WorldWideScience

Sample records for severity cpcrw soil

  1. Relations between soil hydraulic properties and burn severity

    NARCIS (Netherlands)

    Moody, J.A.; Ebel, B.A.; Stoof, C.R.; Nyman, P.; Martin, D.A.; McKinley, R.

    2016-01-01

    Wildfire can affect soil hydraulic properties, often resulting in reduced infiltration. The magnitude of change in infiltration varies depending on the burn severity. Quantitative approaches to link burn severity with changes in infiltration are lacking. This study uses controlled laboratory

  2. Relationship between sugarcane rust severity and soil properties in louisiana.

    Science.gov (United States)

    Johnson, Richard M; Grisham, Michael P; Richard, Edward P

    2007-06-01

    ABSTRACT The extent of spatial and temporal variability of sugarcane rust (Puccinia melanocephala) infestation was related to variation in soil properties in five commercial fields of sugarcane (interspecific hybrids of Saccharum spp., cv. LCP 85-384) in southern Louisiana. Sugarcane fields were grid-soil sampled at several intensities and rust ratings were collected at each point over 6 to 7 weeks. Soil properties exhibited significant variability (coefficients of variation = 9 to 70.1%) and were spatially correlated in 39 of 40 cases with a range of spatial correlation varying from 39 to 201 m. Rust ratings were spatially correlated in 32 of 33 cases, with a range varying from 29 to 241 m. Rust ratings were correlated with several soil properties, most notably soil phosphorus (r = 0.40 to 0.81) and soil sulfur (r = 0.36 to 0.68). Multiple linear regression analysis resulted in coefficients of determination that ranged from 0.22 to 0.73, and discriminant analysis further improved the overall predictive ability of rust models. Finally, contour plots of soil properties and rust levels clearly suggested a link between these two parameters. These combined data suggest that sugarcane growers that apply fertilizer in excess of plant requirements will increase the incidence and severity of rust infestations in their fields.

  3. Canopy soil bacterial communities altered by severing host tree limbs

    Directory of Open Access Journals (Sweden)

    Cody R. Dangerfield

    2017-09-01

    Full Text Available Trees of temperate rainforests host a large biomass of epiphytic plants, which are associated with soils formed in the forest canopy. Falling of epiphytic material results in the transfer of carbon and nutrients from the canopy to the forest floor. This study provides the first characterization of bacterial communities in canopy soils enabled by high-depth environmental sequencing of 16S rRNA genes. Canopy soil included many of the same major taxonomic groups of Bacteria that are also found in ground soil, but canopy bacterial communities were lower in diversity and contained different operational taxonomic units. A field experiment was conducted with epiphytic material from six Acer macrophyllum trees in Olympic National Park, Washington, USA to document changes in the bacterial communities of soils associated with epiphytic material that falls to the forest floor. Bacterial diversity and composition of canopy soil was highly similar, but not identical, to adjacent ground soil two years after transfer to the forest floor, indicating that canopy bacteria are almost, but not completely, replaced by ground soil bacteria. Furthermore, soil associated with epiphytic material on branches that were severed from the host tree and suspended in the canopy contained altered bacterial communities that were distinct from those in canopy material moved to the forest floor. Therefore, the unique nature of canopy soil bacteria is determined in part by the host tree and not only by the physical environmental conditions associated with the canopy. Connection to the living tree appears to be a key feature of the canopy habitat. These results represent an initial survey of bacterial diversity of the canopy and provide a foundation upon which future studies can more fully investigate the ecological and evolutionary dynamics of these communities.

  4. The relation between forest structure and soil burn severity

    Science.gov (United States)

    Theresa B. Jain; Russell T. Graham; David S. Pilliod

    2006-01-01

    A study funded through National Fire Plan evaluates the relation between pre-wildfire forest structure and post-wildfire soil burn severity across three forest types: dry, moist, and cold forests. Over 73 wildfires were sampled in Idaho, Oregon, Montana, Colorado, and Utah, which burned between 2000 and 2003. Because of the study’s breadth, the results are applicable...

  5. Sorption and desorption of indaziflam degradates in several agricultural soils

    Directory of Open Access Journals (Sweden)

    Diego Gonçalves Alonso

    2016-04-01

    Full Text Available ABSTRACT Processes regulating pesticide fate in the environment are influenced by the physicochemical properties of pesticides and soils. Sorption and desorption are important processes as they regulate the movement of pesticides in soil. Although sorption-desorption is widely studied for herbicides, studies involving their metabolites in soil are scarce. Sorption and desorption of indaziflam metabolites (indaziflam-triazinediamine (FDAT, indaziflam-triazine-indanone (ITI and indaziflam-carboxilic acid (ICA were investigated in six Brazilian (BRA soils and three United States (USA soils with different physicochemical properties. The Freundlich equation described sorption of the metabolites for all soils (R2 > 0.98; 1/n ~ 1. Sorption order (Kf was ITI > ICA > FDAT. Mean values of Kf,oc were 453, 289, and 81 (BRA and 444, 48, and 48 (USA for metabolites ITI, ICA, and FDAT respectively. Desorption was hysteretic for all metabolites in all soils. These results suggest that these metabolites fall in the classification range of mobile to moderately mobile in soils.

  6. Characterization of Several Paddy Soil Types in Bogor, West Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Kurniati

    2016-01-01

    Full Text Available Paddy soil has different morphology and pedogenic characteristics compared to dry land, due to the influence of inundation during several months in a year. Puddling and drying that occurs in turns (redox cycle in paddy soil can lead to the formation of concretions or rusty Fe and Mn. The main purpose of this study was to understand the changing of the morphological and chemical properties as a result of changing of the dry land to paddy soil. Besides, the study also aimed to understand plow pan layer formation in Podsolic, Latosol, Regosol, and Andosol soil type. Results showed that content of soil density (bulk density of dry land ranged from 0.5 to 1.0, while paddy soil is 0.8 to 1.0 (g cm-3. Bulk density values in all four types of soils increased after the changing. Observation also demonstrated that severity levels of paddy soil is higher than dry land, especially in the second and third soil layers or under the surface of soils. Acidity of dry land was likely to be higher than paddy soil. There were no significant differences in nutrient such as C-organic, P and N. Meanwhile, using dithionite as solvent, paddy soil has higher Fe, Mn, and Al content than that of dry land, and remain the same when extracted with pyrophosphate and oxalate. From the four types of soil observed,the paddy soil showed formation of plow pan layer. This was shown by the soil severity level higher than the topsoil or other layers. Paddy soil had unique properties due to redox reaction, thereby providing soil discoloration i.e darker due to high solubility of Fe, Mn, and Al.

  7. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  8. Quantifying soil burn severity for hydrologic modeling to assess post-fire effects on sediment delivery

    Science.gov (United States)

    Dobre, Mariana; Brooks, Erin; Lew, Roger; Kolden, Crystal; Quinn, Dylan; Elliot, William; Robichaud, Pete

    2017-04-01

    Soil erosion is a secondary fire effect with great implications for many ecosystem resources. Depending on the burn severity, topography, and the weather immediately after the fire, soil erosion can impact municipal water supplies, degrade water quality, and reduce reservoirs' storage capacity. Scientists and managers use field and remotely sensed data to quickly assess post-fire burn severity in ecologically-sensitive areas. From these assessments, mitigation activities are implemented to minimize post-fire flood and soil erosion and to facilitate post-fire vegetation recovery. Alternatively, land managers can use fire behavior and spread models (e.g. FlamMap, FARSITE, FOFEM, or CONSUME) to identify sensitive areas a priori, and apply strategies such as fuel reduction treatments to proactively minimize the risk of wildfire spread and increased burn severity. There is a growing interest in linking fire behavior and spread models with hydrology-based soil erosion models to provide site-specific assessment of mitigation treatments on post-fire runoff and erosion. The challenge remains, however, that many burn severity mapping and modeling products quantify vegetation loss rather than measuring soil burn severity. Wildfire burn severity is spatially heterogeneous and depends on the pre-fire vegetation cover, fuel load, topography, and weather. Severities also differ depending on the variable of interest (e.g. soil, vegetation). In the United States, Burned Area Reflectance Classification (BARC) maps, derived from Landsat satellite images, are used as an initial burn severity assessment. BARC maps are classified from either a Normalized Burn Ratio (NBR) or differenced Normalized Burned Ratio (dNBR) scene into four classes (Unburned, Low, Moderate, and High severity). The development of soil burn severity maps requires further manual field validation efforts to transform the BARC maps into a product more applicable for post-fire soil rehabilitation activities

  9. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem.

    Science.gov (United States)

    Chiquoine, Lindsay P; Abella, Scott R; Bowker, Matthew A

    2016-06-01

    Restoring biological soil crusts (biocrusts) in degraded drylands can contribute to recovery of ecosystem functions that have global implications, including erosion resistance and nutrient cycling. To examine techniques for restoring biocrusts, we conducted a replicated, factorial experiment on recently abandoned road surfaces by applying biocrust inoculation (salvaged and stored dry for two years), salvaged topsoil, an abiotic soil amendment (wood shavings), and planting of a dominant perennial shrub (Ambrosia dumosa). Eighteen months after treatments, we measured biocrust abundance and species composition, soil chlorophyll a content and fertility, and soil resistance to erosion. Biocrust addition significantly accelerated biocrust recovery on disturbed soils, including increasing lichen and moss cover and cyanobacteria colonization. Compared to undisturbed controls, inoculated plots had similar lichen and moss composition, recovered 43% of total cyanobacteria density, had similar soil chlorophyll content, and exhibited recovery of soil fertility and soil stability. Inoculation was the only treatment that generated lichen and moss cover. Topsoil application resulted in partial recovery of the cyanobacteria community and soil properties. Compared to untreated disturbed plots, topsoil application without inoculum increased cyanobacteria density by 186% and moderately improved soil chlorophyll and ammonium content and soil stability. Topsoil application produced 22% and 51% of the cyanobacteria density g⁻¹ soil compared to undisturbed and inoculated plots, respectively. Plots not treated with either topsoil or inoculum had significantly lower cyanobacteria density, soil chlorophyll and ammonium concentrations, and significantly higher soil nitrate concentration. Wood shavings and Ambrosia had no influence on biocrust lichen and moss species recovery but did affect cyanobacteria composition and soil fertility. Inoculation of severely disturbed soil with native

  10. Postfire soil burn severity mapping with hyperspectral image unmixing

    Science.gov (United States)

    Peter R. Robichaud; Sarah A. Lewis; Denise Y. M. Laes; Andrew T. Hudak; Raymond F. Kokaly; Joseph A. Zamudio

    2007-01-01

    Burn severity is mapped after wildfires to evaluate immediate and long-term fire effects on the landscape. Remotely sensed hyperspectral imagery has the potential to provide important information about fine-scale ground cover components that are indicative of burn severity after large wildland fires. Airborne hyperspectral imagery and ground data were collected after...

  11. Burn Severity and Its Impact on Soil Properties: 2016 Erskine Fire in the Southern Sierra Nevada

    Science.gov (United States)

    Haake, S.; Guo, J.; Krugh, W. C.

    2017-12-01

    Wildfire frequency in the southern Sierra Nevada has increased over the past decades. The effects of wildfires on soils can increase the frequency of slope failure and debris flow events, which pose a greater risk to people, as human populations expand into foothill and mountainous communities of the Sierra Nevada. Alterations in the physical properties of burned soils are one such effect that can catalyze slope failure and debris flow events. Moreover, the degree of a soil's physical alteration resulting from wildfire is linked to fire intensity. The 2016 Erskine fire occurred in the southern Sierra Nevada, burning 48,019 acres, resulting in soils of unburned, low, moderate, and high burn severities. In this study, the physical properties of soils with varying degrees of burn severity are explored within the 2016 Erskine fire perimeter. The results constrain the effects of burn severity on soil's physical properties. Unburned, low, moderate, and high burn severity soil samples were collected within the Erskine fire perimeter. Alterations in soils' physical properties resulting from burn severity are explored using X-ray diffractometry analysis, liquid limit, plastic limit, and shear strength tests. Preliminary results from this study will be used to assess debris flow and slope failure hazard models within burned areas of the Kern River watershed in the southern Sierra Nevada.

  12. Spectral analysis of charcoal on soils: Implications for wildland fire severity mapping methods

    Science.gov (United States)

    Alistair M. S. Smith; Jan U. H. Eitel; Andrew T. Hudak

    2010-01-01

    Recent studies in the Western United States have supported climate scenarios that predict a higher occurrence of large and severe wildfires. Knowledge of the severity is important to infer long-term biogeochemical, ecological, and societal impacts, but understanding the sensitivity of any severity mapping method to variations in soil type and increasing charcoal (char...

  13. The rates of carbon cycling in several soils from AMS14C measurements of fractionated soil organic matter

    International Nuclear Information System (INIS)

    Trumbore, S.E.; Bonani, G.; Wolfli, W.

    1990-01-01

    14 C mean residence times (MRT) of fractionated organic matter are reported for three pre-bomb soil profiles. Comparisons of organic matter extracted with acid and base showed that the longest MRTs were associated with the non-acid-hydrolysable fraction. The MRT of organic matter in a soil layer represents a combination of the rates of several processes, including decay to CO 2 and transport out of the layer. In some instances (notably in the A horizon of the Podzol soil studied in this paper), the MRT is dominated by the rate of transport, rather than the rate of decay. Thus it is important to use the distribution and balance of carbon in the soil profile to assess the meaning of the MRT with respect to influencing atmospheric CO 2

  14. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification.

    Science.gov (United States)

    Guo, Fuyu; Ding, Changfeng; Zhou, Zhigao; Huang, Gaoxiang; Wang, Xingxiang

    2018-06-04

    Chemical immobilization is a practical approach to remediate heavy metal contamination in agricultural soils. However, the potential remobilization risks of immobilized metals are a major environmental concern, especially in acid rain zones. In the present study, changes in the immobilization efficiency of several amendments as affected by simulated soil acidification were investigated to evaluate the immobilization remediation stability of several amendments on two cadmium (Cd) contaminated soils. Amendments (hydrated lime, hydroxyapatite and biochar) effectively immobilized Cd, except for organic fertilizer, and their immobilizations were strongly decreased by the simulated soil acidification. The ratio of changes in CaCl 2 -extractable Cd: pH (△CaCl 2 -Cd/△pH) can represent the Cd remobilization risk of different amended soils. Hydroxyapatite and biochar had a stronger durable immobilizing effect than did hydrated lime, particularly in soil with a lower pH buffering capacity, which was further confirmed by the Cd concentration and accumulation in lettuce. These results can be attributed to that hydroxyapatite and biochar transformed greater proportions of exchangeable Cd to other more stable fractions than lime. After 48 weeks of incubation, in soil with a lower pH buffering capacity, the immobilization efficiencies of lime, hydroxyapatite, biochar and organic fertilizer in the deionized water group (pH 6.5) were 71.7%, 52.7%, 38.6% and 23.9%, respectively, and changed to 19.1%, 33.6%, 26.5% and 5.0%, respectively, in the simulated acid rain group (pH 2.5). The present study provides a simple method to preliminarily estimate the immobilization efficiency of amendments and predict their stability in acid rain regions before large-scale field application. In addition, hydrated lime is recommended to be combined with other acid-stable amendments (such as hydroxyapatite or biochar) to remediate heavy metal-contaminated agricultural soils in acid precipitation

  15. Effect of inoculum density and soil tillage on the development and severity of rhizoctonia root rot.

    Science.gov (United States)

    Schroeder, K L; Paulitz, T C

    2008-03-01

    Rhizoctonia spp. cause substantial yield losses in direct-seeded cereal crops compared with conventional tillage. To investigate the mechanisms behind this increased disease, soils from tilled or direct-seeded fields were inoculated with Rhizoctonia spp. at population densities from 0.8 to 250 propagules per gram and planted with barley (Hordeum vulgare). The incidence and severity of disease did not differ between soils with different tillage histories. Both R. solani AG-8 and R. oryzae stunted plants at high inoculum densities, with the latter causing pre-emergence damping-off. High inoculum densities of both species stimulated early production of crown roots in barley seedlings. Intact soil cores from these same tilled and direct-seeded fields were used to evaluate the growth of Rhizoctonia spp. from colonized oat seeds. Growth of R. oryzae was not affected by previous tillage history. However, R. solani AG-8 grew more rapidly through soil from a long-term direct-seeded field compared to tilled soils. The differential response between these two experiments (mixed, homogenized soil versus intact soil) suggests that soil structure plays a major role in the proliferation of R. solani AG-8 through soils with different tillage histories.

