WorldWideScience

Sample records for sh3 domain interaction

  1. Preferred SH3 domain partners of ADAM metalloproteases include shared and ADAM-specific SH3 interactions.

    Directory of Open Access Journals (Sweden)

    Iivari Kleino

    Full Text Available A disintegrin and metalloproteinases (ADAMs constitute a protein family essential for extracellular signaling and regulation of cell adhesion. Catalytic activity of ADAMs and their predicted potential for Src-homology 3 (SH3 domain binding show a strong correlation. Here we present a comprehensive characterization of SH3 binding capacity and preferences of the catalytically active ADAMs 8, 9, 10, 12, 15, 17, and 19. Our results revealed several novel interactions, and also confirmed many previously reported ones. Many of the identified SH3 interaction partners were shared by several ADAMs, whereas some were ADAM-specific. Most of the ADAM-interacting SH3 proteins were adapter proteins or kinases, typically associated with sorting and endocytosis. Novel SH3 interactions revealed in this study include TOCA1 and CIP4 as preferred partners of ADAM8, and RIMBP1 as a partner of ADAM19. Our results suggest that common as well as distinct mechanisms are involved in regulation and execution of ADAM signaling, and provide a useful framework for addressing the pathways that connect ADAMs to normal and aberrant cell behavior.

  2. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins.

    Science.gov (United States)

    Koch, C A; Anderson, D; Moran, M F; Ellis, C; Pawson, T

    1991-05-03

    Src homology (SH) regions 2 and 3 are noncatalytic domains that are conserved among a series of cytoplasmic signaling proteins regulated by receptor protein-tyrosine kinases, including phospholipase C-gamma, Ras GTPase (guanosine triphosphatase)-activating protein, and Src-like tyrosine kinases. The SH2 domains of these signaling proteins bind tyrosine phosphorylated polypeptides, implicated in normal signaling and cellular transformation. Tyrosine phosphorylation acts as a switch to induce the binding of SH2 domains, thereby mediating the formation of heteromeric protein complexes at or near the plasma membrane. The formation of these complexes is likely to control the activation of signal transduction pathways by tyrosine kinases. The SH3 domain is a distinct motif that, together with SH2, may modulate interactions with the cytoskeleton and membrane. Some signaling and transforming proteins contain SH2 and SH3 domains unattached to any known catalytic element. These noncatalytic proteins may serve as adaptors to link tyrosine kinases to specific target proteins. These observations suggest that SH2 and SH3 domains participate in the control of intracellular responses to growth factor stimulation.

  3. Molecular dissection of the interaction between the SH3 domain and the SH2-Kinase Linker region in PTK6.

    Science.gov (United States)

    Kim, Han Ie; Jung, Jinwon; Lee, Eun-Saem; Kim, Yong-Chul; Lee, Weontae; Lee, Seung-Taek

    2007-11-03

    PTK6 (also known as Brk) is an intracellular tyrosine kinase that contains SH3, SH2, and tyrosine kinase catalytic (Kinase) domains. The SH3 domain of PTK6 interacts with the N-terminal half of the linker (Linker) region between the SH2 and Kinase domains. Site-directed mutagenesis and surface plasmon resonance studies showed that a tryptophan residue (Trp44) in the SH3 domain and proline residues in the Linker region, in the order of Pro177, Pro175, and Pro179, contribute to the interaction. The three-dimensional modeled structure of the SH3-Linker complex was in agreement with the biochemical data. Disruption of the intramolecular interaction between the SH3 domain and the Linker region by mutation of Trp44, Pro175, Pro177, and Pro179 markedly increased the catalytic activity of PTK6 in HEK 293 cells. These results demonstrate that Trp44 in the SH3 domain and Pro177, Pro175, and Pro179 in the N-terminal half of the Linker region play important roles in the SH3-Linker interaction to maintain the protein in an inactive conformation along with the phosphorylated Tyr447-SH2 interaction.

  4. Regulation of the interaction between the neuronal BIN1 isoform 1 and Tau proteins - role of the SH3 domain.

    Science.gov (United States)

    Malki, Idir; Cantrelle, François-Xavier; Sottejeau, Yoann; Lippens, Guy; Lambert, Jean-Charles; Landrieu, Isabelle

    2017-10-01

    Bridging integrator 1 (bin1) gene is a genetic determinant of Alzheimer's disease (AD) and has been reported to modulate Alzheimer's pathogenesis through pathway(s) involving Tau. The functional impact of Tau/BIN1 interaction as well as the molecular details of this interaction are still not fully resolved. As a consequence, how BIN1 through its interaction with Tau affects AD risk is also still not determined. To progress in this understanding, interaction of Tau with two BIN1 isoforms was investigated using Nuclear Magnetic Resonance spectroscopy. 1 H, 15 N spectra showed that the C-terminal SH3 domain of BIN1 isoform 1 (BIN1Iso1) is not mobile in solution but locked with the core of the protein. In contrast, the SH3 domain of BIN1 isoform 9 (BIN1Iso9) behaves as an independent mobile domain. This reveals an equilibrium between close and open conformations for the SH3 domain. Interestingly, a 334-376 peptide from the clathrin and AP-2-binding domain (CLAP) domain of BIN1Iso1, which contains a SH3-binding site, is able to compete with BIN1-SH3 intramolecular interaction. For both BIN1 isoforms, the SH3 domain can interact with Tau(210-240) sequence. Tau(210-240) peptide can indeed displace the intramolecular interaction of the BIN1-SH3 of BIN1Iso1 and form a complex with the released domain. The measured K d were in agreement with a stronger affinity of Tau peptide. Both CLAP and Tau peptides occupied the same surface on the BIN1-SH3 domain, showing that their interaction is mutually exclusive. These results emphasize an additional level of complexity in the regulation of the interaction between BIN1 and Tau dependent of the BIN1 isoforms. © 2017 Federation of European Biochemical Societies.

  5. Solution structure of the first SH3 domain of human vinexin and its interaction with vinculin peptides

    International Nuclear Information System (INIS)

    Zhang, Jiahai; Li, Xiang; Yao, Bo; Shen, Weiqun; Sun, Hongbin; Xu, Chao; Wu, Jihui; Shi, Yunyu

    2007-01-01

    Solution structure of the first Src homology (SH) 3 domain of human vinexin (V S H3 1 ) was determined using nuclear magnetic resonance (NMR) method and revealed that it was a canonical SH3 domain, which has a typical β-β-β-β-α-β fold. Using chemical shift perturbation and surface plasmon resonance experiments, we studied the binding properties of the SH3 domain with two different peptides from vinculin hinge regions: P856 and P868. The observations illustrated slightly different affinities of the two peptides binding to V S H3 1 . The interaction between P868 and V S H3 1 belonged to intermediate exchange with a modest binding affinity, while the interaction between P856 and V S H3 1 had a low binding affinity. The structure and ligand-binding interface of V S H3 1 provide a structural basis for the further functional study of this important molecule

  6. Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain.

    Directory of Open Access Journals (Sweden)

    Tingjun Hou

    2006-01-01

    Full Text Available Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains, such as Src Homology 2 and 3 (SH2 and SH3 domains, which bind to specific sequence and structural motifs. It is important but challenging to determine the binding specificity of these domains accurately and to predict their physiological interacting partners. In this study, the interactions between 35 peptide ligands (15 binders and 20 non-binders and the Abl SH3 domain were analyzed using molecular dynamics simulation and the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. The calculated binding free energies correlated well with the rank order of the binding peptides and clearly distinguished binders from non-binders. Free energy component analysis revealed that the van der Waals interactions dictate the binding strength of peptides, whereas the binding specificity is determined by the electrostatic interaction and the polar contribution of desolvation. The binding motif of the Abl SH3 domain was then determined by a virtual mutagenesis method, which mutates the residue at each position of the template peptide relative to all other 19 amino acids and calculates the binding free energy difference between the template and the mutated peptides using the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. A single position mutation free energy profile was thus established and used as a scoring matrix to search peptides recognized by the Abl SH3 domain in the human genome. Our approach successfully picked ten out of 13 experimentally determined binding partners of the Abl SH3 domain among the top 600 candidates from the 218,540 decapeptides with the PXXP motif in the SWISS-PROT database. We expect that this physical-principle based method can be applied to other protein domains as well.

  7. SH3 domain tyrosine phosphorylation--sites, role and evolution.

    Directory of Open Access Journals (Sweden)

    Zuzana Tatárová

    Full Text Available BACKGROUND: SH3 domains are eukaryotic protein domains that participate in a plethora of cellular processes including signal transduction, proliferation, and cellular movement. Several studies indicate that tyrosine phosphorylation could play a significant role in the regulation of SH3 domains. RESULTS: To explore the incidence of the tyrosine phosphorylation within SH3 domains we queried the PhosphoSite Plus database of phosphorylation sites. Over 100 tyrosine phosphorylations occurring on 20 different SH3 domain positions were identified. The tyrosine corresponding to c-Src Tyr-90 was by far the most frequently identified SH3 domain phosphorylation site. A comparison of sequences around this tyrosine led to delineation of a preferred sequence motif ALYD(Y/F. This motif is present in about 15% of human SH3 domains and is structurally well conserved. We further observed that tyrosine phosphorylation is more abundant than serine or threonine phosphorylation within SH3 domains and other adaptor domains, such as SH2 or WW domains. Tyrosine phosphorylation could represent an important regulatory mechanism of adaptor domains. CONCLUSIONS: While tyrosine phosphorylation typically promotes signaling protein interactions via SH2 or PTB domains, its role in SH3 domains is the opposite - it blocks or prevents interactions. The regulatory function of tyrosine phosphorylation is most likely achieved by the phosphate moiety and its charge interfering with binding of polyproline helices of SH3 domain interacting partners.

  8. A graph kernel approach for alignment-free domain-peptide interaction prediction with an application to human SH3 domains.

    Science.gov (United States)

    Kundu, Kousik; Costa, Fabrizio; Backofen, Rolf

    2013-07-01

    State-of-the-art experimental data for determining binding specificities of peptide recognition modules (PRMs) is obtained by high-throughput approaches like peptide arrays. Most prediction tools applicable to this kind of data are based on an initial multiple alignment of the peptide ligands. Building an initial alignment can be error-prone, especially in the case of the proline-rich peptides bound by the SH3 domains. Here, we present a machine-learning approach based on an efficient graph-kernel technique to predict the specificity of a large set of 70 human SH3 domains, which are an important class of PRMs. The graph-kernel strategy allows us to (i) integrate several types of physico-chemical information for each amino acid, (ii) consider high-order correlations between these features and (iii) eliminate the need for an initial peptide alignment. We build specialized models for each human SH3 domain and achieve competitive predictive performance of 0.73 area under precision-recall curve, compared with 0.27 area under precision-recall curve for state-of-the-art methods based on position weight matrices. We show that better models can be obtained when we use information on the noninteracting peptides (negative examples), which is currently not used by the state-of-the art approaches based on position weight matrices. To this end, we analyze two strategies to identify subsets of high confidence negative data. The techniques introduced here are more general and hence can also be used for any other protein domains, which interact with short peptides (i.e. other PRMs). The program with the predictive models can be found at http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/SH3PepInt.tar.gz. We also provide a genome-wide prediction for all 70 human SH3 domains, which can be found under http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/Genome-Wide-Predictions.tar.gz. Supplementary data are available at Bioinformatics online.

  9. The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding.

    Science.gov (United States)

    Chen, Shugui; Brier, Sébastien; Smithgall, Thomas E; Engen, John R

    2007-04-01

    The core of the Abelson tyrosine kinase (c-Abl) is structurally similar to Src-family kinases where SH3 and SH2 domains pack against the backside of the kinase domain in the down-regulated conformation. Both kinase families depend upon intramolecular association of SH3 with the linker joining the SH2 and kinase domains for suppression of kinase activity. Hydrogen deuterium exchange (HX) and mass spectrometry (MS) were used to probe intramolecular interaction of the c-Abl SH3 domain with the linker in recombinant constructs lacking the kinase domain. Under physiological conditions, the c-Abl SH3 domain undergoes partial unfolding, which is stabilized by ligand binding, providing a unique assay for SH3:linker interaction in solution. Using this approach, we observed dynamic association of the SH3 domain with the linker in the absence of the kinase domain. Truncation of the linker before W254 completely prevented cis-interaction with SH3, while constructs containing amino acids past this point showed SH3:linker interactions. The observation that the Abl linker sequence exhibits SH3-binding activity in the absence of the kinase domain is unique to Abl and was not observed with Src-family kinases. These results suggest that SH3:linker interactions may have a more prominent role in Abl regulation than in Src kinases, where the down-regulated conformation is further stabilized by a second intramolecular interaction between the C-terminal tail and the SH2 domain.

  10. A graph kernel approach for alignment-free domain–peptide interaction prediction with an application to human SH3 domains

    Science.gov (United States)

    Kundu, Kousik; Costa, Fabrizio; Backofen, Rolf

    2013-01-01

    Motivation: State-of-the-art experimental data for determining binding specificities of peptide recognition modules (PRMs) is obtained by high-throughput approaches like peptide arrays. Most prediction tools applicable to this kind of data are based on an initial multiple alignment of the peptide ligands. Building an initial alignment can be error-prone, especially in the case of the proline-rich peptides bound by the SH3 domains. Results: Here, we present a machine-learning approach based on an efficient graph-kernel technique to predict the specificity of a large set of 70 human SH3 domains, which are an important class of PRMs. The graph-kernel strategy allows us to (i) integrate several types of physico-chemical information for each amino acid, (ii) consider high-order correlations between these features and (iii) eliminate the need for an initial peptide alignment. We build specialized models for each human SH3 domain and achieve competitive predictive performance of 0.73 area under precision-recall curve, compared with 0.27 area under precision-recall curve for state-of-the-art methods based on position weight matrices. We show that better models can be obtained when we use information on the noninteracting peptides (negative examples), which is currently not used by the state-of-the art approaches based on position weight matrices. To this end, we analyze two strategies to identify subsets of high confidence negative data. The techniques introduced here are more general and hence can also be used for any other protein domains, which interact with short peptides (i.e. other PRMs). Availability: The program with the predictive models can be found at http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/SH3PepInt.tar.gz. We also provide a genome-wide prediction for all 70 human SH3 domains, which can be found under http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/Genome-Wide-Predictions.tar.gz. Contact: backofen@informatik.uni-freiburg.de Supplementary

  11. Comparison of SH3 and SH2 domain dynamics when expressed alone or in an SH(3+2) construct: the role of protein dynamics in functional regulation.

    Science.gov (United States)

    Engen, J R; Smithgall, T E; Gmeiner, W H; Smith, D L

    1999-04-02

    Protein dynamics play an important role in protein function and regulation of enzymatic activity. To determine how additional interactions with surrounding structure affects local protein dynamics, we have used hydrogen exchange and mass spectrometry to investigate the SH2 and SH3 domains of the protein tyrosine kinase Hck. Exchange rates of isolated Hck SH3 and SH2 domains were compared with rates for the same domains when part of a larger SH(3+2) construct. Increased deuterium incorporation was observed for the SH3 domain in the joint construct, particularly near the SH2 interface and the short sequence that connects SH3 to SH2, implying greater flexibility of SH3 when it is part of SH(3+2). Slow cooperative unfolding of the SH3 domain occurred at the same rate in isolated SH3 as in the SH(3+2) construct, suggesting a functional significance for this unfolding. The SH2 domain displayed relatively smaller changes in flexibility when part of the SH(3+2) construct. These results suggest that the domains influence each other. Further, our results imply a link between functional regulation and structural dynamics of SH3 and SH2 domains. Copyright 1999 Academic Press.

  12. SH3 Domains Differentially Stimulate Distinct Dynamin I Assembly Modes and G Domain Activity.

    Directory of Open Access Journals (Sweden)

    Sai Krishnan

    Full Text Available Dynamin I is a highly regulated GTPase enzyme enriched in nerve terminals which mediates vesicle fission during synaptic vesicle endocytosis. One regulatory mechanism involves its interactions with proteins containing Src homology 3 (SH3 domains. At least 30 SH3 domain-containing proteins bind dynamin at its proline-rich domain (PRD. Those that stimulate dynamin activity act by promoting its oligomerisation. We undertook a systematic parallel screening of 13 glutathione-S-transferase (GST-tagged endocytosis-related SH3 domains on dynamin binding, GTPase activity and oligomerisation. No correlation was found between dynamin binding and their potency to stimulate GTPase activity. There was limited correlation between the extent of their ability to stimulate dynamin activity and the level of oligomerisation, indicating an as yet uncharacterised allosteric coupling of the PRD and G domain. We examined the two variants, dynamin Iab and Ibb, which differ in the alternately splice middle domain α2 helix. They responded differently to the panel of SH3s, with the extent of stimulation between the splice variants varying greatly between the SH3s. This study reveals that SH3 binding can act as a heterotropic allosteric regulator of the G domain via the middle domain α2 helix, suggesting an involvement of this helix in communicating the PRD-mediated allostery. This indicates that SH3 binding both stabilises multiple conformations of the tetrameric building block of dynamin, and promotes assembly of dynamin-SH3 complexes with distinct rates of GTP hydrolysis.

  13. Understanding the role of BAR and SH3 domain-containing proteins in fungi

    NARCIS (Netherlands)

    Gkourtsa, A.

    2017-01-01

    This thesis addresses the role of SH3 and BAR domain-containing proteins in different fungal species. SH3 domains are small modules that mediate protein-protein interactions and BAR domains are dimerization domains with membrane binding and bending properties. It is known that the ScRvs167 protein

  14. Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins.

    Directory of Open Access Journals (Sweden)

    Raffi Tonikian

    2009-10-01

    Full Text Available SH3 domains are peptide recognition modules that mediate the assembly of diverse biological complexes. We scanned billions of phage-displayed peptides to map the binding specificities of the SH3 domain family in the budding yeast, Saccharomyces cerevisiae. Although most of the SH3 domains fall into the canonical classes I and II, each domain utilizes distinct features of its cognate ligands to achieve binding selectivity. Furthermore, we uncovered several SH3 domains with specificity profiles that clearly deviate from the two canonical classes. In conjunction with phage display, we used yeast two-hybrid and peptide array screening to independently identify SH3 domain binding partners. The results from the three complementary techniques were integrated using a Bayesian algorithm to generate a high-confidence yeast SH3 domain interaction map. The interaction map was enriched for proteins involved in endocytosis, revealing a set of SH3-mediated interactions that underlie formation of protein complexes essential to this biological pathway. We used the SH3 domain interaction network to predict the dynamic localization of several previously uncharacterized endocytic proteins, and our analysis suggests a novel role for the SH3 domains of Lsb3p and Lsb4p as hubs that recruit and assemble several endocytic complexes.

  15. Distinct ubiquitin binding modes exhibited by SH3 domains: molecular determinants and functional implications.

    Directory of Open Access Journals (Sweden)

    Jose L Ortega Roldan

    Full Text Available SH3 domains constitute a new type of ubiquitin-binding domains. We previously showed that the third SH3 domain (SH3-C of CD2AP binds ubiquitin in an alternative orientation. We have determined the structure of the complex between first CD2AP SH3 domain and ubiquitin and performed a structural and mutational analysis to decipher the determinants of the SH3-C binding mode to ubiquitin. We found that the Phe-to-Tyr mutation in CD2AP and in the homologous CIN85 SH3-C domain does not abrogate ubiquitin binding, in contrast to previous hypothesis and our findings for the first two CD2AP SH3 domains. The similar alternative binding mode of the SH3-C domains of these related adaptor proteins is characterised by a higher affinity to C-terminal extended ubiquitin molecules. We conclude that CD2AP/CIN85 SH3-C domain interaction with ubiquitin constitutes a new ubiquitin-binding mode involved in a different cellular function and thus changes the previously established mechanism of EGF-dependent CD2AP/CIN85 mono-ubiquitination.

  16. A unique set of SH3-SH3 interactions controls IB1 homodimerization

    DEFF Research Database (Denmark)

    Kristensen, Ole; Guenat, Sylvie; Dar, Imran

    2006-01-01

    Islet-brain 1 (IB1 or JIP-1) is a scaffold protein that interacts with components of the c-Jun N-terminal kinase (JNK) signal-transduction pathway. IB1 is expressed at high levels in neurons and in pancreatic beta-cells, where it controls expression of several insulin-secretory components...... reduces IB1-dependent basal JNK activity in 293T cells. Impaired dimerization also results in a reduction in glucose transporter type 2 expression and in glucose-dependent insulin secretion in pancreatic beta-cells. Taken together, these results indicate that IB1 homodimerization through its SH3 domain...

  17. Physical and functional interactions between SH2 and SH3 domains of the Src family protein tyrosine kinase p59fyn

    NARCIS (Netherlands)

    Panchamoorthy, G.; Fukazawa, T.; Stolz, L.; Payne, G.; Reedquist, K.; Shoelson, S.; Songyang, Z.; Cantley, L.; Walsh, C.; Band, H.

    1994-01-01

    The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The

  18. Disruption of Fyn SH3 domain interaction with a proline-rich motif in liver kinase B1 results in activation of AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Eijiro Yamada

    Full Text Available Fyn-deficient mice display increased AMP-activated Protein Kinase (AMPK activity as a result of Fyn-dependent regulation of Liver Kinase B1 (LKB1 in skeletal muscle. Mutation of Fyn-specific tyrosine sites in LKB1 results in LKB1 export into the cytoplasm and increased AMPK activation site phosphorylation. This study characterizes the structural elements responsible for the physical interaction between Fyn and LKB1. Effects of point mutations in the Fyn SH2/SH3 domains and in the LKB1 proline-rich motif on 1 Fyn and LKB1 binding, 2 LKB1 subcellular localization and 3 AMPK phosphorylation were investigated in C2C12 muscle cells. Additionally, novel LKB1 proline-rich motif mimicking cell permeable peptides were generated to disrupt Fyn/LKB1 binding and investigate the consequences on AMPK activity in both C2C12 cells and mouse skeletal muscle. Mutation of either Fyn SH3 domain or the proline-rich motif of LKB1 resulted in the disruption of Fyn/LKB1 binding, re-localization of 70% of LKB1 signal in the cytoplasm and a 2-fold increase in AMPK phosphorylation. In vivo disruption of the Fyn/LKB1 interaction using LKB1 proline-rich motif mimicking cell permeable peptides recapitulated Fyn pharmacological inhibition. We have pinpointed the structural elements within Fyn and LKB1 that are responsible for their binding, demonstrating the functionality of this interaction in regulating AMPK activity.

  19. Differential sensitivity of Src-family kinases to activation by SH3 domain displacement.

    Directory of Open Access Journals (Sweden)

    Jamie A Moroco

    Full Text Available Src-family kinases (SFKs are non-receptor protein-tyrosine kinases involved in a variety of signaling pathways in virtually every cell type. The SFKs share a common negative regulatory mechanism that involves intramolecular interactions of the SH3 domain with the PPII helix formed by the SH2-kinase linker as well as the SH2 domain with a conserved phosphotyrosine residue in the C-terminal tail. Growing evidence suggests that individual SFKs may exhibit distinct activation mechanisms dictated by the relative strengths of these intramolecular interactions. To elucidate the role of the SH3:linker interaction in the regulation of individual SFKs, we used a synthetic SH3 domain-binding peptide (VSL12 to probe the sensitivity of downregulated c-Src, Hck, Lyn and Fyn to SH3-based activation in a kinetic kinase assay. All four SFKs responded to VSL12 binding with enhanced kinase activity, demonstrating a conserved role for SH3:linker interaction in the control of catalytic function. However, the sensitivity and extent of SH3-based activation varied over a wide range. In addition, autophosphorylation of the activation loops of c-Src and Hck did not override regulatory control by SH3:linker displacement, demonstrating that these modes of activation are independent. Our results show that despite the similarity of their downregulated conformations, individual Src-family members show diverse responses to activation by domain displacement which may reflect their adaptation to specific signaling environments in vivo.

  20. Abl N-terminal cap stabilization of SH3 domain dynamics.

    Science.gov (United States)

    Chen, Shugui; Dumitrescu, Teodora Pene; Smithgall, Thomas E; Engen, John R

    2008-05-27

    Crystal structures and other biochemical data indicate that the N-terminal cap (NCap) region of the Abelson tyrosine kinase (c-Abl) is important for maintaining the downregulated conformation of the kinase domain. The exact contributions that the NCap makes in stabilizing the various intramolecular interactions within c-Abl are less clear. While the NCap appears to be important for locking the SH3 and SH2 domains to the back of the kinase domain, there may be other more subtle elements of regulation. Hydrogen exchange (HX) and mass spectrometry (MS) were used to determine if the NCap contributes to intramolecular interactions involving the Abl SH3 domain. Under physiological conditions, the Abl SH3 domain underwent partial unfolding and its unfolding half-life was slowed during binding to the SH2 kinase linker, providing a unique assay for testing NCap-induced stabilization of the SH3 domain in various constructs. The results showed that the NCap stabilizes the dynamics of the SH3 domain in certain constructs but does not increase the relative affinity of the SH3 domain for the native SH2 kinase linker. The stabilization effect was absent in constructs of just the NCap and SH3 but was obvious when the SH2 domain and the SH2 kinase linker were present. These results suggest that interactions between the NCap and the SH3 domain can contribute to c-Abl stabilization in constructs that contain at least the SH2 domain, an effect that may partially compensate for the absence of the negative regulatory C-terminal tail found in the related Src family of kinases.

  1. Solution structure, dynamics and thermodynamics of the three SH3 domains of CD2AP

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, Jose L. Ortega [Universidad de Granada, Departamento de Quimica Fisica e Instituto de Biotecnologia, Facultad de Ciencias (Spain); Blackledge, Martin [Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF UMR 5075, Protein Dynamics and Flexibility by NMR (France); Nuland, Nico A. J. van, E-mail: nvnuland@vub.ac.be [Vrije Universiteit Brussel, Structural Biology Brussels (Belgium); Azuaga, Ana I. [Universidad de Granada, Departamento de Quimica Fisica e Instituto de Biotecnologia, Facultad de Ciencias (Spain)

    2011-06-15

    CD2 associated protein (CD2AP) is an adaptor protein that plays an important role in cell to cell union needed for the kidney function. It contains three N-terminal SH3 domains that are able to interact among others with CD2, ALIX, c-Cbl and Ubiquitin. To understand the role of the individual SH3 domains of this adaptor protein we have performed a complete structural, thermodynamic and dynamic characterization of the separate domains using NMR and DSC. The energetic contributions to the stability and the backbone dynamics have been related to the structural features of each domain using the structure-based FoldX algorithm. We have found that the N-terminal SH3 domain of both adaptor proteins CD2AP and CIN85 are the most stable SH3 domains that have been studied until now. This high stability is driven by a more extensive network of intra-molecular interactions. We believe that this increased stabilization of N-terminal SH3 domains in adaptor proteins is crucial to maintain the necessary conformation to establish the proper interactions critical for the recruitment of their natural targets.

  2. Chemical shift assignments of the partially deuterated Fyn SH2-SH3 domain.

    Science.gov (United States)

    Kieken, Fabien; Loth, Karine; van Nuland, Nico; Tompa, Peter; Lenaerts, Tom

    2018-04-01

    Src Homology 2 and 3 (SH2 and SH3) are two key protein interaction modules involved in regulating the activity of many proteins such as tyrosine kinases and phosphatases by respective recognition of phosphotyrosine and proline-rich regions. In the Src family kinases, the inactive state of the protein is the direct result of the interaction of the SH2 and the SH3 domain with intra-molecular regions, leading to a closed structure incompetent with substrate modification. Here, we report the 1 H, 15 N and 13 C backbone- and side-chain chemical shift assignments of the partially deuterated Fyn SH3-SH2 domain and structural differences between tandem and single domains. The BMRB accession number is 27165.

  3. Abl N-terminal Cap stabilization of SH3 domain dynamics†

    OpenAIRE

    Chen, Shugui; Dumitrescu, Teodora Pene; Smithgall, Thomas E.; Engen, John R.

    2008-01-01

    Crystal structures and other biochemical data indicate that the N-terminal cap (NCap) region of the Abelson tyrosine kinase (c-Abl) is important for maintaining the downregulated conformation of the kinase domain. The exact contributions that NCap makes in stabilizing the various intramolecular interactions within c-Abl are less clear. While the NCap appears important for locking the SH3/SH2 domains to the back of the kinase domain, there may be other more subtle elements of regulation. Hydro...

  4. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase.

    Science.gov (United States)

    Meiselbach, Heike; Sticht, Heinrich

    2011-08-01

    The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood. We have therefore performed comparative molecular dynamics simulations of wildtype Hck and of a mutant Hck in which the SH3-SH2 domain linker is replaced by the corresponding sequence from the homologous kinase Lck. These simulations reveal that linker replacement not only affects the orientation of the SH3 domain itself, but also leads to an alternative conformation of the activation segment in the Hck kinase domain. The sequence of the SH3-SH2 domain linker thus exerts a remote effect on the active site geometry and might therefore play a role in modulating the structure of the inactive kinase or in fine-tuning the activation process itself.

  5. New approaches to high-throughput structure characterization of SH3 complexes: the example of Myosin-3 and Myosin-5 SH3 domains from S. cerevisiae.

    Science.gov (United States)

    Musi, Valeria; Birdsall, Berry; Fernandez-Ballester, Gregorio; Guerrini, Remo; Salvatori, Severo; Serrano, Luis; Pastore, Annalisa

    2006-04-01

    SH3 domains are small protein modules that are involved in protein-protein interactions in several essential metabolic pathways. The availability of the complete genome and the limited number of clearly identifiable SH3 domains make the yeast Saccharomyces cerevisae an ideal proteomic-based model system to investigate the structural rules dictating the SH3-mediated protein interactions and to develop new tools to assist these studies. In the present work, we have determined the solution structure of the SH3 domain from Myo3 and modeled by homology that of the highly homologous Myo5, two myosins implicated in actin polymerization. We have then implemented an integrated approach that makes use of experimental and computational methods to characterize their binding properties. While accommodating their targets in the classical groove, the two domains have selectivity in both orientation and sequence specificity of the target peptides. From our study, we propose a consensus sequence that may provide a useful guideline to identify new natural partners and suggest a strategy of more general applicability that may be of use in other structural proteomic studies.

  6. Structure of the SH3 domain of human osteoclast-stimulating factor at atomic resolution

    International Nuclear Information System (INIS)

    Chen, Liqing; Wang, Yujun; Wells, David; Toh, Diana; Harold, Hunt; Zhou, Jing; DiGiammarino, Enrico; Meehan, Edward J.

    2006-01-01

    The crystal structure of the SH3 domain of human osteoclast-stimulating factor has been determined and refined to the ultrahigh resolution of 1.07 Å. The structure at atomic resolution provides an accurate framework for structure-based design of its inhibitors. Osteoclast-stimulating factor (OSF) is an intracellular signaling protein, produced by osteoclasts themselves, that enhances osteoclast formation and bone resorption. It is thought to act via an Src-related signaling pathway and contains SH3 and ankyrin-repeat domains which are involved in protein–protein interactions. As part of a structure-based anti-bone-loss drug-design program, the atomic resolution X-ray structure of the recombinant human OSF SH3 domain (hOSF-SH3) has been determined. The domain, residues 12–72, yielded crystals that diffracted to the ultrahigh resolution of 1.07 Å. The overall structure shows a characteristic SH3 fold consisting of two perpendicular β-sheets that form a β-barrel. Structure-based sequence alignment reveals that the putative proline-rich peptide-binding site of hOSF-SH3 consists of (i) residues that are highly conserved in the SH3-domain family, including residues Tyr21, Phe23, Trp49, Pro62, Asn64 and Tyr65, and (ii) residues that are less conserved and/or even specific to hOSF, including Thr22, Arg26, Thr27, Glu30, Asp46, Thr47, Asn48 and Leu60, which might be key to designing specific inhibitors for hOSF to fight osteoporosis and related bone-loss diseases. There are a total of 13 well defined water molecules forming hydrogen bonds with the above residues in and around the peptide-binding pocket. Some of those water molecules might be important for drug-design approaches. The hOSF-SH3 structure at atomic resolution provides an accurate framework for structure-based design of its inhibitors

  7. Detection and characterization of partially unfolded oligomers of the SH3 domain of α-Spectrin

    NARCIS (Netherlands)

    Casares, S.; Sadqi, M.; López-Mayorga, O.; Conejero-Lara, F.; van Nuland, N.A.J.

    2004-01-01

    For the purpose of equilibrium and kinetic folding-unfolding studies, the SH3 domain of α-spectrin (spc-SH3) has long been considered a classic two-state folding protein. In this work we have indeed observed that the thermal unfolding curves of spc-SH3 measured at pH 3.0 by differential scanning

  8. Theoretical Insights Reveal Novel Motions in Csk's SH3 Domain That Control Kinase Activation.

    Directory of Open Access Journals (Sweden)

    Sulyman Barkho

    Full Text Available The Src family of tyrosine kinases (SFKs regulate numerous aspects of cell growth and differentiation and are under the principal control of the C-terminal Src Kinase (Csk. Although Csk and SFKs share conserved kinase, SH2 and SH3 domains, they differ considerably in three-dimensional structure, regulatory mechanism, and the intrinsic kinase activities. Although the SH2 and SH3 domains are known to up- or down-regulate tyrosine kinase function, little is known about the global motions in the full-length kinase that govern these catalytic variations. We use a combination of accelerated Molecular Dynamics (aMD simulations and experimental methods to provide a new view of functional motions in the Csk scaffold. These computational studies suggest that high frequency vibrations in the SH2 domain are coupled through the N-terminal lobe of the kinase domain to motions in the SH3 domain. The effects of these reflexive movements on the kinase domain can be viewed using both Deuterium Exchange Mass Spectrometry (DXMS and steady-state kinetic methods. Removal of several contacts, including a crystallographically unobserved N-terminal segment, between the SH3 and kinase domains short-circuit these coupled motions leading to reduced catalytic efficiency and stability of N-lobe motifs within the kinase domain. The data expands the model of Csk's activation whereby separate domains productively interact with two diametrically opposed surfaces of the kinase domain. Such reversible transitions may organize the active structure of the tyrosine kinase domain of Csk.

  9. Crystal structure of Src-like adaptor protein 2 reveals close association of SH3 and SH2 domains through β-sheet formation.

    Science.gov (United States)

    Wybenga-Groot, Leanne E; McGlade, C Jane

    2013-12-01

    The Src-like adaptor proteins (SLAP/SLAP2) are key components of Cbl-dependent downregulation of antigen receptor, cytokine receptor, and receptor tyrosine kinase signaling in hematopoietic cells. SLAP and SLAP2 consist of adjacent SH3 and SH2 domains that are most similar in sequence to Src family kinases (SFKs). Notably, the SH3-SH2 connector sequence is significantly shorter in SLAP/SLAP2 than in SFKs. To understand the structural implication of a short SH3-SH2 connector sequence, we solved the crystal structure of a protein encompassing the SH3 domain, SH3-SH2 connector, and SH2 domain of SLAP2 (SLAP2-32). While both domains adopt typical folds, the short SH3-SH2 connector places them in close association. Strand βe of the SH3 domain interacts with strand βA of the SH2 domain, resulting in the formation of a continuous β sheet that spans the length of the protein. Disruption of the SH3/SH2 interface through mutagenesis decreases SLAP-32 stability in vitro, consistent with inter-domain binding being an important component of SLAP2 structure and function. The canonical peptide binding pockets of the SH3 and SH2 domains are fully accessible, in contrast to other protein structures that display direct interaction between SH3 and SH2 domains, in which either peptide binding surface is obstructed by the interaction. Our results reveal potential sites of novel interaction for SH3 and SH2 domains, and illustrate the adaptability of SH2 and SH3 domains in mediating interactions. As well, our results suggest that the SH3 and SH2 domains of SLAP2 function interdependently, with implications on their mode of substrate binding. © 2013.

  10. Expression, refolding and crystallizations of the Grb2-like (GADS) C-terminal SH3 domain complexed with a SLP-76 motif peptide

    International Nuclear Information System (INIS)

    Faravelli, Alessandro; Dimasi, Nazzareno

    2005-01-01

    Several crystals of the Grb2-like C-terminal SH3 domain in complex with a motif peptide from the SLP-76 protein were obtained and characterized. The Grb2-like adaptor protein GADS is composed of an N-terminal SH3 domain, an SH2 domain, a proline-rich region and a C-terminal SH3 domain. GADS interacts through its C-terminal SH3 domain with the adaptor protein SLP-76, thus recruiting this protein and other associated molecules to the linker for activation of T-cell (LAT) protein. The DNA encoding the C-terminal SH3 domain of GADS (GADS-cSH3) was assembled synthetically using a recursive PCR technique and the protein was overexpressed in Escherichia coli, refolded and purified. Several crystals of this domain in complex with the SLP-76 peptide were obtained and characterized

  11. Structure determination of human Lck unique and SH3 domains by nuclear magnetic resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Willbold Dieter

    2003-05-01

    Full Text Available Abstract Background Protein tyrosine kinases are involved in signal transduction pathways that regulate cell growth, differentiation, activation and transformation. Human lymphocyte specific kinase (Lck is a 56 kDa protein involved in T-cell- and IL2-receptor signaling. Three-dimensional structures are known for SH3, SH2 and kinase domains of Lck as well as for other tyrosine kinases. No structure is known for the unique domain of any Src-type tyrosine kinase. Results Lck(1–120 comprising unique and SH3 domains was structurally investigated by nuclear magnetic resonance spectroscopy. We found the unique domain, in contrast to the SH3 part, to have basically no defined structural elements. The solution structure of the SH3 part could be determined with very high precision. It does not show significant differences to Lck SH3 in the absence of the unique domain. Minor differences were observed to the X-ray structure of Lck SH3. Conclusion The unique domain of Lck does not contain any defined structure elements in the absence of ligands and membranes. Presence of the unique domain is not relevant to the three-dimensional structure of the Lck SH3 domain.

  12. Roles of the SH2 and SH3 domains in the regulation of neuronal Src kinase functions.

    Science.gov (United States)

    Groveman, Bradley R; Xue, Sheng; Marin, Vedrana; Xu, Jindong; Ali, Mohammad K; Bienkiewicz, Ewa A; Yu, Xian-Min

    2011-02-01

    Previous studies demonstrated that intra-domain interactions between Src family kinases (SFKs), stabilized by binding of the phosphorylated C-terminus to the SH2 domain and/or binding of the SH2 kinase linker to the SH3 domain, lock the molecules in a closed conformation, disrupt the kinase active site, and inactivate SFKs. Here we report that the up-regulation of N-methyl-D-aspartate receptors (NMDARs) induced by expression of constitutively active neuronal Src (n-Src), in which the C-terminus tyrosine is mutated to phenylalanine (n-Src/Y535F), is significantly reduced by dysfunctions of the SH2 and/or SH3 domains of the protein. Furthermore, we found that dysfunctions of SH2 and/or SH3 domains reduce auto-phosphorylation of the kinase activation loop, depress kinase activity, and decrease NMDAR phosphorylation. The SH2 domain plays a greater regulatory role than the SH3 domain. Our data also show that n-Src binds directly to the C-terminus of the NMDAR NR2A subunit in vitro, with a K(D) of 108.2 ± 13.3 nM. This binding is not Src kinase activity-dependent, and dysfunctions of the SH2 and/or SH3 domains do not significantly affect the binding. These data indicate that the SH2 and SH3 domains may function to promote the catalytic activity of active n-Src, which is important in the regulation of NMDAR functions. © 2010 The Authors Journal compilation © 2010 FEBS.

  13. Comparative Genomics and Disorder Prediction Identify Biologically Relevant SH3 Protein Interactions.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Protein interaction networks are an important part of the post-genomic effort to integrate a part-list view of the cell into system-level understanding. Using a set of 11 yeast genomes we show that combining comparative genomics and secondary structure information greatly increases consensus-based prediction of SH3 targets. Benchmarking of our method against positive and negative standards gave 83% accuracy with 26% coverage. The concept of an optimal divergence time for effective comparative genomics studies was analyzed, demonstrating that genomes of species that diverged very recently from Saccharomyces cerevisiae(S. mikatae, S. bayanus, and S. paradoxus, or a long time ago (Neurospora crassa and Schizosaccharomyces pombe, contain less information for accurate prediction of SH3 targets than species within the optimal divergence time proposed. We also show here that intrinsically disordered SH3 domain targets are more probable sites of interaction than equivalent sites within ordered regions. Our findings highlight several novel S. cerevisiae SH3 protein interactions, the value of selection of optimal divergence times in comparative genomics studies, and the importance of intrinsic disorder for protein interactions. Based on our results we propose novel roles for the S. cerevisiae proteins Abp1p in endocytosis and Hse1p in endosome protein sorting.

  14. Comparative genomics and disorder prediction identify biologically relevant SH3 protein interactions.

    Directory of Open Access Journals (Sweden)

    Pedro Beltrao

    2005-08-01

    Full Text Available Protein interaction networks are an important part of the post-genomic effort to integrate a part-list view of the cell into system-level understanding. Using a set of 11 yeast genomes we show that combining comparative genomics and secondary structure information greatly increases consensus-based prediction of SH3 targets. Benchmarking of our method against positive and negative standards gave 83% accuracy with 26% coverage. The concept of an optimal divergence time for effective comparative genomics studies was analyzed, demonstrating that genomes of species that diverged very recently from Saccharomyces cerevisiae(S. mikatae, S. bayanus, and S. paradoxus, or a long time ago (Neurospora crassa and Schizosaccharomyces pombe, contain less information for accurate prediction of SH3 targets than species within the optimal divergence time proposed. We also show here that intrinsically disordered SH3 domain targets are more probable sites of interaction than equivalent sites within ordered regions. Our findings highlight several novel S. cerevisiae SH3 protein interactions, the value of selection of optimal divergence times in comparative genomics studies, and the importance of intrinsic disorder for protein interactions. Based on our results we propose novel roles for the S. cerevisiae proteins Abp1p in endocytosis and Hse1p in endosome protein sorting.

  15. SH3 domain-mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes viral RNA replication.

    Directory of Open Access Journals (Sweden)

    Maarit Neuvonen

    2011-11-01

    Full Text Available Among the four non-structural proteins of alphaviruses the function of nsP3 is the least well understood. NsP3 is a component of the viral replication complex, and composed of a conserved aminoterminal macro domain implicated in viral RNA synthesis, and a poorly conserved carboxyterminal region. Despite the lack of overall homology we noted a carboxyterminal proline-rich sequence motif shared by many alphaviral nsP3 proteins, and found it to serve as a preferred target site for the Src-homology 3 (SH3 domains of amphiphysin-1 and -2. Nsp3 proteins of Semliki Forest (SFV, Sindbis (SINV, and Chikungunya viruses all showed avid and SH3-dependent binding to amphiphysins. Upon alphavirus infection the intracellular distribution of amphiphysin was dramatically altered and colocalized with nsP3. Mutations in nsP3 disrupting the amphiphysin SH3 binding motif as well as RNAi-mediated silencing of amphiphysin-2 expression resulted in impaired viral RNA replication in HeLa cells infected with SINV or SFV. Infection of Balb/c mice with SFV carrying an SH3 binding-defective nsP3 was associated with significantly decreased mortality. These data establish SH3 domain-mediated binding of nsP3 with amphiphysin as an important host cell interaction promoting alphavirus replication.

  16. Linker length dependent binding of a focal adhesion kinase derived peptide to the Src SH3-SH2 domains.

    Science.gov (United States)

    Lindfors, Hanna E; Venkata, Bharat Somireddy; Drijfhout, Jan W; Ubbink, Marcellus

    2011-02-18

    The interaction between a peptide encompassing the SH3 and SH2 binding motifs of focal adhesion kinase (FAK) and the Src SH3-SH2 domains has been investigated with NMR spectroscopy and calorimetry. The binding to both motifs is anti-cooperative. Reduction of the long linker connecting the motifs does not lead to cooperativity. Short linkers that do not allow simultaneous intramolecular binding of the peptide to both motifs cause peptide-mediated dimerisation, even with a linker of only three amino acids. The role of the SH3 binding motif is discussed in view of the independent nature of the SH interactions. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Characterization of a novel weak interaction between MUC1 and Src-SH3 using nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunasekara, Nirosha [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada); Sykes, Brian, E-mail: brian.sykes@ualberta.ca [Department of Biochemistry, 4-19B Medical Sciences Bldg., University of Alberta Edmonton, Alberta, Canada T6G 2H7 (Canada); Hugh, Judith, E-mail: judithh@ualberta.ca [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer MUC1 binds the Src-SH3 domain potentially triggering Src dependent cell migration. Black-Right-Pointing-Pointer NMR Spectroscopy was used to monitor MUC1-CD and Src SH3 domain titrations. Black-Right-Pointing-Pointer MUC1-CD peptides bind with a low affinity (K{sub d} of 2-3 mM) to a non-canonical site. Black-Right-Pointing-Pointer Weak interactions may mediate dynamic processes like migration. Black-Right-Pointing-Pointer The MUC1-CD and Src-SH3 interaction may be a prime target to inhibit cell migration. -- Abstract: Breast cancer causes death through cancer cell migration and subsequent metastasis to distant organs. In vitro, the MUC1 mucin can mediate breast cancer cell migration by binding to intercellular adhesion molecule-1 (ICAM-1). This migration is dependent on MUC1 cytoplasmic domain (MUC1-CD) activation of the non-receptor tyrosine kinase, Src, possibly through competitive displacement of an inhibitory Src intramolecular SH3 binding. Therefore, we characterized the binding site and affinity of the MUC1-CD for Src-SH3 using multidimensional nuclear magnetic resonance (NMR) spectroscopy to monitor the titration of the {sup 15}N labeled Src-SH3 domain with synthetic native and mutant peptides of MUC1-CD. The results revealed that the dissociation constant (K{sub d}) for the interaction of the native MUC1-CD peptides and Src-SH3 domain was weak with a K{sub d} of 2-3 mM. Notably, the SH3 residues most perturbed upon peptide binding were located outside the usual hydrophobic binding cleft in a previously described alternate binding site on the Src-SH3, suggesting that MUC1-CD binds to a non-canonical site. The binding characteristics outlined here suggest that the interaction between Src-SH3 and MUC1-CD represents a novel weak electrostatic interaction of the type which is increasingly recognized as important in transient and dynamic protein complexes required for cell migration and signal transduction. As such, this

  18. Molecular dynamics simulations from putative transition states of alpha-spectrin SH3 domain

    NARCIS (Netherlands)

    Periole, Xavier; Vendruscolo, Michele; Mark, Alan E.

    2007-01-01

    A series of molecular dynamics simulations in explicit solvent were started from nine structural models of the transition state of the SH3 domain of alpha-spectrin, which were generated by Lindorff Larsen et al. (Nat Struct Mol Biol 2004;11:443-449) using molecular dynamics simulations in which

  19. Analysis of the thermodynamics of binding of an SH3 domain to proline-rich peptides using a chimeric fusion protein.

    Science.gov (United States)

    Candel, Adela M; van Nuland, Nico A J; Martin-Sierra, Francisco M; Martinez, Jose C; Conejero-Lara, Francisco

    2008-03-14

    A complete understanding of the thermodynamic determinants of binding between SH3 domains and proline-rich peptides is crucial to the development of rational strategies for designing ligands for these important domains. Recently we engineered a single-chain chimeric protein by fusing the alpha-spectrin Src homology region 3 (SH3) domain to the decapeptide APSYSPPPPP (p41). This chimera mimics the structural and energetic features of the interaction between SH3 domains and proline-rich peptides. Here we show that analysing the unfolding thermodynamics of single-point mutants of this chimeric fusion protein constitutes a very useful approach to deciphering the thermodynamics of SH3-ligand interactions. To this end, we investigated the contribution of each proline residue of the ligand sequence to the SH3-peptide interaction by producing six single Pro-Ala mutants of the chimeric protein and analysing their unfolding thermodynamics by differential scanning calorimetry (DSC). Structural analyses of the mutant chimeras by circular dichroism, fluorescence and NMR together with NMR-relaxation measurements indicate conformational flexibility at the binding interface, which is strongly affected by the different Pro-Ala mutations. An analysis of the DSC thermograms on the basis of a three-state unfolding model has allowed us to distinguish and separate the thermodynamic magnitudes of the interaction at the binding interface. The model assumes equilibrium between the "unbound" and "bound" states at the SH3-peptide binding interface. The resulting thermodynamic magnitudes classify the different proline residues according to their importance in the interaction as P2 approximately P7 approximately P10>P9 approximately P6>P8, which agrees well with Lim's model for the interaction between SH3 domains and proline-rich peptides. In addition, the thermodynamic signature of the interaction is the same as that usually found for this type of binding, with a strong enthalpy

  20. Complex formation of EphB1/Nck/Caskin1 leads to tyrosine phosphorylation and structural changes of the Caskin1 SH3 domain

    Directory of Open Access Journals (Sweden)

    Pesti Szabolcs

    2012-11-01

    Full Text Available Abstract Background Scaffold proteins have an important role in the regulation of signal propagation. These proteins do not possess any enzymatic activity but can contribute to the formation of multiprotein complexes. Although scaffold proteins are present in all cell types, the nervous system contains them in the largest amount. Caskin proteins are typically present in neuronal cells, particularly, in the synapses. However, the signaling mechanisms by which Caskin proteins are regulated are largely unknown. Results Here we demonstrate that EphB1 receptor tyrosine kinase can recruit Caskin1 through the adaptor protein Nck. Upon activation of the receptor kinase, the SH2 domain of Nck binds to one of its tyrosine residues, while Nck SH3 domains interact with the proline-rich domain of Caskin1. Complex formation of the receptor, adaptor and scaffold proteins results in the tyrosine phosphorylation of Caskin1 on its SH3 domain. The phosphorylation sites were identified by mass-spectrometry as tyrosines 296 and 336. To reveal the structural consequence of this phosphorylation, CD spectroscopy was performed. This measurement suggests that upon tyrosine phosphorylation the structure of the Caskin1 SH3 domain changes significantly. Conclusion Taken together, we propose that the scaffold protein Caskin1 can form a complex with the EphB1 tyrosine kinase via the Nck protein as a linker. Complex formation results in tyrosine phosphorylation of the Caskin1 SH3 domain. Although we were not able to identify any physiological partner of the SH3 domain so far, we could demonstrate that phosphorylation on conserved tyrosine residues results in marked changes in the structure of the SH3 domain.

  1. Functional analysis of SH3 domain containing ring finger 2 during the myogenic differentiation of quail myoblast cells

    Directory of Open Access Journals (Sweden)

    Si Won Kim

    2017-08-01

    Full Text Available Objective Owing to the public availability of complete genome sequences, including avian species, massive bioinformatics analyses may be conducted for computational gene prediction and the identification of gene regulatory networks through various informatics tools. However, to evaluate the biofunctional activity of a predicted target gene, in vivo and in vitro functional genomic analyses should be a prerequisite. Methods Due to a lack of quail genomic sequence information, we first identified the partial genomic structure and sequences of the quail SH3 domain containing ring finger 2 (SH3RF2 gene. Subsequently, SH3RF2 was knocked out using clustered regularly interspaced short palindromic repeat/Cas9 technology and single cell-derived SH3RF2 mutant sublines were established to study the biofunctional activity of SH3RF2 in quail myoblast (QM7 cells during muscle differentiation. Results Through a T7 endonuclease I assay and genotyping analysis, we established an SH3RF2 knockout (KO QM7#4 subline with 61 and 155 nucleotide deletion mutations in SH3RF2. After the induction of myotube differentiation, the expression profiles were analyzed and compared between regular QM7 and SH3RF2 KO QM7#4 cells by global RNA sequencing and bioinformatics analysis. Conclusion We did not detect any statistically significant role of SH3RF2 during myotube differentiation in QM7 myoblast cells. However, additional experiments are necessary to examine the biofunctional activity of SH3RF2 in cell proliferation and muscle growth.

  2. Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors, Hanna E. [Leiden University, Leiden Institute of Chemistry, Gorlaeus Laboratories (Netherlands); Koning, Peter E. de; Wouter Drijfhout, Jan [Leiden University Medical Centre, Department of Immunohematology and Blood Transfusion (Netherlands); Venezia, Brigida; Ubbink, Marcellus [Leiden University, Leiden Institute of Chemistry, Gorlaeus Laboratories (Netherlands)], E-mail: m.ubbink@chem.leidenuniv.nl

    2008-07-15

    Paramagnetic relaxation enhancement provides a tool for studying the dynamics as well as the structure of macromolecular complexes. The application of side-chain coupled spin-labels is limited by the mobility of the free radical. The cyclic, rigid amino acid spin-label TOAC (2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid), which can be incorporated straightforwardly by peptide synthesis, provides an attractive alternative. In this study, TOAC was incorporated into a peptide derived from focal adhesion kinase (FAK), and the interaction of the peptide with the Src homology 3 (SH3) domain of Src kinase was studied, using paramagnetic NMR. Placing TOAC within the binding motif of the peptide has a considerable effect on the peptide-protein binding, lowering the affinity substantially. When the TOAC is positioned just outside the binding motif, the binding constant remains nearly unaffected. Although the SH3 domain binds weakly and transiently to proline-rich peptides from FAK, the interaction is not very dynamic and the relative position of the spin-label to the protein is well-defined. It is concluded that TOAC can be used to generate reliable paramagnetic NMR restraints.

  3. Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR

    International Nuclear Information System (INIS)

    Lindfors, Hanna E.; Koning, Peter E. de; Wouter Drijfhout, Jan; Venezia, Brigida; Ubbink, Marcellus

    2008-01-01

    Paramagnetic relaxation enhancement provides a tool for studying the dynamics as well as the structure of macromolecular complexes. The application of side-chain coupled spin-labels is limited by the mobility of the free radical. The cyclic, rigid amino acid spin-label TOAC (2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid), which can be incorporated straightforwardly by peptide synthesis, provides an attractive alternative. In this study, TOAC was incorporated into a peptide derived from focal adhesion kinase (FAK), and the interaction of the peptide with the Src homology 3 (SH3) domain of Src kinase was studied, using paramagnetic NMR. Placing TOAC within the binding motif of the peptide has a considerable effect on the peptide-protein binding, lowering the affinity substantially. When the TOAC is positioned just outside the binding motif, the binding constant remains nearly unaffected. Although the SH3 domain binds weakly and transiently to proline-rich peptides from FAK, the interaction is not very dynamic and the relative position of the spin-label to the protein is well-defined. It is concluded that TOAC can be used to generate reliable paramagnetic NMR restraints

  4. SH3 domain-mediated binding of the Drk protein to Dos is an important step in signaling of Drosophila receptor tyrosine kinases.

    Science.gov (United States)

    Feller, Stephan M; Wecklein, Heike; Lewitzky, Marc; Kibler, Eike; Raabe, Thomas

    2002-08-01

    Activation of the Sevenless (Sev) receptor tyrosine kinase (RTK) in the developing Drosophila eye is required for the specification of the R7 photoreceptor cell fate. Daughter of Sevenless (Dos), a putative multi-site adaptor protein, is a substrate of the Sev kinase and is known to associate with the tyrosine phosphatase Corkscrew (Csw). Binding of Csw to Dos depends on the Csw Src homology 2 (SH2) domains and is an essential step for signaling by the Sev RTK. Dos, however, lacks a recognizable phosphotyrosine interaction domain and it was previously unclear how it is recruited to the Sev receptor. Here it is shown that the SH2/SH3 domain adaptor protein Drk can provide this link. Drk binds with its SH2 domain to the autophosphorylated Sev receptor while the C-terminal SH3 domain is able to associate with Dos. The Drk SH3 domain binding motifs on Dos were mapped to two sites which do not conform the known Drk SH3 domain binding motif (PxxPxR) but instead have the consensus PxxxRxxKP. Mutational analysis in vitro and in vivo provided evidence that both Drk binding sites fulfil an important function in the context of Sev and Drosophila epidermal growth factor receptor mediated signaling processes.

  5. Association between receptor protein-tyrosine phosphatase RPTPalpha and the Grb2 adaptor. Dual Src homology (SH) 2/SH3 domain requirement and functional consequences

    DEFF Research Database (Denmark)

    Su, J; Yang, L T; Sap, J

    1996-01-01

    domain in Grb2 (, ). We show here that association of Grb2 with RPTPalpha also involves a critical function for the C-terminal SH3 domain of Grb2. Furthermore, Grb2 SH3 binding peptides interfere with RPTPalpha-Grb2 association in vitro, and the RPTPalpha protein can dissociate the Grb2-Sos complex...... in vivo. These observations constitute a novel mode of Grb2 association and suggest a model in which association with a tyrosine-phosphorylated protein restricts the repertoire of SH3 binding proteins with which Grb2 can simultaneously interact. The function of the Tyr798 tyrosine phosphorylation/Grb2...... binding site in RPTPalpha was studied further by expression of wild type or mutant RPTPalpha proteins in PC12 cells. In these cells, wild type RPTPalpha interferes with acidic fibroblast growth factor-induced neurite outgrowth; this effect requires both the catalytic activity and the Grb2 binding Tyr798...

  6. Thermodynamic dissection of the binding energetics of proline-rich peptides to the Abl-SH3 domain: implications for rational ligand design.

    Science.gov (United States)

    Palencia, Andrés; Cobos, Eva S; Mateo, Pedro L; Martínez, Jose C; Luque, Irene

    2004-02-13

    The inhibition of the interactions between SH3 domains and their targets is emerging as a promising therapeutic strategy. To date, rational design of potent ligands for these domains has been hindered by the lack of understanding of the origins of the binding energy. We present here a complete thermodynamic analysis of the binding energetics of the p41 proline-rich decapeptide (APSYSPPPPP) to the SH3 domain of the c-Abl oncogene. Isothermal titration calorimetry experiments have revealed a thermodynamic signature for this interaction (very favourable enthalpic contributions opposed by an unfavourable binding entropy) inconsistent with the highly hydrophobic nature of the p41 ligand and the Abl-SH3 binding site. Our structural and thermodynamic analyses have led us to the conclusion, having once ruled out any possible ionization events or conformational changes coupled to the association, that the establishment of a complex hydrogen-bond network mediated by water molecules buried at the binding interface is responsible for the observed thermodynamic behaviour. The origin of the binding energetics for proline-rich ligands to the Abl-SH3 domain is further investigated by a comparative calorimetric analysis of a set of p41-related ligands. The striking effects upon the enthalpic and entropic contributions provoked by conservative substitutions at solvent-exposed positions in the ligand confirm the complexity of the interaction. The implications of these results for rational ligand design are discussed.

  7. Electrostatic effects in the folding of the SH3 domain of the c-Src tyrosine kinase: pH-dependence in 3D-domain swapping and amyloid formation.

    Directory of Open Access Journals (Sweden)

    Julio Bacarizo

    Full Text Available The SH3 domain of the c-Src tyrosine kinase (c-Src-SH3 aggregates to form intertwined dimers and amyloid fibrils at mild acid pHs. In this work, we show that a single mutation of residue Gln128 of this SH3 domain has a significant effect on: (i its thermal stability; and (ii its propensity to form amyloid fibrils. The Gln128Glu mutant forms amyloid fibrils at neutral pH but not at mild acid pH, while Gln128Lys and Gln128Arg mutants do not form these aggregates under any of the conditions assayed. We have also solved the crystallographic structures of the wild-type (WT and Gln128Glu, Gln128Lys and Gln128Arg mutants from crystals obtained at different pHs. At pH 5.0, crystals belong to the hexagonal space group P6₅22 and the asymmetric unit is formed by one chain of the protomer of the c-Src-SH3 domain in an open conformation. At pH 7.0, crystals belong to the orthorhombic space group P2₁2₁2₁, with two molecules at the asymmetric unit showing the characteristic fold of the SH3 domain. Analysis of these crystallographic structures shows that the residue at position 128 is connected to Glu106 at the diverging β-turn through a cluster of water molecules. Changes in this hydrogen-bond network lead to the displacement of the c-Src-SH3 distal loop, resulting also in conformational changes of Leu100 that might be related to the binding of proline rich motifs. Our findings show that electrostatic interactions and solvation of residues close to the folding nucleation site of the c-Src-SH3 domain might play an important role during the folding reaction and the amyloid fibril formation.

  8. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Deacon, Ashley M.; Wilson, Ian A.

    2015-09-15

    ABSTRACT

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural

  9. SH2/SH3 signaling proteins.

    Science.gov (United States)

    Schlessinger, J

    1994-02-01

    SH2 and SH3 domains are small protein modules that mediate protein-protein interactions in signal transduction pathways that are activated by protein tyrosine kinases. SH2 domains bind to short phosphotyrosine-containing sequences in growth factor receptors and other phosphoproteins. SH3 domains bind to target proteins through sequences containing proline and hydrophobic amino acids. SH2 and SH3 domain containing proteins, such as Grb2 and phospholipase C gamma, utilize these modules in order to link receptor and cytoplasmic protein tyrosine kinases to the Ras signaling pathway and to phosphatidylinositol hydrolysis, respectively. The three-dimensional structures of several SH2 and SH3 domains have been determined by NMR and X-ray crystallography, and the molecular basis of their specificity is beginning to be unveiled.

  10. Binding of the cSH3 domain of Grb2 adaptor to two distinct RXXK motifs within Gab1 docker employs differential mechanisms.

    Science.gov (United States)

    McDonald, Caleb B; Seldeen, Kenneth L; Deegan, Brian J; Bhat, Vikas; Farooq, Amjad

    2011-01-01

    A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3, and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 3(10) -helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease. Copyright © 2010 John Wiley & Sons, Ltd.

  11. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of the SH3 domain of human AHI1

    International Nuclear Information System (INIS)

    Shi, Zhuliang; Liang, Ning; Xu, Wei; Li, Kuai; Sheng, Guoqing; Liu, Jinsong; Xu, Aimin; Li, Xiao-Jiang; Wu, Donghai

    2009-01-01

    The SH3 domain of human AHI1 has been cloned and expressed in Escherichia coli. The protein was purified by affinity and size-exclusion chromatography and was crystallized using the sitting-drop vapour-diffusion method at 293 K. The SH3 domain of human AHI1 was cloned and expressed in Escherichia coli. The protein was purified by affinity and size-exclusion chromatography and was crystallized using the sitting-drop vapour-diffusion method at 293 K. A complete data set was collected to 2.5 Å resolution at 110 K. The crystal belonged to space group P4 1 2 1 2, with unit-cell parameters a = 67.377, b = 67.377, c = 98.549 Å

  12. Rhodium(II) metallopeptide catalyst design enables fine control in selective functionalization of natural SH3 domains.

    Science.gov (United States)

    Vohidov, Farrukh; Coughlin, Jane M; Ball, Zachary T

    2015-04-07

    Chemically modified proteins are increasingly important for use in fundamental biophysical studies, chemical biology, therapeutic protein development, and biomaterials. However, chemical methods typically produce heterogeneous labeling and cannot approach the exquisite selectivity of enzymatic reactions. While bioengineered methods are sometimes an option, selective reactions of natural proteins remain an unsolved problem. Here we show that rhodium(II) metallopeptides combine molecular recognition with promiscuous catalytic activity to allow covalent decoration of natural SH3 domains, depending on choice of catalyst but independent of the specific residue present. A metallopeptide catalyst succeeds in modifying a single SH3-containing kinase at endogenous concentrations in prostate cancer (PC-3) cell lysate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The C-terminus SH3-binding domain of Kv1.3 is required for the actin-mediated immobilization of the channel via cortactin

    Science.gov (United States)

    Hajdu, Peter; Martin, Geoffrey V.; Chimote, Ameet A.; Szilagyi, Orsolya; Takimoto, Koichi; Conforti, Laura

    2015-01-01

    Kv1.3 channels play a pivotal role in the activation and migration of T-lymphocytes. These functions are accompanied by the channels' polarization, which is essential for associated downstream events. However, the mechanisms that govern the membrane movement of Kv1.3 channels remain unclear. F-actin polymerization occurs concomitantly to channel polarization, implicating the actin cytoskeleton in this process. Here we show that cortactin, a factor initiating the actin network, controls the membrane mobilization of Kv1.3 channels. FRAP with EGFP-tagged Kv1.3 channels demonstrates that knocking down cortactin decreases the actin-based immobilization of the channels. Using various deletion and mutation constructs, we show that the SH3 motif of Kv1.3 mediates the channel immobilization. Proximity ligation assays indicate that deletion or mutation of the SH3 motif also disrupts interaction of the channel with cortactin. In T-lymphocytes, the interaction between HS1 (the cortactin homologue) and Kv1.3 occurs at the immune synapse and requires the channel's C-terminal domain. These results show that actin dynamics regulates the membrane motility of Kv1.3 channels. They also provide evidence that the SH3 motif of the channel and cortactin plays key roles in this process. PMID:25739456

  14. Insights into the folding and unfolding processes of wild-type and mutated SH3 domain by molecular dynamics and replica exchange molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Wen-Ting Chu

    Full Text Available Src-homology regions 3 (SH3 domain is essential for the down-regulation of tyrosine kinase activity. Mutation A39V/N53P/V55L of SH3 is found to be relative to the urgent misfolding diseases. To gain insight, the human and gallus SH3 domains (PDB ID: 1NYG and 2LP5, including 58 amino acids in each protein, were selected for MD simulations (Amber11, ff99SB force field and cluster analysis to investigate the influence of mutations on the spatial structure of the SH3 domain. It is found that the large conformational change of mutations mainly exists in three areas in the vicinity of protein core: RT loop, N-src loop, distal β-hairpin to 310 helix. The C-terminus of the mutated gallus SH3 is disordered after simulation, which represents the intermediate state of aggregation. The disappeared strong Hbond net in the mutated human and gallus systems will make these mutated proteins looser than the wild-type proteins. Additionally, by performing the REMD simulations on the gallus SH3 domain, the mutated domain is found to have an obvious effect on the unfolding process. These studies will be helpful for further aggregation mechanisms investigations on SH3 family.

