binding site for the USF1. - Highlights: • The core promoter of A3G is located within the region −159/−84 relative to the TSS. • Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position −91/−86 relative to the major TSS). • USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte.

  2. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Science.gov (United States)

    Lu, Sha; Yin, Xiaoyan; Spollen, William; Zhang, Ning; Xu, Dong; Schoelz, James; Bilyeu, Kristin; Zhang, Zhanyuan J

    2015-01-01

    In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  3. Changes of MODY signal pathway genes in the endoplasmic reticulum stress in INS-1-3 cells.

    Directory of Open Access Journals (Sweden)

    Yanan Dong

    Full Text Available Metabolic disturbances induce endoplasmic reticulum stress (ERS in pancreatic beta cells. This study aims to investigate whether a common pathway exists in the ERS induced by various chemicals, including high levels of glucose and palmitate in INS-1-3 cells.ERS in INS-1-3 cells was induced by exposure cells to thapsigargin (TG, tunicamycin (TM or palmitic acid (PA +high glucose (HG. Digital gene expression (DGE profiling technique was used to detect differentially expressed genes. The profile of gene expression was detected by gene oncology (GO function and pathway enrichment analysis. Nkx6.1 over-expression was established in INS-1-3 cell lines by lentivirus infection to revert the inhibition of Nkx6.1 expression found in the situation of ERS. Real time reverse transcription polymerase chain reaction (RT-PCR was used to verify the expression changes of key genes. Cell viability was measured by 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT assay. The apoptosis was determined by flow cytometry. INS-1-3 cell function was measured by glucose stimulated insulin secretion test(GSIS.As compared to control, DGE demonstrated that there were 135, 57 and 74 differentially expressed genes in TM, TG and HG+PA groups, respectively. Those differentially expressed genes were enriched to ERS, antigen processing and presentation, protein export pathways, and interestingly, the maturity onset diabetes of the young (MODY pathway. Nkx6.1 is one of common down-regulated gene in MODY signaling pathway among TM, TG and HG+PA groups. Over-expression of Nkx6.1 ameliorated glucolipotoxicity induced apoptosis rate by 45.4%, and increased proliferation by 40.9%. At the same time, GSIS increased by 1.82 folds.MODY pathway genes expression was changed in the state of ERS. Over-expression of Nkx6.1 protected the INS-1-3 cells from glucolipotoxicity.

  4. Up-regulation of integrin β3 in radioresistant pancreatic cancer impairs adenovirus-mediated gene therapy

    International Nuclear Information System (INIS)

    Egami, Takuya; Ohuchida, Kenoki; Yasui, Takaharu; Onimaru, Manabu; Toma, Hiroki; Sato, Norihiro; Tanaka, Masao; Mizumoto, Kazuhiro; Matsumoto, Kunio

    2009-01-01

    Adenovirus-mediated gene therapy is a promising approach for the treatment of pancreatic cancer. We previously reported that radiation enhanced adenovirus-mediated gene expression in pancreatic cancer, suggesting that adenoviral gene therapy might be more effective in radioresistant pancreatic cancer cells. In the present study, we compared the transduction efficiency of adenovirus-delivered genes in radiosensitive and radioresistant cells, and investigated the underlying mechanisms. We used an adenovirus expressing the hepatocyte growth factor antagonist, NK4 (Ad-NK4), as a representative gene therapy. We established two radioresistant human pancreatic cancer cell lines using fractionated irradiation. Radiosensitive and radioresistant pancreatic cancer cells were infected with Ad-NK4, and NK4 levels in the cells were measured. In order to investigate the mechanisms responsible for the differences in the transduction efficiency between these cells, we measured expression of the genes mediating adenovirus infection and endocytosis. The results revealed that NK4 levels in radioresistant cells were significantly lower (P<0.01) than those in radiosensitive cells, although there were no significant differences in adenovirus uptake between radiosensitive cells and radioresistant cells. Integrin β3 was up-regulated and the Coxsackie virus and adenovirus receptor was down-regulated in radioresistant cells, and inhibition of integrin β3 promoted adenovirus gene transfer. These results suggest that inhibition of integrin β3 in radioresistant pancreatic cancer cells could enhance adenovirus-mediated gene therapy. (author)

  5. 77 FR 17029 - Certain Steel Nails From the United Arab Emirates: Final Determination of Sales at Less Than Fair...

    Science.gov (United States)

    2012-03-23

    ... ring, fluted or spiral shank, an actual length of 0.500 to 8 , inclusive; an actual shank diameter of 0... (commonly known as an umbrella head), a smooth or spiral shank, a galvanized finish, an actual length of 1..., we are relying on the average-to-transaction comparison methodology for both Dubai Wire and Precision...

  6. Genetic Variation of Goat Interferon Regulatory Factor 3 Gene and Its Implication in Goat Evolution.

    Science.gov (United States)

    Okpeku, Moses; Esmailizadeh, Ali; Adeola, Adeniyi C; Shu, Liping; Zhang, Yesheng; Wang, Yangzi; Sanni, Timothy M; Imumorin, Ikhide G; Peters, Sunday O; Zhang, Jiajin; Dong, Yang; Wang, Wen

    2016-01-01

    The immune systems are fundamentally vital for evolution and survival of species; as such, selection patterns in innate immune loci are of special interest in molecular evolutionary research. The interferon regulatory factor (IRF) gene family control many different aspects of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known to take active part in very many biological processes. We assembled and evaluated 1356 base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethiopia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across the goats' populations. Fu and Li tests were significantly positive but Tajima's D test was significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3 gene in domesticated goats, wild goat and sheep showed that all domesticated goats have a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene showed that different domesticated goats share a common ancestor and suggest single origin. Four unique haplotypes were observed across all the sequences, of which, one was particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave a ω0 (dN/dS) value of 0.067 with LnL value of -6900.3 for the first Model (M1) while ω2 = 1.667 in model M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic empirical combination (MEC) model for evaluating adaptive selection pressure on particular codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat IRF3

  7. Simple Comparative Analyses of Differentially Expressed Gene Lists May Overestimate Gene Overlap.

    Science.gov (United States)

    Lawhorn, Chelsea M; Schomaker, Rachel; Rowell, Jonathan T; Rueppell, Olav

    2018-04-16

    Comparing the overlap between sets of differentially expressed genes (DEGs) within or between transcriptome studies is regularly used to infer similarities between biological processes. Significant overlap between two sets of DEGs is usually determined by a simple test. The number of potentially overlapping genes is compared to the number of genes that actually occur in both lists, treating every gene as equal. However, gene expression is controlled by transcription factors that bind to a variable number of transcription factor binding sites, leading to variation among genes in general variability of their expression. Neglecting this variability could therefore lead to inflated estimates of significant overlap between DEG lists. With computer simulations, we demonstrate that such biases arise from variation in the control of gene expression. Significant overlap commonly arises between two lists of DEGs that are randomly generated, assuming that the control of gene expression is variable among genes but consistent between corresponding experiments. More overlap is observed when transcription factors are specific to their binding sites and when the number of genes is considerably higher than the number of different transcription factors. In contrast, overlap between two DEG lists is always lower than expected when the genetic architecture of expression is independent between the two experiments. Thus, the current methods for determining significant overlap between DEGs are potentially confounding biologically meaningful overlap with overlap that arises due to variability in control of expression among genes, and more sophisticated approaches are needed.

  8. Evaluation of insertion characteristics of less invasive Si optoneural probe with embedded optical fiber

    Science.gov (United States)

    Morikawa, Takumi; Harashima, Takuya; Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu

    2017-04-01

    A less invasive Si optoneural probe with an embedded optical fiber was proposed and successfully fabricated. The diameter of the optical fiber was completely controlled by hydrogen fluoride etching, and the thinned optical fiber can propagate light without any leakage. This optical fiber was embedded in a trench formed inside a probe shank, which causes less damage to tissues. In addition, it was confirmed that the optical fiber embedded in the probe shank successfully irradiated light to optically stimulate gene transfected neurons. The electrochemical impedance of the probe did not change despite the light irradiation. Furthermore, probe insertion characteristics were evaluated in detail and less invasive insertion was clearly indicated for the Si optoneural probe with the embedded optical fiber compared with conventional optical neural probes. This neural probe with the embedded optical fiber can be used as a simple and easy tool for optogenetics and brain science.

  9. The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons.

    Science.gov (United States)

    Finta, C; Zaphiropoulos, P G

    2000-12-30

    Using a bacterial artificial chromosome (BAC) clone, we have mapped the human cytochrome P450 3A (CYP3A) locus containing the genes encoding for CYP3A4, CYP3A5 and CYP3A7. The genes lie in a head-to-tail orientation in the order of 3A4, 3A7 and 3A5. In both intergenic regions (3A4-3A7 and 3A7-3A5), we have detected several additional cytochrome P450 3A exons, forming two CYP3A pseudogenes. These pseudogenes have the same orientation as the CYP3A genes. To our surprise, a 3A7 mRNA species has been detected in which the exons 2 and 13 of one of the pseudogenes (the one that is downstream of 3A7) are spliced after the 3A7 terminal exon. This results in an mRNA molecule that consists of the 13 3A7 exons and two additional exons at the 3' end. The additional two exons originating from the pseudogene are in an altered reading frame and consequently have the capability to code a completely different amino acid sequence than the canonical CYP3A exons 2 and 13. These findings may represent a generalized evolutionary process with genes having the potential to capture neighboring sequences and use them as functional exons.

  10. Evidence for natural selection at the melanocortin-3 receptor gene in European and African populations.

    Science.gov (United States)

    Yoshiuchi, Issei

    2016-08-01

    Obesity is increasing steadily in worldwide prevalence and is known to cause serious health problems in association with type 2 diabetes mellitus (T2DM), including hypertension, stroke, and cardiovascular diseases. According to the thrifty gene hypothesis, the natural selection of obesity-related genes is important during feast and famine because they control body weight and fat levels. Past human adaptations to environmental changes in food supply, lifestyle, and geography may have influenced the selection of genes associated with the metabolism of glucose, lipids, and energy. The melanocortin-3 receptor gene (MC3R) is associated with obesity, with MC3R-deficient mice showing increased fat mass. MC3R variations are also linked with childhood obesity and insulin resistance. Here, we aimed to uncover evidence of selection at MC3R. We performed a three-step method to detect selection at MC3R using HapMap population data. We used Wright's F statistics as a measure of population differentiation, the long-range haplotype test to identify extended haplotypes, and the integrated haplotype score (iHS) to detect selection at MC3R. We observed high population differentiation between European and African populations at two MC3R childhood obesity- and insulin resistance-associated single-nucleotide polymorphisms (rs3746619 and rs3827103) using Wright's F statistics. The iHS revealed evidence of natural selection at MC3R. These findings provide evidence for natural selection at MC3R. Further investigation is warranted into adaptive evolution at T2DM- and obesity-associated genes.

  11. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Liao, Dehua; Chen, Xiao; Chen, Aiqun; Wang, Huimin; Liu, Jianjian; Liu, Junli; Gu, Mian; Sun, Shubin; Xu, Guohua

    2015-04-01

    In plants, the GH3 gene family is widely considered to be involved in a broad range of plant physiological processes, through modulation of hormonal homeostasis. Multiple GH3 genes have been functionally characterized in several plant species; however, to date, limited works to study the GH3 genes in tomato have been reported. Here, we characterize the expression and regulatory profiles of six tomato GH3 genes, SlGH3.2, SlGH3.3, SlGH3.4, SlGH3.7, SlGH3.9 and SlGH3.15, in response to different phytohormone applications and arbuscular mycorrhizal (AM) fungal colonization. All six GH3 genes showed inducible responses to external IAA, and three members were significantly up-regulated in response to AM symbiosis. In particular, SlGH3.4, the transcripts of which were barely detectable under normal growth conditions, was strongly activated in the IAA-treated and AM fungal-colonized roots. A comparison of the SlGH3.4 expression in wild-type plants and M161, a mutant with a defect in AM symbiosis, confirmed that SlGH3.4 expression is highly correlated to mycorrhizal colonization. Histochemical staining demonstrated that a 2,258 bp SlGH3.4 promoter fragment could drive β-glucuronidase (GUS) expression strongly in root tips, steles and cortical cells of IAA-treated roots, but predominantly in the fungal-colonized cells of mycorrhizal roots. A truncated 654 bp promoter failed to direct GUS expression in IAA-treated roots, but maintained the symbiosis-induced activity in mycorrhizal roots. In summary, our results suggest that a mycorrhizal signaling pathway that is at least partially independent of the auxin signaling pathway has evolved for the co-regulation of the auxin- and mycorrhiza-activated GH3 genes in plants. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. A common FGFR3 gene mutation is present in achondroplasia but not in hypochondroplasia

    Energy Technology Data Exchange (ETDEWEB)

    Stoilov, I.; Kilpatrick, M.W.; Tsipouras, P. [Univ. of Connecticut Health Center, Farmington, CT (United States)

    1995-01-02

    Achondroplasia is the most common type of genetic dwarfism. It is characterized by disproportionate short stature and other skeletal anomalies resulting from a defect in the maturation of the chondrocytes in the growth plate of the cartilage. Recent studies mapped the achondroplasia gene on chromosome region 4p16.3 and identified a common mutation in the gene encoding the fibroblast growth factor receptor 3 (FGFR3). In an analysis of 19 achondroplasia families from a variety of ethnic backgrounds we confirmed the presence of the G380R mutation in 21 of 23 achondroplasia chromosomes studied. In contrast, the G380R mutation was not found in any of the 8 hypochondroplasia chromosomes studied. Futhermore, linkage studies in a 3-generation family with hypochondroplasia show discordant segregation with markers in the 4p16.3 region suggesting that at least some cases of hypochondroplasia are caused by mutations in a gene other than FGFR3. 27 refs., 2 figs.