  16. The influence of wildfire severity on soil char composition and nitrogen dynamics

    Science.gov (United States)

    Rhoades, Charles; Fegel, Timothy; Chow, Alex; Tsai, Kuo-Pei; Norman, John, III; Kelly, Eugene

    2017-04-01

    Forest fires cause lasting ecological changes and alter the biogeochemical processes that control stream water quality. Decreased plant nutrient uptake is the mechanism often held responsible for lasting post-fire shifts in nutrient supply and demand, though other upland and in-stream factors also likely contribute to elevated stream nutrient losses. Soil heating, for example, creates pyrogenic carbon (C) and char layers that influence C and nitrogen (N) cycling. Char layer composition and persistence vary across burned landscapes and are influenced first by fire behavior through the temperature and duration of combustion and then by post-fire erosion. To evaluate the link between soil char and stream C and N export we studied areas burned by the 2002 Hayman Fire, the largest wildfire in Colorado, USA history. We compared soil C and N pools and processes across ecotones that included 1) unburned forests, 2) areas with moderate and 3) high wildfire severity. We analyzed 1-2 cm thick charred organic layers that remain visible 15 years after the fire, underlying mineral soils, and soluble leachate from both layers. Unburned soils released more dissolved organic C and N (DOC and DON) from organic and mineral soil layers than burned soils. The composition of DOC leachate characterized by UV-fluorescence, emission-excitation matrices (EEMs) and Fluorescence Regional Integration (FRI) found similarity between burned and unburned soils, underscoring a common organic matter source. Humic and fulvic acid-like fractions, contained in regions V and III of the FRI model, comprised the majority of the fluorescing DOM in both unburned and char layers. Similarity between two EEMs indices (Fluorescence and Freshness), further denote that unburned soils and char layers originate from the same source and are consistent with visual evidence char layers contain significant amounts of unaltered OM. However, the EEMs humification index (HIX) and compositional analysis with pyrolysis GCMS

  17. Several key issues on using 137Cs method for soil erosion estimation

    Science.gov (United States)

    This work was to examine several key issues of using the cesium-137 method to estimate soil erosion rates in order to improve and standardize the method. Based on the comprehensive review and synthesis of a large body of published literature and the author’s extensive research experience, several k...

  18. Recovery of severely compacted soils in the Mojave Desert, California, USA

    Science.gov (United States)

    Webb, R.H.

    2002-01-01

    Often as a result of large-scale military maneuvers in the past, many soils in the Mojave Desert are highly vulnerable to soil compaction, particularly when wet. Previous studies indicate that natural recovery of severely compacted desert soils is extremely slow, and some researchers have suggested that subsurface compaction may not recover. Poorly sorted soils, particularly those with a loamy sand texture, are most vulnerable to soil compaction, and these soils are the most common in alluvial fans of the Mojave Desert. Recovery of compacted soil is expected to vary as a function of precipitation amounts, wetting-and-drying cycles, freeze-thaw cycles, and bioturbation, particularly root growth. Compaction recovery, as estimated using penetration depth and bulk density, was measured at 19 sites with 32 site-time combinations, including the former World War II Army sites of Camps Ibis, Granite, Iron Mountain, Clipper, and Essex. Although compaction at these sites was caused by a wide variety of forces, ranging from human trampling to tank traffic, the data do not allow segregation of differences in recovery rates for different compaction forces. The recovery rate appears to be logarithmic, with the highest rate of change occurring in the first few decades following abandonment. Some higher-elevation sites have completely recovered from soil compaction after 70 years. Using a linear model of recovery, the full recovery time ranges from 92 to 100 years; using a logarithmic model, which asymptotically approaches full recovery, the time required for 85% recovery ranges from 105-124 years.

  19. Modification of soil microbial activity and several hydrolases in a forest soil artificially contaminated with copper

    Science.gov (United States)

    Bellas, Rosa; Leirós, Mā Carmen; Gil-Sotres, Fernando; Trasar-Cepeda, Carmen

    2010-05-01

    Soils have long been exposed to the adverse effects of human activities, which negatively affect soil biological activity. As a result of their functions and ubiquitous presence microorganisms can serve as environmental indicators of soil pollution. Some features of soil microorganisms, such as the microbial biomass size, respiration rate, and enzyme activity are often used as bioindicators of the ecotoxicity of heavy metals. Although copper is essential for microorganisms, excessive concentrations have a negative influence on processes mediated by microorganisms. In this study we measured the response of some microbial indicators to Cu pollution in a forest soil, with the aim of evaluating their potential for predicting Cu contamination. Samples of an Ah horizon from a forest soil under oakwood vegetation (Quercus robur L.) were contaminated in the laboratory with copper added at different doses (0, 120, 360, 1080 and 3240 mg kg-1) as CuCl2×2H2O. The soil samples were kept for 7 days at 25 °C and at a moisture content corresponding to the water holding capacity, and thereafter were analysed for carbon and nitrogen mineralization capacity, microbial biomass C, seed germination and root elongation tests, and for urease, phosphomonoesterase, catalase and ß-glucosidase activities. In addition, carbon mineralization kinetics were studied, by plotting the log of residual C against incubation time, and the metabolic coefficient, qCO2, was estimated. Both organic carbon and nitrogen mineralization were lower in polluted samples, with the greatest decrease observed in the sample contaminated with 1080 mg kg-1. In all samples carbon mineralization followed first order kinetics; the C mineralization constant was lower in contaminated than in uncontaminated samples and, in general, decreased with increasing doses of copper. Moreover, it appears that copper contamination not only reduced the N mineralization capacity, but also modified the N mineralization process, since in

  20. Kinetic behavior of Fe(o,o-EDDHA)-humic substance mixtures in several soil components and in calcareous soils.

    Science.gov (United States)

    Cerdán, Mar; Alcañiz, Sara; Juárez, Margarita; Jordá, Juana D; Bermúdez, Dolores

    2007-10-31

    Ferric ethylenediamine- N, N'-bis-(o-hydroxyphenylacetic)acid chelate (Fe(o, o-EDDHA)) is one of the most effective Fe fertilizers in calcareous soils. However, humic substances are occasionally combined with iron chelates in drip irrigation systems in order to lower costs. The reactivity of iron chelate-humic substance mixtures in several soil components and in calcareous soils was investigated through interaction tests, and their behavior was compared to the application of iron chelates and humic substances separately. Two commercial humic substances and two Fe(o, o-EDDHA) chelates (one synthesized in the laboratory and one commercial) were used to prepare iron chelate-humic substance mixtures at 50% (w/w). Various soil components (calcium carbonate, gibbsite, amorphous iron oxide, hematite, tenorite, zincite, amorphous Mn oxide, and peat) and three calcareous soils were shaken for 15 days with the mixtures and with iron chelate and humic substance solutions. The kinetic behavior of Fe(o, o-EDDHA) and Fe non-(o,o-EDDHA) (Fe bonded to (o,p-EDDHA) and other polycondensated ligands) and of the different nutrients solubilized after the interaction assay was determined. The results showed that the mixtures did not significantly reduce the retention of Fe(o, o-EDDHA) and Fe non-(o,o-EDDHA) in the soil components and the calcareous soils compared to the iron chelate solutions, but they did produce changes in the retention rate. Moreover, the competition between humic substances and synthetic chelating agents for complexing metal cations limited the effectiveness of the mixtures to mobilize nutrients from the substrates. The presence of Fe(o, p-EDDHA) and other byproducts in the commercial iron chelate had an important effect on the evolution of Fe(o, o-EDDHA) and the nutrient solubilization process.

  1. Transfer of reactive solutes in the unsaturated zone of soils at several observation scales

    International Nuclear Information System (INIS)

    Limousin, G.

    2006-10-01

    The transfer of contaminants in the unsaturated zone of soils is driven by numerous mechanisms. Field studies are sometimes difficult to set up, and so the question is raised about the reliability of laboratory measurements for describing a field situation. The nuclear power plant at Brennilis (Finistere, France) has been chosen to study the transfer of strontium, cobalt and inert tracers in the soil of this industrial site. Several observation scales have been tested (batch, stirred flow-through reactor, sieved-soil column, un-repacked or repacked soil-core lysimeter, field experiments) in order to determine, at each scale, the factors that influence the transfer of these contaminants, then to verify the adequacy between the different observation scales and their field representativeness. Regarding the soil hydrodynamic properties, the porosity, the water content in the field, the pore water velocity at the water content in the field, the saturation hydraulic conductivity and the dispersion coefficient of this embanked soil are spatially less heterogeneous than those of agricultural or non-anthropic soils. The results obtained with lysimeter and field experiments suggest that hydrodynamics of this unstructured soil can be studied on a repacked sample if the volume is high compared to the rare big-size stones. Regarding the chemical soil-contaminant interactions, cobalt and strontium isotherms are non-linear at concentration higher than 10 -4 mol.L -1 , cobalt adsorption and desorption are fast and independent on pH. On the contrary, at concentration lower than 3.5 x 10 -6 mol.L -1 , cobalt and strontium isotherms are linear, cobalt desorption is markedly slower than adsorption and both cobalt partition coefficient at equilibrium and its reaction kinetics are highly pH-dependent. For both elements, the results obtained with batch, stirred flow-through reactor and sieved-soil column are in adequacy. However, strontium batch adsorption measurements at equilibrium do

  2. Comparative studies of oil product regulation in polluted soil for several industrialized countries

    Science.gov (United States)

    Paccassoni, F.; Kalnina, D.; Piga, L.

    2017-10-01

    Oil contaminated sites are the consequence of a long period of industrialization. Oil is a complex mixture including aliphatic and aromatic hydrocarbons, which are known to have negative effects on human health and the environment. Dividing oil products in groups (fractions) of petroleum hydrocarbons that act alike in soil and water, one can better know what happens to them. Being able to understand the behaviour of oil products in soil, it will allow to implement prevention and remediation actions. Interventions on contaminated sites are bound to comply with regulatory limits that each country has set in their own environmental legislation. The different concentration thresholds of oil products in soil for several EU countries and Canada has led to compare: limit values, analytical method, soil characteristics and/or land use. This will allow to evaluate what could be the best regulation approach, assessing if it is better to consider soil matrix in the site or the specific land use or both of them. It will also assess what is the best analytical methodology to be adopted to achieve the pollutant concentrations in the soil in order to have comparable results among different countries, such as: Baltic countries (Latvia, Estonia, Lithuania), Nordic countries (Finland, Sweden, Norway, Denmark), Western countries (Italy and The Netherlands) and Canada, like gaschromatography in the range from C10 - C50. The study presents an overview of environmental regulatory system of several EU countries and Canada and the correlation between different parameters about oil products indicated in each environmental legislation.

  3. SEVERAL MECHANISMS OF MERCURY RESISTANCE FOUND IN SOIL ISOLATES FROM PAVLODAR, KAZAKHSTAN

    Science.gov (United States)

    Abdrashitova, Svetlava A., M.A. Ilyushchenko, A. Yu Kalmykv, S.A. Aitkeldieva, Wendy J. Davis-Hoover and Richard Devereux. In press. Several Mechanisms of Mercury Resistance Found in Soil Isolates from Pavlodar, Kazakhstan (Abstract). To be presented at the Battelle Conference on...

  4. How clear-cutting affects fire severity and soil properties in a Mediterranean ecosystem.

    Science.gov (United States)

    Francos, Marcos; Pereira, Paulo; Mataix-Solera, Jorge; Arcenegui, Victoria; Alcañiz, Meritxell; Úbeda, Xavier

    2018-01-15

    Forest management practices in Mediterranean ecosystems are frequently employed to reduce both the risk and severity of wildfires. However, these pre-fire treatments may influence the effects of wildfire events on soil properties. The aim of this study is to examine the short-term effects of a wildfire that broke out in 2015 on the soil properties of three sites: two exposed to management practices in different years - 2005 (site M05B) and 2015 (site M15B) - and one that did not undergo any management (NMB) and to compare their properties with those recorded in a plot (Control) unaffected by the 2015 wildfire. We analyzed aggregate stability (AS), soil organic matter (SOM) content, total nitrogen (TN), carbon/nitrogen ratio (C/N), inorganic carbon (IC), pH, electrical conductivity (EC), extractable calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K), microbial biomass carbon (C mic ) and basal soil respiration (BSR). In the managed plots, a clear-cutting operation was conducted, whereby part of the vegetation was cut and left covering the soil surface. The AS values recorded at the Control site were significantly higher than those recorded at M05B, whereas the TN and SOM values at NMB were significantly higher than those recorded at M05B. IC was significantly higher at M05B than at the other plots. There were no significant differences in C/N ratio between the analyzed sites. Soil pH at M05B was significantly higher than the value recorded at the Control plot. Extractable Ca was significantly higher at NMB than at both M05B and the Control, while extractable Mg was significantly lower at M05B than at NMB. Extractable K was significantly lower at the Control than at the three fire-affected plots. C mic was significantly higher at NMB than at the Control. BSR, BSR/C and BSR/C mic values at the fire-affected sites were significantly lower than those recorded at the Control. No significant differences were identified in C mic /C. Overall, a comparison of the

  5. Radioactive Cs in the Severely Contaminated Soils Near the Fukushima Daiichi Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Makoto; Iwata, Hajime; Shiotsu, Hiroyuki; Masaki, Shota; Kawamoto, Yuji; Yamasaki, Shinya; Nakamatsu, Yuki; Imoto, Junpei; Furuki, Genki; Ochiai, Asumi [Department of Chemistry, Kyushu University, Fukuoka (Japan); Nanba, Kenji [Department of Environmental Management, Faculty of Symbiotic System Science, Fukushima University, Fukushima (Japan); Ohnuki, Toshihiko [Advanced Science Research Center Japan Atomic Energy Agency, Tokai (Japan); Ewing, Rodney C. [Department of Geological Sciences, Center for International Security and Cooperation, Stanford University, Stanford, CA (United States); Utsunomiya, Satoshi, E-mail: utsunomiya.satoshi.998@m.kyushu-u.ac.jp [Department of Chemistry, Kyushu University, Fukuoka (Japan)