  15. Roles for SH2 and SH3 domains in Lyn kinase association with activated FcepsilonRI in RBL mast cells revealed by patterned surface analysis.

    Science.gov (United States)

    Hammond, Stephanie; Wagenknecht-Wiesner, Alice; Veatch, Sarah L; Holowka, David; Baird, Barbara

    2009-10-01

    In mast cells, antigen-mediated cross-linking of IgE bound to its high-affinity surface receptor, FcepsilonRI, initiates a signaling cascade that culminates in degranulation and release of allergic mediators. Antigen-patterned surfaces, in which the antigen is deposited in micron-sized features on a silicon substrate, were used to examine the spatial relationship between clustered IgE-FcepsilonRI complexes and Lyn, the signal-initiating tyrosine kinase. RBL mast cells expressing wild-type Lyn-EGFP showed co-redistribution of this protein with clustered IgE receptors on antigen-patterned surfaces, whereas Lyn-EGFP containing an inhibitory point mutation in its SH2 domain did not significantly accumulate with the patterned antigen, and Lyn-EGFP with an inhibitory point mutation in its SH3 domain exhibited reduced interactions. Our results using antigen-patterned surfaces and quantitative cross-correlation image analysis reveal that both the SH2 and SH3 domains contribute to interactions between Lyn kinase and cross-linked IgE receptors in stimulated mast cells.

  16. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus

    Directory of Open Access Journals (Sweden)

    Margit Mutso

    2018-04-01

    Full Text Available Infection by Chikungunya virus (CHIKV of the Old World alphaviruses (family Togaviridae in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP (nsP1, nsp2, nsP3 and nsP4 that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.

  17. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus.

    Science.gov (United States)

    Mutso, Margit; Morro, Ainhoa Moliner; Smedberg, Cecilia; Kasvandik, Sergo; Aquilimeba, Muriel; Teppor, Mona; Tarve, Liisi; Lulla, Aleksei; Lulla, Valeria; Saul, Sirle; Thaa, Bastian; McInerney, Gerald M; Merits, Andres; Varjak, Margus

    2018-04-27

    Infection by Chikungunya virus (CHIKV) of the Old World alphaviruses (family Togaviridae) in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP) (nsP1, nsp2, nsP3 and nsP4) that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD) of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV) harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.

  18. Truncated ALK derived from chromosomal translocation t(2;5)(p23;q35) binds to the SH3 domain of p85-PI3K.

    Science.gov (United States)

    Polgar, Doris; Leisser, Christina; Maier, Susanne; Strasser, Stephan; Rüger, Beate; Dettke, Markus; Khorchide, Maya; Simonitsch, Ingrid; Cerni, Christa; Krupitza, Georg

    2005-02-15

    The chromosomal translocation t(2;5)(p23;q35) is associated with "Anaplastic large cell lymphomas" (ALCL), a Non Hodgkin Lymphoma occurring in childhood. The fusion of the tyrosine kinase gene-ALK (anaplastic lymphoma kinase) on chromosome 2p23 to the NPM (nucleophosmin/B23) gene on chromosome 5q35 results in a 80 kDa chimeric protein, which activates the "survival" kinase PI3K. However, the binding mechanism between truncated ALK and PI3K is poorly understood. Therefore, we attempted to elucidate the molecular interaction between ALK and the regulatory p85 subunit of PI3K. Here we provide evidence that the truncated ALK homodimer binds to the SH3 domain of p85. This finding may be useful for the development of a new target-specific intervention.

  19. Artificial proteins as allosteric modulators of PDZ3 and SH3 in two-domain constructs: A computational characterization of novel chimeric proteins

    Czech Academy of Sciences Publication Activity Database

    Palani, K.; Pfeiferová, L.; Boušová, Kristýna; Bednárová, L.; Obšilová, Veronika; Vondrášek, J.

    2016-01-01

    Roč. 84, č. 10 (2016), s. 1358-1374 ISSN 0887-3585 Institutional support: RVO:67985823 Keywords : protein design * fusion proteins * PDZ3 * SH3 * Trp-cage * two domain proteins * molecular dynamics simulation * circular dichroism Subject RIV: BO - Biophysics Impact factor: 2.289, year: 2016

  20. Artificial proteins as allosteric modulators of PDZ3 and SH3 in two-domain constructs: A computational characterization of novel chimeric proteins

    Czech Academy of Sciences Publication Activity Database

    Palani, Kirubakaran; Pfeiferová, Lucie; Boušová, Kristýna; Bednárová, Lucie; Obšilová, V.; Vondrášek, Jiří

    2016-01-01

    Roč. 84, č. 10 (2016), s. 1358-1374 ISSN 0887-3585 Institutional support: RVO:61388963 Keywords : protein design * fusion proteins * PDZ3 * SH3 * Trp-cage * two domain proteins Subject RIV: CE - Biochemistry Impact factor: 2.289, year: 2016

  1. Comparison of the frequency of functional SH3 domains with different limited sets of amino acids using mRNA display.

    Directory of Open Access Journals (Sweden)

    Junko Tanaka

    Full Text Available Although modern proteins consist of 20 different amino acids, it has been proposed that primordial proteins consisted of a small set of amino acids, and additional amino acids have gradually been recruited into the genetic code. This hypothesis has recently been supported by comparative genome sequence analysis, but no direct experimental approach has been reported. Here, we utilized a novel experimental approach to test a hypothesis that native-like globular proteins might be easily simplified by a set of putative primitive amino acids with retention of its structure and function than by a set of putative new amino acids. We performed in vitro selection of a functional SH3 domain as a model from partially randomized libraries with different sets of amino acids using mRNA display. Consequently, a library rich in putative primitive amino acids included a larger number of functional SH3 sequences than a library rich in putative new amino acids. Further, the functional SH3 sequences were enriched from the primitive library slightly earlier than from a randomized library with the full set of amino acids, while the function and structure of the selected SH3 proteins with the primitive alphabet were comparable with those from the 20 amino acid alphabet. Application of this approach to various combinations of codons in protein sequences may be useful not only for clarifying the precise order of the amino acid expansion in the early stages of protein evolution but also for efficiently creating novel functional proteins in the laboratory.

  2. Interaction with the Src homology (SH3-SH2) region of the Src-family kinase Hck structures the HIV-1 Nef dimer for kinase activation and effector recruitment.

    Science.gov (United States)

    Alvarado, John Jeff; Tarafdar, Sreya; Yeh, Joanne I; Smithgall, Thomas E

    2014-10-10

    HIV-1 Nef supports high titer viral replication in vivo and is essential for AIDS progression. Nef function depends on interactions with multiple host cell effectors, including Hck and other Src-family kinases. Here we describe the x-ray crystal structure of Nef in complex with the Hck SH3-SH2 regulatory region to a resolution of 1.86 Å. The complex crystallized as a dimer of complexes, with the conserved Nef PXXPXR motif engaging the Hck SH3 domain. A new intercomplex contact was found between SH3 Glu-93, and Nef Arg-105. Mutagenesis of Hck SH3 Glu-93 interfered with Nef·Hck complex formation and kinase activation in cells. The Hck SH2 domains impinge on the N-terminal region of Nef to stabilize a dimer conformation that exposes Asp-123, a residue critical for Nef function. Our results suggest that in addition to serving as a kinase effector for Nef, Hck binding may reorganize the Nef dimer for functional interaction with other signaling partners. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Interaction with the Src Homology (SH3-SH2) Region of the Src-family Kinase Hck Structures the HIV-1 Nef Dimer for Kinase Activation and Effector Recruitment*

    Science.gov (United States)

    Alvarado, John Jeff; Tarafdar, Sreya; Yeh, Joanne I.; Smithgall, Thomas E.

    2014-01-01

    HIV-1 Nef supports high titer viral replication in vivo and is essential for AIDS progression. Nef function depends on interactions with multiple host cell effectors, including Hck and other Src-family kinases. Here we describe the x-ray crystal structure of Nef in complex with the Hck SH3-SH2 regulatory region to a resolution of 1.86 Å. The complex crystallized as a dimer of complexes, with the conserved Nef PXXPXR motif engaging the Hck SH3 domain. A new intercomplex contact was found between SH3 Glu-93, and Nef Arg-105. Mutagenesis of Hck SH3 Glu-93 interfered with Nef·Hck complex formation and kinase activation in cells. The Hck SH2 domains impinge on the N-terminal region of Nef to stabilize a dimer conformation that exposes Asp-123, a residue critical for Nef function. Our results suggest that in addition to serving as a kinase effector for Nef, Hck binding may reorganize the Nef dimer for functional interaction with other signaling partners. PMID:25122770

  4. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1.

    Science.gov (United States)

    Rozakis-Adcock, M; Fernley, R; Wade, J; Pawson, T; Bowtell, D

    1993-05-06

    Many tyrosine kinases, including the receptors for hormones such as epidermal growth factor (EGF), nerve growth factor and insulin, transmit intracellular signals through Ras proteins. Ligand binding to such receptors stimulates Ras guanine-nucleotide-exchange activity and increases the level of GTP-bound Ras, suggesting that these tyrosine kinases may activate a guanine-nucleotide releasing protein (GNRP). In Caenorhabditis elegans and Drosophila, genetic studies have shown that Ras activation by tyrosine kinases requires the protein Sem-5/drk, which contains a single Src-homology (SH) 2 domain and two flanking SH3 domains. Sem-5 is homologous to the mammalian protein Grb2, which binds the autophosphorylated EGF receptor and other phosphotyrosine-containing proteins such as Shc through its SH2 domain. Here we show that in rodent fibroblasts, the SH3 domains of Grb2 are bound to the proline-rich carboxy-terminal tail of mSos1, a protein homologous to Drosophila Sos. Sos is required for Ras signalling and contains a central domain related to known Ras-GNRPs. EGF stimulation induces binding of the Grb2-mSos1 complex to the autophosphorylated EGF receptor, and mSos1 phosphorylation. Grb2 therefore appears to link tyrosine kinases to a Ras-GNRP in mammalian cells.

  5. Structure of Stenotrophomonas maltophilia FeoA complexed with zinc: a unique prokaryotic SH3-domain protein that possibly acts as a bacterial ferrous iron-transport activating factor

    International Nuclear Information System (INIS)

    Su, Yi-Che; Chin, Ko-Hsin; Hung, Hui-Chih; Shen, Gwan-Han; Wang, Andrew H.-J.; Chou, Shan-Ho

    2010-01-01

    The crystal structure of FeoA from Stenotrophomonas maltophilia has been determined to a resolution of 1.7 Å using an Se single-wavelength anomalous dispersion (Se-SAD) approach and revealed a unique dimer cross-linked by two zinc ions and six chloride ions. Iron is vital to the majority of prokaryotes, with ferrous iron believed to be the preferred form for iron uptake owing to its much better solubility. The major route for bacterial ferrous iron uptake is found to be via an Feo (ferrous iron-transport) system comprising the three proteins FeoA, FeoB and FeoC. Although the structure and function of FeoB have received much attention recently, the roles played by FeoA and FeoC have been little investigated to date. Here, the tertiary structure of FeoA from Stenotrophomonas maltophilia (Sm), a vital opportunistic pathogen in immunodepressed hosts, is reported. The crystal structure of SmFeoA has been determined to a resolution of 1.7 Å using an Se single-wavelength anomalous dispersion (Se-SAD) approach. Although SmFeoA bears low sequence identity to eukaryotic proteins, its structure is found to adopt a eukaryotic SH3-domain-like fold. It also bears weak similarity to the C-terminal SH3 domain of bacterial DtxR (diphtheria toxin regulator), with some unique characteristics. Intriguingly, SmFeoA is found to adopt a unique dimer cross-linked by two zinc ions and six anions (chloride ions). Since FeoB has been found to contain a G-protein-like domain with low GTPase activity, FeoA may interact with FeoB through the SH3–G-protein domain interaction to act as a ferrous iron-transport activating factor

  6. The F-Actin Binding Protein Cortactin Regulates the Dynamics of the Exocytotic Fusion Pore through its SH3 Domain

    Science.gov (United States)

    González-Jamett, Arlek M.; Guerra, María J.; Olivares, María J.; Haro-Acuña, Valentina; Baéz-Matus, Ximena; Vásquez-Navarrete, Jacqueline; Momboisse, Fanny; Martinez-Quiles, Narcisa; Cárdenas, Ana M.

    2017-01-01

    Upon cell stimulation, the network of cortical actin filaments is rearranged to facilitate the neurosecretory process. This actin rearrangement includes both disruption of the preexisting actin network and de novo actin polymerization. However, the mechanism by which a Ca2+ signal elicits the formation of new actin filaments remains uncertain. Cortactin, an actin-binding protein that promotes actin polymerization in synergy with the nucleation promoting factor N-WASP, could play a key role in this mechanism. We addressed this hypothesis by analyzing de novo actin polymerization and exocytosis in bovine adrenal chromaffin cells expressing different cortactin or N-WASP domains, or cortactin mutants that fail to interact with proline-rich domain (PRD)-containing proteins, including N-WASP, or to be phosphorylated by Ca2+-dependent kinases, such as ERK1/2 and Src. Our results show that the activation of nicotinic receptors in chromaffin cells promotes cortactin translocation to the cell cortex, where it colocalizes with actin filaments. We further found that, in association with PRD-containing proteins, cortactin contributes to the Ca2+-dependent formation of F-actin, and regulates fusion pore dynamics and the number of exocytotic events induced by activation of nicotinic receptors. However, whereas the actions of cortactin on the fusion pore dynamics seems to depend on the availability of monomeric actin and its phosphorylation by ERK1/2 and Src kinases, cortactin regulates the extent of exocytosis by a mechanism independent of actin polymerization. Together our findings point out a role for cortactin as a critical modulator of actin filament formation and exocytosis in neuroendocrine cells. PMID:28522963

  7. The SH3 domain-binding T cell tyrosyl phosphoprotein p120. Demonstration of its identity with the c-cbl protooncogene product and in vivo complexes with Fyn, Grb2, and phosphatidylinositol 3-kinase

    NARCIS (Netherlands)

    Fukazawa, T.; Reedquist, K. A.; Trub, T.; Soltoff, S.; Panchamoorthy, G.; Druker, B.; Cantley, L.; Shoelson, S. E.; Band, H.

    1995-01-01

    Previously, we have identified p120 as a Fyn/Lck SH3 and SH2 domain-binding protein that is tyrosine phosphorylated rapidly after T cell receptor triggering. Here, we used direct protein purification, amino acid sequence analysis, reactivity with antibodies, and two-dimensional gel analyses to

  8. Multistage unfolding of an SH3 domain: an initial urea-filled dry molten globule precedes a wet molten globule with non-native structure.

    Science.gov (United States)

    Dasgupta, Amrita; Udgaonkar, Jayant B; Das, Payel

    2014-06-19

    The unfolding of the SH3 domain of the PI3 kinase in aqueous urea has been studied using a synergistic experiment-simulation approach. The experimental observation of a transient wet molten globule intermediate, IU, with an unusual non-native burial of the sole Trp residue, W53, provides the benchmark for the unfolding simulations performed (eight in total, each at least 0.5 μs long). The simulations reveal that the partially unfolded IU ensemble is preceded by an early native-like molten globule intermediate ensemble I*. In the very initial stage of unfolding, dry globule conformations with the protein core filled with urea instead of water are transiently observed within the I* ensemble. Water penetration into the urea-filled core of dry globule conformations is frequently accompanied by very transient burial of W53. Later during gradual unfolding, W53 is seen to again become transiently buried in the IU ensemble for a much longer time. In the structurally heterogeneous IU ensemble, conformational flexibility of the C-terminal β-strands enables W53 burial by the formation of non-native, tertiary contacts with hydrophobic residues, which could serve to protect the protein from aggregation during unfolding.

  9. Suppression of LIM and SH3 Domain Protein 1 (LASP1) Negatively Regulated by Androgen Receptor Delays Castration Resistant Prostate Cancer Progression.

    Science.gov (United States)

    Dejima, Takashi; Imada, Kenjiro; Takeuchi, Ario; Shiota, Masaki; Leong, Jeffrey; Tombe, Tabitha; Tam, Kevin; Fazli, Ladan; Naito, Seiji; Gleave, Martin E; Ong, Christopher J

    2017-02-01

    LIM and SH3 domain protein 1 (LASP1) has been implicated in several human malignancies and has been shown to predict PSA recurrence in prostate cancer. However, the anti-tumor effect of LASP1 knockdown and the association between LASP1 and the androgen receptor (AR) remains unclear. The aim of this study is to clarify the significance of LASP1 as a target for prostate cancer, and to test the effect of silencing LASP1 in vivo using antisense oligonucleotides (ASO). A tissue microarray (TMA) was performed to characterize the differences in LASP1 expression in prostate cancer treated after hormone deprivation therapy. Flow cytometry was used to analyze cell cycle. We designed LASP1 ASO for knockdown of LASP1 in vivo studies. The expression of LASP1 in TMA was increased after androgen ablation and persisted in castration resistant prostate cancer (CRPC). Also in TMA, compared with LNCaP cell, LASP1 expression is elevated in CRPC cell lines (C4-2 and VehA cells). Interestingly, suppression of AR elevated LASP1 expression conversely, AR activation decreased LASP1 expression. Silencing of LASP1 reduced cell growth through G1 arrest which was accompanied by a decrease of cyclin D1. Forced overexpression of LASP1 promoted cell cycle and induced cell growth which was accompanied by an increase of cyclin D1. Systemic administration of LASP1 ASO with athymic mice significantly inhibited tumor growth in CRPC xenografts. These results indicate that LASP1 is negatively regulated by AR at the transcriptional level and promotes tumor growth through induction of cell cycle, ultimately suggesting that LASP1 may be a potential target in prostate cancer treatment. Prostate 77:309-320, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. A Biochemical/Biophysical Assay Dyad for HTS-Compatible Triaging of Inhibitors of the HIV-1 Nef/Hck SH3 Interaction

    KAUST Repository

    Breuer, Sebastian

    2013-07-26

    The current treatment regimens for HIV include over 20 anti-retrovirals. However, adverse drug effects and the emergence of drug resistance necessitates the continued improvement of the existing drug classes as well as the development of novel drugs that target as yet therapeutically unexploited viral and cellular pathways. Here we demonstrate a strategy for the discovery of protein-protein interaction inhibitors of the viral pathogenicity factor HIV-1 Nef and its interaction with the host factor SH3. A combination of a time-resolved fluorescence resonance energy resonance energy transfer-based assay and a label-free resonant waveguide grating-based assay was optimized for high-throughput screening formats.

  11. A Biochemical/Biophysical Assay Dyad for HTS-Compatible Triaging of Inhibitors of the HIV-1 Nef/Hck SH3 Interaction

    KAUST Repository

    Breuer, Sebastian; Espinola, Sheryll; Morelli, Xavier; Torbett, Bruce E; Arold, Stefan T.; Engels, Ingo H

    2013-01-01

    The current treatment regimens for HIV include over 20 anti-retrovirals. However, adverse drug effects and the emergence of drug resistance necessitates the continued improvement of the existing drug classes as well as the development of novel drugs that target as yet therapeutically unexploited viral and cellular pathways. Here we demonstrate a strategy for the discovery of protein-protein interaction inhibitors of the viral pathogenicity factor HIV-1 Nef and its interaction with the host factor SH3. A combination of a time-resolved fluorescence resonance energy resonance energy transfer-based assay and a label-free resonant waveguide grating-based assay was optimized for high-throughput screening formats.

  12. Structural characterization of CAS SH3 domain selectivity and regulation reveals new CAS interaction partners

    Czech Academy of Sciences Publication Activity Database

    Gemperle, J.; Hexnerová, Rozálie; Lepšík, Martin; Těšina, Petr; Dibus, M.; Novotný, M.; Brábek, J.; Veverka, Václav; Rösel, D.

    2017-01-01

    Roč. 7, Aug 14 (2017), č. článku 8057. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GBP208/12/G016; GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 Keywords : focal adhesion kinase * Src-transformed cells * tyrosine phosphorylation Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.259, year: 2016 https://www.nature.com/articles/s41598-017-08303-4

  13. Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex.

    Science.gov (United States)

    Ortega-Roldan, Jose Luis; Jensen, Malene Ringkjøbing; Brutscher, Bernhard; Azuaga, Ana I; Blackledge, Martin; van Nuland, Nico A J

    2009-05-01

    The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 muM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (K(d) = 132 +/- 13 muM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein-protein complexes.

  14. Biochemical and genetic analysis of the Drk SH2/SH3 adaptor protein of Drosophila.

    Science.gov (United States)

    Raabe, T; Olivier, J P; Dickson, B; Liu, X; Gish, G D; Pawson, T; Hafen, E

    1995-06-01

    The Drk SH3-SH2-SH3 adaptor protein has been genetically identified in a screen for rate-limiting components acting downstream of the Sevenless (Sev) receptor tyrosine kinase in the developing eye of Drosophila. It provides a link between the activated Sev receptor and Sos, a guanine nucleotide release factor that activates Ras1. We have used a combined biochemical and genetic approach to study the interactions between Sev, Drk and Sos. We show that Tyr2546 in the cytoplasmic tail of Sev is required for Drk binding, probably because it provides a recognition site for the Drk SH2 domain. Interestingly, a mutation at this site does not completely block Sev function in vivo. This may suggest that Sev can signal in a Drk-independent, parallel pathway or that Drk can also bind to an intermediate docking protein. Analysis of the Drk-Sos interaction has identified a high affinity binding site for Drk SH3 domains in the Sos tail. We show that the N-terminal Drk SH3 domain is primarily responsible for binding to the tail of Sos in vitro, and for signalling to Ras in vivo.

  15. 1H and 15N NMR assignment and solution structure of the SH3 domain of spectrin: Comparison of unrefined and refined structure sets with the crystal structure

    International Nuclear Information System (INIS)

    Blanco, Francisco J.; Ortiz, Angel R.; Serrano, Luis

    1997-01-01

    The assignment of the 1 H and 15 Nnuclear magnetic resonance spectra of the Src-homology region 3 domain of chicken brain α-spectrin has been obtained. A set of solution structures has been determined from distance and dihedral angle restraints,which provide a reasonable representation of the protein structure in solution, as evaluated by a principal component analysis of the global pairwise root-mean-square deviation (rmsd) in a large set of structures consisting of the refined and unrefined solution structures and the crystal structure. The solution structure is well defined, with a lower degree of convergence between the structures in the loop regions than in the secondary structure elements. The average pairwise rmsd between the 15 refined solution structures is 0.71 ± 0.13 A for the backbone atoms and 1.43 ± 0.14 A for all heavy atoms. The solution structure is basically the same as the crystal structure. The average rmsd between the 15 refined solution structures and the crystal structure is 0.76 A for the backbone atoms and 1.45 ± 0.09 A for all heavy atoms. There are, however, small differences probably caused by intermolecular contacts in the crystal structure

  16. Crystal structure of the Src family kinase Hck SH3-SH2 linker regulatory region supports an SH3-dominant activation mechanism.

    Science.gov (United States)

    Alvarado, John J; Betts, Laurie; Moroco, Jamie A; Smithgall, Thomas E; Yeh, Joanne I

    2010-11-12

    Most mammalian cell types depend on multiple Src family kinases (SFKs) to regulate diverse signaling pathways. Strict control of SFK activity is essential for normal cellular function, and loss of kinase regulation contributes to several forms of cancer and other diseases. Previous x-ray crystal structures of the SFKs c-Src and Hck revealed that intramolecular association of their Src homology (SH) 3 domains and SH2 kinase linker regions has a key role in down-regulation of kinase activity. However, the amino acid sequence of the Hck linker represents a suboptimal ligand for the isolated SH3 domain, suggesting that it may form the polyproline type II helical conformation required for SH3 docking only in the context of the intact structure. To test this hypothesis directly, we determined the crystal structure of a truncated Hck protein consisting of the SH2 and SH3 domains plus the linker. Despite the absence of the kinase domain, the structures and relative orientations of the SH2 and SH3 domains in this shorter protein were very similar to those observed in near full-length, down-regulated Hck. However, the SH2 kinase linker adopted a modified topology and failed to engage the SH3 domain. This new structure supports the idea that these noncatalytic regions work together as a "conformational switch" that modulates kinase activity in a manner unique to the SH3 domain and linker topologies present in the intact Hck protein. Our results also provide fresh structural insight into the facile induction of Hck activity by HIV-1 Nef and other Hck SH3 domain binding proteins and implicate the existence of innate conformational states unique to individual Src family members that "fine-tune" their sensitivities to activation by SH3-based ligands.

  17. Two-state dynamics of the SH3-SH2 tandem of Abl kinase and the allosteric role of the N-cap.

    Science.gov (United States)

    Corbi-Verge, Carles; Marinelli, Fabrizio; Zafra-Ruano, Ana; Ruiz-Sanz, Javier; Luque, Irene; Faraldo-Gómez, José D

    2013-09-03

    The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3-SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3-SH2 connector, which involve a phosphorylation site. We also show that the SH3-SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3-SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization.

  18. Two-state dynamics of the SH3–SH2 tandem of Abl kinase and the allosteric role of the N-cap

    Science.gov (United States)

    Corbi-Verge, Carles; Marinelli, Fabrizio; Zafra-Ruano, Ana; Ruiz-Sanz, Javier; Luque, Irene; Faraldo-Gómez, José D.

    2013-01-01

    The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3–SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3–SH2 connector, which involve a phosphorylation site. We also show that the SH3–SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3–SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization. PMID:23959873

  19. Arabidopsis SH3P2 is an ubiquitin-binding protein that functions together with ESCRT-I and the deubiquitylating enzyme AMSH3.

    Science.gov (United States)

    Nagel, Marie-Kristin; Kalinowska, Kamila; Vogel, Karin; Reynolds, Gregory D; Wu, Zhixiang; Anzenberger, Franziska; Ichikawa, Mie; Tsutsumi, Chie; Sato, Masa H; Kuster, Bernhard; Bednarek, Sebastian Y; Isono, Erika

    2017-08-22

    Clathrin-mediated endocytosis of plasma membrane proteins is an essential regulatory process that controls plasma membrane protein abundance and is therefore important for many signaling pathways, such as hormone signaling and biotic and abiotic stress responses. On endosomal sorting, plasma membrane proteins maybe recycled or targeted for vacuolar degradation, which is dependent on ubiquitin modification of the cargos and is driven by the endosomal sorting complexes required for transport (ESCRTs). Components of the ESCRT machinery are highly conserved among eukaryotes, but homologs of ESCRT-0 that are responsible for recognition and concentration of ubiquitylated proteins are absent in plants. Recently several ubiquitin-binding proteins have been identified that serve in place of ESCRT-0; however, their function in ubiquitin recognition and endosomal trafficking is not well understood yet. In this study, we identified Src homology-3 (SH3) domain-containing protein 2 (SH3P2) as a ubiquitin- and ESCRT-I-binding protein that functions in intracellular trafficking. SH3P2 colocalized with clathrin light chain-labeled punctate structures and interacted with clathrin heavy chain in planta , indicating a role for SH3P2 in clathrin-mediated endocytosis. Furthermore, SH3P2 cofractionates with clathrin-coated vesicles (CCVs), suggesting that it associates with CCVs in planta Mutants of SH3P2 and VPS23 genetically interact, suggesting that they could function in the same pathway. Based on these results, we suggest a role of SH3P2 as an ubiquitin-binding protein that binds and transfers ubiquitylated proteins to the ESCRT machinery.

  20. DIMA 3.0: Domain Interaction Map.

    Science.gov (United States)

    Luo, Qibin; Pagel, Philipp; Vilne, Baiba; Frishman, Dmitrij

    2011-01-01

    Domain Interaction MAp (DIMA, available at http://webclu.bio.wzw.tum.de/dima) is a database of predicted and known interactions between protein domains. It integrates 5807 structurally known interactions imported from the iPfam and 3did databases and 46,900 domain interactions predicted by four computational methods: domain phylogenetic profiling, domain pair exclusion algorithm correlated mutations and domain interaction prediction in a discriminative way. Additionally predictions are filtered to exclude those domain pairs that are reported as non-interacting by the Negatome database. The DIMA Web site allows to calculate domain interaction networks either for a domain of interest or for entire organisms, and to explore them interactively using the Flash-based Cytoscape Web software.

  1. Biochemical and genetic analysis of the Drk SH2/SH3 adaptor protein of Drosophila.

    OpenAIRE

    Raabe, T; Olivier, J P; Dickson, B J; Liu, X; Gish, G D; Pawson, T; Hafen, E

    1995-01-01

    The Drk SH3-SH2-SH3 adaptor protein has been genetically identified in a screen for rate-limiting components acting downstream of the Sevenless (Sev) receptor tyrosine kinase in the developing eye of Drosophila. It provides a link between the activated Sev receptor and Sos, a guanine nucleotide release factor that activates Ras1. We have used a combined biochemical and genetic approach to study the interactions between Sev, Drk and Sos. We show that Tyr2546 in the cytoplasmic tail of Sev is r...

  2. Inferring domain-domain interactions from protein-protein interactions with formal concept analysis.

    Directory of Open Access Journals (Sweden)

    Susan Khor

    Full Text Available Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains.

  3. Inferring Domain-Domain Interactions from Protein-Protein Interactions with Formal Concept Analysis

    Science.gov (United States)

    Khor, Susan

    2014-01-01

    Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains. PMID:24586450

  4. SH2/SH3 adaptor proteins can link tyrosine kinases to a Ste20-related protein kinase, HPK1.

    Science.gov (United States)

    Anafi, M; Kiefer, F; Gish, G D; Mbamalu, G; Iscove, N N; Pawson, T

    1997-10-31

    Ste20-related protein kinases have been implicated as regulating a range of cellular responses, including stress-activated protein kinase pathways and the control of cytoskeletal architecture. An important issue involves the identities of the upstream signals and regulators that might control the biological functions of mammalian Ste20-related protein kinases. HPK1 is a protein-serine/threonine kinase that possesses a Ste20-like kinase domain, and in transfected cells activates a protein kinase pathway leading to the stress-activated protein kinase SAPK/JNK. Here we have investigated candidate upstream regulators that might interact with HPK1. HPK1 possesses an N-terminal catalytic domain and an extended C-terminal tail with four proline-rich motifs. The SH3 domains of Grb2 bound in vitro to specific proline-rich motifs in the HPK1 tail and functioned synergistically to direct the stable binding of Grb2 to HPK1 in transfected Cos1 cells. Epidermal growth factor (EGF) stimulation did not affect the binding of Grb2 to HPK1 but induced recruitment of the Grb2.HPK1 complex to the autophosphorylated EGF receptor and to the Shc docking protein. Several activated receptor and cytoplasmic tyrosine kinases, including the EGF receptor, stimulated the tyrosine phosphorylation of the HPK1 serine/threonine kinase. These results suggest that HPK1, a mammalian Ste20-related protein-serine/threonine kinase, can potentially associate with protein-tyrosine kinases through interactions mediated by SH2/SH3 adaptors such as Grb2. Such interaction may provide a possible mechanism for cross-talk between distinct biochemical pathways following the activation of tyrosine kinases.

  5. The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains

    Directory of Open Access Journals (Sweden)

    Wang Yiguo

    2008-10-01

    Full Text Available Abstract Background Many well-represented domains recognize primary sequences usually less than 10 amino acids in length, called Short Linear Motifs (SLiMs. Accurate prediction of SLiMs has been difficult because they are short (often Results Our combined approach revealed that SLiMs are highly conserved in proteins from functional classes that are known to interact with a specific domain, but that they are not conserved in most other protein groups. We found that SLiMs recognized by SH2 domains were highly conserved in receptor kinases/phosphatases, adaptor molecules, and tyrosine kinases/phosphatases, that SLiMs recognized by SH3 domains were highly conserved in cytoskeletal and cytoskeletal-associated proteins, that SLiMs recognized by PDZ domains were highly conserved in membrane proteins such as channels and receptors, and that SLiMs recognized by S/T kinase domains were highly conserved in adaptor molecules, S/T kinases/phosphatases, and proteins involved in transcription or cell cycle control. We studied Tyr-SLiMs recognized by SH2 domains in more detail, and found that SH2-recognized Tyr-SLiMs on the cytoplasmic side of membrane proteins are more highly conserved than those on the extra-cellular side. Also, we found that SH2-recognized Tyr-SLiMs that are associated with SH3 motifs and a tyrosine kinase phosphorylation motif are more highly conserved. Conclusion The interactome of protein domains is reflected by the evolutionary conservation of SLiMs recognized by these domains. Combining scoring matrixes derived from peptide libraries and conservation analysis, we would be able to find those protein groups that are more likely to interact with specific domains.

  6. Paralog-Specific Patterns of Structural Disorder and Phosphorylation in the Vertebrate SH3-SH2-Tyrosine Kinase Protein Family.

    Science.gov (United States)

    Dos Santos, Helena G; Siltberg-Liberles, Jessica

    2016-09-19

    One of the largest multigene families in Metazoa are the tyrosine kinases (TKs). These are important multifunctional proteins that have evolved as dynamic switches that perform tyrosine phosphorylation and other noncatalytic activities regulated by various allosteric mechanisms. TKs interact with each other and with other molecules, ultimately activating and inhibiting different signaling pathways. TKs are implicated in cancer and almost 30 FDA-approved TK inhibitors are available. However, specific binding is a challenge when targeting an active site that has been conserved in multiple protein paralogs for millions of years. A cassette domain (CD) containing SH3-SH2-Tyrosine Kinase domains reoccurs in vertebrate nonreceptor TKs. Although part of the CD function is shared between TKs, it also presents TK specific features. Here, the evolutionary dynamics of sequence, structure, and phosphorylation across the CD in 17 TK paralogs have been investigated in a large-scale study. We establish that TKs often have ortholog-specific structural disorder and phosphorylation patterns, while secondary structure elements, as expected, are highly conserved. Further, domain-specific differences are at play. Notably, we found the catalytic domain to fluctuate more in certain secondary structure elements than the regulatory domains. By elucidating how different properties evolve after gene duplications and which properties are specifically conserved within orthologs, the mechanistic understanding of protein evolution is enriched and regions supposedly critical for functional divergence across paralogs are highlighted. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Domain Specific Languages for Interactive Web Services

    DEFF Research Database (Denmark)

    Brabrand, Claus

    This dissertation shows how domain specific languages may be applied to the domain of interactive Web services to obtain flexible, safe, and efficient solutions. We show how each of four key aspects of interactive Web services involving sessions, dynamic creation of HTML/XML documents, form field......, , that supports virtually all aspects of the development of interactive Web services and provides flexible, safe, and efficient solutions....

  8. Interaction Sheaves on Continuous Domains

    DEFF Research Database (Denmark)

    Abdou, J.; Keiding, Hans

    We introduce a description of the power structure which is inherent in a strategic game form using the concept of an interaction sheaf. The latter assigns to each open set of outcomes a set of interaction arrays, specifying the changes that coalitions can make if outcome belongs to this open set....

  9. Interaction sheaves on continuous domains

    DEFF Research Database (Denmark)

    Abdou, Joseph; Keiding, Hans

    2009-01-01

    We introduce a description of the power structure which is inherent in a strategic game form using the concept of an interaction sheaf. The latter assigns to each open set of outcomes a set of interaction arrays, specifying the changes that coalitions can make if outcome belongs to this open set....

  10. A Discovery Strategy for Selective Inhibitors of c-Src in Complex with the Focal Adhesion Kinase SH3/SH2-binding Region.

    Science.gov (United States)

    Moroco, Jamie A; Baumgartner, Matthew P; Rust, Heather L; Choi, Hwan Geun; Hur, Wooyoung; Gray, Nathanael S; Camacho, Carlos J; Smithgall, Thomas E

    2015-08-01

    The c-Src tyrosine kinase co-operates with the focal adhesion kinase to regulate cell adhesion and motility. Focal adhesion kinase engages the regulatory SH3 and SH2 domains of c-Src, resulting in localized kinase activation that contributes to tumor cell metastasis. Using assay conditions where c-Src kinase activity required binding to a tyrosine phosphopeptide based on the focal adhesion kinase SH3-SH2 docking sequence, we screened a kinase-biased library for selective inhibitors of the Src/focal adhesion kinase peptide complex versus c-Src alone. This approach identified an aminopyrimidinyl carbamate compound, WH-4-124-2, with nanomolar inhibitory potency and fivefold selectivity for c-Src when bound to the phospho-focal adhesion kinase peptide. Molecular docking studies indicate that WH-4-124-2 may preferentially inhibit the 'DFG-out' conformation of the kinase active site. These findings suggest that interaction of c-Src with focal adhesion kinase induces a unique kinase domain conformation amenable to selective inhibition. © 2014 John Wiley & Sons A/S.

  11. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein.

    Science.gov (United States)

    Garrity, P A; Rao, Y; Salecker, I; McGlade, J; Pawson, T; Zipursky, S L

    1996-05-31

    Mutations in the Drosophila gene dreadlocks (dock) disrupt photoreceptor cell (R cell) axon guidance and targeting. Genetic mosaic analysis and cell-type-specific expression of dock transgenes demonstrate dock is required in R cells for proper innervation. Dock protein contains one SH2 and three SH3 domains, implicating it in tyrosine kinase signaling, and is highly related to the human proto-oncogene Nck. Dock expression is detected in R cell growth cones in the target region. We propose Dock transmits signals in the growth cone in response to guidance and targeting cues. These findings provide an important step for dissection of signaling pathways regulating growth cone motility.

  12. Cooperative interactions between paired domain and homeodomain.

    Science.gov (United States)

    Jun, S; Desplan, C

    1996-09-01

    The Pax proteins are a family of transcriptional regulators involved in many developmental processes in all higher eukaryotes. They are characterized by the presence of a paired domain (PD), a bipartite DNA binding domain composed of two helix-turn-helix (HTH) motifs,the PAI and RED domains. The PD is also often associated with a homeodomain (HD) which is itself able to form homo- and hetero-dimers on DNA. Many of these proteins therefore contain three HTH motifs each able to recognize DNA. However, all PDs recognize highly related DNA sequences, and most HDs also recognize almost identical sites. We show here that different Pax proteins use multiple combinations of their HTHs to recognize several types of target sites. For instance, the Drosophila Paired protein can bind, in vitro, exclusively through its PAI domain, or through a dimer of its HD, or through cooperative interaction between PAI domain and HD. However, prd function in vivo requires the synergistic action of both the PAI domain and the HD. Pax proteins with only a PD appear to require both PAI and RED domains, while a Pax-6 isoform and a new Pax protein, Lune, may rely on the RED domain and HD. We propose a model by which Pax proteins recognize different target genes in vivo through various combinations of their DNA binding domains, thus expanding their recognition repertoire.

  13. Systematic discovery of new recognition peptides mediating protein interaction networks

    DEFF Research Database (Denmark)

    Neduva, Victor; Linding, Rune; Su-Angrand, Isabelle

    2005-01-01

    Many aspects of cell signalling, trafficking, and targeting are governed by interactions between globular protein domains and short peptide segments. These domains often bind multiple peptides that share a common sequence pattern, or "linear motif" (e.g., SH3 binding to PxxP). Many domains...... by interactions between globular protein domains and short peptide segments. These domains often bind multiple peptides that share a common sequence pattern, or "linear motif" (e.g., SH3 binding to PxxP). Many domains are known, though comparatively few linear motifs have been discovered. Their short length...

  14. The SH2 domain interaction landscape.

    Science.gov (United States)

    Tinti, Michele; Kiemer, Lars; Costa, Stefano; Miller, Martin L; Sacco, Francesca; Olsen, Jesper V; Carducci, Martina; Paoluzi, Serena; Langone, Francesca; Workman, Christopher T; Blom, Nikolaj; Machida, Kazuya; Thompson, Christopher M; Schutkowski, Mike; Brunak, Søren; Mann, Matthias; Mayer, Bruce J; Castagnoli, Luisa; Cesareni, Gianni

    2013-04-25

    Members of the SH2 domain family modulate signal transduction by binding to short peptides containing phosphorylated tyrosines. Each domain displays a distinct preference for the sequence context of the phosphorylated residue. We have developed a high-density peptide chip technology that allows for probing of the affinity of most SH2 domains for a large fraction of the entire complement of tyrosine phosphopeptides in the human proteome. Using this technique, we have experimentally identified thousands of putative SH2-peptide interactions for more than 70 different SH2 domains. By integrating this rich data set with orthogonal context-specific information, we have assembled an SH2-mediated probabilistic interaction network, which we make available as a community resource in the PepspotDB database. A predicted dynamic interaction between the SH2 domains of the tyrosine phosphatase SHP2 and the phosphorylated tyrosine in the extracellular signal-regulated kinase activation loop was validated by experiments in living cells. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The SH2 Domain Interaction Landscape

    Directory of Open Access Journals (Sweden)

    Michele Tinti

    2013-04-01

    Full Text Available Members of the SH2 domain family modulate signal transduction by binding to short peptides containing phosphorylated tyrosines. Each domain displays a distinct preference for the sequence context of the phosphorylated residue. We have developed a high-density peptide chip technology that allows for probing of the affinity of most SH2 domains for a large fraction of the entire complement of tyrosine phosphopeptides in the human proteome. Using this technique, we have experimentally identified thousands of putative SH2-peptide interactions for more than 70 different SH2 domains. By integrating this rich data set with orthogonal context-specific information, we have assembled an SH2-mediated probabilistic interaction network, which we make available as a community resource in the PepspotDB database. A predicted dynamic interaction between the SH2 domains of the tyrosine phosphatase SHP2 and the phosphorylated tyrosine in the extracellular signal-regulated kinase activation loop was validated by experiments in living cells.

  16. Evolution of a protein domain interaction network

    International Nuclear Information System (INIS)

    Li-Feng, Gao; Jian-Jun, Shi; Shan, Guan

    2010-01-01

    In this paper, we attempt to understand complex network evolution from the underlying evolutionary relationship between biological organisms. Firstly, we construct a Pfam domain interaction network for each of the 470 completely sequenced organisms, and therefore each organism is correlated with a specific Pfam domain interaction network; secondly, we infer the evolutionary relationship of these organisms with the nearest neighbour joining method; thirdly, we use the evolutionary relationship between organisms constructed in the second step as the evolutionary course of the Pfam domain interaction network constructed in the first step. This analysis of the evolutionary course shows: (i) there is a conserved sub-network structure in network evolution; in this sub-network, nodes with lower degree prefer to maintain their connectivity invariant, and hubs tend to maintain their role as a hub is attached preferentially to new added nodes; (ii) few nodes are conserved as hubs; most of the other nodes are conserved as one with very low degree; (iii) in the course of network evolution, new nodes are added to the network either individually in most cases or as clusters with relative high clustering coefficients in a very few cases. (general)

  17. Contribution of the LIM domain and nebulin-repeats to the interaction of Lasp-2 with actin filaments and focal adhesions.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Nakagawa

    Full Text Available Lasp-2 binds to actin filaments and concentrates in the actin bundles of filopodia and lamellipodia in neural cells and focal adhesions in fibroblastic cells. Lasp-2 has three structural regions: a LIM domain, a nebulin-repeat region, and an SH3 domain; however, the region(s responsible for its interactions with actin filaments and focal adhesions are still unclear. In this study, we revealed that the N-terminal fragment from the LIM domain to the first nebulin-repeat module (LIM-n1 retained actin-binding activity and showed a similar subcellular localization to full-length lasp-2 in neural cells. The LIM domain fragment did not interact with actin filaments or localize to actin filament bundles. In contrast, LIM-n1 showed a clear subcellular localization to filopodial actin bundles. Although truncation of the LIM domain caused the loss of F-actin binding activity and the accumulation of filopodial actin bundles, these truncated fragments localized to focal adhesions. These results suggest that lasp-2 interactions with actin filaments are mediated through the cooperation of the LIM domain and the first nebulin-repeat module in vitro and in vivo. Actin filament binding activity may be a major contributor to the subcellular localization of lasp-2 to filopodia but is not crucial for lasp-2 recruitment to focal adhesions.

  18. Intramolecular dynamics within the N-Cap-SH3-SH2 regulatory unit of the c-Abl tyrosine kinase reveal targeting to the cellular membrane.

    Science.gov (United States)

    de Oliveira, Guilherme A P; Pereira, Elen G; Ferretti, Giulia D S; Valente, Ana Paula; Cordeiro, Yraima; Silva, Jerson L

    2013-09-27

    c-Abl is a key regulator of cell signaling and is under strict control via intramolecular interactions. In this study, we address changes in the intramolecular dynamics coupling within the c-Abl regulatory unit by presenting its N-terminal segment (N-Cap) with an alternative function in the cell as c-Abl becomes activated. Using small angle x-ray scattering, nuclear magnetic resonance, and confocal microscopy, we demonstrate that the N-Cap and the Src homology (SH) 3 domain acquire μs-ms motions upon N-Cap association with the SH2-L domain, revealing a stabilizing synergy between these segments. The N-Cap-myristoyl tether likely triggers the protein to anchor to the membrane because of these flip-flop dynamics, which occur in the μs-ms time range. This segment not only presents the myristate during c-Abl inhibition but may also trigger protein localization inside the cell in a functional and stability-dependent mechanism that is lost in Bcr-Abl(+) cells, which underlie chronic myeloid leukemia. This loss of intramolecular dynamics and binding to the cellular membrane is a potential therapeutic target.

  19. Disruption of the podosome adaptor protein TKS4 (SH3PXD2B) causes the skeletal dysplasia, eye, and cardiac abnormalities of Frank-Ter Haar Syndrome.

    Science.gov (United States)

    Iqbal, Zafar; Cejudo-Martin, Pilar; de Brouwer, Arjan; van der Zwaag, Bert; Ruiz-Lozano, Pilar; Scimia, M Cecilia; Lindsey, James D; Weinreb, Robert; Albrecht, Beate; Megarbane, Andre; Alanay, Yasemin; Ben-Neriah, Ziva; Amenduni, Mariangela; Artuso, Rosangela; Veltman, Joris A; van Beusekom, Ellen; Oudakker, Astrid; Millán, José Luis; Hennekam, Raoul; Hamel, Ben; Courtneidge, Sara A; van Bokhoven, Hans

    2010-02-12

    Frank-Ter Haar syndrome (FTHS), also known as Ter Haar syndrome, is an autosomal-recessive disorder characterized by skeletal, cardiovascular, and eye abnormalities, such as increased intraocular pressure, prominent eyes, and hypertelorism. We have conducted homozygosity mapping on patients representing 12 FTHS families. A locus on chromosome 5q35.1 was identified for which patients from nine families shared homozygosity. For one family, a homozygous deletion mapped exactly to the smallest region of overlapping homozygosity, which contains a single gene, SH3PXD2B. This gene encodes the TKS4 protein, a phox homology (PX) and Src homology 3 (SH3) domain-containing adaptor protein and Src substrate. This protein was recently shown to be involved in the formation of actin-rich membrane protrusions called podosomes or invadopodia, which coordinate pericellular proteolysis with cell migration. Mice lacking Tks4 also showed pronounced skeletal, eye, and cardiac abnormalities and phenocopied the majority of the defects associated with FTHS. These findings establish a role for TKS4 in FTHS and embryonic development. Mutation analysis revealed five different homozygous mutations in SH3PXD2B in seven FTHS families. No SH3PXD2B mutations were detected in six other FTHS families, demonstrating the genetic heterogeneity of this condition. Interestingly however, dermal fibroblasts from one of the individuals without an SH3PXD2B mutation nevertheless expressed lower levels of the TKS4 protein, suggesting a common mechanism underlying disease causation. Copyright (c) 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. SH2-catalytic domain linker heterogeneity influences allosteric coupling across the SFK family.

    Science.gov (United States)

    Register, A C; Leonard, Stephen E; Maly, Dustin J

    2014-11-11

    Src-family kinases (SFKs) make up a family of nine homologous multidomain tyrosine kinases whose misregulation is responsible for human disease (cancer, diabetes, inflammation, etc.). Despite overall sequence homology and identical domain architecture, differences in SH3 and SH2 regulatory domain accessibility and ability to allosterically autoinhibit the ATP-binding site have been observed for the prototypical SFKs Src and Hck. Biochemical and structural studies indicate that the SH2-catalytic domain (SH2-CD) linker, the intramolecular binding epitope for SFK SH3 domains, is responsible for allosterically coupling SH3 domain engagement to autoinhibition of the ATP-binding site through the conformation of the αC helix. As a relatively unconserved region between SFK family members, SH2-CD linker sequence variability across the SFK family is likely a source of nonredundant cellular functions between individual SFKs via its effect on the availability of SH3 and SH2 domains for intermolecular interactions and post-translational modification. Using a combination of SFKs engineered with enhanced or weakened regulatory domain intramolecular interactions and conformation-selective inhibitors that report αC helix conformation, this study explores how SH2-CD sequence heterogeneity affects allosteric coupling across the SFK family by examining Lyn, Fyn1, and Fyn2. Analyses of Fyn1 and Fyn2, isoforms that are identical but for a 50-residue sequence spanning the SH2-CD linker, demonstrate that SH2-CD linker sequence differences can have profound effects on allosteric coupling between otherwise identical kinases. Most notably, a dampened allosteric connection between the SH3 domain and αC helix leads to greater autoinhibitory phosphorylation by Csk, illustrating the complex effects of SH2-CD linker sequence on cellular function.

  1. Integral UBL domain proteins: a family of proteasome interacting proteins

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2004-01-01

    The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact...

  2. A novel mutation in the SH3BP2 gene causes cherubism: case report

    Directory of Open Access Journals (Sweden)

    Yu Shi-Feng

    2006-12-01

    Full Text Available Abstract Background Cherubism is a rare hereditary multi-cystic disease of the jaws, characterized by its typical appearance in early childhood, and stabilization and remission after puberty. It is genetically transmitted in an autosomal dominant fashion and the gene coding for SH3-binding protein 2 (SH3BP2 may be involved. Case presentation We investigated a family consisting of 21 members with 3 female affected individuals with cherubism from Northern China. Of these 21 family members, 17 were recruited for the genetic analysis. We conducted the direct sequence analysis of the SH3BP2 gene among these 17 family members. A disease-causing mutation was identified in exon 9 of the gene. It was an A1517G base change, which leads to a D419G amino acid substitution. Conclusion To our knowledge, the A1517G mutation has not been reported previously in cherubism. This finding is novel.

  3. A protein domain interaction interface database: InterPare

    Directory of Open Access Journals (Sweden)

    Lee Jungsul

    2005-08-01

    Full Text Available Abstract Background Most proteins function by interacting with other molecules. Their interaction interfaces are highly conserved throughout evolution to avoid undesirable interactions that lead to fatal disorders in cells. Rational drug discovery includes computational methods to identify the interaction sites of lead compounds to the target molecules. Identifying and classifying protein interaction interfaces on a large scale can help researchers discover drug targets more efficiently. Description We introduce a large-scale protein domain interaction interface database called InterPare http://interpare.net. It contains both inter-chain (between chains interfaces and intra-chain (within chain interfaces. InterPare uses three methods to detect interfaces: 1 the geometric distance method for checking the distance between atoms that belong to different domains, 2 Accessible Surface Area (ASA, a method for detecting the buried region of a protein that is detached from a solvent when forming multimers or complexes, and 3 the Voronoi diagram, a computational geometry method that uses a mathematical definition of interface regions. InterPare includes visualization tools to display protein interior, surface, and interaction interfaces. It also provides statistics such as the amino acid propensities of queried protein according to its interior, surface, and interface region. The atom coordinates that belong to interface, surface, and interior regions can be downloaded from the website. Conclusion InterPare is an open and public database server for protein interaction interface information. It contains the large-scale interface data for proteins whose 3D-structures are known. As of November 2004, there were 10,583 (Geometric distance, 10,431 (ASA, and 11,010 (Voronoi diagram entries in the Protein Data Bank (PDB containing interfaces, according to the above three methods. In the case of the geometric distance method, there are 31,620 inter-chain domain-domain

  4. Domain-specific knowledge as playful interaction

    DEFF Research Database (Denmark)

    Valente, Andrea; Marchetti, Emanuela

    2015-01-01

    Starting from reflections on designing games for learning, aimed at providing a tangible grounding to abstract knowledge, we designed Prime Slaughter, a game to support learning of factorisation and prime numbers, targeted to primary and early secondary school children. This new study draws upon ...... on activity theory, aimed at facilitating the transposition of abstract knowledge into playful interactions, so to develop new learning games of this kind, also keeping into account children’s individual needs regarding play.......Starting from reflections on designing games for learning, aimed at providing a tangible grounding to abstract knowledge, we designed Prime Slaughter, a game to support learning of factorisation and prime numbers, targeted to primary and early secondary school children. This new study draws upon...

  5. Insight into molecular interactions between two PB1 domains

    NARCIS (Netherlands)

    van Drogen-Petit, A.; Zwahlen, C.; Peter, M.; Bonvin, A.M.J.J.

    2004-01-01

    Specific protein–protein interactions play crucial roles in the regulation of any biological process. Recently, a new protein–protein interaction domain termed PB1 (Phox and Bem1) was identified, which is conserved throughout evolution and present in diverse proteins functioning in signal

  6. Genetic disruption of the sh3pxd2a gene reveals an essential role in mouse development and the existence of a novel isoform of tks5.

    Science.gov (United States)

    Cejudo-Martin, Pilar; Yuen, Angela; Vlahovich, Nicole; Lock, Peter; Courtneidge, Sara A; Díaz, Begoña

    2014-01-01

    Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulted in neonatal death and the presence of a complete cleft of the secondary palate. Interestingly, embryonic fibroblasts from homozygous gene-trap sh3pxd2a mice lacked only the highest molecular weight band of the characteristic Tks5 triplet observed in protein extracts, leaving the lower molecular weight bands unaffected. This finding, together with the existence of two human Expressed Sequence Tags lacking the first 5 exons of SH3PXD2A, made us hypothesize about the presence of a second alternative transcription start site located in intron V. We performed 5'RACE on mouse fibroblasts and isolated a new transcript of the sh3pxd2a gene encoding a novel Tks5 isoform, that we named Tks5β. This novel isoform diverges from the long form of Tks5 in that it lacks the PX-domain, which confers affinity for phosphatidylinositol-3,4-bisphosphate. Instead, Tks5β has a short unique amino terminal sequence encoded by the newly discovered exon 6β; this exon includes a start codon located 29 bp from the 5'-end of exon 6. Tks5β mRNA is expressed in MEFs and all mouse adult tissues analyzed. Tks5β is a substrate for the Src tyrosine kinase and its expression is regulated through the proteasome degradation pathway. Together, these findings indicate the essentiality of the larger Tks5 isoform for correct mammalian development and the transcriptional complexity of the sh3pxd2a gene.

  7. Genetic disruption of the sh3pxd2a gene reveals an essential role in mouse development and the existence of a novel isoform of tks5.

    Directory of Open Access Journals (Sweden)

    Pilar Cejudo-Martin

    Full Text Available Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulted in neonatal death and the presence of a complete cleft of the secondary palate. Interestingly, embryonic fibroblasts from homozygous gene-trap sh3pxd2a mice lacked only the highest molecular weight band of the characteristic Tks5 triplet observed in protein extracts, leaving the lower molecular weight bands unaffected. This finding, together with the existence of two human Expressed Sequence Tags lacking the first 5 exons of SH3PXD2A, made us hypothesize about the presence of a second alternative transcription start site located in intron V. We performed 5'RACE on mouse fibroblasts and isolated a new transcript of the sh3pxd2a gene encoding a novel Tks5 isoform, that we named Tks5β. This novel isoform diverges from the long form of Tks5 in that it lacks the PX-domain, which confers affinity for phosphatidylinositol-3,4-bisphosphate. Instead, Tks5β has a short unique amino terminal sequence encoded by the newly discovered exon 6β; this exon includes a start codon located 29 bp from the 5'-end of exon 6. Tks5β mRNA is expressed in MEFs and all mouse adult tissues analyzed. Tks5β is a substrate for the Src tyrosine kinase and its expression is regulated through the proteasome degradation pathway. Together, these findings indicate the essentiality of the larger Tks5 isoform for correct mammalian development and the transcriptional complexity of the sh3pxd2a gene.

  8. The phosphoCTD-interacting domain of Topoisomerase I

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianhong; Phatnani, Hemali P.; Hsieh, Tao-Shih [Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (United States); Greenleaf, Arno L., E-mail: arno.greenleaf@duke.edu [Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (United States)

    2010-06-18

    The N-terminal domain (NTD) of Drosophila melanogaster (Dm) Topoisomerase I has been shown to bind to RNA polymerase II, but the domain of RNAPII with which it interacts is not known. Using bacterially-expressed fusion proteins carrying all or half of the NTDs of Dm and human (Homo sapiens, Hs) Topo I, we demonstrate that the N-terminal half of each NTD binds directly to the hyperphosphorylated C-terminal repeat domain (phosphoCTD) of the largest RNAPII subunit, Rpb1. Thus, the amino terminal segment of metazoan Topo I (1-157 for Dm and 1-114 for Hs) contains a novel phosphoCTD-interacting domain that we designate the Topo I-Rpb1 interacting (TRI) domain. The long-known in vivo association of Topo I with active genes presumably can be attributed, wholly or in part, to the TRI domain-mediated binding of Topo I to the phosphoCTD of transcribing RNAPII.

  9. The phosphoCTD-interacting domain of Topoisomerase I

    International Nuclear Information System (INIS)

    Wu, Jianhong; Phatnani, Hemali P.; Hsieh, Tao-Shih; Greenleaf, Arno L.

    2010-01-01

    The N-terminal domain (NTD) of Drosophila melanogaster (Dm) Topoisomerase I has been shown to bind to RNA polymerase II, but the domain of RNAPII with which it interacts is not known. Using bacterially-expressed fusion proteins carrying all or half of the NTDs of Dm and human (Homo sapiens, Hs) Topo I, we demonstrate that the N-terminal half of each NTD binds directly to the hyperphosphorylated C-terminal repeat domain (phosphoCTD) of the largest RNAPII subunit, Rpb1. Thus, the amino terminal segment of metazoan Topo I (1-157 for Dm and 1-114 for Hs) contains a novel phosphoCTD-interacting domain that we designate the Topo I-Rpb1 interacting (TRI) domain. The long-known in vivo association of Topo I with active genes presumably can be attributed, wholly or in part, to the TRI domain-mediated binding of Topo I to the phosphoCTD of transcribing RNAPII.

  10. Induced motion of domain walls in multiferroics with quadratic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimchuk, Victor S., E-mail: viktor.gera@gmail.com [National Technical University of Ukraine “Kyiv Polytechnic Institute”, Peremohy Avenue 37, 03056 Kiev (Ukraine); Shitov, Anatoliy A., E-mail: shitov@mail.ru [Donbass National Academy of Civil Engineering, Derzhavina Street 2, 86123 Makeevka, Donetsk Region (Ukraine)

    2013-10-15

    We theoretically study the dynamics of 180-degree domain wall of the ab-type in magnetic materials with quadratic magnetoelectric interaction in external alternating magnetic and electric fields. The features of the oscillatory and translational motions of the domain walls and stripe structures depending on the parameters of external fields and characteristics of the multiferroics are discussed. The possibility of the domain walls drift in a purely electric field is established. - Highlights: • We study DW and stripe DS in multiferroics with quadratic magnetoelectric interaction. • We build up the theory of oscillatory and translational (drift) DW and DS motion. • DW motion can be caused by crossed alternating electric and magnetic fields. • DW motion can be caused by alternating “pure” electric field. • DW drift velocity is formed by the AFM and Dzyaloshinskii interaction terms.

  11. Drug-domain interaction networks in myocardial infarction.

    Science.gov (United States)

    Wang, Haiying; Zheng, Huiru; Azuaje, Francisco; Zhao, Xing-Ming

    2013-09-01

    It has been well recognized that the pace of the development of new drugs and therapeutic interventions lags far behind biological knowledge discovery. Network-based approaches have emerged as a promising alternative to accelerate the discovery of new safe and effective drugs. Based on the integration of several biological resources including two recently published datasets i.e., Drug-target interactions in myocardial infarction (My-DTome) and drug-domain interaction network, this paper reports the association between drugs and protein domains in the context of myocardial infarction (MI). A MI drug-domain interaction network, My-DDome, was firstly constructed, followed by topological analysis and functional characterization of the network. The results show that My-DDome has a very clear modular structure, where drugs interacting with the same domain(s) within each module tend to have similar therapeutic effects. Moreover it has been found that drugs acting on blood and blood forming organs (ATC code B) and sensory organs (ATC code S) are significantly enriched in My-DDome (p drugs, their known targets, and seemingly unrelated proteins can be revealed.

  12. Structural and biophysical investigation of the interaction of a mutant Grb2 SH2 domain (W121G) with its cognate phosphopeptide.

    Science.gov (United States)

    Papaioannou, Danai; Geibel, Sebastian; Kunze, Micha B A; Kay, Christopher W M; Waksman, Gabriel

    2016-03-01

    The adaptor protein Grb2 is a key element of mitogenetically important signaling pathways. With its SH2 domain it binds to upstream targets while its SH3 domains bind to downstream proteins thereby relaying signals from the cell membranes to the nucleus. The Grb2 SH2 domain binds to its targets by recognizing a phosphotyrosine (pY) in a pYxNx peptide motif, requiring an Asn at the +2 position C-terminal to the pY with the residue either side of this Asn being hydrophobic. Structural analysis of the Grb2 SH2 domain in complex with its cognate peptide has shown that the peptide adopts a unique β-turn conformation, unlike the extended conformation that phosphopeptides adopt when bound to other SH2 domains. TrpEF1 (W121) is believed to force the peptide into this unusual conformation conferring this unique specificity to the Grb2 SH2 domain. Using X-ray crystallography, electron paramagnetic resonance (EPR) spectroscopy, and isothermal titration calorimetry (ITC), we describe here a series of experiments that explore the role of TrpEF1 in determining the specificity of the Grb2 SH2 domain. Our results demonstrate that the ligand does not adopt a pre-organized structure before binding to the SH2 domain, rather it is the interaction between the two that imposes the hairpin loop to the peptide. Furthermore, we find that the peptide adopts a similar structure when bound to both the wild-type Grb2 SH2 domain and a TrpEF1Gly mutant. This suggests that TrpEF1 is not the determining factor for the conformation of the phosphopeptide. © 2015 The Protein Society.

  13. Progesterone receptor (PR) polyproline domain (PPD) mediates inhibition of epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer cells.

    Science.gov (United States)

    Kawprasertsri, Sornsawan; Pietras, Richard J; Marquez-Garban, Diana C; Boonyaratanakornkit, Viroj

    2016-05-01

    Recent evidence has suggested a possible role for progesterone receptor (PR) in the progression of non-small cell lung cancer (NSCLC). However, little is known concerning roles of PR in NSCLC. PR contains a polyproline domain (PPD), which directly binds to the SH3 domain of signaling molecules. Because PPD-SH3 interactions are essential for EGFR signaling, we hypothesized that the presence of PR-PPD interfered with EGFR-mediated signaling and cell proliferation. We examined the role of PR-PPD in cell proliferation and signaling by stably expressing PR-B, or PR-B with disrupting mutations in the PPD (PR-BΔSH3), from a tetracycline-regulated promoter in A549 NSCLC cells. PR-B dose-dependently inhibited cell growth in the absence of ligand, and progestin (R5020) treatment further suppressed the growth. Treatment with RU486 abolished PR-B- and R5020-mediated inhibition of cell proliferation. Expression of PR-BΔSH3 and treatment with R5020 or RU486 had no effect on cell proliferation. Furthermore, PR-B expression but not PR-BΔSH3 expression reduced EGF-induced A549 proliferation and activation of ERK1/2, in the absence of ligand. Taken together, our data demonstrated the significance of PR extranuclear signaling through PPD interactions in EGFR-mediated proliferation and signaling in NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Recovering protein-protein and domain-domain interactions from aggregation of IP-MS proteomics of coregulator complexes.

    Directory of Open Access Journals (Sweden)

    Amin R Mazloom

    2011-12-01

    Full Text Available Coregulator proteins (CoRegs are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP followed by mass spectrometry (MS applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/.

  15. Comprehensive analysis of interactions between the Src-associated protein in mitosis of 68 kDa and the human Src-homology 3 proteome.