  13. Molecular cloning and biological characterization of the human excision repair gene ERCC-3

    International Nuclear Information System (INIS)

    Weeda, G.; van Ham, R.C.; Masurel, R.; Westerveld, A.; Odijk, H.; de Wit, J.; Bootsma, D.; van der Eb, A.J.; Hoeijmakers, J.H.

    1990-01-01

    In this report we present the cloning, partial characterization, and preliminary studies of the biological activity of a human gene, designated ERCC-3, involved in early steps of the nucleotide excision repair pathway. The gene was cloned after genomic DNA transfection of human (HeLa) chromosomal DNA together with dominant marker pSV3gptH to the UV-sensitive, incision-defective Chinese hamster ovary (CHO) mutant 27-1. This mutant belongs to complementation group 3 of repair-deficient rodent mutants. After selection of UV-resistant primary and secondary 27-1 transformants, human sequences associated with the induced UV resistance were rescued in cosmids from the DNA of a secondary transformant by using a linked dominant marker copy and human repetitive DNA as probes. From coinheritance analysis of the ERCC-3 region in independent transformants, we deduce that the gene has a size of 35 to 45 kilobases, of which one essential segment has so far been refractory to cloning. Conserved unique human sequences hybridizing to a 3.0-kilobase mRNA were used to isolate apparently full-length cDNA clones. Upon transfection to 27-1 cells, the ERCC-3 cDNA, inserted in a mammalian expression vector, induced specific and (virtually) complete correction of the UV sensitivity and unscheduled DNA synthesis of mutants of complementation group 3 with very high efficiency. Mutant 27-1 is, unlike other mutants of complementation group 3, also very sensitive toward small alkylating agents. This unique property of the mutant is not corrected by introduction of the ERCC-3 cDNA, indicating that it may be caused by an independent second mutation in another repair function. By hybridization to DNA of a human x rodent hybrid cell panel, the ERCC-3 gene was assigned to chromosome 2, in agreement with data based on cell fusion

  14. Defective APETALA2 Genes Lead to Sepal Modification in Brassica Crops

    Science.gov (United States)

    Zhang, Yanfeng; Huang, Shuhua; Wang, Xuefang; Liu, Jianwei; Guo, Xupeng; Mu, Jianxin; Tian, Jianhua; Wang, Xiaofeng

    2018-01-01

    Many vegetable and oilseed crops belong to Brassica species. The seed production of these crops is hampered often by abnormal floral organs, especially under the conditions of abiotic conditions. However, the molecular reasons for these abnormal floral organs remains poorly understood. Here, we report a novel pistil-like flower mutant of B. rapa. In the flower of this mutant, the four sepals are modified to one merged carpel that look like a ring in the sepal positions, enveloping some abnormal stamens and a pistil, and resulting in poor seed production. This novel mutant is named sepal-carpel modification (scm). DNA sequencing showed that the BrAP2a gene, the ortholog of Arabidopsis APETALA2 (AP2) that specifies sepal identity, losses the function of in scm mutant due to a 119-bp repeated sequence insertion that resulted in an early transcription termination. BrAP2b, the paralog of BrAP2a featured two single-nucleotide substitutions that cause a single amino acid substitution in the highly conserved acidic serine-rich transcriptional activation domain. Each of the two BrAP2 genes rescues the sepal defective phenotype of the ap2-5 mutant of Arabidopsis. Furthermore, the knockout mutation of the corresponding BnAP2 genes of oilseed rape (B. napus) by CRISPR/Cas9-mediated genome editing system resulted in scm-like phenotype. These results suggest that BrAP2 gene plays a key role in sepal modification. Our finding provides an insight into molecular mechanism underlying morphological modification of floral organs and is useful for genetic manipulation of flower modification and improvement of seed production of Brassica crops. PMID:29616073

  15. Defective APETALA2 Genes Lead to Sepal Modification in Brassica Crops

    Directory of Open Access Journals (Sweden)

    Yanfeng Zhang

    2018-03-01

    Full Text Available Many vegetable and oilseed crops belong to Brassica species. The seed production of these crops is hampered often by abnormal floral organs, especially under the conditions of abiotic conditions. However, the molecular reasons for these abnormal floral organs remains poorly understood. Here, we report a novel pistil-like flower mutant of B. rapa. In the flower of this mutant, the four sepals are modified to one merged carpel that look like a ring in the sepal positions, enveloping some abnormal stamens and a pistil, and resulting in poor seed production. This novel mutant is named sepal-carpel modification (scm. DNA sequencing showed that the BrAP2a gene, the ortholog of Arabidopsis APETALA2 (AP2 that specifies sepal identity, losses the function of in scm mutant due to a 119-bp repeated sequence insertion that resulted in an early transcription termination. BrAP2b, the paralog of BrAP2a featured two single-nucleotide substitutions that cause a single amino acid substitution in the highly conserved acidic serine-rich transcriptional activation domain. Each of the two BrAP2 genes rescues the sepal defective phenotype of the ap2-5 mutant of Arabidopsis. Furthermore, the knockout mutation of the corresponding BnAP2 genes of oilseed rape (B. napus by CRISPR/Cas9-mediated genome editing system resulted in scm-like phenotype. These results suggest that BrAP2 gene plays a key role in sepal modification. Our finding provides an insight into molecular mechanism underlying morphological modification of floral organs and is useful for genetic manipulation of flower modification and improvement of seed production of Brassica crops.

  16. Effects of calcium disodium EDTA and meso-2,3-dimercaptosuccinic acid on tissue concentrations of lead for use in treatment of calves with experimentally induced lead toxicosis.

    Science.gov (United States)

    Meldrum, James B; Ko, Kam W

    2003-06-01

    To compare the efficacy of calcium disodium EDTA (CaNa2EDTA) and meso-2,3-dimercaptosuccinic acid (DMSA) in reducing concentrations of lead in selected tissues for use in treatment of calves with experimentally induced lead toxicosis. 19 sexually intact male Holstein calves that weighed 35 to 60 kg. Calves were randomly assigned to 1 of 5 treatment groups: group 1, control calves; group 2, lead only; group 3, lead and EDTA; group 4, lead and DMSA; and group 5, lead, EDTA, and DMSA. Calves in groups 2 to 5 were dosed daily with lead (5 mg/kg, PO) for 10 days. Doses of EDTA (100 mg/kg) and DMSA (25 mg/kg) were administered IV once daily for 4 consecutive days beginning on day 11. Effects of the chelators on lead concentrations in the liver, kidneys, testes, muscles, bones, and brain were compared among the various groups. Compared with the effects of EDTA, DMSA greatly reduced lead concentrations in renal and hepatic tissues. We did not detect significant differences for the effects of EDTA or DMSA on lead concentrations in the testes; there was an adverse interaction of EDTA with DMSA that caused an increase in lead concentrations in the testes. DMSA is much more effective than EDTA in removing lead from renal and hepatic tissues in calves. Use of DMSA in calves with lead intoxication appears to be a viable treatment option. Combining DMSA and EDTA as a treatment modality in calves did not offer any advantages.

  17. Gene expression profiling and candidate gene resequencing identifies pathways and mutations important for malignant transformation caused by leukemogenic fusion genes.

    Science.gov (United States)

    Novak, Rachel L; Harper, David P; Caudell, David; Slape, Christopher; Beachy, Sarah H; Aplan, Peter D

    2012-12-01

    NUP98-HOXD13 (NHD13) and CALM-AF10 (CA10) are oncogenic fusion proteins produced by recurrent chromosomal translocations in patients with acute myeloid leukemia (AML). Transgenic mice that express these fusions develop AML with a long latency and incomplete penetrance, suggesting that collaborating genetic events are required for leukemic transformation. We employed genetic techniques to identify both preleukemic abnormalities in healthy transgenic mice as well as collaborating events leading to leukemic transformation. Candidate gene resequencing revealed that 6 of 27 (22%) CA10 AMLs spontaneously acquired a Ras pathway mutation and 8 of 27 (30%) acquired an Flt3 mutation. Two CA10 AMLs acquired an Flt3 internal-tandem duplication, demonstrating that these mutations can be acquired in murine as well as human AML. Gene expression profiles revealed a marked upregulation of Hox genes, particularly Hoxa5, Hoxa9, and Hoxa10 in both NHD13 and CA10 mice. Furthermore, mir196b, which is embedded within the Hoxa locus, was overexpressed in both CA10 and NHD13 samples. In contrast, the Hox cofactors Meis1 and Pbx3 were differentially expressed; Meis1 was increased in CA10 AMLs but not NHD13 AMLs, whereas Pbx3 was consistently increased in NHD13 but not CA10 AMLs. Silencing of Pbx3 in NHD13 cells led to decreased proliferation, increased apoptosis, and decreased colony formation in vitro, suggesting a previously unexpected role for Pbx3 in leukemic transformation. Published by Elsevier Inc.

  18. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  19. Novel mutations in the genes TGM1 and ALOXE3 underlying autosomal recessive congenital ichthyosis

    Science.gov (United States)

    Ullah, Rahim; Ansar, Muhammad; Durrani, Zaka Ullah; Lee, Kwanghyuk; Santos-Cortez, Regie Lyn P.; Muhammad, Dost; Ali, Mahboob; Zia, Muhammad; Ayub, Muhammad; Khan, Suliman; Smith, Josh D.; Nickerson, Deborah A.; Shendure, Jay; Bamshad, Michael; Leal, Suzanne M.; Ahmad, Wasim

    2016-01-01

    Background Ichthyoses are clinically characterized by scaling or hyperkeratosis of the skin or both. It can be an isolated condition limited to the skin or appear secondarily with involvement of other cutaneous or systemic abnormalities. Methods The present study investigated clinical and molecular characterization of three consanguineous families (A, B, C) segregating two different forms of autosomal recessive congenital ichthyosis (ARCI). Linkage in three consanguineous families (A, B, C) segregating two different forms of ARCI was searched by typing microsatellite and single nucleotide polymorphism marker analysis. Sequencing of the two genes TGM1 and ALOXE3 was performed by the dideoxy chain termination method. Results Genome-wide linkage analysis established linkage in family A to TGM1 gene on chromosome 14q11 and in families B and C to ALOXE3 gene on chromosome 17p13. Subsequently, sequencing of these genes using samples from affected family members led to the identification of three novel mutations: a missense variant p.Trp455Arg in TGM1 (family A); a nonsense variant p.Arg140* in ALOXE3 (family B); and a complex rearrangement in ALOXE3 (family C). Conclusion The present study further extends the spectrum of mutations in the two genes involved in causing ARCI. Characterizing the clinical spectrum resulting from mutations in the TGM1 and ALOXE3 genes will improve diagnosis and may direct clinical care of the family members. PMID:26578203

  20. Novel gene sets improve set-level classification of prokaryotic gene expression data.

    Science.gov (United States)

    Holec, Matěj; Kuželka, Ondřej; Železný, Filip

    2015-10-28

    Set-level classification of gene expression data has received significant attention recently. In this setting, high-dimensional vectors of features corresponding to genes are converted into lower-dimensional vectors of features corresponding to biologically interpretable gene sets. The dimensionality reduction brings the promise of a decreased risk of overfitting, potentially resulting in improved accuracy of the learned classifiers. However, recent empirical research has not confirmed this expectation. Here we hypothesize that the reported unfavorable classification results in the set-level framework were due to the adoption of unsuitable gene sets defined typically on the basis of the Gene ontology and the KEGG database of metabolic networks. We explore an alternative approach to defining gene sets, based on regulatory interactions, which we expect to collect genes with more correlated expression. We hypothesize that such more correlated gene sets will enable to learn more accurate classifiers. We define two families of gene sets using information on regulatory interactions, and evaluate them on phenotype-classification tasks using public prokaryotic gene expression data sets. From each of the two gene-set families, we first select the best-performing subtype. The two selected subtypes are then evaluated on independent (testing) data sets against state-of-the-art gene sets and against the conventional gene-level approach. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. Novel gene sets defined on the basis of regulatory interactions improve set-level classification of gene expression data. The experimental scripts and other material needed to reproduce the experiments are available at http://ida.felk.cvut.cz/novelgenesets.tar.gz.

  1. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA.

    Science.gov (United States)

    Romanello, Marina; Schiavone, Davide; Frey, Alexander; Sale, Julian E

    2016-07-01

    Immunoglobulin diversification is driven by activation-induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single-stranded DNA (ssDNA), the enzymatic substrate of AID Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID to access the IgV genes due to reduced formation of ssDNA during IgV transcription. Loss of H3.3 also diminishes IgV R-loop formation. However, reducing IgV R-loops by RNase HI overexpression in wild-type cells does not affect IgV diversification, showing that these structures are not necessary intermediates for AID access. Importantly, the reduction in the formation of AID-accessible ssDNA in cells lacking H3.3 is independent of any effect on the level of transcription or the kinetics of RNAPII elongation, suggesting the presence of H3.3 in the nucleosomes of the IgV genes increases the chances of the IgV DNA becoming single-stranded, thereby creating an effective AID substrate. © 2016 MRC Laboratory of Molecular Biology. Published under the terms of the CC BY 4.0 license.

  2. Towards prostate cancer gene therapy: Development of a chlorotoxin-targeted nanovector for toxic (melittin) gene delivery.