    2015-09-01

    Radioactive Cs isotopes ({sup 137}Cs, t{sub 1/2} = 30.07 years and {sup 134}Cs, t{sub 1/2} = 2.062 years) occur in severely contaminated soils within a few kilometer of the Fukushima Daiichi nuclear power plant at concentrations that range from 4 × 10{sup 5} to 5 × 10{sup 7} Bq/kg. In order to understand the mobility of Cs in these soils, both bulk and submicron-sized particles elutriated from four surface soils have been investigated using a variety of analytical techniques, including powder X-ray diffraction analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and analysis of the amount of radioactivity in sequential chemical extractions. Major minerals in bulk soil samples were quartz, feldspar, and minor clays. The submicron-sized particles elutriated from the same soil consist mainly of mica, vermiculite, and smectite and occasional gibbsite. Autoradiography in conjunction with SEM analysis confirmed the association of radioactive Cs mainly with the submicron-sized particles. Up to ~3 MBq/kg of {sup 137}Cs are associated with the colloidal size fraction (<1 μm), which accounts for ~78% of the total radioactivity. Sequential extraction of the bulk sample revealed that most Cs was retained in the residual fraction, confirming the high binding affinity of Cs to clays, aluminosilicate sheet structures. The chemistry of the fraction containing submicron-sized particles from the same bulk sample showed a similar distribution to that of the bulk sample, again confirming that the Cs is predominantly adsorbed onto submicron-sized sheet aluminosilicates, even in the bulk soil samples. Despite the very small particle size, aggregation of the particles prevents migration in the vertical direction, resulting in the retention of >98% of Cs within top ~5 cm of the soil. These results suggest that the mobility of the aggregates of submicron-sized sheet aluminosilicate in the surface environment is a key factor controlling the current Cs

  6. Analysis of ground water and soil samples from severely arsenic affected blocks of Murshidabad district

    Directory of Open Access Journals (Sweden)

    Manali Biswas

    2017-10-01

    Full Text Available Contamination of groundwater and soil by arsenic is a serious threat to existence of mankind on the globe. Arsenic contaminates soil and groundwater by natural biogeochemical cycles. However, due to anthropogenic activities like indiscriminant use of arsenic in disinfectants, weedicides, medicines and fertilizers, arsenic toxicity is a severe environmental issue, both at national and global level. U.S. Environmental Protection Agency and World Health Organization prescribed the permissible limit of arsenic in drinking water to be 10 µg/l. Exposure to arsenic at higher levels over a considerable period of time leads to skin lesions and cancer, disorders of cardiovascular, respiratory, gastrointestinal, hepatic and renal systems. Murshidabad is one of the severely arsenic affected districts of West Bengal. We have analyzed soil and groundwater samples from some of the highly arsenic affected blocks of Murshidabad district. Both the soil and groundwater samples have an alkaline pH, a characteristic of the presence of arsenic in the tested samples. Unfortunately, the socio-economic conditions of these villages force the residents to use groundwater as the source of drinking water. Presence of considerably high amount of total dissolved solids in water samples make them further unfit for consumption. High amount of phosphate and iron present in some of the water samples takes a toll on the detoxification and excretory system of the body, if those water samples are consumed on a regular manner. Contamination of soil by the aforesaid contaminants results in biomagnification of these pollutants in the food chain. We could also isolate certain potentially arsenic resistant bacteria from the contaminated soil and water samples. At the next level we have surveyed an arsenic affected village to analyze the clinical manifestation of arsenic poisoning. In this village subjects developed rampant skin lesions throughout the body due to exposure to arsenic

  7. Are different soil metals near the homes of pregnant women associated with mild and severe intellectual disability in children?

    Science.gov (United States)

    MCDERMOTT, SUZANNE; BAO, WEICHAO; TONG, XIN; CAI, BO; LAWSON, ANDREW; AELION, CMARJORIE

    2014-01-01

    AIM We explored the association of relatively low concentrations of metals in the soil proximal to maternal residence during pregnancy, with intellectual disability. We hypothesized different metals would be associated with mild versus severe intellectual disability. METHOD We used a mixed methods design, starting with a retrospective cohort from 1996–2002, of 10 051 pregnant mothers, soil sampling in the areas where these mothers resided during pregnancy, and follow-up of their children to determine if there was an intellectual disability outcome. We tested the soil and then predicted the soil concentration at the maternal homes, and modeled the association with the severity of the child’s intellectual disability. RESULTS We found a significant positive association between mild intellectual disability and soil mercury (p=0.007). For severe intellectual disability, there was a significant positive association with the soil arsenic and lead (p=0.025). INTERPRETATION This is the first report of the differential impact of metals in soil and severity of intellectual disability in children. Soil mercury concentration in the area the mother lived during pregnancy is associated with significantly increased odds of mild intellectual disability; a combination of arsenic and lead is associated with significantly increased odds of severe intellectual disability. These associations are present when controlling for maternal, child, and neighborhood characteristics. PMID:24750016

  8. Negligible effects of severe organic matter removal and soil compaction on loblolly pine growth over 10 years

    Science.gov (United States)

    Felipe G. Sanchez; D. Andrew Scott; Kim H. Ludovici

    2006-01-01

    The long-term soil productivity (LTSP) study was initiated to examine the effect of soil porosity and organic matter (OM) levels on net primary productivity (NPP). The study design calls for three levels of OM removal (bole, whole tree and whole tree plus forest floor) and three levels of compaction (none, moderate and severe) being imposed on harvested sites prior to...

  9. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    Science.gov (United States)

    Jessica R. Miesel; William C. Hockaday; Randy Kolka; Philip A. Townsend

    2015-01-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition...

  10. Analysis of Cleaning Process for Several Kinds of Soil by Probability Density Functional Method.

    Science.gov (United States)

    Fujimoto, Akihiro; Tanaka, Terumasa; Oya, Masaru

    2017-10-01

    A method of analyzing the detergency of various soils by assuming normal distributions for the soil adhesion and soil removal forces was developed by considering the relationship between the soil type and the distribution profile of the soil removal force. The effect of the agitation speed on the soil removal was also analyzed by this method. Washing test samples were prepared by soiling fabrics with individual soils such as particulate soils, oily dyes, and water-soluble dyes. Washing tests were conducted using a Terg-O-Tometer and four repetitive washing cycles of 5 min each. The transition of the removal efficiencies was recorded in order to calculate the mean value (μ rl ) and the standard deviation (σ rl ) of the removal strength distribution. The level of detergency and the temporal alteration in the detergency can be represented by μ rl and σ rl , respectively. A smaller σ rl indicates a smaller increase in the detergency with time, which also indicates the existence of a certain amount of soil with a strong adhesion force. As a general trend, the values of σ rl were the greatest for the oily soils, followed by those of the water-soluble soils and particulate soils in succession. The relationship between the soil removal processes and the soil adhesion force was expressed on the basis of the transition of the distribution of residual soil. Evaluation of the effects of the agitation speed on µ rl and ơ rl showed that σ rl was not affected by the agitation speed; the value of µ rl for solid soil and oily soil increased with increasing agitation, and the µ rl of water-soluble soil was not specifically affected by the agitation speed. It can be assumed that the parameter ơ rl is related to the characteristics of the soil and the adhesion condition, and can be applied to estimating the soil removal mechanism.

  11. Movement of 14 C-trifluralin labelled herbicide premerlin 600 CE in several soils

    International Nuclear Information System (INIS)

    Storino, Moises.

    1993-12-01

    The mobility behavior of the herbicide premerlin 600 CE (trifluralin was studied by using two different methodologies, i.e., soil thin layer chromatography and soil leaching columns. In the study soil thin layer chromatography were used six different Brazilian oxysols, being two sandy soils and four clayer soils. In the soil leaching columns study were used one sandy and one clayey soil. The distribution of 14 C-premerlin in the different granulometric soil fractions was determined after carried out columns experiments. Under all conditions imposed by these experiment, the herbicide 14 C-premerlin shown to be immobile being located on the surface of the soils columns. No effects of pH, concentration, metabolites or soil type were observed. (author). 46 refs., 25 figs., 3 tabs

  12. Peatland water repellency: Importance of soil water content, moss species, and burn severity

    Science.gov (United States)

    Moore, P. A.; Lukenbach, M. C.; Kettridge, N.; Petrone, R. M.; Devito, K. J.; Waddington, J. M.

    2017-11-01

    Wildfire is the largest disturbance affecting peatlands, with northern peat reserves expected to become more vulnerable to wildfire as climate change enhances the length and severity of the fire season. Recent research suggests that high water table positions after wildfire are critical to limit atmospheric carbon losses and enable the re-establishment of keystone peatland mosses (i.e. Sphagnum). Post-fire recovery of the moss surface in Sphagnum-feathermoss peatlands, however, has been shown to be limited where moss type and burn severity interact to result in a water repellent surface. While in situ measurements of moss water repellency in peatlands have been shown to be greater for feathermoss in both a burned and unburned state in comparison to Sphagnum moss, it is difficult to separate the effect of water content from species. Consequently, we carried out a laboratory based drying experiment where we compared the water repellency of two dominant peatland moss species, Sphagnum and feathermoss, for several burn severity classes including unburned samples. The results suggest that water repellency in moss is primarily controlled by water content, where a sharp threshold exists at gravimetric water contents (GWC) lower than ∼1.4 g g-1. While GWC is shown to be a strong predictor of water repellency, the effect is enhanced by burning. Based on soil water retention curves, we suggest that it is highly unlikely that Sphagnum will exhibit strong hydrophobic conditions under field conditions.

  13. INFLUENCE OF NPK AND LIME APLICATION ON ERVA-MATE GROWTH, ROOT-ROT SEVERITY AND SOIL FUNGI POPULATION1

    Directory of Open Access Journals (Sweden)

    Igor Poletto

    2011-09-01

    Full Text Available The present work evaluated the influence of the application of NPK and liming doses in the soil, on the growth of Erva-mate, the severity of rot-root and the fungi population of the soil. To do so, an experiment was installed at the green house, in the Forest Nursery of UFSM, using an experimental design completely randomized factorial 4x3x4 (Factor F: Fusarium spp. inoculation; Factor C: soil limestone; Factor A: NPK doses , totaling 48 treatments. The seedlings were cultivated in vases containing 2 kg of soil, classified as ‘Red-Yellow Argisoil’ (clay soil. At the end of the experiment was measured the stem diameter, height of the aerial part, leaves number, aerial dry biomass, root dry biomass and total dry biomass of the seedlings. Also, the soil was collected, from each treatment, for the chemical analysis and the counting of the fungi population. It was observed that the association among application of NPK and liming in the soil hampered the development of Erva-mate seedlings. The analysis of some variables suggests that the limestone absence provided greater resistance of seedlings to the attack of Fusarium spp. or the severity of Fusarium spp. was reduced in lower pH. The fungi population of the soil presented varied behavior depending on the applied treatments.

  14. Determination Of 137Cs Content In The Soil At Several Places In South Sumatra Province

    International Nuclear Information System (INIS)

    Emlinarti; Buchari

    2003-01-01

    Analysis of 137 Cs in the soil samples have been conducted at several places in south Sumatera Province such as Palembang, Kayu Agung, Prabumulih, Muara Enim, Lahat, Lubuk Linggau, and Sekayu. The samples were collected from the different depth, i.e. 0-5 cm and 5-20 cm from the surface. Measurement of 137 Cs was done by using the gamma spectrometer with the HP-Ge detector. The results of measurement showed that the 137 Cs concentration was within the range of undetectable to (1.99 ± 0.36) Bq/kg with an average value of (1.64 ± 0.35) Bq/kg for the depth of 0-5 cm and within the range of undectable to (1.50 ± 0.33) Bq/kg with an average value of (0.91 ± 0.30) Bq/kg for the depth of 5-20 cm. (author)

  15. The impact of atrazine on several biochemical properties of chernozem soil

    Directory of Open Access Journals (Sweden)

    LJ. RADIVOJEVIC

    2008-10-01

    Full Text Available The impact of the pesticide atrazine on biochemical processes in soil was investigated. Atrazine loadings of 8.0, 40.0 and 80.0 mg/kg soil were laboratory tested in an experiment set up on a clay loam soil. Dehydrogenase activity, change in biomass carbon, soil respiration and metabolic coefficient were examined. The samples were collected for analysis 1, 7, 14, 21, 30 and 60 days after atrazine application. The acquired data indicated that the effect of atrazine on the biochemical activity of the soil depended on its application rate and duration of activity, and the effect was either stimulating or inhibiting. However, the detected changes were found to be transient, indicating that there is no real risk of the compound disrupting the balance of biochemical processes in soil.

  16. Bioactivity of Several Herbicides on the Nanogram Level Under Different Soil Moisture Conditions.

    Science.gov (United States)

    Jung, S C; Kuk, Y I; Senseman, S A; Ahn, H G; Seong, C N; Lee, D J

    2015-01-01

    In this study, a double-tube centrifuge method was employed to determine the effects of soil moisture on the bioactivity of cafenstrole, pretilachlor, benfuresate, oxyfluorfen and simetryn. In general, the available herbicide concentration in soil solution (ACSS) showed little change as soil moisture increased for herbicides. The total available herbicide in soil solution (TASS) typically increased as soil moisture increased for all herbicides. The relationship between TASS and % growth rate based on dry weight showed strong linear relationships for both cafenstrole and pretilachlor, with r2 values of 0.95 and 0.84, respectively. Increasing TASS values were consistent with increasing herbicide water solubility, with the exception of the ionizable herbicide simetryn. Plant absorption and % growth rate exhibited a strong linear relationship with TASS. According to the results suggested that TASS was a better predictor of herbicidal bioactivity than ACSS for all herbicides under unsaturated soil moisture conditions.

  17. Temporal characterisation of soil-plant natural recovery related to fire severity in burned Pinus halepensis Mill. forests.

    Science.gov (United States)

    Moya, D; González-De Vega, S; García-Orenes, F; Morugán-Coronado, A; Arcenegui, V; Mataix-Solera, J; Lucas-Borja, M E; De Las Heras, J

    2018-05-28

    Despite Mediterranean ecosystems' high resilience to fire, both climate and land use change, and alterations in fire regimes increase their vulnerability to fire by affecting the long-term natural recovery of ecosystem services. The objective of this work is to study the effects of fire severity on biochemical soil indicators, such as chemical composition or enzymatic activity, related to time after fire and natural vegetation recovery (soil-plant interphase). Soil samples from three wildfires occurring 3, 15 and 21 years ago were taken in the south-eastern Iberian Peninsula (semiarid climate). Sampling included three fire severity levels in naturally regenerated (and changing to shrublands) Pinus halepensis Mill. forests. In the short-term post-fire period, phosphorus concentration, electrical conductivity and urease activity were positively linked to fire severity, and also influenced β-glucosidade activity in a negative relationship. During the 15-21-year post-fire period, the effects related to medium-high fire severity were negligible and soil quality indicators were linked to natural regeneration success. The results showed that most soil properties recovered in the long term after fire (21 years). These outcomes will help managers and stakeholders to implement management tools to stabilise soils and to restore burned ecosystems affected by medium-high fire severity. Such knowledge can be considered in adaptive forest management to reduce the negative effects of wildfires and desertification, and to improve the resilience of vulnerable ecosystems in a global change scenario. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Soil surface changes increase runoff and erosion risk after a low–moderate severity fire

    NARCIS (Netherlands)

    Stoof, C.R.; Ferreira, A.J.D.; Mol, W.; Berg, van den J.; Kort, De A.; Drooger, S.; Slingerland, E.C.; Mansholt, A.U.; Ritsema, C.J.