    Directory of Open Access Journals (Sweden)

    Benedikt Asbach

    Full Text Available The protein Sam68 is involved in many cellular processes such as cell-cycle regulation, RNA metabolism, or signal transduction. Sam68 comprises a central RNA-binding domain flanked by unstructured tails containing docking sites for signalling proteins including seven proline-rich sequences (denoted P0 to P6 as potential SH3-domain binding motifs. To comprehensively assess Sam68-SH3-interactions, we applied a phage-display screening of a library containing all approx. 300 human SH3 domains. Thereby we identified five new (from intersectin 2, the osteoclast stimulating factor OSF, nephrocystin, sorting nexin 9, and CIN85 and seven already known high-confidence Sam68-ligands (mainly from the Src-kinase family, as well as several lower-affinity binders. Interaction of the high-affinity Sam68-binders was confirmed in independent assays in vitro (phage-ELISA, GST-pull-down and in vivo (FACS-based FRET-analysis with CFP- and YFP-tagged proteins. Fine-mapping analyses with peptides established P0, P3, P4, and P5 as exclusive docking-sites for SH3 domains, which showed varying preferences for these motifs. Mutational analyses identified individual residues within the proline-rich motifs being crucial for the interactions. Based on these data, we generated a Sam68-mutant incapable of interacting with SH3 domains any more, as subsequently demonstrated by FRET-analyses. In conclusion, we present a thorough characterization of Sam68's interplay with the SH3 proteome. The observed interaction between Sam68 and OSF complements the known Sam68-Src and OSF-Src interactions. Thus, we propose, that Sam68 functions as a classical scaffold protein in this context, assembling components of an osteoclast-specific signalling pathway.

  16. Molecular determinants of the interaction between Doa1 and Hse1 involved in endosomal sorting.

    Science.gov (United States)

    Han, Seungsu; Shin, Donghyuk; Choi, Hoon; Lee, Sangho

    2014-03-28

    Yeast Doa1/Ufd3 is an adaptor protein for Cdc48 (p97 in mammal), an AAA type ATPase associated with endoplasmic reticulum-associated protein degradation pathway and endosomal sorting into multivesicular bodies. Doa1 functions in the endosomal sorting by its association with Hse1, a component of endosomal sorting complex required for transport (ESCRT) system. The association of Doa1 with Hse1 was previously reported to be mediated between PFU domain of Doa1 and SH3 of Hse1. However, it remains unclear which residues are specifically involved in the interaction. Here we report that Doa1/PFU interacts with Hse1/SH3 with a moderate affinity of 5 μM. Asn-438 of Doa1/PFU and Trp-254 of Hse1/SH3 are found to be critical in the interaction while Phe-434, implicated in ubiquitin binding via a hydrophobic interaction, is not. Small-angle X-ray scattering measurements combined with molecular docking and biochemical analysis yield the solution structure of the Doa1/PFU:Hse1/SH3 complex. Taken together, our results suggest that hydrogen bonding is a major determinant in the interaction of Doa1/PFU with Hse1/SH3. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The role of SH3BP2 in the pathophysiology of cherubism

    Directory of Open Access Journals (Sweden)

    Reichenberger Ernst J

    2012-05-01

    Full Text Available Abstract Cherubism is a rare bone dysplasia that is characterized by symmetrical bone resorption limited to the jaws. Bone lesions are filled with soft fibrous giant cell-rich tissue that can expand and cause severe facial deformity. The disorder typically begins in children at ages of 2-5 years and the bone resorption and facial swelling continues until puberty; in most cases the lesions regress spontaneously thereafter. Most patients with cherubism have germline mutations in the gene encoding SH3BP2, an adapter protein involved in adaptive and innate immune response signaling. A mouse model carrying a Pro416Arg mutation in SH3BP2 develops osteopenia and expansile lytic lesions in bone and some soft tissue organs. In this review we discuss the genetics of cherubism, the biological functions of SH3BP2 and the analysis of the mouse model. The data suggest that the underlying cause for cherubism is a systemic autoinflammatory response to physiologic challenges despite the localized appearance of bone resorption and fibrous expansion to the jaws in humans.

  18. Loss of Sh3gl2/Endophilin A1 Is a Common Event in Urothelial Carcinoma that Promotes Malignant Behavior

    Directory of Open Access Journals (Sweden)

    Shyama Majumdar

    2013-07-01

    Full Text Available Urothelial carcinoma (UC causes substantial morbidity and mortality worldwide. However, the molecular mechanisms underlying urothelial cancer development and tumor progression are still largely unknown. Using informatics analysis, we identified Sh3gl2 (endophilin A1 as a bladder urothelium-enriched transcript. The gene encoding Sh3gl2 is located on chromosome 9p, a region frequently altered in UC. Sh3gl2 is known to regulate endocytosis of receptor tyrosine kinases implicated in oncogenesis, such as the epidermal growth factor receptor (EGFR and c-Met. However, its role in UC pathogenesis is unknown. Informatics analysis of expression profiles as well as immunohistochemical staining of tissue microarrays revealed Sh3gl2 expression to be decreased in UC specimens compared to nontumor tissues. Loss of Sh3gl2 was associated with increasing tumor grade and with muscle invasion, which is a reliable predictor of metastatic disease and cancer-derived mortality. Sh3gl2 expression was undetectable in 19 of 20 human UC cell lines but preserved in the low-grade cell line RT4. Stable silencing of Sh3gl2 in RT4 cells by RNA interference 1 enhanced proliferation and colony formation in vitro, 2 inhibited EGF-induced EGFR internalization and increased EGFR activation, 3 stimulated phosphorylation of Src family kinases and STAT3, and 4 promoted growth of RT4 xenografts in subrenal capsule tissue recombination experiments. Conversely, forced re-expression of Sh3gl2 in T24 cells and silenced RT4 clones attenuated oncogenic behaviors, including growth and migration. Together, these findings identify loss of Sh3gl2 as a frequent event in UC development that promotes disease progression.

  19. Protein interaction networks by proteome peptide scanning.

    Directory of Open Access Journals (Sweden)

    Christiane Landgraf

    2004-01-01

    Full Text Available A substantial proportion of protein interactions relies on small domains binding to short peptides in the partner proteins. Many of these interactions are relatively low affinity and transient, and they impact on signal transduction. However, neither the number of potential interactions mediated by each domain nor the degree of promiscuity at a whole proteome level has been investigated. We have used a combination of phage display and SPOT synthesis to discover all the peptides in the yeast proteome that have the potential to bind to eight SH3 domains. We first identified the peptides that match a relaxed consensus, as deduced from peptides selected by phage display experiments. Next, we synthesized all the matching peptides at high density on a cellulose membrane, and we probed them directly with the SH3 domains. The domains that we have studied were grouped by this approach into five classes with partially overlapping specificity. Within the classes, however, the domains display a high promiscuity and bind to a large number of common targets with comparable affinity. We estimate that the yeast proteome contains as few as six peptides that bind to the Abp1 SH3 domain with a dissociation constant lower than 100 microM, while it contains as many as 50-80 peptides with corresponding affinity for the SH3 domain of Yfr024c. All the targets of the Abp1 SH3 domain, identified by this approach, bind to the native protein in vivo, as shown by coimmunoprecipitation experiments. Finally, we demonstrate that this strategy can be extended to the analysis of the entire human proteome. We have developed an approach, named WISE (whole interactome scanning experiment, that permits rapid and reliable identification of the partners of any peptide recognition module by peptide scanning of a proteome. Since the SPOT synthesis approach is semiquantitative and provides an approximation of the dissociation constants of the several thousands of interactions that are

  20. Purification and molecular cloning of SH2- and SH3-containing inositol polyphosphate-5-phosphatase, which is involved in the signaling pathway of granulocyte-macrophage colony-stimulating factor, erythropoietin, and Bcr-Abl.

    Science.gov (United States)

    Odai, H; Sasaki, K; Iwamatsu, A; Nakamoto, T; Ueno, H; Yamagata, T; Mitani, K; Yazaki, Y; Hirai, H

    1997-04-15

    Grb2/Ash and Shc are the adapter proteins that link tyrosine-kinase receptors to Ras and make tyrosine-kinase functionally associated with receptors and Ras in fibroblasts and hematopoietic cells. Grb2/Ash and Shc have the SH3, SH2, or phosphotyrosine binding domains. These domains bind to proteins containing proline-rich regions or tyrosine-phosphorylated proteins and contribute to the association of Grb2/Ash and Shc with other signaling molecules. However, there could remain unidentified signaling molecules that physically and functionally interact with these adapter proteins and have biologically important roles in the signaling pathways. By using the GST fusion protein including the full length of Grb2/Ash, we have found that c-Cbl and an unidentified 135-kD protein (pp135) are associated with Grb2/Ash. We have also found that they become tyrosine-phosphorylated by treatment of a human leukemia cell line, UT-7, with granulocyte-macrophage colony-stimulating factor (GM-CSF). We have purified the pp135 by using GST-Grb2/Ash affinity column and have isolated the full-length complementary DNA (cDNA) encoding the pp135 using a cDNA probe, which was obtained by the degenerate polymerase chain reaction based on a peptide sequence of the purified pp135. The cloned cDNA has 3,958 nucleotides that contain a single long open reading frame of 3,567 nucleotides, encoding a 1,189 amino acid protein with a predicted molecular weight of approximately 133 kD. The deduced amino acid sequence reveals that pp135 is a protein that has one SH2, one SH3, and one proline-rich domain. The pp135, which contains two motifs conserved among the inositol polyphosphate-5-phosphatase proteins, was shown to have the inositol polyphosphate-5-phosphatase activity. The pp135 was revealed to associate constitutively with Grb2/Ash and inducibly with Shc using UT-7 cells stimulated with GM-CSF. In the cell lines derived from human chronic myelogenous leukemia, pp135 was constitutively tyrosine

  1. Prediction of Cancer Proteins by Integrating Protein Interaction, Domain Frequency, and Domain Interaction Data Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Chien-Hung Huang

    2015-01-01

    Full Text Available Many proteins are known to be associated with cancer diseases. It is quite often that their precise functional role in disease pathogenesis remains unclear. A strategy to gain a better understanding of the function of these proteins is to make use of a combination of different aspects of proteomics data types. In this study, we extended Aragues’s method by employing the protein-protein interaction (PPI data, domain-domain interaction (DDI data, weighted domain frequency score (DFS, and cancer linker degree (CLD data to predict cancer proteins. Performances were benchmarked based on three kinds of experiments as follows: (I using individual algorithm, (II combining algorithms, and (III combining the same classification types of algorithms. When compared with Aragues’s method, our proposed methods, that is, machine learning algorithm and voting with the majority, are significantly superior in all seven performance measures. We demonstrated the accuracy of the proposed method on two independent datasets. The best algorithm can achieve a hit ratio of 89.4% and 72.8% for lung cancer dataset and lung cancer microarray study, respectively. It is anticipated that the current research could help understand disease mechanisms and diagnosis.

  2. Topology and weights in a protein domain interaction network--a novel way to predict protein interactions.

    Science.gov (United States)

    Wuchty, Stefan

    2006-05-23

    While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. We consider a web of interactions between protein domains of the Protein Family database (PFAM), which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we show a simple way to predict potential protein interactions

  3. Topology and weights in a protein domain interaction network – a novel way to predict protein interactions

    Directory of Open Access Journals (Sweden)

    Wuchty Stefan

    2006-05-01

    Full Text Available Abstract Background While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. Results We consider a web of interactions between protein domains of the Protein Family database (PFAM, which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. Conclusion Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we

  4. Organization of functional domains in the docking protein p130Cas

    International Nuclear Information System (INIS)

    Nasertorabi, Fariborz; Garcia-Guzman, Miguel; Briknarova, Klara; Larsen, Elise; Havert, Marnie L.; Vuori, Kristiina; Ely, Kathryn R.

    2004-01-01

    The docking protein p130Cas becomes phosphorylated upon cell adhesion to extracellular matrix proteins, and is thought to play an essential role in cell transformation. Cas transmits signals through interactions with the Src-homology 3 (SH3) and Src-homology 2 domains of FAK or v-Crk signaling molecules, or with 14-3-3 protein, as well as phosphatases PTP1B and PTP-PEST. The large (130 kDa), multi-domain Cas molecule contains an SH3 domain, a Src-binding domain, a serine-rich protein interaction region, and a C-terminal region that participates in protein interactions implicated in antiestrogen resistance in breast cancer. In this study, as part of a long-term goal to examine the protein interactions of Cas by X-ray crystallography and nuclear magnetic resonance spectroscopy, molecular constructs were designed to express two adjacent domains, the serine-rich domain and the Src-binding domain, that each participate in intermolecular contacts dependent on protein phosphorylation. The protein products are soluble, homogeneous, monodisperse, and highly suitable for structural studies to define the role of Cas in integrin-mediated cell signaling

  5. Interaction Between the Biotin Carboxyl Carrier Domain and the Biotin Carboxylase Domain in Pyruvate Carboxylase from Rhizobium etli†

    Science.gov (United States)

    Lietzan, Adam D.; Menefee, Ann L.; Zeczycki, Tonya N.; Kumar, Sudhanshu; Attwood, Paul V.; Wallace, John C.; Cleland, W. Wallace; Maurice, Martin St.

    2011-01-01

    Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To effect catalysis, the tethered biotin of PC must gain access to active sites in both the biotin carboxylase domain and the carboxyl transferase domain. Previous studies have demonstrated that a mutation of threonine 882 to alanine in PC from Rhizobium etli renders the carboxyl transferase domain inactive and favors the positioning of biotin in the biotin carboxylase domain. We report the 2.4 Å resolution X-ray crystal structure of the Rhizobium etli PC T882A mutant which reveals the first high-resolution description of the domain interaction between the biotin carboxyl carrier protein domain and the biotin carboxylase domain. The overall quaternary arrangement of Rhizobium etli PC remains highly asymmetrical and is independent of the presence of allosteric activator. While biotin is observed in the biotin carboxylase domain, its access to the active site is precluded by the interaction between Arg353 and Glu248, revealing a mechanism for regulating carboxybiotin access to the BC domain active site. The binding location for the biotin carboxyl carrier protein domain demonstrates that tethered biotin cannot bind in the biotin carboxylase domain active site in the same orientation as free biotin, helping to explain the difference in catalysis observed between tethered biotin and free biotin substrates in biotin carboxylase enzymes. Electron density located in the biotin carboxylase domain active site is assigned to phosphonoacetate, offering a probable location for the putative carboxyphosphate intermediate formed during biotin carboxylation. The insights gained from the T882A Rhizobium etli PC crystal structure provide a new series of catalytic snapshots in PC and offer a revised perspective on catalysis in the biotin-dependent enzyme family. PMID:21958016

  6. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-01-01

    is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain

  7. A localized interaction surface for voltage-sensing domains on the pore domain of a K+ channel.

    Science.gov (United States)

    Li-Smerin, Y; Hackos, D H; Swartz, K J

    2000-02-01

    Voltage-gated K+ channels contain a central pore domain and four surrounding voltage-sensing domains. How and where changes in the structure of the voltage-sensing domains couple to the pore domain so as to gate ion conduction is not understood. The crystal structure of KcsA, a bacterial K+ channel homologous to the pore domain of voltage-gated K+ channels, provides a starting point for addressing this question. Guided by this structure, we used tryptophan-scanning mutagenesis on the transmembrane shell of the pore domain in the Shaker voltage-gated K+ channel to localize potential protein-protein and protein-lipid interfaces. Some mutants cause only minor changes in gating and when mapped onto the KcsA structure cluster away from the interface between pore domain subunits. In contrast, mutants producing large changes in gating tend to cluster near this interface. These results imply that voltage-sensing domains interact with localized regions near the interface between adjacent pore domain subunits.

  8. Hydrophobic interaction between the SH2 domain and the kinase domain is required for the activation of Csk.

    Science.gov (United States)

    Mikkola, Esa T; Gahmberg, Carl G

    2010-06-18

    The protein tyrosine kinase C-terminal Src kinase (Csk) is activated by the engagement of its Src homology (SH) 2 domain. However, the molecular mechanism required for this is not completely understood. The crystal structure of the active Csk indicates that Csk could be activated by contact between the SH2 domain and the beta3-alphaC loop in the N-terminal lobe of the kinase domain. To study the importance of this interaction for the SH2-domain-mediated activation of Csk, we mutated the amino acid residues forming the contacts between the SH2 domain and the beta3-alphaC loop. The mutation of the beta3-alphaC loop Ala228 to glycine and of the SH2 domain Tyr116, Tyr133, Leu138, and Leu149 to alanine resulted in the inability of the SH2 domain ligand to activate Csk. Furthermore, the overexpressed Csk mutants A228G, Y133A/Y116A, L138A, and L149A were unable to efficiently inactivate endogenous Src in human embryonic kidney 293 cells. The results suggest that the SH2-domain-mediated activation of Csk is dependent on the binding of the beta3-alphaC loop Ala228 to the hydrophobic pocket formed by the side chains of Tyr116, Tyr133, Leu138, and Leu149 on the surface of the SH2 domain. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    Directory of Open Access Journals (Sweden)

    Marc Lenoir

    2015-10-01

    Full Text Available The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH and Tec homology (TH domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  10. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    Science.gov (United States)

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-10-23

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  11. INVESTIGATING THE ROLE OF PDZ-DOMAIN INTERACTIONS FOR DOPAMINE TRANSPORTER FUNCTION

    DEFF Research Database (Denmark)

    Fog, Jacob; Vægter, Christian Bjerggaard; Gether, Ulrik

    canonical PDZ domain interactions with proteins such as PICK1. To clarify the actual role of PDZ domain interactions for DAT function we have expressed the wild type DAT and a number of C-terminal mutants either alone or together with PICK1 in HEK293, N2A neuroblastoma and PC12 cells. Data obtained from...

  12. Modes of Interaction of Pleckstrin Homology Domains with Membranes: Toward a Computational Biochemistry of Membrane Recognition.

    Science.gov (United States)

    Naughton, Fiona B; Kalli, Antreas C; Sansom, Mark S P

    2018-02-02

    Pleckstrin homology (PH) domains mediate protein-membrane interactions by binding to phosphatidylinositol phosphate (PIP) molecules. The structural and energetic basis of selective PH-PIP interactions is central to understanding many cellular processes, yet the molecular complexities of the PH-PIP interactions are largely unknown. Molecular dynamics simulations using a coarse-grained model enables estimation of free-energy landscapes for the interactions of 12 different PH domains with membranes containing PIP 2 or PIP 3 , allowing us to obtain a detailed molecular energetic understanding of the complexities of the interactions of the PH domains with PIP molecules in membranes. Distinct binding modes, corresponding to different distributions of cationic residues on the PH domain, were observed, involving PIP interactions at either the "canonical" (C) and/or "alternate" (A) sites. PH domains can be grouped by the relative strength of their C- and A-site interactions, revealing that a higher affinity correlates with increased C-site interactions. These simulations demonstrate that simultaneous binding of multiple PIP molecules by PH domains contributes to high-affinity membrane interactions, informing our understanding of membrane recognition by PH domains in vivo. Copyright © 2017. Published by Elsevier Ltd.

  13. iPfam: a database of protein family and domain interactions found in the Protein Data Bank.

    Science.gov (United States)

    Finn, Robert D; Miller, Benjamin L; Clements, Jody; Bateman, Alex

    2014-01-01

    The database iPfam, available at http://ipfam.org, catalogues Pfam domain interactions based on known 3D structures that are found in the Protein Data Bank, providing interaction data at the molecular level. Previously, the iPfam domain-domain interaction data was integrated within the Pfam database and website, but it has now been migrated to a separate database. This allows for independent development, improving data access and giving clearer separation between the protein family and interactions datasets. In addition to domain-domain interactions, iPfam has been expanded to include interaction data for domain bound small molecule ligands. Functional annotations are provided from source databases, supplemented by the incorporation of Wikipedia articles where available. iPfam (version 1.0) contains >9500 domain-domain and 15 500 domain-ligand interactions. The new website provides access to this data in a variety of ways, including interactive visualizations of the interaction data.

  14. Interaction between focal adhesion kinase and Crk-associated tyrosine kinase substrate p130Cas.

    Science.gov (United States)

    Polte, T R; Hanks, S K

    1995-11-07

    The focal adhesion kinase (FAK) has been implicated in integrin-mediated signaling events and in the mechanism of cell transformation by the v-Src and v-Crk oncoproteins. To gain further insight into FAK signaling pathways, we used a two-hybrid screen to identify proteins that interact with mouse FAK. The screen identified two proteins that interact with FAK via their Src homology 3 (SH3) domains: a v-Crk-associated tyrosine kinase substrate (Cas), p130Cas, and a still uncharacterized protein, FIPSH3-2, which contains an SH3 domain closely related to that of p130Cas. These SH3 domains bind to the same proline-rich region of FAK (APPKPSR) encompassing residues 711-717. The mouse p130Cas amino acid sequence was deduced from cDNA clones, revealing an overall high degree of similarity to the recently reported rat sequence. Coimmunoprecipitation experiments confirmed that p130Cas and FAK are associated in mouse fibroblasts. The stable interaction between p130Cas and FAK emerges as a likely key element in integrin-mediated signal transduction and further represents a direct molecular link between the v-Src and v-Crk oncoproteins. The Src family kinase Fyn, whose Src homology 2 (SH2) domain binds to the major FAK autophosphorylation site (tyrosine 397), was also identified in the two-hybrid screen.

  15. Monopoles, vortices, domain walls and D-branes: The rules of interaction

    International Nuclear Information System (INIS)

    Sakai, Norisuke; Tong, David

    2005-01-01

    Non-abelian gauge theories in the Higgs phase admit a startling variety of BPS solitons. These include domain walls, vortex strings, confined monopoles threaded on vortex strings, vortex strings ending on domain walls, monopoles threaded on strings ending on domain walls, and more. After presenting a self-contained review of these objects, including several new results on the dynamics of domain walls, we go on to examine the possible interactions of solitons of various types. We point out the existence of a classical binding energy when the string ends on the domain wall which can be thought of as a BPS boojum with negative mass. We present an index theorem for domain walls in non-abelian gauge theories. We also answer questions such as: Which strings can end on which walls? What happens when monopoles pass through domain walls? What happens when domain walls pass through each other? (author)

  16. Domain cooperativity in the β1a subunit is essential for dihydropyridine receptor voltage sensing in skeletal muscle.

    Science.gov (United States)

    Dayal, Anamika; Bhat, Vinayakumar; Franzini-Armstrong, Clara; Grabner, Manfred

    2013-04-30

    The dihydropyridine receptor (DHPR) β1a subunit is crucial for enhancement of DHPR triad expression, assembly of DHPRs in tetrads, and elicitation of DHPRα1S charge movement--the three prerequisites of skeletal muscle excitation-contraction coupling. Despite the ability to fully target α1S into triadic junctions and tetradic arrays, the neuronal isoform β3 was unable to restore considerable charge movement (measure of α1S voltage sensing) upon expression in β1-null zebrafish relaxed myotubes, unlike the other three vertebrate β-isoforms (β1a, β2a, and β4). Thus, we used β3 for chimerization with β1a to investigate whether any of the five distinct molecular regions of β1a is dominantly involved in inducing the voltage-sensing function of α1S. Surprisingly, systematic domain swapping between β1a and β3 revealed a pivotal role of the src homology 3 (SH3) domain and C terminus of β1a in charge movement restoration. More interestingly, β1a SH3 domain and C terminus, when simultaneously engineered into β3 sequence background, were able to fully restore charge movement together with proper intracellular Ca(2+) release, suggesting cooperativity of these two domains in induction of the α1S voltage-sensing function in skeletal muscle excitation-contraction coupling. Furthermore, substitution of a proline by alanine in the putative SH3-binding polyproline motif in the proximal C terminus of β1a (also of β2a and β4) fully obstructed α1S charge movement. Consequently, we postulate a model according to which β subunits, probably via the SH3-C-terminal polyproline interaction, adapt a discrete conformation required to modify the α1S conformation apt for voltage sensing in skeletal muscle.

  17. Domain requirements for the Dock adapter protein in growth- cone signaling

    OpenAIRE

    Rao, Yong; Zipursky, S. Lawrence

    1998-01-01

    Tyrosine phosphorylation has been implicated in growth-cone guidance through genetic, biochemical, and pharmacological studies. Adapter proteins containing src homology 2 (SH2) domains and src homology 3 (SH3) domains provide a means of linking guidance signaling through phosphotyrosine to downstream effectors regulating growth-cone motility. The Drosophila adapter, Dreadlocks (Dock), the homolog of mammalian Nck containing three N-terminal SH3 domains and a single SH2 domain, is highly speci...

  18. Mechanism of mRNA-STAR domain interaction: Molecular dynamics simulations of Mammalian Quaking STAR protein.

    Science.gov (United States)

    Sharma, Monika; Anirudh, C R

    2017-10-03

    STAR proteins are evolutionary conserved mRNA-binding proteins that post-transcriptionally regulate gene expression at all stages of RNA metabolism. These proteins possess conserved STAR domain that recognizes identical RNA regulatory elements as YUAAY. Recently reported crystal structures show that STAR domain is composed of N-terminal QUA1, K-homology domain (KH) and C-terminal QUA2, and mRNA binding is mediated by KH-QUA2 domain. Here, we present simulation studies done to investigate binding of mRNA to STAR protein, mammalian Quaking protein (QKI). We carried out conventional MD simulations of STAR domain in presence and absence of mRNA, and studied the impact of mRNA on the stability, dynamics and underlying allosteric mechanism of STAR domain. Our unbiased simulations results show that presence of mRNA stabilizes the overall STAR domain by reducing the structural deviations, correlating the 'within-domain' motions, and maintaining the native contacts information. Absence of mRNA not only influenced the essential modes of motion of STAR domain, but also affected the connectivity of networks within STAR domain. We further explored the dissociation of mRNA from STAR domain using umbrella sampling simulations, and the results suggest that mRNA binding to STAR domain occurs in multi-step: first conformational selection of mRNA backbone conformations, followed by induced fit mechanism as nucleobases interact with STAR domain.

  19. Carbon-13 NMR study of switch variant anti-dansyl antibodies: Antigen binding and domain-domain interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Koichi; Matsunaga, Chigusa; Odaka, Asano; Yamato, Sumie; Takaha, Wakana; Shimada, Ichio; Arata, Yoji (Univ. of Tokyo (Japan))

    1991-07-02

    A {sup 13}C NMR study is reported of switch variant anti-dansyl antibodies, which possess the identical V{sub H}, V{sub L}, and C{sub L} domains in conjunction with highly homologous but not identical heavy-chain constant regions. Each of the antibodies has been selectively labeled with {sup 13}C at the carbonyl carbon of Trp, Tyr, His, or Cys residue by growing hybridoma cells in serum-free medium. Spectral assignments have been made by folowing the procedure described previously for the switch variant antibodies labeled with (1-{sup 13}C)Met. On the basis of the spectral data collected for the antibodies and their proteolytic fragments, the authors discuss how {sup 13}C NMR spectroscopy can be used for the structural analyses of antigen binding and also of domain-domain interactions in the antibody molecule.

  20. Carbon-13 NMR study of switch variant anti-dansyl antibodies: Antigen binding and domain-domain interactions

    International Nuclear Information System (INIS)

    Kato, Koichi; Matsunaga, Chigusa; Odaka, Asano; Yamato, Sumie; Takaha, Wakana; Shimada, Ichio; Arata, Yoji

    1991-01-01

    A 13 C NMR study is reported of switch variant anti-dansyl antibodies, which possess the identical V H , V L , and C L domains in conjunction with highly homologous but not identical heavy-chain constant regions. Each of the antibodies has been selectively labeled with 13 C at the carbonyl carbon of Trp, Tyr, His, or Cys residue by growing hybridoma cells in serum-free medium. Spectral assignments have been made by folowing the procedure described previously for the switch variant antibodies labeled with [1- 13 C]Met. On the basis of the spectral data collected for the antibodies and their proteolytic fragments, the authors discuss how 13 C NMR spectroscopy can be used for the structural analyses of antigen binding and also of domain-domain interactions in the antibody molecule

  1. NNAlign: a platform to construct and evaluate artificial neural network models of receptor-ligand interactions

    DEFF Research Database (Denmark)

    Nielsen, Morten; Andreatta, Massimo

    2017-01-01

    Peptides are extensively used to characterize functional or (linear) structural aspects of receptor-ligand interactions in biological systems, e.g. SH2, SH3, PDZ peptide-recognition domains, the MHC membrane receptors and enzymes such as kinases and phosphatases. NNAlign is a method for the ident...... with insertions and deletions, encoding of receptor pseudo-sequences, and custom alphabets for the training sequences. The server is available at http://www.cbs.dtu.dk/services/NNAlign-2.0....

  2. A domain-based approach to predict protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Resat Haluk

    2007-06-01

    Full Text Available Abstract Background Knowing which proteins exist in a certain organism or cell type and how these proteins interact with each other are necessary for the understanding of biological processes at the whole cell level. The determination of the protein-protein interaction (PPI networks has been the subject of extensive research. Despite the development of reasonably successful methods, serious technical difficulties still exist. In this paper we present DomainGA, a quantitative computational approach that uses the information about the domain-domain interactions to predict the interactions between proteins. Results DomainGA is a multi-parameter optimization method in which the available PPI information is used to derive a quantitative scoring scheme for the domain-domain pairs. Obtained domain interaction scores are then used to predict whether a pair of proteins interacts. Using the yeast PPI data and a series of tests, we show the robustness and insensitivity of the DomainGA method to the selection of the parameter sets, score ranges, and detection rules. Our DomainGA method achieves very high explanation ratios for the positive and negative PPIs in yeast. Based on our cross-verification tests on human PPIs, comparison of the optimized scores with the structurally observed domain interactions obtained from the iPFAM database, and sensitivity and specificity analysis; we conclude that our DomainGA method shows great promise to be applicable across multiple organisms. Conclusion We envision the DomainGA as a first step of a multiple tier approach to constructing organism specific PPIs. As it is based on fundamental structural information, the DomainGA approach can be used to create potential PPIs and the accuracy of the constructed interaction template can be further improved using complementary methods. Explanation ratios obtained in the reported test case studies clearly show that the false prediction rates of the template networks constructed

  3. Interaction domains in high-performance NdFeB thick films

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, T.G. [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)], E-mail: t.woodcock@ifw-dresden.de; Khlopkov, K. [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Walther, A. [Insitut Neel, CNRS-UJF, 25 avenue de Martyrs, 38042 Grenoble (France); CEA Leti - MINATEC, 17 rue des Martyrs, 38054 Grenoble (France); Dempsey, N.M.; Givord, D. [Insitut Neel, CNRS-UJF, 25 avenue de Martyrs, 38042 Grenoble (France); Schultz, L.; Gutfleisch, O. [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2009-05-15

    The magnetic domain structure in sputtered NdFeB thick films has been imaged by magnetic force microscopy. The local texture of the films was investigated by electron backscatter diffraction. The average misorientation of the grains was shown to decrease with increasing substrate temperature during deposition. Interaction domains were observed and are discussed with reference (i) to the sample grain size compared to the single domain particle size and (ii) to sample texture.

  4. DomPep--a general method for predicting modular domain-mediated protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Lei Li

    Full Text Available Protein-protein interactions (PPIs are frequently mediated by the binding of a modular domain in one protein to a short, linear peptide motif in its partner. The advent of proteomic methods such as peptide and protein arrays has led to the accumulation of a wealth of interaction data for modular interaction domains. Although several computational programs have been developed to predict modular domain-mediated PPI events, they are often restricted to a given domain type. We describe DomPep, a method that can potentially be used to predict PPIs mediated by any modular domains. DomPep combines proteomic data with sequence information to achieve high accuracy and high coverage in PPI prediction. Proteomic binding data were employed to determine a simple yet novel parameter Ligand-Binding Similarity which, in turn, is used to calibrate Domain Sequence Identity and Position-Weighted-Matrix distance, two parameters that are used in constructing prediction models. Moreover, DomPep can be used to predict PPIs for both domains with experimental binding data and those without. Using the PDZ and SH2 domain families as test cases, we show that DomPep can predict PPIs with accuracies superior to existing methods. To evaluate DomPep as a discovery tool, we deployed DomPep to identify interactions mediated by three human PDZ domains. Subsequent in-solution binding assays validated the high accuracy of DomPep in predicting authentic PPIs at the proteome scale. Because DomPep makes use of only interaction data and the primary sequence of a domain, it can be readily expanded to include other types of modular domains.

  5. Structural basis for phosphopantetheinyl carrier domain interactions in the terminal module of nonribosomal peptide synthetases

    Science.gov (United States)

    Liu, Ye; Zheng, Tengfei; Bruner, Steven D.

    2011-01-01

    Summary Phosphopantetheine-modified carrier domains play a central role in the template-directed, biosynthesis of several classes of primary and secondary metabolites. Fatty acids, polyketides and nonribosomal peptides are constructed on multidomain enzyme assemblies using phosphopantetheinyl thioester-linked carrier domains to traffic and activate building blocks. The carrier domain is a dynamic component of the process, shuttling pathway intermediates to sequential enzyme active sites. Here we report an approach to structurally fix carrier domain/enzyme constructs suitable for X-ray crystallographic analysis. The structure of a two-domain construct of E. coli EntF was determined with a conjugated phosphopantetheinyl-based inhibitor. The didomain structure is locked in an active orientation relevant to the chemistry of nonribosomal peptide biosynthesis. This structure provides details into the interaction of phosphopantetheine arm with the carrier domain and the active site of the thioesterase domain. PMID:22118682

  6. 15NH/D-SOLEXSY experiment for accurate measurement of amide solvent exchange rates: application to denatured drkN SH3

    International Nuclear Information System (INIS)

    Chevelkov, Veniamin; Xue, Yi; Krishna Rao, D.; Forman-Kay, Julie D.; Skrynnikov, Nikolai R.

    2010-01-01

    Amide solvent exchange rates are regarded as a valuable source of information on structure/dynamics of unfolded (disordered) proteins. Proton-based saturation transfer experiments, normally used to measure solvent exchange, are known to meet some serious difficulties. The problems mainly arise from the need to (1) manipulate water magnetization and (2) discriminate between multiple magnetization transfer pathways that occur within the proton pool. Some of these issues are specific to unfolded proteins. For example, the compensation scheme used to cancel the Overhauser effect in the popular CLEANEX experiment is not designed for use with unfolded proteins. In this report we describe an alternative experimental strategy, where amide 15 N is used as a probe of solvent exchange. The experiment is performed in 50% H 2 O-50% D 2 O solvent and is based on the (HACACO)NH pulse sequence. The resulting spectral map is fully equivalent to the conventional HSQC. To fulfill its purpose, the experiment monitors the conversion of deuterated species, 15 N D , into protonated species, 15 N H , as effected by the solvent exchange. Conceptually, this experiment is similar to EXSY which prompted the name of 15 N H/D -SOLEXSY (SOLvent EXchange SpectroscopY). Of note, our experimental scheme, which relies on nitrogen rather than proton to monitor solvent exchange, is free of the complications described above. The developed pulse sequence was used to measure solvent exchange rates in the chemically denatured state of the drkN SH3 domain. The results were found to correlate well with the CLEANEX-PM data, r = 0.97, thus providing a measure of validation for both techniques. When the experimentally measured exchange rates are converted into protection factors, most of the values fall in the range 0.5-2, consistent with random-coil behavior. However, elevated values, ca. 5, are obtained for residues R38 and A39, as well as the side-chain indole of W36. This is surprising, given that high

  7. Protein-lipid interactions: from membrane domains to cellular networks

    National Research Council Canada - National Science Library

    Tamm, Lukas K

    2005-01-01

    ... membranes is the lipid bilayer. Embedded in the fluid lipid bilayer are proteins of various shapes and traits. This volume illuminates from physical, chemical and biological angles the numerous - mostly quite weak - interactions between lipids, proteins, and proteins and lipids that define the delicate, highly dynamic and yet so stable fabri...

  8. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-05-01

    Protein-protein interactions modulate cellular processes in health and disease. However, tracing weak or rare associations or dissociations of proteins is not a trivial task. Kinases are often regulated through interaction partners and, at the same time, themselves regulate cellular interaction networks. The use of kinase domains for creating a synthetic sensor device that reads low concentration protein-protein interactions and amplifies them to a higher concentration interaction which is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain modules for the reading of kinase activity were assembled and expression protocols for fusion proteins containing Lyn, Src, and Fak kinase domains in bacterial and in cell-free systems were optimized. Also, two non-overlapping methods for measuring the kinase activity of these proteins were stablished and, finally, a protein-fragment complementation assay with the split-kinase constructs was tested. In conclusion, it has been demonstrated that features such as codon optimization, vector design and expression conditions have an impact on the expression yield and activity of kinase-based proteins. Furthermore, it has been found that the defined PURE cell-free system is insufficient for the active expression of catalytic kinase domains. In contrast, the bacterial co-expression with phosphatases produced active kinase fusion proteins for two out of the three tested Tyrosine kinase domains.

  9. Fluctuation and dipolar interaction effects on the pinning of domain walls

    International Nuclear Information System (INIS)

    Chui, S.T.

    2001-01-01

    We discuss the effect of the dipolar interaction on the pinning of domain walls. Domain walls are usually pinned near the boundaries between grains. Magnetic charges accumulated at the domain wall make the wall more unstable and easier to depin. We discuss how the grain-orientation and thermal fluctuations affect these magnetic charges and hence the depinning of the domain walls. Our results are illustrated by finite temperature Monte Carlo simulation on periodic arrays of large cells separated by walls consisting of faces of pyramids

  10. HIV-1 Nef interaction influences the ATP-binding site of the Src-family kinase, Hck

    Directory of Open Access Journals (Sweden)

    Pene-Dumitrescu Teodora

    2012-03-01

    Full Text Available Abstract Background Nef is an HIV-1 accessory protein essential for viral replication and AIDS progression. Nef interacts with a multitude of host cell signaling partners, including members of the Src kinase family. Nef preferentially activates Hck, a Src-family kinase (SFK strongly expressed in macrophages and other HIV target cells, by binding to its regulatory SH3 domain. Recently, we identified a series of kinase inhibitors that preferentially inhibit Hck in the presence of Nef. These compounds also block Nef-dependent HIV replication, validating the Nef-SFK signaling pathway as an antiretroviral drug target. Our findings also suggested that by binding to the Hck SH3 domain, Nef indirectly affects the conformation of the kinase active site to favor inhibitor association. Results To test this hypothesis, we engineered a "gatekeeper" mutant of Hck with enhanced sensitivity to the pyrazolopyrimidine tyrosine kinase inhibitor, NaPP1. We also modified the RT loop of the Hck SH3 domain to enhance interaction of the kinase with Nef. This modification stabilized Nef:Hck interaction in solution-based kinase assays, as a way to mimic the more stable association that likely occurs at cellular membranes. Introduction of the modified RT loop rendered Hck remarkably more sensitive to activation by Nef, and led to a significant decrease in the Km for ATP as well as enhanced inhibitor potency. Conclusions These observations suggest that stable interaction with Nef may induce Src-family kinase active site conformations amenable to selective inhibitor targeting.

  11. Membrane association of the Arabidopsis ARF exchange factor GNOM involves interaction of conserved domains

    DEFF Research Database (Denmark)

    Anders, Nadine; Nielsen, Michael M.; Keicher, Jutta

    2008-01-01

    vesicle formation by activating ARF GTPases on specific membranes in animals, plants, and fungi. However, apart from the catalytic exchange activity of the SEC7 domain, the functional significance of other conserved domains is virtually unknown. Here, we show that a distinct N-terminal domain of GNOM......The GNOM protein plays a fundamental role in Arabidopsis thaliana development by regulating endosome-to-plasma membrane trafficking required for polar localization of the auxin efflux carrier PIN1. GNOM is a family member of large ARF guanine nucleotide exchange factors (ARF-GEFs), which regulate...... mediates dimerization and in addition interacts heterotypically with two other conserved domains in vivo. In contrast with N-terminal dimerization, the heterotypic interaction is essential for GNOM function, as mutations abolishing this interaction inactivate the GNOM protein and compromise its membrane...

  12. Soil-structure interaction analysis of NPP containments: substructure and frequency domain methods

    International Nuclear Information System (INIS)

    Venancio-Filho, F.; Almeida, M.C.F.; Ferreira, W.G.; De Barros, F.C.P.

    1997-01-01

    Substructure and frequency domain methods for soil-structure interaction are addressed in this paper. After a brief description of mathematical models for the soil and of excitation, the equations for dynamic soil-structure interaction are developed for a rigid surface foundation and for an embedded foundation. The equations for the frequency domain analysis of MDOF systems are provided. An example of soil-structure interaction analysis with frequency-dependent soil properties is given and examples of identification of foundation impedance functions and soil properties are presented. (orig.)

  13. Interaction of calmodulin with the calmodulin binding domain of the plasma membrane Ca2+ pump

    International Nuclear Information System (INIS)

    Vorherr, T.; James, P.; Krebs, J.; Carafoli, E.; McCormick, D.J.; Penniston, J.T.; Enyedi, A.

    1990-01-01

    Peptides corresponding to the calmodulin binding domain of the plasma membrane Ca 2+ pump were synthesized, and their interaction with calmodulin was studied with circular dichroism, infrared spectroscopy, nuclear magnetic resonance, and fluorescence techniques. They corresponded to the complete calmodulin binding domain (28 residues), to its first 15 or 20 amino acids, and to its C-terminal 14 amino acids. The first three peptides interacted with calmodulin. The K value was similar to that of the intact enzyme in the 28 and 20 amino acid peptides, but increased substantially in the shorter 15 amino acid peptide. The 14 amino acid peptide corresponding to the C-terminal portion of the domain failed to bind calmodulin. 2D NMR experiments on the 20 amino acid peptides have indicated that the interaction occurred with the C-terminal half of calmodulin. A tryptophan that is conserved in most calmodulin binding domains of proteins was replaced by other amino acids, giving rise to modified peptides which had lower affinity for calmodulin. An 18 amino acid peptide corresponding to an acidic sequence immediately N-terminal to the calmodulin binding domain which is likely to be a Ca 2+ binding site in the pump was also synthesized. Circular dichroism experiments have shown that it interacted with calmodulin binding domain, supporting the suggestion that the latter, or a portion of it, may act as a natural inhibitor of the pump

  14. An Efficient Semi-supervised Learning Approach to Predict SH2 Domain Mediated Interactions.

    Science.gov (United States)

    Kundu, Kousik; Backofen, Rolf

    2017-01-01

    Src homology 2 (SH2) domain is an important subclass of modular protein domains that plays an indispensable role in several biological processes in eukaryotes. SH2 domains specifically bind to the phosphotyrosine residue of their binding peptides to facilitate various molecular functions. For determining the subtle binding specificities of SH2 domains, it is very important to understand the intriguing mechanisms by which these domains recognize their target peptides in a complex cellular environment. There are several attempts have been made to predict SH2-peptide interactions using high-throughput data. However, these high-throughput data are often affected by a low signal to noise ratio. Furthermore, the prediction methods have several additional shortcomings, such as linearity problem, high computational complexity, etc. Thus, computational identification of SH2-peptide interactions using high-throughput data remains challenging. Here, we propose a machine learning approach based on an efficient semi-supervised learning technique for the prediction of 51 SH2 domain mediated interactions in the human proteome. In our study, we have successfully employed several strategies to tackle the major problems in computational identification of SH2-peptide interactions.

  15. Heavy ion interactions in the TeV energy domain

    International Nuclear Information System (INIS)

    Persson, Stefan.

    1989-01-01

    Heavy-ion interactions at 60 and 200 A GeV have been studied at the CERN SPS. The energy flow in the pseudo-rapidity region >2.4 is studied with two sampling calorimeters in the WA80 experiment. It is concluded that the nuclear geometry plays an important role for energy flow in nucleus-nucleus collisions at these energies. The laser system for the gain control of the sampling calorimeters is described as well. A new emulsion technique for accurate angular measurements in the pseudo-rapidity region >1.3 used in the EMU01 experiment is described. With this technique the pseudo-rapidity distributions of relativistic singly charged particles are studied. The conclusion is that the geometry together with the fluctuations in participating nucleons, break-up of strings and decay of resonances can describe the obtained results. The standard emulsion technique is used to study the target fragmentation in nucleus-nucleus collisions at 200 A GeV. It is found that a first order cascade correction alone is unable to explain the observed emulsion results on target related fragments. (author)

  16. Structural interactions between lipids, water and S1-S4 voltage-sensing domains.

    Science.gov (United States)

    Krepkiy, Dmitriy; Gawrisch, Klaus; Swartz, Kenton J

    2012-11-02

    Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains and that these interactions have lifetimes on the timescale of ≤ 10(-3)s. Arg residues within S1-S4 domains are well hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid headgroups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane yet are well hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage. Published by Elsevier Ltd.

  17. Cytoprophet: a Cytoscape plug-in for protein and domain interaction networks inference.

    Science.gov (United States)

    Morcos, Faruck; Lamanna, Charles; Sikora, Marcin; Izaguirre, Jesús

    2008-10-01

    Cytoprophet is a software tool that allows prediction and visualization of protein and domain interaction networks. It is implemented as a plug-in of Cytoscape, an open source software framework for analysis and visualization of molecular networks. Cytoprophet implements three algorithms that predict new potential physical interactions using the domain composition of proteins and experimental assays. The algorithms for protein and domain interaction inference include maximum likelihood estimation (MLE) using expectation maximization (EM); the set cover approach maximum specificity set cover (MSSC) and the sum-product algorithm (SPA). After accepting an input set of proteins with Uniprot ID/Accession numbers and a selected prediction algorithm, Cytoprophet draws a network of potential interactions with probability scores and GO distances as edge attributes. A network of domain interactions between the domains of the initial protein list can also be generated. Cytoprophet was designed to take advantage of the visual capabilities of Cytoscape and be simple to use. An example of inference in a signaling network of myxobacterium Myxococcus xanthus is presented and available at Cytoprophet's website. http://cytoprophet.cse.nd.edu.

  18. The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK-Receptor Interactions.

    Science.gov (United States)

    Ferrao, Ryan; Lupardus, Patrick J

    2017-01-01

    The Janus kinases (JAKs) are non-receptor tyrosine kinases essential for signaling in response to cytokines and interferons and thereby control many essential functions in growth, development, and immune regulation. JAKs are unique among tyrosine kinases for their constitutive yet non-covalent association with class I and II cytokine receptors, which upon cytokine binding bring together two JAKs to create an active signaling complex. JAK association with cytokine receptors is facilitated by N-terminal FERM and SH2 domains, both of which are classical mediators of peptide interactions. Together, the JAK FERM and SH2 domains mediate a bipartite interaction with two distinct receptor peptide motifs, the proline-rich "Box1" and hydrophobic "Box2," which are present in the intracellular domain of cytokine receptors. While the general sidechain chemistry of Box1 and Box2 peptides is conserved between receptors, they share very weak primary sequence homology, making it impossible to posit why certain JAKs preferentially interact with and signal through specific subsets of cytokine receptors. Here, we review the structure and function of the JAK FERM and SH2 domains in light of several recent studies that reveal their atomic structure and elucidate interaction mechanisms with both the Box1 and Box2 receptor motifs. These crystal structures demonstrate how evolution has repurposed the JAK FERM and SH2 domains into a receptor-binding module that facilitates interactions with multiple receptors possessing diverse primary sequences.

  19. The pilus usher controls protein interactions via domain masking and is functional as an oligomer.

    Science.gov (United States)

    Werneburg, Glenn T; Henderson, Nadine S; Portnoy, Erica B; Sarowar, Samema; Hultgren, Scott J; Li, Huilin; Thanassi, David G

    2015-07-01

    The chaperone-usher (CU) pathway assembles organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Biogenesis of pili by the CU pathway requires a periplasmic chaperone and an outer-membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate-binding site but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which serves as a switch controlling usher activation. We demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.

  20. Stability, interaction and influence of domain boundaries in Ge/Si(111)-5 × 5

    International Nuclear Information System (INIS)

    Ondráček, Martin; Mutombo, Pingo; Chvoj, Zdeněk; Chromcová, Zdeňka; Jelínek, Pavel; Mark, Andrew G; McLean, Alastair B

    2012-01-01

    We present a theoretical investigation of the influence of domain boundaries on the Ge/Si(111)-5 × 5 phase using both large-scale DFT simulations and an analytical model. It is shown that different boundary types modify the atomic and electronic structure of the adjoining 5 × 5 domains in very different ways. A simple theoretical model, that describes the energy interaction J between the boundaries and the 5 × 5 phase, is presented and the interaction energy decay J(x) ≈ x -n for different domain boundaries is estimated. Additionally, the influence of the boundaries on the atomic and electronic structure of adatoms in the parental 5 × 5 phase is analyzed and it is argued that the presence of domain boundaries may strongly affect not only the physical but also the chemical properties of the Ge/Si(111)-5 × 5 phase.

  1. A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies.

    Science.gov (United States)

    Zahn, Raphael; Osmanović, Dino; Ehret, Severin; Araya Callis, Carolina; Frey, Steffen; Stewart, Murray; You, Changjiang; Görlich, Dirk; Hoogenboom, Bart W; Richter, Ralf P

    2016-04-08

    The permeability barrier of nuclear pore complexes (NPCs) controls bulk nucleocytoplasmic exchange. It consists of nucleoporin domains rich in phenylalanine-glycine motifs (FG domains). As a bottom-up nanoscale model for the permeability barrier, we have used planar films produced with three different end-grafted FG domains, and quantitatively analyzed the binding of two different nuclear transport receptors (NTRs), NTF2 and Importin β, together with the concomitant film thickness changes. NTR binding caused only moderate changes in film thickness; the binding isotherms showed negative cooperativity and could all be mapped onto a single master curve. This universal NTR binding behavior - a key element for the transport selectivity of the NPC - was quantitatively reproduced by a physical model that treats FG domains as regular, flexible polymers, and NTRs as spherical colloids with a homogeneous surface, ignoring the detailed arrangement of interaction sites along FG domains and on the NTR surface.

  2. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions.

    Science.gov (United States)

    Delaforge, Elise; Milles, Sigrid; Huang, Jie-Rong; Bouvier, Denis; Jensen, Malene Ringkjøbing; Sattler, Michael; Hart, Darren J; Blackledge, Martin

    2016-01-01

    Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales.

  3. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Elise Delaforge

    2016-09-01

    Full Text Available Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales.

  4. Comparing domain interactions within antibody Fabs with kappa and lambda light chains.

    Science.gov (United States)

    Toughiri, Raheleh; Wu, Xiufeng; Ruiz, Diana; Huang, Flora; Crissman, John W; Dickey, Mark; Froning, Karen; Conner, Elaine M; Cujec, Thomas P; Demarest, Stephen J

    2016-10-01

    IgG antibodies are multi-domain proteins with complex inter-domain interactions. Human IgG heavy chains (HCs) associate with light chains (LCs) of the κ or λ isotype to form mature antibodies capable of binding antigen. The HC/LC interaction involves 4 domains: VH and CH1 from the HC and VL and CL from the LC. Human Fabs with κ LCs have been well characterized for their unfolding behaviors and demonstrate a significant level of cooperativity and stabilization when all 4 domains are intact. Very little is known regarding the thermodynamic properties of human Fabs with λ LCs. Here, we dissect the domain contributions to Fab stability for both κ and λ LC-containing Fabs. We find the cooperativity of unfolding between the constant domains, CH1/Cλ, and variable domains, VH/Vλ, within λ LC-containing Fabs is significantly weaker than that of κ LC-containing Fabs. The data suggests there may not be an evolutionary necessity for strong variable/constant domain cooperativity within λ LC-containing Fabs. After investigating the biophysical properties of Fabs with mismatched variable and constant domain subunits (e.g., VH/Vκ paired with CH1/Cλ or T cell receptor Cα/Cβ), the major role of the constant domains for both κ- and λ-containing Fabs may be to reduce the hydrophobic exposure at the VH/VL interface. Even though Fabs with these non-native pairings were thermodynamically less stable, they secreted well from mammalian cells as well behaved monodisperse proteins, which was in contrast to what was observed with the VH/Vκ and VH/Vλ scFvs that secreted as a mixture of monomer and aggregates.

  5. Interaction of the superconducting domains induced by external electric field with electromagnetic waves

    International Nuclear Information System (INIS)

    Shapiro, B.Y.

    1992-01-01

    The behavior of a superconductor in time-independent electric field perpendicular to the surface and in the external electromagnetic wave is theoretically investigated. A new type of the resonance interaction between superconducting domains localized along the magnetic field (if the superconducting phase transition takes place in the external magnetic field perpendicular to the surface) and electromagnetic waves is predicted. The surface impedance of the superconductor with domains is calculated. It is shown that the real part of the impedance has a saturation if the skin length equals the domain size. (orig.)

  6. The measles virus phosphoprotein interacts with the linker domain of STAT1

    International Nuclear Information System (INIS)

    Devaux, Patricia; Priniski, Lauren; Cattaneo, Roberto

    2013-01-01

    The measles virus (MV) phosphoprotein (P) and V proteins block the interferon (IFN) response by impeding phosphorylation of the signal transducer and activator of transcription 1 (STAT1) by the Janus kinase 1 (JAK1). We characterized how STAT1 mutants interact with P and JAK1 phosphorylation. Certain mutants of the linker, the Src-homology 2 domain (SH2), or the transactivation domain had reduced or abolished phosphorylation through JAK1 after IFN treatment. Other mutants, mainly localized in the linker, failed to interact with P as documented by the lack of interference with nuclear translocation. Thus the functional footprint of P on STAT1 localizes mainly to the linker domain; there is also some overlap with the STAT1 phosphorylation functional footprint on the SH2 domain. Based on these observations, we discuss how the MV-P might operate to inhibit the JAK/STAT pathway. - Highlights: • Residue in the linker and SH2 domains of STAT1 are important for MV-P interaction. • Residue in the linker and SH2 domains of STAT1 are important for STAT1 phosphorylation. • Residues interferring with both functions have similar location on STAT1. • The viral P and V proteins may operate in concert to inhibit the JAK/STAT pathway

  7. The measles virus phosphoprotein interacts with the linker domain of STAT1

    Energy Technology Data Exchange (ETDEWEB)

    Devaux, Patricia, E-mail: devaux.patricia@mayo.edu; Priniski, Lauren; Cattaneo, Roberto

    2013-09-15

    The measles virus (MV) phosphoprotein (P) and V proteins block the interferon (IFN) response by impeding phosphorylation of the signal transducer and activator of transcription 1 (STAT1) by the Janus kinase 1 (JAK1). We characterized how STAT1 mutants interact with P and JAK1 phosphorylation. Certain mutants of the linker, the Src-homology 2 domain (SH2), or the transactivation domain had reduced or abolished phosphorylation through JAK1 after IFN treatment. Other mutants, mainly localized in the linker, failed to interact with P as documented by the lack of interference with nuclear translocation. Thus the functional footprint of P on STAT1 localizes mainly to the linker domain; there is also some overlap with the STAT1 phosphorylation functional footprint on the SH2 domain. Based on these observations, we discuss how the MV-P might operate to inhibit the JAK/STAT pathway. - Highlights: • Residue in the linker and SH2 domains of STAT1 are important for MV-P interaction. • Residue in the linker and SH2 domains of STAT1 are important for STAT1 phosphorylation. • Residues interferring with both functions have similar location on STAT1. • The viral P and V proteins may operate in concert to inhibit the JAK/STAT pathway.

  8. Mutations in actin used for structural studies partially disrupt β-thymosin/WH2 domains interaction.

    Science.gov (United States)

    Deville, Célia; Girard-Blanc, Christine; Assrir, Nadine; Nhiri, Naïma; Jacquet, Eric; Bontems, François; Renault, Louis; Petres, Stéphane; van Heijenoort, Carine

    2016-10-01

    Understanding the structural basis of actin cytoskeleton remodeling requires stabilization of actin monomers, oligomers, and filaments in complex with partner proteins, using various biochemical strategies. Here, we report a dramatic destabilization of the dynamic interaction with a model β-thymosin/WH2 domain induced by mutations in actin. This result underlines that mutant actins should be used with prudence to characterize interactions with intrinsically disordered partners as destabilization of dynamic interactions, although identifiable by NMR, may be invisible to other structural techniques. It also highlights how both β-thymosin/WH2 domains and actin tune local structure and dynamics in regulatory processes involving intrinsically disordered domains. © 2016 Federation of European Biochemical Societies.

  9. Amino-terminal domain of classic cadherins determines the specificity of the adhesive interactions

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Troyanovsky, R B; Laur, O Y

    2000-01-01

    Classic cadherins are transmembrane receptors involved in cell type-specific calcium-dependent intercellular adhesion. The specificity of adhesion is mediated by homophilic interactions between cadherins extending from opposing cell surfaces. In addition, classic cadherins can self-associate form......Classic cadherins are transmembrane receptors involved in cell type-specific calcium-dependent intercellular adhesion. The specificity of adhesion is mediated by homophilic interactions between cadherins extending from opposing cell surfaces. In addition, classic cadherins can self....... To study lateral and adhesive intercadherin interactions, we examined interactions between two classic cadherins, E- and P-cadherins, in epithelial A-431 cells co-producing both proteins. We showed that these cells exhibited heterocomplexes consisting of laterally assembled E- and P....... The specificity of adhesive interaction was localized to the amino-terminal (EC1) domain of both cadherins. Thus, EC1 domain of classic cadherins exposes two determinants responsible for nonspecific lateral and cadherin type-specific adhesive dimerization....

  10. Identification of the interaction and interaction domains of chicken anemia virus VP2 and VP3 proteins.

    Science.gov (United States)

    Sun, Fenfen; Pan, Wei; Gao, Honglei; Qi, Xiaole; Qin, Liting; Wang, Yongqiang; Gao, Yulong; Wang, Xiaomei

    2018-01-01

    Chicken anemia virus (CAV) is a small, single-stranded DNA virus of Anelloviridae family. Its genome segments encode three proteins, VP1, VP2, and VP3. This study identified an interaction between VP2 and VP3 and mapped the interaction domains. Through the yeast two-hybrid (Y2H) system, VP2 was found to interact with VP3. The presence of the VP2-VP3 complex in CAV-infected chicken cells was confirmed by co-immunoprecipitation. Confocal microscopy showed that VP2 and VP3 were expressed in the cytoplasm in cotransfected Vero cells. In the Y2H system, the interaction domains were identified as being within the N-terminal aa 1-30 and C-terminal aa 17-60 for VP2 and the N-terminal aa 46-60 and C-terminal aa 1-7 for VP3. This study showed the interaction between VP2 and VP3 of CAV and identified multiple independent interactive domains within the two proteins. This provides novel information for investigating the biological functions of these proteins. Copyright © 2017. Published by Elsevier Inc.

  11. Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions

    International Nuclear Information System (INIS)

    Eibl, Clarissa; Hessenberger, Manuel; Wenger, Julia; Brandstetter, Hans

    2014-01-01

    Pyrin domains (PYDs) recruit downstream effector molecules in NLR signalling. A specific charge-relay system suggests a the formation of a signalling complex involving a PYD dimer. The cytosolic tripartite NLR receptors serve as important signalling platforms in innate immunity. While the C-terminal domains act as sensor and activation modules, the N-terminal death-like domain, e.g. the CARD or pyrin domain, is thought to recruit downstream effector molecules by homotypic interactions. Such homotypic complexes have been determined for all members of the death-domain superfamily except for pyrin domains. Here, crystal structures of human NLRP14 pyrin-domain variants are reported. The wild-type protein as well as the clinical D86V mutant reveal an unexpected rearrangement of the C-terminal helix α6, resulting in an extended α5/6 stem-helix. This reordering mediates a novel symmetric pyrin-domain dimerization mode. The conformational switching is controlled by a charge-relay system with a drastic impact on protein stability. How the identified charge relay allows classification of NLRP receptors with respect to distinct recruitment mechanisms is discussed

  12. Domain-domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel.

    Science.gov (United States)

    Zaydman, Mark A; Kasimova, Marina A; McFarland, Kelli; Beller, Zachary; Hou, Panpan; Kinser, Holly E; Liang, Hongwu; Zhang, Guohui; Shi, Jingyi; Tarek, Mounir; Cui, Jianmin

    2014-12-23

    Voltage-gated ion channels generate electrical currents that control muscle contraction, encode neuronal information, and trigger hormonal release. Tissue-specific expression of accessory (β) subunits causes these channels to generate currents with distinct properties. In the heart, KCNQ1 voltage-gated potassium channels coassemble with KCNE1 β-subunits to generate the IKs current (Barhanin et al., 1996; Sanguinetti et al., 1996), an important current for maintenance of stable heart rhythms. KCNE1 significantly modulates the gating, permeation, and pharmacology of KCNQ1 (Wrobel et al., 2012; Sun et al., 2012; Abbott, 2014). These changes are essential for the physiological role of IKs (Silva and Rudy, 2005); however, after 18 years of study, no coherent mechanism explaining how KCNE1 affects KCNQ1 has emerged. Here we provide evidence of such a mechanism, whereby, KCNE1 alters the state-dependent interactions that functionally couple the voltage-sensing domains (VSDs) to the pore.

  13. The K Domain Mediates Homologous and Heterologous Interactions Between FLC and SVP Proteins of Brassica juncea

    Directory of Open Access Journals (Sweden)

    Ma Guanpeng

    2015-07-01

    Full Text Available The transcription factors FLOWERING LOCUS C (FLC and SHORT VEGETATIVE PHASE (SVP can interact to form homologous and heterologous protein complexes that regulate flowering time in Brassica juncea Coss. (Mustard.Previous studies showed that protein interactions were mediated by the K domain, which contains the subdomains K1, K2 and K3. However, it remains unknown how the subdomains mediate the interactions between FLC and SVP. In the present study, we constructed several mutants of subdomains K1–K3 and investigated the mechanisms involved in the heterologous interaction of BjFLC/BjSVP and in the homologous interaction of BjFLC/BjFLC or BjSVP/BjSVP. Yeast two-hybrid and β-Galactosidase activity assays showed that the 19 amino acids of the K1 subdomain in BjSVP and the 17 amino acids of the K1 subdomain in BjFLC were functional subdomains that interact with each other to mediate hetero-dimerization. The heterologous interaction was enhanced by the K2 subdomain of BjSVP protein, but weakened by its interhelical domain L2. The heterologous interaction was also enhanced by the K2 subdomain of BjFLC protein, but weakened by its K3 subdomain. The homologous interaction of BjSVP was mediated by the full K-domain. However, the homologous interaction of BjFLC was regulated only by its K1 and weakened by its K2 and K3 subdomains. The results provided new insights into the interactions between FLC and SVP, which will be valuable for further studies on the molecular regulation mechanisms of the regulation of flowering time in B. juncea and other Brassicaceae.

  14. A Model of Inter and Multi Disciplinary Domains, and their Mutual Interactions

    Directory of Open Access Journals (Sweden)

    Ophir Dan

    2014-02-01

    Full Text Available The Melvil Dewey Decimal Classification system maps the human knowledge domains into a library classification decimal system, which means that the knowledge is discretized. The domains are countable similarly to how Cantor proved the countability of the fractions' domain. The debate about the "inter-" and "multi-" disciplinary domains may also be extended into "sub-domains" or from another point of view – into "super-domains". However, Science and Technology has rapidly developed after it was classified. If at the beginning, two decimal digits were enough to classify the world's knowledge into a knowledge domain, today we need more digits – about five. This means we are able to display about a million domains of knowledge. The decimal point indicates the sub-division in the zooming-in; the number of such decimal points is unlimited. Thus, the number of hierarchical levels in the knowledge-tree is unlimited. The maximal level is unreachable since it propagates in time. This intriguing issue raises doubts whether the tree is the most appropriate structure in the current state of the knowledge classification. However, I believe that the knowledge tree is a convenient way of expressing various connections between the knowledge domains. There are other models such as multi-level graph-networks that approximate closer to reality. These models can be further visualized by graph diagrams. The knowledge diagram is more complicated, considering the interaction between science and industry relative to each domain. The model of reality might be compared to the object-oriented programming languages approximating reality in order to construct more naturally computer programs that can model the world. The mutual correspondence of the knowledge domains is dynamic. Some examples of relatively new domains are as follows: biotechnology, bioinformatics, nanotechnology, integro-differential equations, data warehouse, data mining, requirements engineering, micro

  15. Unidirectional Magnon-Driven Domain Wall Motion due to Interfacial Dzyaloshinskii-Moriya Interaction

    KAUST Repository

    Lee, Seo-Won

    2018-03-28

    We theoretically study magnon-driven motion of a tranverse domain wall in the presence of interfacial Dzyaloshinskii-Moriya interaction (DMI). Contrary to previous studies, the domain wall moves along the same direction regardless of the magnon-flow direction. Our symmetry analysis reveals that the odd order DMI contributions to the domain wall velocity are independent of the magnon-flow direction. Corresponding DMI-induced asymmetric transitions from a spin-wave state to another give rise to a large momentum transfer to the domain wall without nonreciprocity and much reflection. This counterintuitive unidirectional motion occurs not only for a spin wave with a single wavevector but also for thermal magnons with distributed wavevectors.