    Science.gov (United States)

    Tarokh, Zahra; Naderi-Manesh, Hossein; Nazari, Mahboobeh

    2017-03-01

    Prostate cancer is the second leading cause of death due to cancer in men. Owing to shortcomings in the current treatments, other therapies are being considered. Toxic gene delivery is one of the most effective methods for cancer therapy. Cationic polymers are able to form stable nanoparticles via interaction with nucleic acids electrostatically. Branched polyethylenimine that contains amine groups has notable buffering capacity and the ability to escape from endosome through the proton sponge effect. However, the cytotoxicity of this polymer is high, and modification is one of the applicable strategies to overcome this problem. In this study, PEI was targeted with chlorotoxin (CTX) via N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) cross-linker. CTX can bind specifically to matrix metalloproteinase-2 that is overexpressed in certain cancers. Melittin as the major component of bee venom has been reported to have anti-cancer activity. This was thus selected to deliver to PC3 cell line. Flow cytometry analysis revealed that transfection efficiency of targeted nanoparticles is significantly higher compared to non-targeted nanoparticles. Targeted nanoparticles carrying the melittin gene also decreased cell viability of PC3 cells significantly while no toxic effects were observed on NIH3T3 cell line. Therefore, CTX-targeted nanoparticles carrying the melittin gene could serve as an appropriate gene delivery system for prostate and other MMP-2 positive cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Opposite roles of the Arabidopsis cytokinin receptors AHK2 and AHK3 in the expression of plastid genes and genes for the plastid transcriptional machinery during senescence.

    Science.gov (United States)

    Danilova, Maria N; Kudryakova, Natalia V; Doroshenko, Anastasia S; Zabrodin, Dmitry A; Rakhmankulova, Zulfira F; Oelmüller, Ralf; Kusnetsov, Victor V

    2017-03-01

    Cytokinin membrane receptors of the Arabidopsis thaliana AHK2 and AHK3 play opposite roles in the expression of plastid genes and genes for the plastid transcriptional machinery during leaf senescence Loss-of-function mutants of Arabidopsis thaliana were used to study the role of cytokinin receptors in the expression of chloroplast genes during leaf senescence. Accumulation of transcripts of several plastid-encoded genes is dependent on the АНК2/АНК3 receptor combination. АНК2 is particularly important at the final stage of plant development and, unlike АНК3, a positive regulator of leaf senescence. Cytokinin-dependent up-regulation of the nuclear encoded genes for chloroplast RNA polymerases RPOTp and RPOTmp suggests that the hormone controls plastid gene expression, at least in part, via the expression of nuclear genes for the plastid transcription machinery. This is further supported by cytokinin dependent regulation of genes for the nuclear encoded plastid σ-factors, SIG1-6, which code for components of the transcriptional apparatus in chloroplasts.

  4. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance.

    Science.gov (United States)

    Li, Yiliang; Su, Xiaohua; Zhang, Bingyu; Huang, Qinjun; Zhang, Xianghua; Huang, Rongfeng

    2009-02-01

    The stress resistance of plants can be enhanced by regulating the expression of multiple downstream genes associated with stress resistance. We used the Agrobacterium method to transfer the tomato jasmonic ethylene responsive factors (JERFs) gene that encodes the ethylene response factor (ERF) like transcription factor to the genome of a hybrid poplar (Populus alba x Populus berolinensis). Eighteen resistant plants were obtained, of which 13 were identified by polymerase chain reaction (PCR), reverse transcriptase PCR and Southern blot analyses as having incorporated the JERFs gene and able to express it at the transcriptional level. Salinity tests were conducted in a greenhouse with 0, 100, 200 and 300 mM NaCl. In the absence of NaCl, the transgenic plants were significantly taller than the control plants, but no statistically significant differences in the concentrations of proline and chlorophyll were observed. With increasing salinity, the extent of damage was significantly less in transgenic plants than that in control plants, and the reductions in height, basal diameter and biomass were less in transgenic plants than those in control plants. At 200 and 300 mM NaCl concentrations, transgenic plants were 128.9% and 98.8% taller, respectively, and had 199.8% and 113.0% more dry biomass, respectively, than control plants. The saline-induced reduction in leaf water content and increase in root/crown ratio were less in transgenic plants than in control plants. Foliar proline concentration increased more in response to salt treatment in transgenic plants than in control plants. Foliar Na(+) concentration was higher in transgenic plants than in control plants. In the coastal area in Panjin of Liaoning where the total soil salt concentration is 0.3%, a salt tolerance trial of transgenic plants indicated that 3-year-old transgenic plants were 14.5% and 33.6% taller than the control plants at two field sites. The transgenic plants at the two field sites were growing

  5. Influence of 2,3-dimercaptosuccinic acid on gastrointestinal lead absorption and whole-body lead retention

    International Nuclear Information System (INIS)

    Kapoor, S.C.; Wielopolski, L.; Graziano, J.H.; LoIacono, N.J.

    1989-01-01

    2,3-Dimercaptosuccinic acid (DMSA) is a new orally active heavy metal chelator for the treatment of childhood Pb intoxication on an outpatient basis. The influence of DMSA, as well as other chelating agents, on gastrointestinal 203Pb absorption and whole-body 203 Pb retention was examined. Groups of Sprague-Dawley rats (230-260 g) were gavaged with a solution containing approximately 25 mg/kg Pb [as Pb(NO 3 )2] plus 15 microCi 203 Pb. Some groups were then immediately given 0.11 mmol/kg of either DMSA, CaNa2EDTA, D-penicillamine, or BAL by oral gavage, while other groups received the same drugs by ip injection. Control groups received solutions of the drug vehicles po or ip. Whole-body Pb retention and gastrointestinal Pb absorption (whole body retention + urinary Pb excretion) were significantly decreased in rats that received DMSA po. This finding implies that the use of DMSA to treat childhood lead intoxication on an outpatient basis is not associated with a risk for increased Pb absorption

  6. An Investigation of the Relationship between PPP1R3 Gene Polymorphism and Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Soyar Sari

    2017-07-01

    Full Text Available Background and Objectives: PPP1R3 is one of the genes confirmed to be associated with type 2 diabetes. This gene is located on the long arm of chromosome 7 and encodes protein phosphatase 1 (PP1, which has serine/threonine phosphatase activity. There is a polymorphic region in the 3'UTR region of this gene, which creates ARE1 and ARE2 alleles. The aim of this study was to determine the relationship between PPP1R3 gene polymorphism and type 2 diabetes. Methods: In this case-control study, 100 patients with type 2 diabetes and 100 healthy individuals, were randomly selected from the study population. PPP1R3 gene polymorphism was analyzed using PCR-RFLP method. Comparison of variables between healthy and patient groups, was performed by t-test, allele frequency by counting, and calculation of their ratio by chi-square test, and the population was confirmed to be in Hardy-Weinberg equilibrium. Distribution of genotypes and alleles was compared between healthy and patient groups. Results: In this study, there was no significant difference between the frequency of genotypes and frequency of alleles in subjects with type 2 diabetes and healthy control subjects. Conclusion: The findings of this study indicated that polymorphisms in the 3'UTR region of PPP1R3 gene is not associated with type 2 diabetes.

  7. Synthesis of bacteriophage-coded gene products during infection of Escherichia coli with amber mutants of T3 and T7 defective in gene 1

    DEFF Research Database (Denmark)

    Issinger, O G; Hausmann, R

    1973-01-01

    During nonpermissive infection by a T7 amber mutant in gene 1 (phage RNA polymerase-deficient), synthesis of the products of the phage genes 3 (endonuclease), 3, 5 (lysozyme), 5 (DNA polymerase), and 17 (serum blocking power) was shown to occur at about half the rate as during wild-type infection...

  8. Biosorption of lead phosphates by lead-tolerant bacteria as a mechanism for lead immobilization.

    Science.gov (United States)

    Rodríguez-Sánchez, Viridiana; Guzmán-Moreno, Jesús; Rodríguez-González, Vicente; Flores-de la Torre, Juan Armando; Ramírez-Santoyo, Rosa María; Vidales-Rodríguez, Luz Elena

    2017-08-01

    The study of metal-tolerant bacteria is important for bioremediation of contaminated environments and development of green technologies for material synthesis due to their potential to transform toxic metal ions into less toxic compounds by mechanisms such as reduction, oxidation and/or sequestration. In this study, we report the isolation of seven lead-tolerant bacteria from a metal-contaminated site at Zacatecas, México. The bacteria were identified as members of the Staphylococcus and Bacillus genera by microscopic, biochemical and 16S rDNA analyses. Minimal inhibitory concentration of these isolates was established between 4.5 and 7.0 mM of Pb(NO 3 ) 2 in solid and 1.0-4.0 mM of Pb(NO 3 ) 2 in liquid media. A quantitative analysis of the lead associated to bacterial biomass in growing cultures, revealed that the percentage of lead associated to biomass was between 1 and 37% in the PbT isolates. A mechanism of complexation/biosorption of lead ions as inorganic phosphates (lead hydroxyapatite and pyromorphite) in bacterial biomass, was determined by Fourier transform infrared spectroscopy and X-ray diffraction analyses. Thus, the ability of the lead-tolerant isolates to transform lead ions into stable and highly insoluble lead minerals make them potentially useful for immobilization of lead in mining waste.

  9. Transcriptome reveals the overexpression of a kallikrein gene cluster (KLK1/3/7/8/12) in the Tibetans with high altitude-associated polycythemia.

    Science.gov (United States)

    Li, Kang; Gesang, Luobu; Dan, Zeng; Gusang, Lamu

    2017-02-01

    High altitude-associated polycythemia (HAPC) is a very common disease. However, it the disease is still unmanageable and the related molecular mechanisms remain largely unclear. In the present study, we aimed to explore the molecular mechanisms responsible for the development of HAPC using transcriptome analysis. Transcriptome analysis was conducted in 3 pairs of gastric mucosa tissues from patients with HAPC and healthy residents at a similar altitude. Endoscopy and histopathological analyses were used to examine the injury to gastric tissues. Molecular remodeling was performed for the interaction between different KLK members and cholesterol. HAPC was found to lead to morphological changes and pathological damage to the gastric mucosa of patients. A total of 10,304 differentially expressed genes (DEGs) were identified. Among these genes, 4,941 DEGs were upregulated, while 5,363 DEGs were downregulated in the patients with HAPC (fold change ≥2, P17-fold. All the members had high-score binding cholesterol, particularly for the polymers of KLK7. The kallikrein gene cluster (KLK1/3/7/8/12) is on chromosome 19q13.3-13.4. The elevated levels of KLK1, KLK3, KLK7, KLK8 and KLK12 may be closely associated with the hypertension, inflammation, obesity and other gastric injuries associated with polycythemia. The interaction of KLKs and cholesterol maybe play an important role in the development of hypertension. The findings of the present study revealed that HAPC induces gastric injury by upregulating the kallikrein gene cluster (KLK1/3/7/8/12), which can bind cholesterol and result in kallikrein hypertension. These findings provide some basic information for understanding the molecular mechanisms responsible for HAPC and HAPC-related diseases.

  10. Muscle Contraction Induces Acute Hydroxymethylation of the Exercise-Responsive Gene Nr4a3

    DEFF Research Database (Denmark)

    Pattamaprapanont, Pattarawan; Garde, Christian; Fabre, Odile

    2016-01-01

    stimulated over time is required to determine whether contraction-induced demethylation is preceded by changes in the hydroxymethylcytosine level. Here, we established an acute skeletal muscle contraction model to mimic the effects of acute exercise on gene expression. We used this model to investigate...... promoters. Exercise induces dynamic DNA demethylation at gene promoters; however, the contribution of the demethylation precursor hydroxymethylcytosine is unknown. Given the evanescent nature of hydroxymethylcytosine, a muscle contraction model that allows for the collection of samples that are repeatedly...... the effect of muscle contraction on DNA demethylation and hydroxymethylation. First, we performed an acute exercise study in healthy humans to identify an exercise-responsive gene that we could study in culture. We identified the nuclear receptor subfamily 4 group A member 3 (Nr4a3) gene with the highest...

  11. A family with X-linked anophthalmia: exclusion of SOX3 as a candidate gene.

    Science.gov (United States)

    Slavotinek, Anne; Lee, Stephen S; Hamilton, Steven P

    2005-10-01

    We report on a four-generation family with X-linked anophthalmia in four affected males and show that this family has LOD scores consistent with linkage to Xq27, the third family reported to be linked to the ANOP1 locus. We sequenced the SOX3 gene at Xq27 as a candidate gene for the X-linked anophthalmia based on the high homology of this gene to SOX2, a gene previously mutated in bilateral anophthlamia. However, no amino acid sequence alterations were identified in SOX3. We have improved the definition of the phenotype in males with anophthalmia linked to the ANOP1 locus, as microcephaly, ocular colobomas, and severe renal malformations have not been described in families linked to ANOP1. (c) 2005 Wiley-Liss, Inc.

  12. Association of variation in Fcgamma receptor 3B gene copy number with rheumatoid arthritis in Caucasian samples.

    NARCIS (Netherlands)

    McKinney, C.; Fanciulli, M.; Merriman, M.E.; Phipps-Green, A.; Alizadeh, B.Z.; Koeleman, B.P.; Dalbeth, N.; Gow, P.J.; Harrison, A.A.; Highton, J.; Jones, P.B.; Stamp, L.K.; Steer, S.; Barrera, P.; Coenen, M.J.H.; Franke, B.; Riel, P.L.C.M. van; Vyse, T.J.; Aitman, T.J.; Radstake, T.R.D.J.; Merriman, T.R.