    2015-01-01

    Post-fire land degradation is to a large degree determined by what happens to soil properties and ground cover during and after the fire. To study fire impact in relation to fire intensity and post-fire soil exposure, a 9-ha Portuguese shrubland catchmentwas burned by experimental fire in the 2008/9

  19. The impact of mesotrione on several microbiological activity of chernozem soil.

    Science.gov (United States)

    Radivojevic, L; Gasic, S; Krsmanovic, M Saric; Marisavljevic, D; Santric, L; Pavlovic, D; Umiljendic, J Gajic

    2013-01-01

    The effect of mesotrione on microbiological activity in soil was investigated. Trials were set up in laboratory on chernozem soil (pH 7.0, organic matter 3.5%, sand 26%, silt 45%, clay 29%) at Surcin, Serbia. Mesotrione was added at rates 0.5 (field rate), 5, 25 i 50 mg/kg soil. Untreated soil served as control. Samples were collected for analysis 5, 20, 40 and 60 days after mesotrione application. The effects were assessed on bacteria abundance, fungi abundance, and dehydrogenase activity. Mesotrione was found to cause different effects on the soil microbial activity in soil and its influence depended on the rate of application and duration of activity. Mesotrione applied at 0.5 and 5 mg/kg soil did not have any effect on microbial activity. The higher herbicide doses (25 and 50 mg/kg) induced increasing activity from the 5th to 60th day. These experimental data indicated that mesotrione affected soil microbial activity, but the effects were only detected at higher doses far exceeding the recommended field rate.

  20. Impacts of wildfire severity on hydraulic conductivity in forest, woodland, and grassland soils (Chapter 7)

    Science.gov (United States)

    Daniel G. Neary

    2011-01-01

    Forest, woodland, and grassland watersheds throughout the world are major sources of high quality water for human use because of the nature of these soils to infiltrate, store, and transmit most precipitation instead of quickly routing it to surface runoff. This characteristic of these wildland soils is due to normally high infiltration rates, porosities, and hydraulic...

  1. Contents of several elements in trees grown on the serpentine soil

    International Nuclear Information System (INIS)

    Tomita, Michio; Katayama, Yukio; Takada, Jitsuya; Nishimura, Kazuo.

    1990-01-01

    Determination of Mg-, Ca-, Cr-, Mn-, Fe- and Ni-content in akamatsu (P. densiflora), konara (Q. serrata) and ryoubu (C. barbinervis) which were grown on the serpentine soil, as well as in soil, were performed by the neutron activation method or the atomic absorption spectrophotometry. It turned out that contents of these elements was higher in leaves than wood. It was also found that Ni content in the leaves of konara as well as of ryoubu reflected the concentration of the acid extractable Ni in the serpentine soil. The elemental contents in akamatsu leaves were heavily affected by the characteristic contents of the serpentine soil. It is suggested that these trees are available for the indicator of soil-environment. (author)

  2. Structural characteristic of the Eastern Plains soils of Colombia, submitted to several handling systems

    International Nuclear Information System (INIS)

    Amezquita, E; Saenz J I; Thomas, R J; Vera, R R; Hoyos, P; Molina, D L; Chavez, L F

    1997-01-01

    Soil productivity and sustainability depends on the building and/or conservation of an adequate and dynamic equilibrium between physical, chemical and biological properties and processes in the volume of soil explored by roots, so that there is no constraints in the availability of water and nutrients to plants. Soil structure is one of the soil properties that are more vulnerable to the intensity of use in tropical soils. Aggregate size distribution, aggregate stability and pore size distribution are some of the attributes that are usually used to describe structural changes and can act as indicators of structural sustainability. This paper presents and discusses the behavior of these attributes under different soil management treatments (native savanna, Brachiaria alone; Brachiaria + legume and monocrop) in the Colombian Eastern plains soil classified as Typic haplustox Kaolinitic iso-hyperthermic. These results showed highly statistical significant differences between treatments in the parameters studied and allow concluding that aggregate size distribution and stability could be indicators of susceptibility to degradation

  3. Liming and fertilisation in Pinus taeda plantations with severe nutrient deficiency in savanna soils

    Directory of Open Access Journals (Sweden)

    Araína Hulmann Batista

    2014-11-01

    Full Text Available Soils with high acidity and low exchangeable bases may be responsible for low yields of Pinus taeda in a forest plantation at Jaguariaíva, Paraná State, Brazil. The aim of this study was to evaluate the effect of liming and fertilisation, applied over litter, on two selected areas with Pinus taeda plantations. Soil, litter and pine needles were evaluated for K, Ca and Mg concentrations and soil acidity parameters. Seven treatments were applied: (i complete (N, P, K, Zn, Cu, B, Mo, and lime; (ii without N, P, and K; (iii without Zn, Cu, B, and Mo; (iv without K; (v without Zn; (vi without lime; and (vii control (without nutrients and lime. Soil samples were collected at five soil depths (0-5, 5-10, 10-20, 20-40 and 40-60 cm simultaneously with litter samples. Needles were also collected from the first and second pine flushes. Liming induced soil pH, Ca2+, and Mg2+ increases, and the opposite was observed for Al3+ and Al saturation. Fertilisation increased soil exchangeable K+ concentrations and needle and litter K concentrations. The low Ca and Mg concentrations found in the plant needles might be attributable to their low mobility.

  4. Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?

    Science.gov (United States)

    Xu, Li; Cao, Shanshan; Wang, Jihua; Lu, Anxiang

    2016-05-17

    Agricultural soil is typically an important component of urban ecosystems, contributing directly or indirectly to the general quality of human life. To understand which factors influence metal accumulation in agricultural soils in urban ecosystems is becoming increasingly important. Land use, soil type and urbanization indicators all account for considerable differences in metal accumulation in agricultural soils, and the interactions between these factors on metal concentrations were also examined. Results showed that Zn, Cu, and Cd concentrations varied significantly among different land use types. Concentrations of all metals, except for Cd, were higher in calcareous cinnamon soil than in fluvo-aquic soil. Expansion distance and road density were adopted as urbanization indicators, and distance from the urban center was significantly negatively correlated with concentrations of Hg, and negatively correlated with concentrations of Zn, and road density was positively correlated with Cd concentrations. Multivariate analysis of variance indicated that Hg concentration was significantly influenced by the four-way interaction among all factors. The results in this study provide basic data to support the management of agricultural soils and to help policy makers to plan ahead in Beijing.

  5. Isolation, Characterization, and Molecular Identification of Phosphate Solubilizing Bacteria from Several Tropical Soils

    Directory of Open Access Journals (Sweden)

    Fahrizal Hazra

    2013-03-01

    Full Text Available The objectives of the research were: (i to isolate and characterize of phosphate solubilizing bacteria (PSB and (ii to identify PSB based on molecular amplification of 16S rRNA gene. Soil samples were collected from rhizosphere in Bogor, West Nusa Tenggara, and East Nusa Tenggara. Several stages in this research were: (i isolation PSB in Pikovskaya agar, (ii morphological and biochemical characterization of PSB, (iii measurement of phosphatase enzymes, and (iv measurement of secreting indole acetic acid phytohormone. As many as 29 isolates of PSB have been collected and three isolates of them, namely: P 3.5 (East Nusa Tenggara, P 6.2 (West Nusa Tenggara, and P 10.1 (Citeureup, West Java were chosen for further study. There were many characteristics of isolate P 10.1: (i it had capable to solubilize P with the value of highest solubilization index (1.80, (ii it had the highest phosphatase enzyme (120.40 mg kg-1, and (iii it had the highest pH decrease at each observation for six days. Isolates P 3.5 and P 10.1 were the Gram-negative bacteria with coccus shapes and isolate P 6.2 was a Gram-negative bacteria with bacillus shape. Deoxiribonucleat Acid (DNA amplification of these bacteria employing 16S rRNA primers generated the 1,300bp-PCR product. The results of the analysis of 16S rRNA gene sequences showed that isolates P 3.5 and P 10.1 has 98% similarity with Gluconacetobacter sp. strains Rg1-MS-CO and isolate P 6.2 has 97% similarity with Enterobacter sp. pp9c strains.

  6. Comparative effects of several cyclodextrins on the extraction of PAHs from an aged contaminated soil

    International Nuclear Information System (INIS)

    Sánchez-Trujillo, M.A.; Morillo, E.; Villaverde, J.; Lacorte, S.

    2013-01-01

    The objective of the present study was to characterise the polycyclic aromatic hydrocarbons (PAHs) content of an aged contaminated soil and to propose remediation techniques using cyclodextrins (CDs). Four CDs solutions were tested as soil decontamination tool and proved more efficient in extracting PAHs than when an aqueous solution was used; especially two chemically modified CDs resulted in higher extraction percentages than natural β-CD. The highest extraction percentages were obtained for 3-ring PAHs, because of the appropriate size and shape of these compounds relative to those of the hydrophobic cavities of the CDs studied. A detailed mechanistic interpretation of the chemical modification of CDs on the extraction of the different PAHs has been performed, and connected with the role that the different hydrophobicities of the PAHs play in the extraction behaviour observed for the 16 PAHs, limiting their accessibility and the remaining risk of those PAHs not extractable by CDs. -- Highlights: ► Four cyclodextrins (CDs) solutions were tested as soil decontamination tool for PAHs. ► Extractions with CDs were higher than with electrolyte, especially with synthetic CDs. ► Extraction capacity depends on the adequate size of PAHs and CDs hydrophobic cavity. ► 2–3 ring PAHs, the more abundant in the soil, were extracted in higher percentages. ► CDs extract preferably the less hydrophobic and more potentially toxic PAHs. -- Cyclodextrin solutions are useful and interesting tools for the decontamination of soils polluted by PAHs

  7. Estimating the extractability of potentially toxic metals in urban soils: A comparison of several extracting solutions

    International Nuclear Information System (INIS)

    Madrid, F.; Reinoso, R.; Florido, M.C.; Diaz Barrientos, E.; Ajmone-Marsan, F.; Davidson, C.M.; Madrid, L.

    2007-01-01

    Metals released by the extraction with aqua regia, EDTA, dilute HCl and sequential extraction (SE) by the BCR protocol were studied in urban soils of Sevilla, Torino, and Glasgow. By multivariate analysis, the amounts of Cu, Pb and Zn liberated by any method were statistically associated with one another, whereas other metals were not. The mean amounts of all metals extracted by HCl and by SE were well correlated, but SE was clearly underestimated by HCl. Individual data for Cu, Pb and Zn by both methods were correlated only if each city was considered separately. Other metals gave poorer relationships. Similar conclusions were reached comparing EDTA and HCl, with much lower values for EDTA. Dilute HCl extraction cannot thus be recommended for general use as alternative to BCR SE in urban soils. - Dilute HCl extraction is tested as an alternative to the BCR sequential extraction in urban soils

  8. Effects of fire on the state of several elements in some soils of Sardinia.

    Science.gov (United States)

    Senette, C; Meloni, S; Alberti, G; Melis, P

    2000-01-01

    In order to individuate the modifications induced in the soil by fires relatively to the mobility of metals and rare earth three soils of Sardinia which differ in their mineralogical and physico-chemical characteristics were sampled. The analytical results obtained on the samples drawn at different depths (0-5 and 10-30 cm) three months after a fire and on the tests indicate that only the surface layer underwent significant modifications. The dynamics of metals and the distribution of the rare earths were found to depend, besides the amount and quality of the burned material, on the different behaviour of elements towards leaching. The diffractometric analysis showed that the soil surface layer of all the samples did not exceed 400 degrees C.

  9. Extreme soil acidity from biodegradable trap and skeet targets increases severity of pollution at shooting ranges.

    Science.gov (United States)

    McTee, Michael R; Mummey, Daniel L; Ramsey, Philip W; Hinman, Nancy W

    2016-01-01

    Lead pollution at shooting ranges overshadows the potential for contamination issues from trap and skeet targets. We studied the environmental influence of targets sold as biodegradable by determining the components of the targets and sampling soils at a former sporting clay range. Targets comprised approximately 53% CaCO3, 41% S(0), and 6% modifiers, and on a molar basis, there was 2.3 times more S(0) than CaCO3. We observed a positive correlation between target cover and SO4(2-) (ρ=0.82, Psoil pH (ρ=0.62, P=0.006). For sites that had pH values below 3, 24tons of lime per 1000tons of soil would be required to raise soil pH to 6.5. Lime-facilitated pH increases would be transitory because S(0) would continue to oxidize to H2SO4 until the S(0) is depleted. This study demonstrates that biodegradable trap and skeet targets can acidify soil, which has implications for increasing the mobility of Pb from shotgun pellets. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    Science.gov (United States)

    Miesel, Jessica R.; Hockaday, William C.; Kolka, Randall K.; Townsend, Philip A.

    2015-06-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition of postfire SOM. We sampled the forest floor layer (i.e., full organic horizon) and 0-10 cm mineral soil from stands dominated by coniferous (Pinus banksiana Lamb.) or deciduous (Populus tremuloides Michx.) species 1-2 months after the 2011 Pagami Creek wildfire in northern Minnesota. We used solid-state 13C NMR to characterize SOM composition across a gradient of fire severity in both forest cover types. SOM composition was affected by fire, even when no statistically significant losses of total C stocks were evident. The most pronounced differences in SOM composition between burned and unburned reference areas occurred in the forest floor for both cover types. Carbohydrate stocks in forest floor and mineral horizons decreased with severity level in both cover types, whereas pyrogenic C stocks increased with severity in the coniferous forest floor and decreased in only the highest severity level in the deciduous forest floor. Loss of carbohydrate and lignin pools contributed to a decreased SOM stability index and increased decomposition index. Our results suggest that increases in fire severity expected to occur under future climate scenarios may lead to changes in SOM composition and dynamics with consequences for postfire forest recovery and C uptake.

  11. Severe soil frost reduced losses of carbon and nitrogen from the forest floor during simulated snowmelt: A laboratory experiment

    Science.gov (United States)

    Andrew B. Reinmann; Pamela H. Templer; John L. Campbell

    2012-01-01

    Considerable progress has been made in understanding the impacts of soil frost on carbon (C) and nitrogen (N) cycling, but the effects of soil frost on C and N fluxes during snowmelt remain poorly understood. We conducted a laboratory experiment to determine the effects of soil frost on C and N fluxes from forest floor soils during snowmelt. Soil cores were collected...

  12. Do fire severity effects on soil change in space and time in the short-term? What ash tells us

    Directory of Open Access Journals (Sweden)

    P. Pereira

    2013-05-01

    Full Text Available In the absence of data, the impact of fire, especially wildfires, is measured analysing the fire severity. This post-fire assessment is very useful because allow to identify the degree of destruction imposed by the fire. Among the techniques used to determine fire severity, ash colour is often used, that permit identify the degree of organic matter consumption (darker ash uncompleted combustion, lighter ash completed combustion. The objective of this paper was observed if fire severity changes in space and time, according to ash colour analysis, applying an index. The ash colour analysis was carried out one and fifteen days after the fire. In this area we identified ash with four different colours, black (B dark grey (DG, light gray (LG and white colour (W and some uncovered areas classified as bared soil (BS. Black and DG represent medium fire severity, LG and W, higher severity. The results showed that in the studied fire, the severity was high and a great part of the plot was uncovered by ash (BS. Fifteen days after BS increased as the fire severity index, from 6.05 to 6.45, showing that during this period the ash redistribution in a short period after the fire can influence the fire severity assessment. We did not identified significant differences between measurements and the coefficient of variation (CV% remained the same. However significant differences were identified with the spatial correlation analysis with Global Moran's I and the spatial structure of fire severity index. This is evidence that ash color changed in this period in the space and the traditional statistical methods did not detected, only with spatial analysis. The analysis of fire severity using ash color some days after the fire can induce important errors, because wind can (remix ash and a particle produced in one area can be easily exported to other.