  16. Unidirectional Magnon-Driven Domain Wall Motion due to Interfacial Dzyaloshinskii-Moriya Interaction

    KAUST Repository

    Lee, Seo-Won; Kim, Kyoung-Whan; Moon, Jung-Hwan; Go, Gyungchoon; Manchon, Aurelien; Lee, Hyun-Woo; Everschor-Sitte, Karin; Lee, Kyung-Jin

    2018-01-01

    We theoretically study magnon-driven motion of a tranverse domain wall in the presence of interfacial Dzyaloshinskii-Moriya interaction (DMI). Contrary to previous studies, the domain wall moves along the same direction regardless of the magnon-flow direction. Our symmetry analysis reveals that the odd order DMI contributions to the domain wall velocity are independent of the magnon-flow direction. Corresponding DMI-induced asymmetric transitions from a spin-wave state to another give rise to a large momentum transfer to the domain wall without nonreciprocity and much reflection. This counterintuitive unidirectional motion occurs not only for a spin wave with a single wavevector but also for thermal magnons with distributed wavevectors.

  17. Interaction domains in high performance NdFeB thick films

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, Tom; Khlopkov, Kirill; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden, IMW, Dresden (Germany); Walther, Arno [Insitut Neel, CNRS-UJF, Grenoble (France); CEA Leti - MINATEC, Grenoble (France); Dempsey, Nora; Givord, Dominique [Insitut Neel, CNRS-UJF, Grenoble (France)

    2009-07-01

    Thick sputtered films (5-300 micron) of NdFeB have excellent hard magnetic properties which make them attractive for applications in micro-electro-mechanical systems (MEMS). A two step process consisting of triode sputtering and high temperature annealing produced films with energy densities approaching those of sintered NdFeB magnets. Magnetic force microscopy (MFM) using hard magnetic tips showed that the films deposited without substrate heating and at 300 C exhibited magnetic domains typical of low anisotropy materials. These films were amorphous in the as-deposited state. The film deposited at 500 C was crystalline and displaid hard magnetic properties. This was reflected in the magnetic microstructure which showed interaction domains typical of highly textured and high magnetic anisotropy materials with a grain size below or equal to the critical single-domain particle limit. With increasing substrate temperature, the domain patterns of the annealed films became coarser, indicating higher degrees of texture.

  18. Characterizing SH2 Domain Specificity and Network Interactions Using SPOT Peptide Arrays.

    Science.gov (United States)

    Liu, Bernard A

    2017-01-01

    Src Homology 2 (SH2) domains are protein interaction modules that recognize and bind tyrosine phosphorylated ligands. Their ability to distinguish binding to over thousands of potential phosphotyrosine (pTyr) ligands within the cell is critical for the fidelity of receptor tyrosine kinase (RTK) signaling. Within humans there are over a hundred SH2 domains with more than several thousand potential ligands across many cell types and cell states. Therefore, defining the specificity of individual SH2 domains is critical for predicting and identifying their physiological ligands. Here, in this chapter, I describe the broad use of SPOT peptide arrays for examining SH2 domain specificity. An orientated peptide array library (OPAL) approach can uncover both favorable and non-favorable residues, thus providing an in-depth analysis to SH2 specificity. Moreover, I discuss the application of SPOT arrays for paneling SH2 ligand binding with physiological peptides.

  19. PDZ domain-mediated interactions of G protein-coupled receptors with postsynaptic density protein 95

    DEFF Research Database (Denmark)

    Møller, Thor C; Wirth, Volker F; Roberts, Nina Ingerslev

    2013-01-01

    G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins in the human genome. Their signaling is regulated by scaffold proteins containing PDZ domains, but although these interactions are important for GPCR function, they are still poorly understood. We here present...

  20. Molecular Logic of Neuronal Self-Recognition through Protocadherin Domain Interactions

    DEFF Research Database (Denmark)

    Rubinstein, Rotem; Thu, Chan Aye; Goodman, Kerry Marie

    2015-01-01

    Self-avoidance, a process preventing interactions of axons and dendrites from the same neuron during development, is mediated in vertebrates through the stochastic single-neuron expression of clustered protocadherin protein isoforms. Extracellular cadherin (EC) domains mediate isoform-specific ho...

  1. MPP1 directly interacts with flotillins in erythrocyte membrane - Possible mechanism of raft domain formation.

    Science.gov (United States)

    Biernatowska, Agnieszka; Augoff, Katarzyna; Podkalicka, Joanna; Tabaczar, Sabina; Gajdzik-Nowak, Weronika; Czogalla, Aleksander; Sikorski, Aleksander F

    2017-11-01

    Flotillins are prominent, oligomeric protein components of erythrocyte (RBC) membrane raft domains and are considered to play an important structural role in lateral organization of the plasma membrane. In our previous work on erythroid membranes and giant plasma membrane vesicles (GPMVs) derived from them we have shown that formation of functional domains (resting state rafts) depends on the presence of membrane palmitoylated protein 1 (MPP1/p55), pointing to its new physiological role. Exploration of the molecular mechanism of MPP1 function in organizing membrane domains described here, through searching for its molecular partners in RBC membrane by using different methods, led to the identification of the raft-marker proteins, flotillin 1 and flotillin 2, as hitherto unreported direct MPP1 binding-partners in the RBC membrane. These proteins are found in high molecular-weight complexes in native RBC membrane and, significantly, their presence was shown to be separate from the well-known protein 4.1-dependent interactions of MPP1 with membrane proteins. Furthermore, FLIM analysis revealed that loss of the endogenous MPP1-flotillins interactions resulted in significant changes in RBC membrane-fluidity, emphasizing the physiological importance of such interactions in vivo. Therefore, our data establish a new perspective on the role of MPP1 in erythroid cells and suggests that direct MPP1-flotillins interactions could be the major driving-force behind the formation of raft domains in RBC. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Yoshimitsu, Makoto; Hachiman, Miho [Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Ikeda, Masanori [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2015-12-15

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. - Highlights: • I-mfa domain proteins, HIC and I-mfa, specifically interact with HTLV-1 Tax. • HIC and I-mfa repress the Tax-dependent transactivation of HTLV-1 LTR. • HIC represses the Tax-dependent transactivation of NF-κΒ. • HIC decreases the nuclear distribution of Tax. • HIC stimulates the proteasomal degradation of Tax.

  3. C2 Domains as Protein-Protein Interaction Modules in the Ciliary Transition Zone

    Directory of Open Access Journals (Sweden)

    Kim Remans

    2014-07-01

    Full Text Available RPGR-interacting protein 1 (RPGRIP1 is mutated in the eye disease Leber congenital amaurosis (LCA and its structural homolog, RPGRIP1-like (RPGRIP1L, is mutated in many different ciliopathies. Both are multidomain proteins that are predicted to interact with retinitis pigmentosa G-protein regulator (RPGR. RPGR is mutated in X-linked retinitis pigmentosa and is located in photoreceptors and primary cilia. We solved the crystal structure of the complex between the RPGR-interacting domain (RID of RPGRIP1 and RPGR and demonstrate that RPGRIP1L binds to RPGR similarly. RPGRIP1 binding to RPGR affects the interaction with PDEδ, the cargo shuttling factor for prenylated ciliary proteins. RPGRIP1-RID is a C2 domain with a canonical β sandwich structure that does not bind Ca2+ and/or phospholipids and thus constitutes a unique type of protein-protein interaction module. Judging from the large number of C2 domains in most of the ciliary transition zone proteins identified thus far, the structure presented here seems to constitute a cilia-specific module that is present in multiprotein transition zone complexes.

  4. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions

    International Nuclear Information System (INIS)

    Kusano, Shuichi; Yoshimitsu, Makoto; Hachiman, Miho; Ikeda, Masanori

    2015-01-01

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. - Highlights: • I-mfa domain proteins, HIC and I-mfa, specifically interact with HTLV-1 Tax. • HIC and I-mfa repress the Tax-dependent transactivation of HTLV-1 LTR. • HIC represses the Tax-dependent transactivation of NF-κΒ. • HIC decreases the nuclear distribution of Tax. • HIC stimulates the proteasomal degradation of Tax.

  5. MERTK interactions with SH2-domain proteins in the retinal pigment epithelium.

    Science.gov (United States)

    Shelby, Shameka J; Colwill, Karen; Dhe-Paganon, Sirano; Pawson, Tony; Thompson, Debra A

    2013-01-01

    The receptor tyrosine kinase MERTK plays an essential role in the phagocytic uptake of shed photoreceptor membranes by the retinal pigment epithelium (RPE). A fundamental aspect of signal transduction by receptor tyrosine kinases involves autophosphorylation of tyrosine residues that recruit Src-homology 2 (SH2)-domain proteins to the receptor intracellular domain. The goal of the current study was to evaluate the interactions of human MERTK with SH2-domain proteins present in the RPE. The MERTK intracellular domain was expressed as a 6xHis-fusion protein (6xHis-rMERTK(571-999)), purified and phosphorylated. Ni(2+)-NTA pull downs were performed using 6xHis-rMERTK(571-999) in incubations with recombinant phosphotyrosine-recognition sequences expressed as GST-fusion proteins. In addition, pull downs of native SH2-domain proteins were performed using 6xHis-rMERTK(571-999) and protein homogenates from rat RPE/choroid. For both recombinant and native proteins, western analysis detected MERTK interactions with GRB2, PIK3R1 (P85α), VAV3, and SRC. Immunohistochemical analysis localized each protein to mouse RPE. In cultured RPE-J cells incubated with rod outer segments (OS), siRNA knockdown of Grb2 had no effect on OS binding, but significantly reduced OS uptake. Pik3r1 localized to early phagosomes along with Rab5 and Eea1. Phosphorylation and activation of Src was detected downstream of phagocytosis and Mertk activation. These findings suggest that MERTK signaling in the RPE involves a cohort of SH2-domain proteins with the potential to regulate both cytoskeletal rearrangement and membrane movement. Identification of the SH2-domain signaling partners of MERTK is an important step toward further defining the mechanism of RPE phagocytosis that is central to the function and survival of the retina.

  6. MERTK interactions with SH2-domain proteins in the retinal pigment epithelium.

    Directory of Open Access Journals (Sweden)

    Shameka J Shelby

    Full Text Available The receptor tyrosine kinase MERTK plays an essential role in the phagocytic uptake of shed photoreceptor membranes by the retinal pigment epithelium (RPE. A fundamental aspect of signal transduction by receptor tyrosine kinases involves autophosphorylation of tyrosine residues that recruit Src-homology 2 (SH2-domain proteins to the receptor intracellular domain. The goal of the current study was to evaluate the interactions of human MERTK with SH2-domain proteins present in the RPE. The MERTK intracellular domain was expressed as a 6xHis-fusion protein (6xHis-rMERTK(571-999, purified and phosphorylated. Ni(2+-NTA pull downs were performed using 6xHis-rMERTK(571-999 in incubations with recombinant phosphotyrosine-recognition sequences expressed as GST-fusion proteins. In addition, pull downs of native SH2-domain proteins were performed using 6xHis-rMERTK(571-999 and protein homogenates from rat RPE/choroid. For both recombinant and native proteins, western analysis detected MERTK interactions with GRB2, PIK3R1 (P85α, VAV3, and SRC. Immunohistochemical analysis localized each protein to mouse RPE. In cultured RPE-J cells incubated with rod outer segments (OS, siRNA knockdown of Grb2 had no effect on OS binding, but significantly reduced OS uptake. Pik3r1 localized to early phagosomes along with Rab5 and Eea1. Phosphorylation and activation of Src was detected downstream of phagocytosis and Mertk activation. These findings suggest that MERTK signaling in the RPE involves a cohort of SH2-domain proteins with the potential to regulate both cytoskeletal rearrangement and membrane movement. Identification of the SH2-domain signaling partners of MERTK is an important step toward further defining the mechanism of RPE phagocytosis that is central to the function and survival of the retina.

  7. Genetic Disruption of the Sh3pxd2a Gene Reveals an Essential Role in Mouse Development and the Existence of a Novel Isoform of Tks5

    OpenAIRE

    Cejudo-Martin, Pilar; Yuen, Angela; Vlahovich, Nicole; Lock, Peter; Courtneidge, Sara A.; Díaz, Begoña

    2014-01-01

    Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulte...

  8. Structure of metabotropic glutamate receptor C-terminal domains in contact with interacting proteins

    Directory of Open Access Journals (Sweden)

    Ralf eEnz

    2012-04-01

    Full Text Available Metabotropic glutamate receptors (mGluRs regulate intracellular signal pathways that control several physiological tasks, including neuronal excitability, learning and memory. This is achieved by the formation of synaptic signal complexes, in which mGluRs assemble with functionally related proteins such as enzymes, scaffolds and cytoskeletal anchor proteins. Thus, mGluR associated proteins actively participate in the regulation of glutamatergic neurotransmission. Importantly, dysfunction of mGluRs and interacting proteins may lead to impaired signal transduction and finally result in neurological disorders, e.g. night blindness, addiction, epilepsy, schizophrenia, autism spectrum disorders and Parkinson´s disease. In contrast to solved crystal structures of extracellular N-terminal domains of some mGluR types, only a few studies analyzed the conformation of intracellular receptor domains. Intracellular C-termini of most mGluR types are subject to alternative splicing and can be further modified by phosphorylation and SUMOylation. In this way, diverse interaction sites for intracellular proteins that bind to and regulate the glutamate receptors are generated. Indeed, most of the known mGluR binding partners interact with the receptors´ C-terminal domains. Within the last years, different laboratories analyzed the structure of these domains and described the geometry of the contact surface between mGluR C-termini and interacting proteins. Here, I will review recent progress in the structure characterization of mGluR C-termini and provide an up-to-date summary of the geometry of these domains in contact with binding partners.

  9. Importance of a Conserved Lys/Arg Residue for Ligand/PDZ Domain Interactions as Examined by Protein Semisynthesis

    DEFF Research Database (Denmark)

    Pedersen, Søren W; Moran, Griffin E; Sereikaité, Vita

    2016-01-01

    PDZ domains are ubiquitous small protein domains that are mediators of numerous protein-protein interactions, and play a pivotal role in protein trafficking, synaptic transmission, and the assembly of signaling-transduction complexes. In recent years, PDZ domains have emerged as novel and exciting...... drug targets for diseases (in the brain in particular), so understanding the molecular details of PDZ domain interactions is of fundamental importance. PDZ domains bind to a protein partner at either a C-terminal peptide or internal peptide motifs. Here, we examined the importance of a conserved Lys...

  10. Tetratricopeptide repeat domain 9A is an interacting protein for tropomyosin Tm5NM-1

    International Nuclear Information System (INIS)

    Cao, Shenglan; Ho, Gay Hui; Lin, Valerie CL

    2008-01-01

    Tetratricopeptide repeat domain 9A (TTC9A) protein is a recently identified protein which contains three tetratricopeptide repeats (TPRs) on its C-terminus. In our previous studies, we have shown that TTC9A was a hormonally-regulated gene in breast cancer cells. In this study, we found that TTC9A was over-expressed in breast cancer tissues compared with the adjacent controls (P < 0.00001), suggesting it might be involved in the breast cancer development process. The aim of the current study was to further elucidate the function of TTC9A. Breast samples from 25 patients including the malignant breast tissues and the adjacent normal tissues were processed for Southern blot analysis. Yeast-two-hybrid assay, GST pull-down assay and co-immunoprecipitation were used to identify and verify the interaction between TTC9A and other proteins. Tropomyosin Tm5NM-1 was identified as one of the TTC9A partner proteins. The interaction between TTC9A and Tm5NM-1 was further confirmed by GST pull-down assay and co-immunoprecipitation in mammalian cells. TTC9A domains required for the interaction were also characterized in this study. The results suggested that the first TPR domain and the linker fragment between the first two TPR domains of TTC9A were important for the interaction with Tm5NM-1 and the second and the third TPR might play an inhibitory role. Since the primary function of tropomyosin is to stabilize actin filament, its interaction with TTC9A may play a role in cell shape and motility. In our previous results, we have found that progesterone-induced TTC9A expression was associated with increased cell motility and cell spreading. We speculate that TTC9A acts as a chaperone protein to facilitate the function of tropomyosins in stabilizing microfilament and it may play a role in cancer cell invasion and metastasis

  11. Enhancement of Ebola Virus Infection via Ficolin-1 Interaction with the Mucin Domain of GP Glycoprotein.

    Science.gov (United States)

    Favier, Anne-Laure; Gout, Evelyne; Reynard, Olivier; Ferraris, Olivier; Kleman, Jean-Philippe; Volchkov, Viktor; Peyrefitte, Christophe; Thielens, Nicole M

    2016-06-01

    Ebola virus infection requires the surface viral glycoprotein to initiate entry into the target cells. The trimeric glycoprotein is a highly glycosylated viral protein which has been shown to interact with host C-type lectin receptors and the soluble complement recognition protein mannose-binding lectin, thereby enhancing viral infection. Similarly to mannose-binding lectin, ficolins are soluble effectors of the innate immune system that recognize particular glycans at the pathogen surface. In this study, we demonstrate that ficolin-1 interacts with the Zaire Ebola virus (EBOV) glycoprotein, and we characterized this interaction by surface plasmon resonance spectroscopy. Ficolin-1 was shown to bind to the viral glycoprotein with a high affinity. This interaction was mediated by the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of the viral glycoprotein. Using a ficolin-1 control mutant devoid of sialic acid-binding capacity, we identified sialylated moieties of the mucin domain to be potential ligands on the glycoprotein. In cell culture, using both pseudotyped viruses and EBOV, ficolin-1 was shown to enhance EBOV infection independently of the serum complement. We also observed that ficolin-1 enhanced EBOV infection on human monocyte-derived macrophages, described to be major viral target cells,. Competition experiments suggested that although ficolin-1 and mannose-binding lectin recognized different carbohydrate moieties on the EBOV glycoprotein, the observed enhancement of the infection likely depended on a common cellular receptor/partner. In conclusion, ficolin-1 could provide an alternative receptor-mediated mechanism for enhancing EBOV infection, thereby contributing to viral subversion of the host innate immune system. A specific interaction involving ficolin-1 (M-ficolin), a soluble effector of the innate immune response, and the glycoprotein (GP) of EBOV was identified. Ficolin-1 enhanced virus infection instead of tipping the

  12. Characterization of the TRBP domain required for Dicer interaction and function in RNA interference

    Directory of Open Access Journals (Sweden)

    El Far Mohamed

    2009-05-01

    Full Text Available Abstract Background Dicer, Ago2 and TRBP are the minimum components of the human RNA-induced silencing complex (RISC. While Dicer and Ago2 are RNases, TRBP is the double-stranded RNA binding protein (dsRBP that loads small interfering RNA into the RISC. TRBP binds directly to Dicer through its C-terminal domain. Results We show that the TRBP binding site in Dicer is a 165 amino acid (aa region located between the ATPase and the helicase domains. The binding site in TRBP is a 69 aa domain, called C4, located at the C-terminal end of TRBP. The TRBP1 and TRBP2 isoforms, but not TRBPs lacking the C4 site (TRBPsΔC4, co-immunoprecipitated with Dicer. The C4 domain is therefore necessary to bind Dicer, irrespective of the presence of RNA. Immunofluorescence shows that while full-length TRBPs colocalize with Dicer, TRBPsΔC4 do not. tarbp2-/- cells, which do not express TRBP, do not support RNA interference (RNAi mediated by short hairpin or micro RNAs against EGFP. Both TRBPs, but not TRBPsΔC4, were able to rescue RNAi function. In human cells with low RNAi activity, addition of TRBP1 or 2, but not TRBPsΔC4, rescued RNAi function. Conclusion The mapping of the interaction sites between TRBP and Dicer show unique domains that are required for their binding. Since TRBPsΔC4 do not interact or colocalize with Dicer, we suggest that TRBP and Dicer, both dsRBPs, do not interact through bound dsRNA. TRBPs, but not TRBPsΔC4, rescue RNAi activity in RNAi-compromised cells, indicating that the binding of Dicer to TRBP is critical for RNAi function.

  13. Interaction between the PH and START domains of ceramide transfer protein competes with phosphatidylinositol 4-phosphate binding by the PH domain.

    Science.gov (United States)

    Prashek, Jennifer; Bouyain, Samuel; Fu, Mingui; Li, Yong; Berkes, Dusan; Yao, Xiaolan

    2017-08-25

    De novo synthesis of the sphingolipid sphingomyelin requires non-vesicular transport of ceramide from the endoplasmic reticulum to the Golgi by the multidomain protein ceramide transfer protein (CERT). CERT's N-terminal pleckstrin homology (PH) domain targets it to the Golgi by binding to phosphatidylinositol 4-phosphate (PtdIns(4)P) in the Golgi membrane, whereas its C-terminal StAR-related lipid transfer domain (START) carries out ceramide transfer. Hyperphosphorylation of a serine-rich motif immediately after the PH domain decreases both PtdIns(4)P binding and ceramide transfer by CERT. This down-regulation requires both the PH and START domains, suggesting a possible inhibitory interaction between the two domains. In this study we show that isolated PH and START domains interact with each other. The crystal structure of a PH-START complex revealed that the START domain binds to the PH domain at the same site for PtdIns(4)P-binding, suggesting that the START domain competes with PtdIns(4)P for association with the PH domain. We further report that mutations disrupting the PH-START interaction increase both PtdIns(4)P-binding affinity and ceramide transfer activity of a CERT-serine-rich phosphorylation mimic. We also found that these mutations increase the Golgi localization of CERT inside the cell, consistent with enhanced PtdIns(4)P binding of the mutant. Collectively, our structural, biochemical, and cellular investigations provide important structural insight into the regulation of CERT function and localization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein

    DEFF Research Database (Denmark)

    Richardson, Roy; Denis, Clyde L; Zhang, Chongxu

    2012-01-01

    previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense...

  15. Refined study of the interaction between HIV-1 p6 late domain and ALIX

    Directory of Open Access Journals (Sweden)

    Gerlier Denis

    2008-05-01

    Full Text Available Abstract The interaction between the HIV-1 p6 late budding domain and ALIX, a class E vacuolar protein sorting factor, was explored by using the yeast two-hybrid approach. We refined the ALIX binding site of p6 as being the leucine triplet repeat sequence (Lxx4 (LYPLTSLRSLFG. Intriguingly, the deletion of the C-terminal proline-rich region of ALIX prevented detectable binding to p6. In contrast, a four-amino acid deletion in the central hinge region of p6 increased its association with ALIX as shown by its ability to bind to ALIX lacking the proline rich domain. Finally, by using a random screening approach, the minimal ALIX391–510 fragment was found to specifically interact with this p6 deletion mutant. A parallel analysis of ALIX binding to the late domain p9 from EIAV revealed that p6 and p9, which exhibit distinct ALIX binding motives, likely bind differently to ALIX. Altogether, our data support a model where the C-terminal proline-rich domain of ALIX allows the access of its binding site to p6 by alleviating a conformational constraint resulting from the presence of the central p6 hinge.

  16. Selective Targeting of SH2 Domain-Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies.

    Science.gov (United States)

    Kükenshöner, Tim; Schmit, Nadine Eliane; Bouda, Emilie; Sha, Fern; Pojer, Florence; Koide, Akiko; Seeliger, Markus; Koide, Shohei; Hantschel, Oliver

    2017-05-05

    The binding of Src-homology 2 (SH2) domains to phosphotyrosine (pY) sites is critical for the autoinhibition and substrate recognition of the eight Src family kinases (SFKs). The high sequence conservation of the 120 human SH2 domains poses a significant challenge to selectively perturb the interactions of even the SFK SH2 family against the rest of the SH2 domains. We have developed synthetic binding proteins, termed monobodies, for six of the SFK SH2 domains with nanomolar affinity. Most of these monobodies competed with pY ligand binding and showed strong selectivity for either the SrcA (Yes, Src, Fyn, Fgr) or SrcB subgroup (Lck, Lyn, Blk, Hck). Interactome analysis of intracellularly expressed monobodies revealed that they bind SFKs but no other SH2-containing proteins. Three crystal structures of monobody-SH2 complexes unveiled different and only partly overlapping binding modes, which rationalized the observed selectivity and enabled structure-based mutagenesis to modulate inhibition mode and selectivity. In line with the critical roles of SFK SH2 domains in kinase autoinhibition and T-cell receptor signaling, monobodies binding the Src and Hck SH2 domains selectively activated respective recombinant kinases, whereas an Lck SH2-binding monobody inhibited proximal signaling events downstream of the T-cell receptor complex. Our results show that SFK SH2 domains can be targeted with unprecedented potency and selectivity using monobodies. They are excellent tools for dissecting SFK functions in normal development and signaling and to interfere with aberrant SFK signaling networks in cancer cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Functional Interaction Map of Lyssavirus Phosphoprotein: Identification of the Minimal Transcription Domains

    Science.gov (United States)

    Jacob, Yves; Real, Eléonore; Tordo, Noël

    2001-01-01

    Lyssaviruses, the causative agents of rabies encephalitis, are distributed in seven genotypes. The phylogenetically distant rabies virus (PV strain, genotype 1) and Mokola virus (genotype 3) were used to develop a strategy to identify functional homologous interactive domains from two proteins (P and N) which participate in the viral ribonucleoprotein (RNP) transcription-replication complex. This strategy combined two-hybrid and green fluorescent protein–reverse two-hybrid assays in Saccharomyces cerevisiae to analyze protein-protein interactions and a reverse genetic assay in mammalian cells to study the transcriptional activity of the reconstituted RNP complex. Lyssavirus P proteins contain two N-binding domains (N-BDs), a strong one encompassing amino acid (aa) 176 to the C terminus and a weak one in the 189 N-terminal aa. The N-terminal portion of P (aa 52 to 189) also contains a homomultimerization site. Here we demonstrate that N-P interactions, although weaker, are maintained between proteins of the different genotypes. A minimal transcriptional module of the P protein was obtained by fusing the first 60 N-terminal aa containing the L protein binding site to the C-terminal strong N-BD. Random mutation of the strong N-BD on P protein identified three highly conserved K residues crucial for N-P interaction. Their mutagenesis in full-length P induced a transcriptionally defective RNP. The analysis of homologous interactive domains presented here and previously reported dissections of the P protein allowed us to propose a model of the functional interaction network of the lyssavirus P protein. This model underscores the central role of P at the interface between L protein and N-RNA template. PMID:11559793

  18. The Cold Shock Domain of YB-1 Segregates RNA from DNA by Non-Bonded Interactions.

    Directory of Open Access Journals (Sweden)

    Vladislav Kljashtorny

    Full Text Available The human YB-1 protein plays multiple cellular roles, of which many are dictated by its binding to RNA and DNA through its Cold Shock Domain (CSD. Using molecular dynamics simulation approaches validated by experimental assays, the YB1 CSD was found to interact with nucleic acids in a sequence-dependent manner and with a higher affinity for RNA than DNA. The binding properties of the YB1 CSD were close to those observed for the related bacterial Cold Shock Proteins (CSP, albeit some differences in sequence specificity. The results provide insights in the molecular mechanisms whereby YB-1 interacts with nucleic acids.

  19. Interaction between NBS1 and the mTOR/Rictor/SIN1 complex through specific domains.

    Directory of Open Access Journals (Sweden)

    Jian-Qiu Wang

    Full Text Available Nijmegen breakage syndrome (NBS is a chromosomal-instability syndrome. The NBS gene product, NBS1 (p95 or nibrin, is a part of the Mre11-Rad50-NBS1 complex. SIN1 is a component of the mTOR/Rictor/SIN1 complex mediating the activation of Akt. Here we show that NBS1 interacted with mTOR, Rictor, and SIN1. The specific domains of mTOR, Rictor, or SIN1 interacted with the internal domain (a.a. 221-402 of NBS1. Sucrose density gradient showed that NBS1 was located in the same fractions as the mTOR/Rictor/SIN1 complex. Knockdown of NBS1 decreased the levels of phosphorylated Akt and its downstream targets. Ionizing radiation (IR increased the NBS1 levels and activated Akt activity. These results demonstrate that NBS1 interacts with the mTOR/Rictor/SIN1 complex through the a.a. 221-402 domain and contributes to the activation of Akt activity.

  20. Clinical, in silico, and experimental evidence for pathogenicity of two novel splice site mutations in the SH3TC2 gene

    Czech Academy of Sciences Publication Activity Database

    Laššuthová, P.; Gregor, Martin; Sarnová, Lenka; Machalová, Eliška; Sedláček, Radislav; Seeman, P.

    2012-01-01

    Roč. 26, 3-4 (2012), s. 413-420 ISSN 0167-7063 R&D Projects: GA ČR GAP303/10/2044 Institutional support: RVO:68378050 Keywords : exon trapping * peripheral neuropathy * SH3TC2 gene * splice site mutation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.159, year: 2012

  1. Additive Interaction between Heterogeneous Environmental Quality Domains (Air, Water, Land, Sociodemographic, and Built Environment) on Preterm Birth.

    Science.gov (United States)

    Grabich, Shannon C; Rappazzo, Kristen M; Gray, Christine L; Jagai, Jyotsna S; Jian, Yun; Messer, Lynne C; Lobdell, Danelle T

    2016-01-01

    Environmental exposures often occur in tandem; however, epidemiological research often focuses on singular exposures. Statistical interactions among broad, well-characterized environmental domains have not yet been evaluated in association with health. We address this gap by conducting a county-level cross-sectional analysis of interactions between Environmental Quality Index (EQI) domain indices on preterm birth in the Unites States from 2000 to 2005. The EQI, a county-level index constructed for the 2000-2005 time period, was constructed from five domain-specific indices (air, water, land, built, and sociodemographic) using principal component analyses. County-level preterm birth rates ( n  = 3141) were estimated using live births from the National Center for Health Statistics. Linear regression was used to estimate prevalence differences (PDs) and 95% confidence intervals (CIs) comparing worse environmental quality to the better quality for each model for (a) each individual domain main effect, (b) the interaction contrast, and (c) the two main effects plus interaction effect (i.e., the "net effect") to show departure from additivity for the all U.S. counties. Analyses were also performed for subgroupings by four urban/rural strata. We found the suggestion of antagonistic interactions but no synergism, along with several purely additive (i.e., no interaction) associations. In the non-stratified model, we observed antagonistic interactions, between the sociodemographic/air domains [net effect (i.e., the association, including main effects and interaction effects) PD: -0.004 (95% CI: -0.007, 0.000), interaction contrast: -0.013 (95% CI: -0.020, -0.007)] and built/air domains [net effect PD: 0.008 (95% CI 0.004, 0.011), interaction contrast: -0.008 (95% CI: -0.015, -0.002)]. Most interactions were between the air domain and other respective domains. Interactions differed by urbanicity, with more interactions observed in non-metropolitan regions. Observed

  2. Additive interaction between heterogeneous environmental quality domains (air, water, land, sociodemographic and built environment on preterm birth

    Directory of Open Access Journals (Sweden)

    Shannon Grabich

    2016-10-01

    Full Text Available BACKGROUND Environmental exposures often occur in tandem; however, epidemiological research often focuses on singular exposures. Statistical interactions among broad, well-characterized environmental domains have not yet been evaluated in association with health. We address this gap by conducting a county-level cross-sectional analysis of interactions between Environmental Quality Index (EQI domain indices on preterm birth in the Unites States from 2000-2005.METHODS: The EQI, a county-level index constructed for the 2000-2005 time period, was constructed from five domain-specific indices (air, water, land, built and sociodemographic using principal component analyses. County-level preterm birth rates (n=3141 were estimated using live births from the National Center for Health Statistics. Linear regression was used to estimate prevalence differences (PD and 95% confidence intervals (CI comparing worse environmental quality to the better quality for each model for a each individual domain main effect b the interaction contrast and c the two main effects plus interaction effect (i.e., the net effect to show departure from additivity for the all U.S counties. Analyses were also performed for subgroupings by four urban/rural strata. RESULTS: We found the suggestion of antagonistic interactions but no synergism, along with several purely additive (i.e., no interaction associations. In the non-stratified model, we observed antagonistic interactions, between the sociodemographic/air domains (net effect (i.e. the association including main effects and interaction effects PD: -0.004 (95% CI:-0.007, 0.000, interaction contrast: -0.013 (95% CI:-0.020, -0.007 and built/air domains (net effect PD: 0.008 (95% CI 0.004, 0.011, interaction contrast: -0.008 (95% CI:-0.015, -0.002. Most interactions were between the air domain and other respective domains. Interactions differed by urbanicity, with more interactions observed in non-metropolitan regions

  3. HD domain of SAMHD1 influences Vpx-induced degradation at a post-interaction step

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jian; Hou, Jingwei; Zhao, Ke; Yu, Xiao-Fang; Du, Juan, E-mail: jdu@jlu.edu.cn

    2016-02-12

    Primate SAMHD1 proteins are potent inhibitors of viruses, including retroviruses such as HIV-1, HIV-2, and SIV. Vpx, a distinctive viral protein expressed by HIV-2 and some SIVs, induces SAMHD1 degradation by forming a Vpx-DCAF1-based ubiquitin ligase complex. Either the N- or the C-terminus of SAMHD1 is critical for Vpx-induced degradation, depending on the types of SAMHD1 and Vpx proteins. However, it was not fully understood whether other regions of SAMHD1 also contribute to its depletion by Vpx. In the present study, we report that SAMHD1 from chicken (SAMHD1{sub GG}) was not degraded by SIVmac Vpx, in contrast with results for human SAMHD1 (SAMHD1{sub HS}). Results regarding to SAMHD1{sub HS} and SAMHD1{sub GG} fusion proteins supported previous findings that the C-terminus of SAMHD1{sub HS} is essential for Vpx-induced degradation. Internal domain substitution, however, revealed that the HD domain also contributes to Vpx-mediated SAMHD1 degradation. Interestingly, the HD domain influenced Vpx-mediated SAMHD1 degradation without affecting Vpx-SAMHD1 interaction. Therefore, our findings revealed that factors in addition to Vpx-SAMHD1 binding influence the efficiency of Vpx-mediated SAMHD1 degradation. - Highlights: • SAMHD1{sub GG} from chicken could not be depleted by SIVmac Vpx. • The C-terminus of human SAMHD1{sub HS} is critical for its degradation by Vpx. • The HD domain is essential for Vpx-induced degradation of SAMHD1{sub HS}. • Altering the HD domain does not affect Vpx-SAMHD1 interaction.

  4. The ER stress sensor PERK luminal domain functions as a molecular chaperone to interact with misfolded proteins

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Li, Jingzhi; Sha, Bingdong

    2016-11-29

    PERK is one of the major sensor proteins which can detect the protein-folding imbalance generated by endoplasmic reticulum (ER) stress. It remains unclear how the sensor protein PERK is activated by ER stress. It has been demonstrated that the PERK luminal domain can recognize and selectively interact with misfolded proteins but not native proteins. Moreover, the PERK luminal domain may function as a molecular chaperone to directly bind to and suppress the aggregation of a number of misfolded model proteins. The data strongly support the hypothesis that the PERK luminal domain can interact directly with misfolded proteins to induce ER stress signaling. To illustrate the mechanism by which the PERK luminal domain interacts with misfolded proteins, the crystal structure of the human PERK luminal domain was determined to 3.2 Å resolution. Two dimers of the PERK luminal domain constitute a tetramer in the asymmetric unit. Superimposition of the PERK luminal domain molecules indicated that the β-sandwich domain could adopt multiple conformations. It is hypothesized that the PERK luminal domain may utilize its flexible β-sandwich domain to recognize and interact with a broad range of misfolded proteins.

  5. Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare).

    Science.gov (United States)

    Pandey, Bharati; Grover, Abhinav; Sharma, Pradeep

    2018-02-12

    The WRKY transcription factors are a class of DNA-binding proteins involved in diverse plant processes play critical roles in response to abiotic and biotic stresses. Genome-wide divergence analysis of WRKY gene family in Hordeum vulgare provided a framework for molecular evolution and functional roles. So far, the crystal structure of WRKY from barley has not been resolved; moreover, knowledge of the three-dimensional structure of WRKY domain is pre-requisites for exploring the protein-DNA recognition mechanisms. Homology modelling based approach was used to generate structures for WRKY DNA binding domain (DBD) and its variants using AtWRKY1 as a template. Finally, the stability and conformational changes of the generated model in unbound and bound form was examined through atomistic molecular dynamics (MD) simulations for 100 ns time period. In this study, we investigated the comparative binding pattern of WRKY domain and its variants with W-box cis-regulatory element using molecular docking and dynamics (MD) simulations assays. The atomic insight into WRKY domain exhibited significant variation in the intermolecular hydrogen bonding pattern, leading to the structural anomalies in the variant type and differences in the DNA-binding specificities. Based on the MD analysis, residual contribution and interaction contour, wild-type WRKY (HvWRKY46) were found to interact with DNA through highly conserved heptapeptide in the pre- and post-MD simulated complexes, whereas heptapeptide interaction with DNA was missing in variants (I and II) in post-MD complexes. Consequently, through principal component analysis, wild-type WRKY was also found to be more stable by obscuring a reduced conformational space than the variant I (HvWRKY34). Lastly, high binding free energy for wild-type and variant II allowed us to conclude that wild-type WRKY-DNA complex was more stable relative to variants I. The results of our study revealed complete dynamic and structural information

  6. Extending NGOMSL Model for Human-Humanoid Robot Interaction in the Soccer Robotics Domain

    Directory of Open Access Journals (Sweden)

    Rajesh Elara Mohan

    2008-01-01

    Full Text Available In the field of human-computer interaction, the Natural Goals, Operators, Methods, and Selection rules Language (NGOMSL model is one of the most popular methods for modelling knowledge and cognitive processes for rapid usability evaluation. The NGOMSL model is a description of the knowledge that a user must possess to operate the system represented as elementary actions for effective usability evaluations. In the last few years, mobile robots have been exhibiting a stronger presence in commercial markets and very little work has been done with NGOMSL modelling for usability evaluations in the human-robot interaction discipline. This paper focuses on extending the NGOMSL model for usability evaluation of human-humanoid robot interaction in the soccer robotics domain. The NGOMSL modelled human-humanoid interaction design of Robo-Erectus Junior was evaluated and the results of the experiments showed that the interaction design was able to find faults in an average time of 23.84 s. Also, the interaction design was able to detect the fault within the 60 s in 100% of the cases. The Evaluated Interaction design was adopted by our Robo-Erectus Junior version of humanoid robots in the RoboCup 2007 humanoid soccer league.

  7. Endophilin-A1 BAR domain interaction with arachidonyl CoA.

    Science.gov (United States)

    Petoukhov, Maxim V; Weissenhorn, Winfried; Svergun, Dmitri I

    2014-01-01

    Endophilin-A1 belongs to the family of BAR domain containing proteins that catalyze membrane remodeling processes via sensing, inducing and stabilizing membrane curvature. We show that the BAR domain of endophilin-A1 binds arachidonic acid and molds its coenzyme A (CoA) activated form, arachidonyl-CoA into a defined structure. We studied low resolution structures of endophilin-A1-BAR and its complex with arachidonyl-CoA in solution using synchrotron small-angle X-ray scattering (SAXS). The free endophilin-A1-BAR domain is shown to be dimeric at lower concentrations but builds tetramers and higher order complexes with increasing concentrations. Extensive titration SAXS studies revealed that the BAR domain produces a homogenous complex with the lipid micelles. The structural model of the complexes revealed two arachidonyl-CoA micelles bound to the distal arms of an endophilin-A1-BAR dimer. Intriguingly, the radius of the bound micelles significantly decreases compared to that of the free micelles, and this structural result may provide hints on the potential biological relevance of the endophilin-A1-BAR interaction with arachidonyl CoA.

  8. iDoRNA: An Interacting Domain-based Tool for Designing RNA-RNA Interaction Systems

    Directory of Open Access Journals (Sweden)

    Jittrawan Thaiprasit

    2016-03-01

    Full Text Available RNA-RNA interactions play a crucial role in gene regulation in living organisms. They have gained increasing interest in the field of synthetic biology because of their potential applications in medicine and biotechnology. However, few novel regulators based on RNA-RNA interactions with desired structures and functions have been developed due to the challenges of developing design tools. Recently, we proposed a novel tool, called iDoDe, for designing RNA-RNA interacting sequences by first decomposing RNA structures into interacting domains and then designing each domain using a stochastic algorithm. However, iDoDe did not provide an optimal solution because it still lacks a mechanism to optimize the design. In this work, we have further developed the tool by incorporating a genetic algorithm (GA to find an RNA solution with maximized structural similarity and minimized hybridized RNA energy, and renamed the tool iDoRNA. A set of suitable parameters for the genetic algorithm were determined and found to be a weighting factor of 0.7, a crossover rate of 0.9, a mutation rate of 0.1, and the number of individuals per population set to 8. We demonstrated the performance of iDoRNA in comparison with iDoDe by using six RNA-RNA interaction models. It was found that iDoRNA could efficiently generate all models of interacting RNAs with far more accuracy and required far less computational time than iDoDe. Moreover, we compared the design performance of our tool against existing design tools using forty-four RNA-RNA interaction models. The results showed that the performance of iDoRNA is better than RiboMaker when considering the ensemble defect, the fitness score and computation time usage. However, it appears that iDoRNA is outperformed by NUPACK and RNAiFold 2.0 when considering the ensemble defect. Nevertheless, iDoRNA can still be an useful alternative tool for designing novel RNA-RNA interactions in synthetic biology research. The source code of i

  9. Role of the σ54 Activator Interacting Domain in Bacterial Transcription Initiation

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Alexander R. [Univ. of California, Berkeley, CA (United States); Wemmer, David E. [Univ. of California, Berkeley, CA (United States)

    2016-10-11

    Bacterial sigma factors are subunits of RNA polymerase that direct the holoenzyme to specific sets of promoters in the genome and are a central element of regulating transcription. Most polymerase holoenzymes open the promoter and initiate transcription rapidly after binding. However, polymerase containing the members of the σ54 family must be acted on by a transcriptional activator before DNA opening and initiation occur. A key domain in these transcriptional activators forms a hexameric AAA + ATPase that acts through conformational changes brought on by ATP hydrolysis. Contacts between the transcriptional activator and σ54 are primarily made through an N-terminal σ54 activator interacting domain (AID). To better understand this mechanism of bacterial transcription initiation, we characterized the σ54 AID by NMR spectroscopy and other biophysical methods and show that it is an intrinsically disordered domain in σ54 alone. In this paper, we identified a minimal construct of the Aquifex aeolicus σ54 AID that consists of two predicted helices and retains native-like binding affinity for the transcriptional activator NtrC1. Using the NtrC1 ATPase domain, bound with the non-hydrolyzable ATP analog ADP-beryllium fluoride, we studied the NtrC1–σ54 AID complex using NMR spectroscopy. We show that the σ54 AID becomes structured after associating with the core loops of the transcriptional activators in their ATP state and that the primary site of the interaction is the first predicted helix. Finally, understanding this complex, formed as the first step toward initiation, will help unravel the mechanism of σ54 bacterial transcription initiation.

  10. Lipid-protein interaction induced domains: Kinetics and conformational changes in multicomponent vesicles

    Science.gov (United States)

    Sreeja, K. K.; Sunil Kumar, P. B.

    2018-04-01

    The spatio-temporal organization of proteins and the associated morphological changes in membranes are of importance in cell signaling. Several mechanisms that promote the aggregation of proteins at low cell surface concentrations have been investigated in the past. We show, using Monte Carlo simulations, that the affinity of proteins for specific lipids can hasten their aggregation kinetics. The lipid membrane is modeled as a dynamically triangulated surface with the proteins defined as in-plane fields at the vertices. We show that, even at low protein concentrations, strong lipid-protein interactions can result in large protein clusters indicating a route to lipid mediated signal amplification. At high protein concentrations, the domains form buds similar to that seen in lipid-lipid interaction induced phase separation. Protein interaction induced domain budding is suppressed when proteins act as anisotropic inclusions and exhibit nematic orientational order. The kinetics of protein clustering and resulting conformational changes are shown to be significantly different for the isotropic and anisotropic curvature inducing proteins.

  11. Interaction domains in permanent-magnetic rare-earth transition-metal compounds

    International Nuclear Information System (INIS)

    Thielsch, Juliane

    2015-01-01

    In the framework of this dissertation the phenomenon of the interaction domains was studied both experimentally and by means of micromagnetic simulation. Object of the study were one-phase NdFeB magnets, which were fabricated from commercial MQU-F powders of the Magnequench Inc. company by hot pressing and subsequent warm deformation in the IWF Dresden. Additionally via the same fabrication way also composite samples of NdFeB and Fe with different original particle sizes ere obtained and studied. Supported wer the experimental works by simulations with the FEMME software package, which is based on a hybrid finite-element method/boundary-element method.

  12. Dielectric relaxation and hydrogen bonding interaction in xylitol-water mixtures using time domain reflectometry

    Science.gov (United States)

    Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.

    2016-01-01

    The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.

  13. Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media

    DEFF Research Database (Denmark)

    Guo, Hairun; Zeng, Xianglong; Zhou, Binbin

    2013-01-01

    We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...... nonlinearities, delayed Raman effects, and anisotropic nonlinearities. The full potential of this wave equation is demonstrated by investigating simulations of solitons generated in the process of ultrafast cascaded second-harmonic generation. We show that a balance in the soliton delay can be achieved due...

  14. Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module

    DEFF Research Database (Denmark)

    Salcini, A E; Confalonieri, S; Doria, M

    1997-01-01

    EH is a recently identified protein-protein interaction domain found in the signal transducers Eps15 and Eps15R and several other proteins of yeast nematode. We show that EH domains from Eps15 and Eps15R bind in vitro to peptides containing an asparagine-proline-phenylalanine (NPF) motif. Direct...

  15. Formation of supported lipid bilayers containing phase-segregated domains and their interaction with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Melby, Eric S.; Mensch, Arielle C.; Lohse, Samuel E.; Hu, Dehong; Orr, Galya; Murphy, Catherine J.; Hamers, Robert J.; Pedersen, Joel A.

    2016-01-01

    The cell membrane represents an important biological interface that nanoparticles may encounter after being released into the environment. Interaction of nanoparticles with cellular membranes may alter membrane structure and function, lead to their uptake into cells, and elicit adverse biological responses. Supported lipid bilayers have proven to be valuable ex vivo models for biological membranes, allowing investigation of their mechanisms of interaction with nanoparticles with a degree of control impossible in living cells. To date, the majority of research on nanoparticle interaction with supported lipid bilayers has employed membranes composed of single or binary mixtures of phospholipids. Cellular membranes contain a wide variety of lipids and exhibit lateral organization. Ordered membrane domains enriched in specific membrane components are referred to as lipid rafts and have not been explored with respect to their interaction with nanoparticles. Here we develop model lipid raft-containing membranes amenable to investigation by a variety of surface-sensitive analytical techniques and demonstrate that lipid rafts influence the extent of nanoparticle attachment to model membranes. We determined conditions that allow reliable formation of bilayers containing rafts enriched in sphingomyelin and cholesterol and confirmed their morphology by structured illumination and atomic force microscopies. We demonstrate that lipid rafts increase attachment of cationic gold nanoparticles to model membranes under near physiological ionic strength conditions (0.1 M NaCl) at pH 7.4. We anticipate that these results will serve as the foundation for and motivate further study of nanoparticle interaction with compositionally varied lipid rafts.

  16. Homophilic interactions mediated by receptor tyrosine phosphatases mu and kappa. A critical role for the novel extracellular MAM domain

    DEFF Research Database (Denmark)

    Zondag, G C; Koningstein, G M; Jiang, Y P

    1995-01-01

    and is found in diverse transmembrane proteins, is not known. We previously reported that both RPTP mu and RPTP kappa can mediate homophilic cell interactions when expressed in insect cells. Here we show that despite their striking structural similarity, RPTP mu and RPTP kappa fail to interact...... in a heterophilic manner. To examine the role of the MAM domain in homophilic binding, we expressed a mutant RPTP mu lacking the MAM domain in insect Sf9 cells. Truncated RPTP mu is properly expressed at the cell surface but fails to promote cell-cell adhesion. Homophilic cell adhesion is fully restored...... in a chimeric RPTP mu molecule containing the MAM domain of RPTP kappa. However, this chimeric RPTP mu does not interact with either RPTP mu or RPTP kappa. These results indicate that the MAM domain of RPTP mu and RPTP kappa is essential for homophilic cell-cell interaction and helps determine the specificity...

  17. Additive interaction between heterogeneous environmental quality domains (air, water, land, sociodemographic and built environment) on preterm birth

    Science.gov (United States)

    BACKGROUND Environmental exposures often occur in tandem; however, epidemiological research often focuses on singular exposures. Statistical interactions among broad, well-characterized environmental domains have not yet been evaluated in association with health. We address this ...

  18. DnaA protein DNA-binding domain binds to Hda protein to promote inter-AAA+ domain interaction involved in regulatory inactivation of DnaA.

    Science.gov (United States)

    Keyamura, Kenji; Katayama, Tsutomu

    2011-08-19

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis.

  19. DnaA Protein DNA-binding Domain Binds to Hda Protein to Promote Inter-AAA+ Domain Interaction Involved in Regulatory Inactivation of DnaA*

    Science.gov (United States)

    Keyamura, Kenji; Katayama, Tsutomu

    2011-01-01

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis. PMID:21708944

  20. Analysis of electromagnetic wave interactions on nonlinear scatterers using time domain volume integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2014-07-06

    Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half

  1. LOADS INTERACTION DOMAINS METHODOLOGY FOR THE DESIGN OF STEEL GREENHOUSE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Sergio Castellano

    2007-03-01

    Full Text Available Aim of this research is to develop a design methodology which correlates main structural design parameters, whose production is characterised by high levels of standardization, such as the height of gutter or the distance between frames, with actions on the greenhouse. The methodology, based on the use of charts and abacus, permits a clear and a direct interpretation of the structural response to design load combinations and allows the design of structural improvements with the aim of the optimization of the ratio benefits (structural strength/costs. The study of structural interaction domains allowed a clear and a direct interpretation of the structural response to design load combinations. The diagrams highlight not only if the structure fulfils the standard requirements but also the safety levels with respect to design load combinations and allow the structural designer how to operate in order to optimize the structural response with standard requirements achieving the best ratio benefits (structural safety/ costs. The methodology was developed basing on criteria assigned by EN13031 on two different kinds of greenhouse structures: an arched greenhouse with a film plastic covering and a duo pitched roof greenhouse cover with rigid plastic membranes. Structural interaction domains for arched greenhouse showed a better capability of the structure to resist to vertical loads then to horizontal one. Moreover, the climatic load distribution on the structure assigned by EN13031 is such that the combination of climatic actions is less dangerous for the structure then their individual application. Whilst, duo pitched roof steel greenhouse interaction domains, showed a better capability of the structure to resist to vertical loads then to horizontal one and that, in any case, the serviceability limit states analysis is more strict then the ULS one. The shape of structural domains highlighted that the combination of actions is more dangerous for the

  2. Comprehensive Binary Interaction Mapping of SH2 Domains via Fluorescence Polarization Reveals Novel Functional Diversification of ErbB Receptors

    Science.gov (United States)

    Ciaccio, Mark F.; Chuu, Chih-pin; Jones, Richard B.

    2012-01-01

    First-generation interaction maps of Src homology 2 (SH2) domains with receptor tyrosine kinase (RTK) phosphosites have previously been generated using protein microarray (PM) technologies. Here, we developed a large-scale fluorescence polarization (FP) methodology that was able to characterize interactions between SH2 domains and ErbB receptor phosphosites with higher fidelity and sensitivity than was previously achieved with PMs. We used the FP assay to query the interaction of synthetic phosphopeptides corresponding to 89 ErbB receptor intracellular tyrosine sites against 93 human SH2 domains and 2 phosphotyrosine binding (PTB) domains. From 358,944 polarization measurements, the affinities for 1,405 unique biological interactions were determined, 83% of which are novel. In contrast to data from previous reports, our analyses suggested that ErbB2 was not more promiscuous than the other ErbB receptors. Our results showed that each receptor displays unique preferences in the affinity and location of recruited SH2 domains that may contribute to differences in downstream signaling potential. ErbB1 was enriched versus the other receptors for recruitment of domains from RAS GEFs whereas ErbB2 was enriched for recruitment of domains from tyrosine and phosphatidyl inositol phosphatases. ErbB3, the kinase inactive ErbB receptor family member, was predictably enriched for recruitment of domains from phosphatidyl inositol kinases and surprisingly, was enriched for recruitment of domains from tyrosine kinases, cytoskeletal regulatory proteins, and RHO GEFs but depleted for recruitment of domains from phosphatidyl inositol phosphatases. Many novel interactions were also observed with phosphopeptides corresponding to ErbB receptor tyrosines not previously reported to be phosphorylated by mass spectrometry, suggesting the existence of many biologically relevant RTK sites that may be phosphorylated but below the detection threshold of standard mass spectrometry procedures. This

  3. Comprehensive binary interaction mapping of SH2 domains via fluorescence polarization reveals novel functional diversification of ErbB receptors.

    Directory of Open Access Journals (Sweden)

    Ronald J Hause

    Full Text Available First-generation interaction maps of Src homology 2 (SH2 domains with receptor tyrosine kinase (RTK phosphosites have previously been generated using protein microarray (PM technologies. Here, we developed a large-scale fluorescence polarization (FP methodology that was able to characterize interactions between SH2 domains and ErbB receptor phosphosites with higher fidelity and sensitivity than was previously achieved with PMs. We used the FP assay to query the interaction of synthetic phosphopeptides corresponding to 89 ErbB receptor intracellular tyrosine sites against 93 human SH2 domains and 2 phosphotyrosine binding (PTB domains. From 358,944 polarization measurements, the affinities for 1,405 unique biological interactions were determined, 83% of which are novel. In contrast to data from previous reports, our analyses suggested that ErbB2 was not more promiscuous than the other ErbB receptors. Our results showed that each receptor displays unique preferences in the affinity and location of recruited SH2 domains that may contribute to differences in downstream signaling potential. ErbB1 was enriched versus the other receptors for recruitment of domains from RAS GEFs whereas ErbB2 was enriched for recruitment of domains from tyrosine and phosphatidyl inositol phosphatases. ErbB3, the kinase inactive ErbB receptor family member, was predictably enriched for recruitment of domains from phosphatidyl inositol kinases and surprisingly, was enriched for recruitment of domains from tyrosine kinases, cytoskeletal regulatory proteins, and RHO GEFs but depleted for recruitment of domains from phosphatidyl inositol phosphatases. Many novel interactions were also observed with phosphopeptides corresponding to ErbB receptor tyrosines not previously reported to be phosphorylated by mass spectrometry, suggesting the existence of many biologically relevant RTK sites that may be phosphorylated but below the detection threshold of standard mass spectrometry

  4. The intervening domain from MeCP2 enhances the DNA affinity of the methyl binding domain and provides an independent DNA interaction site.

    Science.gov (United States)

    Claveria-Gimeno, Rafael; Lanuza, Pilar M; Morales-Chueca, Ignacio; Jorge-Torres, Olga C; Vega, Sonia; Abian, Olga; Esteller, Manel; Velazquez-Campoy, Adrian

    2017-01-31

    Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities.

  5. Tailor-made ezrin actin binding domain to probe its interaction with actin in-vitro.

    Directory of Open Access Journals (Sweden)

    Rohini Shrivastava

    Full Text Available Ezrin, a member of the ERM (Ezrin/Radixin/Moesin protein family, is an Actin-plasma membrane linker protein mediating cellular integrity and function. In-vivo study of such interactions is a complex task due to the presence of a large number of endogenous binding partners for both Ezrin and Actin. Further, C-terminal actin binding capacity of the full length Ezrin is naturally shielded by its N-terminal, and only rendered active in the presence of Phosphatidylinositol bisphosphate (PIP2 or phosphorylation at the C-terminal threonine. Here, we demonstrate a strategy for the design, expression and purification of constructs, combining the Ezrin C-terminal actin binding domain, with functional elements such as fusion tags and fluorescence tags to facilitate purification and fluorescence microscopy based studies. For the first time, internal His tag was employed for purification of Ezrin actin binding domain based on in-silico modeling. The functionality (Ezrin-actin interaction of these constructs was successfully demonstrated by using Total Internal Reflection Fluorescence Microscopy. This design can be extended to other members of the ERM family as well.

  6. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif

    Directory of Open Access Journals (Sweden)

    Asita Elengoe

    2015-01-01

    Full Text Available Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD of heat shock 70 kDa protein (PDB: 1HJO with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD simulation. Human DNA binding domain of p53 motif (SCMGGMNR retrieved from UniProt (UniProtKB: P04637 was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were −0.44 Kcal/mol and −9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy.

  7. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    Directory of Open Access Journals (Sweden)

    Jenkins Thomas G.

    2017-01-01

    Full Text Available Recent advances in finite-difference time-domain (FDTD modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers are much smaller than the wavelengths of fast (tens of cm and slow (millimeter waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core FDTD/PIC simulations of Alcator C-Mod antenna operation.

  8. HCV NS5A protein containing potential ligands for both Src homology 2 and 3 domains enhances autophosphorylation of Src family kinase Fyn in B cells.

    Science.gov (United States)

    Nakashima, Kenji; Takeuchi, Kenji; Chihara, Kazuyasu; Horiguchi, Tomoko; Sun, Xuedong; Deng, Lin; Shoji, Ikuo; Hotta, Hak; Sada, Kiyonao

    2012-01-01

    Hepatitis C virus (HCV) infects B lymphocytes and induces mixed cryoglobulinemia and B cell non-Hodgkin's lymphoma. The molecular mechanism for the pathogenesis of HCV infection-mediated B cell disorders remains obscure. To identify the possible role for HCV nonstructural 5A (NS5A) protein in B cells, we generated the stable B cell lines expressing Myc-His tagged NS5A. Immunoprecipitation study in the presence or absence of pervanadate (PV) implied that NS5A was tyrosine phosphorylated by pervanadate (PV) treatment of the cells. Therefore we examined pull-down assay by using glutathione S-transferase (GST)-fusion proteins of various Src homology 2 (SH2) domains, which associates with phosphotyrosine within a specific amino acid sequence. The results showed that NS5A specifically bound to SH2 domain of Fyn from PV-treated B cells in addition to Src homology 3 (SH3) domain. Substitution of Arg(176) to Lys in the SH2 domain of Fyn abrogated this interaction. Deletion mutational analysis demonstrated that N-terminal region of NS5A was not required for the interaction with the SH2 domain of Fyn. Tyr(334) was identified as a tyrosine phosphorylation site in NS5A. Far-western analysis revealed that SH2 domain of Fyn directly bound to NS5A. Fyn and NS5A were colocalized in the lipid raft. These results suggest that NS5A directly binds to the SH2 domain of Fyn in a tyrosine phosphorylation-dependent manner. Lastly, we showed that the expression of NS5A in B cells increased phosphorylation of activation loop tyrosine in the kinase domain of Fyn. NS5A containing ligand for both SH2 and SH3 domains enhances an aberrant autophosphorylation and kinase activity of Fyn in B cells.

  9. HCV NS5A protein containing potential ligands for both Src homology 2 and 3 domains enhances autophosphorylation of Src family kinase Fyn in B cells.

    Directory of Open Access Journals (Sweden)

    Kenji Nakashima

    Full Text Available Hepatitis C virus (HCV infects B lymphocytes and induces mixed cryoglobulinemia and B cell non-Hodgkin's lymphoma. The molecular mechanism for the pathogenesis of HCV infection-mediated B cell disorders remains obscure. To identify the possible role for HCV nonstructural 5A (NS5A protein in B cells, we generated the stable B cell lines expressing Myc-His tagged NS5A. Immunoprecipitation study in the presence or absence of pervanadate (PV implied that NS5A was tyrosine phosphorylated by pervanadate (PV treatment of the cells. Therefore we examined pull-down assay by using glutathione S-transferase (GST-fusion proteins of various Src homology 2 (SH2 domains, which associates with phosphotyrosine within a specific amino acid sequence. The results showed that NS5A specifically bound to SH2 domain of Fyn from PV-treated B cells in addition to Src homology 3 (SH3 domain. Substitution of Arg(176 to Lys in the SH2 domain of Fyn abrogated this interaction. Deletion mutational analysis demonstrated that N-terminal region of NS5A was not required for the interaction with the SH2 domain of Fyn. Tyr(334 was identified as a tyrosine phosphorylation site in NS5A. Far-western analysis revealed that SH2 domain of Fyn directly bound to NS5A. Fyn and NS5A were colocalized in the lipid raft. These results suggest that NS5A directly binds to the SH2 domain of Fyn in a tyrosine phosphorylation-dependent manner. Lastly, we showed that the expression of NS5A in B cells increased phosphorylation of activation loop tyrosine in the kinase domain of Fyn. NS5A containing ligand for both SH2 and SH3 domains enhances an aberrant autophosphorylation and kinase activity of Fyn in B cells.

  10. A novel form of the membrane protein CD147 that contains an extra Ig-like domain and interacts homophilically

    Directory of Open Access Journals (Sweden)

    Brown Marion H

    2003-11-01

    Full Text Available Abstract Background CD147 is a broadly distributed integral membrane glycoprotein with two Ig-like domains implicated in a wide range of functions. It is associated at the cell surface with the monocarboxylate transporters MCT1 and 4 but interactions of the extracellular region have not been characterised. Results We report the characterisation of a form of CD147 with an additional membrane-distal Ig-like domain. In contrast to the two domain form, this three domain form of CD147 interacts homophilically. Surface plasmon resonance analysis using recombinant proteins showed that the interaction was of low affinity (KD ~ 40 μM and this is typical of many interactions between membrane proteins. cDNA for the 3 domain form are rare but have been identified in human and mouse retina. Conclusion The finding that the three domain form of CD147 has an extracellular ligand, that is it interacts homophilically, suggests this interaction may be important in aligning lactate transporters in the retina where lactate is an important metabolite.

  11. The role of glycosylation and domain interactions in the thermal stability of human angiotensin-converting enzyme.

    Science.gov (United States)

    O'Neill, Hester G; Redelinghuys, Pierre; Schwager, Sylva L U; Sturrock, Edward D

    2008-09-01

    The N and C domains of somatic angiotensin-converting enzyme (sACE) differ in terms of their substrate specificity, inhibitor profiling, chloride dependency and thermal stability. The C domain is thermally less stable than sACE or the N domain. Since both domains are heavily glycosylated, the effect of glycosylation on their thermal stability was investigated by assessing their catalytic and physicochemical properties. Testis ACE (tACE) expressed in mammalian cells, mammalian cells in the presence of a glucosidase inhibitor and insect cells yielded proteins with altered catalytic and physicochemical properties, indicating that the more complex glycans confer greater thermal stabilization. Furthermore, a decrease in tACE and N-domain N-glycans using site-directed mutagenesis decreased their thermal stability, suggesting that certain N-glycans have an important effect on the protein's thermodynamic properties. Evaluation of the thermal stability of sACE domain swopover and domain duplication mutants, together with sACE expressed in insect cells, showed that the C domain contained in sACE is less dependent on glycosylation for thermal stabilization than a single C domain, indicating that stabilizing interactions between the two domains contribute to the thermal stability of sACE and are decreased in a C-domain-duplicating mutant.

  12. Discovery of novel interacting partners of PSMD9, a proteasomal chaperone: Role of an Atypical and versatile PDZ-domain motif interaction and identification of putative functional modules

    Directory of Open Access Journals (Sweden)

    Nikhil Sangith

    2014-01-01

    Full Text Available PSMD9 (Proteasome Macropain non-ATPase subunit 9, a proteasomal assembly chaperone, harbors an uncharacterized PDZ-like domain. Here we report the identification of five novel interacting partners of PSMD9 and provide the first glimpse at the structure of the PDZ-domain, including the molecular details of the interaction. We based our strategy on two propositions: (a proteins with conserved C-termini may share common functions and (b PDZ domains interact with C-terminal residues of proteins. Screening of C-terminal peptides followed by interactions using full-length recombinant proteins, we discovered hnRNPA1 (an RNA binding protein, S14 (a ribosomal protein, CSH1 (a growth hormone, E12 (a transcription factor and IL6 receptor as novel PSMD9-interacting partners. Through multiple techniques and structural insights, we clearly demonstrate for the first time that human PDZ domain interacts with the predicted Short Linear Sequence Motif (SLIM at the C-termini of the client proteins. These interactions are also recapitulated in mammalian cells. Together, these results are suggestive of the role of PSMD9 in transcriptional regulation, mRNA processing and editing, hormone and receptor activity and protein translation. Our proof-of-principle experiments endorse a novel and quick method for the identification of putative interacting partners of similar PDZ-domain proteins from the proteome and for discovering novel functions.

  13. Viral Interactions with PDZ Domain-Containing Proteins-An Oncogenic Trait?

    Science.gov (United States)

    James, Claire D; Roberts, Sally

    2016-01-18

    Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9), encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ) interaction modules. In many cases (but not always), the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis.

  14. Viral Interactions with PDZ Domain-Containing Proteins—An Oncogenic Trait?

    Directory of Open Access Journals (Sweden)

    Claire D. James

    2016-01-01

    Full Text Available Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9, encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ interaction modules. In many cases (but not always, the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis.

  15. Interaction domains in die-upset NdFeB magnets in dependence on the degree of deformation

    International Nuclear Information System (INIS)

    Khlopkov, K.; Gutfleisch, O.; Schaefer, R.; Hinz, D.; Mueller, K.-H.; Schultz, L.