    2010-01-01

    OBJECTIVE: There is increasing evidence that variation in gene copy number (CN) influences clinical phenotype. The low-affinity Fcgamma receptor 3B (FCGR3B) located in the FCGR gene cluster is a CN polymorphic gene involved in the recruitment to sites of inflammation and activation of

  13. Association between the dopamine D3 receptor gene locus (DRD3) and unipolar affective disorder.

    Science.gov (United States)

    Dikeos, D G; Papadimitriou, G N; Avramopoulos, D; Karadima, G; Daskalopoulou, E G; Souery, D; Mendlewicz, J; Vassilopoulos, D; Stefanis, C N

    1999-12-01

    Dopamine neurotransmission has been implicated in the pathophysiology of schizophrenia and, more recently, affective disorders. Among the dopamine receptors, D3 can be considered as particularly related to affective disorders due to its neuroanatomical localization in the limbic region of the brain and its relation to the serotoninergic activity of the CNS. The possible involvement of dopamine receptor D3 in unipolar (UP) major depression was investigated by a genetic association study of the D3 receptor gene locus (DRD3) on 36 UP patients and 38 ethnically matched controls. An allelic association of DRD3 (Bal I polymorphism) and UP illness was observed, with the Gly-9 allele (allele '2', 206/98 base-pairs long) being more frequent in patients than in controls (49% vs 29%, P < 0.02). The genotypes containing this allele (1-2 and 2-2) were found in 75% of patients vs 50% of controls (P < 0.03, odds ratio = 3.00, 95% CI = 1.12-8.05). The effect of the genotype remained significant (P < 0.02) after sex and family history were controlled by a multiple linear regression analysis. These results further support the hypothesis that dopaminergic mechanisms may be implicated in the pathogenesis of affective disorder. More specifically, the '2' allele of the dopamine receptor D3 gene seems to be associated with unipolar depression and can be considered as a 'phenotypic modifier' for major psychiatric disorders.

  14. EIN3-like gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Grande naine).

    Science.gov (United States)

    Mbéguié-A-Mbéguié, Didier; Hubert, Olivier; Fils-Lycaon, Bernard; Chillet, Marc; Baurens, Franc-Christophe

    2008-06-01

    Ethylene signal transduction initiates with ethylene binding at receptor proteins and terminates in a transcription cascade involving the EIN3/EIL transcription factors. Here, we have isolated four cDNAs homologs of the Arabidopsis EIN3/EIN3-like gene, MA-EILs (Musa acuminata ethylene insensitive 3-like) from banana fruit. Sequence comparison with other banana EIL gene already registered in the database led us to conclude that, at this day, at least five different genes namely MA-EIL1, MA-EIL2/AB266318, MA-EIL3/AB266319, MA-EIL4/AB266320 and AB266321 exist in banana. Phylogenetic analyses included all banana EIL genes within a same cluster consisting of rice OsEILs, a monocotyledonous plant as banana. However, MA-EIL1, MA-EIL2/AB266318, MA-EIL4/AB266320 and AB266321 on one side, and MA-EIL3/AB266319 on the other side, belong to two distant subclusters. MA-EIL mRNAs were detected in all examined banana tissues but at lower level in peel than in pulp. According to tissues, MA-EIL genes were differentially regulated by ripening and ethylene in mature green fruit and wounding in old and young leaves. MA-EIL2/AB266318 was the unique ripening- and ethylene-induced gene; MA-EIL1, MA-EIL4/Ab266320 and AB266321 genes were downregulated, while MA-EIL3/AB266319 presented an unusual pattern of expression. Interestingly, a marked change was observed mainly in MA-EIL1 and MA-EIL3/Ab266319 mRNA accumulation concomitantly with changes in ethylene responsiveness of fruit. Upon wounding, the main effect was observed in MA-EIL4/AB266320 and AB266321 mRNA levels, which presented a markedly increase in both young and old leaves, respectively. Data presented in this study suggest the importance of a transcriptionally step control in the regulation of EIL genes during banana fruit ripening.

  15. Functional impact of global rare copy number variation in autism spectrum disorders.

    Science.gov (United States)

    Pinto, Dalila; Pagnamenta, Alistair T; Klei, Lambertus; Anney, Richard; Merico, Daniele; Regan, Regina; Conroy, Judith; Magalhaes, Tiago R; Correia, Catarina; Abrahams, Brett S; Almeida, Joana; Bacchelli, Elena; Bader, Gary D; Bailey, Anthony J; Baird, Gillian; Battaglia, Agatino; Berney, Tom; Bolshakova, Nadia; Bölte, Sven; Bolton, Patrick F; Bourgeron, Thomas; Brennan, Sean; Brian, Jessica; Bryson, Susan E; Carson, Andrew R; Casallo, Guillermo; Casey, Jillian; Chung, Brian H Y; Cochrane, Lynne; Corsello, Christina; Crawford, Emily L; Crossett, Andrew; Cytrynbaum, Cheryl; Dawson, Geraldine; de Jonge, Maretha; Delorme, Richard; Drmic, Irene; Duketis, Eftichia; Duque, Frederico; Estes, Annette; Farrar, Penny; Fernandez, Bridget A; Folstein, Susan E; Fombonne, Eric; Freitag, Christine M; Gilbert, John; Gillberg, Christopher; Glessner, Joseph T; Goldberg, Jeremy; Green, Andrew; Green, Jonathan; Guter, Stephen J; Hakonarson, Hakon; Heron, Elizabeth A; Hill, Matthew; Holt, Richard; Howe, Jennifer L; Hughes, Gillian; Hus, Vanessa; Igliozzi, Roberta; Kim, Cecilia; Klauck, Sabine M; Kolevzon, Alexander; Korvatska, Olena; Kustanovich, Vlad; Lajonchere, Clara M; Lamb, Janine A; Laskawiec, Magdalena; Leboyer, Marion; Le Couteur, Ann; Leventhal, Bennett L; Lionel, Anath C; Liu, Xiao-Qing; Lord, Catherine; Lotspeich, Linda; Lund, Sabata C; Maestrini, Elena; Mahoney, William; Mantoulan, Carine; Marshall, Christian R; McConachie, Helen; McDougle, Christopher J; McGrath, Jane; McMahon, William M; Merikangas, Alison; Migita, Ohsuke; Minshew, Nancy J; Mirza, Ghazala K; Munson, Jeff; Nelson, Stanley F; Noakes, Carolyn; Noor, Abdul; Nygren, Gudrun; Oliveira, Guiomar; Papanikolaou, Katerina; Parr, Jeremy R; Parrini, Barbara; Paton, Tara; Pickles, Andrew; Pilorge, Marion; Piven, Joseph; Ponting, Chris P; Posey, David J; Poustka, Annemarie; Poustka, Fritz; Prasad, Aparna; Ragoussis, Jiannis; Renshaw, Katy; Rickaby, Jessica; Roberts, Wendy; Roeder, Kathryn; Roge, Bernadette; Rutter, Michael L; Bierut, Laura J; Rice, John P; Salt, Jeff; Sansom, Katherine; Sato, Daisuke; Segurado, Ricardo; Sequeira, Ana F; Senman, Lili; Shah, Naisha; Sheffield, Val C; Soorya, Latha; Sousa, Inês; Stein, Olaf; Sykes, Nuala; Stoppioni, Vera; Strawbridge, Christina; Tancredi, Raffaella; Tansey, Katherine; Thiruvahindrapduram, Bhooma; Thompson, Ann P; Thomson, Susanne; Tryfon, Ana; Tsiantis, John; Van Engeland, Herman; Vincent, John B; Volkmar, Fred; Wallace, Simon; Wang, Kai; Wang, Zhouzhi; Wassink, Thomas H; Webber, Caleb; Weksberg, Rosanna; Wing, Kirsty; Wittemeyer, Kerstin; Wood, Shawn; Wu, Jing; Yaspan, Brian L; Zurawiecki, Danielle; Zwaigenbaum, Lonnie; Buxbaum, Joseph D; Cantor, Rita M; Cook, Edwin H; Coon, Hilary; Cuccaro, Michael L; Devlin, Bernie; Ennis, Sean; Gallagher, Louise; Geschwind, Daniel H; Gill, Michael; Haines, Jonathan L; Hallmayer, Joachim; Miller, Judith; Monaco, Anthony P; Nurnberger, John I; Paterson, Andrew D; Pericak-Vance, Margaret A; Schellenberg, Gerard D; Szatmari, Peter; Vicente, Astrid M; Vieland, Veronica J; Wijsman, Ellen M; Scherer, Stephen W; Sutcliffe, James S; Betancur, Catalina

    2010-07-15

    The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.

  16. Cell-Specific Actions of a Human LHX3 Gene Enhancer During Pituitary and Spinal Cord Development

    Science.gov (United States)

    Park, Soyoung; Mullen, Rachel D.

    2013-01-01

    The LIM class of homeodomain protein 3 (LHX3) transcription factor is essential for pituitary gland and nervous system development in mammals. In humans, mutations in the LHX3 gene underlie complex pediatric syndromes featuring deficits in anterior pituitary hormones and defects in the nervous system. The mechanisms that control temporal and spatial expression of the LHX3 gene are poorly understood. The proximal promoters of the human LHX3 gene are insufficient to guide expression in vivo and downstream elements including a conserved enhancer region appear to play a role in tissue-specific expression in the pituitary and nervous system. Here we characterized the activity of this downstream enhancer region in regulating gene expression at the cellular level during development. Human LHX3 enhancer-driven Cre reporter transgenic mice were generated to facilitate studies of enhancer actions. The downstream LHX3 enhancer primarily guides gene transcription in α-glycoprotein subunit -expressing cells secreting the TSHβ, LHβ, or FSHβ hormones and expressing the GATA2 and steroidogenic factor 1 transcription factors. In the developing nervous system, the enhancer serves as a targeting module active in V2a interneurons. These results demonstrate that the downstream LHX3 enhancer is important in specific endocrine and neural cell types but also indicate that additional regulatory elements are likely involved in LHX3 gene expression. Furthermore, these studies revealed significant gonadotrope cell heterogeneity during pituitary development, providing insights into the cellular physiology of this key reproductive regulatory cell. The human LHX3 enhancer-driven Cre reporter transgenic mice also provide a valuable tool for further developmental studies of cell determination and differentiation in the pituitary and nervous system. PMID:24100213

  17. Grainyhead-like 3 (Grhl3) deficiency in brain leads to altered locomotor activity and decreased anxiety-like behaviors in aged mice.

    Science.gov (United States)

    Dworkin, Sebastian; Auden, Alana; Partridge, Darren D; Daglas, Maria; Medcalf, Robert L; Mantamadiotis, Theo; Georgy, Smitha R; Darido, Charbel; Jane, Stephen M; Ting, Stephen B

    2017-06-01

    The highly conserved Grainyhead-like (Grhl) family of transcription factors, comprising three members in vertebrates (Grhl1-3), play critical regulatory roles during embryonic development, cellular proliferation, and apoptosis. Although loss of Grhl function leads to multiple neural abnormalities in numerous animal models, a comprehensive analysis of Grhl expression and function in the mammalian brain has not been reported. Here they show that only Grhl3 expression is detectable in the embryonic mouse brain; particularly within the habenula, an organ known to modulate repressive behaviors. Using both Grhl3-knockout mice (Grhl3 -/- ), and brain-specific conditional deletion of Grhl3 in adult mice (Nestin-Cre/Grhl3 flox/flox ), they performed histological expression analyses and behavioral tests to assess long-term effects of Grhl3 loss on motor co-ordination, spatial memory, anxiety, and stress. They found that complete deletion of Grhl3 did not lead to noticeable structural or cell-intrinsic defects in the embryonic brain; however, aged Grhl3 conditional knockout (cKO) mice showed enlarged lateral ventricles and displayed marked changes in motor function and behaviors suggestive of decreased fear and anxiety. They conclude that loss of Grhl3 in the brain leads to significant alterations in locomotor activity and decreased self-inhibition, and as such, these mice may serve as a novel model of human conditions of impulsive behavior or hyperactivity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 775-788, 2017. © 2017 Wiley Periodicals, Inc.

  18. Translation of the shallot virus X TGB3 gene depends on non-AUG initiation and leaky scanning.

    Science.gov (United States)

    Lezzhov, Alexander A; Gushchin, Vladimir A; Lazareva, Ekaterina A; Vishnichenko, Valery K; Morozov, Sergey Y; Solovyev, Andrey G

    2015-10-01

    Triple gene block (TGB), a conserved gene module found in the genomes of many filamentous and rod-shaped plant viruses, encodes three proteins, TGB1, TGB2 and TGB3, required for viral cell-to-cell movement through plasmodesmata and systemic transport via the phloem. The genome of Shallot virus X, the type species of the genus Allexivirus, includes TGB1 and TGB2 genes, but contains no canonical ORF for TGB3 protein. However, a TGB3-like protein-encoding sequence lacking an AUG initiator codon has been found in the shallot virus X (ShVX) genome in a position typical for TGB3 genes. This putative TGB3 gene is conserved in all allexiviruses. Here, we carried out sequence analysis to predict possible non-AUG initiator codons in the ShVX TGB3-encoding sequence. We further used an agroinfiltration assay in Nicotiana benthamiana to confirm this prediction. Site-directed mutagenesis was used to demonstrate that the ShVX TGB3 could be translated on a bicistronic mRNA template via a leaky scanning mechanism.

  19. Genome-wide identification of GLABRA3 downstream genes for anthocyanin biosynthesis and trichome formation in Arabidopsis.