  13. The Short Term Effects of Fire Severity on Composition and Diversity of Soil Seed Bank in Zagros Forest Ecosystem, Servan County

    Directory of Open Access Journals (Sweden)

    M. Heydari

    2014-12-01

    Full Text Available In most ecosystems, disturbance is an important agent of variation in community structure and composition. Determining the diversity and composition of soil seed bank is essential for designing conservation and restoration programs because it can markedly contribute to future plant communities. Despite the important role of soil seed banks in the composition of different plant communities, and thus in their conservation, the floristic studies in Zagros forests have only focused on aboveground vegetation. In this study, the characteristics of soil seed banks were examined in three conditions after one year of fire high severity burned, low severity burned and control (not burned in Shirvanchardavol city in northeast of Ilam Province. The result of DCA showed that different fire severities and their effects on site conditions have been reflected clearly in the composition of the soil seed bank. The results also indicated that soil seed bank composition between control and high severity burned spots was specifically different. The shanon diversity, Margalef richness and evenness indices differed significantly between three treatments and the highest diversity was observed at low severity. In this regard the proportion of annual forbs tended to decrease with increasing severity of fire. In soil seed bank, Therophytes were the dominant life form of low severity burned and control spots and Hemichryptophytes were dominant in high severity burned spots.

  14. Study on allelopathic effects of Rice and Wheat Soil-Like Substrate on several plants

    Science.gov (United States)

    Li, Leyuan; Fu, Wenting; He, Wenting; Liu, Hong

    Rice and wheat are the traditional food of Chinese people, and therefore the main crop candidates for bio-regenerative life-support systems. Recycling rice and wheat straw is an important issue concerning the system. In order to decide if the mixed-substrate made of rice and wheat straw is suitable of plant cultivation, Rice and Wheat Soil-Like Substrate was tested in an aqueous extract germination experiment. The effects of different concentrations of aqueous extract on seed vigor, seedling growth and development situations and the physiological and biochemical characteristics of wheat, lettuce and pumpkin were studied, and the presence and degrees of allelopathic effects were analyzed. The test results showed that this type of SLS exerted different degrees of allelopathic effect on wheat and lettuce; this allelopathic effect was related to the concentration of SLS aqueous extract. The most significant phenomenon is that with the increase of aqueous extract concentration, the seed germination, root length and shoot fresh weight of wheat decreased; and every concentration of aqueous extract showed significant inhibition on the root length and root fresh weight of lettuce. However, this type of SLS showed little effect on the growth of pumpkin seedlings. Contents changes of chlorophyll and endogenous hormones in wheat and lettuce seedlings, and the chemical compositions of SLS were measured, and the mechanism of allelopathic effect was preliminarily analyzed.

  15. Geochemical behaviour of rare earths in Vitis vinifera grafted onto different rootstocks and growing on several soils

    International Nuclear Information System (INIS)

    Censi, P.; Saiano, F.; Pisciotta, A.; Tuzzolino, N.

    2014-01-01

    The geochemical behaviour of lanthanides and yttrium (Rare Earth Elements, REEs) has been investigated mainly in geological systems where these elements represent the best proxies of processes involving the occurrence of an interface between different media. This behaviour is assessed according to features recorded in sequences of REE concentrations along the REE series normalised with respect to a reference material. In this study, the geochemical behaviour of REE was investigated in different parts of Vitis vinifera specimens grown off-soil, on soils of different nature and grafted onto several rootstocks in order to evaluate effects induced by these changes. The results indicated that roots are the plant organs where REEs are preferentially concentrated, in particular elements from Sm to Ho (middle REE, MREE) whereas Eu enrichments occur in aerial parts. The geochemical behaviour of REE suggests that MREE enrichments in roots are due to preferential MREE interactions with biological membranes or to surface complexation with newly formed phosphates. Eu-positive anomalies suggest that Eu 3+ can form stable organic complexes in place of Ca 2+ in several biological processes in xylem fluids. The possibility that Eu mobility in these fluids can be enhanced by its reductive speciation as Eu 2+ cannot be ruled out. The assessment of the geochemical behaviour of REE according to the theory of the Tetrad Effect carried out confirms that REEs coming from soil are scavenged onto root tissues or mineral surfaces whereas their behaviour in aerial parts of V. vinifera is driven by dissolved complexation. - Highlights: • REE behaviour is driven by scavenging onto authigenic solids or membranes in roots. • REE behaviour is driven by dissolved complexation in aerial plant parts. • Positive Eu anomalies are a consequence of the REE translocation by xylem fluids. • Significant REE tetrad effects are observed in Vitis vinifera plants

  16. Determination of micro-quantities of several elements in soil solution by isotope dilution and activation analyses

    International Nuclear Information System (INIS)

    Cho, C.M.; Axmann, H.

    1965-01-01

    Determination of small quantities of plant nutrients in the soil solution of flooded rice soils is a difficult problem. The concentrations of Mn, Fe and P, for example, in some soil solutions are so small that no chemical method gives any accurate result. Neutron activation analysis was reported to give a much lower limit of detectability for several elements, while for elements with low-induced activity after neutron irradiation, substoichiometric isotopic dilution analysis was applied. One of the advantages of neutron activation analysis lies in the fact that simultaneous activation of every inducible element in a sample takes place. This gives an opportunity to determine many elements by one sample preparation and irradiation. This, however, is not a simple task since identification of the activated products and their quantitative estimation becomes very difficult. Certain operations of separation must be carried out before activity measurements. Ion-exchange resin columns and chemical separation following the addition of carriers were successfully used for the determination of many elements after neutron irradiation. These procedures, however, cannot be directly applied to the determination of the elements of agronomic interest. A procedure was developed to determine several elements of agronomic interest. Times of irradiation and cooling, quick separation by ion-exchange columns, together with chemical precipitation for β-emitters of relatively long half-lives, were all combined to get the maximum benefit from neutron activation analysis. For Fe, for which no satisfactory neutron activation analysis has yet been developed, a modified substoichiometric double isotope dilution procedure is applied

  17. Molecular composition of several soil organic matter fractions from anthropogenic black soils (Terra Preta de Índio) in Amazonia — A pyrolysis-GC/MS study

    NARCIS (Netherlands)

    Schellekens, Judith; Almeida-Santos, Taís; Macedo, Rodrigo Santana; Buurman, Peter; Kuyper, Thomas W.; Vidal-Torrado, Pablo

    2017-01-01

    The stability of soil organic matter (OM) in Amazonian anthropogenic soils, Terra Preta de Índio (TPI), is still not completely understood. The large contribution from black carbon (BC) and minerals to these soils is well-known; OM stability is therefore frequently explained by these properties,

  18. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  19. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  20. Assessing and mapping the severity of soil erosion using the 30-m Landsat multispectral satellite data in the former South African homelands of Transkei

    Science.gov (United States)

    Seutloali, Khoboso E.; Dube, Timothy; Mutanga, Onisimo

    2017-08-01

    Soil erosion is increasingly recognised as the principal cause of land degradation, loss of agricultural land area and siltation of surrounding water waterbodies. Accurate and up-to-date soil erosion mapping is key in understanding its severity if these negative impacts are to be minimised and affected areas rehabilitated. The aim of this work was to map the severity of soil erosion, based on the 30-m Landsat series multispectral satellite data in the former South African homelands of Transkei between the year 1994 and 2010. Further, the study assessed if the observed soil erosion trends and morphology that existed in this area could be explained by biophysical factors (i.e. slope, stream erosivity, topographic wetness index) retrieved from the 30-m ASTER Digital Elevation Model (DEM). The results of this study indicate that the Transkei region experiences varying erosion levels from moderate to very severe. The large portion of the land area under the former homelands was largely affected by rill erosion with approximately 74% occurring in the year 1984 and 54% in 2010. The results also revealed specific thresholds of soil erosion drivers. These include steeper areas (≥30°), high stream power index greater than 2.0 (stream erosivity), relatively lower vegetation cover (≤15%) and low topographic wetness index (≤5%). The results of this work demonstrate the severity of soil erosion in the Southern African former homelands of Transkei for the year 1984 and 2010. Additionally, this work has demonstrated the significance of the 30-m Landsat multispectral sensor in examining soil erosion occurrence at a regional scale where in-depth field work still remains a challenging task.

  1. The effect of regional-scale soil-moisture deficits on mesoscale atmospheric dynamics that influence fire severity

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J.D.

    1994-09-30

    This study employs a three-dimensional, nonhydrostatic mesoscale model to evaluate the effects of horizontally heterogeneous soil moisture and vegetation type on the atmosphere during two periods in which wildland fires occurred. Numerical sensitivity simulations demonstrate that evapotranspiration significantly affects the boundary-layer structure embedded in the synoptic-scale circulations. In regions with sufficiently moist soils, evapotranspiration increases the humidity and modifies the diurnally varying temperature near the surface. Occasionally, changes in the humidity and temperature fields can also be seen a significant distance downwind of the moist soil regions. The perturbations in the temperature fields ultimately affect the wind speed and direction over or at the boundaries of the moist-soil regions, but only at certain times during the simulation period. The higher humidity also increases the cloudiness and changes the precipitation amounts, indicating that soil moisture and vegetation may play an important role in modifying the spatial distribution and intensity of precipitation. A lower atmospheric stability index, that is an indicator of the potential for wildland fire, is also calculated from the model results. This index is also sensitive to the horizontal distribution of soil moisture and vegetation, especially in regions with relatively moist soils. While only two periods are examined in this study, the impact of surface inhomogeneities in soil moisture and vegetation type on the atmosphere is expected to be highly dependent on the particular synoptic conditions and upon the distribution of soil moisture.

  2. Reduced persistence of the macrolide antibiotics erythromycin, clarithromycin and azithromycin in agricultural soil following several years of exposure in the field

    Energy Technology Data Exchange (ETDEWEB)

    Topp, Edward, E-mail: ed.topp@agr.gc.ca; Renaud, Justin; Sumarah, Mark; Sabourin, Lyne

    2016-08-15

    The macrolide antibiotics erythromycin, clarithromycin and azithromycin are very important in human and animal medicine, and can be entrained onto agricultural ground through application of sewage sludge or manures. In the present study, a series of replicated field plots were left untreated or received up to five annual spring applications of a mixture of three drugs to achieve a nominal concentration for each of 10 or 0.1 mg kg{sup −1} soil; the latter an environmentally relevant concentration. Soil samples were incubated in the laboratory, and supplemented with antibiotics to establish the dissipation kinetics of erythromycin and clarithromycin using radioisotope methods, and azithromycin using HPLC-MS/MS. All three drugs were dissipated significantly more rapidly in soils with a history of field exposure to 10 mg kg{sup −1} macrolides, and erythromycin and clarithromycin were also degraded more rapidly in field soil exposed to 0.1 mg kg{sup −1} macrolides. Rapid mineralization of {sup 14}C-labelled erythromycin and clarithromycin are consistent with biodegradation. Analysis of field soils revealed no carryover of parent compound from year to year. Azithromycin transformation products were detected consistent with removal of the desosamine and cladinose moieties. Overall, these results have revealed that following several years of exposure to macrolide antibiotics these are amenable to accelerated degradation. The potential accelerated degradation of these drugs in soils amended with manure and sewage sludge should be investigated as this phenomenon would attenuate environmental exposure and selection pressure for clinically relevant resistance. - Highlights: • The impact of field exposure on persistence of macrolide antibiotics was evaluated. • Soil samples were incubated in the laboratory with macrolides. • Field exposure resulted in more rapid dissipation of all macrolides. • Radiolabelled erythromycin and clarithromycin were rapidly mineralized

  3. Reduced persistence of the macrolide antibiotics erythromycin, clarithromycin and azithromycin in agricultural soil following several years of exposure in the field

    International Nuclear Information System (INIS)

    Topp, Edward; Renaud, Justin; Sumarah, Mark; Sabourin, Lyne

    2016-01-01

    The macrolide antibiotics erythromycin, clarithromycin and azithromycin are very important in human and animal medicine, and can be entrained onto agricultural ground through application of sewage sludge or manures. In the present study, a series of replicated field plots were left untreated or received up to five annual spring applications of a mixture of three drugs to achieve a nominal concentration for each of 10 or 0.1 mg kg"−"1 soil; the latter an environmentally relevant concentration. Soil samples were incubated in the laboratory, and supplemented with antibiotics to establish the dissipation kinetics of erythromycin and clarithromycin using radioisotope methods, and azithromycin using HPLC-MS/MS. All three drugs were dissipated significantly more rapidly in soils with a history of field exposure to 10 mg kg"−"1 macrolides, and erythromycin and clarithromycin were also degraded more rapidly in field soil exposed to 0.1 mg kg"−"1 macrolides. Rapid mineralization of "1"4C-labelled erythromycin and clarithromycin are consistent with biodegradation. Analysis of field soils revealed no carryover of parent compound from year to year. Azithromycin transformation products were detected consistent with removal of the desosamine and cladinose moieties. Overall, these results have revealed that following several years of exposure to macrolide antibiotics these are amenable to accelerated degradation. The potential accelerated degradation of these drugs in soils amended with manure and sewage sludge should be investigated as this phenomenon would attenuate environmental exposure and selection pressure for clinically relevant resistance. - Highlights: • The impact of field exposure on persistence of macrolide antibiotics was evaluated. • Soil samples were incubated in the laboratory with macrolides. • Field exposure resulted in more rapid dissipation of all macrolides. • Radiolabelled erythromycin and clarithromycin were rapidly mineralized. • Macrolides

  4. Post-fire comparisons of forest floor and soil carbon, nitrogen, and mercury pools with fire severity indices

    Science.gov (United States)

    Randy Kolka; Brian Sturtevant; Philip Townsend; Jessica Miesel; Peter Wolter; Shawn Fraver; Tom DeSutter

    2014-01-01

    Forest fires are important contributors of C, N, and Hg to the atmosphere. In the fall of 2011, a large wildfire occurred in northern Minnesota and we were able to quickly access the area to sample the forest floor and mineral soil for C, N, and Hg pools. When compared with unburned reference soils, the mean loss of C resulting from fire in the forest floor and the...

  5. Variation in woody plant mortality and dieback from severe drought among soils, plant groups, and species within a northern Arizona ecotone.