    2004-01-01

    The magnetic domain structure of NdFeB magnets has been studied using high resolution, digitally enhanced Kerr-microscopy. Melt-spun NdFeB powder (MQU-F TM ) was hot pressed into fully dense samples and then hot deformed to axially textured magnets. Various degrees of deformation (height reduction) up to 76% have been realized. Pronounced interaction domains have been observed only in magnets, which were deformed to a degree of deformation of at least 52%. With increasing alignment of the grains the interaction domains become more and more visible and their size increases

  16. Quantifying information transfer by protein domains: Analysis of the Fyn SH2 domain structure

    Directory of Open Access Journals (Sweden)

    Serrano Luis

    2008-10-01

    Full Text Available Abstract Background Efficient communication between distant sites within a protein is essential for cooperative biological response. Although often associated with large allosteric movements, more subtle changes in protein dynamics can also induce long-range correlations. However, an appropriate formalism that directly relates protein structural dynamics to information exchange between functional sites is still lacking. Results Here we introduce a method to analyze protein dynamics within the framework of information theory and show that signal transduction within proteins can be considered as a particular instance of communication over a noisy channel. In particular, we analyze the conformational correlations between protein residues and apply the concept of mutual information to quantify information exchange. Mapping out changes of mutual information on the protein structure then allows visualizing how distal communication is achieved. We illustrate the approach by analyzing information transfer by the SH2 domain of Fyn tyrosine kinase, obtained from Monte Carlo dynamics simulations. Our analysis reveals that the Fyn SH2 domain forms a noisy communication channel that couples residues located in the phosphopeptide and specificity binding sites and a number of residues at the other side of the domain near the linkers that connect the SH2 domain to the SH3 and kinase domains. We find that for this particular domain, communication is affected by a series of contiguous residues that connect distal sites by crossing the core of the SH2 domain. Conclusion As a result, our method provides a means to directly map the exchange of biological information on the structure of protein domains, making it clear how binding triggers conformational changes in the protein structure. As such it provides a structural road, next to the existing attempts at sequence level, to predict long-range interactions within protein structures.

  17. Solution structure of tensin2 SH2 domain and its phosphotyrosine-independent interaction with DLC-1.

    Directory of Open Access Journals (Sweden)

    Kun Dai

    Full Text Available Src homology 2 (SH2 domain is a conserved module involved in various biological processes. Tensin family member was reported to be involved in tumor suppression by interacting with DLC-1 (deleted-in-liver-cancer-1 via its SH2 domain. We explore here the important questions that what the structure of tensin2 SH2 domain is, and how it binds to DLC-1, which might reveal a novel binding mode.Tensin2 SH2 domain adopts a conserved SH2 fold that mainly consists of five β-strands flanked by two α-helices. Most SH2 domains recognize phosphorylated ligands specifically. However, tensin2 SH2 domain was identified to interact with nonphosphorylated ligand (DLC-1 as well as phosphorylated ligand.We determined the solution structure of tensin2 SH2 domain using NMR spectroscopy, and revealed the interactions between tensin2 SH2 domain and its ligands in a phosphotyrosine-independent manner.

  18. PTB domain-directed substrate targeting in a tyrosine kinase from the unicellular choanoflagellate Monosiga brevicollis.

    Directory of Open Access Journals (Sweden)

    Victoria Prieto-Echagüe

    2011-04-01

    Full Text Available Choanoflagellates are considered to be the closest living unicellular relatives of metazoans. The genome of the choanoflagellate Monosiga brevicollis contains a surprisingly high number and diversity of tyrosine kinases, tyrosine phosphatases, and phosphotyrosine-binding domains. Many of the tyrosine kinases possess combinations of domains that have not been observed in any multicellular organism. The role of these protein interaction domains in M. brevicollis kinase signaling is not clear. Here, we have carried out a biochemical characterization of Monosiga HMTK1, a protein containing a putative PTB domain linked to a tyrosine kinase catalytic domain. We cloned, expressed, and purified HMTK1, and we demonstrated that it possesses tyrosine kinase activity. We used immobilized peptide arrays to define a preferred ligand for the third PTB domain of HMTK1. Peptide sequences containing this ligand sequence are phosphorylated efficiently by recombinant HMTK1, suggesting that the PTB domain of HMTK1 has a role in substrate recognition analogous to the SH2 and SH3 domains of mammalian Src family kinases. We suggest that the substrate recruitment function of the noncatalytic domains of tyrosine kinases arose before their roles in autoinhibition.

  19. WHERE MULTIFUNCTIONAL DNA REPAIR PROTEINS MEET: MAPPING THE INTERACTION DOMAINS BETWEEN XPG AND WRN

    Energy Technology Data Exchange (ETDEWEB)

    Rangaraj, K.; Cooper, P.K.; Trego, K.S.

    2009-01-01

    The rapid recognition and repair of DNA damage is essential for the maintenance of genomic integrity and cellular survival. Multiple complex and interconnected DNA damage responses exist within cells to preserve the human genome, and these repair pathways are carried out by a specifi c interplay of protein-protein interactions. Thus a failure in the coordination of these processes, perhaps brought about by a breakdown in any one multifunctional repair protein, can lead to genomic instability, developmental and immunological abnormalities, cancer and premature aging. This study demonstrates a novel interaction between two such repair proteins, Xeroderma pigmentosum group G protein (XPG) and Werner syndrome helicase (WRN), that are both highly pleiotropic and associated with inherited genetic disorders when mutated. XPG is a structure-specifi c endonuclease required for the repair of UV-damaged DNA by nucleotide excision repair (NER), and mutations in XPG result in the diseases Xeroderma pigmentosum (XP) and Cockayne syndrome (CS). A loss of XPG incision activity results in XP, whereas a loss of non-enzymatic function(s) of XPG causes CS. WRN is a multifunctional protein involved in double-strand break repair (DSBR), and consists of 3’–5’ DNA-dependent helicase, 3’–5’ exonuclease, and single-strand DNA annealing activities. Nonfunctional WRN protein leads to Werner syndrome, a premature aging disorder with increased cancer incidence. Far Western analysis was used to map the interacting domains between XPG and WRN by denaturing gel electrophoresis, which separated purifi ed full length and recombinant XPG and WRN deletion constructs, based primarily upon the length of each polypeptide. Specifi c interacting domains were visualized when probed with the secondary protein of interest which was then detected by traditional Western analysis using the antibody of the secondary protein. The interaction between XPG and WRN was mapped to the C-terminal region of

  20. Time-domain soil-structure interaction analysis of nuclear facilities

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bolisetti, Chandrakanth; Whittaker, Andrew S.

    2016-01-01

    The Nuclear Regulatory Commission (NRC) regulation 10 CFR Part 50 Appendix S requires consideration of soil-structure interaction (SSI) in nuclear power plant (NPP) analysis and design. Soil-structure interaction analysis for NPPs is routinely carried out using guidance provided in the ASCE Standard 4-98 titled “Seismic Analysis of Safety-Related Nuclear Structures and Commentary”. This Standard, which is currently under revision, provides guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear facilities using deterministic and probabilistic methods. A new appendix has been added to the forthcoming edition of ASCE Standard 4 to provide guidance for time-domain, nonlinear SSI (NLSSI) analysis. Nonlinear SSI analysis will be needed to simulate material nonlinearity in soil and/or structure, static and dynamic soil pressure effects on deeply embedded structures, local soil failure at the foundation-soil interface, nonlinear coupling of soil and pore fluid, uplift or sliding of the foundation, nonlinear effects of gaps between the surrounding soil and the embedded structure and seismic isolation systems, none of which can be addressed explicitly at present. Appendix B of ASCE Standard 4 provides general guidance for NLSSI analysis but will not provide a methodology for performing the analysis. This paper provides a description of an NLSSI methodology developed for application to nuclear facilities, including NPPs. This methodology is described as series of sequential steps to produce reasonable results using any time-domain numerical code. These steps require some numerical capabilities, such as nonlinear soil constitutive models, which are also described in the paper.

  1. Interaction between two adjacent grounded sources in frequency domain semi-airborne electromagnetic survey.

    Science.gov (United States)

    Zhou, Haigen; Lin, Jun; Liu, Changsheng; Kang, Lili; Li, Gang; Zeng, Xinsen

    2016-03-01

    Multi-source and multi-frequency emission method can make full use of the valuable and short flight time in frequency domain semi-airborne electromagnetic (FSAEM) exploration, which has potential to investigate the deep earth structure in complex terrain region. Because several sources are adjacent in multi-source emission method, the interaction of different sources should be considered carefully. An equivalent circuit model of dual-source is established in this paper to assess the interaction between two individual sources, where the parameters are given with the typical values based on the practical instrument system and its application. By simulating the output current of two sources in different cases, the influence from the adjacent source is observed clearly. The current waveforms show that the mutual resistance causes the fluctuation and drift in another source and that the mutual inductance causes transient peaks. A field test with dual-source was conducted to certify the existence of interaction between adjacent sources. The simulation of output current also shows that current errors at low frequency are mainly caused by the mutual resistance while those at high frequency are mainly due to the mutual inductance. Increasing the distance between neighboring sources is a proposed measure to reduce the emission signal errors with designed ones. The feasible distance is discussed in the end. This study gives a useful guidance to lay multi sources to meet the requirement of measurement accuracy in FSAEM survey.

  2. Investigation of ion acceleration mechanism through laser-matter interaction in femtosecond domain

    Energy Technology Data Exchange (ETDEWEB)

    Altana, C., E-mail: altana@lns.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania (Italy); Muoio, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F.S. D’Alcontres 31, 98166 Messina (Italy); Lanzalone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Enna “Kore”, Via delle Olimpiadi, 94100 Enna (Italy); Tudisco, S. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Brandi, F. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Cirrone, G.A.P. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Cristoforetti, G. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Fazzi, A. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Ferrara, P.; Fulgentini, L. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Giove, D. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Koester, P. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Labate, L. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); and others

    2016-09-01

    An experimental campaign aiming to investigate the ion acceleration mechanisms through laser-matter interaction in the femtosecond domain has been carried out at the ILIL facility at a laser intensity of up to 2×10{sup 19} W/cm{sup 2}. A Thomson Parabola Spectrometer was used to identify different ion species and measure the energy spectra and the corresponding temperature parameters. We discuss the dependence of the protons spectra upon the structural characteristics of the targets (thickness and atomic mass) and the role of surface versus target bulk during acceleration process. - Highlights: • Ion acceleration mechanism in TNSA regime was investigated. • The energy spectra and the corresponding temperature parameters were measured. • Dependence of the spectra upon the target structural characteristics was discussed.

  3. Domain walls and exchange-interaction in Permalloy/Gd films

    International Nuclear Information System (INIS)

    Ranchal, R; Aroca, C; Lopez, E

    2008-01-01

    In this work we study the exchange coupling in Permalloy (Py)/gadolinium (Gd) bilayers. The exchange-coupled Py/Gd system is very temperature dependent and moreover the magnetization process in the Py layer is mainly due to domain wall (DW) displacements which are strongly controlled by pinning effects. We propose that this pinning could be caused by magnetostatic and exchange interactions between Py DWs and the magnetostrictive Gd layer. These effects mask the antiferromagnetic coupling between layers and, depending on temperature and Py thicknesses, apparent ferromagnetic coupling occurs. The study has been performed in the 80-300 K temperature range for different Py layer thicknesses and different Py induced anisotropies

  4. Phase sensitive spectral domain interferometry for label free biomolecular interaction analysis and biosensing applications

    Science.gov (United States)

    Chirvi, Sajal

    Biomolecular interaction analysis (BIA) plays vital role in wide variety of fields, which include biomedical research, pharmaceutical industry, medical diagnostics, and biotechnology industry. Study and quantification of interactions between natural biomolecules (proteins, enzymes, DNA) and artificially synthesized molecules (drugs) is routinely done using various labeled and label-free BIA techniques. Labeled BIA (Chemiluminescence, Fluorescence, Radioactive) techniques suffer from steric hindrance of labels on interaction site, difficulty of attaching labels to molecules, higher cost and time of assay development. Label free techniques with real time detection capabilities have demonstrated advantages over traditional labeled techniques. The gold standard for label free BIA is surface Plasmon resonance (SPR) that detects and quantifies the changes in refractive index of the ligand-analyte complex molecule with high sensitivity. Although SPR is a highly sensitive BIA technique, it requires custom-made sensor chips and is not well suited for highly multiplexed BIA required in high throughput applications. Moreover implementation of SPR on various biosensing platforms is limited. In this research work spectral domain phase sensitive interferometry (SD-PSI) has been developed for label-free BIA and biosensing applications to address limitations of SPR and other label free techniques. One distinct advantage of SD-PSI compared to other label-free techniques is that it does not require use of custom fabricated biosensor substrates. Laboratory grade, off-the-shelf glass or plastic substrates of suitable thickness with proper surface functionalization are used as biosensor chips. SD-PSI is tested on four separate BIA and biosensing platforms, which include multi-well plate, flow cell, fiber probe with integrated optics and fiber tip biosensor. Sensitivity of 33 ng/ml for anti-IgG is achieved using multi-well platform. Principle of coherence multiplexing for multi

  5. Interaction of the phosphorylated DNA-binding domain in nuclear receptor CAR with its ligand-binding domain regulates CAR activation.

    Science.gov (United States)

    Shizu, Ryota; Min, Jungki; Sobhany, Mack; Pedersen, Lars C; Mutoh, Shingo; Negishi, Masahiko

    2018-01-05

    The nuclear protein constitutive active/androstane receptor (CAR or NR1I3) regulates several liver functions such as drug and energy metabolism and cell growth or death, which are often involved in the development of diseases such as diabetes and hepatocellular carcinoma. CAR undergoes a conversion from inactive homodimers to active heterodimers with retinoid X receptor α (RXRα), and phosphorylation of the DNA-binding domain (DBD) at Thr-38 in CAR regulates this conversion. Here, we uncovered the molecular mechanism by which this phosphorylation regulates the intramolecular interaction between CAR's DBD and ligand-binding domain (LBD), enabling the homodimer-heterodimer conversion. Phosphomimetic substitution of Thr-38 with Asp increased co-immunoprecipitation of the CAR DBD with CAR LBD in Huh-7 cells. Isothermal titration calorimetry assays also revealed that recombinant CAR DBD-T38D, but not nonphosphorylated CAR DBD, bound the CAR LBD peptide. This DBD-LBD interaction masked CAR's dimer interface, preventing CAR homodimer formation. Of note, EGF signaling weakened the interaction of CAR DBD T38D with CAR LBD, converting CAR to the homodimer form. The DBD-T38D-LBD interaction also prevented CAR from forming a heterodimer with RXRα. However, this interaction opened up a CAR surface, allowing interaction with protein phosphatase 2A. Thr-38 dephosphorylation then dissociated the DBD-LBD interaction, allowing CAR heterodimer formation with RXRα. We conclude that the intramolecular interaction of phosphorylated DBD with the LBD enables CAR to adapt a transient monomer configuration that can be converted to either the inactive homodimer or the active heterodimer.

  6. Identification of interaction domains within the UL37 tegument protein of herpes simplex virus type 1.

    Science.gov (United States)

    Bucks, Michelle A; Murphy, Michael A; O'Regan, Kevin J; Courtney, Richard J

    2011-07-20

    Herpes simplex virus type 1 (HSV-1) UL37 is a 1123 amino acid tegument protein that self-associates and binds to the tegument protein UL36 (VP1/2). Studies were undertaken to identify regions of UL37 involved in these protein-protein interactions. Coimmunoprecipitation assays showed that residues within the carboxy-terminal half of UL37, amino acids 568-1123, are important for interaction with UL36. Coimmunoprecipitation assays also revealed that amino acids 1-300 and 568-1123 of UL37 are capable of self-association. UL37 appears to self-associate only under conditions when UL36 is not present or is present in low amounts, suggesting UL36 and UL37 may compete for binding. Transfection-infection experiments were performed to identify domains of UL37 that complement the UL37 deletion virus, K∆UL37. The carboxy-terminal region of UL37 (residues 568-1123) partially rescues the K∆UL37 infection. These results suggest the C-terminus of UL37 may contribute to its essential functional role within the virus-infected cell. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Mathematics for Maths Anxious Tertiary Students: Integrating the cognitive and affective domains using interactive multimedia

    Directory of Open Access Journals (Sweden)

    Janet Taylor

    2011-04-01

    Full Text Available Today, commencing university students come from a diversity of backgrounds and have a broad range of abilities and attitudes. It is well known that attitudes towards mathematics, especially mathematics anxiety, can affect students’ performance to the extent that mathematics is often seen as a barrier to success by many. This paper reports on the design, development and evaluation of an interactive multimedia resource designed to explicitly address students’ beliefs and attitudes towards mathematics by following five characters as they progress through the highs and low of studying a preparatory mathematics course. The resource was built within two theoretical frameworks, one related to effective numeracy teaching (Marr and Helme 1991 and the other related to effective educational technology development (Laurillard 2002. Further, it uses a number of multimedia alternatives (video, audio, animations, diarying, interactive examples and self assessment to encourage students to feel part of a group, to reflect on their feelings and beliefs about mathematics, to expose students to authentic problem solving and generally build confidence through practice and self-assessment. Evaluation of the resource indicated that it encouraged students to value their own mathematical ability and helped to build confidence, while developing mathematical problem solving skills. The evaluation clearly demonstrated that it is possible to address the affective domain through multimedia initiatives and that this can complement the current focus on computer mediated communication as the primary method of addressing affective goals within the online environment.

  8. Disruption of PH–kinase domain interactions leads to oncogenic activation of AKT in human cancers

    Science.gov (United States)

    Parikh, Chaitali; Janakiraman, Vasantharajan; Wu, Wen-I; Foo, Catherine K.; Kljavin, Noelyn M.; Chaudhuri, Subhra; Stawiski, Eric; Lee, Brian; Lin, Jie; Li, Hong; Lorenzo, Maria N.; Yuan, Wenlin; Guillory, Joseph; Jackson, Marlena; Rondon, Jesus; Franke, Yvonne; Bowman, Krista K.; Sagolla, Meredith; Stinson, Jeremy; Wu, Thomas D.; Wu, Jiansheng; Stokoe, David; Stern, Howard M.; Brandhuber, Barbara J.; Lin, Kui; Skelton, Nicholas J.; Seshagiri, Somasekar

    2012-01-01

    The protein kinase v-akt murine thymoma viral oncogene homolog (AKT), a key regulator of cell survival and proliferation, is frequently hyperactivated in human cancers. Intramolecular pleckstrin homology (PH) domain–kinase domain (KD) interactions are important in maintaining AKT in an inactive state. AKT activation proceeds after a conformational change that dislodges the PH from the KD. To understand these autoinhibitory interactions, we generated mutations at the PH–KD interface and found that most of them lead to constitutive activation of AKT. Such mutations are likely another mechanism by which activation may occur in human cancers and other diseases. In support of this likelihood, we found somatic mutations in AKT1 at the PH–KD interface that have not been previously described in human cancers. Furthermore, we show that the AKT1 somatic mutants are constitutively active, leading to oncogenic signaling. Additionally, our studies show that the AKT1 mutants are not effectively inhibited by allosteric AKT inhibitors, consistent with the requirement for an intact PH–KD interface for allosteric inhibition. These results have important implications for therapeutic intervention in patients with AKT mutations at the PH–KD interface. PMID:23134728

  9. Dynamic Analysis of Partially Embedded Structures Considering Soil-Structure Interaction in Time Domain

    Directory of Open Access Journals (Sweden)

    Sanaz Mahmoudpour

    2011-01-01

    Full Text Available Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite element method and scaled boundary finite element method is applied. Finite element method is used to analyze the structure, and scaled boundary finite element method is applied in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in time domain. A computer program is prepared to analyze the soil-structure system. Comparing the results with those in literature shows the exactness and competency of the proposed method.

  10. Crystal Structure of the FERM Domain of Focal Adhesion Kinase

    International Nuclear Information System (INIS)

    Ceccarelli, D.; Song, H.; Poy, F.; Schaller, M.; Eck, M.

    2006-01-01

    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells. Through phosphorylation of proteins assembled at the cytoplasmic tails of integrins, FAK promotes signaling events that modulate cellular growth, survival, and migration. The amino-terminal region of FAK contains a region of sequence homology with band 4.1 and ezrin/radixin/moesin (ERM) proteins termed a FERM domain. FERM domains are found in a variety of signaling and cytoskeletal proteins and are thought to mediate intermolecular interactions with partner proteins and phospholipids at the plasma membrane and intramolecular regulatory interactions. Here we report two crystal structures of an NH2-terminal fragment of avian FAK containing the FERM domain and a portion of the regulatory linker that connects the FERM and kinase domains. The tertiary folds of the three subdomains (F1, F2, and F3) are similar to those of known FERM structures despite low sequence conservation. Differences in the sequence and relative orientation of the F3 subdomain alters the nature of the interdomain interface, and the phosphoinositide binding site found in ERM family FERM domains is not present in FAK. A putative protein interaction site on the F3 lobe is masked by the proximal region of the linker. Additionally, in one structure the adjacent Src SH3 and SH2 binding sites in the linker associate with the surfaces of the F3 and F1 lobes, respectively. These structural features suggest the possibility that protein interactions of the FAK FERM domain can be regulated by binding of Src kinases to the linker segment

  11. Functional interactions at the interface between voltage-sensing and pore domains in the Shaker K(v) channel.

    Science.gov (United States)

    Soler-Llavina, Gilberto J; Chang, Tsg-Hui; Swartz, Kenton J

    2006-11-22

    Voltage-activated potassium (K(v)) channels contain a central pore domain that is partially surrounded by four voltage-sensing domains. Recent X-ray structures suggest that the two domains lack extensive protein-protein contacts within presumed transmembrane regions, but whether this is the case for functional channels embedded in lipid membranes remains to be tested. We investigated domain interactions in the Shaker K(v) channel by systematically mutating the pore domain and assessing tolerance by examining channel maturation, S4 gating charge movement, and channel opening. When mapped onto the X-ray structure of the K(v)1.2 channel the large number of permissive mutations support the notion of relatively independent domains, consistent with crystallographic studies. Inspection of the maps also identifies portions of the interface where residues are sensitive to mutation, an external cluster where mutations hinder voltage sensor activation, and an internal cluster where domain interactions between S4 and S5 helices from adjacent subunits appear crucial for the concerted opening transition.

  12. The BARD1 C-Terminal Domain Structure and Interactions with Polyadenylation Factor CstF-50

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Ross A.; Lee, Megan S.; Tsutakawa, Susan E.; Williams, R. Scott; Tainer, John A.; Glover, J. N. Mark

    2009-07-13

    The BARD1 N-terminal RING domain binds BRCA1 while the BARD1 C-terminal ankyrin and tandem BRCT repeat domains bind CstF-50 to modulate mRNA processing and RNAP II stability in response to DNA damage. Here we characterize the BARD1 structural biochemistry responsible for CstF- 50 binding. The crystal structure of the BARD1 BRCT domain uncovers a degenerate phosphopeptide binding pocket lacking the key arginine required for phosphopeptide interactions in other BRCT proteins.Small angle X-ray scattering together with limited proteolysis results indicates that ankyrin and BRCT domains are linked by a flexible tether and do not adopt a fixed orientation relative to one another. Protein pull-down experiments utilizing a series of purified BARD1 deletion mutants indicate that interactions between the CstF-50 WD-40 domain and BARD1 involve the ankyrin-BRCT linker but do not require ankyrin or BRCT domains. The structural plasticity imparted by the ANK-BRCT linker helps to explain the regulated assembly of different protein BARD1 complexes with distinct functions in DNA damage signaling including BARD1-dependent induction of apoptosis plus p53 stabilization and interactions. BARD1 architecture and plasticity imparted by the ANK-BRCT linker are suitable to allow the BARD1 C-terminus to act as a hub with multiple binding sites to integrate diverse DNA damage signals directly to RNA polymerase.

  13. Analysis on the Interaction Domain of VirG and Apyrase by Pull-Down Assay

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-11-01

    Full Text Available VirG is outer membrane protein of Shigella and affects the spread of Shigella. Recently it has been reported that apyrase influences the location of VirG, although the underlying mechanism remains poorly understood. The site of interaction between apyrase and VirG is the focus of our research. First we constructed recombinant plasmid pHIS-phoN2 and pS-(v1–1102, v53–758, v759–1102, v53–319, v320–507, v507–758 by denaturation-renaturation, the phoN2:kan mutant of Shigella flexneri 5a M90T by a modified version of the lambda red recombination protocol originally described by Datsenko and Wanner and the complemented strain M90TΔphoN2/pET24a(PhisphoN2. Second, the recombinant plasmid pHIS-phoN2 and the pS-(v1–1102, v53–758, v759–1102, v53–319, v320–507, v507–758 were transformed into E. coli BL21 (DE3 and induced to express the fusion proteins. Third, the fusion proteins were purified and the interaction of VirG and apyrase was identified by pull-down. Fourth, VirG was divided and the interaction site of apyrase and VirG was determined. Finally, how apyrase affects the function of VirG was analyzed by immunofluorescence. Accordingly, the results provided the data supporting the fact that apyrase combines with the α-domain of VirG to influence the function of VirG.

  14. Identification of two novel SH3PXD2B gene mutations in Frank-Ter Haar syndrome by exome sequencing: Case report and review of the literature.

    Science.gov (United States)

    Zrhidri, Abdelali; Jaouad, Imane Cherkaoui; Lyahyai, Jaber; Raymond, Laure; Egéa, Grégory; Taoudi, Mohamed; El Mouatassim, Said; Sefiani, Abdelaziz

    2017-09-10

    Frank-Ter Haar syndrome (FTHS) is an autosomal-recessive disorder characterized by skeletal, cardio-vascular, and eye abnormalities, such as increased intraocular pressure, prominent eyes, and hypertelorism. The most common underlying genetic defect in Frank-Ter Haar syndrome appears to be due to mutations in the SH3PXD2B gene on chromosome 5q35.1. Until now, only six mutations in SH3PXD2B gene have been identified. A genetic heterogeneity of FTHS was suggested in previous studies. FTHS was suspected clinically in a girl of 2years old, born from non-consanguineous Moroccan healthy parents. The patient had been referred to a medical genetics outpatient clinic for dysmorphic facial features. Whole Exome Sequencing (WES) was performed in the patient and her parents, in addition to Sanger sequencing that was carried out to confirm the results. We report the first description of a Moroccan FTHS patient with two novel compound heterozygous mutations c.806G>A; p.Trp269* (maternal allele) and c.892delC; p.Asp299Thrfs*44 (paternal allele) in the SH3PXD2B gene. Sanger sequencing confirmed this mutation in the affected girl and demonstrated that her parents carry this mutation in heterozygous state. Our results confirm the clinical diagnosis of FTHS in this reported family and contribute to expand the mutational spectrum of this rare disease. Our study shows also, that exome sequencing is a powerful and a cost-effective tool for the diagnosis of a supposed genetically heterogeneous disorder such FTHS. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Autographa californica multiple nucleopolyhedrovirus GP64 protein: Analysis of domain I and V amino acid interactions and membrane fusion activity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qianlong [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China); Blissard, Gary W. [Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, United State (United States); Liu, Tong-Xian [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China); Li, Zhaofei, E-mail: zhaofeili73@outlook.com [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China)

    2016-01-15

    The Autographa californica multiple nucleopolyhedrovirus GP64 is a class III viral fusion protein. Although the post-fusion structure of GP64 has been solved, its pre-fusion structure and the detailed mechanism of conformational change are unknown. In GP64, domain V is predicted to interact with two domain I segments that flank fusion loop 2. To evaluate the significance of the amino acids involved in these interactions, we examined 24 amino acid positions that represent interacting and conserved residues within domains I and V. In several cases, substitution of a single amino acid involved in a predicted interaction disrupted membrane fusion activity, but no single amino acid pair appears to be absolutely required. We identified 4 critical residues in domain V (G438, W439, T452, and T456) that are important for membrane fusion, and two residues (G438 and W439) that appear to be important for formation or stability of the pre-fusion conformation of GP64. - Highlights: • The baculovirus envelope glycoprotein GP64 is a class III viral fusion protein. • The detailed mechanism of conformational change of GP64 is unknown. • We analyzed 24 positions that might stabilize the post-fusion structure of GP64. • We identified 4 residues in domain V that were critical for membrane fusion. • Two residues are critical for formation of the pre-fusion conformation of GP64.

  16. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein.

    Science.gov (United States)

    Richardson, Roy; Denis, Clyde L; Zhang, Chongxu; Nielsen, Maria E O; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J; Andersen, Jens S; Yao, Gang

    2012-09-01

    Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1's defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made.

  17. Detection of protein-protein interactions by ribosome display and protein in situ immobilisation.

    Science.gov (United States)

    He, Mingyue; Liu, Hong; Turner, Martin; Taussig, Michael J

    2009-12-31

    We describe a method for identification of protein-protein interactions by combining two cell-free protein technologies, namely ribosome display and protein in situ immobilisation. The method requires only PCR fragments as the starting material, the target proteins being made through cell-free protein synthesis, either associated with their encoding mRNA as ribosome complexes or immobilised on a solid surface. The use of ribosome complexes allows identification of interacting protein partners from their attached coding mRNA. To demonstrate the procedures, we have employed the lymphocyte signalling proteins Vav1 and Grb2 and confirmed the interaction between Grb2 and the N-terminal SH3 domain of Vav1. The method has promise for library screening of pairwise protein interactions, down to the analytical level of individual domain or motif mapping.

  18. Nonlinear Time Domain Seismic Soil-Structure Interaction (SSI) Deep Soil Site Methodology Development

    International Nuclear Information System (INIS)

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-01-01

    Currently the Department of Energy (DOE) and the nuclear industry perform seismic soil-structure interaction (SSI) analysis using equivalent linear numerical analysis tools. For lower levels of ground motion, these tools should produce reasonable in-structure response values for evaluation of existing and new facilities. For larger levels of ground motion these tools likely overestimate the in-structure response (and therefore structural demand) since they do not consider geometric nonlinearities (such as gaping and sliding between the soil and structure) and are limited in the ability to model nonlinear soil behavior. The current equivalent linear SSI (SASSI) analysis approach either joins the soil and structure together in both tension and compression or releases the soil from the structure for both tension and compression. It also makes linear approximations for material nonlinearities and generalizes energy absorption with viscous damping. This produces the potential for inaccurately establishing where the structural concerns exist and/or inaccurately establishing the amplitude of the in-structure responses. Seismic hazard curves at nuclear facilities have continued to increase over the years as more information has been developed on seismic sources (i.e. faults), additional information gathered on seismic events, and additional research performed to determine local site effects. Seismic hazard curves are used to develop design basis earthquakes (DBE) that are used to evaluate nuclear facility response. As the seismic hazard curves increase, the input ground motions (DBE's) used to numerically evaluation nuclear facility response increase causing larger in-structure response. As ground motions increase so does the importance of including nonlinear effects in numerical SSI models. To include material nonlinearity in the soil and geometric nonlinearity using contact (gaping and sliding) it is necessary to develop a nonlinear time domain methodology. This

  19. Interaction of the transactivation domain of B-Myb with the TAZ2 domain of the coactivator p300: molecular features and properties of the complex.

    Directory of Open Access Journals (Sweden)

    Ojore Oka

    Full Text Available The transcription factor B-Myb is a key regulator of the cell cycle in vertebrates, with activation of transcription involving the recognition of specific DNA target sites and the recruitment of functional partner proteins, including the coactivators p300 and CBP. Here we report the results of detailed studies of the interaction between the transactivation domain of B-Myb (B-Myb TAD and the TAZ2 domain of p300. The B-Myb TAD was characterized using circular dichroism, fluorescence and NMR spectroscopy, which revealed that the isolated domain exists as a random coil polypeptide. Pull-down and spectroscopic experiments clearly showed that the B-Myb TAD binds to p300 TAZ2 to form a moderately tight (K(d ~1.0-10 µM complex, which results in at least partial folding of the B-Myb TAD. Significant changes in NMR spectra of p300 TAZ2 suggest that the B-Myb TAD binds to a relatively large patch on the surface of the domain (~1200 Å(2. The apparent B-Myb TAD binding site on p300 TAZ2 shows striking similarity to the surface of CBP TAZ2 involved in binding to the transactivation domain of the transcription factor signal transducer and activator of transcription 1 (STAT1, which suggests that the structure of the B-Myb TAD-p300 TAZ2 complex may share many features with that reported for STAT1 TAD-p300 TAZ2.

  20. Two microcephaly-associated novel missense mutations in CASK specifically disrupt the CASK-neurexin interaction.

    Science.gov (United States)

    LaConte, Leslie E W; Chavan, Vrushali; Elias, Abdallah F; Hudson, Cynthia; Schwanke, Corbin; Styren, Katie; Shoof, Jonathan; Kok, Fernando; Srivastava, Sarika; Mukherjee, Konark

    2018-03-01

    Deletion and truncation mutations in the X-linked gene CASK are associated with severe intellectual disability (ID), microcephaly and pontine and cerebellar hypoplasia in girls (MICPCH). The molecular origin of CASK-linked MICPCH is presumed to be due to disruption of the CASK-Tbr-1 interaction. This hypothesis, however, has not been directly tested. Missense variants in CASK are typically asymptomatic in girls. We report three severely affected girls with heterozygous CASK missense mutations (M519T (2), G659D (1)) who exhibit ID, microcephaly, and hindbrain hypoplasia. The mutation M519T results in the replacement of an evolutionarily invariant methionine located in the PDZ signaling domain known to be critical for the CASK-neurexin interaction. CASK M519T is incapable of binding to neurexin, suggesting a critically important role for the CASK-neurexin interaction. The mutation G659D is in the SH3 (Src homology 3) domain of CASK, replacing a semi-conserved glycine with aspartate. We demonstrate that the CASK G659D mutation affects the CASK protein in two independent ways: (1) it increases the protein's propensity to aggregate; and (2) it disrupts the interface between CASK's PDZ (PSD95, Dlg, ZO-1) and SH3 domains, inhibiting the CASK-neurexin interaction despite residing outside of the domain deemed critical for neurexin interaction. Since heterozygosity of other aggregation-inducing mutations (e.g., CASK W919R ) does not produce MICPCH, we suggest that the G659D mutation produces microcephaly by disrupting the CASK-neurexin interaction. Our results suggest that disruption of the CASK-neurexin interaction, not the CASK-Tbr-1 interaction, produces microcephaly and cerebellar hypoplasia. These findings underscore the importance of functional validation for variant classification.

  1. From the chromatin interaction network to the organization of the human genome into replication N/U-domains

    International Nuclear Information System (INIS)

    Boulos, Rasha E; Julienne, Hanna; Baker, Antoine; Jensen, Pablo; Arneodo, Alain; Audit, Benjamin; Chen, Chun-Long; D'Aubenton-Carafa, Yves; Thermes, Claude; Petryk, Nataliya; Kahli, Malik; Hyrien, Olivier; Goldar, Arach

    2014-01-01

    The three-dimensional (3D) architecture of the mammalian nucleus is now being unraveled thanks to the recent development of chromatin conformation capture (3C) technologies. Here we report the results of a combined multiscale analysis of genome-wide mean replication timing and chromatin conformation data that reveal some intimate relationships between chromatin folding and human DNA replication. We previously described megabase replication N/U-domains as mammalian multiorigin replication units, and showed that their borders are ‘master’ replication initiation zones that likely initiate cascades of origin firing responsible for the stereotypic replication of these domains. Here, we demonstrate that replication N/U-domains correspond to the structural domains of self-interacting chromatin, and that their borders act as insulating regions both in high-throughput 3C (Hi-C) data and high-resolution 3C (4C) experiments. Further analyses of Hi-C data using a graph-theoretical approach reveal that N/U-domain borders are long-distance, interconnected hubs of the chromatin interaction network. Overall, these results and the observation that a well-defined ordering of chromatin states exists from N/U-domain borders to centers suggest that ‘master’ replication initiation zones are at the heart of a high-order, epigenetically controlled 3D organization of the human genome. (paper)

  2. Magnetic properties, domain-wall creep motion, and the Dzyaloshinskii-Moriya interaction in Pt/Co/Ir thin films

    Science.gov (United States)

    Shepley, Philippa M.; Tunnicliffe, Harry; Shahbazi, Kowsar; Burnell, Gavin; Moore, Thomas A.

    2018-04-01

    We study the magnetic properties of perpendicularly magnetized Pt/Co/Ir thin films and investigate the domain-wall creep method of determining the interfacial Dzyaloshinskii-Moriya (DM) interaction in ultrathin films. Measurements of the Co layer thickness dependence of saturation magnetization, perpendicular magnetic anisotropy, and symmetric and antisymmetric (i.e., DM) exchange energies in Pt/Co/Ir thin films have been made to determine the relationship between these properties. We discuss the measurement of the DM interaction by the expansion of a reverse domain in the domain-wall creep regime. We show how the creep parameters behave as a function of in-plane bias field and discuss the effects of domain-wall roughness on the measurement of the DM interaction by domain expansion. Whereas modifications to the creep law with DM field and in-plane bias fields have taken into account changes in the energy barrier scaling parameter α , we find that both α and the velocity scaling parameter v0 change as a function of in-plane bias field.

  3. Highly acidic C-terminal domain of pp32 is required for the interaction with histone chaperone, TAF-Ibeta.

    Science.gov (United States)

    Lee, In-Seon; Oh, Sang-Min; Kim, Sung-Mi; Lee, Dong-Seok; Seo, Sang-Beom

    2006-12-01

    We have previously reported that INHAT (inhibitor of acetyltransferases) complex subunits, TAF (template activating factor)-Ialpha, TAF-Ibeta and pp32 can inhibit histone acetylation and HAT (histone acetyltransferase)-dependent transcription by binding to histones. Evidences are accumulating that INHAT complex subunits have important regulatory roles in various cellular activities such as replication, transcription, and apoptosis etc. However, how these subunits interact each other remains largely unknown. Using immunoprecipitation (IP) and protein-protein interaction assays with TAF-Ibeta and pp32 deletion mutant proteins, we identify INHAT complex subunits, TAF-Ibeta and pp32 interaction requires highly acidic C-terminal domain of pp32. We also show that the interaction between the INHAT complex subunits is stronger in the presence of histones. In this study, we report that the synergistic inhibition of HAT-mediated transcription by TAF-Ibeta and pp32 is dependent on the highly acidic C-terminal domain of pp32.

  4. In vivo monitoring laser tissue interaction using high resolution Fourier-domain optical coherence tomography

    Science.gov (United States)

    Jo, Hang Chan; Shin, Dong Jun; Ahn, Jin-Chul; Chung, Phil-Sang; Kim, DaeYu

    2017-02-01

    Laser-induced therapies include laser ablation to remove or cut target tissue by irradiating high-power focused laser beam. These laser treatments are widely used tools for minimally invasive surgery and retinal surgical procedures in clinical settings. In this study, we demonstrate laser tissue interaction images of various sample tissues using high resolution Fourier-domain optical coherence tomography (Fd-OCT). We use a Q-switch diode-pumped Nd:YVO4 nanosecond laser (532nm central wavelength) with a 4W maximum output power at a 20 kHz repetition rate to ablate in vitro and in vivo samples including chicken breast and mouse ear tissues. The Fd-OCT system acquires time-series Bscan images at the same location during the tissue ablation experiments with 532nm laser irradiation. The real-time series of OCT cross-sectional (B-scan) images compare structural changes of 532nm laser ablation using same and different laser output powers. Laser tissue ablation is demonstrated by the width and the depth of the tissue ablation from the B-scan images.

  5. Isolation and Characterization of Pepper Genes Interacting with the CMV-P1 Helicase Domain.

    Directory of Open Access Journals (Sweden)

    Yoomi Choi

    Full Text Available Cucumber mosaic virus (CMV is a destructive pathogen affecting Capsicum annuum (pepper production. The pepper Cmr1 gene confers resistance to most CMV strains, but is overcome by CMV-P1 in a process dependent on the CMV-P1 RNA1 helicase domain (P1 helicase. Here, to identify host factors involved in CMV-P1 infection in pepper, a yeast two-hybrid library derived from a C. annuum 'Bukang' cDNA library was screened, producing a total of 76 potential clones interacting with the P1 helicase. Beta-galactosidase filter lift assay, PCR screening, and sequencing analysis narrowed the candidates to 10 genes putatively involved in virus infection. The candidate host genes were silenced in Nicotiana benthamiana plants that were then inoculated with CMV-P1 tagged with the green fluorescent protein (GFP. Plants silenced for seven of the genes showed development comparable to N. benthamiana wild type, whereas plants silenced for the other three genes showed developmental defects including stunting and severe distortion. Silencing formate dehydrogenase and calreticulin-3 precursor led to reduced virus accumulation. Formate dehydrogenase-silenced plants showed local infection in inoculated leaves, but not in upper (systemic leaves. In the calreticulin-3 precursor-silenced plants, infection was not observed in either the inoculated or the upper leaves. Our results demonstrate that formate dehydrogenase and calreticulin-3 precursor are required for CMV-P1 infection.

  6. Interactions of photoactive DNAs with terminal deoxynucleotidyl transferase: Identification of peptides in the DNA binding domain

    International Nuclear Information System (INIS)

    Farrar, Y.J.K.; Evans, R.K.; Beach, C.M.; Coleman, M.S.

    1991-01-01

    Terminal deoxynucleotidyl transferase (terminal transferase) was specifically modified in the DNA binding site by a photoactive DNA substrate (hetero-40-mer duplex containing eight 5-azido-dUMP residues at one 3' end). Under optimal photolabeling conditions, 27-40% of the DNA was covalently cross-linked to terminal transferase. The specificity of the DNA and protein interaction was demonstrated by protection of photolabeling at the DNA binding domain with natural DNA substrates. In order to recover high yields of modified peptides from limited amounts of starting material, protein modified with 32 P-labeled photoactive DNA and digested with trypsin was extracted 4 times with phenol followed by gel filtration chromatography. All peptides not cross-linked to DNA were extracted into the phenol phase while the photolyzed DNA and the covalently cross-linked peptides remained in the aqueous phase. The 32 P-containing peptide-DNA fraction was subjected to amino acid sequence analysis. Two sequences, Asp 221 -Lys 231 (peptide B8) and Cys 234 -Lys 249 (peptide B10), present in similar yield, were identified. Structure predictions placed the two peptides in an α-helical array of 39 angstrom which would accommodate a DNA helix span of 11 nucleotides. These peptides share sequence similarity with a region in DNA polymerase β that has been implicated in the binding of DNA template

  7. High-Throughput Quantification of SH2 Domain-Phosphopeptide Interactions with Cellulose-Peptide Conjugate Microarrays.

    Science.gov (United States)

    Engelmann, Brett W

    2017-01-01

    The Src Homology 2 (SH2) domain family primarily recognizes phosphorylated tyrosine (pY) containing peptide motifs. The relative affinity preferences among competing SH2 domains for phosphopeptide ligands define "specificity space," and underpins many functional pY mediated interactions within signaling networks. The degree of promiscuity exhibited and the dynamic range of affinities supported by individual domains or phosphopeptides is best resolved by a carefully executed and controlled quantitative high-throughput experiment. Here, I describe the fabrication and application of a cellulose-peptide conjugate microarray (CPCMA) platform to the quantitative analysis of SH2 domain specificity space. Included herein are instructions for optimal experimental design with special attention paid to common sources of systematic error, phosphopeptide SPOT synthesis, microarray fabrication, analyte titrations, data capture, and analysis.

  8. Site-Specific Phosphorylation of PSD-95 PDZ Domains Reveals Fine-Tuned Regulation of Protein-Protein Interactions

    DEFF Research Database (Denmark)

    Pedersen, Søren W; Albertsen, Louise; Moran, Griffin E

    2017-01-01

    The postsynaptic density protein of 95 kDa (PSD-95) is a key scaffolding protein that controls signaling at synapses in the brain through interactions of its PDZ domains with the C-termini of receptors, ion channels, and enzymes. PSD-95 is highly regulated by phosphorylation. To explore the effec...

  9. Interactions of polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol-3-kinase.

    Science.gov (United States)

    Yoakim, M; Hou, W; Liu, Y; Carpenter, C L; Kapeller, R; Schaffhausen, B S

    1992-01-01

    The binding of phosphatidylinositol-3-kinase to the polyomavirus middle T antigen is facilitated by tyrosine phosphorylation of middle T on residue 315. The pp85 subunit of phosphatidylinositol-3-kinase contains two SH2 domains, one in the middle of the molecule and one at the C terminus. When assayed by blotting with phosphorylated middle T, the more N-terminal SH2 domain is responsible for binding to middle T. When assayed in solution with glutathione S transferase fusions, both SH2s are capable of binding phosphorylated middle T. While both SH2 fusions can compete with intact pp85 for binding to middle T, the C-terminal SH2 is the more efficient of the two. Interaction between pp85 or its SH2 domains and middle T can be blocked by a synthetic peptide comprising the tyrosine phosphorylation sequence around middle T residue 315. Despite the fact that middle T can interact with both SH2s, these domains are not equivalent. Only the C-terminal SH2-middle T interaction was blocked by anti-SH2 antibody; the two SH2 fusions also interact with different cellular proteins. Images PMID:1380095

  10. Modeling of molecular interaction between apoptin, BCR-Abl and CrkL--an alternative approach to conventional rational drug design.

    Directory of Open Access Journals (Sweden)

    Soumya Panigrahi

    Full Text Available In this study we have calculated a 3D structure of apoptin and through modeling and docking approaches, we show its interaction with Bcr-Abl oncoprotein and its downstream signaling components, following which we confirm some of the newly-found interactions by biochemical methods. Bcr-Abl oncoprotein is aberrantly expressed in chronic myelogenous leukaemia (CML. It has several distinct functional domains in addition to the Abl kinase domain. The SH3 and SH2 domains cooperatively play important roles in autoinhibiting its kinase activity. Adapter molecules such as Grb2 and CrkL interact with proline-rich region and activate multiple Bcr-Abl downstream signaling pathways that contribute to growth and survival. Therefore, the oncogenic effect of Bcr-Abl could be inhibited by the interaction of small molecules with these domains. Apoptin is a viral protein with well-documented cancer-selective cytotoxicity. Apoptin attributes such as SH2-like sequence similarity with CrkL SH2 domain, unique SH3 domain binding sequence, presence of proline-rich segments, and its nuclear affinity render the molecule capable of interaction with Bcr-Abl. Despite almost two decades of research, the mode of apoptin's action remains elusive because 3D structure of apoptin is unavailable. We performed in silico three-dimensional modeling of apoptin, molecular docking experiments between apoptin model and the known structure of Bcr-Abl, and the 3D structures of SH2 domains of CrkL and Bcr-Abl. We also biochemically validated some of the interactions that were first predicted in silico. This structure-property relationship of apoptin may help in unlocking its cancer-selective toxic properties. Moreover, such models will guide us in developing of a new class of potent apoptin-like molecules with greater selectivity and potency.

  11. Structures of the Sgt2/SGTA Dimerization Domain with the Get5/UBL4A UBL Domain Reveal an Interaction that Forms a Conserved Dynamic Interface

    Directory of Open Access Journals (Sweden)

    Justin W. Chartron

    2012-12-01

    Full Text Available In the cytoplasm, the correct delivery of membrane proteins is an essential and highly regulated process. The posttranslational targeting of the important tail-anchor membrane (TA proteins has recently been under intense investigation. A specialized pathway, called the guided entry of TA proteins (GET pathway in yeast and the transmembrane domain recognition complex (TRC pathway in vertebrates, recognizes endoplasmic-reticulum-targeted TA proteins and delivers them through a complex series of handoffs. An early step is the formation of a complex between Sgt2/SGTA, a cochaperone with a presumed ubiquitin-like-binding domain (UBD, and Get5/UBL4A, a ubiquitin-like domain (UBL-containing protein. We structurally characterize this UBD/UBL interaction for both yeast and human proteins. This characterization is supported by biophysical studies that demonstrate that complex formation is mediated by electrostatics, generating an interface that has high-affinity with rapid kinetics. In total, this work provides a refined model of the interplay of Sgt2 homologs in TA targeting.

  12. Solution structure of the C-terminal X domain of the measles virus phosphoprotein and interaction with the intrinsically disordered C-terminal domain of the nucleoprotein.

    Science.gov (United States)

    Gely, Stéphane; Lowry, David F; Bernard, Cédric; Jensen, Malene R; Blackledge, Martin; Costanzo, Stéphanie; Bourhis, Jean-Marie; Darbon, Hervé; Daughdrill, Gary; Longhi, Sonia

    2010-01-01

    In this report, the solution structure of the nucleocapsid-binding domain of the measles virus phosphoprotein (XD, aa 459-507) is described. A dynamic description of the interaction between XD and the disordered C-terminal domain of the nucleocapsid protein, (N(TAIL), aa 401-525), is also presented. XD is an all alpha protein consisting of a three-helix bundle with an up-down-up arrangement of the helices. The solution structure of XD is very similar to the crystal structures of both the free and bound form of XD. One exception is the presence of a highly dynamic loop encompassing XD residues 489-491, which is involved in the embedding of the alpha-helical XD-binding region of N(TAIL). Secondary chemical shift values for full-length N(TAIL) were used to define the precise boundaries of a transient helical segment that coincides with the XD-binding domain, thus shedding light on the pre-recognition state of N(TAIL). Titration experiments with unlabeled XD showed that the transient alpha-helical conformation of N(TAIL) is stabilized upon binding. Lineshape analysis of NMR resonances revealed that residues 483-506 of N(TAIL) are in intermediate exchange with XD, while the 475-482 and 507-525 regions are in fast exchange. The N(TAIL) resonance behavior in the titration experiments is consistent with a complex binding model with more than two states.

  13. Adaptor proteins intersectin 1 and 2 bind similar proline-rich ligands but are differentially recognized by SH2 domain-containing proteins.

    Directory of Open Access Journals (Sweden)

    Olga Novokhatska

    Full Text Available BACKGROUND: Scaffolding proteins of the intersectin (ITSN family, ITSN1 and ITSN2, are crucial for the initiation stage of clathrin-mediated endocytosis. These proteins are closely related but have implications in distinct pathologies. To determine how these proteins could be separated in certain cell pathways we performed a comparative study of ITSNs. METHODOLOGY/PRINCIPAL FINDINGS: We have shown that endogenous ITSN1 and ITSN2 colocalize and form a complex in cells. A structural comparison of five SH3 domains, which mediated most ITSNs protein-protein interactions, demonstrated a similarity of their ligand-binding sites. We showed that the SH3 domains of ITSN2 bound well-established interactors of ITSN1 as well as newly identified ITSNs protein partners. A search for a novel interacting interface revealed multiple tyrosines that could be phosphorylated in ITSN2. Phosphorylation of ITSN2 isoforms but not ITSN1 short isoform was observed in various cell lines. EGF stimulation of HeLa cells enhanced tyrosine phosphorylation of ITSN2 isoforms and enabled their recognition by the SH2 domains of the Fyn, Fgr and Abl1 kinases, the regulatory subunit of PI3K, the adaptor proteins Grb2 and Crk, and phospholipase C gamma. The SH2 domains mentioned were unable to bind ITSN1 short isoform. CONCLUSIONS/SIGNIFICANCE: Our results indicate that during evolution of vertebrates ITSN2 acquired a novel protein-interaction interface that allows its specific recognition by the SH2 domains of signaling proteins. We propose that these data could be important to understand the functional diversity of paralogous ITSN proteins.

  14. Dynamics of one-dimensional domain walls interacting with disorder potential

    International Nuclear Information System (INIS)

    Krusin-Elbaum, L.; Shibauchi, T.; Argyle, B.; Gignac, L.; Zabel, T.; Weller, D.

    2001-01-01

    Dynamics of 1D perpendicular-anisotropy domain walls in a few monolayer-thin Co films is imaged by polar Kerr microscopy. When domain walls, driven by a square-pulsed magnetic fields, travel through a random disordered potential landscape, they display Gaussian-distributed roughness characteristic of this landscape. Average velocity of the domain wall driven by a constant magnetic field strongly depends on a strain field which modifies (increases) the elastic energy of the wall and reduces the wall velocity

  15. Regulation of abiotic stress signalling by Arabidopsis C-terminal domain phosphatase-like 1 requires interaction with a k-homology domain-containing protein.

    Directory of Open Access Journals (Sweden)

    In Sil Jeong

    Full Text Available Arabidopsis thaliana CARBOXYL-TERMINAL DOMAIN (CTD PHOSPHATASE-LIKE 1 (CPL1 regulates plant transcriptional responses to diverse stress signals. Unlike typical CTD phosphatases, CPL1 contains two double-stranded (ds RNA binding motifs (dsRBMs at its C-terminus. Some dsRBMs can bind to dsRNA and/or other proteins, but the function of the CPL1 dsRBMs has remained obscure. Here, we report identification of REGULATOR OF CBF GENE EXPRESSION 3 (RCF3 as a CPL1-interacting protein. RCF3 co-purified with tandem-affinity-tagged CPL1 from cultured Arabidopsis cells and contains multiple K-homology (KH domains, which were predicted to be important for binding to single-stranded DNA/RNA. Yeast two-hybrid, luciferase complementation imaging, and bimolecular fluorescence complementation analyses established that CPL1 and RCF3 strongly associate in vivo, an interaction mediated by the dsRBM1 of CPL1 and the KH3/KH4 domains of RCF3. Mapping of functional regions of CPL1 indicated that CPL1 in vivo function requires the dsRBM1, catalytic activity, and nuclear targeting of CPL1. Gene expression profiles of rcf3 and cpl1 mutants were similar during iron deficiency, but were distinct during the cold response. These results suggest that tethering CPL1 to RCF3 via dsRBM1 is part of the mechanism that confers specificity to CPL1-mediated transcriptional regulation.

  16. Discrete Green’s function diakoptics for stable FDTD interaction between multiply-connected domains

    NARCIS (Netherlands)

    Hon, de B.P.; Arnold, J.M.; Graglia, R.D.

    2007-01-01

    We have developed FDTD boundary conditions based on discrete Green's function diakoptics for arbitrary multiply-connected 2D domains. The associated Z-domain boundary operator is symmetric, with an imaginary part that can be proved to be positive semi-definite on the upper half of the unit circle in

  17. Magnetoresistance of non-180° domain wall in the presence of electron-photon interaction

    Science.gov (United States)

    Majidi, Roya

    2013-04-01

    In the present paper, influence of photon on resistance of non-180° domain wall in metallic magnetic nanowires has been studied using the semiclassical approach. The analysis has been based on the Boltzmann transport equation, within the relaxation time approximation. The one-dimensional Néel-type domain wall between two ferromagnetic domains with relative magnetization angle less than 180° is considered. By increasing this angle, the contribution of the domain wall in the resistivity of the nanowire becomes considerable. It is also found that the fundamental contribution of the domain wall in resistivity can be controlled by propagating photon. These results are valuable in designing spintronic devices based on magnetic nanowires.

  18. Functional interaction between the N- and C-terminal domains of murine leukemia virus surface envelope protein

    International Nuclear Information System (INIS)

    Lu, C.-W.; Roth, Monica J.

    2003-01-01

    A series of murine leukemia viruses (MuLVs) with chimeric envelope proteins (Env) was generated to map functional interactions between the N- and the C-terminal domains of surface proteins (SU). All these chimeras have the 4070A amphotropic receptor-binding region flanked by various lengths of Moloney ecotropic N- and C-terminal Env. A charged residue, E49 (E16 on the mature protein), was identified at the N-terminals of Moloney MuLV SU that is important for the interaction with the C-terminal domain of the SU. The region that interacts with E49 was localized between junction 4 (R265 of M-MuLV Env) and junction 6 (L374 of M-MuLV Env) of SU. Sequencing the viable chimeric Env virus populations identified residues within the SU protein that improved the replication kinetics of the input chimeric Env viruses. Mutations in the C-domain of SU (G387E/R, L435I, L442P) were found to improve chimera IV4, which displayed a delayed onset of replication. The replication of AE6, containing a chimeric junction in the SU C-terminus, was improved by mutations in the N-domain (N40H, E80K), the proline-rich region (Q252R), or the transmembrane protein (L538N). Altogether, these observations provide insights into the structural elements required for Env function

  19. The Src SH2 domain interacts dynamically with the focal adhesion kinase binding site as demonstrated by paramagnetic NMR spectroscopy.

    Science.gov (United States)

    Lindfors, Hanna E; Drijfhout, Jan Wouter; Ubbink, Marcellus

    2012-06-01

    The interaction between the tyrosine kinases Src and focal adhesion kinase (FAK) is a key step in signaling processes from focal adhesions. The phosphorylated tyrosine residue 397 in FAK is able to bind the Src SH2 domain. To establish the extent of the FAK binding motif, the binding affinity of the SH2 domain for phosphorylated and unphosphorylated FAK-derived peptides of increasing length was determined and compared with that of the internal Src SH2 binding site. It is shown that the FAK peptides have higher affinity than the internal binding site and that seven negative residues adjacent to the core SH2 binding motif increase the binding constant 30-fold. A rigid spin-label incorporated in the FAK peptides was used to establish on the basis of paramagnetic relaxation enhancement whether the peptide-protein complex is well defined. A large spread of the paramagnetic effects on the surface of the SH2 domain suggests that the peptide-protein complex exhibits dynamics, despite the high affinity of the peptide. The strong electrostatic interaction between the positive side of the SH2 domain and the negative peptide results in a high affinity but may also favor a dynamic interaction. Copyright © 2012 Wiley Periodicals, Inc.

  20. Isolation and characterization of a J domain protein that interacts with ARC1 from ornamental kale (Brassica oleracea var. acephala).

    Science.gov (United States)

    Lan, Xingguo; Yang, Jia; Cao, Mingming; Wang, Yanhong; Kawabata, Saneyuki; Li, Yuhua

    2015-05-01

    A novel J domain protein, JDP1, was isolated from ornamental kale. The C-terminus of JDP1 specifically interacted with ARC1, which has a conserved role in self-incompatibility signaling. Armadillo (ARM)-repeat containing 1 (ARC1) plays a conserved role in self-incompatibility signaling across the Brassicaceae and functions downstream of the S-locus receptor kinase. Here, we identified a J domain protein 1 (JDP1) that interacts with ARC1 using a yeast two-hybrid screen against a stigma cDNA library from ornamental kale (Brassica oleracea var. acephala). JDP1, a 38.4-kDa protein with 344 amino acids, is a member of the Hsp40 family. Fragment JDP1(57-344), originally isolated from a yeast two-hybrid cDNA library, interacted specifically with ARC1 in yeast two-hybrid assays. The N-terminus of JDP1 (JDP1(1-68)) contains a J domain, and the C-terminus of JDP1 (JDP1(69-344)) contains an X domain of unknown function. However, JDP1(69-344) was required and sufficient for interaction with ARC1 in yeast two-hybrid assays and in vitro binding assays. Moreover, JDP1(69-344) regulated the trafficking of ARC1 from the cytoplasm to the plasma membrane by interacting with ARC1 in Arabidopsis mesophyll protoplasts. Finally, Tyr(8) in the JDP1 N-terminal region was identified to be the specific site for regulating the interaction between JDP1 and BoARC1 in yeast two-hybrid assays. Possible roles of JDP1 as an interactor with ARC1 in Brassica are discussed.

  1. Structure of a WW domain-containing fragment of dystrophin complexed with {beta}-dystroglycan.

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.; Poy, F.; Zhang, R.; Joachimiak, A.; Sudol, M.; Eck, M. J.; Biosciences Division; Dana Farber Cancer Inst.; Harvard Medical School; Mount Sinai School of Medicine

    2000-08-01

    Dystrophin and {beta}-dystroglycan are components of the dystrophin--glycoprotein complex (DGC), a multimolecular assembly that spans the cell membrane and links the actin cytoskeleton to the extracellular basal lamina. Defects in the dystrophin gene are the cause of Duchenne and Becker muscular dystrophies. The C-terminal region of dystrophin binds the cytoplasmic tail of {beta}-dystroglycan, in part through the interaction of its WW domain with a proline-rich motif in the tail of {beta}-dystroglycan. Here we report the crystal structure of this portion of dystrophin in complex with the proline-rich binding site in {beta}-dystroglycan. The structure shows that the dystrophin WW domain is embedded in an adjacent helical region that contains two EF-hand-like domains. The {beta}-dystroglycan peptide binds a composite surface formed by the WW domain and one of these EF-hands. Additionally, the structure reveals striking similarities in the mechanisms of proline recognition employed by WW domains and SH3 domains.

  2. Pentamidine blocks the interaction between mutant S100A5 and RAGE V domain and inhibits the RAGE signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Ching Chang, E-mail: ccjwo@yahoo.com.tw [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Chou, Ruey Hwang, E-mail: rhchou@mail.cmu.edu.tw [Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Yu, Chin, E-mail: cyu.nthu@gmail.com [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2016-08-19

    The human S100 protein family contains small, dimeric and acidic proteins that contain two EF-hand motifs and bind calcium. When S100A5 binds calcium, its conformation changes and promotes interaction with the target protein. The extracellular domain of RAGE (Receptor of Advanced Glycation End products) contain three domains: C1, C2 and V. The RAGE V domain is the target protein of S100A5 that promotes cell survival, growth and differentiation by activating several signaling pathways. Pentamidine is an apoptotic and antiparasitic drug that is used to treat or prevent pneumonia. Here, we found that pentamidine interacts with S100A5 using HSQC titration. We elucidated the interactions of S100A5 with RAGE V domain and pentamidine using fluorescence and NMR spectroscopy. We generated two binary models—the S100A5-RAGE V domain and S100A5-Pentamidine complex—and then observed that the pentamidine and RAGE V domain share a similar binding region in mS100A5. We also used the WST-1 assay to investigate the bioactivity of S100A5, RAGE V domain and pentamidine. These results indicated that pentamidine blocks the binding between S100A5 and RAGE V domain. This finding is useful for the development of new anti-proliferation drugs. - Highlights: • The interaction between mS100A5–RAGE V was investigated by fluorescence spectroscopy. • The interfacial residues on mS100A5–RAGE V and mS100A5–pentamidine contact surface were mapped by {sup 1}H-{sup 15}N HSQC experiments. • mS100A5–RAGE V and mS100A5–pentamidine complex models were generated from NMR restraints using HADDOCK program. • The bioactivity of the mS100A5–RAGE V and mS100A5–pentamidine complex was studied using WST-1 assay.

  3. Identification and characterization of Iporin as a novel interaction partner for rab1

    Directory of Open Access Journals (Sweden)

    Konczal Magdalena

    2005-03-01

    Full Text Available Abstract Background The small GTPase rab1a and its isoform rab1b are essential regulating components in the vesicle transport between the ER and the Golgi apparatus. Rab1 is thought to act as a molecular switch and can change between an active GTP-bound and an inactive GDP-bound conformation. To elucidate the function of rab1, several approaches have been established to isolate effector proteins, which interact with the activated conformation of rab1. To date p115, GM130, golgin-84 and MICAL have been identified as direct interacting partners. Together with rab1, these molecules are components of a protein complex, which mediates and regulates intracellular vesicle transport. Results Here, we report the characterization of Iporin, which is similar to KIAA0375 as a novel rab1-interacting protein. It was initially identified by yeast two-hybrid screening experiments with the active mutant of rab1b (rab1b Q67R as bait. Iporin contains a SH3 domain and two polyproline stretches, which are known to play a role in protein/protein interactions. In addition, Iporin encloses a RUN domain, which seems to be a major part of the rab1binding domain (R1BD. Iporin is ubiquitously expressed and immunofluorescence staining displays a cytosolic punctual distribution. Interestingly, we also show that Iporin interacts with another rab1 interacting partner, the GM130 protein. Conclusion Our results demonstrate that Iporin is a potential new interacting partner of rab1. Iporin is different from already identified rab1 interacting proteins concerning protein structure and cellular localization. We conclude that Iporin might function as a link between the targeting of ER derived vesicles, triggered by the rab1 GTPase and a signaling pathway regulated by molecules containing SH3 and/or poly-proline regions. The characterization of this novel intermolecular relation could help to elucidate how vesicles find their way from ER to the Golgi apparatus.

  4. Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains.

    Science.gov (United States)

    Ron, Gil; Globerson, Yuval; Moran, Dror; Kaplan, Tommy

    2017-12-21

    Proximity-ligation methods such as Hi-C allow us to map physical DNA-DNA interactions along the genome, and reveal its organization into topologically associating domains (TADs). As the Hi-C data accumulate, computational methods were developed for identifying domain borders in multiple cell types and organisms. Here, we present PSYCHIC, a computational approach for analyzing Hi-C data and identifying promoter-enhancer interactions. We use a unified probabilistic model to segment the genome into domains, which we then merge hierarchically and fit using a local background model, allowing us to identify over-represented DNA-DNA interactions across the genome. By analyzing the published Hi-C data sets in human and mouse, we identify hundreds of thousands of putative enhancers and their target genes, and compile an extensive genome-wide catalog of gene regulation in human and mouse. As we show, our predictions are highly enriched for ChIP-seq and DNA accessibility data, evolutionary conservation, eQTLs and other DNA-DNA interaction data.