    Science.gov (United States)

    Gao, Chenhao; Li, Dong; Jin, Changyu; Duan, Shaowei; Qi, Shuanghui; Liu, Kaige; Wang, Hanchen; Ma, Haoli; Hai, Jiangbo; Chen, Mingxun

    2017-04-01

    GLABRA3 (GL3), a bHLH transcription factor, has previously proved to be involved in anthocyanin biosynthesis and trichome formation in Arabidopsis, however, its downstream targeted genes are still largely unknown. Here, we found that GL3 was widely present in Arabidopsis vegetative and reproductive organs. New downstream targeted genes of GL3 for anthocyanin biosynthesis and trichome formation were identified in young shoots and expanding true leaves by RNA sequencing. GL3-mediated gene expression was tissue specific in the two biological processes. This study provides new clues to further understand the GL3-mediated regulatory network of anthocyanin biosynthesis and trichome formation in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Serotonin Transporter (5-HTT) and gamma-Aminobutyric Acid Receptor Subunit beta3 (GABRB3) Gene Polymorphisms are not Associated with Autism in the IMGSA Families

    DEFF Research Database (Denmark)

    Maestrini, E.; Lai, C.; Marlow, A.

    1999-01-01

    Previous studies have suggested that the serotonin transporter (5-HTT) gene and the gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene, or other genes in the 15q11-q13 region, are possibly involved in susceptibility to autism. To test this hypothesis we performed an association study on...

  1. Overexpression of a tea flavanone 3-hydroxylase gene confers tolerance to salt stress and Alternaria solani in transgenic tobacco.

    Science.gov (United States)

    Mahajan, Monika; Yadav, Sudesh Kumar

    2014-08-01

    Flavan-3-ols are the major flavonoids present in tea (Camellia sinensis) leaves. These are known to have antioxidant and free radical scavenging properties in vitro. Flavanone 3-hydroxylase is considered to be an important enzyme of flavonoid pathway leading to accumulation of flavan-3-ols in tea. Expression analysis revealed the upregulation in transcript levels of C. sinensis flavanone 3-hydroxylase (CsF3H) encoding gene under salt stress. In this study, the biotechnological potential of CsF3H was evaluated by gene overexpression in tobacco (Nicotiana tabacum cv. Xanthi). Overexpression of CsF3H cDNA increased the content of flavan-3-ols in tobacco and conferred tolerance to salt stress and fungus Alternaria solani infection. Transgenic tobaccos were observed for increase in primary root length, number of lateral roots, chlorophyll content, antioxidant enzyme expression and their activities. Also, they showed lesser malondialdehyde content and electrolyte leakage compared to control tobacco plants. Further, transgenic plants produced higher degree of pectin methyl esterification via decreasing pectin methyl esterase (PME) activity in roots and leaves under unstressed and salt stressed conditions. The effect of flavan-3-ols on pectin methyl esterification under salt stressed conditions was further validated through in vitro experiments in which non-transgenic (wild) tobacco seedlings were exposed to salt stress in presence of flavan-3-ols, epicatechin and epigallocatechin. The in vitro exposed seedlings showed similar trend of increase in pectin methyl esterification through decreasing PME activity as observed in CsF3H transgenic lines. Taken together, overexpression of CsF3H provided tolerance to salt stress and fungus A. solani infection to transgenic tobacco through improved antioxidant system and enhanced pectin methyl esterification.

  2. Diversity and distribution of catechol 2, 3-dioxygenase genes in surface sediments of the Bohai Sea.

    Science.gov (United States)

    He, Peiqing; Li, Li; Liu, Jihua; Bai, Yazhi; Fang, Xisheng

    2016-05-01

    Catechol 2, 3-dioxygenase (C23O) is the key enzyme for aerobic aromatic degradation. Based on clone libraries and quantitative real-time polymerase chain reaction, we characterized diversity and distribution patterns of C23O genes in surface sediments of the Bohai Sea. The results showed that sediments of the Bohai Sea were dominated by genes related to C23O subfamily I.2.A. The samples from wastewater discharge area (DG) and aquaculture farm (KL) showed distinct composition of C23O genes when compared to the samples from Bohai Bay (BH), and total organic carbon was a crucial determinant accounted for the composition variation. C6BH12-38 and C2BH2-35 displayed the highest gene copies and highest ratios to the 16S rRNA genes in KL, and they might prefer biologically labile aromatic hydrocarbons via aquaculture inputs. Meanwhile, C7BH3-48 showed the highest gene copies and highest ratios to the 16S rRNA genes in DG, and this could be selective effect of organic loadings from wastewater discharge. An evident increase in C6BH12-38 and C7BH3-48 gene copies and reduction in diversity of C23O genes in DG and KL indicated composition perturbations of C23O genes and potential loss in functional redundancy. We suggest that ecological habitat and trophic specificity could shape the distribution of C23O genes in the Bohai Sea sediments. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Differential evolution of antiretroviral restriction factors in pteropid bats as revealed by APOBEC3 gene complexity.

    Science.gov (United States)

    Hayward, Joshua A; Tachedjian, Mary; Cui, Jie; Cheng, Adam Z; Johnson, Adam; Baker, Michelle; Harris, Reuben S; Wang, Lin-Fa; Tachedjian, Gilda

    2018-03-29

    Bats have attracted attention in recent years as important reservoirs of viruses deadly to humans and other mammals. These infections are typically nonpathogenic in bats raising questions about innate immune differences that might exist between bats and other mammals. The APOBEC3 gene family encodes antiviral DNA cytosine deaminases with important roles in the suppression of diverse viruses and genomic parasites. Here we characterize pteropid APOBEC3 genes and show that species within the genus Pteropus possess the largest and most diverse array of APOBEC3 genes identified in any mammal reported to date. Several bat APOBEC3 proteins are antiviral as demonstrated by restriction of retroviral infectivity using HIV-1 as a model, and recombinant A3Z1 subtypes possess strong DNA deaminase activity. These genes represent the first group of antiviral restriction factors identified in bats with extensive diversification relative to homologues in other mammals.

  4. Hox gene expression leads to differential hind leg development between honeybee castes.

    Science.gov (United States)

    Bomtorin, Ana Durvalina; Barchuk, Angel Roberto; Moda, Livia Maria; Simoes, Zila Luz Paulino

    2012-01-01

    Beyond the physiological and behavioural, differences in appendage morphology between the workers and queens of Apis mellifera are pre-eminent. The hind legs of workers, which are highly specialized pollinators, deserve special attention. The hind tibia of worker has an expanded bristle-free region used for carrying pollen and propolis, the corbicula. In queens this structure is absent. Although the morphological differences are well characterized, the genetic inputs driving the development of this alternative morphology remain unknown. Leg phenotype determination takes place between the fourth and fifth larval instar and herein we show that the morphogenesis is completed at brown-eyed pupa. Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from hind leg imaginal discs of pre-pupal honeybees of both castes we present a list of 200 differentially expressed genes. Notably, there are castes preferentially expressed cuticular protein genes and members of the P450 family. We also provide results of qPCR analyses determining the developmental transcription profiles of eight selected genes, including abdominal-A, distal-less and ultrabithorax (Ubx), whose roles in leg development have been previously demonstrated in other insect models. Ubx expression in workers hind leg is approximately 25 times higher than in queens. Finally, immunohistochemistry assays show that Ubx localization during hind leg development resembles the bristles localization in the tibia/basitarsus of the adult legs in both castes. Our data strongly indicate that the development of the hind legs diphenism characteristic of this corbiculate species is driven by a set of caste-preferentially expressed genes, such as those encoding cuticular protein genes, P450 and Hox proteins, in response to the naturally different diets offered to honeybees during the larval period.

  5. Ratio of meat preparates to carcass in cattle slaughtered in Istanbul

    Directory of Open Access Journals (Sweden)

    Çetin Ömer

    2007-01-01

    Full Text Available This study was performed to determine the relationship between the ratio of the bones and valuable meat preparates to the carcass, the age and the sex parameters in Holstein and Swiss Braun race cattle which are widely breaded in our country. The half and quarter carcasses of the cattle that are slaughtered in Istanbul were used as working material. The carcasses were separated into 4 groups as above 3 years of age group (n=24, under 3 years of age group (n=46, male group (n=53 and female group (n=17. Totally 140 carcasses were evaluated. According to the obtained results, hind quarter weight, fillet, loin, rump, tranche, sirloin, round, flank, shank, brisket, fore loin, sticking, chuck and total bones parameters were significantly different at (p<0.001 level between above the 3 years of age and under the 3 years of age group. Between the same groups the sirloin tip parameter was significantly different at p<0.01 level. At the parameters of leg weight, shank and half carcasses there was no significant difference between the groups. We could not determine any significant differences in the percentage ratio of all meat parameters to the carcass between the groups of above 3 years of age and under 3 years of age. In the male and female groups, all the parameters except loin, leg weight and shank were significantly different between the 2 groups. Hind quarter and shank parameters were significantly different at p<0.05 level, round parameter was significantly different at p<0.01 level, and the other valuable meat propagates were significantly different at p<0.001 level. Rump parameter was evaluated as significantly different at p<0.05 level between male and female groups. The other parameters were not significantly different between the mentioned groups.

  6. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan, E-mail: danw@bjmu.edu.cn [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Liu, Jing; Wu, Baiyan [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Tu, Bo; Zhu, Weiguo [Department of Biochemistry and Molecular Biology, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Luo, Jianyuan, E-mail: jluo@som.umaryland.edu [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Department of Medical and Research Technology, School of Medicine, University of Maryland, Baltimore 21201 (United States)

    2014-04-25

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration.

  7. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    International Nuclear Information System (INIS)

    Wu, Dan; Liu, Jing; Wu, Baiyan; Tu, Bo; Zhu, Weiguo; Luo, Jianyuan

    2014-01-01

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration

  8. Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3-xClx.

    Science.gov (United States)

    Wehrenfennig, Christian; Liu, Mingzhen; Snaith, Henry J; Johnston, Michael B; Herz, Laura M

    2014-04-17

    The organic-inorganic hybrid perovskites methylammonium lead iodide (CH3NH3PbI3) and the partially chlorine-substituted mixed halide CH3NH3PbI3-xClx emit strong and broad photoluminescence (PL) around their band gap energy of ∼1.6 eV. However, the nature of the radiative decay channels behind the observed emission and, in particular, the spectral broadening mechanisms are still unclear. Here we investigate these processes for high-quality vapor-deposited films of CH3NH3PbI3-xClx using time- and excitation-energy dependent photoluminescence spectroscopy. We show that the PL spectrum is homogenously broadened with a line width of 103 meV most likely as a consequence of phonon coupling effects. Further analysis reveals that defects or trap states play a minor role in radiative decay channels. In terms of possible lasing applications, the emission spectrum of the perovskite is sufficiently broad to have potential for amplification of light pulses below 100 fs pulse duration.

  9. Primary immunodeficiency leading to mycobacterial disease

    Directory of Open Access Journals (Sweden)

    Esther van de Vosse

    2015-01-01

    To facilitate the analysis of variations identified by researchers around the world, databases have been set up that contain all reported MSMD patients and mutations (see for instance: www.lovd.nl/IL12RB1. Thus far, just over 400 patients have been reported worldwide with MSMD and this is probably only the tip of the iceberg. Also, other genes are still expected to be found to cause MSMD; no genes have been reported so far in which mutations specifically lead to susceptibility to tuberculosis.

  10. Effect of lead factors on the embrittlement of RPV SA-508 cl 3 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kempf, Rodolfo, E-mail: kempf@cnea.gov.ar [CNEA, Unidad Actividad Combustibles Nucleares, División Caracterización, Avda. Gral Paz 1499, C.P.B1650KNA, San Martín, Buenos Aires (Argentina); Troiani, Horacio, E-mail: troiani@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA) e Instituto Balseiro (UNCU), CONICET, Av. Bustillo 9500, CP 8400, Rio Negro (Argentina); Fortis, Ana Maria, E-mail: fortis@cnea.gov.ar [CNEA, Departamento Estructura y Comportamiento, UNSAM, Avda. Gral Paz 1499, C.P.B1650KNA, San Martín, Buenos Aires (Argentina)

    2013-03-15

    This paper presents a project to study the effect of lead factors on the mechanical behaviour of the SA-508 type 3 Reactor Pressure Vessel (RPV) steel used in the reactor under construction Atucha II in Argentina. Charpy-V notch specimens of this steel were irradiated at the RA1 experimental reactor at a temperature of 275 °C with two lead factors (186 and 93). The neutron flux was 3.71 × 10{sup 15} n m{sup −2} s{sup −1} and 1.85 × 10{sup 15} n m{sup −2} s{sup −1} (E > 1 MeV) respectively. In both cases, the fluence was 6.6 × 10{sup 21} n m{sup −2}, which is equivalent to that received by the PHWR Atucha II RPV in 10 years of full power irradiation. The results of Charpy tests revealed significant embrittlement both in the ΔT = 14 °C and ΔT = 21 °C shifts of the ductile–brittle transition temperatures (DBTT) and in the reduction of the maximum energy absorbed. This result shows that the shift of the DBTT with a lead factor of 93 is larger than that obtained with a lead factor of 186. Then, the results of irradiation in experimental reactors (MTR) with high lead factors may not be conservative with respect to the actual RPV embrittlement.

  11. 3'UTR Shortening Potentiates MicroRNA-Based Repression of Pro-differentiation Genes in Proliferating Human Cells.

    Directory of Open Access Journals (Sweden)

    Yonit Hoffman

    2016-02-01

    Full Text Available Most mammalian genes often feature alternative polyadenylation (APA sites and hence diverse 3'UTR lengths. Proliferating cells were reported to favor APA sites that result in shorter 3'UTRs. One consequence of such shortening is escape of mRNAs from targeting by microRNAs (miRNAs whose binding sites are eliminated. Such a mechanism might provide proliferation-related genes with an expression gain during normal or cancerous proliferation. Notably, miRNA sites tend to be more active when located near both ends of the 3'UTR compared to those located more centrally. Accordingly, miRNA sites located near the center of the full 3'UTR might become more active upon 3'UTR shortening. To address this conjecture we performed 3' sequencing to determine the 3' ends of all human UTRs in several cell lines. Remarkably, we found that conserved miRNA binding sites are preferentially enriched immediately upstream to APA sites, and this enrichment is more prominent in pro-differentiation/anti-proliferative genes. Binding sites of the miR17-92 cluster, upregulated in rapidly proliferating cells, are particularly enriched just upstream to APA sites, presumably conferring stronger inhibitory activity upon shortening. Thus 3'UTR shortening appears not only to enable escape from inhibition of growth promoting genes but also to potentiate repression of anti-proliferative genes.