    Science.gov (United States)

    Koepke, Dan F; Kolb, Thomas E; Adams, Henry D

    2010-08-01

    Vegetation change from drought-induced mortality can alter ecosystem community structure, biodiversity, and services. Although drought-induced mortality of woody plants has increased globally with recent warming, influences of soil type, tree and shrub groups, and species are poorly understood. Following the severe 2002 drought in northern Arizona, we surveyed woody plant mortality and canopy dieback of live trees and shrubs at the forest-woodland ecotone on soils derived from three soil parent materials (cinder, flow basalt, sedimentary) that differed in texture and rockiness. Our first of three major findings was that soil parent material had little effect on mortality of both trees and shrubs, yet canopy dieback of trees was influenced by parent material; dieback was highest on the cinder for pinyon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma). Ponderosa pine (Pinus ponderosa) dieback was not sensitive to parent material. Second, shrubs had similar mortality, but greater canopy dieback, than trees. Third, pinyon and ponderosa pines had greater mortality than juniper, yet juniper had greater dieback, reflecting different hydraulic characteristics among these tree species. Our results show that impacts of severe drought on woody plants differed among tree species and tree and shrub groups, and such impacts were widespread over different soils in the southwestern U.S. Increasing frequency of severe drought with climate warming will likely cause similar mortality to trees and shrubs over major soil types at the forest-woodland ecotone in this region, but due to greater mortality of other tree species, tree cover will shift from a mixture of species to dominance by junipers and shrubs. Surviving junipers and shrubs will also likely have diminished leaf area due to canopy dieback.

  6. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    International Nuclear Information System (INIS)

    Genet, H; Euskirchen, E S; McGuire, A D; Barrett, K; Breen, A; Bennett, A; Rupp, T S; Johnstone, J F; Kasischke, E S; Melvin, A M; Mack, M C; Schuur, A E G; Turetsky, M R; Yuan, F

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  7. Participatory assessment of soil erosion severity and performance of mitigation measures using stakeholder workshops in Koga catchment, Ethiopia.

    Science.gov (United States)

    Jemberu, Walle; Baartman, Jantiene E M; Fleskens, Luuk; Ritsema, Coen J

    2018-02-01

    Farmers possess a wealth of knowledge regarding soil erosion and soil and water conservation (SWC), and there is a great demand to access it. However, there has been little effort to systematically document farmers' experiences and perceptions of SWC measures. Sustainable Land Management (SLM) has largely evolved through local traditional practices rather than adoption based on scientific evidence. This research aimed to assess soil erosion and performance of different SWC measures from the farmers' perspective by documenting their perceptions and experiences in Koga catchment, Ethiopia. To this aim, workshops were organised in three sub-catchments differing in slopes and SWC measures. Workshops included group discussions and field monitoring of erosion indicators and systematically describing the status of soil erosion, soil fertility and yield to assess the performance of SWC measures. Results show that farmers are aware of the harmful effects of ongoing soil erosion and of the impacts of mitigation measures on their farms. Sheet erosion was found to be the most widespread form of erosion while rill damage was critical on plots cultivated to cereals on steep slopes. The average rill erosion rates were 24.2 and 47.3 t/ha/y in treated and untreated farmlands, respectively. SWC reduced rill erosion on average by more than 48%. However, the impacts of SWC measures varied significantly between sub-watersheds, and farmers believed that SWC measures did not prevent erosion completely. Comparatively, graded stone-faced soil bunds revealed maximum desired impacts and were most appreciated by farmers, whereas level bunds caused water logging. Most traditional ditches were highly graded and begun incising and affected production of cereals. Despite the semi-quantitative nature of the methodology, using farmers' perceptions and experiences to document land degradation and the impacts of SWC measures is crucial as they are the daily users of the land and therefore directly

  8. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil

    Science.gov (United States)

    Benjamin N. Sulman; Daniel Tyler Roman; Koong Yi; Lixin Wang; Richard P. Phillips; Kimberly A. Novick

    2016-01-01

    When stressed by low soil water content (SWC) or high vapor pressure deficit (VPD), plants close stomata, reducing transpiration and photosynthesis. However, it has historically been difficult to disentangle the magnitudes of VPD compared to SWC limitations on ecosystem-scale fluxes. We used a 13 year record of eddy covariance measurements from a forest in south...

  9. Bioavailability and bioaccumulation of heavy metals of several soils and sediments (from industrialized urban areas) for Eisenia fetida.

    Science.gov (United States)

    Coelho, C; Foret, C; Bazin, C; Leduc, L; Hammada, M; Inácio, M; Bedell, J P

    2018-09-01

    Soils and sediments are susceptible to anthropogenic contamination with Metallic Trace Elements (MTEs) and it can present some risks to ecosystems and human health. The levels of Cd, Cu, Fe, Ni, Pb and Zn were assessed in soils (C, G, K, L) from Estarreja (Portugal) and sediments from a stormwater basin in Lyon (DJG), a harbour (LDB) and a Rhône river site (TRS) (France). An ecotoxicological study was performed with Eisenia fetida (E. fetida) to infer about potential transfer risks to the soil invertebrates. To assess risks associated with MTEs contamination, it is important to know their total concentrations, fractionation and the potential available fractions. CaCl 2 , DTPA and NaOAc extractions were performed to assess the extractable and available MTEs fractions. The studied sediments were much more contaminated than the soils for all the MTEs analysed. The trace elements fraction linked with DTPA extraction shows higher values when compared with the NaOAc and the CaCl 2 pools. Low mortality effects were recorded in the tests with E. fetida. The MTEs levels in soils and sediments and the concentrations bioaccumulated in adult earthworms contributed to a reduction in the number of juveniles produced. E. fetida adults and juveniles accumulated ETMs as follows: Cd > Cu = Zn > Ni > Pb > Fe. Determined BAFs were mostly lower than 1 with some higher values for Cd, Cu and Zn. Calculated SET and ERITME indexes allowed to classify the samples from the most to the less toxic for E. fetida as: LDB > DJG > L > G > C > K > TRS. Despite this order of toxicity, the earthworms exposed to the sediment TRS presented the lowest reproduction rate. The combination of "chemical" measurements with the calculation of BAFs, but especially SET and ERITME indexes can be a useful tool in risk assessment. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Reforesting severely degraded grassland in the Lesser Himalaya of Nepal: Effects on soil hydraulic conductivity and overland flow production

    Science.gov (United States)

    Ghimire, Chandra Prasad; Bonell, Mike; Bruijnzeel, L. Adrian; Coles, Neil A.; Lubczynski, Maciek W.

    2013-12-01

    degraded hillslopes in the Lesser Himalaya challenge local communities as a result of the frequent occurrence of overland flow and erosion during the rainy season and water shortages during the dry season. Reforestation is often perceived as an effective way of restoring predisturbance hydrological conditions but heavy usage of reforested land in the region has been shown to hamper full recovery of soil hydraulic properties. This paper investigates the effect of reforestation and forest usage on field-saturated soil hydraulic conductivities (Kfs) near Dhulikhel, Central Nepal, by comparing degraded pasture, a footpath within the pasture, a 25 year old pine reforestation, and little disturbed natural forest. The hillslope hydrological implications of changes in Kfs with land-cover change were assessed via comparisons with measured rainfall intensities over different durations. High surface and near-surface Kfs in natural forest (82-232 mm h-1) rule out overland flow occurrence and favor vertical percolation. Conversely, corresponding Kfs for degraded pasture (18-39 mm h-1) and footpath (12-26 mm h-1) were conducive to overland flow generation during medium- to high-intensity storms and thus to local flash flooding. Pertinently, surface and near-surface Kfs in the heavily used pine forest remained similar to those for degraded pasture. Estimated monsoonal overland flow totals for degraded pasture, pine forest, and natural forest were 21.3%, 15.5%, and 2.5% of incident rainfall, respectively, reflecting the relative ranking of surface Kfs. Along with high water use by the pines, this lack of recovery of soil hydraulic properties under pine reforestation is shown to be a critical factor in the regionally observed decline in base flows following large-scale planting of pines and has important implications for regional forest management.

  11. Measured and modelled leaf and stand-scale productivity across a soil moisture gradient and a severe drought.

    Science.gov (United States)

    Wright, J K; Williams, M; Starr, G; McGee, J; Mitchell, R J

    2013-02-01

    Environmental controls on carbon dynamics operate at a range of interacting scales from the leaf to landscape. The key questions of this study addressed the influence of water and nitrogen (N) availability on Pinus palustris (Mill.) physiology and primary productivity across leaf and canopy scales, linking the soil-plant-atmosphere (SPA) model to leaf and stand-scale flux and leaf trait/canopy data. We present previously unreported ecophysiological parameters (e.g. V(cmax) and J(max)) for P. palustris and the first modelled estimates of its annual gross primary productivity (GPP) across xeric and mesic sites and under extreme drought. Annual mesic site P. palustris GPP was ∼23% greater than at the xeric site. However, at the leaf level, xeric trees had higher net photosynthetic rates, and water and light use efficiency. At the canopy scale, GPP was limited by light interception (canopy level), but co-limited by nitrogen and water at the leaf level. Contrary to expectations, the impacts of an intense growing season drought were greater at the mesic site. Modelling indicated a 10% greater decrease in mesic GPP compared with the xeric site. Xeric P. palustris trees exhibited drought-tolerant behaviour that contrasted with mesic trees' drought-avoidance behaviour. © 2012 Blackwell Publishing Ltd.

  12. Reforesting severely degraded grassland in the Lesser Himalaya of Nepal : Effects on soil hydraulic conductivity and overland flow production

    NARCIS (Netherlands)

    Ghimire, C.P.; Bonell, Mike; Bruijnzeel, L. Adrian; Coles, Neil A.; Lubczynski, M.

    2013-01-01

    [1] Severely degraded hillslopes in the Lesser Himalaya challenge local communities as a result of the frequent occurrence of overland flow and erosion during the rainy season and water shortages during the dry season. Reforestation is often perceived as an effective way of restoring predisturbance

  13. Reforesting severely degraded grassland in the Lesser Himalaya of Central Nepal: effects on soil hydraulic conductivity and overland flow production

    NARCIS (Netherlands)

    Ghimire, C.P.; Bonell, M.; Bruijnzeel, L.A.; Coles, N.A.; Lubczynski, M.W.

    2013-01-01

    Severely degraded hillslopes in the Lesser Himalaya challenge local communities as a result of the frequent occurrence of overland flow and erosion during the rainy season and water shortages during the dry season. Reforestation is often perceived as an effective way of restoring predisturbance

  14. Short term spatio-temporal variability of soil water-extractable calcium and magnesium after a low severity grassland fire in Lithuania.

    Science.gov (United States)

    Pereira, Paulo; Martin, David

    2014-05-01

    Fire has important impacts on soil nutrient spatio-temporal distribution (Outeiro et al., 2008). This impact depends on fire severity, topography of the burned area, type of soil and vegetation affected, and the meteorological conditions post-fire. Fire produces a complex mosaic of impacts in soil that can be extremely variable at small plot scale in the space and time. In order to assess and map such a heterogeneous distribution, the test of interpolation methods is fundamental to identify the best estimator and to have a better understanding of soil nutrients spatial distribution. The objective of this work is to identify the short-term spatial variability of water-extractable calcium and magnesium after a low severity grassland fire. The studied area is located near Vilnius (Lithuania) at 54° 42' N, 25° 08 E, 158 masl. Four days after the fire, it was designed in a burned area a plot with 400 m2 (20 x 20 m with 5 m space between sampling points). Twenty five samples from top soil (0-5 cm) were collected immediately after the fire (IAF), 2, 5, 7 and 9 months after the fire (a total of 125 in all sampling dates). The original data of water-extractable calcium and magnesium did not respected the Gaussian distribution, thus a neperian logarithm (ln) was applied in order to normalize data. Significant differences of water-extractable calcium and magnesium among sampling dates were carried out with the Anova One-way test using the ln data. In order to assess the spatial variability of water-extractable calcium and magnesium, we tested several interpolation methods as Ordinary Kriging (OK), Inverse Distance to a Weight (IDW) with the power of 1, 2, 3 and 4, Radial Basis Functions (RBF) - Inverse Multiquadratic (IMT), Multilog (MTG), Multiquadratic (MTQ) Natural Cubic Spline (NCS) and Thin Plate Spline (TPS) - and Local Polynomial (LP) with the power of 1 and 2. Interpolation tests were carried out with Ln data. The best interpolation method was assessed using the

  15. The Role of Low-severity Fire and Thermal Alteration of Soil Organic Matter in Carbon Preservation and GHG Flux From Global Peatlands

    Science.gov (United States)

    Flanagan, N. E.; Wang, H.; Hodgkins, S. B.; Richardson, C. J.

    2017-12-01

    Many global peatlands are dominated by fire-adapted plant communities and are subject to frequent wildfires with return intervals ranging between 3 to 100 years. Wildfires in peatlands are typically low-severity events that occur in winter and spring when vegetation is desiccated and soil moisture content is high. As a result, most wildfires consume aboveground fuels in a matter of minutes without igniting the nearly saturated peat. In such fires, surface soil layers are subjected to flash heating with a rapid loss of soil moisture but little loss of soil organic matter (SOM). Such fires have the potential to alter the chemical structure of SOM, even in the absence of combustion, through Maillard's Reaction and similar chemical processes, and through structural changes that protect SOM from decomposition. This study examines the effects of low-intensity surface fires on the recalcitrance of SOM from fire-adapted communities located in subtropical, temperate and sub-boreal peatlands. In addition, soil from a non-fire-adapted Peruvian palm peatland was examined for response to thermal alteration. The timing and temperatures of low-intensity fires were measured in the field during prescribed burns and replicated in simulated fires. The effects of fire on the chemical structure of SOM were examined with FTIR, SEM and XPS. Burned and unburned peat replicates were incubated at three temperatures (5oC, 15oC, 25oC) in controlled chambers for more than six months. Burned replicates initially showed higher CO2, CH4 and NO2 emissions. Yet, within four weeks emissions from the burned replicates dropped below those of unburned replicates and remained significantly lower (10-50%) for the duration of the experiment. In addition, thermal alteration significantly reduced the temperature sensitivity (Q10) of thermally altered peat. After accounting for small initial losses of organic matter (<10 %) during the fire simulations, thermal alteration of SOM resulted in a net long

  16. Characterizing ecosystem response to water supply changes inferred from GRACE drought severity index and surface soil moisture anomalies from ESA CCI and SMAP

    Science.gov (United States)

    Zhao, M.; Velicogna, I.; Kimball, J. S.

    2017-12-01

    Climate change such as more frequent heatwaves and drought is threatening our food security and ecosystem by reducing water supply to vegetation. Characterizing vegetation response to water supply changes is not only important for evaluating and mitigating climatic change impacts on ecosystem functions and services, but also to determine the feedback mechanisms that ecosystem response may generate on the climate itself. However, such characterization is not well-known at the global scale partly because large scale observations of underground water supply changes are limited. Satellite observations of soil moisture (SM) datasets such as from Soil Moisture Active and Passive (SMAP) and European Space Agency Climate Change Initiative (ESA CCI) do not penetrate more than a few centimeters and do not capture the entire root-zone. Here we employ a newly developed Drought Severity Index from Gravity Recovery and Climate Experiment (GRACE-DSI) to complement SM observations by informing total water supply changes in the entire terrestrial hydrological cycle. We use MODIS vegetation indices as proxies for vegetation growth and investigate their seasonal and interannual variability in relation to GRACE-DSI. We find that total water supply constrains vegetation growth across the entire continental US. Water constraint begins at an earlier date of year and lasts for a longer period in the lower latitude than in the higher latitude. We also find that water constraint occurs at different phenological stages depending on vegetation type. For instance, water constrain forest growth during reproductive period in eastern US but constrain shrub land growth during green-up in Arizona (Fig. 1). In western United States, eastern Australia and the horn of Africa, we find that vegetation growth changes closely follows GRACE-DSI but can have 16-day to one-month delay with respect to SM anomalies from SMAP and ESA CCI. This suggests that in these regions, vegetation is sensitive to water

  17. Decrease of the solar flare/solar wind flux ratio in the past several aeons from solar neon and tracks in lunar soil plagioclases

    International Nuclear Information System (INIS)

    Wieler, R.; Etique, Ph.; Signer, P.; Poupeau, G.