  5. Solution structure of a syndecan-4 cytoplasmic domain and its interaction with phosphatidylinositol 4,5-bisphosphate

    DEFF Research Database (Denmark)

    Lee, D; Oh, E S; Woods, A

    1998-01-01

    Syndecan-4, a transmembrane heparan sulfate proteoglycan, is a coreceptor with integrins in cell adhesion. It has been suggested to form a ternary signaling complex with protein kinase Calpha and phosphatidylinositol 4,5-bisphosphate (PIP2). Syndecans each have a unique, central, and variable (V......) region in their cytoplasmic domains, and that of syndecan-4 is critical to its interaction with protein kinase C and PIP2. Two oligopeptides corresponding to the variable region (4V) and whole domain (4L) of syndecan-4 cytoplasmic domain were synthesized for nuclear magnetic resonance (NMR) studies. Data...... and dynamical simulated annealing calculations. The 4V peptide in the presence of PIP2 formed a compact dimer with two twisted strands packed parallel to each other and the exposed surface of the dimer consisted of highly charged and polar residues. The overall three-dimensional structure in solution exhibits...

  6. Analysis of electromagnetic wave interactions on nonlinear scatterers using time domain volume integral equations

    KAUST Repository

    Ulku, Huseyin Arda; Sayed, Sadeed Bin; Bagci, Hakan

    2014-01-01

    solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation

  7. The scavenger receptor SSc5D physically interacts with bacteria through the SRCR-containing N-terminal domain

    Directory of Open Access Journals (Sweden)

    Catarina Bessa-Pereira

    2016-10-01

    Full Text Available The scavenger receptor cysteine-rich (SRCR family comprises a group of membrane-attached or secreted proteins that contain one or more modules/domains structurally similar to the membrane distal domain of type I macrophage scavenger receptor. Although no all-inclusive biological function has been ascribed to the SRCR family, some of these receptors have been shown to recognize pathogen-associated molecular patterns (PAMP of bacteria, fungi or other microbes. SSc5D is a recently described soluble SRCR receptor produced by monocytes/macrophages and T lymphocytes, consisting of an N-terminal portion which contains five SRCR modules, and a large C-terminal mucin-like domain. Towards establishing a global common role for SRCR domains, we interrogated whether the set of five SRCR domains of SSc5D displayed pattern recognition receptor (PRR properties. For that purpose, we have expressed in a mammalian expression system the N-terminal SRCR-containing moiety of SSC5D (N-SSc5D, thus excluding the mucin-like domain likely by nature to bind microorganisms, and tested the capacity of the SRCR functional groups to physically interact with bacteria. Using conventional protein-bacteria binding assays, we showed that N-SSc5D had a superior capacity to bind to E. coli strains RS218 and IHE3034 compared with that of the extracellular domains of the SRCR proteins CD5 and CD6 (sCD5 and sCD6, respectively, and similar E. coli-binding properties as Spα, a proven PRR of the SRCR family. We have further designed a more sensitive, real-time and label-free surface plasmon resonance (SPR-based assay, and examined the capacity of N-SSc5D, Spα, sCD5 and sCD6 to bind to different bacteria. We demonstrated that the N-SSc5D compares with Spα in the capacity to bind to E. coli and L. monocytogenes, and further that it can distinguish between pathogenic E. coli RS218 and IHE3034 strains and the non-pathogenic laboratory E. coli strain BL21(DE3. Our work thus advocates the

  8. Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation

    Directory of Open Access Journals (Sweden)

    Pero Stephanie C

    2007-09-01

    Full Text Available Abstract Background Human growth factor receptor bound protein 7 (Grb7 is an adapter protein that mediates the coupling of tyrosine kinases with their downstream signaling pathways. Grb7 is frequently overexpressed in invasive and metastatic human cancers and is implicated in cancer progression via its interaction with the ErbB2 receptor and focal adhesion kinase (FAK that play critical roles in cell proliferation and migration. It is thus a prime target for the development of novel anti-cancer therapies. Recently, an inhibitory peptide (G7-18NATE has been developed which binds specifically to the Grb7 SH2 domain and is able to attenuate cancer cell proliferation and migration in various cancer cell lines. Results As a first step towards understanding how Grb7 may be inhibited by G7-18NATE, we solved the crystal structure of the Grb7 SH2 domain to 2.1 Å resolution. We describe the details of the peptide binding site underlying target specificity, as well as the dimer interface of Grb 7 SH2. Dimer formation of Grb7 was determined to be in the μM range using analytical ultracentrifugation for both full-length Grb7 and the SH2 domain alone, suggesting the SH2 domain forms the basis of a physiological dimer. ITC measurements of the interaction of the G7-18NATE peptide with the Grb7 SH2 domain revealed that it binds with a binding affinity of Kd = ~35.7 μM and NMR spectroscopy titration experiments revealed that peptide binding causes perturbations to both the ligand binding surface of the Grb7 SH2 domain as well as to the dimer interface, suggesting that dimerisation of Grb7 is impacted on by peptide binding. Conclusion Together the data allow us to propose a model of the Grb7 SH2 domain/G7-18NATE interaction and to rationalize the basis for the observed binding specificity and affinity. We propose that the current study will assist with the development of second generation Grb7 SH2 domain inhibitors, potentially leading to novel inhibitors of

  9. Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Sara Garamszegi

    Full Text Available A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1 domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2 domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral

  10. Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks.

    Science.gov (United States)

    Garamszegi, Sara; Franzosa, Eric A; Xia, Yu

    2013-01-01

    A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1) domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2) domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral-host interactions that are

  11. The interaction of process and domain in prefrontal cortex during inductive reasoning.

    Science.gov (United States)

    Babcock, Laura; Vallesi, Antonino

    2015-01-01

    Inductive reasoning is an everyday process that allows us to make sense of the world by creating rules from a series of instances. Consistent with accounts of process-based fractionations of the prefrontal cortex (PFC) along the left-right axis, inductive reasoning has been reliably localized to left PFC. However, these results may be confounded by the task domain, which is typically verbal. Indeed, some studies show that right PFC activation is seen with spatial tasks. This study used fMRI to examine the effects of process and domain on the brain regions recruited during a novel pattern discovery task. Twenty healthy young adult participants were asked to discover the rule underlying the presentation of a series of letters in varied spatial locations. The rules were either verbal (pertaining to a single semantic category) or spatial (geometric figures). Bilateral ventrolateral PFC activations were seen for the spatial domain, while the verbal domain showed only left ventrolateral PFC. A conjunction analysis revealed that the two domains recruited a common region of left ventrolateral PFC. The data support a central role of left PFC in inductive reasoning. Importantly, they also suggest that both process and domain shape the localization of reasoning in the brain. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    Energy Technology Data Exchange (ETDEWEB)

    Verbakel, Werner, E-mail: werner.verbakel@chem.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium); Carmeliet, Geert, E-mail: geert.carmeliet@med.kuleuven.be [Laboratory of Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Herestraat 49, Bus 902, 3000 Leuven (Belgium); Engelborghs, Yves, E-mail: yves.engelborghs@fys.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium)

    2011-08-12

    Highlights: {yields} The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. {yields} This SAP-like domain is essential for chromosome loading during early mitosis. {yields} NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. {yields} The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase Nu

  13. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    International Nuclear Information System (INIS)

    Verbakel, Werner; Carmeliet, Geert; Engelborghs, Yves

    2011-01-01

    Highlights: → The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. → This SAP-like domain is essential for chromosome loading during early mitosis. → NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. → The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase NuSAP-chromatin interaction

  14. Solution structure of the receptor tyrosine kinase EphB2 SAM domain and identification of two distinct homotypic interaction sites.

    OpenAIRE

    Smalla, M.; Schmieder, P.; Kelly, M.; Ter Laak, A.; Krause, G.; Ball, L.; Wahl, M.; Bork, P.; Oschkinat, H.

    1999-01-01

    The sterile alpha motif (SAM) is a protein interaction domain of around 70 amino acids present predominantly in the N- and C-termini of more than 60 diverse proteins that participate in signal transduction and transcriptional repression. SAM domains have been shown to homo- and hetero-oligomerize and to mediate specific protein-protein interactions. A highly conserved subclass of SAM domains is present at the intracellular C-terminus of more than 40 Eph receptor tyrosine kinases that are invo...

  15. Potyvirus helper component-proteinase self-interaction in the yeast two-hybrid system and delineation of the interaction domain involved.

    Science.gov (United States)

    Urcuqui-Inchima, S; Walter, J; Drugeon, G; German-Retana, S; Haenni, A L; Candresse, T; Bernardi, F; Le Gall, O

    1999-05-25

    Using the yeast two-hybrid system, a screen was performed for possible interactions between the proteins encoded by the 5' region of potyviral genomes [P1, helper component-proteinase (HC-Pro), and P3]. A positive self-interaction involving HC-Pro was detected with lettuce mosaic virus (LMV) and potato virus Y (PVY). The possibility of heterologous interaction between the HC-Pro of LMV and of PVY was also demonstrated. No interaction involving either the P1 or the P3 proteins was detected. A series of ordered deletions from either the N- or C-terminal end of the LMV HC-Pro was used to map the domain involved in interaction to the 72 N-terminal amino acids of the protein, a region known to be dispensable for virus viability but necessary for aphid transmission. A similar but less detailed analysis mapped the interacting domain to the N-terminal half of the PVY HC-Pro. Copyright 1999 Academic Press.

  16. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

    Science.gov (United States)

    Login, Frédéric H; Jensen, Helene H; Pedersen, Gitte A; Amieva, Manuel R; Nejsum, Lene N

    2018-06-19

    Enteropathogenic Escherichia coli (EPEC) causes watery diarrhea when colonizing the surface of enterocytes. The translocated intimin receptor (Tir):intimin receptor complex facilitates tight adherence to epithelial cells and formation of actin pedestals beneath EPEC. We found that the host cell adherens junction protein E-cadherin (Ecad) was recruited to EPEC microcolonies. Live-cell and confocal imaging revealed that Ecad recruitment depends on, and occurs after, formation of the Tir:intimin complex. Combinatorial binding experiments using wild-type EPEC, isogenic mutants lacking Tir or intimin, and E. coli expressing intimin showed that the extracellular domain of Ecad binds the bacterial surface in a Tir:intimin-dependent manner. Finally, addition of the soluble extracellular domain of Ecad to the infection medium or depletion of Ecad extracellular domain from the cell surface reduced EPEC adhesion to host cells. Thus, the soluble extracellular domain of Ecad may be used in the design of intervention strategies targeting EPEC adherence to host cells.-Login, F. H., Jensen, H. H., Pedersen, G. A., Amieva, M. R., Nejsum, L. N. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

  17. Positive Modulatory Interactions of NMDA Receptor GluN1/2B Ligand Binding Domains Attenuate Antagonists Activity

    Directory of Open Access Journals (Sweden)

    Douglas Bledsoe

    2017-05-01

    Full Text Available N-methyl D-aspartate receptors (NMDAR play crucial role in normal brain function and pathogenesis of neurodegenerative and psychiatric disorders. Functional tetra-heteromeric NMDAR contains two obligatory GluN1 subunits and two identical or different non-GluN1 subunits that include six different gene products; four GluN2 (A–D and two GluN3 (A–B subunits. The heterogeneity of subunit combination facilities the distinct function of NMDARs. All GluN subunits contain an extracellular N-terminal Domain (NTD and ligand binding domain (LBD, transmembrane domain (TMD and an intracellular C-terminal domain (CTD. Interaction between the GluN1 and co-assembling GluN2/3 subunits through the LBD has been proven crucial for defining receptor deactivation mechanisms that are unique for each combination of NMDAR. Modulating the LBD interactions has great therapeutic potential. In the present work, by amino acid point mutations and electrophysiology techniques, we have studied the role of LBD interactions in determining the effect of well-characterized pharmacological agents including agonists, competitive antagonists, and allosteric modulators. The results reveal that agonists (glycine and glutamate potency was altered based on mutant amino acid sidechain chemistry and/or mutation site. Most antagonists inhibited mutant receptors with higher potency; interestingly, clinically used NMDAR channel blocker memantine was about three-fold more potent on mutated receptors (N521A, N521D, and K531A than wild type receptors. These results provide novel insights on the clinical pharmacology of memantine, which is used for the treatment of mild to moderate Alzheimer's disease. In addition, these findings demonstrate the central role of LBD interactions that can be exploited to develop novel NMDAR based therapeutics.

  18. Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2)

    NARCIS (Netherlands)

    C.A. Berrevoets (Cor); P. Doesburg (Paul); K. Steketee (Karine); J. Trapman (Jan); A.O. Brinkmann (Albert)

    1998-01-01

    textabstractPrevious studies in yeast and mammalian cells showed a functional interaction between the amino-terminal domain and the carboxy-terminal, ligand-binding domain (LBD) of the human androgen receptor (AR). In the present study, the AR subdomains involved in

  19. Functional Independence and Interdependence of the Src Homology Domains of Phospholipase C-γ1 in B-Cell Receptor Signal Transduction

    Science.gov (United States)

    DeBell, Karen E.; Stoica, Bogdan A.; Verí, Maria-Concetta; Di Baldassarre, Angela; Miscia, Sebastiano; Graham, Laurie J.; Rellahan, Barbara L.; Ishiai, Masamichi; Kurosaki, Tomohiro; Bonvini, Ezio

    1999-01-01

    B-cell receptor (BCR)-induced activation of phospholipase C-γ1 (PLCγ1) and PLCγ2 is crucial for B-cell function. While several signaling molecules have been implicated in PLCγ activation, the mechanism coupling PLCγ to the BCR remains undefined. The role of PLCγ1 SH2 and SH3 domains at different steps of BCR-induced PLCγ1 activation was examined by reconstitution in a PLCγ-negative B-cell line. PLCγ1 membrane translocation required a functional SH2 N-terminal [SH2(N)] domain, was decreased by mutation of the SH3 domain, but was unaffected by mutation of the SH2(C) domain. Tyrosine phosphorylation did not require the SH2(C) or SH3 domains but depended exclusively on a functional SH2(N) domain, which mediated the association of PLCγ1 with the adapter protein, BLNK. Forcing PLCγ1 to the membrane via a myristoylation signal did not bypass the SH2(N) domain requirement for phosphorylation, indicating that the phosphorylation mediated by this domain is not due to membrane anchoring alone. Mutation of the SH2(N) or the SH2(C) domain abrogated BCR-stimulated phosphoinositide hydrolysis and signaling events, while mutation of the SH3 domain partially decreased signaling. PLCγ1 SH domains, therefore, have interrelated but distinct roles in BCR-induced PLCγ1 activation. PMID:10523627

  20. Side-chain interactions form late and cooperatively in the binding reaction between disordered peptides and PDZ domains

    DEFF Research Database (Denmark)

    Haq, S Raza; Chi, Celestine N; Bach, Anders

    2012-01-01

    Intrinsically disordered proteins are very common and mediate numerous protein-protein and protein-DNA interactions. While it is clear that these interactions are instrumental for the life of the mammalian cell, there is a paucity of data regarding their molecular binding mechanisms. We have here...... used short peptides as a model system for intrinsically disordered proteins. Linear free-energy relationships based on rate and equilibrium constants for the binding of these peptides to ordered target proteins, PDZ domains, demonstrate that native side-chain interactions form mainly after the rate......-limiting barrier for binding, in a cooperative fashion. This finding suggests that these disordered peptides first form a weak encounter complex with non-native interactions. The data do not support the recent notion that the affinities of intrinsically disordered proteins towards their targets are generally...

  1. Quantum-induced interactions in the moduli space of degenerate BPS domain walls

    International Nuclear Information System (INIS)

    Alonso-Izquierdo, A.; Guilarte, J. Mateos

    2014-01-01

    In this paper quantum effects are investigated in a very special two-scalar field model having a moduli space of BPS topological defects. In a (1+1)-dimensional space-time the defects are classically degenerate in mass kinks, but in (3+1) dimensions the kinks become BPS domain walls, all of them sharing the same surface tension at the classical level. The heat kernel/zeta function regularization method will be used to control the divergences induced by the quantum kink and domain wall fluctuations. A generalization of the Gilkey-DeWitt-Avramidi heat kernel expansion will be developed in order to accommodate the infrared divergences due to zero modes in the spectra of the second-order kink and domain wall fluctuation operators, which are respectively N=2×N=2 matrix ordinary or partial differential operators. Use of these tools in the spectral zeta function associated with the Hessian operators paves the way to obtain general formulas for the one-loop kink mass and domain wall tension shifts in any (1+1)- or (3+1)-dimensional N-component scalar field theory model. Application of these formulae to the BPS kinks or domain walls of the N=2 model mentioned above reveals the breaking of the classical mass or surface tension degeneracy at the quantum level. Because the main parameter distinguishing each member in the BPS kink or domain wall moduli space is essentially the distance between the centers of two basic kinks or walls, the breaking of the degeneracy amounts to the surge in quantum-induced forces between the two constituent topological defects. The differences in surface tension induced by one-loop fluctuations of BPS walls give rise mainly to attractive forces between the constituent walls except if the two basic walls are very far apart. Repulsive forces between two close walls only arise if the coupling approaches the critical value from below

  2. Prevalence, specificity and determinants of lipid-interacting PDZ domains from an in-cell screen and in vitro binding experiments.

    Directory of Open Access Journals (Sweden)

    Ylva Ivarsson

    Full Text Available BACKGROUND: PDZ domains are highly abundant protein-protein interaction modules involved in the wiring of protein networks. Emerging evidence indicates that some PDZ domains also interact with phosphoinositides (PtdInsPs, important regulators of cell polarization and signaling. Yet our knowledge on the prevalence, specificity, affinity, and molecular determinants of PDZ-PtdInsPs interactions and on their impact on PDZ-protein interactions is very limited. METHODOLOGY/PRINCIPAL FINDINGS: We screened the human proteome for PtdInsPs interacting PDZ domains by a combination of in vivo cell-localization studies and in vitro dot blot and Surface Plasmon Resonance (SPR experiments using synthetic lipids and recombinant proteins. We found that PtdInsPs interactions contribute to the cellular distribution of some PDZ domains, intriguingly also in nuclear organelles, and that a significant subgroup of PDZ domains interacts with PtdInsPs with affinities in the low-to-mid micromolar range. In vitro specificity for the head group is low, but with a trend of higher affinities for more phosphorylated PtdInsPs species. Other membrane lipids can assist PtdInsPs-interactions. PtdInsPs-interacting PDZ domains have generally high pI values and contain characteristic clusters of basic residues, hallmarks that may be used to predict additional PtdInsPs interacting PDZ domains. In tripartite binding experiments we established that peptide binding can either compete or cooperate with PtdInsPs binding depending on the combination of ligands. CONCLUSIONS/SIGNIFICANCE: Our screen substantially expands the set of PtdInsPs interacting PDZ domains, and shows that a full understanding of the biology of PDZ proteins will require a comprehensive insight into the intricate relationships between PDZ domains and their peptide and lipid ligands.

  3. An Amphiphysin-Like Domain in Fus2p Is Required for Rvs161p Interaction and Cortical Localization

    Directory of Open Access Journals (Sweden)

    Richard A. Stein

    2016-02-01

    Full Text Available Cell–cell fusion fulfils essential roles in fertilization, development and tissue repair. In the budding yeast, Saccharomyces cerevisiae, fusion between two haploid cells of opposite mating type generates the diploid zygote. Fus2p is a pheromone-induced protein that regulates cell wall removal during mating. Fus2p shuttles from the nucleus to localize at the shmoo tip, bound to Rvs161p, an amphiphysin. However, Rvs161p independently binds a second amphiphysin, Rvs167p, playing an essential role in endocytosis. To understand the basis of the Fus2p–Rvs161p interaction, we analyzed Fus2p structural domains. A previously described N-terminal domain (NTD is necessary and sufficient to regulate nuclear/cytoplasmic trafficking of Fus2p. The Dbl homology domain (DBH binds GTP-bound Cdc42p; binding is required for cell fusion, but not localization. We identified an approximately 200 amino acid region of Fus2p that is both necessary and sufficient for Rvs161p binding. The Rvs161p binding domain (RBD contains three predicted alpha-helices; structural modeling suggests that the RBD adopts an amphiphysin-like structure. The RBD contains a 13-amino-acid region, conserved with Rvs161p and other amphiphysins, which is essential for binding. Mutations in the RBD, predicted to affect membrane binding, abolish cell fusion without affecting Rvs161p binding. We propose that Fus2p/Rvs161p form a novel heterodimeric amphiphysin required for cell fusion. Rvs161p binding is required but not sufficient for Fus2p localization. Mutations in the C-terminal domain (CTD of Fus2p block localization, but not Rvs161p binding, causing a significant defect in cell fusion. We conclude that the Fus2p CTD mediates an additional, Rvs161p-independent interaction at the shmoo tip.

  4. The phospholipase PNPLA7 functions as a lysophosphatidylcholine hydrolase and interacts with lipid droplets through its catalytic domain.

    Science.gov (United States)

    Heier, Christoph; Kien, Benedikt; Huang, Feifei; Eichmann, Thomas O; Xie, Hao; Zechner, Rudolf; Chang, Ping-An

    2017-11-17

    Mammalian patatin-like phospholipase domain-containing proteins (PNPLAs) are lipid-metabolizing enzymes with essential roles in energy metabolism, skin barrier development, and brain function. A detailed annotation of enzymatic activities and structure-function relationships remains an important prerequisite to understand PNPLA functions in (patho-)physiology, for example, in disorders such as neutral lipid storage disease, non-alcoholic fatty liver disease, and neurodegenerative syndromes. In this study, we characterized the structural features controlling the subcellular localization and enzymatic activity of PNPLA7, a poorly annotated phospholipase linked to insulin signaling and energy metabolism. We show that PNPLA7 is an endoplasmic reticulum (ER) transmembrane protein that specifically promotes hydrolysis of lysophosphatidylcholine in mammalian cells. We found that transmembrane and regulatory domains in the PNPLA7 N-terminal region cooperate to regulate ER targeting but are dispensable for substrate hydrolysis. Enzymatic activity is instead mediated by the C-terminal domain, which maintains full catalytic competence even in the absence of N-terminal regions. Upon elevated fatty acid flux, the catalytic domain targets cellular lipid droplets and promotes interactions of PNPLA7 with these organelles in response to increased cAMP levels. We conclude that PNPLA7 acts as an ER-anchored lysophosphatidylcholine hydrolase that is composed of specific functional domains mediating catalytic activity, subcellular positioning, and interactions with cellular organelles. Our study provides critical structural insights into an evolutionarily conserved class of phospholipid-metabolizing enzymes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Residue-specific description of non-native transient structures in the ensemble of acid-denatured structures of the all-beta protein c-src SH3

    DEFF Research Database (Denmark)

    Rösner, Heike I; Poulsen, Flemming Martin

    2010-01-01

    -src loop to the third beta-strand, exhibited an apparent helicity of nearly 45%. Furthermore, the RT loop and the diverging turn appeared to adopt non-native-like helical conformations. Interestingly, none of the residues found in transient helical conformations exhibited significant varphi-values [Riddle......Secondary chemical shift analysis has been used to characterize the unfolded state of acid-denatured c-src SH3. Even though native c-src SH3 adopts an all-beta fold, we found evidence of transient helicity in regions corresponding to native loops. In particular, residues 40-46, connecting the n...

  6. Ischemic preconditioning negatively regulates plenty of SH3s-mixed lineage kinase 3-Rac1 complex and c-Jun N-terminal kinase 3 signaling via activation of Akt.

    Science.gov (United States)

    Zhang, Q-G; Han, D; Xu, J; Lv, Q; Wang, R; Yin, X-H; Xu, T-L; Zhang, G-Y

    2006-12-01

    Activation of Akt/protein kinase B has been recently reported to play an important role in ischemic tolerance. We here demonstrate that the decreased protein expression and phosphorylation of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) underlie the increased Akt-Ser-473 phosphorylation in the hippocampal CA1 subfield in ischemic preconditioning (IPC). Co-immunoprecipitation analysis reveals that Akt physically interacts with Rac1, a small Rho family GTPase required for mixed lineage kinase 3 (MLK3) autophosphorylation, and both this interaction and Rac1-Ser-71 phosphorylation induced by Akt are promoted in preconditioned rats. In addition, we show that Akt activation results in the disassembly of the plenty of SH3s (POSH)-MLK3-Rac1 signaling complex and down-regulation of the activation of MLK3/c-Jun N-terminal kinase (JNK) pathway. Akt activation results in decreased serine phosphorylation of 14-3-3, a cytoplasmic anchor of Bax, and prevents ischemia-induced mitochondrial translocation of Bax, release of cytochrome c, and activation of caspase-3. The expression of Fas ligand is also decreased in the CA1 region. Akt activation protects against apoptotic neuronal death as shown in TUNEL staining following IPC. Intracerebral infusion of LY294002 before IPC reverses the increase in Akt phosphorylation and the decrease in JNK signaling activation, as well as the neuroprotective action of IPC. Our results suggest that activation of pro-apoptotic MLK3/JNK3 cascade can be suppressed through activating anti-apoptotic phosphoinositide 3-kinase/Akt pathway induced by a sublethal ischemic insult, which provides a functional link between Akt and the JNK family of stress-activated kinases in ischemic tolerance.

  7. Stapled Voltage-Gated Calcium Channel (CaV) α-Interaction Domain (AID) Peptides Act As Selective Protein-Protein Interaction Inhibitors of CaV Function.

    Science.gov (United States)

    Findeisen, Felix; Campiglio, Marta; Jo, Hyunil; Abderemane-Ali, Fayal; Rumpf, Christine H; Pope, Lianne; Rossen, Nathan D; Flucher, Bernhard E; DeGrado, William F; Minor, Daniel L

    2017-06-21

    For many voltage-gated ion channels (VGICs), creation of a properly functioning ion channel requires the formation of specific protein-protein interactions between the transmembrane pore-forming subunits and cystoplasmic accessory subunits. Despite the importance of such protein-protein interactions in VGIC function and assembly, their potential as sites for VGIC modulator development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that target a prototypic VGIC high affinity protein-protein interaction, the interaction between the voltage-gated calcium channel (Ca V ) pore-forming subunit α-interaction domain (AID) and cytoplasmic β-subunit (Ca V β). We show using circular dichroism spectroscopy, X-ray crystallography, and isothermal titration calorimetry that the m-xylyl staples enhance AID helix formation are structurally compatible with native-like AID:Ca V β interactions and reduce the entropic penalty associated with AID binding to Ca V β. Importantly, electrophysiological studies reveal that stapled AID peptides act as effective inhibitors of the Ca V α 1 :Ca V β interaction that modulate Ca V function in an Ca V β isoform-selective manner. Together, our studies provide a proof-of-concept demonstration of the use of protein-protein interaction inhibitors to control VGIC function and point to strategies for improved AID-based Ca V modulator design.

  8. Structure determination of the functional domain interaction of a chimeric nonribosomal peptide synthetase from a challenging crystal with noncrystallographic translational symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Sundlov, Jesse A.; Gulick, Andrew M., E-mail: gulick@hwi.buffalo.edu [University at Buffalo, 700 Ellicott Street, Buffalo, NY 14203 (United States)

    2013-08-01

    The structure of the functional interaction of NRPS adenylation and carrier protein domains, trapped with a mechanism-based inhibitor, is described. Crystals exhibit translational non-crystallographic symmetry, which challenged structure determination and refinement. The nonribosomal peptide synthetases (NRPSs) are a family of modular proteins that contain multiple catalytic domains joined in a single protein. Together, these domains work to produce chemically diverse peptides, including compounds with antibiotic activity or that play a role in iron acquisition. Understanding the structural mechanisms that govern the domain interactions has been a long-standing goal. During NRPS synthesis, amino-acid substrates are loaded onto integrated carrier protein domains through the activity of NRPS adenylation domains. The structures of two adenylation domain–carrier protein domain complexes have recently been determined in an effort that required the use of a mechanism-based inhibitor to trap the domain interaction. Here, the continued analysis of these proteins is presented, including a higher resolution structure of an engineered di-domain protein containing the EntE adenylation domain fused with the carrier protein domain of its partner EntB. The protein crystallized in a novel space group in which molecular replacement and refinement were challenged by noncrystallographic pseudo-translational symmetry. The structure determination and how the molecular packing impacted the diffraction intensities are reported. Importantly, the structure illustrates that in this new crystal form the functional interface between the adenylation domain and the carrier protein domain remains the same as that observed previously. At a resolution that allows inclusion of water molecules, additional interactions are observed between the two protein domains and between the protein and its ligands. In particular, a highly solvated region that surrounds the carrier protein cofactor is described.

  9. Structure determination of the functional domain interaction of a chimeric nonribosomal peptide synthetase from a challenging crystal with noncrystallographic translational symmetry

    International Nuclear Information System (INIS)

    Sundlov, Jesse A.; Gulick, Andrew M.

    2013-01-01

    The structure of the functional interaction of NRPS adenylation and carrier protein domains, trapped with a mechanism-based inhibitor, is described. Crystals exhibit translational non-crystallographic symmetry, which challenged structure determination and refinement. The nonribosomal peptide synthetases (NRPSs) are a family of modular proteins that contain multiple catalytic domains joined in a single protein. Together, these domains work to produce chemically diverse peptides, including compounds with antibiotic activity or that play a role in iron acquisition. Understanding the structural mechanisms that govern the domain interactions has been a long-standing goal. During NRPS synthesis, amino-acid substrates are loaded onto integrated carrier protein domains through the activity of NRPS adenylation domains. The structures of two adenylation domain–carrier protein domain complexes have recently been determined in an effort that required the use of a mechanism-based inhibitor to trap the domain interaction. Here, the continued analysis of these proteins is presented, including a higher resolution structure of an engineered di-domain protein containing the EntE adenylation domain fused with the carrier protein domain of its partner EntB. The protein crystallized in a novel space group in which molecular replacement and refinement were challenged by noncrystallographic pseudo-translational symmetry. The structure determination and how the molecular packing impacted the diffraction intensities are reported. Importantly, the structure illustrates that in this new crystal form the functional interface between the adenylation domain and the carrier protein domain remains the same as that observed previously. At a resolution that allows inclusion of water molecules, additional interactions are observed between the two protein domains and between the protein and its ligands. In particular, a highly solvated region that surrounds the carrier protein cofactor is described

  10. The Fanconi Anemia DNA Repair Pathway Is Regulated by an Interaction between Ubiquitin and the E2-like Fold Domain of FANCL.

    Science.gov (United States)

    Miles, Jennifer A; Frost, Mark G; Carroll, Eilis; Rowe, Michelle L; Howard, Mark J; Sidhu, Ateesh; Chaugule, Viduth K; Alpi, Arno F; Walden, Helen

    2015-08-21

    The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). Inefficient repair of these ICL can lead to leukemia and bone marrow failure. A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL. FANCL comprises 3 domains, a RING domain that interacts with E2 conjugating enzymes, a central domain required for substrate interaction, and an N-terminal E2-like fold (ELF) domain. The ELF domain is found in all FANCL homologues, yet the function of the domain remains unknown. We report here that the ELF domain of FANCL is required to mediate a non-covalent interaction between FANCL and ubiquitin. The interaction involves the canonical Ile44 patch on ubiquitin, and a functionally conserved patch on FANCL. We show that the interaction is not necessary for the recognition of the core complex, it does not enhance the interaction between FANCL and Ube2T, and is not required for FANCD2 monoubiquitination in vitro. However, we demonstrate that the ELF domain is required to promote efficient DNA damage-induced FANCD2 monoubiquitination in vertebrate cells, suggesting an important function of ubiquitin binding by FANCL in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The crystal structure of the Dachshund domain of human SnoN reveals flexibility in the putative protein interaction surface.

    Directory of Open Access Journals (Sweden)

    Tomas Nyman

    2010-09-01

    Full Text Available The human SnoN is an oncoprotein that interacts with several transcription-regulatory proteins such as the histone-deacetylase, N-CoR containing co-repressor complex and Smad proteins. This study presents the crystal structure of the Dachshund homology domain of human SnoN. The structure reveals a groove composed of conserved residues with characteristic properties of a protein-interaction surface. A comparison of the 12 monomers in the asymmetric unit reveals the presence of two major conformations: an open conformation with a well accessible groove and a tight conformation with a less accessible groove. The variability in the backbone between the open and the tight conformations matches the differences seen in previously determined structures of individual Dachshund homology domains, suggesting a general plasticity within this fold family. The flexibility observed in the putative protein binding groove may enable SnoN to recognize multiple interaction partners.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  12. Nonlinear time-domain soil–structure interaction analysis of embedded reactor structures subjected to earthquake loads

    Energy Technology Data Exchange (ETDEWEB)

    Solberg, Jerome M., E-mail: solberg2@llnl.gov [Methods Development Group, Lawrence Livermore Nat’l Lab, P.O. Box 808, Mailstop L-125, Livermore, CA 94550 (United States); Hossain, Quazi, E-mail: hossain1@llnl.gov [Structural and Applied Mechanics Group, Lawrence Livermore Nat’l Lab, P.O. Box 808, Mailstop L-129, Livermore, CA 94550 (United States); Mseis, George, E-mail: george.mseis@gmail.com [Structural and Applied Mechanics Group, Lawrence Livermore Nat’l Lab, P.O. Box 808, Mailstop L-129, Livermore, CA 94550 (United States)

    2016-08-01

    Highlights: • Derived modified version of Bielak’s SSI method for nonlinear time-domain analysis. • Utilized a Ramberg–Osgood material with parameters that can be fit to EPRI data. • Matched vertically propagating shear wave results from CARES. • Applied this technique to a representative SMR, compared well with SASSI. • The technique is extensible to other material models and nonlinear effects. - Abstract: A generalized time-domain method for soil–structure interaction analysis is developed, based upon an extension of the work of the domain reduction method of Bielak et al. The methodology is combined with the use of a simple hysteretic soil model based upon the Ramberg–Osgood formulation and applied to a notional Small Modular Reactor. These benchmark results compare well (with some caveats) with those obtained by using the industry-standard frequency-domain code SASSI. The methodology provides a path forward for investigation of other sources of nonlinearity, including those associated with the use of more physically-realistic material models incorporating pore-pressure effects, gap opening/closing, the effect of nonlinear structural elements, and 3D seismic inputs.

  13. Triatoma infestans Calreticulin: Gene Cloning and Expression of a Main Domain That Interacts with the Host Complement System.

    Science.gov (United States)

    Weinberger, Katherine; Collazo, Norberto; Aguillón, Juan Carlos; Molina, María Carmen; Rosas, Carlos; Peña, Jaime; Pizarro, Javier; Maldonado, Ismael; Cattan, Pedro E; Apt, Werner; Ferreira, Arturo

    2017-02-08

    Triatoma infestans is an important hematophagous vector of Chagas disease, a neglected chronic illness affecting approximately 6 million people in Latin America. Hematophagous insects possess several molecules in their saliva that counteract host defensive responses. Calreticulin (CRT), a multifunctional protein secreted in saliva, contributes to the feeding process in some insects. Human CRT (HuCRT) and Trypanosoma cruzi CRT (TcCRT) inhibit the classical pathway of complement activation, mainly by interacting through their central S domain with complement component C1. In previous studies, we have detected CRT in salivary gland extracts from T. infestans We have called this molecule TiCRT. Given that the S domain is responsible for C1 binding, we have tested its role in the classical pathway of complement activation in vertebrate blood. We have cloned and characterized the complete nucleotide sequence of CRT from T. infestans , and expressed its S domain. As expected, this S domain binds to human C1 and, as a consequence, it inhibits the classical pathway of complement, at its earliest stage of activation, namely the generation of C4b. Possibly, the presence of TiCRT in the salivary gland represents an evolutionary adaptation in hematophagous insects to control a potential activation of complement proteins, present in the massive blood meal that they ingest, with deleterious consequences at least on the anterior digestive tract of these insects. © The American Society of Tropical Medicine and Hygiene.

  14. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach.

    Science.gov (United States)

    Zou, Cunlu; Ladroue, Christophe; Guo, Shuixia; Feng, Jianfeng

    2010-06-21

    Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs) and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE), Bayesian networks, information theory and Granger Causality. Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins). For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.

  15. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach

    Directory of Open Access Journals (Sweden)

    Guo Shuixia

    2010-06-01

    Full Text Available Abstract Background Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE, Bayesian networks, information theory and Granger Causality. Results Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins. For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. Conclusions The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.

  16. NBS1 localizes to gamma-H2AX foci through interaction with the FHA/BRCT domain

    International Nuclear Information System (INIS)

    Kobayashi, J.; Chen, D.J.; Sakamoto, S.; Matsuura, S.; Tanimoto, K.; Komatsu, K.

    2003-01-01

    Full text: DNA double-strand breaks (DSBs) represent the most potentially serious damage to a genome, and hence, many repair proteins are recruited to nuclear damage sites by as yet poorly characterized sensor mechanisms. Histone H2AX, one of histone H2A family, is phosphorylated within a few minutes in response to ionizing radiation (IR) and the phosphorylated H2AX (gamma-H2AX) forms foci at the region of DSBs. Moreover, Histone H2AX is essential for the IR-induced focus formation of DNA repair proteins such as BRCA1, NBS1 and 53BP1. Hence, we investigated that the function of histone H2AX for the recruitment of NBS1/hMRE11/ hRAD50 complex to DSBs sites. We clarify that NBS1 physically interacts with histone H2AX independent of DNA. We also show that the NBS1-binding can occur in the absence of interaction with hMRE11 or BRCA1. Furthermore, this NBS1 physical interaction was reduced when anti-gamma-H2AX antibody was introduced into normal cells. We also demonstrate that the FHA/BRCT domain of NBS1 is essential for this physical interaction by the immunoprecipitation studies and a pull-down assay with recombinant FHA/BRCT domain. These findings suggest that the FHA/BRCT domain have a crucial role for both binding to histone and for re-localization of hMRE11/hRAD50 nuclease complex to the vicinity of DNA damage

  17. Interactions of a Pop5/Rpp1 heterodimer with the catalytic domain of RNase MRP.

    Science.gov (United States)

    Perederina, Anna; Khanova, Elena; Quan, Chao; Berezin, Igor; Esakova, Olga; Krasilnikov, Andrey S

    2011-10-01

    Ribonuclease (RNase) MRP is a multicomponent ribonucleoprotein complex closely related to RNase P. RNase MRP and eukaryotic RNase P share most of their protein components, as well as multiple features of their catalytic RNA moieties, but have distinct substrate specificities. While RNase P is practically universally found in all three domains of life, RNase MRP is essential in eukaryotes. The structural organizations of eukaryotic RNase P and RNase MRP are poorly understood. Here, we show that Pop5 and Rpp1, protein components found in both RNase P and RNase MRP, form a heterodimer that binds directly to the conserved area of the putative catalytic domain of RNase MRP RNA. The Pop5/Rpp1 binding site corresponds to the protein binding site in bacterial RNase P RNA. Structural and evolutionary roles of the Pop5/Rpp1 heterodimer in RNases P and MRP are discussed.

  18. Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zong-Sian, E-mail: gary810426@hotmail.com [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Liu, Che Fu, E-mail: s9823002@m98.nthu.edu.tw [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Fu, Brian, E-mail: brianfu9@gmail.com [Northwood High School, Irvine, CA (United States); Chou, Ruey-Hwang, E-mail: rhchou@mail.cmu.edu.tw [Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Department of Biotechnology, Asia University, Taiwan (China); Yu, Chin, E-mail: cyu.nthu@gmail.com [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2016-09-02

    The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs. - Highlights: • The interfacial residues on hFGF1-FGFR2 D2 and hFGF1-Suramin contact surface were mapped by {sup 1}H-{sup 15}N HSQC experiments. • hFGF1-FGFR2 D2 and hFGF1-Suramin complex models were generated from NMR restraints by using HADDOCK program. • We analyzed hFGF1-Suramin complex models and found the interaction between hFGF1-Suramin is hydrophobic. • The bioactivity of the hFGF1-FGFR2 D2 and hFGF1-Suramin complex was studied by using WST1 assay.

  19. Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity

    International Nuclear Information System (INIS)

    Wu, Zong-Sian; Liu, Che Fu; Fu, Brian; Chou, Ruey-Hwang; Yu, Chin

    2016-01-01

    The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs. - Highlights: • The interfacial residues on hFGF1-FGFR2 D2 and hFGF1-Suramin contact surface were mapped by "1H-"1"5N HSQC experiments. • hFGF1-FGFR2 D2 and hFGF1-Suramin complex models were generated from NMR restraints by using HADDOCK program. • We analyzed hFGF1-Suramin complex models and found the interaction between hFGF1-Suramin is hydrophobic. • The bioactivity of the hFGF1-FGFR2 D2 and hFGF1-Suramin complex was studied by using WST1 assay.

  20. Crystal structure of a human single domain antibody dimer formed through V(H-V(H non-covalent interactions.

    Directory of Open Access Journals (Sweden)

    Toya Nath Baral

    Full Text Available Single-domain antibodies (sdAbs derived from human V(H are considered to be less soluble and prone to aggregate which makes it difficult to determine the crystal structures. In this study, we isolated and characterized two anti-human epidermal growth factor receptor-2 (HER2 sdAbs, Gr3 and Gr6, from a synthetic human V(H phage display library. Size exclusion chromatography and surface plasmon resonance analyses demonstrated that Gr3 is a monomer, but that Gr6 is a strict dimer. To understand this different molecular behavior, we solved the crystal structure of Gr6 to 1.6 Å resolution. The crystal structure revealed that the homodimer assembly of Gr6 closely mimics the V(H-V(L heterodimer of immunoglobulin variable domains and the dimerization interface is dominated by hydrophobic interactions.

  1. Interaction of an anticancer peptide fragment of azurin with p53 and its isolated domains studied by atomic force spectroscopy.

    Science.gov (United States)

    Bizzarri, Anna Rita; Santini, Simona; Coppari, Emilia; Bucciantini, Monica; Di Agostino, Silvia; Yamada, Tohru; Beattie, Craig W; Cannistraro, Salvatore

    2011-01-01

    p28 is a 28-amino acid peptide fragment of the cupredoxin azurin derived from Pseudomonas aeruginosa that preferentially penetrates cancerous cells and arrests their proliferation in vitro and in vivo. Its antitumor activity reportedly arises from post-translational stabilization of the tumor suppressor p53 normally downregulated by the binding of several ubiquitin ligases. This would require p28 to specifically bind to p53 to inhibit specific ligases from initiating proteosome-mediated degradation. In this study, atomic force spectroscopy, a nanotechnological approach, was used to investigate the interaction of p28 with full-length p53 and its isolated domains at the single molecule level. Analysis of the unbinding forces and the dissociation rate constant suggest that p28 forms a stable complex with the DNA-binding domain of p53, inhibiting the binding of ubiquitin ligases other than Mdm2 to reduce proteasomal degradation of p53.

  2. Glucagon-like peptide-1 receptor ligand interactions: structural cross talk between ligands and the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Graham M West

    Full Text Available Activation of the glucagon-like peptide-1 receptor (GLP-1R in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM. Like other class B G protein-coupled receptors (GPCRs, the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R. In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands.

  3. Crystal structure of the Rasputin NTF2-like domain from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Vognsen, Tina Reinholdt; Kristensen, Ole

    2012-01-01

    The crystal structure of the NTF2-like domain of the Drosophila homolog of Ras GTPase SH3 Binding Protein (G3BP), Rasputin, was determined at 2.7Å resolution. The overall structure is highly similar to nuclear transport factor 2: It is a homodimer comprised of a ß-sheet and three a-helices forming...

  4. Crystallization and preliminary X-ray analysis of the N-terminal domain of human thioredoxin-interacting protein

    International Nuclear Information System (INIS)

    Polekhina, Galina; Ascher, David Benjamin; Kok, Shie Foong; Waltham, Mark

    2011-01-01

    The N-terminal domain of thioredoxin-interacting protein has been expressed, purified and crystallized. The crystals belonged to a monoclinic space group and diffracted to 3 Å resolution using synchrotron radiation. Thioredoxin-interacting protein (TXNIP) is a negative regulator of thioredoxin and its roles in the pathologies of diabetes and cardiovascular diseases have marked it out as a potential drug target. Expression of TXNIP is robustly induced under various stress conditions such as high glucose, heat shock, UV, H 2 O 2 and mechanical stress amongst others. Elevated levels of TXNIP result in the sequestration and inactivation of thioredoxin, leading to cellular oxidative stress. For some time, this was the only known function of TXNIP; however, more recently the protein has been shown to play a role in regulation of glucose uptake and activation of the inflammasome. Based on the primary sequence, TXNIP is remotely related to β-arrestins, which include the visual arrestins. TXNIP has thus been classified as a member of the α-arrestin family, which to date includes five other members. None of the other α-arrestins are known to interact with thioredoxin, although curiously one has been implicated in glucose uptake. In order to gain insight into the structure–function relationships of the α-arrestin protein family, and particularly that of TXNIP, the N-terminal domain of TXNIP has been crystallized. The crystals belonged to a monoclinic space group and diffracted to 3 Å resolution using synchrotron radiation

  5. Intrinsically disordered cytoplasmic domains of two cytokine receptors mediate conserved interactions with membranes

    DEFF Research Database (Denmark)

    Haxholm, Gitte Wolfsberg; Nikolajsen, Louise Fletcher; Olsen, Johan Gotthardt

    2015-01-01

    . This study presents the first comprehensive structural characterization of any cytokine receptor ICD and demonstrates that the human prolactin and growth hormone receptor ICDs are intrinsically disordered throughout their entire lengths. We show that they interact specifically with hallmark lipids...

  6. Domain interaction in rabbit muscle pyruvate kinase. II. Small angle neutron scattering and computer simulation.

    Science.gov (United States)

    Consler, T G; Uberbacher, E C; Bunick, G J; Liebman, M N; Lee, J C

    1988-02-25

    The effects of ligands on the structure of rabbit muscle pyruvate kinase were studied by small angle neutron scattering. The radius of gyration, RG, decreases by about 1 A in the presence of the substrate phosphoenolpyruvate, but increases by about the same magnitude in the presence of the allosteric inhibitor phenylalanine. With increasing pH or in the absence of Mg2+ and K+, the RG of pyruvate kinase increases. Hence, there is a 2-A difference in RG between two alternative conformations. Length distribution analysis indicates that, under all experimental conditions which increase the radius of gyration, there is a pronounced increase observed in the probability for interatomic distance between 80 and 110 A. These small angle neutron scattering results indicate a "contraction" and "expansion" of the enzyme when it transforms between its active and inactive forms. Using the alpha-carbon coordinates of crystalline cat muscle pyruvate kinase, a length distribution profile was calculated, and it matches the scattering profile of the inactive form. These observations are expected since the crystals were grown in the absence of divalent cations (Stuart, D. I., Levine, M., Muirhead, H., and Stammers, D. K. (1979) J. Mol. Biol. 134, 109-142). Hence, results from neutron scattering, x-ray crystallographic, and sedimentation studies (Oberfelder, R. W., Lee, L. L.-Y., and Lee, J.C. (1984) Biochemistry 23, 3813-3821) are totally consistent with each other. With the aid of computer modeling, the crystal structure has been manipulated in order to effect changes that are consistent with the conformational change described by the solution scattering data. The structural manipulation involves the rotation of the B domain relative to the A domain, leading to the closure of the cleft between these domains. These manipulations resulted in the generation of new sets of atomic (C-alpha) coordinates, which were utilized in calculations, the result of which compared favorably with the

  7. The disordered C-terminal domain of human DNA glycosylase NEIL1 contributes to its stability via intramolecular interactions.

    Science.gov (United States)

    Hegde, Muralidhar L; Tsutakawa, Susan E; Hegde, Pavana M; Holthauzen, Luis Marcelo F; Li, Jing; Oezguen, Numan; Hilser, Vincent J; Tainer, John A; Mitra, Sankar

    2013-07-10

    NEIL1 [Nei (endonuclease VIII)-like protein 1], one of the five mammalian DNA glycosylases that excise oxidized DNA base lesions in the human genome to initiate base excision repair, contains an intrinsically disordered C-terminal domain (CTD; ~100 residues), not conserved in its Escherichia coli prototype Nei. Although dispensable for NEIL1's lesion excision and AP lyase activities, this segment is required for efficient in vivo enzymatic activity and may provide an interaction interface for many of NEIL1's interactions with other base excision repair proteins. Here, we show that the CTD interacts with the folded domain in native NEIL1 containing 389 residues. The CTD is poised for local folding in an ordered structure that is induced in the purified fragment by osmolytes. Furthermore, deletion of the disordered tail lacking both Tyr and Trp residues causes a red shift in NEIL1's intrinsic Trp-specific fluorescence, indicating a more solvent-exposed environment for the Trp residues in the truncated protein, which also exhibits reduced stability compared to the native enzyme. These observations are consistent with stabilization of the native NEIL1 structure via intramolecular, mostly electrostatic, interactions that were disrupted by mutating a positively charged (Lys-rich) cluster of residues (amino acids 355-360) near the C-terminus. Small-angle X-ray scattering (SAXS) analysis confirms the flexibility and dynamic nature of NEIL1's CTD, a feature that may be critical to providing specificity for NEIL1's multiple, functional interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Dynamic Analysis of Partially Embedded Structures Considering Soil-Structure Interaction in Time Domain

    OpenAIRE

    Mahmoudpour, Sanaz; Attarnejad, Reza; Behnia, Cambyse

    2011-01-01

    Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite el...

  9. Interaction domains in permanent-magnetic rare-earth transition-metal compounds; Wechselwirkungsdomaenen in permanentmagnetischen Seltenerd-Uebergangsmetall-Verbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Thielsch, Juliane

    2015-02-05

    In the framework of this dissertation the phenomenon of the interaction domains was studied both experimentally and by means of micromagnetic simulation. Object of the study were one-phase NdFeB magnets, which were fabricated from commercial MQU-F powders of the Magnequench Inc. company by hot pressing and subsequent warm deformation in the IWF Dresden. Additionally via the same fabrication way also composite samples of NdFeB and Fe with different original particle sizes ere obtained and studied. Supported wer the experimental works by simulations with the FEMME software package, which is based on a hybrid finite-element method/boundary-element method.

  10. Structure of the SPRY domain of the human RNA helicase DDX1, a putative interaction platform within a DEAD-box protein

    Energy Technology Data Exchange (ETDEWEB)

    Kellner, Julian N.; Meinhart, Anton, E-mail: anton.meinhart@mpimf-heidelberg.mpg.de [Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg (Germany)

    2015-08-25

    The structure of the SPRY domain of the human RNA helicase DDX1 was determined at 2.0 Å resolution. The SPRY domain provides a putative protein–protein interaction platform within DDX1 that differs from other SPRY domains in its structure and conserved regions. The human RNA helicase DDX1 in the DEAD-box family plays an important role in RNA processing and has been associated with HIV-1 replication and tumour progression. Whereas previously described DEAD-box proteins have a structurally conserved core, DDX1 shows a unique structural feature: a large SPRY-domain insertion in its RecA-like consensus fold. SPRY domains are known to function as protein–protein interaction platforms. Here, the crystal structure of the SPRY domain of human DDX1 (hDSPRY) is reported at 2.0 Å resolution. The structure reveals two layers of concave, antiparallel β-sheets that stack onto each other and a third β-sheet beneath the β-sandwich. A comparison with SPRY-domain structures from other eukaryotic proteins showed that the general β-sandwich fold is conserved; however, differences were detected in the loop regions, which were identified in other SPRY domains to be essential for interaction with cognate partners. In contrast, in hDSPRY these loop regions are not strictly conserved across species. Interestingly, though, a conserved patch of positive surface charge is found that may replace the connecting loops as a protein–protein interaction surface. The data presented here comprise the first structural information on DDX1 and provide insights into the unique domain architecture of this DEAD-box protein. By providing the structure of a putative interaction domain of DDX1, this work will serve as a basis for further studies of the interaction network within the hetero-oligomeric complexes of DDX1 and of its recruitment to the HIV-1 Rev protein as a viral replication factor.

  11. Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers.

    Science.gov (United States)

    Alonso, Roberto; Monroy, Raúl; Trejo, Luis A

    2016-08-17

    The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers.

  12. Encephalomyocarditis virus Leader protein hinge domain is responsible for interactions with Ran GTPase

    Energy Technology Data Exchange (ETDEWEB)

    Bacot-Davis, Valjean R., E-mail: bacotdavis@wisc.edu [Institute for Molecular Virology, University of Wisconsin-Madison, R.M. Bock Laboratories, 1525 Linden Dr. Madison, WI 53706 (United States); Palmenberg, Ann C., E-mail: acpalmen@wisc.edu [Institute for Molecular Virology, University of Wisconsin-Madison, R.M. Bock Laboratories, 1525 Linden Dr. Madison, WI 53706 (United States); Department of Biochemistry, University of Wisconsin-Madison, R.M. Bock Laboratories, 1525 Linden Dr. Madison, WI 53706 (United States)

    2013-08-15

    Encephalomyocarditis virus (EMCV), a Cardiovirus, initiates its polyprotein with a short 67 amino acid Leader (L) sequence. The protein acts as a unique pathogenicity factor, with anti-host activities which include the triggering of nuclear pore complex hyperphosphorylation and direct binding inhibition of the active cellular transport protein, Ran GTPase. Chemical modifications and protein mutagenesis now map the Ran binding domain to the L hinge-linker region, and in particular, to amino acids 35–40. Large deletions affecting this region were shown previously to diminish Ran binding. New point mutations, especially K35Q, D37A and W40A, preserve the intact L structure, abolish Ran binding and are deficient for nucleoporin (Nup) hyperphosphorylation. Ran itself morphs through multiple configurations, but reacts most effectively with L when in the GDP format, preferably with an empty nucleotide binding pocket. Therefore, L:Ran binding, mediated by the linker-hinge, is a required step in L-induced nuclear transport inhibition. - Highlights: • The hinge domain provides critical residues in Cardiovirus L:Ran complex formation. • Leader prefers to bind Ran in a nucleotide free, GDP-conformation. • L-induced Nup62 phosphorylation is reduced with Ran-deficient binding mutations.

  13. Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers

    Directory of Open Access Journals (Sweden)

    Roberto Alonso

    2016-08-01

    Full Text Available The Domain Name System (DNS is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS. The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers.

  14. The alpha-fetoprotein (AFP) third domain: a search for AFP interaction sites of cell cycle proteins.

    Science.gov (United States)

    Mizejewski, G J

    2016-09-01

    The carboxy-terminal third domain of alpha-fetoprotein (AFP-3D) is known to harbor binding and/or interaction sites for hydrophobic ligands, receptors, and binding proteins. Such reports have established that AFP-3D consists of amino acid (AA) sequence stretches on the AFP polypeptide that engages in protein-to-protein interactions with various ligands and receptors. Using a computer software program specifically designed for such interactions, the present report identified AA sequence fragments on AFP-3D that could potentially interact with a variety of cell cycle proteins. The cell cycle proteins identified were (1) cyclins, (2) cyclin-dependent kinases, (3) cell cycle-associated proteins (inhibitors, checkpoints, initiators), and (4) ubiquitin ligases. Following detection of the AFP-3D to cell cycle protein interaction sites, the computer-derived AFP localization AA sequences were compared and aligned with previously reported hydrophobic ligand and receptor interaction sites on AFP-3D. A literature survey of the association of cell cycle proteins with AFP showed both positive relationships and correlations. Previous reports of experimental AFP-derived peptides effects on various cell cycle proteins served to confirm and verify the present computer cell cycle protein identifications. Cell cycle protein interactions with AFP-CD peptides have been reported in cultured MCF-7 breast cancer cells subjected to mRNA microarray analysis. After 7 days in culture with MCF-7 cells, the AFP-derived peptides were shown to downregulate cyclin E, SKP2, checkpoint suppressors, cyclin-dependent kinases, and ubiquitin ligases that modulate cyclin E/CdK2 transition from the G1 to the S-phase of the cell cycle. Thus, the experimental data on AFP-CD interaction with cell cycle proteins were consistent with the "in silico" findings.

  15. Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA

    DEFF Research Database (Denmark)

    Douthwaite, S; Hansen, L H; Mauvais, P

    2000-01-01

    to A752 via alkyl-aryl groups linked to a carbamate at the drug 11/12 position (in the ketolide antibiotics HMR 3647 and HMR 3004). The data indicate that simultaneous drug interactions with domains II and V strengthen binding and that the domain II contact is of particular importance to achieve...

  16. 3D Structure and Interaction of p24β and p24δ Golgi Dynamics Domains: Implication for p24 Complex Formation and Cargo Transport.

    Science.gov (United States)

    Nagae, Masamichi; Hirata, Tetsuya; Morita-Matsumoto, Kana; Theiler, Romina; Fujita, Morihisa; Kinoshita, Taroh; Yamaguchi, Yoshiki

    2016-10-09

    The p24 family consists of four subfamilies (p24α, p24β, p24γ, and p24δ), and the proteins are thought to form hetero-oligomeric complexes for efficient transport of cargo proteins from the endoplasmic reticulum to the Golgi apparatus. The proteins possess a conserved luminal Golgi dynamics (GOLD) domain, whose functions are largely unknown. Here, we present structural and biochemical studies of p24β1 and p24δ1 GOLD domains. Use of GOLD domain-deleted mutants revealed that the GOLD domain of p24δ1 is required for proper p24 hetero-oligomeric complex formation and efficient transport of GPI-anchored proteins. The p24β1 and p24δ1 GOLD domains share a common β-sandwich fold with a characteristic intrasheet disulfide bond. The GOLD domain of p24δ1 crystallized as dimers, allowing the analysis of a homophilic interaction site. Surface plasmon resonance and solution NMR analyses revealed that p24β1 and p24δ1 GOLD domains interact weakly (K d = ~10 -4 M). Bi-protein titration provided interaction site maps. We propose that the heterophilic interaction of p24 GOLD domains contributes to the formation of the p24 hetero-oligomeric complex and to efficient cargo transport. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Synthetic protein scaffolds based on peptide motifs and cognate adaptor domains for improving metabolic productivity

    Directory of Open Access Journals (Sweden)

    Anselm H.C. Horn

    2015-11-01

    Full Text Available The efficiency of many cellular processes relies on the defined interaction among different proteins within the same metabolic or signaling pathway. Consequently, a spatial colocalization of functionally interacting proteins has frequently emerged during evolution. This concept has been adapted within the synthetic biology community for the purpose of creating artificial scaffolds. A recent advancement of this concept is the use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ domains have been used most often in research studies to date. The approach has been successfully applied to the synthesis of a variety of target molecules including catechin, D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and mevalonate. Increased production levels of up to 77-fold have been observed compared to non-scaffolded systems. A recent extension of this concept is the creation of a covalent linkage between peptide motifs and adaptor domains, which leads to a more stable association of the scaffolded systems and thus bears the potential to further enhance metabolic productivity.

  18. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules.

    Science.gov (United States)

    Zhu, Jinwei; Shang, Yuan; Xia, Caihao; Wang, Wenning; Wen, Wenyu; Zhang, Mingjie

    2011-11-25

    Membrane-associated guanylate kinases (MAGUKs) are a large family of scaffold proteins that play essential roles in tissue developments, cell-cell communications, cell polarity control, and cellular signal transductions. Despite extensive studies over the past two decades, the functions of the signature guanylate kinase domain (GK) of MAGUKs are poorly understood. Here we show that the GK domain of DLG1/SAP97 binds to asymmetric cell division regulatory protein LGN in a phosphorylation-dependent manner. The structure of the DLG1 SH3-GK tandem in complex with a phospho-LGN peptide reveals that the GMP-binding site of GK has evolved into a specific pSer/pThr-binding pocket. Residues both N- and C-terminal to the pSer are also critical for the specific binding of the phospho-LGN peptide to GK. We further demonstrate that the previously reported GK domain-mediated interactions of DLGs with other targets, such as GKAP/DLGAP1/SAPAP1 and SPAR, are also phosphorylation dependent. Finally, we provide evidence that other MAGUK GKs also function as phospho-peptide-binding modules. The discovery of the phosphorylation-dependent MAGUK GK/target interactions indicates that MAGUK scaffold-mediated signalling complex organizations are dynamically regulated.

  19. Domain requirements for the Dock adapter protein in growth- cone signaling.

    Science.gov (United States)

    Rao, Y; Zipursky, S L

    1998-03-03

    Tyrosine phosphorylation has been implicated in growth-cone guidance through genetic, biochemical, and pharmacological studies. Adapter proteins containing src homology 2 (SH2) domains and src homology 3 (SH3) domains provide a means of linking guidance signaling through phosphotyrosine to downstream effectors regulating growth-cone motility. The Drosophila adapter, Dreadlocks (Dock), the homolog of mammalian Nck containing three N-terminal SH3 domains and a single SH2 domain, is highly specialized for growth-cone guidance. In this paper, we demonstrate that Dock can couple signals in either an SH2-dependent or an SH2-independent fashion in photoreceptor (R cell) growth cones, and that Dock displays different domain requirements in different neurons.

  20. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly.

    Directory of Open Access Journals (Sweden)

    Joy G Ghosh

    2007-06-01

    Full Text Available Small heat shock proteins regulate microtubule assembly during cell proliferation and in response to stress through interactions that are poorly understood.Novel functions for five interactive sequences in the small heat shock protein and molecular chaperone, human alphaB crystallin, were investigated in the assembly/disassembly of microtubules and aggregation of tubulin using synthetic peptides and mutants of human alphaB crystallin.The interactive sequence (113FISREFHR(120 exposed on the surface of alphaB crystallin decreased microtubule assembly by approximately 45%. In contrast, the interactive sequences, (131LTITSSLSSDGV(142 and (156ERTIPITRE(164, corresponding to the beta8 strand and the C-terminal extension respectively, which are involved in complex formation, increased microtubule assembly by approximately 34-45%. The alphaB crystallin peptides, (113FISREFHR(120 and (156ERTIPITRE(164, inhibited microtubule disassembly by approximately 26-36%, and the peptides (113FISREFHR(120 and (131LTITSSLSSDGV(142 decreased the thermal aggregation of tubulin by approximately 42-44%. The (131LTITSSLSSDGV(142 and (156ERTIPITRE(164 peptides were more effective than the widely used anti-cancer drug, Paclitaxel, in modulating tubulinmicrotubule dynamics. Mutagenesis of these interactive sequences in wt human alphaB crystallin confirmed the effects of the alphaB crystallin peptides on microtubule assembly/disassembly and tubulin aggregation. The regulation of microtubule assembly by alphaB crystallin varied over a narrow range of concentrations. The assembly of microtubules was maximal at alphaB crystallin to tubulin molar ratios between 1:4 and 2:1, while molar ratios >2:1 inhibited microtubule assembly.Interactive sequences on the surface of human alphaB crystallin collectively modulate microtubule assembly through a dynamic subunit exchange mechanism that depends on the concentration and ratio of alphaB crystallin to tubulin. These are the first

  1. Bivariate- distribution for transition matrix elements in Breit-Wigner to Gaussian domains of interacting particle systems.

    Science.gov (United States)

    Kota, V K B; Chavda, N D; Sahu, R

    2006-04-01

    Interacting many-particle systems with a mean-field one-body part plus a chaos generating random two-body interaction having strength lambda exhibit Poisson to Gaussian orthogonal ensemble and Breit-Wigner (BW) to Gaussian transitions in level fluctuations and strength functions with transition points marked by lambda = lambda c and lambda = lambda F, respectively; lambda F > lambda c. For these systems a theory for the matrix elements of one-body transition operators is available, as valid in the Gaussian domain, with lambda > lambda F, in terms of orbital occupation numbers, level densities, and an integral involving a bivariate Gaussian in the initial and final energies. Here we show that, using a bivariate-t distribution, the theory extends below from the Gaussian regime to the BW regime up to lambda = lambda c. This is well tested in numerical calculations for 6 spinless fermions in 12 single-particle states.

  2. Velocity width of the resonant domain in wave-particle interaction

    International Nuclear Information System (INIS)

    Firpo, Marie-Christine; Doveil, Fabrice

    2002-01-01

    Wave-particle interaction is a ubiquitous physical mechanism exhibiting locality in velocity space. A single-wave Hamiltonian provides a rich model by which to study the self-consistent interaction between one electrostatic wave and N quasiresonant particles. For the simplest nonintegrable Hamiltonian coupling two particles to one wave, we analytically derive the particle velocity borders separating quasi-integrable motions from chaotic ones. These estimates are fully retrieved through computation of the largest Lyapunov exponent. For the large-N particle self-consistent case, we numerically investigate the localization of stochasticity in velocity space and test a qualitative estimate of the borders of chaos

  3. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Phase-field simulation of the effect of interaction among ordered domains on interdiffusion in Ni-Al-Cr alloys

    Science.gov (United States)

    Zhang, Yu-Xiang; Wang, Jin-Cheng; Yang, Yu-Juan; Yang, Gen-Cang; Zhou, Yao-He

    2009-10-01

    The effect of interaction among γ' ordered domains on the interdiffusion process in γ + γ'/γ and γ + γ'/γ + γ' diffusion couples is investigated by using the phase-field method, in which bulk free energy and mobility are linked with thermodynamic and kinetic databases. Simulated results show that the interaction among γ' ordered domains has great influence on the microstructure, the interdiffusion velocity and the volume fraction of γ' phase on both sides of the diffusion couples.