  12. Imaging gene expression in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  13. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Directory of Open Access Journals (Sweden)

    Sha Lu

    Full Text Available In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  14. Complement C3 gene: Expression characterization and innate immune response in razor clam Sinonovacula constricta.

    Science.gov (United States)

    Peng, Maoxiao; Niu, Donghong; Wang, Fei; Chen, Zhiyi; Li, Jiale

    2016-08-01

    Complement component 3 (C3) is central to the complement system, playing an important role in immune defense, immune regulation and immune pathology. Several C3 genes have been characterized in invertebrates but very few in shellfish. The C3 gene was identified from the razor clam Sinonovacula constricta, referred to here as Sc-C3. It was found to be highly homologous with the C3 gene of Ruditapes decussatus. All eight model motifs of the C3 gene were found to be included in the thiolester bond and the C345C region. Sc-C3 was widely expressed in all healthy tissues with expression being highest in hemolymph. A significant difference in expression was revealed at the umbo larvae development stage. The expression of Sc-C3 was highly regulated in the hemolymph and liver, with a distinct response pattern being noted after a challenge with Micrococcus lysodeikticus and Vibrio parahemolyticus. It is therefore suggested that a complicated and unique response pathway may be present in S. constricta. Further, serum of S. constricta containing Sc-C3 was extracted. This was activated by LPS or bacterium for verification for function. The more obvious immune function of Sc-C3 was described as an effective membrane rupture in hemocyte cells of rabbit, V. parahemolyticus and Vibrio anguillarum. Thus, Sc-C3 plays an essential role in the immune defense of S. constricta. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Cloning of the PYR3 gene of Ustilago maydis and its use in DNA transformation

    Energy Technology Data Exchange (ETDEWEB)

    Banks, G.R.; Taylor, S.Y. (National Institute for Medical Research, London (England))

    1988-12-01

    The Ustilago maydis PYR3 gene encoding dihydroorotase activity was cloned by direct complementation of Escherichia coli pyrC mutations. PYR3 transformants of E. coli pyrC mutants expressed homologous transcripts of a variety of sizes and regained dihydroorotase activity. PYR3 also complemented Saccharomyces cerevisiae ura4 mutations, and again multiple transcripts were expressed in transformants, and enzyme activity was regained. A 1.25-kilobase poly(rA)+ PYR3 transcript was detected in U. maydis itself. Linear DNA carrying the PYR3 gene transformed a U. maydis pyr3-1 pyrimidine auxotroph to prototrophy. Hybridization analysis revealed that three different types of transformants could be generated, depending on the structure of the transforming DNA used. The first type involved exchange of chromosomal mutant gene sequences with the cloned wild-type plasmid sequences. A second type had integrated linear transforming DNA at the chromosomal PYR3 locus, probably via a single crossover event. The third type had integrated transforming DNA sequences at multiple sites in the U. maydis genome. In the last two types, tandemly reiterated copies of the transforming DNA were found to have been integrated. All three types had lost the sensitivity of the parental pyr3-1 mutant to UV irradiation. They had also regained dihydroorotase activity, although its level did not correlate with the PYR3 gene copy number.

  16. Alteration of the SETBP1 gene and splicing pathway genes SF3B1, U2AF1, and SRSF2 in childhood acute myeloid leukemia.

    Science.gov (United States)

    Choi, Hyun-Woo; Kim, Hye-Ran; Baek, Hee-Jo; Kook, Hoon; Cho, Duck; Shin, Jong-Hee; Suh, Soon-Pal; Ryang, Dong-Wook; Shin, Myung-Geun

    2015-01-01

    Recurrent somatic SET-binding protein 1 (SETBP1) and splicing pathway gene mutations have recently been found in atypical chronic myeloid leukemia and other hematologic malignancies. These mutations have been comprehensively analyzed in adult AML, but not in childhood AML. We investigated possible alteration of the SETBP1, splicing factor 3B subunit 1 (SF3B1), U2 small nuclear RNA auxiliary factor 1 (U2AF1), and serine/arginine-rich splicing factor 2 (SRSF2) genes in childhood AML. Cytogenetic and molecular analyses were performed to reveal chromosomal and genetic alterations. Sequence alterations in the SETBP1, SF3B1, U2AF1, and SRSF2 genes were examined by using direct sequencing in a cohort of 53 childhood AML patients. Childhood AML patients did not harbor any recurrent SETBP1 gene mutations, although our study did identify a synonymous mutation in one patient. None of the previously reported aberrations in the mutational hotspot of SF3B1, U2AF1, and SRSF2 were identified in any of the 53 patients. Alterations of the SETBP1 gene or SF3B1, U2AF1, and SRSF2 genes are not common genetic events in childhood AML, implying that the mutations are unlikely to exert a driver effect in myeloid leukemogenesis during childhood.

  17. [CCR5, CCR2, apoe, p53, ITGB3 and HFE gene polymorphism in Western Siberia long-livers].

    Science.gov (United States)

    Ivanoshchuk, D E; Mikhaĭlova, S V; Kulikov, I V; Maksimov, V N; Voevoda, M I; Romashchenko, A G

    2012-01-01

    In order to estimate the distribution of some polymorphisms for the CCR5, CCR2, apoE, p53, ITGB3, and HFE genes in Russian long-livers from Western Siberia, a sample of 271 individuals (range 90-105 years) was examined. It was demonstrated that carriage of the delta32 polymorphism for the CCR5 gene, V64/polymorphism for the CCR2 gene, e2/e3/e4 for the apoE gene, L33P for the ITGB3 gene, as well as H63D and S65C polymorphisms for the HFE gene does not influence on predisposition to the longevity; carriage of the 282 Y allele for the HFE gene negatively influences on the longevity; carriage of the heterozygous genotype for the R72P polymorphism for the p53 gene correlates with the longevity of elderly people.

  18. Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity.

    Science.gov (United States)

    Lee, Karen J I; Calder, Grant M; Hindle, Christopher R; Newman, Jacob L; Robinson, Simon N; Avondo, Jerome J H Y; Coen, Enrico S

    2017-01-01

    Optical projection tomography (OPT) is a well-established method for visualising gene activity in plants and animals. However, a limitation of conventional OPT is that the specimen upper size limit precludes its application to larger structures. To address this problem we constructed a macro version called Macro OPT (M-OPT). We apply M-OPT to 3D live imaging of gene activity in growing whole plants and to visualise structural morphology in large optically cleared plant and insect specimens up to 60 mm tall and 45 mm deep. We also show how M-OPT can be used to image gene expression domains in 3D within fixed tissue and to visualise gene activity in 3D in clones of growing young whole Arabidopsis plants. A further application of M-OPT is to visualise plant-insect interactions. Thus M-OPT provides an effective 3D imaging platform that allows the study of gene activity, internal plant structures and plant-insect interactions at a macroscopic scale. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. The Norrie disease gene maps to a 150 kb region on chromosome Xp11.3.

    Science.gov (United States)

    Sims, K B; Lebo, R V; Benson, G; Shalish, C; Schuback, D; Chen, Z Y; Bruns, G; Craig, I W; Golbus, M S; Breakefield, X O

    1992-05-01

    Norrie disease is a human X-linked recessive disorder of unknown etiology characterized by congenital blindness, sensory neural deafness and mental retardation. This disease gene was previously linked to the DXS7 (L1.28) locus and the MAO genes in band Xp11.3. We report here fine physical mapping of the obligate region containing the Norrie disease gene (NDP) defined by a recombination and by the smallest submicroscopic chromosomal deletion associated with Norrie disease identified to date. Analysis, using in addition two overlapping YAC clones from this region, allowed orientation of the MAOA and MAOB genes in a 5'-3'-3'-5' configuration. A recombination event between a (GT)n polymorphism in intron 2 of the MAOB gene and the NDP locus, in a family previously reported to have a recombination between DXS7 and NDP, delineates a flanking marker telomeric to this disease gene. An anonymous DNA probe, dc12, present in one of the YACs and in a patient with a submicroscopic deletion which includes MAOA and MAOB but not L1.28, serves as a flanking marker centromeric to the disease gene. An Alu-PCR fragment from the right arm of the MAO YAC (YMAO.AluR) is not deleted in this patient and also delineates the centromeric extent of the obligate disease region. The apparent order of these loci is telomere ... DXS7-MAOA-MAOB-NDP-dc12-YMAO.AluR ... centromere. Together these data define the obligate region containing the NDP gene to a chromosomal segment less than 150 kb.

  20. Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis

    Science.gov (United States)

    2014-01-01

    Background D-2,3-butanediol has many industrial applications such as chiral reagents, solvents, anti-freeze agents, and low freezing point fuels. Traditional D-2,3-butanediol producing microorganisms, such as Klebsiella pneumonia and K. xoytoca, are pathogenic and not capable of producing D-2,3-butanediol at high optical purity. Bacillus licheniformis is a potential 2,3-butanediol producer but the wild type strain (WX-02) produces a mix of D- and meso-type isomers. BudC in B. licheniformis is annotated as 2,3-butanediol dehydrogenase or acetoin reductase, but no pervious experiment was performed to verify this hypothesis. Results We developed a genetically modified strain of B. licheniformis (WX-02 ΔbudC) as a D-2,3-butanediol producer with high optimal purity. A marker-less gene deletion protocol based on a temperature sensitive knock-out plasmid T2-Ori was used to knock out the budC gene in B. licheniformis WX-02. The budC knock-out strain successfully abolished meso-2,3-butanediol production with enhanced D-2,3-butanediol production. No meso-BDH activity was detectable in cells of this strain. On the other hand, the complementary strain restored the characteristics of wild strain, and produced meso-2,3-butanediol and possessed meso-BDH activity. All of these data suggested that budC encoded the major meso-BDH catalyzing the reversible reaction from acetoin to meso-2,3-butanediol in B. licheniformis. The budC knock-out strain produced D-2,3-butanediol isomer only with a high yield of 30.76 g/L and a productivity of 1.28 g/L-h. Conclusions We confirmed the hypothesis that budC gene is responsible to reversibly transfer acetoin to meso-2,3-butanediol in B. licheniformis. A mutant strain of B. licheniformis with depleted budC gene was successfully developed and produced high level of the D-2,3-butanediol with high optimal purity. PMID:24475980

  1. Knock-in strategy at 3'-end of Crx gene by CRISPR/Cas9 system shows the gene expression profiles during human photoreceptor differentiation.

    Science.gov (United States)

    Homma, Kohei; Usui, Sumiko; Kaneda, Makoto

    2017-03-01

    Fluorescent reporter gene knock-in induced pluripotent stem cell (iPSC) lines have been used to evaluate the efficiency of differentiation into specific cell lineages. Here, we report a knock-in strategy for the generation of human iPSC reporter lines in which a 2A peptide sequence and a red fluorescent protein (E2-Crimson) gene were inserted at the termination codon of the cone-rod homeobox (Crx) gene, a photoreceptor-specific transcriptional factor gene. The knock-in iPSC lines were differentiated into fluorescence-expressing cells in 3D retinal differentiation culture, and the fluorescent cells also expressed Crx specifically in the nucleus. We found that the fluorescence intensity was positively correlated with the expression levels of Crx mRNA and that fluorescent cells expressed rod photoreceptor-specific genes in the later stage of differentiation. Finally, we treated the fluorescent cells with DAPT, a Notch inhibitor, and found that DAPT-enhanced retinal differentiation was associated with up-regulation of Crx, Otx2 and NeuroD1, and down-regulation of Hes5 and Ngn2. These suggest that this knock-in strategy at the 3'-end of the target gene, combined with the 2A peptide linked to fluorescent proteins, offers a useful tool for labeling specific cell lineages or monitoring expression of any marker genes without affecting the function of the target gene. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  2. DMPD: Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12213596 Multiple signaling pathways leading to the activation of interferon regula...(.html) (.csml) Show Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3.... PubmedID 12213596 Title Multiple signaling pathways leading to the activation of

  3. The primary structures of two yeast enolase genes. Homology between the 5' noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes.