    1982-08-01

    The He, Ne, and Ar concentrations and isotopic compositions of mineral separates of six lunar subsurface samples and of two regolith breccias which were exposed to the sun as early as 2 - 3 billion years ago are determined. The results are compared with our noble gas data obtained previously on mineral separates of lunar surface soil samples most of which contain recently implanted solar gases. The mean solar flare track densities were determined on aliquots of several of the plagioclase separates analyzed for noble gases. Solar wind retentive mafic minerals and ilmenites show that a possible secular increase of the 20 Ne/ 22 Ne ratio in the solar wind during the last 2 - 3 Ga. is 20 Ne/ 22 Ne of approximately 11.3 - 11.8, reported for solar flare Ne retained in plagioclase separates from lunar soils. The solar flare track data and the Ne data independently show that plagioclases exposed to the sun over the last 10 8 years recorded a lower mean ratio of solar flare to solar wind intensities than samples exposed about 1 - 3 billion years ago. On the basis of track data these ratios are estimated to differ by a factor approximately 2. (Author) [pt

  18. Sorption of Tannin and Related Phenolic Compounds and Effects on Extraction of Soluble-N in Soil Amended with Several Carbon Sources

    Directory of Open Access Journals (Sweden)

    Javier M. Gonzalez

    2012-02-01

    Full Text Available Some tannins sorb to soil and reduce soluble-N. However, we know little about how they interact with organic amendments in soil. Soil (0–5 cm from plots, which were amended annually with various carbon substances, was treated with water (control or solutions containing tannins or related phenolic subunits. Treatments included a proanthocyanidin, catechin, tannic acid, β-1,2,3,4,6-penta-O-galloyl-D-glucose (PGG, gallic acid, and methyl gallate. We applied solutions of each of these materials to soil and measured soluble-C and -N in supernatants after application and following extraction with hot water (16 h, 80 °C. Sorption was low for non-tannin phenolics, methyl gallate, gallic acid, and catechin, and unaffected by amendment. Sorption of tannins, proanthocyanidin, tannic acid, and PGG, was higher and greater in plots amended with biosolids or manure. Extraction of soluble-N was not affected by amendment or by catechin, proanthocyanidin, or methyl gallate, but was reduced with PGG, tannic acid and gallic acid. Soil cation exchange capacity increased following treatment with PGG but decreased with gallic acid, irrespective of amendment. Tannins entering soil may thus influence soil organic matter dynamics and nutrient cycling but their impact may be influenced by the composition of soil organic matter.

  19. Comparative study of soil quality parameters on several landuses in the upstream of Cisadane sub-basin with Pb-210 excess and Cs-137

    International Nuclear Information System (INIS)

    Barokah Aliyanta

    2015-01-01

    Analysis of inventory Pb-210 excess and Cs-137 as well as soil quality parameters and estimation of the rate of erosion has been conducted in four land-uses in the upstream of Cisadane sub-basins. Soil sampling was performed with a corer to a depth of 20 cm on each land use transectly. One scrap sample and 4 cores were taken at Pine Forest, Pasir Jaya, for reference inventory purpose. Serious erosion has occurred in four land uses in the upstream of Cisadane sub-basins. The content of Pb-210 excess has positively correlated with the organic content of soil carbon (79 % C) and nitrogen content (56 % N) in the soil, whereas Cs-137 has positively correlated with 23 % C and 33 % of N in the soil. These facts give the information that the Pb-210 excess inventory is more effective than the inventory of Cs-137 as a means for studying the dynamics of carbon transport as a result of erosion and for determination of the status of soil quality. (author)

  20. Soil Organic Carbon in the Soil Scapes of Southeastern Tanzania

    OpenAIRE

    Rossi, Joni

    2009-01-01

    Soil organic carbon (SOC) is well known to maintain several functions. On the one hand, being the major component of soil organic matter (SOM),it is a determinant of soil physical and chemical properties, an important proxy for soil biological activity and a measure of soil productivity. Land use management that will enhance soil carbon (C) levels is therefore important for farmers and land use planners, particularly in semiarid and sub-humid Africa where severe soil degradation and desertifi...

  1. Transfer of reactive solutes in the unsaturated zone of soils at several observation scales; Transfert de solutes reactifs dans la zone non-saturee des sols a differentes echelles d'observation

    Energy Technology Data Exchange (ETDEWEB)

    Limousin, G

    2006-10-15

    The transfer of contaminants in the unsaturated zone of soils is driven by numerous mechanisms. Field studies are sometimes difficult to set up, and so the question is raised about the reliability of laboratory measurements for describing a field situation. The nuclear power plant at Brennilis (Finistere, France) has been chosen to study the transfer of strontium, cobalt and inert tracers in the soil of this industrial site. Several observation scales have been tested (batch, stirred flow-through reactor, sieved-soil column, un-repacked or repacked soil-core lysimeter, field experiments) in order to determine, at each scale, the factors that influence the transfer of these contaminants, then to verify the adequacy between the different observation scales and their field representativeness. Regarding the soil hydrodynamic properties, the porosity, the water content in the field, the pore water velocity at the water content in the field, the saturation hydraulic conductivity and the dispersion coefficient of this embanked soil are spatially less heterogeneous than those of agricultural or non-anthropic soils. The results obtained with lysimeter and field experiments suggest that hydrodynamics of this unstructured soil can be studied on a repacked sample if the volume is high compared to the rare big-size stones. Regarding the chemical soil-contaminant interactions, cobalt and strontium isotherms are non-linear at concentration higher than 10{sup -4} mol.L{sup -1}, cobalt adsorption and desorption are fast and independent on pH. On the contrary, at concentration lower than 3.5 x 10{sup -6} mol.L{sup -1}, cobalt and strontium isotherms are linear, cobalt desorption is markedly slower than adsorption and both cobalt partition coefficient at equilibrium and its reaction kinetics are highly pH-dependent. For both elements, the results obtained with batch, stirred flow-through reactor and sieved-soil column are in adequacy. However, strontium batch adsorption measurements

  2. Transfer of reactive solutes in the unsaturated zone of soils at several observation scales; Transfert de solutes reactifs dans la zone non-saturee des sols a differentes echelles d'observation

    Energy Technology Data Exchange (ETDEWEB)

    Limousin, G

    2006-10-15

    The transfer of contaminants in the unsaturated zone of soils is driven by numerous mechanisms. Field studies are sometimes difficult to set up, and so the question is raised about the reliability of laboratory measurements for describing a field situation. The nuclear power plant at Brennilis (Finistere, France) has been chosen to study the transfer of strontium, cobalt and inert tracers in the soil of this industrial site. Several observation scales have been tested (batch, stirred flow-through reactor, sieved-soil column, un-repacked or repacked soil-core lysimeter, field experiments) in order to determine, at each scale, the factors that influence the transfer of these contaminants, then to verify the adequacy between the different observation scales and their field representativeness. Regarding the soil hydrodynamic properties, the porosity, the water content in the field, the pore water velocity at the water content in the field, the saturation hydraulic conductivity and the dispersion coefficient of this embanked soil are spatially less heterogeneous than those of agricultural or non-anthropic soils. The results obtained with lysimeter and field experiments suggest that hydrodynamics of this unstructured soil can be studied on a repacked sample if the volume is high compared to the rare big-size stones. Regarding the chemical soil-contaminant interactions, cobalt and strontium isotherms are non-linear at concentration higher than 10{sup -4} mol.L{sup -1}, cobalt adsorption and desorption are fast and independent on pH. On the contrary, at concentration lower than 3.5 x 10{sup -6} mol.L{sup -1}, cobalt and strontium isotherms are linear, cobalt desorption is markedly slower than adsorption and both cobalt partition coefficient at equilibrium and its reaction kinetics are highly pH-dependent. For both elements, the results obtained with batch, stirred flow-through reactor and sieved-soil column are in adequacy. However, strontium batch adsorption measurements

  3. Impact of a high severity wildfire and two post-fire stabilisation treatments on the structure of the microbial community in a soil located in Laza (Ourense, NW Spain

    Directory of Open Access Journals (Sweden)

    A. Lombao

    2013-01-01

    Full Text Available Studies concerning the microbial communities in burnt soils have been focused on biochemical properties and, despite its interest, information about the microbial community structure is scarce. The aim of this study was to evaluate the short- and medium- term effects produced by a high severity fire and the application of post-fire stabilization methods (mulching and seeding in the structure of soil microbial population, determined by means of the analysis of phospholipid fatty acids (PLFA. The study was performed in a forest ecosystem affected by a high severity wildfire and highly susceptible to post-fire soil erosion (Laza, NW Spain. Samples were collected from the A horizon (0-2 cm immediately and 4, 8 and 12 months after the wildfire. The results of principal component analysis carried out with PLFA data make possible to differentiate between burnt and unburnt samples, indicating a clear effect of the wildfire on composition of microbial communities. Unburnt samples were characterized by the presence of fungal fatty acid as 18:2ω6, 18:1ω9 o 16:ω5, whereas fatty acid characteristics of actinomycetes tended to be higher in burnt samples than in the corresponding unburnt samples. The structure of microbial communities also varied with sampling time, confirming seasonal fluctuations of soil microbial parameters.

  4. Evaluation of the contamination for Hg and Pb in horticultural soils of the Bogota Savanna and of the effect of the Hg and Pb of the watering water and of the soils in several vegetables

    International Nuclear Information System (INIS)

    Vargas Zarate, Orlando; Mejia C, Leonidas

    1998-01-01

    Soils of six different horticultural zones of the Sabanna of Bogota were studied to quantify Hg and Pb accumulation in soils and crops caused by traditional and continuous irrigation with the highly polluted waters of Bogota River and its effluents. Soils of site No.6 representative of Rio Bogota is series (a fine clayed, mixed, isothermic family of aeric fluventic tropaquepts) was selected for greenhouse experiments conducted to show: a) The amounts of Hg and Pb absorbed by 3 different vegetables (lettuce, cucumber and carrots) grown under greenhouse conditions, irrigated with waters with variable Hg and Pb concentrations; b) the effects of increased levels of Hg and Pb in irrigation water on the accumulation level of both metals in soils at the harvest; and c) the individual effect and interactions of Hg and Pb on yields of each one vegetable. Results afforded this conclusions: 1) soils of all six sites have average Hg and Pb concentrations (0.5 and 110 ppm respectively) which exceed normal levels for soils (who, 1976); site 6 has the highest level of Hg and Pb accumulation (1.6 and 3.36 ppm); 2) for all three vegetables Hg and Pb accumulation level was almost proportional to Hg and Pb concentration in irrigation water; 3) Hg and Pb concentration in edible parts was different for each vegetable. Average contents of Hg and Pb were respectively 33 ppb and 172 ppm in lettuce; 24 ppb and 10 ppm in cucumber and 36 ppb and 48 ppm in carrots. Average absorption of Pb in lettuce was 17 times higher than in cucumber and 3.5 times higher than in carrots; Pb absorption levels widely surpass those recommended as permissible by WHO (1976) 4) high correlation coefficients were found between Hg and Pb absorption by lettuce (R=0.94 and 0.97 respectively), cucumber (R=0.89 and R=0.80 respectively) and carrots (R=0.99 y R=0.85 respectively) and the corresponding Hg and Pb accumulation levels in soils at harvest; 5) Effects of Hg and Pb levels in irrigation water on yields was

  5. Determination of mannitol sorbitol and myo-inositol in olive tree roots and rhizospheric soil by gas chromatography and effect of severe drought conditions on their profiles.

    Science.gov (United States)

    Mechri, Beligh; Tekaya, Meriem; Cheheb, Hechmi; Hammami, Mohamed

    2015-01-01

    This study reports a method for the analysis of mannitol, sorbitol and myo-inositol in olive tree roots and rhizospheric soil with gas chromatography. The analytical method consists of extraction with a mixture of dichloromethane:methanol (2:1, v/v) for soil samples and a mixture of ethanol:water (80:20) for root samples, silylation using pyridine, hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS). The recovery of mannitol sorbitol and myo-inositol (for extraction and analysis in dichloromethane:methanol and ethanol:water) was acceptable and ranged from 100.3 to 114.7%. The time of analysis was <24 min. Among identified polyols extracted from rhizosphere and roots of olive plants, mannitol was the major compound. A marked increase in mannitol content occurred in rhizosphere and roots of water-stressed plants, suggesting a much broader role of mannitol in stress response based on its ability to act as a compatible solute. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    Science.gov (United States)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  7. The Use of Ameliorant Fe3+ and Rock Phosphates in Peat Soil at Several Water Condition on the P Content of Plants Rice and Carbon Emission

    Directory of Open Access Journals (Sweden)

    Nelvia

    2009-09-01

    Full Text Available The addition of ameliorant Fe3+ and rock phosphates containing high Fe cation can reduce effect of toxic organic acids, increase peat stability through formation of complex compounds and reduce carbon emission. The research was conducted in the laboratory and green house of the Departement of Soil Science, Faculty of Agriculture, Bogor Agriculture University. Peat samples with hemic degree of decomposition were taken from Riau. Rock phosphates were taken from the rock phosphates of PT. Petrokimia Gresik, Christmas Island phosphates, and Huinan China and FeCl3.6H2O was used as the other Fe3+ source. The aims of the research were to study (a the effect of the applications of ameliorant Fe3+ and rock phosphates on the P content of plants dan (b the effect of the application ameliorant Fe3+ and the contribution of Fe cation in rock phosphates in the decrease of carbon emission. The results showed that the P content of plants rice increased 58 – 286% with the applications of ameliorant Fe3+ and rock phosphates. The estimation of carbon loss through CO2 and CH4 emissions from peats if planted continuously with rice was around 2.5, 2.2 and 2.6 Mg of C ha-1 year-1 respectively in field capacity condition, two times of field capacity condition, and 5 cm of saturated condition. The application of ameliorant Fe3+ and rock phosphates containing high Fe cation increased the stability of peats and reduced the carbon loss around 1.7 Mg of C ha-1 year-1 (64% in 5 cm of saturated condition, 1.3 Mg of C ha-1 year-1 (58% in two times of field capacity condition, and 1.0 Mg of C ha-1 year-1 (41% in field capacity condition.

  8. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil.

    Science.gov (United States)

    Frentiu, Tiberiu; Ponta, Michaela; Hategan, Raluca

    2013-03-01

    The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94-106% in atomic absorption and 97-103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6-5.2% in atomic absorption, similar with that of 1.9-6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric

  9. The long term response of stream flow to climatic warming in headwater streams of interior Alaska

    Science.gov (United States)

    Jeremy B. Jones; Amanda J. Rinehart

    2010-01-01

    Warming in the boreal forest of interior Alaska will have fundamental impacts on stream ecosystems through changes in stream hydrology resulting from upslope loss of permafrost, alteration of availability of soil moisture, and the distribution of vegetation. We examined stream flow in three headwater streams of the Caribou-Poker Creeks Research Watershed (CPCRW) in...