  4. Are IR renormalons a good probe for the strong interaction domain?

    CERN Document Server

    Dokshitzer, Yu L

    1996-01-01

    We study the origin of non-analyticity in \\alpha_s of a short-distance QCD observable to demonstrate that the infrared renormalons, the same-sign factorial growth of the perturbative expansion, is a universal phenomenon that originates entirely from the small coupling domain. In particular, both the position and the nature of the singularity of the Borel transform of the perturbative series prove to be independent of whether the running coupling \\alpha(k^2) becomes singular at some finite scale ("Landau pole"), or stays finite down to k^2=0. We argue that getting hold of the infrared renormalons per se can help next to nothing in quantifying non-perturbative effects.

  5. Role of the transmembrane domain of FXYD7 in structural and functional interactions with Na,K-ATPase.

    Science.gov (United States)

    Li, Ciming; Crambert, Gilles; Thuillard, Delphine; Roy, Sophie; Schaer, Danièle; Geering, Käthi

    2005-12-30

    Members of the FXYD family are tissue-specific regulators of the Na,K-ATPase. Here, we have investigated the contribution of amino acids in the transmembrane (TM) domain of FXYD7 to the interaction with Na,K-ATPase. Twenty amino acids of the TM domain were replaced individually by tryptophan, and combined mutations and alanine insertion mutants were constructed. Wild type and mutant FXYD7 were expressed in Xenopus oocytes with Na,K-ATPase. Mutational effects on the stable association with Na,K-ATPase and on the functional regulation of Na,K-ATPase were determined by co-immunoprecipitation and two-electrode voltage clamp techniques, respectively. Most residues important for the structural and functional interaction of FXYD7 are clustered in a face of the TM helix containing the two conserved glycine residues, but others are scattered over two-thirds of the FXYD TM helix. Ile-35, Ile-43, and Ile-44 are only involved in the stable association with Na,K-ATPase. Glu-26, Met-30, and Ile-44 are important for the functional effect and/or the efficient association of FXYD7 with Na,K-ATPase, consistent with the prediction that these amino acids contact TM domain 9 of the alpha subunit (Li, C., Grosdidier, A., Crambert, G., Horisberger, J.-D., Michielin, O., and Geering, K. (2004) J. Biol. Chem. 279, 38895-38902). Several amino acids that are not implicated in the efficient association of FXYD7 with the Na,K-ATPase are specifically involved in the functional effect of FXYD7. Leu-32 and Phe-37 influence the apparent affinity for external K+, whereas Val-28 and Ile-42 are implicated in the apparent affinity for both external K+ and external Na+. These amino acids act in a synergistic way. These results highlight the important structural and functional role of the TM domain of FXYD7 and delineate the determinants that mediate the complex interactions of FXYD7 with Na,K-ATPase.

  6. Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain

    DEFF Research Database (Denmark)

    Adari, H; Lowy, D R; Willumsen, B M

    1988-01-01

    A cytoplasmic protein that greatly enhances the guanosine triphosphatase (GTPase) activity of N-ras protein but does not affect the activity of oncogenic ras mutants has been recently described. This protein (GAP) is shown here to be ubiquitous in higher eukaryotes and to interact with H-ras as w...

  7. Essential domain of receptor tyrosine phosphatase beta (RPTPbeta) for interaction with Helicobacter pylori vacuolating cytotoxin

    DEFF Research Database (Denmark)

    Yahiro, Kinnosuke; Wada, Akihiro; Yamasaki, Eiki

    2004-01-01

    Helicobacter pylori produces a potent exotoxin, VacA, which causes progressive vacuolation as well as gastric injury. Although VacA was able to interact with two receptor-like protein tyrosine phosphatases, RPTPbeta and RPTPalpha, RPTPbeta was found to be responsible for gastric damage caused...

  8. Configuration and local elastic interaction of ferroelectric domains and misfit dislocation in PbTiO3/SrTiO3 epitaxial thin films

    Directory of Open Access Journals (Sweden)

    Takanori Kiguchi, Kenta Aoyagi, Yoshitaka Ehara, Hiroshi Funakubo, Tomoaki Yamada, Noritaka Usami and Toyohiko J Konno

    2011-01-01

    Full Text Available We have studied the strain field around the 90° domains and misfit dislocations in PbTiO3/SrTiO3 (001 epitaxial thin films, at the nanoscale, using the geometric phase analysis (GPA combined with high-resolution transmission electron microscopy (HRTEM and high-angle annular dark field––scanning transmission electron microscopy (HAADF-STEM. The films typically contain a combination of a/c-mixed domains and misfit dislocations. The PbTiO3 layer was composed from the two types of the a-domain (90° domain: a typical a/c-mixed domain configuration where a-domains are 20–30 nm wide and nano sized domains with a width of about 3 nm. In the latter case, the nano sized a-domain does not contact the film/substrate interface; it remains far from the interface and stems from the misfit dislocation. Strain maps obtained from the GPA of HRTEM images show the elastic interaction between the a-domain and the dislocations. The normal strain field and lattice rotation match each other between them. Strain maps reveal that the a-domain nucleation takes place at the misfit dislocation. The lattice rotation around the misfit dislocation triggers the nucleation of the a-domain; the normal strains around the misfit dislocation relax the residual strain in a-domain; then, the a-domain growth takes place, accompanying the introduction of the additional dislocation perpendicular to the misfit dislocation and the dissociation of the dislocations into two pairs of partial dislocations with an APB, which is the bottom boundary of the a-domain. The novel mechanism of the nucleation and growth of 90° domain in PbTiO3/SrTiO3 epitaxial system has been proposed based on above the results.

  9. Quantitative analysis of the interaction between the envelope protein domains and the core protein of human hepatitis B virus

    International Nuclear Information System (INIS)

    Choi, Kyoung-Jae; Lim, Chun-Woo; Yoon, Moon-Young; Ahn, Byung-Yoon; Yu, Yeon Gyu

    2004-01-01

    Interaction between preformed nucleocapsids and viral envelope proteins is critical for the assembly of virus particles in infected cells. The pre-S1 and pre-S2 and cytosolic regions of the human hepatitis B virus envelope protein had been implicated in the interaction with the core protein of nucleocapsids. The binding affinities of specific subdomains of the envelope protein to the core protein were quantitatively measured by both ELISA and BIAcore assay. While a marginal binding was detected with the pre-S1 or pre-S2, the core protein showed high affinities to pre-S with apparent dissociation constants (K D app ) of 7.3 ± 0.9 and 8.2 ± 0.4 μM by ELISA and BIAcore assay, respectively. The circular dichroism analysis suggested that conformational change occurs in pre-S through interaction with core protein. These results substantiate the importance of specific envelope domains in virion assembly, and demonstrate that the interaction between viral proteins can be quantitatively measured in vitro

  10. Multi-level learning: improving the prediction of protein, domain and residue interactions by allowing information flow between levels

    Directory of Open Access Journals (Sweden)

    McDermott Drew

    2009-08-01

    Full Text Available Abstract Background Proteins interact through specific binding interfaces that contain many residues in domains. Protein interactions thus occur on three different levels of a concept hierarchy: whole-proteins, domains, and residues. Each level offers a distinct and complementary set of features for computationally predicting interactions, including functional genomic features of whole proteins, evolutionary features of domain families and physical-chemical features of individual residues. The predictions at each level could benefit from using the features at all three levels. However, it is not trivial as the features are provided at different granularity. Results To link up the predictions at the three levels, we propose a multi-level machine-learning framework that allows for explicit information flow between the levels. We demonstrate, using representative yeast interaction networks, that our algorithm is able to utilize complementary feature sets to make more accurate predictions at the three levels than when the three problems are approached independently. To facilitate application of our multi-level learning framework, we discuss three key aspects of multi-level learning and the corresponding design choices that we have made in the implementation of a concrete learning algorithm. 1 Architecture of information flow: we show the greater flexibility of bidirectional flow over independent levels and unidirectional flow; 2 Coupling mechanism of the different levels: We show how this can be accomplished via augmenting the training sets at each level, and discuss the prevention of error propagation between different levels by means of soft coupling; 3 Sparseness of data: We show that the multi-level framework compounds data sparsity issues, and discuss how this can be dealt with by building local models in information-rich parts of the data. Our proof-of-concept learning algorithm demonstrates the advantage of combining levels, and opens up

  11. Concept-Driven Interaction Design Research in the domain of attractive aging: the example of Walky

    DEFF Research Database (Denmark)

    Nazzi, Elena; Bagalkot, Naveen L.; Nagargoje, Arun

    2012-01-01

    In this paper we answer the call for “designing for an attractive ageing” by designing for social interaction of senior citizens within their local community. In this vein, we present Walky, a design exploration through which we explored if, and how, augmenting the rollator that senior citizens u...... the example of Walky and its compositional whole as a demonstration of how we explored abstract theoretical perspectives in particular design situations leading to three concrete designed artefacts....

  12. Towards Interactive Visual Exploration of Parallel Programs using a Domain-Specific Language

    KAUST Repository

    Klein, Tobias

    2016-04-19

    The use of GPUs and the massively parallel computing paradigm have become wide-spread. We describe a framework for the interactive visualization and visual analysis of the run-time behavior of massively parallel programs, especially OpenCL kernels. This facilitates understanding a program\\'s function and structure, finding the causes of possible slowdowns, locating program bugs, and interactively exploring and visually comparing different code variants in order to improve performance and correctness. Our approach enables very specific, user-centered analysis, both in terms of the recording of the run-time behavior and the visualization itself. Instead of having to manually write instrumented code to record data, simple code annotations tell the source-to-source compiler which code instrumentation to generate automatically. The visualization part of our framework then enables the interactive analysis of kernel run-time behavior in a way that can be very specific to a particular problem or optimization goal, such as analyzing the causes of memory bank conflicts or understanding an entire parallel algorithm.

  13. Towards Interactive Visual Exploration of Parallel Programs using a Domain-Specific Language

    KAUST Repository

    Klein, Tobias; Bruckner, Stefan; Grö ller, M. Eduard; Hadwiger, Markus; Rautek, Peter

    2016-01-01

    The use of GPUs and the massively parallel computing paradigm have become wide-spread. We describe a framework for the interactive visualization and visual analysis of the run-time behavior of massively parallel programs, especially OpenCL kernels. This facilitates understanding a program's function and structure, finding the causes of possible slowdowns, locating program bugs, and interactively exploring and visually comparing different code variants in order to improve performance and correctness. Our approach enables very specific, user-centered analysis, both in terms of the recording of the run-time behavior and the visualization itself. Instead of having to manually write instrumented code to record data, simple code annotations tell the source-to-source compiler which code instrumentation to generate automatically. The visualization part of our framework then enables the interactive analysis of kernel run-time behavior in a way that can be very specific to a particular problem or optimization goal, such as analyzing the causes of memory bank conflicts or understanding an entire parallel algorithm.

  14. Individual Differences in Verbal and Spatial Stroop Tasks: Interactive Role of Handedness and Domain

    Directory of Open Access Journals (Sweden)

    Mariagrazia Capizzi

    2017-11-01

    Full Text Available A longstanding debate in psychology concerns the relation between handedness and cognitive functioning. The present study aimed to contribute to this debate by comparing performance of right- and non-right-handers on verbal and spatial Stroop tasks. Previous studies have shown that non-right-handers have better inter-hemispheric interaction and greater access to right hemisphere processes. On this ground, we expected performance of right- and non-right-handers to differ on verbal and spatial Stroop tasks. Specifically, relative to right-handers, non-right-handers should have greater Stroop effect in the color-word Stroop task, for which inter-hemispheric interaction does not seem to be advantageous to performance. By contrast, non-right-handers should be better able to overcome interference in the spatial Stroop task. This is for their preferential access to the right hemisphere dealing with spatial material and their greater inter-hemispheric interaction with the left hemisphere hosting Stroop task processes. Our results confirmed these predictions, showing that handedness and the underlying brain asymmetries may be a useful variable to partly explain individual differences in executive functions.

  15. Emotional pictures and sounds: A review of multimodal interactions of emotion cues in multiple domains

    Directory of Open Access Journals (Sweden)

    Antje B M Gerdes

    2014-12-01

    Full Text Available In everyday life, multiple sensory channels jointly trigger emotional experiences and one channel may alter processing in another channel. For example, seeing an emotional facial expression and hearing the voice’s emotional tone will jointly create the emotional experience. This example, where auditory and visual input is related to social communication, has gained considerable attention by researchers. However, interactions of visual and auditory emotional information are not limited to social communication but can extend to much broader contexts including human, animal, and environmental cues. In this article, we review current research on audiovisual emotion processing beyond face-voice stimuli to develop a broader perspective on multimodal interactions in emotion processing. We argue that current concepts of multimodality should be extended in considering an ecologically valid variety of stimuli in audiovisual emotion processing. Therefore, we provide an overview of studies in which emotional sounds and interactions with complex pictures of scenes were investigated. In addition to behavioral studies, we focus on neuroimaging, electro- and peripher-physiological findings. Furthermore, we integrate these findings and identify similarities or differences. We conclude with suggestions for future research.

  16. Inter-subunit interactions across the upper voltage sensing-pore domain interface contribute to the concerted pore opening transition of Kv channels.

    Directory of Open Access Journals (Sweden)

    Tzilhav Shem-Ad

    Full Text Available The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels.

  17. Inter-subunit interactions across the upper voltage sensing-pore domain interface contribute to the concerted pore opening transition of Kv channels.

    Science.gov (United States)

    Shem-Ad, Tzilhav; Irit, Orr; Yifrach, Ofer

    2013-01-01

    The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels.

  18. Recursive evaluation of interaction forces of unbounded soil in time domain

    International Nuclear Information System (INIS)

    Motosaka, M.

    1987-01-01

    Recursive formulations have hardly been used in the analysis of soil-structure interaction. A notable exception is described in Verbic 1973, which corresponds to the impulse-invariant way discussed in Section 2. Section 3 describes another possibility to derive a recursive relation based on a segment approach using z-transforms. An illustrative example is examined in Section 4, and in Section 5 the number of operations is addressed. This compact paper is based on Wolf and Motosaka 1988. (orig./HP)

  19. Time domain contact model for tyre/road interaction including nonlinear contact stiffness due to small-scale roughness

    Science.gov (United States)

    Andersson, P. B. U.; Kropp, W.

    2008-11-01

    Rolling resistance, traction, wear, excitation of vibrations, and noise generation are all attributes to consider in optimisation of the interaction between automotive tyres and wearing courses of roads. The key to understand and describe the interaction is to include a wide range of length scales in the description of the contact geometry. This means including scales on the order of micrometres that have been neglected in previous tyre/road interaction models. A time domain contact model for the tyre/road interaction that includes interfacial details is presented. The contact geometry is discretised into multiple elements forming pairs of matching points. The dynamic response of the tyre is calculated by convolving the contact forces with pre-calculated Green's functions. The smaller-length scales are included by using constitutive interfacial relations, i.e. by using nonlinear contact springs, for each pair of contact elements. The method is presented for normal (out-of-plane) contact and a method for assessing the stiffness of the nonlinear springs based on detailed geometry and elastic data of the tread is suggested. The governing equations of the nonlinear contact problem are solved with the Newton-Raphson iterative scheme. Relations between force, indentation, and contact stiffness are calculated for a single tread block in contact with a road surface. The calculated results have the same character as results from measurements found in literature. Comparison to traditional contact formulations shows that the effect of the small-scale roughness is large; the contact stiffness is only up to half of the stiffness that would result if contact is made over the whole element directly to the bulk of the tread. It is concluded that the suggested contact formulation is a suitable model to include more details of the contact interface. Further, the presented result for the tread block in contact with the road is a suitable input for a global tyre/road interaction model

  20. The CDM Superfamily Protein MBC Directs Myoblast Fusion through a Mechanism That Requires Phosphatidylinositol 3,4,5-Triphosphate Binding but Is Independent of Direct Interaction with DCrk▿§

    Science.gov (United States)

    Balagopalan, Lakshmi; Chen, Mei-Hui; Geisbrecht, Erika R.; Abmayr, Susan M.

    2006-01-01

    myoblast city (mbc), a member of the CDM superfamily, is essential in the Drosophila melanogaster embryo for fusion of myoblasts into multinucleate fibers. Using germ line clones in which both maternal and zygotic contributions were eliminated and rescue of the zygotic loss-of-function phenotype, we established that mbc is required in the fusion-competent subset of myoblasts. Along with its close orthologs Dock180 and CED-5, MBC has an SH3 domain at its N terminus, conserved internal domains termed DHR1 and DHR2 (or “Docker”), and C-terminal proline-rich domains that associate with the adapter protein DCrk. The importance of these domains has been evaluated by the ability of MBC mutations and deletions to rescue the mbc loss-of-function muscle phenotype. We demonstrate that the SH3 and Docker domains are essential. Moreover, ethyl methanesulfonate-induced mutations that change amino acids within the MBC Docker domain to residues that are conserved in other CDM family members nevertheless eliminate MBC function in the embryo, which suggests that these sites may mediate interactions specific to Drosophila MBC. A functional requirement for the conserved DHR1 domain, which binds to phosphatidylinositol 3,4,5-triphosphate, implicates phosphoinositide signaling in myoblast fusion. Finally, the proline-rich C-terminal sites mediate strong interactions with DCrk, as expected. These sites are not required for MBC to rescue the muscle loss-of-function phenotype, however, which suggests that MBC's role in myoblast fusion can be carried out independently of direct DCrk binding. PMID:17030600

  1. Substantial conformational change mediated by charge-triad residues of the death effector domain in protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Edward C Twomey

    Full Text Available Protein conformational changes are commonly associated with the formation of protein complexes. The non-catalytic death effector domains (DEDs mediate protein-protein interactions in a variety of cellular processes, including apoptosis, proliferation and migration, and glucose metabolism. Here, using NMR residual dipolar coupling (RDC data, we report a conformational change in the DED of the phosphoprotein enriched in astrocytes, 15 kDa (PEA-15 protein in the complex with a mitogen-activated protein (MAP kinase, extracellular regulated kinase 2 (ERK2, which is essential in regulating ERK2 cellular distribution and function in cell proliferation and migration. The most significant conformational change in PEA-15 happens at helices α2, α3, and α4, which also possess the highest flexibility among the six-helix bundle of the DED. This crucial conformational change is modulated by the D/E-RxDL charge-triad motif, one of the prominent structural features of DEDs, together with a number of other electrostatic and hydrogen bonding interactions on the protein surface. Charge-triad motif promotes the optimal orientation of key residues and expands the binding interface to accommodate protein-protein interactions. However, the charge-triad residues are not directly involved in the binding interface between PEA-15 and ERK2.

  2. Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier.

    Science.gov (United States)

    Atanasova, Nina S; Pietilä, Maija K; Oksanen, Hanna M

    2013-10-01

    The significance of antimicrobial substances, halocins, produced by halophilic archaea and bacteria thriving in hypersaline environments is relatively unknown. It is suggested that their production might increase species diversity and give transient competitive advances to the producer strain. Halocin production is considered to be common among halophilic archaea, but there is a lack of information about halocins produced by bacteria in highly saline environments. We studied the antimicrobial activity of 68 halophilic archaea and 22 bacteria isolated from numerous geographically distant hypersaline environments. Altogether 144 antimicrobial interactions were found between the strains and aside haloarchaea, halophilic bacteria from various genera were identified as halocin producers. Close to 80% of the interactions were detected between microorganisms from different genera and in few cases, even across the domain boundary. Several of the strains produced halocins with a wide inhibitory spectrum as has been observed before. Most of the antimicrobial interactions were found between strains from distant sampling sites indicating that hypersaline environments around the world have similar microorganisms with the potential to produce wide activity range antimicrobials. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  3. A mutation in human VAP-B--MSP domain, present in ALS patients, affects the interaction with other cellular proteins.

    Science.gov (United States)

    Mitne-Neto, M; Ramos, C R R; Pimenta, D C; Luz, J S; Nishimura, A L; Gonzales, F A; Oliveira, C C; Zatz, M

    2007-09-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset Motor Neuron Disease (MND), characterized by motor neurons death in the cortex, brainstem and spinal cord. Ten loci linked to Familial ALS have been mapped. ALS8 is caused by a substitution of a proline by a serine in the Vesicle-Associated Membrane Protein-Associated protein-B/C (VAP-B/C). VAP-B belongs to a highly conserved family of proteins implicated in Endoplasmic Reticulum-Golgi and intra-Golgi transport and microtubules stabilization. Previous studies demonstrated that the P56S mutation disrupts the subcellular localization of VAP-B and that this position would be essential for Unfolded Protein Response (UPR) induced by VAP-B. In the present work we expressed and purified recombinant wild-type and P56S mutant VAP-B-MSP domain for the analysis of its interactions with other cellular proteins. Our findings suggest that the P56S mutation may lead to a less stable interaction of this endoplasmic reticulum protein with at least two other proteins: tubulin and GAPDH. These two proteins have been previously related to other forms of neurodegenerative diseases and are potential key points to understand ALS8 pathogenesis and other forms of MND. Understanding the role of these protein interactions may help the treatment of this devastating disease in the future.

  4. Identification of Amino Acids in the Human Tetherin Transmembrane Domain Responsible for HIV-1 Vpu Interaction and Susceptibility▿ †

    Science.gov (United States)

    Kobayashi, Tomoko; Ode, Hirotaka; Yoshida, Takeshi; Sato, Kei; Gee, Peter; Yamamoto, Seiji P.; Ebina, Hirotaka; Strebel, Klaus; Sato, Hironori; Koyanagi, Yoshio

    2011-01-01

    Tetherin, also known as BST-2/CD317/HM1.24, is an antiviral cellular protein that inhibits the release of HIV-1 particles from infected cells. HIV-1 viral protein U (Vpu) is a specific antagonist of human tetherin that might contribute to the high virulence of HIV-1. In this study, we show that three amino acid residues (I34, L37, and L41) in the transmembrane (TM) domain of human tetherin are critical for the interaction with Vpu by using a live cell-based assay. We also found that the conservation of an additional amino acid at position 45 and two residues downstream of position 22, which are absent from monkey tetherins, are required for the antagonism by Vpu. Moreover, computer-assisted structural modeling and mutagenesis studies suggest that an alignment of these four amino acid residues (I34, L37, L41, and T45) on the same helical face in the TM domain is crucial for the Vpu-mediated antagonism of human tetherin. These results contribute to the molecular understanding of human tetherin-specific antagonism by HIV-1 Vpu. PMID:21068238

  5. Identification of amino acids in the human tetherin transmembrane domain responsible for HIV-1 Vpu interaction and susceptibility.

    Science.gov (United States)

    Kobayashi, Tomoko; Ode, Hirotaka; Yoshida, Takeshi; Sato, Kei; Gee, Peter; Yamamoto, Seiji P; Ebina, Hirotaka; Strebel, Klaus; Sato, Hironori; Koyanagi, Yoshio

    2011-01-01

    Tetherin, also known as BST-2/CD317/HM1.24, is an antiviral cellular protein that inhibits the release of HIV-1 particles from infected cells. HIV-1 viral protein U (Vpu) is a specific antagonist of human tetherin that might contribute to the high virulence of HIV-1. In this study, we show that three amino acid residues (I34, L37, and L41) in the transmembrane (TM) domain of human tetherin are critical for the interaction with Vpu by using a live cell-based assay. We also found that the conservation of an additional amino acid at position 45 and two residues downstream of position 22, which are absent from monkey tetherins, are required for the antagonism by Vpu. Moreover, computer-assisted structural modeling and mutagenesis studies suggest that an alignment of these four amino acid residues (I34, L37, L41, and T45) on the same helical face in the TM domain is crucial for the Vpu-mediated antagonism of human tetherin. These results contribute to the molecular understanding of human tetherin-specific antagonism by HIV-1 Vpu.

  6. Structural and functional determinants of conserved lipid interaction domains of inward rectifying Kir6.2 channels.

    Science.gov (United States)

    Cukras, Catherine A; Jeliazkova, Iana; Nichols, Colin G

    2002-06-01

    All members of the inward rectifiier K(+) (Kir) channel family are activated by phosphoinositides and other amphiphilic lipids. To further elucidate the mechanistic basis, we examined the membrane association of Kir6.2 fragments of K(ATP) channels, and the effects of site-directed mutations of these fragments and full-length Kir6.2 on membrane association and K(ATP) channel activity, respectively. GFP-tagged Kir6.2 COOH terminus and GFP-tagged pleckstrin homology domain from phospholipase C delta1 both associate with isolated membranes, and association of each is specifically reduced by muscarinic m1 receptor-mediated phospholipid depletion. Kir COOH termini are predicted to contain multiple beta-strands and a conserved alpha-helix (residues approximately 306-311 in Kir6.2). Systematic mutagenesis of D307-F315 reveals a critical role of E308, I309, W311 and F315, consistent with residues lying on one side of a alpha-helix. Together with systematic mutation of conserved charges, the results define critical determinants of a conserved domain that underlies phospholipid interaction in Kir channels.

  7. Lacking deoxygenation-linked interaction between cytoplasmic domain of band 3 and HbF from fetal red blood cells

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Aim: Several of the red blood cell's metabolic and membrane functions display dependence on haemoglobin oxygenation. In adult human red cells, the increased glycolytic rate at low O2 tension results from binding of deoxygenated HbA at negatively charged, N-terminal, cytoplasmic domain of the memb......Aim: Several of the red blood cell's metabolic and membrane functions display dependence on haemoglobin oxygenation. In adult human red cells, the increased glycolytic rate at low O2 tension results from binding of deoxygenated HbA at negatively charged, N-terminal, cytoplasmic domain...... of the membrane protein band 3, which liberates glycolytic enzymes from this site. This study aims to investigate the role of fetal HbF (that has lower anion-binding capacity than HbA) in fetal red cells (that are subjected to low O2 tensions), and to elucidate possible linkage (e.g. via the major red cell...... membrane organising centre, band 3) between the individual oxygenation-linked reactions encountered in red cells. Methods: The interaction between band 3 and Hb is analysed in terms of the effects, measured under different conditions, of a 10-mer peptide that corresponds to the N-terminus of human band 3...

  8. Functional interaction of the DNA-binding transcription factor Sp1 through its DNA-binding domain with the histone chaperone TAF-I.

    Science.gov (United States)

    Suzuki, Toru; Muto, Shinsuke; Miyamoto, Saku; Aizawa, Kenichi; Horikoshi, Masami; Nagai, Ryozo

    2003-08-01

    Transcription involves molecular interactions between general and regulatory transcription factors with further regulation by protein-protein interactions (e.g. transcriptional cofactors). Here we describe functional interaction between DNA-binding transcription factor and histone chaperone. Affinity purification of factors interacting with the DNA-binding domain of the transcription factor Sp1 showed Sp1 to interact with the histone chaperone TAF-I, both alpha and beta isoforms. This interaction was specific as Sp1 did not interact with another histone chaperone CIA nor did other tested DNA-binding regulatory factors (MyoD, NFkappaB, p53) interact with TAF-I. Interaction of Sp1 and TAF-I occurs both in vitro and in vivo. Interaction with TAF-I results in inhibition of DNA-binding, and also likely as a result of such, inhibition of promoter activation by Sp1. Collectively, we describe interaction between DNA-binding transcription factor and histone chaperone which results in negative regulation of the former. This novel regulatory interaction advances our understanding of the mechanisms of eukaryotic transcription through DNA-binding regulatory transcription factors by protein-protein interactions, and also shows the DNA-binding domain to mediate important regulatory interactions.

  9. Interactions between the S-Domain Receptor Kinases and AtPUB-ARM E3 Ubiquitin Ligases Suggest a Conserved Signaling Pathway in Arabidopsis1[W][OA

    Science.gov (United States)

    Samuel, Marcus A.; Mudgil, Yashwanti; Salt, Jennifer N.; Delmas, Frédéric; Ramachandran, Shaliny; Chilelli, Andrea; Goring, Daphne R.

    2008-01-01

    The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses. PMID:18552232

  10. Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis.

    Science.gov (United States)

    Samuel, Marcus A; Mudgil, Yashwanti; Salt, Jennifer N; Delmas, Frédéric; Ramachandran, Shaliny; Chilelli, Andrea; Goring, Daphne R

    2008-08-01

    The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses.

  11. Human mitochondrial Hsp70 (mortalin): shedding light on ATPase activity, interaction with adenosine nucleotides, solution structure and domain organization.

    Science.gov (United States)

    Dores-Silva, Paulo R; Barbosa, Leandro R S; Ramos, Carlos H I; Borges, Júlio C

    2015-01-01

    The human mitochondrial Hsp70, also called mortalin, is of considerable importance for mitochondria biogenesis and the correct functioning of the cell machinery. In the mitochondrial matrix, mortalin acts in the importing and folding process of nucleus-encoded proteins. The in vivo deregulation of mortalin expression and/or function has been correlated with age-related diseases and certain cancers due to its interaction with the p53 protein. In spite of its critical biological roles, structural and functional studies on mortalin are limited by its insoluble recombinant production. This study provides the first report of the production of folded and soluble recombinant mortalin when co-expressed with the human Hsp70-escort protein 1, but it is still likely prone to self-association. The monomeric fraction of mortalin presented a slightly elongated shape and basal ATPase activity that is higher than that of its cytoplasmic counterpart Hsp70-1A, suggesting that it was obtained in the functional state. Through small angle X-ray scattering, we assessed the low-resolution structural model of monomeric mortalin that is characterized by an elongated shape. This model adequately accommodated high resolution structures of Hsp70 domains indicating its quality. We also observed that mortalin interacts with adenosine nucleotides with high affinity. Thermally induced unfolding experiments indicated that mortalin is formed by at least two domains and that the transition is sensitive to the presence of adenosine nucleotides and that this process is dependent on the presence of Mg2+ ions. Interestingly, the thermal-induced unfolding assays of mortalin suggested the presence of an aggregation/association event, which was not observed for human Hsp70-1A, and this finding may explain its natural tendency for in vivo aggregation. Our study may contribute to the structural understanding of mortalin as well as to contribute for its recombinant production for antitumor compound screenings.

  12. Intramolecular interactions stabilizing compact conformations of the intrinsically disordered kinase-inhibitor domain of Sic1: a molecular dynamics investigation.

    Directory of Open Access Journals (Sweden)

    Matteo eLambrughi

    2012-11-01

    Full Text Available Cyclin-dependent kinase inhibitors (CKIs are key regulatory proteins of the eukaryotic cell cycle, which modulate cyclin-dependent kinase (Cdk activity. CKIs perform their inhibitory effect by the formation of ternary complexes with a target kinase and its cognate cyclin. These regulators generally belong to the class of intrinsically disordered proteins (IDPs, which lack a well-defined and organized three-dimensional structure in their free state, undergoing folding upon binding to specific partners. Unbound IDPs are not merely random-coil structures, but can present intrinsically folded structural units (IFSUs and collapsed conformations. These structural features can be relevant to protein function in vivo.The yeast CKI Sic1 is a 284-amino acid IDP that binds to Cdk1 in complex with the Clb5,6 cyclins, preventing phosphorylation of G1 substrates and, therefore, entrance to the S phase. Sic1 degradation, triggered by multiple phosphorylation events, promotes cell-cycle progression. Previous experimental studies pointed out a propensity of Sic1 and its isolated domains to populate both extended and compact conformations. The present contribution provides models of the compact conformations of the Sic1 kinase-inhibitory domain (KID by all-atom molecular-dynamics simulations in explicit solvent and in the absence of interactors. The results are integrated by spectroscopic and spectrometric data. Helical IFSUs are identified, along with networks of intramolecular interactions. The results identify a group of hub residues and electrostatic interactions which are likely to be involved in the stabilization of globular states.

  13. Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery.

    Directory of Open Access Journals (Sweden)

    Jan Mani

    Full Text Available Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs. GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are

  14. The conserved WW-domain binding sites in Dystroglycan C-terminus are essential but partially redundant for Dystroglycan function

    DEFF Research Database (Denmark)

    Yatsenko, A S; Kucherenko, M M; Pantoja, M

    2009-01-01

    BACKGROUND: Dystroglycan (Dg) is a transmembrane protein that is a part of the Dystrophin Glycoprotein Complex (DGC) which connects the extracellular matrix to the actin cytoskeleton. The C-terminal end of Dg contains a number of putative SH3, SH2 and WW domain binding sites. The most C...

  15. Design and synthesis of an amphiphilic graft hydrogel having a hydrophobic domain formed by multiple interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Kyohei [Department of Life and Functional Material Science, Graduate School of Natural Science, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501 (Japan); Japan Society for the Promotion of Science (DC1), Ichibancho, Chiyoda, Tokyo 102-8471 (Japan); Kimoto, Atsushi [Department of Chemistry of Functional Molecules, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501 (Japan); Watanabe, Junji, E-mail: junjiknd@konan-u.ac.jp [Department of Chemistry of Functional Molecules, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501 (Japan)

    2016-11-01

    A novel hydrogel having hydrophobic oligo segments and hydrophilic poly(acrylamidoglycolic acid) (PAGA) as pH responsive polymer segments was designed and synthesized to be used as a soft biomaterial. Poly(trimethylene carbonate) (PTMC) as the side chain, for which the degrees of polymerization were 9, 19, and 49, and the composition ratios were 1, 5, and 10 mol%, was used as the oligo segment in the hydrogel. The swelling ratio of the hydrogel was investigated under various changes in conditions such as pH, temperature, and hydrogen bonding upon urea addition. Under pH 2–11 conditions, the graft gel reversibly swelled and shrank due to the effect of PAGA main chain. The interior morphology and skin layer of the hydrogel was observed by a scanning electron microscope. The hydrogel composed of PAGA as the hydrophilic polymer backbone had a sponge-like structure, with a pore size of approximately 100 μm. On the other hand, upon increasing the ratio of trimethylene carbonate (TMC) units in the hydrogel, the pores became smaller or disappeared. Moreover, thickness of the skin layer significantly increased with the swelling ratio depended on the incorporation ratios of the PTMC macromonomer. Molecular incorporation in the hydrogel was evaluated using a dye as a model drug molecule. These features would play an important role in drug loading. Increasing the ratio of TMC units favored the adsorption of the dye and activation of the incorporation behavior. - Highlights: • Hydrogen bonding and hydrophobic interaction are dominant factor for forming hydrogels. • Hydrogel properties were tuned by changing in graft length and macromonomer content in feed. • The resulting graft gel could encapsulate and retain organic dye in the hydrogel. • Poly(trimethylene carbonate) segment in the hydrogel was dominant unit for hydrogel.

  16. Design and synthesis of an amphiphilic graft hydrogel having a hydrophobic domain formed by multiple interactions

    International Nuclear Information System (INIS)

    Nitta, Kyohei; Kimoto, Atsushi; Watanabe, Junji

    2016-01-01

    A novel hydrogel having hydrophobic oligo segments and hydrophilic poly(acrylamidoglycolic acid) (PAGA) as pH responsive polymer segments was designed and synthesized to be used as a soft biomaterial. Poly(trimethylene carbonate) (PTMC) as the side chain, for which the degrees of polymerization were 9, 19, and 49, and the composition ratios were 1, 5, and 10 mol%, was used as the oligo segment in the hydrogel. The swelling ratio of the hydrogel was investigated under various changes in conditions such as pH, temperature, and hydrogen bonding upon urea addition. Under pH 2–11 conditions, the graft gel reversibly swelled and shrank due to the effect of PAGA main chain. The interior morphology and skin layer of the hydrogel was observed by a scanning electron microscope. The hydrogel composed of PAGA as the hydrophilic polymer backbone had a sponge-like structure, with a pore size of approximately 100 μm. On the other hand, upon increasing the ratio of trimethylene carbonate (TMC) units in the hydrogel, the pores became smaller or disappeared. Moreover, thickness of the skin layer significantly increased with the swelling ratio depended on the incorporation ratios of the PTMC macromonomer. Molecular incorporation in the hydrogel was evaluated using a dye as a model drug molecule. These features would play an important role in drug loading. Increasing the ratio of TMC units favored the adsorption of the dye and activation of the incorporation behavior. - Highlights: • Hydrogen bonding and hydrophobic interaction are dominant factor for forming hydrogels. • Hydrogel properties were tuned by changing in graft length and macromonomer content in feed. • The resulting graft gel could encapsulate and retain organic dye in the hydrogel. • Poly(trimethylene carbonate) segment in the hydrogel was dominant unit for hydrogel.

  17. Analysis of the Varicella-Zoster Virus IE62 N-Terminal Acidic Transactivating Domain and Its Interaction with the Human Mediator Complex▿

    OpenAIRE

    Yamamoto, Shinobu; Eletsky, Alexander; Szyperski, Thomas; Hay, John; Ruyechan, William T.

    2009-01-01

    The varicella-zoster virus major transactivator, IE62, contains a potent N-terminal acidic transcriptional activation domain (TAD). Our experiments revealed that the minimal IE62 TAD encompasses amino acids (aa) 19 to 67. We showed that the minimal TAD interacts with the human Mediator complex. Site-specific mutations revealed residues throughout the minimal TAD that are important for both activation and Mediator interaction. The TAD interacts directly with aa 402 to 590 of the MED25 subunit,...

  18. Analysis of capsid portal protein and terminase functional domains: interaction sites required for DNA packaging in bacteriophage T4.

    Science.gov (United States)

    Lin, H; Rao, V B; Black, L W

    1999-06-04

    Bacteriophage DNA packaging results from an ATP-driven translocation of concatemeric DNA into the prohead by the phage terminase complexed with the portal vertex dodecamer of the prohead. Functional domains of the bacteriophage T4 terminase and portal gene 20 product (gp20) were determined by mutant analysis and sequence localization within the structural genes. Interaction regions of the portal vertex and large terminase subunit (gp17) were determined by genetic (terminase-portal intergenic suppressor mutations), biochemical (column retention of gp17 and inhibition of in vitro DNA packaging by gp20 peptides), and immunological (co-immunoprecipitation of polymerized gp20 peptide and gp17) studies. The specificity of the interaction was tested by means of a phage T4 HOC (highly antigenicoutercapsid protein) display system in which wild-type, cs20, and scrambled portal peptide sequences were displayed on the HOC protein of phage T4. Binding affinities of these recombinant phages as determined by the retention of these phages by a His-tag immobilized gp17 column, and by co-immunoprecipitation with purified terminase supported the specific nature of the portal protein and terminase interaction sites. In further support of specificity, a gp20 peptide corresponding to a portion of the identified site inhibited packaging whereas the scrambled sequence peptide did not block DNA packaging in vitro. The portal interaction site is localized to 28 residues in the central portion of the linear sequence of gp20 (524 residues). As judged by two pairs of intergenic portal-terminase suppressor mutations, two separate regions of the terminase large subunit gp17 (central and COOH-terminal) interact through hydrophobic contacts at the portal site. Although the terminase apparently interacts with this gp20 portal peptide, polyclonal antibody against the portal peptide appears unable to access it in the native structure, suggesting intimate association of gp20 and gp17 possibly

  19. Interactions between charged residues in the transmembrane segments of the voltage-sensing domain in the hERG channel.

    Science.gov (United States)

    Zhang, M; Liu, J; Jiang, M; Wu, D-M; Sonawane, K; Guy, H R; Tseng, G-N

    2005-10-01

    Studies on voltage-gated K channels such as Shaker have shown that positive charges in the voltage-sensor (S4) can form salt bridges with negative charges in the surrounding transmembrane segments in a state-dependent manner, and different charge pairings can stabilize the channels in closed or open states. The goal of this study is to identify such charge interactions in the hERG channel. This knowledge can provide constraints on the spatial relationship among transmembrane segments in the channel's voltage-sensing domain, which are necessary for modeling its structure. We first study the effects of reversing S4's positive charges on channel activation. Reversing positive charges at the outer (K525D) and inner (K538D) ends of S4 markedly accelerates hERG activation, whereas reversing the 4 positive charges in between either has no effect or slows activation. We then use the 'mutant cycle analysis' to test whether D456 (outer end of S2) and D411 (inner end of S1) can pair with K525 and K538, respectively. Other positive charges predicted to be able, or unable, to interact with D456 or D411 are also included in the analysis. The results are consistent with predictions based on the distribution of these charged residues, and confirm that there is functional coupling between D456 and K525 and between D411 and K538.

  20. Structure of the TPR domain of AIP: lack of client protein interaction with the C-terminal α-7 helix of the TPR domain of AIP is sufficient for pituitary adenoma predisposition.

    Directory of Open Access Journals (Sweden)

    Rhodri M L Morgan

    Full Text Available Mutations of the aryl hydrocarbon receptor interacting protein (AIP have been associated with familial isolated pituitary adenomas predisposing to young-onset acromegaly and gigantism. The precise tumorigenic mechanism is not well understood as AIP interacts with a large number of independent proteins as well as three chaperone systems, HSP90, HSP70 and TOMM20. We have determined the structure of the TPR domain of AIP at high resolution, which has allowed a detailed analysis of how disease-associated mutations impact on the structural integrity of the TPR domain. A subset of C-terminal α-7 helix (Cα-7h mutations, R304* (nonsense mutation, R304Q, Q307* and R325Q, a known site for AhR and PDE4A5 client-protein interaction, occur beyond those that interact with the conserved MEEVD and EDDVE sequences of HSP90 and TOMM20. These C-terminal AIP mutations appear to only disrupt client-protein binding to the Cα-7h, while chaperone binding remains unaffected, suggesting that failure of client-protein interaction with the Cα-7h is sufficient to predispose to pituitary adenoma. We have also identified a molecular switch in the AIP TPR-domain that allows recognition of both the conserved HSP90 motif, MEEVD, and the equivalent sequence (EDDVE of TOMM20.

  1. Nuclear import of high risk HPV16 E7 oncoprotein is mediated by its zinc-binding domain via hydrophobic interactions with Nup62

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, Jeremy; Onder, Zeynep; Moroianu, Junona, E-mail: moroianu@bc.edu

    2013-11-15

    We previously discovered that nuclear import of high risk HPV16 E7 is mediated by a cNLS located within the zinc-binding domain via a pathway that is independent of karyopherins/importins (Angeline et al., 2003; Knapp et al., 2009). In this study we continued our characterization of the cNLS and nuclear import pathway of HPV16 E7. We find that an intact zinc-binding domain is essential for the cNLS function in mediating nuclear import of HPV16 E7. Mutagenesis of cysteine residues to alanine in each of the two CysXXCys motifs involved in zinc-binding changes the nuclear localization of the EGFP-16E7 and 2xEGFP-16E7 mutants. We further discover that a patch of hydrophobic residues, {sub 65}LRLCV{sub 69}, within the zinc-binding domain of HPV16 E7 mediates its nuclear import via hydrophobic interactions with the FG domain of the central channel nucleoporin Nup62. - Highlights: • An intact zinc-binding domain is essential for the nuclear localization of HPV16 E7. • Identification of a hydrophobic patch that is critical for the nuclear import of HPV16 E7. • HPV16 E7 interacts via its zinc-binding domain with the FG domain of Nup62.

  2. Interaction of Arabidopsis Trihelix-Domain Transcription Factors VFP3 and VFP5 with Agrobacterium Virulence Protein VirF

    Science.gov (United States)

    García-Cano, Elena; Magori, Shimpei; Sun, Qi; Ding, Zehong; Lazarowitz, Sondra G.; Citovsky, Vitaly

    2015-01-01

    Agrobacterium is a natural genetic engineer of plants that exports several virulence proteins into host cells in order to take advantage of the cell machinery to facilitate transformation and support bacterial growth. One of these effectors is the F-box protein VirF, which presumably uses the host ubiquitin/proteasome system (UPS) to uncoat the packaging proteins from the invading bacterial T-DNA. By analogy to several other bacterial effectors, VirF most likely has several functions in the host cell and, therefore, several interacting partners among host proteins. Here we identify one such interactor, an Arabidopsis trihelix-domain transcription factor VFP3, and further show that its very close homolog VFP5 also interacted with VirF. Interestingly, interactions of VirF with either VFP3 or VFP5 did not activate the host UPS, suggesting that VirF might play other UPS-independent roles in bacterial infection. To better understand the potential scope of VFP3 function, we used RNAi to reduce expression of the VFP3 gene. Transcriptome profiling of these VFP3-silenced plants using high-throughput cDNA sequencing (RNA-seq) revealed that VFP3 substantially affected plant gene expression; specifically, 1,118 genes representing approximately 5% of all expressed genes were significantly either up- or down-regulated in the VFP3 RNAi line compared to wild-type Col-0 plants. Among the 507 up-regulated genes were genes implicated in the regulation of transcription, protein degradation, calcium signaling, and hormone metabolism, whereas the 611 down-regulated genes included those involved in redox regulation, light reactions of photosynthesis, and metabolism of lipids, amino acids, and cell wall. Overall, this pattern of changes in gene expression is characteristic of plants under stress. Thus, VFP3 likely plays an important role in controlling plant homeostasis. PMID:26571494

  3. Molecular characterization of the 30-AA N-terminal mineral interaction domain of the biomineralization protein AP7.

    Science.gov (United States)

    Kim, Il Won; Morse, Daniel E; Evans, John Spencer

    2004-12-21

    The AP7 protein is one of several mollusk shell proteins which are responsible for aragonite polymorph formation and stabilization within the nacre layer of the Pacific red abalone, H. rufescens. Previously, we demonstrated that the 30-AA N-terminal domain of AP7, denoted as AP7-1, exists as an unfolded sequence and possesses the capability of inhibiting calcium carbonate crystal growth in vitro via growth step frustration or interruption. However, very little is known with regard to the interactive capabilities of this sequence with Ca(II) and with calcium carbonates. Using multidisciplinary techniques, we determine that the AP7-1 polypeptide interacts with Ca(II) ions at the -DD- sequence clusters, yet retains its unfolded, conformationally labile structure in the presence of Ca(II) ions. Further, NMR experiments reveal that the extended structured sequence blocks, -GNGM-, -SVRTQG-, and -ISYL, exhibit motional, chemical exchange, and/or backbone geometry perturbations in response to Ca(II) interactions with AP7-1. Solid-state NMR magic angle spinning studies verify that during the course of in vitro calcium carbonate crystal growth, AP7-1 becomes bound to calcite fragments and cannot be entirely displaced from the mineral fragments using competitive Ca(II) washing. Finally, using a scrambled sequence version of the AP7-1 polypeptide, we observe that sequence scrambling does not adversely affect the crystal growth inhibitory activity of AP7-1, suggesting that the amino acid composition of AP7-1 may be more critical to growth step inhibition than the linear ordering of amino acids.

  4. Interaction of Arabidopsis Trihelix-Domain Transcription Factors VFP3 and VFP5 with Agrobacterium Virulence Protein VirF.

    Directory of Open Access Journals (Sweden)

    Elena García-Cano

    Full Text Available Agrobacterium is a natural genetic engineer of plants that exports several virulence proteins into host cells in order to take advantage of the cell machinery to facilitate transformation and support bacterial growth. One of these effectors is the F-box protein VirF, which presumably uses the host ubiquitin/proteasome system (UPS to uncoat the packaging proteins from the invading bacterial T-DNA. By analogy to several other bacterial effectors, VirF most likely has several functions in the host cell and, therefore, several interacting partners among host proteins. Here we identify one such interactor, an Arabidopsis trihelix-domain transcription factor VFP3, and further show that its very close homolog VFP5 also interacted with VirF. Interestingly, interactions of VirF with either VFP3 or VFP5 did not activate the host UPS, suggesting that VirF might play other UPS-independent roles in bacterial infection. To better understand the potential scope of VFP3 function, we used RNAi to reduce expression of the VFP3 gene. Transcriptome profiling of these VFP3-silenced plants using high-throughput cDNA sequencing (RNA-seq revealed that VFP3 substantially affected plant gene expression; specifically, 1,118 genes representing approximately 5% of all expressed genes were significantly either up- or down-regulated in the VFP3 RNAi line compared to wild-type Col-0 plants. Among the 507 up-regulated genes were genes implicated in the regulation of transcription, protein degradation, calcium signaling, and hormone metabolism, whereas the 611 down-regulated genes included those involved in redox regulation, light reactions of photosynthesis, and metabolism of lipids, amino acids, and cell wall. Overall, this pattern of changes in gene expression is characteristic of plants under stress. Thus, VFP3 likely plays an important role in controlling plant homeostasis.

  5. Dimerization of the docking/adaptor protein HEF1 via a carboxy-terminal helix-loop-helix domain.

    Science.gov (United States)

    Law, S F; Zhang, Y Z; Fashena, S J; Toby, G; Estojak, J; Golemis, E A

    1999-10-10

    HEF1, p130(Cas), and Efs define a family of multidomain docking proteins which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion. HEF1 function has been specifically implicated in signaling pathways important for cell adhesion and differentiation in lymphoid and epithelial cells. While the SH3 domains and SH2-binding site domains (substrate domains) of HEF1 family proteins are well characterized and binding partners known, to date the highly conserved carboxy-terminal domains of the three proteins have lacked functional definition. In this study, we have determined that the carboxy-terminal domain of HEF1 contains a divergent helix-loop-helix (HLH) motif. This motif mediates HEF1 homodimerization and HEF1 heterodimerization with a recognition specificity similar to that of the transcriptional regulatory HLH proteins Id2, E12, and E47. We had previously demonstrated that the HEF1 carboxy-terminus expressed as a separate domain in yeast reprograms cell division patterns, inducing constitutive pseudohyphal growth. Here we show that pseudohyphal induction by HEF1 requires an intact HLH, further supporting the idea that this motif has an effector activity for HEF1, and implying that HEF1 pseudohyphal activity derives in part from interactions with yeast helix-loop-helix proteins. These combined results provide initial insight into the mode of function of the HEF1 carboxy-terminal domain and suggest that the HEF1 protein may interact with cellular proteins which control differentiation. Copyright 1999 Academic Press.

  6. Distinct Mechanisms of Recognizing Endosomal Sorting Complex Required for Transport III (ESCRT-III) Protein IST1 by Different Microtubule Interacting and Trafficking (MIT) Domains*

    Science.gov (United States)

    Guo, Emily Z.; Xu, Zhaohui

    2015-01-01

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. PMID:25657007

  7. Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains.

    Science.gov (United States)

    Guo, Emily Z; Xu, Zhaohui

    2015-03-27

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Effect of ATP and 2-oxoglutarate on the in vitro interaction between the NifA GAF domain and the GlnB protein of Azospirillum brasilense

    International Nuclear Information System (INIS)

    Sotomaior, P.; Araújo, L.M.; Nishikawa, C.Y.; Huergo, L.F.; Monteiro, R.A.; Pedrosa, F.O.; Chubatsu, L.S.; Souza, E.M.

    2012-01-01

    Azospirillum brasilense is a diazotroph that associates with important agricultural crops and thus has potential to be a nitrogen biofertilizer. The A. brasilense transcription regulator NifA, which seems to be constitutively expressed, activates the transcription of nitrogen fixation genes. It has been suggested that the nitrogen status-signaling protein GlnB regulates NifA activity by direct interaction with the NifA N-terminal GAF domain, preventing the inhibitory effect of this domain under conditions of nitrogen fixation. In the present study, we show that an N-terminal truncated form of NifA no longer required GlnB for activity and lost regulation by ammonium. On the other hand, in trans co-expression of the N-terminal GAF domain inhibited the N-truncated protein in response to fixed nitrogen levels. We also used pull-down assays to show in vitro interaction between the purified N-terminal GAF domain of NifA and the GlnB protein. The results showed that A. brasilense GlnB interacts directly with the NifA N-terminal domain and this interaction is dependent on the presence of ATP and 2-oxoglutarate

  9. Effect of ATP and 2-oxoglutarate on the in vitro interaction between the NifA GAF domain and the GlnB protein of Azospirillum brasilense.

    Science.gov (United States)

    Sotomaior, P; Araújo, L M; Nishikawa, C Y; Huergo, L F; Monteiro, R A; Pedrosa, F O; Chubatsu, L S; Souza, E M

    2012-12-01

    Azospirillum brasilense is a diazotroph that associates with important agricultural crops and thus has potential to be a nitrogen biofertilizer. The A. brasilense transcription regulator NifA, which seems to be constitutively expressed, activates the transcription of nitrogen fixation genes. It has been suggested that the nitrogen status-signaling protein GlnB regulates NifA activity by direct interaction with the NifA N-terminal GAF domain, preventing the inhibitory effect of this domain under conditions of nitrogen fixation. In the present study, we show that an N-terminal truncated form of NifA no longer required GlnB for activity and lost regulation by ammonium. On the other hand, in trans co-expression of the N-terminal GAF domain inhibited the N-truncated protein in response to fixed nitrogen levels. We also used pull-down assays to show in vitro interaction between the purified N-terminal GAF domain of NifA and the GlnB protein. The results showed that A. brasilense GlnB interacts directly with the NifA N-terminal domain and this interaction is dependent on the presence of ATP and 2-oxoglutarate.

  10. Effect of ATP and 2-oxoglutarate on the in vitro interaction between the NifA GAF domain and the GlnB protein of Azospirillum brasilense

    Energy Technology Data Exchange (ETDEWEB)

    Sotomaior, P.; Araújo, L.M.; Nishikawa, C.Y.; Huergo, L.F.; Monteiro, R.A.; Pedrosa, F.O.; Chubatsu, L.S.; Souza, E.M. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil)

    2012-09-21

    Azospirillum brasilense is a diazotroph that associates with important agricultural crops and thus has potential to be a nitrogen biofertilizer. The A. brasilense transcription regulator NifA, which seems to be constitutively expressed, activates the transcription of nitrogen fixation genes. It has been suggested that the nitrogen status-signaling protein GlnB regulates NifA activity by direct interaction with the NifA N-terminal GAF domain, preventing the inhibitory effect of this domain under conditions of nitrogen fixation. In the present study, we show that an N-terminal truncated form of NifA no longer required GlnB for activity and lost regulation by ammonium. On the other hand, in trans co-expression of the N-terminal GAF domain inhibited the N-truncated protein in response to fixed nitrogen levels. We also used pull-down assays to show in vitro interaction between the purified N-terminal GAF domain of NifA and the GlnB protein. The results showed that A. brasilense GlnB interacts directly with the NifA N-terminal domain and this interaction is dependent on the presence of ATP and 2-oxoglutarate.

  11. Identification of distinct SET/TAF-Ibeta domains required for core histone binding and quantitative characterisation of the interaction.

    Science.gov (United States)

    Karetsou, Zoe; Emmanouilidou, Anastasia; Sanidas, Ioannis; Liokatis, Stamatis; Nikolakaki, Eleni; Politou, Anastasia S; Papamarcaki, Thomais

    2009-04-09

    The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Ibeta belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Ibeta, we designed several SET/TAF-Ibeta truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. Wild type SET/TAF-Ibeta binds to histones H2B and H3 with Kd values of 2.87 and 0.15 microM, respectively. The preferential binding of SET/TAF-Ibeta to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Ibeta, as well as the H3 amino-terminal tail, are dispensable for this interaction. This type of analysis allowed us to assess the relative affinities of SET/TAF-Ibeta for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Ibeta and can be valuable to understand the role of SET/TAF-Ibeta in chromatin function.

  12. Identification of distinct SET/TAF-Iβ domains required for core histone binding and quantitative characterisation of the interaction

    Science.gov (United States)

    Karetsou, Zoe; Emmanouilidou, Anastasia; Sanidas, Ioannis; Liokatis, Stamatis; Nikolakaki, Eleni; Politou, Anastasia S; Papamarcaki, Thomais

    2009-01-01

    Background The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Iβ belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Iβ, we designed several SET/TAF-Iβ truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. Results Wild type SET/TAF-Iβ binds to histones H2B and H3 with Kd values of 2.87 and 0.15 μM, respectively. The preferential binding of SET/TAF-Iβ to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Iβ, as well as the H3 amino-terminal tail, are dispensable for this interaction. Conclusion This type of analysis allowed us to assess the relative affinities of SET/TAF-Iβ for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Iβ and can be valuable to understand the role of SET/TAF-Iβ in chromatin function. PMID:19358706

  13. Proteomic Analysis of Detergent Resistant Membrane Domains during Early Interaction of Macrophages with Rough and Smooth Brucella melitensis

    Science.gov (United States)

    Lauer, Sabine A.; Iyer, Srinivas; Sanchez, Timothy; Forst, Christian V.; Bowden, Brent; Carlson, Kay; Sriranganathan, Nammalwar; Boyle, Stephen M.

    2014-01-01

    The plasma membrane contains discrete nanometer-sized domains that are resistant to non-ionic detergents, and which are called detergent resistant membrane domains (DRMDs) or lipid rafts. Exposure of host cells to pathogenic bacteria has been shown to induce the re-distribution of specific host proteins between DRMDs and detergent soluble membranes, which leads to the initiation of cell signaling that enable pathogens to access host cells. DRMDs have been shown to play a role in the invasion of Brucella into host macrophages and the formation of replicative phagosomes called Brucella-containing vacuoles (BCVs). In this study we sought to characterize changes to the protein expression profiles in DRMDs and to respective cellular pathways and networks of Mono Mac 6 cells in response to the adherence of rough VTRM1 and smooth 16 M B. melitensis strains. DRMDs were extracted from Mono Mac 6 cells exposed for 2 minutes at 4°C to Brucella (no infection occurs) and from unexposed control cells. Protein expression was determined using the non-gel based quantitative iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) mass spectrometry technique. Using the identified iTRAQ proteins we performed enrichment analyses and probed constructed human biochemical networks for interactions and metabolic reactions. We identified 149 proteins, which either became enriched, depleted or whose amounts did not change in DRMDs upon Brucella exposure. Several of these proteins were distinctly enriched or depleted in DRMDs upon exposure to rough and smooth B. melitensis strains which results in the differential engagement of cellular pathways and networks immediately upon Brucella encounter. For some of the proteins such as myosin 9, small G protein signaling modulator 3, lysine-specific demethylase 5D, erlin-2, and voltage-dependent anion-selective channel protein 2, we observed extreme differential depletion or enrichment in DRMDs. The identified proteins and pathways could provide

  14. Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters.

    Science.gov (United States)

    Ziegler, André; Seelig, Joachim

    2004-01-01

    titration calorimetry. The thermodynamic parameters are K0 = (6.0 +/- 0.8) x 10(5) M(-1) and kcal/mol for heparin and K0 = (2.5 +/- 0.5) x 10(5) M(-1) and kcal/mol for chondroitin sulfate B at 28 degrees C. The close thermodynamic similarity of the three binding molecules also implies a close structural relationship. The ubiquitous occurrence of glycosaminoglycans on the cell surface together with their tight and rapid interaction with the TAT protein transduction domain makes complex formation a strong candidate as the primary step of protein translocation.

  15. Avaliação e seleção de progênies F3 de cafeeiros de porte baixo com o gene SH3 de resistência a Hemileia vastatrix Berk. et Br. Evaluation and selection of Coffea arabica F3 progenies with low height and the leaf-rust SH3 resistence gene

    Directory of Open Access Journals (Sweden)

    Albano Silva da Conceição

    2005-01-01

    Full Text Available Com o objetivo de avaliar e selecionar progênies F3 de cafeeiros de porte baixo com o gene SH3 de resistência à ferrugem, foram estudadas 36 progênies de cafeeiros tipo arábica (Coffea arabica L. , em geração F3, resultantes dos cruzamentos dirigidos entre as cultivares Catuaí Vermelho IAC 46 e Catuaí Vermelho IAC 81 com o acesso IAC 1110 (BA-10. Esse último, originário da Índia, é fonte dos genes SH2SH3 que conferem resistência a Hemileia vastatrix. O experimento, estabelecido em 1988 no Centro Experimental do Instituto Agronômico, em Campinas (SP, no delineamento experimental em blocos ao acaso com seis repetições, duas plantas por parcela e no espaçamento 3,0 x 1,8 m, utilizou como testemunha a cultivar Catuaí Vermelho IAC 81, totalizando 37 tratamentos. Avaliaram-se no campo, a produção de café (média de sete colheitas, vigor vegetativo, resistência à ferrugem, porte da planta, coloração das folhas novas e maturação dos frutos. Os frutos das plantas mais produtivas foram analisados em laboratório quanto ao rendimento, tipos de sementes, peneira média e massa de 1000 grãos. A análise da variância dos dados de produção das progênies evidenciou que houve diferenças significativas entre as progênies, ao nível de 1% de probabilidade, pelo teste F. Foram selecionadas 11 progênies com média superior à testemunha e dentro dessas, 39 cafeeiros. Das 25 progênies restantes foram selecionados mais 15 cafeeiros produtivos e resistentes ao agente da ferrugem. Desses 54 cafeeiros, foram selecionados os 18 que apresentaram peneira média acima de 15,5 e maior freqüência de grãos normais do tipo chato. As progênies dessas plantas selecionadas foram avaliadas na geração F4, em fase de mudas, quando se verificou que dez delas estavam em homozigoze para porte baixo. Com as 18 plantas, o Programa de Melhoramento do Café, no IAC, terá continuidade como progênies F4, visando à obtenção de nova cultivar de

  16. Phorbol ester and hydrogen peroxide synergistically induce the interaction of diacylglycerol kinase gamma with the Src homology 2 and C1 domains of beta2-chimaerin.

    Science.gov (United States)

    Yasuda, Satoshi; Kai, Masahiro; Imai, Shin-ichi; Kanoh, Hideo; Sakane, Fumio

    2008-01-01

    DGKgamma (diacylglycerol kinase gamma) was reported to interact with beta2-chimaerin, a GAP (GTPase-activating protein) for Rac, in response to epidermal growth factor. Here we found that PMA and H2O2 also induced the interaction of DGKgamma with beta2-chimaerin. It is noteworthy that simultaneous addition of PMA and H2O2 synergistically enhanced the interaction. In this case, PMA was replaceable by DAG (diacylglycerol). The beta2-chimaerin translocation from the cytoplasm to the plasma membrane caused by PMA plus H2O2 was further enhanced by the expression of DGKgamma. Moreover, DGKgamma apparently enhanced the beta2-chimaerin GAP activity upon cell stimulation with PMA. PMA was found to be mainly required for a conversion of beta2-chimaerin into an active form. On the other hand, H2O2 was suggested to induce a release of Zn2+ from the C1 domain of beta2-chimaerin. By stepwise deletion analysis, we demonstrated that the SH2 (Src homology 2) and C1 domains of beta2-chimaerin interacted with the N-terminal half of catalytic region of DGKgamma. Unexpectedly, the SH2 domain of beta2-chimaerin contributes to the interaction independently of phosphotyrosine. Taken together, these results suggest that the functional link between DGKgamma and beta2-chimaerin has a broad significance in response to a wide range of cell stimuli. Our work offers a novel mechanism of protein-protein interaction, that is, the phosphotyrosine-independent interaction of the SH2 domain acting in co-operation with the C1 domain.

  17. SH2 domain-containing protein tyrosine phosphatase 2 and focal adhesion kinase protein interactions regulate pulmonary endothelium barrier function.

    Science.gov (United States)

    Chichger, Havovi; Braza, Julie; Duong, Huetran; Harrington, Elizabeth O

    2015-06-01

    Enhanced protein tyrosine phosphorylation is associated with changes in vascular permeability through formation and dissolution of adherens junctions and regulation of stress fiber formation. Inhibition of the protein tyrosine phosphorylase SH2 domain-containing protein tyrosine phosphatase 2 (SHP2) increases tyrosine phosphorylation of vascular endothelial cadherin and β-catenin, resulting in disruption of the endothelial monolayer and edema formation in the pulmonary endothelium. Vascular permeability is a hallmark of acute lung injury (ALI); thus, enhanced SHP2 activity offers potential therapeutic value for the pulmonary vasculature in diseases such as ALI, but this has not been characterized. To assess whether SHP2 activity mediates protection against edema in the endothelium, we assessed the effect of molecular activation of SHP2 on lung endothelial barrier function in response to the edemagenic agents LPS and thrombin. Both LPS and thrombin reduced SHP2 activity, correlated with decreased focal adhesion kinase (FAK) phosphorylation (Y(397) and Y(925)) and diminished SHP2 protein-protein associations with FAK. Overexpression of constitutively active SHP2 (SHP2(D61A)) enhanced baseline endothelial monolayer resistance and completely blocked LPS- and thrombin-induced permeability in vitro and significantly blunted pulmonary edema formation induced by either endotoxin (LPS) or Pseudomonas aeruginosa exposure in vivo. Chemical inhibition of FAK decreased SHP2 protein-protein interactions with FAK concomitant with increased permeability; however, overexpression of SHP2(D61A) rescued the endothelium and maintained FAK activity and FAK-SHP2 protein interactions. Our data suggest that SHP2 activation offers the pulmonary endothelium protection against barrier permeability mediators downstream of the FAK signaling pathway. We postulate that further studies into the promotion of SHP2 activation in the pulmonary endothelium may offer a therapeutic approach for patients

  18. Tyr120Asp mutation alters domain flexibility and dynamics of MeCP2 DNA binding domain leading to impaired DNA interaction: Atomistic characterization of a Rett syndrome causing mutation.