    Science.gov (United States)

    Holland, M J; Holland, J P; Thill, G P; Jackson, K A

    1981-02-10

    Segments of yeast genomic DNA containing two enolase structural genes have been isolated by subculture cloning procedures using a cDNA hybridization probe synthesized from purified yeast enolase mRNA. Based on restriction endonuclease and transcriptional maps of these two segments of yeast DNA, each hybrid plasmid contains a region of extensive nucleotide sequence homology which forms hybrids with the cDNA probe. The DNA sequences which flank this homologous region in the two hybrid plasmids are nonhomologous indicating that these sequences are nontandemly repeated in the yeast genome. The complete nucleotide sequence of the coding as well as the flanking noncoding regions of these genes has been determined. The amino acid sequence predicted from one reading frame of both structural genes is extremely similar to that determined for yeast enolase (Chin, C. C. Q., Brewer, J. M., Eckard, E., and Wold, F. (1981) J. Biol. Chem. 256, 1370-1376), confirming that these isolated structural genes encode yeast enolase. The nucleotide sequences of the coding regions of the genes are approximately 95% homologous, and neither gene contains an intervening sequence. Codon utilization in the enolase genes follows the same biased pattern previously described for two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes (Holland, J. P., and Holland, M. J. (1980) J. Biol. Chem. 255, 2596-2605). DNA blotting analysis confirmed that the isolated segments of yeast DNA are colinear with yeast genomic DNA and that there are two nontandemly repeated enolase genes per haploid yeast genome. The noncoding portions of the two enolase genes adjacent to the initiation and termination codons are approximately 70% homologous and contain sequences thought to be involved in the synthesis and processing messenger RNA. Finally there are regions of extensive homology between the two enolase structural genes and two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes within the 5

  4. Peripheral blood signatures of lead exposure.

    Directory of Open Access Journals (Sweden)

    Heather G LaBreche

    Full Text Available BACKGROUND: Current evidence indicates that even low-level lead (Pb exposure can have detrimental effects, especially in children. We tested the hypothesis that Pb exposure alters gene expression patterns in peripheral blood cells and that these changes reflect dose-specific alterations in the activity of particular pathways. METHODOLOGY/PRINCIPAL FINDING: Using Affymetrix Mouse Genome 430 2.0 arrays, we examined gene expression changes in the peripheral blood of female Balb/c mice following exposure to per os lead acetate trihydrate or plain drinking water for two weeks and after a two-week recovery period. Data sets were RMA-normalized and dose-specific signatures were generated using established methods of supervised classification and binary regression. Pathway activity was analyzed using the ScoreSignatures module from GenePattern. CONCLUSIONS/SIGNIFICANCE: The low-level Pb signature was 93% sensitive and 100% specific in classifying samples a leave-one-out crossvalidation. The high-level Pb signature demonstrated 100% sensitivity and specificity in the leave-one-out crossvalidation. These two signatures exhibited dose-specificity in their ability to predict Pb exposure and had little overlap in terms of constituent genes. The signatures also seemed to reflect current levels of Pb exposure rather than past exposure. Finally, the two doses showed differential activation of cellular pathways. Low-level Pb exposure increased activity of the interferon-gamma pathway, whereas high-level Pb exposure increased activity of the E2F1 pathway.

  5. Transforming growth factor-β-induced gene product-h3 inhibits odontoblastic differentiation of dental pulp cells.

    Science.gov (United States)

    Serita, Suguru; Tomokiyo, Atsushi; Hasegawa, Daigaku; Hamano, Sayuri; Sugii, Hideki; Yoshida, Shinichiro; Mizumachi, Hiroyuki; Mitarai, Hiromi; Monnouchi, Satoshi; Wada, Naohisa; Maeda, Hidefumi

    2017-06-01

    The aim of this study was to investigate transforming growth factor-β-induced gene product-h3 (βig-h3) expression in dental pulp tissue and its effects on odontoblastic differentiation of dental pulp cells (DPCs). A rat direct pulp capping model was prepared using perforated rat upper first molars capped with mineral trioxide aggregate cement. Human DPCs (HDPCs) were isolated from extracted teeth. βig-h3 expression in rat dental pulp tissue and HDPCs was assessed by immunostaining. Mineralization of HDPCs was assessed by Alizarin red-S staining. Odontoblast-related gene expression in HDPCs was analyzed by quantitative RT-PCR. Expression of βig-h3 was detected in rat dental pulp tissue, and attenuated by direct pulp capping, while expression of interleukin-1β and tumor necrosis factor-α was increased in exposed pulp tissue. βig-h3 expression was also detected in HDPCs, with reduced expression during odontoblastic differentiation. The above cytokines reduced βig-h3 expression in HDPCs, and promoted their mineralization. Recombinant βig-h3 inhibited the expression of odontoblast-related genes and mineralization of HDPCs, while knockdown of βig-h3 gene expression promoted the expression of odontoblast-related genes in HDPCs. The present findings suggest that βig-h3 in DPCs may be involved in reparative dentin formation and that its expression is likely to negatively regulate this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Genetic evidence for the association between the early growth response 3 (EGR3 gene and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    Full Text Available Recently, two genome scan meta-analysis studies have found strong evidence for the association of loci on chromosome 8p with schizophrenia. The early growth response 3 (EGR3 gene located in chromosome 8p21.3 was also found to be involved in the etiology of schizophrenia. However, subsequent studies failed to replicate this finding. To investigate the genetic role of EGR3 in Chinese patients, we genotyped four SNPs (average interval ∼2.3 kb in the chromosome region of EGR3 in 470 Chinese schizophrenia patients and 480 healthy control subjects. The SNP rs35201266 (located in intron 1 of EGR3 showed significant differences between cases and controls in both genotype frequency distribution (P = 0.016 and allele frequency distribution (P = 0.009. Analysis of the haplotype rs35201266-rs3750192 provided significant evidence for association with schizophrenia (P = 0.0012; a significant difference was found for the common haplotype AG (P = 0.0005. Furthermore, significant associations were also found in several other two-, and three-SNP tests of haplotype analyses. The meta-analysis revealed a statistically significant association between rs35201266 and schizophrenia (P = 0.0001. In summary, our study supports the association of EGR3 with schizophrenia in our Han Chinese sample, and further functional exploration of the EGR3 gene will contribute to the molecular basis for the complex network underlying schizophrenia pathogenesis.

  7. Cytoskeletal actin genes function downstream of HNF-3beta in ascidian notochord development.

    Science.gov (United States)

    Jeffery, W R; Ewing, N; Machula, J; Olsen, C L; Swalla, B J

    1998-11-01

    We have examined the expression and regulation of cytoskeletal actin genes in ascidians with tailed (Molgula oculata) and tailless larvae (Molgula occulta). Four cDNA clones were isolated representing two pairs of orthologous cytoskeletal actin genes (CA1 and CA2), which encode proteins differing by five amino acids in the tailed and tailless species. The CA1 and CA2 genes are present in one or two copies, although several related genes may also be present in both species. Maternal CA1 and CA2 mRNA is present in small oocytes but transcript levels later decline, suggesting a role in early oogenesis. In the tailed species, embryonic CA1 and CA2 mRNAs first appear in the presumptive mesenchyme and muscle cells during gastrulation, subsequently accumulate in the presumptive notochord cells, and can be detected in these tissues through the tadpole stage. CA1 mRNAs accumulate initially in the same tissues in the tailless species but subsequently disappear, in concert with the arrest of notochord and tail development. In contrast, CA2 mRNAs were not detected in embryos of the tailless species. Fertilization of eggs of the tailless species with sperm of the tailed species, which restores the notochord and the tail, also results in the upregulation of CA1 and CA2 gene expression in hybrid embryos. Antisense oligodeoxynucleotide experiments suggest that CA1 and CA2 expression in the notochord, but not in the muscle cells, is dependent on prior expression of Mocc FHI, an ascidian HNF-3beta-like gene. The expression of the CA1 and CA2 genes in the notochord in the tailed species, downregulation in the tailless species, upregulation in interspecific hybrids, and dependence on HNF-3beta activity is consistent with a role of these genes in development of the ascidian notochord.

  8. Differential gene expression by 1,25(OH)2D3 in an endometriosis stromal cell line.

    Science.gov (United States)

    Ingles, Sue Ann; Wu, Liang; Liu, Benjamin T; Chen, Yibu; Wang, Chun-Yeh; Templeman, Claire; Brueggmann, Doerthe

    2017-10-01

    Endometriosis is a common female reproductive disease characterized by invasion of endometrial cells into other organs, frequently causing pelvic pain and infertility. Alterations of the vitamin D system have been linked to endometriosis incidence and severity. To shed light on the potential mechanism for these associations, we examined the effects of 1,25(OH) 2 D 3 on gene expression in endometriosis cells. Stromal cell lines derived from endometriosis tissue were treated with 1,25(OH) 2 D 3 , and RNA-seq was used to identify genes differentially expressed between treated and untreated cells. Gene ontology and pathway analyses were carried out using Partek Flow and Ingenuity software suites, respectively. We identified 1627 genes that were differentially expressed (886 down-regulated and 741 up-regulated) by 1,25(OH) 2 D 3 . Only one gene, CYP24A1, was strongly up-regulated (369-fold). Many genes were strongly down-regulated. 1,25(OH) 2 D 3 treatment down-regulated several genetic pathways related to neuroangiogenesis, cellular motility, and invasion, including pathways for axonal guidance, Rho GDP signaling, and matrix metalloprotease inhibition. These findings support a role for vitamin D in the pathophysiology of endometriosis, and provide new targets for investigation into possible causes and treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Arabidopsis thaliana population analysis reveals high plasticity of the genomic region spanning MSH2, AT3G18530 and AT3G18535 genes and provides evidence for NAHR-driven recurrent CNV events occurring in this location.

    Science.gov (United States)

    Zmienko, Agnieszka; Samelak-Czajka, Anna; Kozlowski, Piotr; Szymanska, Maja; Figlerowicz, Marek

    2016-11-08

    Intraspecies copy number variations (CNVs), defined as unbalanced structural variations of specific genomic loci, ≥1 kb in size, are present in the genomes of animals and plants. A growing number of examples indicate that CNVs may have functional significance and contribute to phenotypic diversity. In the model plant Arabidopsis thaliana at least several hundred protein-coding genes might display CNV; however, locus-specific genotyping studies in this plant have not been conducted. We analyzed the natural CNVs in the region overlapping MSH2 gene that encodes the DNA mismatch repair protein, and AT3G18530 and AT3G18535 genes that encode poorly characterized proteins. By applying multiplex ligation-dependent probe amplification and droplet digital PCR we genotyped those genes in 189 A. thaliana accessions. We found that AT3G18530 and AT3G18535 were duplicated (2-14 times) in 20 and deleted in 101 accessions. MSH2 was duplicated in 12 accessions (up to 12-14 copies) but never deleted. In all but one case, the MSH2 duplications were associated with those of AT3G18530 and AT3G18535. Considering the structure of the CNVs, we distinguished 5 genotypes for this region, determined their frequency and geographical distribution. We defined the CNV breakpoints in 35 accessions with AT3G18530 and AT3G18535 deletions and tandem duplications and showed that they were reciprocal events, resulting from non-allelic homologous recombination between 99 %-identical sequences flanking these genes. The widespread geographical distribution of the deletions supported by the SNP and linkage disequilibrium analyses of the genomic sequence confirmed the recurrent nature of this CNV. We characterized in detail for the first time the complex multiallelic CNV in Arabidopsis genome. The region encoding MSH2, AT3G18530 and AT3G18535 genes shows enormous variation of copy numbers among natural ecotypes, being a remarkable example of high Arabidopsis genome plasticity. We provided the molecular

  10. Molecular characterization and expression of maternally expressed gene 3 (Meg3/Gtl2) RNA in the mouse inner ear

    DEFF Research Database (Denmark)

    Manji, S.S.; Sørensen, Brita Singers; Klockars, T.

    2006-01-01

    The pathways responsible for sound perception in the cochlea involve the coordinated and regulated expression of hundreds of genes. By using microarray analysis, we identified several transcripts enriched in the inner ear, including the maternally expressed gene 3 (Meg3/Gtl2), an imprinted...... noncoding RNA. Real-time PCR analysis demonstrated that Meg3/Gtl2 was highly expressed in the cochlea, brain, and eye. Molecular studies revealed the presence of several Meg3/Gtl2 RNA splice variants in the mouse cochlea, brain, and eye. In situ hybridizations showed intense Meg3/Gtl2 RNA staining...... otocyst and localized to the spiral ganglion, stria vascularis, Reissner's membrane, and greater epithelial ridge (GER) in the cochlear duct. RT-PCR analysis performed on cell lines derived from the organ of Corti, representing neural, supporting, and hair cells, showed significantly elevated levels...