    Science.gov (United States)

    D'Annessa, Ilda; Gandaglia, Anna; Brivio, Elena; Stefanelli, Gilda; Frasca, Angelisa; Landsberger, Nicoletta; Di Marino, Daniele

    2018-05-01

    Mutations in the X-linked MECP2 gene represent the main origin of Rett syndrome, causing a profound intellectual disability in females. MeCP2 is an epigenetic transcriptional regulator containing two main functional domains: a methyl-CpG binding domain (MBD) and a transcription repression domain (TRD). Over 600 pathogenic mutations were reported to affect the whole protein; almost half of missense mutations affect the MBD. Understanding the impact of these mutations on the MBD structure and interaction with DNA will foster the comprehension of their pathogenicity and possibly genotype/phenotype correlation studies. Herein, we use molecular dynamics simulations to obtain a detailed view of the dynamics of WT and mutated MBD in the presence and absence of DNA. The pathogenic mutation Y120D is used as paradigm for our studies. Further, since the Y120 residue was previously found to be a phosphorylation site, we characterize the dynamic profile of the MBD also in the presence of Y120 phosphorylation (pY120). We found that addition of a phosphate group to Y120 or mutation in aspartic acid affect domain mobility that samples an alternative conformational space with respect to the WT, leading to impaired ability to interact with DNA. Experimental assays showing a significant reduction in the binding affinity between the mutated MBD and the DNA confirmed our predictions. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Bivalent Llama Single-Domain Antibody Fragments against Tumor Necrosis Factor Have Picomolar Potencies due to Intramolecular Interactions

    Directory of Open Access Journals (Sweden)

    Els Beirnaert

    2017-07-01

    Full Text Available The activity of tumor necrosis factor (TNF, a cytokine involved in inflammatory pathologies, can be inhibited by antibodies or trap molecules. Herein, llama-derived variable heavy-chain domains of heavy-chain antibody (VHH, also called Nanobodies™ were generated for the engineering of bivalent constructs, which antagonize the binding of TNF to its receptors with picomolar potencies. Three monomeric VHHs (VHH#1, VHH#2, and VHH#3 were characterized in detail and found to bind TNF with sub-nanomolar affinities. The crystal structures of the TNF–VHH complexes demonstrate that VHH#1 and VHH#2 share the same epitope, at the center of the interaction area of TNF with its TNFRs, while VHH#3 binds to a different, but partially overlapping epitope. These structures rationalize our results obtained with bivalent constructs in which two VHHs were coupled via linkers of different lengths. Contrary to conventional antibodies, these bivalent Nanobody™ constructs can bind to a single trimeric TNF, thus binding with avidity and blocking two of the three receptor binding sites in the cytokine. The different mode of binding to antigen and the engineering into bivalent constructs supports the design of highly potent VHH-based therapeutic entities.

  20. Molecular interactions of prodiginines with the BH3 domain of anti-apoptotic Bcl-2 family members.

    Directory of Open Access Journals (Sweden)

    Ali Hosseini

    Full Text Available Prodigiosin and obatoclax, members of the prodiginines family, are small molecules with anti-cancer properties that are currently under preclinical and clinical trials. The molecular target(s of these agents, however, is an open question. Combining experimental and computational techniques we find that prodigiosin binds to the BH3 domain in some BCL-2 protein families, which play an important role in the apoptotic programmed cell death. In particular, our results indicate a large affinity of prodigiosin for MCL-1, an anti-apoptotic member of the BCL-2 family. In melanoma cells, we demonstrate that prodigiosin activates the mitochondrial apoptotic pathway by disrupting MCL-1/BAK complexes. Computer simulations with the PELE software allow the description of the induced fit process, obtaining a detailed atomic view of the molecular interactions. These results provide new data to understand the mechanism of action of these molecules, and assist in the development of more specific inhibitors of anti-apoptotic BCL-2 proteins.

  1. Cytoskeleton-interacting LIM-domain protein CRP1 suppresses cell proliferation and protects from stress-induced cell death

    International Nuclear Information System (INIS)

    Latonen, Leena; Jaervinen, Paeivi M.; Laiho, Marikki

    2008-01-01

    Members of the cysteine-rich protein (CRP) family are actin cytoskeleton-interacting LIM-domain proteins known to act in muscle cell differentiation. We have earlier found that CRP1, a founding member of this family, is transcriptionally induced by UV radiation in human diploid fibroblasts [M. Gentile, L. Latonen, M. Laiho, Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses, Nucleic Acids Res. 31 (2003) 4779-4790]. Here we show that CRP1 is induced by growth-inhibitory signals, such as increased cellular density, and cytotoxic stress induced by UV radiation or staurosporine. We found that high levels of CRP1 correlate with differentiation-associated morphology towards the myofibroblast lineage and that expression of ectopic CRP1 suppresses cell proliferation. Following UV- and staurosporine-induced stresses, expression of CRP1 provides a survival advantage evidenced by decreased cellular death and increased cellular metabolic activity and attachment. Our studies identify that CRP1 is a novel stress response factor, and provide evidence for its growth-inhibitory and cytoprotective functions

  2. Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel

    Science.gov (United States)

    Zaydman, Mark A; Kasimova, Marina A; McFarland, Kelli; Beller, Zachary; Hou, Panpan; Kinser, Holly E; Liang, Hongwu; Zhang, Guohui; Shi, Jingyi; Tarek, Mounir; Cui, Jianmin

    2014-01-01

    Voltage-gated ion channels generate electrical currents that control muscle contraction, encode neuronal information, and trigger hormonal release. Tissue-specific expression of accessory (β) subunits causes these channels to generate currents with distinct properties. In the heart, KCNQ1 voltage-gated potassium channels coassemble with KCNE1 β-subunits to generate the IKs current (Barhanin et al., 1996; Sanguinetti et al., 1996), an important current for maintenance of stable heart rhythms. KCNE1 significantly modulates the gating, permeation, and pharmacology of KCNQ1 (Wrobel et al., 2012; Sun et al., 2012; Abbott, 2014). These changes are essential for the physiological role of IKs (Silva and Rudy, 2005); however, after 18 years of study, no coherent mechanism explaining how KCNE1 affects KCNQ1 has emerged. Here we provide evidence of such a mechanism, whereby, KCNE1 alters the state-dependent interactions that functionally couple the voltage-sensing domains (VSDs) to the pore. DOI: http://dx.doi.org/10.7554/eLife.03606.001 PMID:25535795

  3. Ciona intestinalis Noto4 contains a phosphotyrosine interaction domain and is involved in the midline intercalation of notochord cells.

    Science.gov (United States)

    Yamada, Shigehiro; Ueno, Naoto; Satoh, Nori; Takahashi, Hiroki

    2011-01-01

    Brachyury plays a pivotal role in the notochord formation in ascidian embryos. Ciona intestinalis Noto4 (Ci-Noto4) was isolated as a gene downstream of Ci-Bra. This gene encodes a 307 amino-acid protein with a C-terminal phosphotyrosine interaction domain (PTB/PID). Expression of Ci-Noto4 commences at the neural plate stage and is specific to notochord cells. Suppression of Ci-Noto4 levels with specific antisense morpholino oligonucleotides resulted in the formation of two rows of notochord cells owing to a lack of midline intercalation between the bilateral populations of progenitor cells. In contrast, overexpression of Ci-Noto4 by injection of a Ci-Bra(promoter):Ci-Noto4-EGFP construct into fertilized eggs disrupted the localization of notochord cells. Ci-Noto4 overexpression did not affect cellular differentiation in the notochord, muscle, mesenchyme, or nervous system. Analysis of Ci-Noto4 regions that are responsible for its function suggested significant roles for the PTB/PID and a central region, an area with no obvious sequence similarity to other known proteins. These results suggested that PTB/PID-containing Ci-Noto4 is essential for midline intercalation of notochord cells in chordate embryos.

  4. The 1.75 Å resolution structure of fission protein Fis1 from Saccharomyces cerevisiae reveals elusive interactions of the autoinhibitory domain

    International Nuclear Information System (INIS)

    Tooley, James E.; Khangulov, Victor; Lees, Jonathan P. B.; Schlessman, Jamie L.; Bewley, Maria C.; Heroux, Annie; Bosch, Jürgen; Hill, R. Blake

    2011-01-01

    A 1.75 Å resolution crystal structure of the Fis1 cytoplasmic domain from Saccharomyces cerevisiae is reported which adopts a tetratricopeptide-repeat fold. Fis1 mediates mitochondrial and peroxisomal fission. It is tail-anchored to these organelles by a transmembrane domain, exposing a soluble cytoplasmic domain. Previous studies suggested that Fis1 is autoinhibited by its N-terminal region. Here, a 1.75 Å resolution crystal structure of the Fis1 cytoplasmic domain from Saccharomyces cerevisiae is reported which adopts a tetratricopeptide-repeat fold. It is observed that this fold creates a concave surface important for fission, but is sterically occluded by its N-terminal region. Thus, this structure provides a physical basis for autoinhibition and allows a detailed examination of the interactions that stabilize the inhibited state of this molecule

  5. Surface targeting of the dopamine transporter involves discrete epitopes in the distal C terminus but does not require canonical PDZ domain interactions.

    Science.gov (United States)

    Bjerggaard, Christian; Fog, Jacob U; Hastrup, Hanne; Madsen, Kenneth; Loland, Claus J; Javitch, Jonathan A; Gether, Ulrik

    2004-08-04

    The human dopamine transporter (hDAT) contains a C-terminal type 2 PDZ (postsynaptic density 95/Discs large/zona occludens 1) domain-binding motif (LKV) known to interact with PDZ domain proteins such as PICK1 (protein interacting with C-kinase 1). As reported previously, we found that, after deletion of this motif, hDAT was retained in the endoplasmic reticulum (ER) of human embryonic kidney (HEK) 293 and Neuro2A cells, suggesting that PDZ domain interactions might be critical for hDAT targeting. Nonetheless, substitution of LKV with SLL, the type 1 PDZ-binding sequence from the beta2-adrenergic receptor, did not disrupt plasma membrane targeting. Moreover, the addition of an alanine to the hDAT C terminus (+Ala), resulting in an LKVA termination sequence, or substitution of LKV with alanines (3xAla_618-620) prevented neither plasma membrane targeting nor targeting into sprouting neurites of differentiated N2A cells. The inability of +Ala and 3xAla_618-620 to bind PDZ domains was confirmed by lack of colocalization with PICK1 in cotransfected HEK293 cells and by the inability of corresponding C-terminal fusion proteins to pull down purified PICK1. Thus, although residues in the hDAT C terminus are indispensable for proper targeting, PDZ domain interactions are not required. By progressive substitutions with beta2-adrenergic receptor sequence, and by triple-alanine substitutions in the hDAT C terminus, we examined the importance of epitopes preceding the LKV motif. Substitution of RHW(615-617) with alanines caused retention of the transporter in the ER despite preserved ability of this mutant to bind PICK1. We propose dual roles of the hDAT C terminus: a role independent of PDZ interactions for ER export and surface targeting, and a not fully clarified role involving PDZ interactions with proteins such as PICK1.

  6. Direct interaction of the inhibitory gamma-subunit of Rod cGMP phosphodiesterase (PDE6) with the PDE6 GAFa domains.

    Science.gov (United States)

    Muradov, Khakim G; Granovsky, Alexey E; Schey, Kevin L; Artemyev, Nikolai O

    2002-03-26

    Retinal rod and cone cGMP phosphodiesterases (PDE6 family) function as the effector enzyme in the vertebrate visual transduction cascade. The activity of PDE6 catalytic subunits is controlled by the Pgamma-subunits. In addition to the inhibition of cGMP hydrolysis at the catalytic sites, Pgamma is known to stimulate a noncatalytic binding of cGMP to the regulatory GAFa-GAFb domains of PDE6. The latter role of Pgamma has been attributed to its polycationic region. To elucidate the structural basis for the regulation of cGMP binding to the GAF domains of PDE6, a photoexcitable peptide probe corresponding to the polycationic region of Pgamma, Pgamma-21-45, was specifically cross-linked to rod PDE6alphabeta. The site of Pgamma-21-45 cross-linking was localized to Met138Gly139 within the PDE6alpha GAFa domain using mass spectrometric analysis. Chimeras between PDE5 and cone PDE6alpha', containing GAFa and/or GAFb domains of PDE6alpha' have been generated to probe a potential role of the GAFb domains in binding to Pgamma. Analysis of the inhibition of the PDE5/PDE6alpha' chimeras by Pgamma supported the role of PDE6 GAFa but not GAFb domains in the interaction with Pgamma. Our results suggest that a direct binding of the polycationic region of Pgamma to the GAFa domains of PDE6 may lead to a stabilization of the noncatalytic cGMP-binding sites.

  7. The C-terminal SH2 domain of p85 accounts for the high affinity and specificity of the binding of phosphatidylinositol 3-kinase to phosphorylated platelet-derived growth factor beta receptor.

    Science.gov (United States)

    Klippel, A; Escobedo, J A; Fantl, W J; Williams, L T

    1992-01-01

    Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor. Images PMID:1312663

  8. Human I-mfa domain proteins specifically interact with KSHV LANA and affect its regulation of Wnt signaling-dependent transcription

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Eizuru, Yoshito [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2010-06-04

    Kaposi's sarcoma-associated herpes virus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein has been reported to interact with glycogen synthase kinase 3{beta} (GSK-3{beta}) and to negatively regulate its activity, leading to stimulation of GSK-3{beta}-dependent {beta}-catenin degradation. We show here that the I-mfa domain proteins, HIC (human I-mfa domain-containing protein) and I-mfa (inhibitor of MyoD family a), interacted in vivo with LANA through their C-terminal I-mfa domains. This interaction affected the intracellular localization of HIC, inhibited the LANA-dependent transactivation of a {beta}-catenin-regulated reporter construct, and decreased the level of the LANA.GSK-3{beta} complex. These data reveal for the first time that I-mfa domain proteins interact with LANA and negatively regulate LANA-mediated activation of Wnt signaling-dependent transcription by inhibiting the formation of the LANA.GSK-3{beta} complex.

  9. Molecular modeling and structural analysis of two-pore domain potassium channels TASK1 interactions with the blocker A1899

    Directory of Open Access Journals (Sweden)

    David Mauricio Ramirez

    2015-03-01

    Full Text Available A1899 is a potent and highly selective blocker of the Two-pore domain potassium (K2P channel TASK-1, it acts as an antagonist blocking the K+ flux and binds to TASK-1 in the inner cavity and shows an activity in nanomolar order. This drug travels through the central cavity and finally binds in the bottom of the selectivity filter with some threonines and waters molecules forming a H-bond network and several hydrophobic interactions. Using alanine mutagenesis screens the binding site was identify involving residues in the P1 and P2 pore loops, the M2 and M4 transmembrane segments, and the halothane response element; mutations were introduced in the human TASK-1 (KCNK3, NM_002246 expressed in Oocytes from anesthetized Xenopus laevis frogs. Based in molecular modeling and structural analysis as such as molecular docking and binding free energy calculations a pose was suggested using a TASK-1 homology models. Recently, various K2P crystal structures have been obtained. We want redefined – from a structural point of view – the binding mode of A1899 in TASK-1 homology models using as a template the K2P crystal structures. By computational structural analysis we describe the molecular basis of the A1899 binding mode, how A1899 travel to its binding site and suggest an interacting pose (Figure 1. after 100 ns of molecular dynamics simulation (MDs we found an intra H-Bond (80% of the total MDs, a H-Bond whit Thr93 (42% of the total MDs, a pi-pi stacking interaction between a ring and Phe125 (88% of the total MDs and several water bridges. Our experimental and computational results allow the molecular understanding of the structural binding mechanism of the selective blocker A1899 to TASK-1 channels. We identified the structural common and divergent features of TASK-1 channel through our theoretical and experimental studies of A1899 drug action.

  10. Mutations in the DNA-binding domain of NR2E3 affect in vivo dimerization and interaction with CRX.

    Directory of Open Access Journals (Sweden)

    Raphael Roduit

    Full Text Available BACKGROUND: NR2E3 (PNR is an orphan nuclear receptor essential for proper photoreceptor determination and differentiation. In humans, mutations in NR2E3 have been associated with the recessively inherited enhanced short wavelength sensitive (S- cone syndrome (ESCS and, more recently, with autosomal dominant retinitis pigmentosa (adRP. NR2E3 acts as a suppressor of the cone generation program in late mitotic retinal progenitor cells. In adult rod photoreceptors, NR2E3 represses cone-specific gene expression and acts in concert with the transcription factors CRX and NRL to activate rod-specific genes. NR2E3 and CRX have been shown to physically interact in vitro through their respective DNA-binding domains (DBD. The DBD also contributes to homo- and heterodimerization of nuclear receptors. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed NR2E3 homodimerization and NR2E3/CRX complex formation in an in vivo situation by Bioluminescence Resonance Energy Transfer (BRET(2. NR2E3 wild-type protein formed homodimers in transiently transfected HEK293T cells. NR2E3 homodimerization was impaired in presence of disease-causing mutations in the DBD, except for the p.R76Q and p.R104W mutant proteins. Strikingly, the adRP-linked p.G56R mutant protein interacted with CRX with a similar efficiency to that of NR2E3 wild-type and p.R311Q proteins. In contrast, all other NR2E3 DBD-mutant proteins did not interact with CRX. The p.G56R mutant protein was also more effective in abolishing the potentiation of rhodospin gene transactivation by the NR2E3 wild-type protein. In addition, the p.G56R mutant enhanced the transrepression of the M- and S-opsin promoter, while all other NR2E3 DBD-mutants did not. CONCLUSIONS/SIGNIFICANCE: These results suggest different disease mechanisms in adRP- and ESCS-patients carrying NR2E3 mutations. Titration of CRX by the p.G56R mutant protein acting as a repressor in trans may account for the severe clinical phenotype in adRP patients.

  11. APPL proteins FRET at the BAR: direct observation of APPL1 and APPL2 BAR domain-mediated interactions on cell membranes using FRET microscopy.

    Directory of Open Access Journals (Sweden)

    Heidi J Chial

    2010-08-01

    Full Text Available Human APPL1 and APPL2 are homologous RAB5 effectors whose binding partners include a diverse set of transmembrane receptors, signaling proteins, and phosphoinositides. APPL proteins associate dynamically with endosomal membranes and are proposed to function in endosome-mediated signaling pathways linking the cell surface to the cell nucleus. APPL proteins contain an N-terminal Bin/Amphiphysin/Rvs (BAR domain, a central pleckstrin homology (PH domain, and a C-terminal phosphotyrosine binding (PTB domain. Previous structural and biochemical studies have shown that the APPL BAR domains mediate homotypic and heterotypic APPL-APPL interactions and that the APPL1 BAR domain forms crescent-shaped dimers. Although previous studies have shown that APPL minimal BAR domains associate with curved cell membranes, direct interaction between APPL BAR domains on cell membranes in vivo has not been reported.Herein, we used a laser-scanning confocal microscope equipped with a spectral detector to carry out fluorescence resonance energy transfer (FRET experiments with cyan fluorescent protein/yellow fluorescent protein (CFP/YFP FRET donor/acceptor pairs to examine interactions between APPL minimal BAR domains at the subcellular level. This comprehensive approach enabled us to evaluate FRET levels in a single cell using three methods: sensitized emission, standard acceptor photobleaching, and sequential acceptor photobleaching. We also analyzed emission spectra to address an outstanding controversy regarding the use of CFP donor/YFP acceptor pairs in FRET acceptor photobleaching experiments, based on reports that photobleaching of YFP converts it into a CFP-like species.All three methods consistently showed significant FRET between APPL minimal BAR domain FRET pairs, indicating that they interact directly in a homotypic (i.e., APPL1-APPL1 and APPL2-APPL2 and heterotypic (i.e., APPL1-APPL2 manner on curved cell membranes. Furthermore, the results of our experiments

  12. Three-dimensional structure of N-terminal domain of DnaB helicase and helicase-primase interactions in Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Tara Kashav

    2009-10-01

    Full Text Available Replication initiation is a crucial step in genome duplication and homohexameric DnaB helicase plays a central role in the replication initiation process by unwinding the duplex DNA and interacting with several other proteins during the process of replication. N-terminal domain of DnaB is critical for helicase activity and for DnaG primase interactions. We present here the crystal structure of the N-terminal domain (NTD of H. pylori DnaB (HpDnaB helicase at 2.2 A resolution and compare the structural differences among helicases and correlate with the functional differences. The structural details of NTD suggest that the linker region between NTD and C-terminal helicase domain plays a vital role in accurate assembly of NTD dimers. The sequence analysis of the linker regions from several helicases reveals that they should form four helix bundles. We also report the characterization of H. pylori DnaG primase and study the helicase-primase interactions, where HpDnaG primase stimulates DNA unwinding activity of HpDnaB suggesting presence of helicase-primase cohort at the replication fork. The protein-protein interaction study of C-terminal domain of primase and different deletion constructs of helicase suggests that linker is essential for proper conformation of NTD to interact strongly with HpDnaG. The surface charge distribution on the primase binding surface of NTDs of various helicases suggests that DnaB-DnaG interaction and stability of the complex is most probably charge dependent. Structure of the linker and helicase-primase interactions indicate that HpDnaB differs greatly from E.coli DnaB despite both belong to gram negative bacteria.

  13. Resistance to mitomycin C requires direct interaction between the Fanconi anemia proteins FANCA and FANCG in the nucleus through an arginine-rich domain.

    Science.gov (United States)

    Kruyt, F A; Abou-Zahr, F; Mok, H; Youssoufian, H

    1999-11-26

    Fanconi anemia (FA) is a genetically heterogeneous disorder characterized by bone marrow failure, birth defects, and chromosomal instability. Because FA cells are sensitive to mitomycin C (MMC), FA gene products could be involved in cellular defense mechanisms. The FANCA and FANCG proteins deficient in FA groups A and G interact directly with each other. We have localized the mutual interaction domains of these proteins to amino acids 18-29 of FANCA and to two noncontiguous carboxyl-terminal domains of FANCG encompassing amino acids 400-475 and 585-622. Site-directed mutagenesis of FANCA residues 18-29 revealed a novel arginine-rich interaction domain (RRRAWAELLAG). By alanine mutagenesis, Arg(1), Arg(2), and Leu(8) but not Arg(3), Trp(5), and Glu(7) appeared to be critical for binding to FANCG. Similar immunolocalization for FANCA and FANCG suggested that these proteins interact in vivo. Moreover, targeting of FANCA to the nucleus or the cytoplasm with nuclear localization and nuclear export signals, respectively, showed concordance between the localization patterns of FANCA and FANCG. The complementation function of FANCA was abolished by mutations in its FANCG-binding domain. Conversely, stable expression of FANCA mutants encoding intact FANCG interaction domains induced hypersensitivity to MMC in HeLa cells. These results demonstrate that FANCA-FANCG complexes are required for cellular resistance to MMC. Because the FANCC protein deficient in FA group C works within the cytoplasm, we suggest that FANCC and the FANCA-FANCG complexes suppress MMC cytotoxicity within distinct cellular compartments.

  14. Amino acid substitutions affecting aspartic acid 605 and valine 606 decrease the interaction strength between the influenza virus RNA polymerase PB2 '627' domain and the viral nucleoprotein.

    Science.gov (United States)

    Hsia, Ho-Pan; Yang, Yin-Hua; Szeto, Wun-Chung; Nilsson, Benjamin E; Lo, Chun-Yeung; Ng, Andy Ka-Leung; Fodor, Ervin; Shaw, Pang-Chui

    2018-01-01

    The influenza virus RNA genome is transcribed and replicated in the context of the viral ribonucleoprotein (vRNP) complex by the viral RNA polymerase. The nucleoprotein (NP) is the structural component of the vRNP providing a scaffold for the viral RNA. In the vRNP as well as during transcription and replication the viral polymerase interacts with NP but it is unclear which parts of the polymerase and NP mediate these interactions. Previously the C-terminal '627' domain (amino acids 538-693) of PB2 was shown to interact with NP. Here we report that a fragment encompassing amino acids 146-185 of NP is sufficient to mediate this interaction. Using NMR chemical shift perturbation assays we show that amino acid region 601 to 607 of the PB2 '627' domain interacts with this fragment of NP. Substitutions of these PB2 amino acids resulted in diminished RNP activity and surface plasmon resonance assays showed that amino acids D605 was essential for the interaction with NP and V606 may also play a partial role in the interaction. Collectively these results reveal a possible interaction surface between NP and the PB2 subunit of the RNA polymerase complex.

  15. Distal loop flexibility of a regulatory domain modulates dynamics and activity of C-terminal SRC kinase (csk.

    Directory of Open Access Journals (Sweden)

    Sulyman Barkho

    Full Text Available The Src family of tyrosine kinases (SFKs regulate numerous aspects of cell growth and differentiation and are under the principal control of the C-terminal Src Kinase (Csk. Csk and SFKs share a modular design with the kinase domain downstream of the N-terminal SH2 and SH3 domains that regulate catalytic function and membrane localization. While the function of interfacial segments in these multidomain kinases are well-investigated, little is known about how surface sites and long-range, allosteric coupling control protein dynamics and catalytic function. The SH2 domain of Csk is an essential component for the down-regulation of all SFKs. A unique feature of the SH2 domain of Csk is the tight turn in place of the canonical CD loop in a surface site far removed from kinase domain interactions. In this study, we used a combination of experimental and computational methods to probe the importance of this difference by constructing a Csk variant with a longer SH2 CD loop to mimic the flexibility found in homologous kinase SH2 domains. Our results indicate that while the fold and function of the isolated domain and the full-length kinase are not affected by loop elongation, native protein dynamics that are essential for efficient catalysis are perturbed. We also identify key motifs and routes through which the distal SH2 site might influence catalysis at the active site. This study underscores the sensitivity of intramolecular signaling and catalysis to native protein dynamics that arise from modest changes in allosteric regions while providing a potential strategy to alter intrinsic activity and signaling modulation.

  16. The DnaA N-terminal domain interacts with Hda to facilitate replicase clamp-mediated inactivation of DnaA.

    Science.gov (United States)

    Su'etsugu, Masayuki; Harada, Yuji; Keyamura, Kenji; Matsunaga, Chika; Kasho, Kazutoshi; Abe, Yoshito; Ueda, Tadashi; Katayama, Tsutomu

    2013-12-01

    DnaA activity for replication initiation of the Escherichia coli chromosome is negatively regulated by feedback from the DNA-loaded form of the replicase clamp. In this process, called RIDA (regulatory inactivation of DnaA), ATP-bound DnaA transiently assembles into a complex consisting of Hda and the DNA-clamp, which promotes inter-AAA+ domain association between Hda and DnaA and stimulates hydrolysis of DnaA-bound ATP, producing inactive ADP-DnaA. Using a truncated DnaA mutant, we previously demonstrated that the DnaA N-terminal domain is involved in RIDA. However, the precise role of the N-terminal domain in RIDA has remained largely unclear. Here, we used an in vitro reconstituted system to demonstrate that the Asn-44 residue in the N-terminal domain of DnaA is crucial for RIDA but not for replication initiation. Moreover, an assay termed PDAX (pull-down after cross-linking) revealed an unstable interaction between a DnaA-N44A mutant and Hda. In vivo, this mutant exhibited an increase in the cellular level of ATP-bound DnaA. These results establish a model in which interaction between DnaA Asn-44 and Hda stabilizes the association between the AAA+ domains of DnaA and Hda to facilitate DnaA-ATP hydrolysis during RIDA. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Integrin cytoplasmic domain-associated protein-1 (ICAP-1) interacts with the ROCK-I kinase at the plasma membrane

    NARCIS (Netherlands)

    Stroeken, Peter J. M.; Alvarez, Belén; van Rheenen, Jacco; Wijnands, Yvonne M.; Geerts, Dirk; Jalink, Kees; Roos, Ed

    2006-01-01

    The integrin cytoplasmic domain-associated protein-1 (ICAP-1) binds via its C-terminal PTB (phosphotyrosine-binding) domain to the cytoplasmic tails of beta1 but not other integrins. Using the yeast two-hybrid assay, we found that ICAP-1 binds the ROCK-I kinase, an effector of the RhoA GTPase. By

  18. Ferrimagnetic/ferroelastic domain interactions in magnetite below the Verwey transition. Part I: electron holography and Lorentz microscopy

    DEFF Research Database (Denmark)

    Kasama, Takeshi; Harrison, R. J.; Church, N. S.

    2013-01-01

    -related crystal orientations to be distinguished. Off-axis electron holography and Lorentz electron microscopy are used to show that magnetic domains present at room temperature become subdivided into sub-micron-sized magnetic domains below the Verwey transition, with the magnetization direction in each magnetic...

  19. Thermally induced magnonic spin current, thermomagnonic torques, and domain-wall dynamics in the presence of Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Wang, X.-G.; Chotorlishvili, L.; Guo, G.-H.; Sukhov, A.; Dugaev, V.; Barnaś, J.; Berakdar, J.

    2016-09-01

    Thermally activated domain-wall (DW) motion in magnetic insulators has been considered theoretically, with a particular focus on the role of Dzyaloshinskii-Moriya interaction (DMI) and thermomagnonic torques. The thermally assisted DW motion is a consequence of the magnonic spin current due to the applied thermal bias. In addition to the exchange magnonic spin current and the exchange adiabatic and the entropic spin transfer torques, we also consider the DMI-induced magnonic spin current, thermomagnonic DMI fieldlike torque, and the DMI entropic torque. Analytical estimations are supported by numerical calculations. We found that the DMI has a substantial influence on the size and the geometry of DWs, and that the DWs become oriented parallel to the long axis of the nanostrip. Increasing the temperature smoothes the DWs. Moreover, the thermally induced magnonic current generates a torque on the DWs, which is responsible for their motion. From our analysis it follows that for a large enough DMI the influence of DMI-induced fieldlike torque is much stronger than that of the DMI and the exchange entropic torques. By manipulating the strength of the DMI constant, one can control the speed of the DW motion, and the direction of the DW motion can be switched, as well. We also found that DMI not only contributes to the total magnonic current, but also it modifies the exchange magnonic spin current, and this modification depends on the orientation of the steady-state magnetization. The observed phenomenon can be utilized in spin caloritronics devices, for example in the DMI based thermal diodes. By switching the magnetization direction, one can rectify the total magnonic spin current.

  20. Modeling of interaction between cytochrome c and the WD domains of Apaf-1: bifurcated salt bridges underlying apoptosome assembly.

    Science.gov (United States)

    Shalaeva, Daria N; Dibrova, Daria V; Galperin, Michael Y; Mulkidjanian, Armen Y

    2015-05-27

    Binding of cytochrome c, released from the damaged mitochondria, to the apoptotic protease activating factor 1 (Apaf-1) is a key event in the apoptotic signaling cascade. The binding triggers a major domain rearrangement in Apaf-1, which leads to oligomerization of Apaf-1/cytochrome c complexes into an apoptosome. Despite the availability of crystal structures of cytochrome c and Apaf-1 and cryo-electron microscopy models of the entire apoptosome, the binding mode of cytochrome c to Apaf-1, as well as the nature of the amino acid residues of Apaf-1 involved remain obscure. We investigated the interaction between cytochrome c and Apaf-1 by combining several modeling approaches. We have applied protein-protein docking and energy minimization, evaluated the resulting models of the Apaf-1/cytochrome c complex, and carried out a further analysis by means of molecular dynamics simulations. We ended up with a single model structure where all the lysine residues of cytochrome c that are known as functionally-relevant were involved in forming salt bridges with acidic residues of Apaf-1. This model has revealed three distinctive bifurcated salt bridges, each involving a single lysine residue of cytochrome c and two neighboring acidic resides of Apaf-1. Salt bridge-forming amino acids of Apaf-1 showed a clear evolutionary pattern within Metazoa, with pairs of acidic residues of Apaf-1, involved in bifurcated salt bridges, reaching their highest numbers in the sequences of vertebrates, in which the cytochrome c-mediated mechanism of apoptosome formation seems to be typical. The reported model of an Apaf-1/cytochrome c complex provides insights in the nature of protein-protein interactions which are hard to observe in crystallographic or electron microscopy studies. Bifurcated salt bridges can be expected to be stronger than simple salt bridges, and their formation might promote the conformational change of Apaf-1, leading to the formation of an apoptosome. Combination of

  1. The Chloroplastic Protein THF1 Interacts with the Coiled-Coil Domain of the Disease Resistance Protein N′ and Regulates Light-Dependent Cell Death1[OPEN

    Science.gov (United States)

    Sekine, Ken-Taro; Wallon, Thérèse; Sugiwaka, Yuji; Kobayashi, Kappei

    2016-01-01

    One branch of plant immunity is mediated through nucleotide-binding/Leu-rich repeat (NB-LRR) family proteins that recognize specific effectors encoded by pathogens. Members of the I2-like family constitute a well-conserved subgroup of NB-LRRs from Solanaceae possessing a coiled-coil (CC) domain at their N termini. We show here that the CC domains of several I2-like proteins are able to induce a hypersensitive response (HR), a form of programmed cell death associated with disease resistance. Using yeast two-hybrid screens, we identified the chloroplastic protein Thylakoid Formation1 (THF1) as an interacting partner for several I2-like CC domains. Co-immunoprecipitations and bimolecular fluorescence complementation assays confirmed that THF1 and I2-like CC domains interact in planta and that these interactions take place in the cytosol. Several HR-inducing I2-like CC domains have a negative effect on the accumulation of THF1, suggesting that the latter is destabilized by active CC domains. To confirm this model, we investigated N′, which recognizes the coat protein of most Tobamoviruses, as a prototypical member of the I2-like family. Transient expression and gene silencing data indicated that THF1 functions as a negative regulator of cell death and that activation of full-length N′ results in the destabilization of THF1. Consistent with the known function of THF1 in maintaining chloroplast homeostasis, we show that the HR induced by N′ is light-dependent. Together, our results define, to our knowledge, novel molecular mechanisms linking light and chloroplasts to the induction of cell death by a subgroup of NB-LRR proteins. PMID:26951433

  2. The Chloroplastic Protein THF1 Interacts with the Coiled-Coil Domain of the Disease Resistance Protein N' and Regulates Light-Dependent Cell Death.

    Science.gov (United States)

    Hamel, Louis-Philippe; Sekine, Ken-Taro; Wallon, Thérèse; Sugiwaka, Yuji; Kobayashi, Kappei; Moffett, Peter

    2016-05-01

    One branch of plant immunity is mediated through nucleotide-binding/Leu-rich repeat (NB-LRR) family proteins that recognize specific effectors encoded by pathogens. Members of the I2-like family constitute a well-conserved subgroup of NB-LRRs from Solanaceae possessing a coiled-coil (CC) domain at their N termini. We show here that the CC domains of several I2-like proteins are able to induce a hypersensitive response (HR), a form of programmed cell death associated with disease resistance. Using yeast two-hybrid screens, we identified the chloroplastic protein Thylakoid Formation1 (THF1) as an interacting partner for several I2-like CC domains. Co-immunoprecipitations and bimolecular fluorescence complementation assays confirmed that THF1 and I2-like CC domains interact in planta and that these interactions take place in the cytosol. Several HR-inducing I2-like CC domains have a negative effect on the accumulation of THF1, suggesting that the latter is destabilized by active CC domains. To confirm this model, we investigated N', which recognizes the coat protein of most Tobamoviruses, as a prototypical member of the I2-like family. Transient expression and gene silencing data indicated that THF1 functions as a negative regulator of cell death and that activation of full-length N' results in the destabilization of THF1. Consistent with the known function of THF1 in maintaining chloroplast homeostasis, we show that the HR induced by N' is light-dependent. Together, our results define, to our knowledge, novel molecular mechanisms linking light and chloroplasts to the induction of cell death by a subgroup of NB-LRR proteins. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Nuclear import of cutaneous beta genus HPV8 E7 oncoprotein is mediated by hydrophobic interactions between its zinc-binding domain and FG nucleoporins

    Energy Technology Data Exchange (ETDEWEB)

    Onder, Zeynep; Moroianu, Junona, E-mail: moroianu@bc.edu

    2014-01-20

    We have previously discovered and characterized the nuclear import pathways for the E7 oncoproteins of mucosal alpha genus HPVs, type 16 and 11. Here we investigated the nuclear import of cutaneous beta genus HPV8 E7 protein using confocal microscopy after transfections of HeLa cells with EGFP-8E7 and mutant plasmids and nuclear import assays in digitonin-permeabilized HeLa cells. We determined that HPV8 E7 contains a nuclear localization signal (NLS) within its zinc-binding domain that mediates its nuclear import. Furthermore, we discovered that a mostly hydrophobic patch {sub 65}LRLFV{sub 69} within the zinc-binding domain is essential for the nuclear import and localization of HPV8 E7 via hydrophobic interactions with the FG nucleoporins Nup62 and Nup153. Substitution of the hydrophobic residues within the {sub 65}LRLFV{sub 69} patch to alanines, and not R66A mutation, disrupt the interactions between the 8E7 zinc-binding domain and Nup62 and Nup153 and consequently inhibit nuclear import of HPV8 E7. - Highlights: • HPV8 E7 has a cNLS within its zinc-binding domain that mediates its nuclear import. • Discovery of a hydrophobic patch that is critical for the nuclear import of HPV8 E7. • HPV8 E7 nuclear import is mediated by hydrophobic interactions with FG-Nups, Nup62 and Nup153.

  4. The conserved WW-domain binding sites in Dystroglycan C-terminus are essential but partially redundant for Dystroglycan function

    Directory of Open Access Journals (Sweden)

    Deng W-M

    2009-02-01

    Full Text Available Abstract Background Dystroglycan (Dg is a transmembrane protein that is a part of the Dystrophin Glycoprotein Complex (DGC which connects the extracellular matrix to the actin cytoskeleton. The C-terminal end of Dg contains a number of putative SH3, SH2 and WW domain binding sites. The most C-terminal PPXY motif has been established as a binding site for Dystrophin (Dys WW-domain. However, our previous studies indicate that both Dystroglycan PPXY motives, WWbsI and WWbsII can bind Dystrophin protein in vitro. Results We now find that both WW binding sites are important for maintaining full Dg function in the establishment of oocyte polarity in Drosophila. If either WW binding site is mutated, the Dg protein can still be active. However, simultaneous mutations in both WW binding sites abolish the Dg activities in both overexpression and loss-of-function oocyte polarity assays in vivo. Additionally, sequence comparisons of WW binding sites in 12 species of Drosophila, as well as in humans, reveal a high level of conservation. This preservation throughout evolution supports the idea that both WW binding sites are functionally required. Conclusion Based on the obtained results we propose that the presence of the two WW binding sites in Dystroglycan secures the essential interaction between Dg and Dys and might further provide additional regulation for the cytoskeletal interactions of this complex.

  5. Novel interactions of ankyrins-G at the costameres: The muscle-specific Obscurin/Titin-Binding-related Domain (OTBD) binds plectin and filamin C

    International Nuclear Information System (INIS)

    Maiweilidan, Yimingjiang; Klauza, Izabela; Kordeli, Ekaterini

    2011-01-01

    Ankyrins, the adapters of the spectrin skeleton, are involved in local accumulation and stabilization of integral proteins to the appropriate membrane domains. In striated muscle, tissue-dependent alternative splicing generates unique Ank3 gene products (ankyrins-G); they share the Obscurin/Titin-Binding-related Domain (OTBD), a muscle-specific insert of the C-terminal domain which is highly conserved among ankyrin genes, and binds obscurin and titin to Ank1 gene products. We previously proposed that OTBD sequences constitute a novel domain of protein-protein interactions which confers ankyrins with specific cellular functions in muscle. Here we searched for muscle proteins binding to ankyrin-G OTBD by yeast two hybrid assay, and we found plectin and filamin C, two organizing elements of the cytoskeleton with essential roles in myogenesis, muscle cell cytoarchitecture, and muscle disease. The three proteins coimmunoprecipitate from skeletal muscle extracts and colocalize at costameres in adult muscle fibers. During in vitro myogenesis, muscle ankyrins-G are first expressed in postmitotic myocytes undergoing fusion to myotubes. In western blots of subcellular fractions from C2C12 cells, the majority of muscle ankyrins-G appear associated with membrane compartments. Occasional but not extensive co-localization at nascent costameres suggested that ankyrin-G interactions with plectin and filamin C are not involved in costamere assembly; they would rather reinforce stability and/or modulate molecular interactions in sarcolemma microdomains by establishing novel links between muscle-specific ankyrins-G and the two costameric dystrophin-associated glycoprotein and integrin-based protein complexes. These results report the first protein-protein interactions involving the ankyrin-G OTBD domain and support the hypothesis that OTBD sequences confer ankyrins with a gain of function in vertebrates, bringing further consolidation and resilience of the linkage between sarcomeres

  6. Crystal structure of the G3BP2 NTF2-like domain in complex with a canonical FGDF motif peptide.

    Science.gov (United States)

    Kristensen, Ole

    2015-11-06

    The crystal structure of the NTF2-like domain of the human Ras GTPase SH3 Binding Protein (G3BP), isoform 2, was determined at a resolution of 2.75 Å in complex with a peptide containing a FGDF sequence motif. The overall structure of the protein is highly similar to the homodimeric N-terminal domains of the G3BP1 and Rasputin proteins. Recently, a subset of G3BP interacting proteins was recognized to share a common sequence motif, FGDF. The most studied binding partners, USP10 and viral nsP3, interfere with essential G3BP functions related to assembly of cellular stress granules. Reported molecular modeling suggested that FGDF-motif containing peptides bind in an extended conformation into a hydrophobic groove on the surface of the G3BP NTF2-like domain in a manner similar to the known binding of FxFG nucleoporin repeats. The results in this paper provide evidence for a different binding mode. The FGDF peptide binds and changes conformation of the protruding N-terminal residues by providing hydrophobic interactions to a symmetry related molecule that facilitated crystallization of the G3BP2 isoform. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Multiple Taf subunits of TFIID interact with Ino2 activation domains and contribute to expression of genes required for yeast phospholipid biosynthesis.

    Science.gov (United States)

    Hintze, Stefan; Engelhardt, Maike; van Diepen, Laura; Witt, Eric; Schüller, Hans-Joachim

    2017-12-01

    Expression of phospholipid biosynthetic genes in yeast requires activator protein Ino2 which can bind to the UAS element inositol/choline-responsive element (ICRE) and trigger activation of target genes, using two separate transcriptional activation domains, TAD1 and TAD2. However, it is still unknown which cofactors mediate activation by TADs of Ino2. Here, we show that multiple subunits of basal transcription factor TFIID (TBP-associated factors Taf1, Taf4, Taf6, Taf10 and Taf12) are able to interact in vitro with activation domains of Ino2. Interaction was no longer observed with activation-defective variants of TAD1. We were able to identify two nonoverlapping regions in the N-terminus of Taf1 (aa 1-100 and aa 182-250) each of which could interact with TAD1 of Ino2 as well as with TAD4 of activator Adr1. Specific missense mutations within Taf1 domain aa 182-250 affecting basic and hydrophobic residues prevented interaction with wild-type TAD1 and caused reduced expression of INO1. Using chromatin immunoprecipitation we demonstrated Ino2-dependent recruitment of Taf1 and Taf6 to ICRE-containing promoters INO1 and CHO2. Transcriptional derepression of INO1 was no longer possible with temperature-sensitive taf1 and taf6 mutants cultivated under nonpermissive conditions. This result supports the hypothesis of Taf-dependent expression of structural genes activated by Ino2. © 2017 John Wiley & Sons Ltd.

  8. Aerobic exercise training differentially affects ACE C- and N-domain activities in humans: Interactions with ACE I/D polymorphism and association with vascular reactivity.

    Science.gov (United States)

    Alves, Cléber Rene; Fernandes, Tiago; Lemos, José Ribeiro; Magalhães, Flávio de Castro; Trombetta, Ivani Credidio; Alves, Guilherme Barreto; Mota, Glória de Fátima Alves da; Dias, Rodrigo Gonçalves; Pereira, Alexandre Costa; Krieger, José Eduardo; Negrão, Carlos Eduardo; Oliveira, Edilamar Menezes

    2018-01-01

    Previous studies have linked angiotensin-converting enzyme ( ACE) insertion (I)/deletion (D) polymorphism (II, ID and DD) to physical performance. Moreover, ACE has two catalytic domains: NH2 (N) and COOH (C) with distinct functions, and their activity has been found to be modulated by ACE polymorphism. The aim of the present study is to investigate the effects of the interaction between aerobic exercise training (AET) and ACE I/D polymorphism on ACE N- and C-domain activities and vascular reactivity in humans. A total of 315 pre-selected healthy males were genotyped for II, ID and DD genotypes. Fifty completed the full AET (II, n = 12; ID, n = 25; and DD, n = 13), performed in three 90-minute sessions weekly, in the four-month exercise protocol. Pre- and post-training resting heart rate (HR), peak O 2 consumption (VO 2 peak), mean blood pressure (MBP), forearm vascular conduction (FVC), total circulating ACE and C- and N-domain activities were assessed. One-way ANOVA and two -way repeated-measures ANOVA were used. In pre-training, all variables were similar among the three genotypes. In post-training, a similar increase in FVC (35%) was observed in the three genotypes. AET increased VO 2 peak similarly in II, ID and DD (49±2 vs. 57±1; 48±1 vs. 56±3; and 48±5 vs. 58±2 ml/kg/min, respectively). Moreover, there were no changes in HR and MBP. The DD genotype was also associated with greater ACE and C-domain activities at pre- and post-training when compared to II. AET decreased similarly the total ACE and C-domain activities in all genotypes, while increasing the N-domain activity in the II and DD genotypes. However, interestingly, the measurements of N-domain activity after training indicate a greater activity than the other genotypes. These results suggest that the vasodilation in response to AET may be associated with the decrease in total ACE and C-domain activities, regardless of genotype, and that the increase in N-domain activity is dependent on the DD

  9. Interaction of moving domain boundaries with a magnetic field in GdΛ2 (MoOΛ4)Λ3

    International Nuclear Information System (INIS)

    Popov, S.A.; Tikhomirova, N.A.; Phlerova, S.A.

    1985-01-01

    Results obtained during the investigation of gadolinium molybdate Gd 2 (MoO 4 ) 3 (GMo) crystal repolarization by the electric field at the background of simultaneous action of permanent magnetic fields with a strength up to 20kOe are presented. The magnetic field is oriented in different directions in respect to crystallographic sample directions. Polarization- optical control of a domain structure was conducted in synchronism with sample repolarization. Study of the effect of magnetic field on integral rate of domain boundaries motion in GMO has shown, that a speed of domain wall motion changes as a function of magnetic field orientation with respect to moving domain wall. So, if the wall is oriented paralled to magnetic field force lines, at H=20kOe speed of its motion increases a 1.2-1.5 times, and decreases a 2-2.5 times in the case of perpendicular orientation

  10. Interaction between heterogeneous environmental quality domains (air, water, land, socio-demographic and built environment) on preterm birth.

    Science.gov (United States)

    Environmental exposures are often measured individually, though many occur in tandem. To address aggregate exposures, a county-level Environmental Quality Index (EQI) representing five environmental domains (air, water, land, built and sociodemographic) was constructed. Recent st...

  11. Identification of a domain within human TAF(I)48, a subunit of Selectivity Factor 1, that interacts with helix 2 of TBP.

    Science.gov (United States)

    Xu, Shuping; Hori, Roderick T

    2004-09-01

    RNA polymerase I transcription in human cells requires Selectivity Factor 1, a multisubunit complex composed of the TATA-box-binding protein (TBP) and three TBP-associated factors (TAFs) called TAF(I)48, TAF(I)63 and TAF(I)110. Each of the Selectivity Factor 1 subunits binds directly to the other three components, but these interactions have not been characterized. This study is the initial identification and analysis of a TBP-binding domain within a Selectivity Factor 1 TAF. The interaction between human TBP and human TAF(I)48 was initially examined using the yeast two-hybrid assay, and a TBP-binding domain was identified in the carboxyl-terminus of human (h)TAF(I)48. Consistent with this result, the hTAF(I)48 carboxyl-terminus was able to bind directly to TBP in protein-protein interaction assays. When mutations were introduced into the hTAF(I)48 carboxyl-terminus, we identified changes in uncharged and positive residues that affect its interaction with TBP. By examining TBP mutants, residues within and adjacent to helix 2 of TBP, previously demonstrated to interact with subunits of other TBP-containing complexes [Transcription Factor IID (TFIID) and TFIIIB] were also found to diminish its affinity for the carboxyl-terminus of hTAF(I)48. The regions of hTAF(I)48 and TBP that interact are compared to those identified within other complexes containing TBP.

  12. Domains and domain loss

    DEFF Research Database (Denmark)

    Haberland, Hartmut

    2005-01-01

    politicians and in the media, especially in the discussion whether some languages undergo ‘domain loss’ vis-à-vis powerful international languages like English. An objection that has been raised here is that domains, as originally conceived, are parameters of language choice and not properties of languages...

  13. Non-canonical binding interactions of the RNA recognition motif (RRM) domains of P34 protein modulate binding within the 5S ribonucleoprotein particle (5S RNP).

    Science.gov (United States)

    Kamina, Anyango D; Williams, Noreen

    2017-01-01

    RNA binding proteins are involved in many aspects of RNA metabolism. In Trypanosoma brucei, our laboratory has identified two trypanosome-specific RNA binding proteins P34 and P37 that are involved in the maturation of the 60S subunit during ribosome biogenesis. These proteins are part of the T. brucei 5S ribonucleoprotein particle (5S RNP) and P34 binds to 5S ribosomal RNA (rRNA) and ribosomal protein L5 through its N-terminus and its RNA recognition motif (RRM) domains. We generated truncated P34 proteins to determine these domains' interactions with 5S rRNA and L5. Our analyses demonstrate that RRM1 of P34 mediates the majority of binding with 5S rRNA and the N-terminus together with RRM1 contribute the most to binding with L5. We determined that the consensus ribonucleoprotein (RNP) 1 and 2 sequences, characteristic of canonical RRM domains, are not fully conserved in the RRM domains of P34. However, the aromatic amino acids previously described to mediate base stacking interactions with their RNA target are conserved in both of the RRM domains of P34. Surprisingly, mutation of these aromatic residues did not disrupt but instead enhanced 5S rRNA binding. However, we identified four arginine residues located in RRM1 of P34 that strongly impact L5 binding. These mutational analyses of P34 suggest that the binding site for 5S rRNA and L5 are near each other and specific residues within P34 regulate the formation of the 5S RNP. These studies show the unique way that the domains of P34 mediate binding with the T. brucei 5S RNP.

  14. Molecular determinants of interactions between the N-terminal domain and the transmembrane core that modulate hERG K+ channel gating.

    Directory of Open Access Journals (Sweden)

    Jorge Fernández-Trillo

    Full Text Available A conserved eag domain in the cytoplasmic amino terminus of the human ether-a-go-go-related gene (hERG potassium channel is critical for its slow deactivation gating. Introduction of gene fragments encoding the eag domain are able to restore normal deactivation properties of channels from which most of the amino terminus has been deleted, and also those lacking exclusively the eag domain or carrying a single point mutation in the initial residues of the N-terminus. Deactivation slowing in the presence of the recombinant domain is not observed with channels carrying a specific Y542C point mutation in the S4-S5 linker. On the other hand, mutations in some initial positions of the recombinant fragment also impair its ability to restore normal deactivation. Fluorescence resonance energy transfer (FRET analysis of fluorophore-tagged proteins under total internal reflection fluorescence (TIRF conditions revealed a substantial level of FRET between the introduced N-terminal eag fragments and the eag domain-deleted channels expressed at the membrane, but not between the recombinant eag domain and full-length channels with an intact amino terminus. The FRET signals were also minimized when the recombinant eag fragments carried single point mutations in the initial portion of their amino end, and when Y542C mutated channels were used. These data suggest that the restoration of normal deactivation gating by the N-terminal recombinant eag fragment is an intrinsic effect of this domain directed by the interaction of its N-terminal segment with the gating machinery, likely at the level of the S4-S5 linker.

  15. SH2 Binding Site Protection Assay: A Method for Identification of SH2 Domain Interaction Partners by Exploiting SH2 Mediated Phosphosite Protection.

    Science.gov (United States)

    Jadwin, Joshua A

    2017-01-01

    Over the last two decades there has been a significant effort in the field to characterize the phosphosite binding specificities of SH2 domains with the goal of deciphering the pY signaling code. Although high throughput studies in various formats using most SH2 domains have collectively provided a rich resource of in vitro SH2-pTyr site specificity maps, this data can only be used approximate what is happening in the cell where protein concentrations and localization are not homogenous, as they are for in vitro experiments. Here we describe an in vivo approach, SH2 site protection assay, which can capture the pTyr binding specificity of SH2 domains in the cell. The basis of this approach is SH2-pY site protection, the ability of SH2 domains to prevent the PTP-dependent dephosphorylation of their pY site binding partners. We overexpress a tracer SH2 domain in cells and quantify the change in abundance of tyrosine phosphorylated sites using MS. Since the method is performed in vivo, it has the advantage of identifying SH2-pY interactions as they occur within in the cell.

  16. Crustal-Scale Fault Interaction at Rifted Margins and the Formation of Domain-Bounding Breakaway Complexes: Insights From Offshore Norway

    Science.gov (United States)

    Osmundsen, P. T.; Péron-Pinvidic, G.

    2018-03-01

    The large-magnitude faults that control crustal thinning and excision at rifted margins combine into laterally persistent structural boundaries that separate margin domains of contrasting morphology and structure. We term them breakaway complexes. At the Mid-Norwegian margin, we identify five principal breakaway complexes that separate the proximal, necking, distal, and outer margin domains. Downdip and lateral interactions between the faults that constitute breakaway complexes became fundamental to the evolution of the 3-D margin architecture. Different types of fault interaction are observed along and between these faults, but simple models for fault growth will not fully describe their evolution. These structures operate on the crustal scale, cut large thicknesses of heterogeneously layered lithosphere, and facilitate fundamental margin processes such as deformation coupling and exhumation. Variations in large-magnitude fault geometry, erosional footwall incision, and subsequent differential subsidence along the main breakaway complexes likely record the variable efficiency of these processes.

  17. PH Domain-Arf G Protein Interactions Localize the Arf-GEF Steppke for Cleavage Furrow Regulation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Donghoon M Lee

    Full Text Available The recruitment of GDP/GTP exchange factors (GEFs to specific subcellular sites dictates where they activate small G proteins for the regulation of various cellular processes. Cytohesins are a conserved family of plasma membrane GEFs for Arf small G proteins that regulate endocytosis. Analyses of mammalian cytohesins have identified a number of recruitment mechanisms for these multi-domain proteins, but the conservation and developmental roles for these mechanisms are unclear. Here, we report how the pleckstrin homology (PH domain of the Drosophila cytohesin Steppke affects its localization and activity at cleavage furrows of the early embryo. We found that the PH domain is necessary for Steppke furrow localization, and for it to regulate furrow structure. However, the PH domain was not sufficient for the localization. Next, we examined the role of conserved PH domain amino acid residues that are required for mammalian cytohesins to bind PIP3 or GTP-bound Arf G proteins. We confirmed that the Steppke PH domain preferentially binds PIP3 in vitro through a conserved mechanism. However, disruption of residues for PIP3 binding had no apparent effect on GFP-Steppke localization and effects. Rather, residues for binding to GTP-bound Arf G proteins made major contributions to this Steppke localization and activity. By analyzing GFP-tagged Arf and Arf-like small G proteins, we found that Arf1-GFP, Arf6-GFP and Arl4-GFP, but not Arf4-GFP, localized to furrows. However, analyses of embryos depleted of Arf1, Arf6 or Arl4 revealed either earlier defects than occur in embryos depleted of Steppke, or no detectable furrow defects, possibly because of redundancies, and thus it was difficult to assess how individual Arf small G proteins affect Steppke. Nonetheless, our data show that the Steppke PH domain and its conserved residues for binding to GTP-bound Arf G proteins have substantial effects on Steppke localization and activity in early Drosophila embryos.

  18. Interactions between Metal-binding Domains Modulate Intracellular Targeting of Cu(I)-ATPase ATP7B, as Revealed by Nanobody Binding*

    Science.gov (United States)

    Huang, Yiping; Nokhrin, Sergiy; Hassanzadeh-Ghassabeh, Gholamreza; Yu, Corey H.; Yang, Haojun; Barry, Amanda N.; Tonelli, Marco; Markley, John L.; Muyldermans, Serge; Dmitriev, Oleg Y.; Lutsenko, Svetlana

    2014-01-01

    The biologically and clinically important membrane transporters are challenging proteins to study because of their low level of expression, multidomain structure, and complex molecular dynamics that underlies their activity. ATP7B is a copper transporter that traffics between the intracellular compartments in response to copper elevation. The N-terminal domain of ATP7B (N-ATP7B) is involved in binding copper, but the role of this domain in trafficking is controversial. To clarify the role of N-ATP7B, we generated nanobodies that interact with ATP7B in vitro and in cells. In solution NMR studies, nanobodies revealed the spatial organization of N-ATP7B by detecting transient functionally relevant interactions between metal-binding domains 1–3. Modulation of these interactions by nanobodies in cells enhanced relocalization of the endogenous ATP7B toward the plasma membrane linking molecular and cellular dynamics of the transporter. Stimulation of ATP7B trafficking by nanobodies in the absence of elevated copper provides direct evidence for the important role of N-ATP7B structural dynamics in regulation of ATP7B localization in a cell. PMID:25253690

  19. Rab11-family of interacting protein 2 associates with chlamydial inclusions through its Rab-binding domain and promotes bacterial multiplication.

    Science.gov (United States)

    Leiva, Natalia; Capmany, Anahí; Damiani, María Teresa

    2013-01-01

    Chlamydia trachomatis, an obligate intracellular pathogen, survives within host cells in a special compartment named 'inclusion' and takes advantage of host vesicular transport pathways for its growth and replication. Rab GTPases are key regulatory proteins of intracellular trafficking. Several Rabs, among them Rab11 and Rab14, are implicated in chlamydial development. FIP2, a member of the Rab11-Family of Interacting Proteins, presents at the C-terminus a Rab-binding domain that interacts with both Rab11 and Rab14. In this study, we determined and characterized the recruitment of endogenous and GFP-tagged FIP2 to the chlamydial inclusions. The recruitment of FIP2 is specific since other members of the Rab11-Family of Interacting Proteins do not associate with the chlamydial inclusions. The Rab-binding domain of FIP2 is essential for its association. Our results indicate that FIP2 binds to Rab11 at the chlamydial inclusion membrane through its Rab-binding domain. The presence of FIP2 at the chlamydial inclusion favours the recruitment of Rab14. Furthermore, our results show that FIP2 promotes inclusion development and bacterial replication. In agreement, the silencing of FIP2 decreases the bacterial progeny. C. trachomatis likely recruits FIP2 to hijack host intracellular trafficking to redirect vesicles full of nutrients towards the inclusion. © 2012 Blackwell Publishing Ltd.

  20. Vfa1 Binds to the N-terminal Microtubule-interacting and Trafficking (MIT) Domain of Vps4 and Stimulates Its ATPase Activity*

    Science.gov (United States)

    Vild, Cody J.; Xu, Zhaohui

    2014-01-01

    The endosomal sorting complexes required for transport (ESCRT) are responsible for multivesicular body biogenesis, membrane abscission during cytokinesis, and retroviral budding. They function as transiently assembled molecular complexes on the membrane, and their disassembly requires the action of the AAA-ATPase Vps4. Vps4 is regulated by a multitude of ESCRT and ESCRT-related proteins. Binding of these proteins to Vps4 is often mediated via the microtubule-interacting and trafficking (MIT) domain of Vps4. Recently, a new Vps4-binding protein Vfa1 was identified in a yeast genetic screen, where overexpression of Vfa1 caused defects in vacuolar morphology. However, the function of Vfa1 and its role in vacuolar biology were largely unknown. Here, we provide the first detailed biochemical and biophysical study of Vps4-Vfa1 interaction. The MIT domain of Vps4 binds to the C-terminal 17 residues of Vfa1. This interaction is of high affinity and greatly stimulates the ATPase activity of Vps4. The crystal structure of the Vps4-Vfa1 complex shows that Vfa1 adopts a canonical MIT-interacting motif 2 structure that has been observed previously in other Vps4-ESCRT interactions. These findings suggest that Vfa1 is a novel positive regulator of Vps4 function. PMID:24567329

  1. Vfa1 binds to the N-terminal microtubule-interacting and trafficking (MIT) domain of Vps4 and stimulates its ATPase activity.

    Science.gov (United States)

    Vild, Cody J; Xu, Zhaohui

    2014-04-11

    The endosomal sorting complexes required for transport (ESCRT) are responsible for multivesicular body biogenesis, membrane abscission during cytokinesis, and retroviral budding. They function as transiently assembled molecular complexes on the membrane, and their disassembly requires the action of the AAA-ATPase Vps4. Vps4 is regulated by a multitude of ESCRT and ESCRT-related proteins. Binding of these proteins to Vps4 is often mediated via the microtubule-interacting and trafficking (MIT) domain of Vps4. Recently, a new Vps4-binding protein Vfa1 was identified in a yeast genetic screen, where overexpression of Vfa1 caused defects in vacuolar morphology. However, the function of Vfa1 and its role in vacuolar biology were largely unknown. Here, we provide the first detailed biochemical and biophysical study of Vps4-Vfa1 interaction. The MIT domain of Vps4 binds to the C-terminal 17 residues of Vfa1. This interaction is of high affinity and greatly stimulates the ATPase activity of Vps4. The crystal structure of the Vps4-Vfa1 complex shows that Vfa1 adopts a canonical MIT-interacting motif 2 structure that has been observed previously in other Vps4-ESCRT interactions. These findings suggest that Vfa1 is a novel positive regulator of Vps4 function.

  2. Specific inhibition of p97/VCP ATPase and kinetic analysis demonstrate interaction between D1 and D2 ATPase domains.

    Science.gov (United States)

    Chou, Tsui-Fen; Bulfer, Stacie L; Weihl, Conrad C; Li, Kelin; Lis, Lev G; Walters, Michael A; Schoenen, Frank J; Lin, Henry J; Deshaies, Raymond J; Arkin, Michelle R

    2014-07-29

    The p97 AAA (ATPase associated with diverse cellular activities), also called VCP (valosin-containing protein), is an important therapeutic target for cancer and neurodegenerative diseases. p97 forms a hexamer composed of two AAA domains (D1 and D2) that form two stacked rings and an N-terminal domain that binds numerous cofactor proteins. The interplay between the three domains in p97 is complex, and a deeper biochemical understanding is needed in order to design selective p97 inhibitors as therapeutic agents. It is clear that the D2 ATPase domain hydrolyzes ATP in vitro, but whether D1 contributes to ATPase activity is controversial. Here, we use Walker A and B mutants to demonstrate that D1 is capable of hydrolyzing ATP and show for the first time that nucleotide binding in the D2 domain increases the catalytic efficiency (kcat/Km) of D1 ATP hydrolysis 280-fold, by increasing kcat 7-fold and decreasing Km about 40-fold. We further show that an ND1 construct lacking D2 but including the linker between D1 and D2 is catalytically active, resolving a conflict in the literature. Applying enzymatic observations to small-molecule inhibitors, we show that four p97 inhibitors (DBeQ, ML240, ML241, and NMS-873) have differential responses to Walker A and B mutations, to disease-causing IBMPFD mutations, and to the presence of the N domain binding cofactor protein p47. These differential effects provide the first evidence that p97 cofactors and disease mutations can alter p97 inhibitor potency and suggest the possibility of developing context-dependent inhibitors of p97. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Interactions of polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol-3-kinase.

    OpenAIRE

    Yoakim, M; Hou, W; Liu, Y; Carpenter, C L; Kapeller, R; Schaffhausen, B S

    1992-01-01

    The binding of phosphatidylinositol-3-kinase to the polyomavirus middle T antigen is facilitated by tyrosine phosphorylation of middle T on residue 315. The pp85 subunit of phosphatidylinositol-3-kinase contains two SH2 domains, one in the middle of the molecule and one at the C terminus. When assayed by blotting with phosphorylated middle T, the more N-terminal SH2 domain is responsible for binding to middle T. When assayed in solution with glutathione S transferase fusions, both SH2s are ca...

  4. The interaction between the first transmembrane domain and the thumb of ASIC1a is critical for its N-glycosylation and trafficking.

    Directory of Open Access Journals (Sweden)

    Lan Jing

    Full Text Available Acid-sensing ion channel-1a (ASIC1a, the primary proton receptor in the brain, contributes to multiple diseases including stroke, epilepsy and multiple sclerosis. Thus, a better understanding of its biogenesis will provide important insights into the regulation of ASIC1a in diseases. Interestingly, ASIC1a contains a large, yet well organized ectodomain, which suggests the hypothesis that correct formation of domain-domain interactions at the extracellular side is a key regulatory step for ASIC1a maturation and trafficking. We tested this hypothesis here by focusing on the interaction between the first transmembrane domain (TM1 and the thumb of ASIC1a, an interaction known to be critical in channel gating. We mutated Tyr71 and Trp287, two key residues involved in the TM1-thumb interaction in mouse ASIC1a, and found that both Y71G and W287G decreased synaptic targeting and surface expression of ASIC1a. These defects were likely due to altered folding; both mutants showed increased resistance to tryptic cleavage, suggesting a change in conformation. Moreover, both mutants lacke