  11. A comparative study of mutation screening of sarcomeric genes (MYBPC3, MYH7, TNNT2 using single gene approach versus targeted gene panel next generation sequencing in a cohort of HCM patients in Egypt

    Directory of Open Access Journals (Sweden)

    Heba Sh. Kassem

    2017-10-01

    Full Text Available Background: NGS enables simultaneous sequencing of large numbers of associated genes in genetic heterogeneous disorders, in a more rapid and cost-effective manner than traditional technologies. However there have been limited direct comparisons between NGS and more established technologies to assess the sensitivity and false negative rates of this new approach. The scope of the present manuscript is to compare variants detected in MYBPC3, MYH7 and TNNT2 genes using the stepwise dHPLC/Sanger versus targeted NGS. Methods: In this study, we have analysed a group of 150 samples of patients from the Bibliotheca Alexandrina-Aswan Heart Centre National HCM program. The genetic testing was simultaneously undertaken by high throughput denaturing high-performance liquid chromatography (dHPLC followed by Sanger based sequencing and targeted next generation deep sequencing using panel of inherited cardiac genes (ICC. The panel included over 100 genes including the 3 sarcomeric genes. Analysis of the sequencing data of the 3 genes was undertaken in a double blinded strategy. Results: NGS analysis detected all pathogenic and likely pathogenic variants identified by dHPLC (50 in total, some samples had double hits. There was a 0% false negative rate for NGS based analysis. Nineteen variants were missed by dHPLC and detected by NGS, thus increasing the diagnostic yield in this co- analysed cohort from 22.0% (33/150 to 31.3% (47/150.Of interest to note that the mutation spectrum in this Egyptian HCM population revealed a high rate of homozygosity in MYBPC3 and MYH7 genes in comparison to other population studies (6/150, 4%. None of the homozygous samples were detected by dHPLC analysis. Conclusion: NGS provides a useful and rapid tool to allow panoramic screening of several genes simultaneously with a high sensitivity rate amongst genes of known etiologic role allowing high throughput analysis of HCM patients and relevant control series in a less characterised

  12. Identification of Epithelial-Mesenchymal Transition-related Target Genes Induced by the Mutation of Smad3 Linker Phosphorylation

    Science.gov (United States)

    Park, Sujin; Yang, Kyung-Min; Park, Yuna; Hong, Eunji; Hong, Chang Pyo; Park, Jinah; Pang, Kyoungwha; Lee, Jihee; Park, Bora; Lee, Siyoung; An, Haein; Kwak, Mi-Kyung; Kim, Junil; Kang, Jin Muk; Kim, Pyunggang; Xiao, Yang; Nie, Guangjun; Ooshima, Akira

    2018-01-01

    Background Smad3 linker phosphorylation plays essential roles in tumor progression and metastasis. We have previously reported that the mutation of Smad3 linker phosphorylation sites (Smad3-Erk/Pro-directed kinase site mutant constructs [EPSM]) markedly reduced the tumor progression while increasing the lung metastasis in breast cancer. Methods We performed high-throughput RNA-Sequencing of the human prostate cancer cell lines infected with adenoviral Smad3-EPSM to identify the genes regulated by Smad3-EPSM. Results In this study, we identified genes which are differentially regulated in the presence of Smad3-EPSM. We first confirmed that Smad3-EPSM strongly enhanced a capability of cell motility and invasiveness as well as the expression of epithelial-mesenchymal transition marker genes, CDH2, SNAI1, and ZEB1 in response to TGF-β1 in human pancreatic and prostate cancer cell lines. We identified GADD45B, CTGF, and JUNB genes in the expression profiles associated with cell motility and invasiveness induced by the Smad3-EPSM. Conclusions These results suggested that inhibition of Smad3 linker phosphorylation may enhance cell motility and invasiveness by inducing expression of GADD45B, CTGF, and JUNB genes in various cancers. PMID:29629343

  13. Non-canonical PRC1.1 Targets Active Genes Independent of H3K27me3 and Is Essential for Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Vincent van den Boom

    2016-01-01

    Full Text Available Polycomb proteins are classical regulators of stem cell self-renewal and cell lineage commitment and are frequently deregulated in cancer. Here, we find that the non-canonical PRC1.1 complex, as identified by mass-spectrometry-based proteomics, is critically important for human leukemic stem cells. Downmodulation of PRC1.1 complex members, like the DNA-binding subunit KDM2B, strongly reduces cell proliferation in vitro and delays or even abrogates leukemogenesis in vivo in humanized xenograft models. PRC1.1 components are significantly overexpressed in primary AML CD34+ cells. Besides a set of genes that is targeted by PRC1 and PRC2, ChIP-seq studies show that PRC1.1 also binds a distinct set of genes that are devoid of H3K27me3, suggesting a gene-regulatory role independent of PRC2. This set encompasses genes involved in metabolism, which have transcriptionally active chromatin profiles. These data indicate that PRC1.1 controls specific genes involved in unique cell biological processes required for leukemic cell viability.

  14. Molecular characterization and expression profiling of BMP 3 gene in broiler and layer chicken.

    Science.gov (United States)

    Divya, Devara; Bhattacharya, Tarun Kumar; Gnana Prakash, Manthani; Chatterjee, R N; Shukla, Renu; Guru Vishnu, Pothana Boyina; Vinoth, Amirthalingam; Dushyanth, Kotha

    2018-04-10

    A study was carried out to characterize and explore the expression profile of BMP 3 gene in control broiler and control layer chicken. The total open reading frame of BMP 3 (1389 bp) was cloned and sequenced. The control broiler and control layer chicken showed variation at nucleotide and amino acid level with reference gene (Gallus gallus, NCBI Acc. No. NM_001034819). When compared to reference gene, the control broiler showed four nucleotide differences (c.192A>G, c.519C>T, 903G>A and 960C>G), while, control layer showed variation at c.33G>C, 192A>G, 858G>A, 904G>A, 960C>G and 1257C>T making six differences in total. However, between control broiler and control layer lines, nucleotide differences was observed at c.33G>C, 519T>C, 858G>A, 903A>G, 904G>A and 1257C>T. The change at amino acid level between reference and control broiler was p.D320N and with control layer chicken, it was p.D302N and p.D320N. On the other hand, a single amino acid difference (p.D302N) was observed between the control broiler and control layer chicken lines. The phylogenetic study displayed a close relationship between broiler and layer lines and reference gene and also with other avian species resulting in a cluster formation. These cluster in turn displayed a distant link with the mammalian species. The expression profile of BMP 3 gene exhibited a variation at different stages of embryonic development and also at post embryonic period among the lines with control layer showing higher expression than that of broiler chicken. The protein was also detected in bone marrow tissue of broiler and layer lines by western blotting. It is concluded that the BMP 3 gene sequence differed at nucleotide and amino acid level among the lines and the gene expressed differentially at different periods of embryonic development and also at post hatch period.

  15. A defect in the TUSC3 gene is associated with autosomal recessive mental retardation.

    Science.gov (United States)

    Garshasbi, Masoud; Hadavi, Valeh; Habibi, Haleh; Kahrizi, Kimia; Kariminejad, Roxana; Behjati, Farkhondeh; Tzschach, Andreas; Najmabadi, Hossein; Ropers, Hans Hilger; Kuss, Andreas Walter

    2008-05-01

    Recent studies have shown that autosomal recessive mental retardation (ARMR) is extremely heterogeneous, and there is reason to believe that the number of underlying gene defects goes into the thousands. To date, however, only four genes have been implicated in nonsyndromic ARMR (NS-ARMR): PRSS12 (neurotrypsin), CRBN (cereblon), CC2D1A, and GRIK2. As part of an ongoing systematic study aiming to identify ARMR genes, we investigated a large consanguineous family comprising seven patients with nonsyndromic ARMR in four sibships. Genome-wide SNP typing enabled us to map the relevant genetic defect to a 4.6 Mbp interval on chromosome 8. Haplotype analyses and copy-number studies led to the identification of a homozygous deletion partly removing TUSC3 (N33) in all patients. All obligate carriers of this family were heterozygous, but none of 192 unrelated healthy individuals from the same population carried this deletion. We excluded other disease-causing mutations in the coding regions of all genes within the linkage interval by sequencing; moreover, we verified the complete absence of a functional TUSC3 transcript in all patients through RT-PCR. TUSC3 is thought to encode a subunit of the endoplasmic reticulum-bound oligosaccharyltransferase complex that catalyzes a pivotal step in the protein N-glycosylation process. Our data suggest that in contrast to other genetic defects of glycosylation, inactivation of TUSC3 causes nonsyndromic MR, a conclusion that is supported by a separate report in this issue of AJHG. TUSC3 is only the fifth gene implicated in NS-ARMR and the first for which mutations have been reported in more than one family.

  16. Discrimination of phytoplasmas using an oligonucleotide microarray targeting rps3, rpl22, and rps19 genes

    Czech Academy of Sciences Publication Activity Database

    Lenz, Ondřej; Marková, J.; Sarkisova, Tatiana; Fránová, Jana; Přibylová, Jaroslava

    2015-01-01

    Roč. 70, January 2015 (2015), s. 47-52 ISSN 0261-2194 Institutional support: RVO:60077344 Keywords : DNA microarray * rpl22 gene * rps19 gene * rps3 gene Subject RIV: EE - Microbiology, Virology Impact factor: 1.652, year: 2015

  17. Comparative genomic analysis of the Lipase3 gene family in five plant species reveals distinct evolutionary origins.

    Science.gov (United States)

    Wang, Dan; Zhang, Lin; Hu, JunFeng; Gao, Dianshuai; Liu, Xin; Sha, Yan

    2018-04-01

    Lipases are physiologically important and ubiquitous enzymes that share a conserved domain and are classified into eight different families based on their amino acid sequences and fundamental biological properties. The Lipase3 family of lipases was reported to possess a canonical fold typical of α/β hydrolases and a typical catalytic triad, suggesting a distinct evolutionary origin for this family. Genes in the Lipase3 family do not have the same functions, but maintain the conserved Lipase3 domain. There have been extensive studies of Lipase3 structures and functions, but little is known about their evolutionary histories. In this study, all lipases within five plant species were identified, and their phylogenetic relationships and genetic properties were analyzed and used to group them into distinct evolutionary families. Each identified lipase family contained at least one dicot and monocot Lipase3 protein, indicating that the gene family was established before the split of dicots and monocots. Similar intron/exon numbers and predicted protein sequence lengths were found within individual groups. Twenty-four tandem Lipase3 gene duplications were identified, implying that the distinctive function of Lipase3 genes appears to be a consequence of translocation and neofunctionalization after gene duplication. The functional genes EDS1, PAD4, and SAG101 that are reportedly involved in pathogen response were all located in the same group. The nucleotide diversity (Dxy) and the ratio of nonsynonymous to synonymous nucleotide substitutions rates (Ka/Ks) of the three genes were significantly greater than the average across the genomes. We further observed evidence for selection maintaining diversity on three genes in the Toll-Interleukin-1 receptor type of nucleotide binding/leucine-rich repeat immune receptor (TIR-NBS LRR) immunity-response signaling pathway, indicating that they could be vulnerable to pathogen effectors.

  18. The Immediate Early Gene Egr3 Is Required for Hippocampal Induction of Bdnf by Electroconvulsive Stimulation

    Directory of Open Access Journals (Sweden)

    Kimberly T. Meyers

    2018-05-01

    Full Text Available Early growth response 3 (Egr3 is an immediate early gene (IEG that is regulated downstream of a cascade of genes associated with risk for psychiatric disorders, and dysfunction of Egr3 itself has been implicated in schizophrenia, bipolar disorder, and depression. As an activity-dependent transcription factor, EGR3 is poised to regulate the neuronal expression of target genes in response to environmental events. In the current study, we sought to identify a downstream target of EGR3 with the goal of further elucidating genes in this biological pathway relevant for psychiatric illness risk. We used electroconvulsive stimulation (ECS to induce high-level expression of IEGs in the brain, and conducted expression microarray to identify genes differentially regulated in the hippocampus of Egr3-deficient (-/- mice compared to their wildtype (WT littermates. Our results replicated previous work showing that ECS induces high-level expression of the brain-derived neurotrophic factor (Bdnf in the hippocampus of WT mice. However, we found that this induction is absent in Egr3-/- mice. Quantitative real-time PCR (qRT-PCR validated the microarray results (performed in males and replicated the findings in two separate cohorts of female mice. Follow-up studies of activity-dependent Bdnf exons demonstrated that ECS-induced expression of both exons IV and VI requires Egr3. In situ hybridization demonstrated high-level cellular expression of Bdnf in the hippocampal dentate gyrus following ECS in WT, but not Egr3-/-, mice. Bdnf promoter analysis revealed eight putative EGR3 binding sites in the Bdnf promoter, suggesting a mechanism through which EGR3 may directly regulate Bdnf gene expression. These findings do not appear to result from a defect in the development of hippocampal neurons in Egr3-/- mice, as cell counts in tissue sections stained with anti-NeuN antibodies, a neuron-specific marker, did not differ between Egr3-/- and WT mice. In addition, Sholl

  19. Replication of alfalfa mosaic virus RNA 3 with movement and coat protein genes replaced by corresponding genes of Prunus necrotic ringspot ilarvirus.

    Science.gov (United States)

    Sánchez-Navarro, J A; Reusken, C B; Bol, J F; Pallás, V

    1997-12-01

    Alfalfa mosaic virus (AMV) and Prunus necrotic ringspot virus (PNRSV) are tripartite positive-strand RNA plant viruses that encode functionally similar translation products. Although the two viruses are phylogenetically closely related, they infect a very different range of natural hosts. The coat protein (CP) gene, the movement protein (MP) gene or both genes in AMV RNA 3 were replaced by the corresponding genes of PNRSV. The chimeric viruses were tested for heterologous encapsidation, replication in protoplasts from plants transformed with AMV replicase genes P1 and P2 (P12 plants) and for cell-to-cell transport in P12 plants. The chimeric viruses exhibited basic competence for encapsidation and replication in P12 protoplasts and for a low level of cell-to-cell movement in P12 plants. The potential involvement of the MP gene in determining host specificity in ilarviruses is discussed.

  20. An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals

    Science.gov (United States)

    2012-01-01

    Background The APOBEC3 (A3) genes play a key role in innate antiviral defense in mammals by introducing directed mutations in the DNA. The human genome encodes for seven A3 genes, with multiple splice alternatives. Different A3 proteins display different substrate specificity, but the very basic question on how discerning self from non-self still remains unresolved. Further, the expression of A3 activity/ies shapes the way both viral and host genomes evolve. Results We present here a detailed temporal analysis of the origin and expansion of the A3 repertoire in mammals. Our data support an evolutionary scenario where the genome of the mammalian ancestor encoded for at least one ancestral A3 gene, and where the genome of the ancestor of placental mammals (and possibly of the ancestor of all mammals) already encoded for an A3Z1-A3Z2-A3Z3 arrangement. Duplication events of the A3 genes have occurred independently in different lineages: humans, cats and horses. In all of them, gene duplication has resulted in changes in enzyme activity and/or substrate specificity, in a paradigmatic example of convergent adaptive evolution at the genomic level. Finally, our results show that evolutionary rates for the three A3Z1, A3Z2 and A3Z3 motifs have significantly decreased in the last 100 Mya. The analysis constitutes a textbook example of the evolution of a gene locus by duplication and sub/neofunctionalization in the context of virus-host arms race. Conclusions Our results provide a time framework for identifying ancestral and derived genomic arrangements in the APOBEC loci, and to date the expansion of this gene family for different lineages through time, as a response to changes in viral/retroviral/retrotransposon pressure. PMID:22640020