  10. Soil invertebrates as bioindicators of urban soil quality

    International Nuclear Information System (INIS)

    Santorufo, Lucia; Van Gestel, Cornelis A.M.; Rocco, Annamaria; Maisto, Giulia

    2012-01-01

    This study aimed at relating the abundance and diversity of invertebrate communities of urban soils to chemical and physical soil characteristics and to identify the taxa most sensitive or tolerant to soil stressors. The invertebrate community of five urban soils in Naples, Italy, was sampled. To assess soil quality invertebrate community indices (Shannon, Simpson, Menhinick and Pielou indices), Acarina/Collembola ratios, and the soil biological quality index (QBS) were calculated. The chemical and physical characteristics of the soils strongly differed. Abundance rather than taxa richness of invertebrates were more affected by soil characteristics. The community was more abundant and diverse in the soils with high organic matter and water content and low metal (Cu, Pb, Zn) concentrations. The taxa more resistant to the urban environment included Acarina, Enchytraeids, Collembola and Nematoda. Collembolans appeared particularly sensitive to changing soil properties. Among the investigated indices, QBS seems most appropriate for soil quality assessment. - Highlights: ► The abundance and diversity of invertebrate communities was related to properties and metal contents of urban soils. ► Several (biodiversity) indices were calculated and compared to evaluate soil quality. ► Metal contamination affected invertebrate density and diversity. ► The taxa more tolerant to metal contamination were Acarina, Enchytraeids, Collembola and Nematoda. ► The soil biological quality index QBS index was most appropriate for soil quality assessment. - Soil metal contamination negatively affected soil invertebrate abundance and diversity.

  11. Forest soils

    Science.gov (United States)

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  12. Soil and Soil Water Relationships

    OpenAIRE

    Easton, Zachary M.; Bock, Emily

    2017-01-01

    Discusses the relationships between soil, water and plants. Discusses different types of soil, and how these soils hold water. Provides information about differences in soil drainage. Discusses the concept of water balance.

  13. Efeito de lodo de esgoto sobre patógenos habitantes do solo e severidade de oídio da soja Effect of sewage sludge in soil-borne pathogens and powdery mildew severity in soybean

    Directory of Open Access Journals (Sweden)

    Fabio Fernando de Araújo

    2009-09-01

    ântulas de soja, nos três cultivos, foi inversamente proporcional à concentração do lodo de Franca, sendo totalmente inibida na concentração de 20%. Nos estudos com R. solani não foram observados efeitos da aplicação do lodo da ETE de Franca sobre o tombamento e a severidade. No primeiro cultivo a resposta ao tombamento foi quadrática para o lodo Barueri, sendo que ocorreu aumento nas concentrações de 1N e 2N, e redução na concentração 4N. No segundo cultivo ocorreu aumento nos índices de tombamento de plantas em relação ao primeiro, com resposta quadrática para o lodo Barueri, mas com ponto de inflexão mínimo na concentração de 1N, sendo que para a concentração 8N o tombamento foi semelhante à testemunha. A severidade da doença no colo das plantas manteve a mesma resposta quadrática para o lodo de Barueri nos dois cultivos, com ponto de máximo na dose 4N. Para M. phaseolina a incidência da doença foi inversamente proporcional à concentração do lodo de Franca. Dessa forma, os resultados não permitem conclusão sobre a indução de supressividade à R. solani e M. phaseolina.Sewage sludge, complying with environmental demands, has potential for use in agriculture. The incorporation of sewage sludge may changes the chemical, physical and biological soil properties, for being rich in macro and micronutrients and organic matter. These changes can provide benefits such as the increase in the availability of nutrients for plants, and the induction of suppressiveness to soilborne plant pathogens and resistance to foliar diseases. However, it may influence negatively the biological and chemical balance of the soil, due to the presence of contaminants. The objective of this work was to evaluate the effect of sewage sludge on the severity soybean (Glycine max powdery mildew (Erysiphe diffusa and on suppressiveness to Rhizoctonia solani and Macrophomina phaseolina The experiments used soil which received four successive applications of sewage sludge

  14. Soil invertebrate fauna affect N2O emissions from soil

    NARCIS (Netherlands)

    Kuiper, I.; Deyn, de G.B.; Thakur, M.P.; Groenigen, van J.W.

    2013-01-01

    Nitrous oxide (N2O) emissions from soils contribute significantly to global warming. Mitigation of N2O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses – a possible role for soil fauna

  15. Pesticide-soil microflora interactions in flooded rice soils

    International Nuclear Information System (INIS)

    Sethunathan, N.; Siddaramappa, R.; Siddarame Gowda, T.K.; Rajaram, K.P.; Barik, S.; Rao, V.R.

    1976-01-01

    Isotope studies revealed that gamma and beta isomers of HCH (hexachlorocyclohexane) decomposed rapidly in nonsterile soils capable of attaining redox potentials of -40 to -100mV within 20 days after flooding. Degradation was slow, however, in soils low in organic matter and in soils with extremely low pH and positive potentials, even after several weeks of flooding. Under flooded conditions, endrin decomposed to six metabolites in most soils. There is evidence that biological hydrolysis of parathion is more widespread than hitherto believed, particularly under flooded soil conditions. Applications of benomyl (fungicide) to a simulated-oxidized zone of flooded soils favoured heterotrophic nitrification. (author)

  16. Soils [Chapter 4.2

    Science.gov (United States)

    Daniel G. Neary; Johannes W. A. Langeveld

    2015-01-01

    Soils are crucial for profitable and sustainable biomass feedstock production. They provide nutrients and water, give support for plants, and provide habitat for enormous numbers of biota. There are several systems for soil classification. FAO has provided a generic classification system that was used for a global soil map (Bot et al., 2000). The USDA Natural Resources...

  17. SOIL Geo-Wiki: A tool for improving soil information

    Science.gov (United States)

    Skalský, Rastislav; Balkovic, Juraj; Fritz, Steffen; See, Linda; van der Velde, Marijn; Obersteiner, Michael

    2014-05-01

    Crowdsourcing is increasingly being used as a way of collecting data for scientific research, e.g. species identification, classification of galaxies and unravelling of protein structures. The WorldSoilProfiles.org database at ISRIC is a global collection of soil profiles, which have been 'crowdsourced' from experts. This system, however, requires contributors to have a priori knowledge about soils. Yet many soil parameters can be observed in the field without specific knowledge or equipment such as stone content, soil depth or color. By crowdsourcing this information over thousands of locations, the uncertainty in current soil datasets could be radically reduced, particularly in areas currently without information or where multiple interpretations are possible from different existing soil maps. Improved information on soils could benefit many research fields and applications. Better soil data could enhance assessments of soil ecosystem services (e.g. soil carbon storage) and facilitate improved process-based ecosystem modeling from local to global scales. Geo-Wiki is a crowdsourcing tool that was developed at IIASA for land cover validation using satellite imagery. Several branches are now available focused on specific aspects of land cover validation, e.g. validating cropland extent or urbanized areas. Geo-Wiki Pictures is a smart phone application for collecting land cover related information on the ground. The extension of Geo-Wiki to a mobile environment provides a tool for experts in land cover validation but is also a way of reaching the general public in the validation of land cover. Here we propose a Soil Geo-Wiki tool that builds on the existing functionality of the Geo-Wiki application, which will be largely designed for the collection and sharing of soil information. Two distinct applications are envisaged: an expert-oriented application mainly for scientific purposes, which will use soil science related language (e.g. WRB or any other global reference

  18. Soil algae

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Also, the importance of algae in soil formation and soil fertility improvement cannot be over ... The presence of nitrogen fixing microalgae (Nostoc azollae) in the top soil of both vegetable ..... dung, fish food and dirty water from fish ponds on.

  19. Soil degradation effect on biological activity in Mediterranean calcareous soils

    Science.gov (United States)

    Roca-Pérez, L.; Alcover-Sáez, S.; Mormeneo, S.; Boluda, R.

    2009-04-01

    Soil degradation processes include erosion, organic matter decline, compaction, salinization, landslides, contamination, sealing and biodiversity decline. In the Mediterranean region the climatological and lithological conditions, together with relief on the landscape and anthropological activity are responsible for increasing desertification process. It is therefore considered to be extreme importance to be able to measure soil degradation quantitatively. We studied soil characteristics, microbiological and biochemical parameters in different calcareous soil sequences from Valencia Community (Easter Spain), in an attempt to assess the suitability of the parameters measured to reflect the state of soil degradation and the possibility of using the parameters to assess microbiological decline and soil quality. For this purpose, forest, scrubland and agricultural soil in three soil sequences were sampled in different areas. Several sensors of the soil biochemistry and microbiology related with total organic carbon, microbial biomass carbon, soil respiration, microorganism number and enzyme activities were determined. The results show that, except microorganism number, these parameters are good indicators of a soil biological activity and soil quality. The best enzymatic activities to use like indicators were phosphatases, esterases, amino-peptidases. Thus, the enzymes test can be used as indicators of soil degradation when this degradation is related with organic matter losses. There was a statistically significant difference in cumulative O2 uptake and extracellular enzymes among the soils with different degree of degradation. We would like to thank Spanish government-MICINN for funding and support (MICINN, project CGL2006-09776).

  20. Mass Transport within Soils

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated

  1. Soil mechanics and analysis of soils overlying cavitose bedrock

    International Nuclear Information System (INIS)

    Drumm, E.C.

    1987-08-01

    The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs

  2. Soil pollution and soil protection

    OpenAIRE

    Haan, de, F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international Training Centre (PHLO) of Wageningen Agricultural University.Of the three environmental compartments air, water and soil, it is soil that varies most in composition under natural conditions. The effects o...

  3. Soil functional types: surveying the biophysical dimensions of soil security

    Science.gov (United States)

    Cécillon, Lauric; Barré, Pierre

    2015-04-01

    climate) for a particular soil-provided ecosystem service (e.g. climate regulation)". One SFT can thus include several soil types having the same functionality for a particular soil-provided ES. Another consequence is that SFT maps for two different ES may not superimpose over the same area, since some soils may fall in the same SFT for a service and in different SFT for another one. Soil functional types could be assessed and monitored in space and time by a combination of soil functional traits that correspond to inherent and manageable properties of soils. Their metrology would involve either classic (pedological observations) or advanced (molecular ecology, spectrometry, geophysics) tools. SFT could be studied and mapped at all scales, depending on the purpose of the soil security assessment (e.g. global climate modeling, land planning and management, biodiversity conservation). Overall, research is needed to find a pathway from soil pedological maps to SFT maps which would yield important benefits towards the assessment and monitoring of soil security. Indeed, this methodology would allow (i) reducing the spatial uncertainty on the assessment of ES; (ii) identifying and mapping multifunctional soils, which may be the most important soil resource to preserve. References [1] McBratney et al., 2014. Geoderma 213:203-213. [2] Droogers P, Bouma J, 1997. SSSAJ 61:1704-1710.

  4. Solarization soil

    International Nuclear Information System (INIS)

    Abou Ghraibe, W.

    1995-01-01

    Solar energy could be used in pest control, in soil sterilization technology. The technique consists of covering humid soils by plastic films steadily fixed to the soil. Timing must be in summer during 4-8 weeks, where soil temperature increases to degrees high enough to control pests or to produce biological and chemical changes. The technique could be applied on many pests soil, mainly fungi, bacteria, nematods, weeds and pest insects. The technique could be used in greenhouses as well as in plastic film covers or in orchards where plastic films present double benefits: soil sterilization and production of black mulch. Mechanism of soil solarization is explained. Results show that soil solarization can be used in pest control after fruit crops cultivation and could be a method for an integrated pest control. 9 refs

  5. Progress towards GlobalSoilMap.net soil database of Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mogens Humlekrog

    2012-01-01

    Denmark is an agriculture-based country where intensive mechanized cultivation has been practiced continuously for years leading to serious threats to the soils. Proper use and management of Danish soil resources, modeling and soil research activities need very detailed soil information. This study...... presents recent advancements in Digital Soil Mapping (DSM) activities in Denmark with an example of soil clay mapping using regression-based DSM techniques. Several environmental covariates were used to build regression rules and national scale soil prediction was made at 30 m resolution. Spatial...... content mapping, the plans for future soil mapping activities in support to GlobalSoilMap.net project initiatives are also included in this paper. Our study thought to enrich and update Danish soil database and Soil information system with new fine resolution soil property maps....

  6. Sustainable agriculture and soil conservation

    DEFF Research Database (Denmark)

    Olsen, Preben; Dubgaard, Alex

    , sandy soils in the West, (that had not been covered by ice) from more fertile soils being mostly sandy loams and finer textured soils covering the Eastern part of the study area. Several geological features such as pitting due to dead ice formation, smaller, terminal moraines in association with melt......, separate the moraine plateau. From the plateau several, minor erosion valleys, formed at the end of the glaciation some 10,000 years ago, feed into the two valleys. Very accurate soil type information is available for the area as intensive measurements within the area has formed the basis for a new...... methodology for soil classification in Denmark. The soil survey included a detailed mapping at field level, using the electromagnetic sensor, EM38. A high-resolution digital elevation model, obtained by use of laser scanning, is available for the study area. The original scanning has a horizontal resolution...

  7. Soils - Volusia County Soils (Polygons)

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Soils: 1:24000 SSURGO Map. Polygon boundaries of Soils in Volusia County, downloaded from SJRWMD and created by NRCS and SJRWMD. This data set is a digital version...

  8. Soil microbiology and soil health assessment

    Science.gov (United States)

    Soil scientists have long recognized the importance of soil biology in ecological health. In particular, soil microbes are crucial for many soil functions including decomposition, nutrient cycling, synthesis of plant growth regulators, and degradation of synthetic chemicals. Currently, soil biologis...

  9. Soil metagenomics and tropical soil productivity

    OpenAIRE

    Garrett, Karen A.

    2009-01-01

    This presentation summarizes research in the soil metagenomics cross cutting research activity. Soil metagenomics studies soil microbial communities as contributors to soil health.C CCRA-4 (Soil Metagenomics)

  10. Soil pollution and soil protection

    NARCIS (Netherlands)

    Haan, de F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international

  11. Effects of soil and water conservation practices on selected soil ...

    African Journals Online (AJOL)

    Although different types of soil and water conservation practices (SWCPs) were introduced, the sustainable use of these practices is far below expectations, and soil erosion continues to be a severe problem in Ethiopia. Therefore, this study was conducted at Debre Yakobe Micro-Watershed (DYMW), Northwest Ethiopia ...

  12. Soil-ecological risks for soil degradation estimation

    Science.gov (United States)

    Trifonova, Tatiana; Shirkin, Leonid; Kust, German; Andreeva, Olga

    2016-04-01

    Soil degradation includes the processes of soil properties and quality worsening, primarily from the point of view of their productivity and decrease of ecosystem services quality. Complete soil cover destruction and/or functioning termination of soil forms of organic life are considered as extreme stages of soil degradation, and for the fragile ecosystems they are normally considered in the network of their desertification, land degradation and droughts /DLDD/ concept. Block-model of ecotoxic effects, generating soil and ecosystem degradation, has been developed as a result of the long-term field and laboratory research of sod-podzol soils, contaminated with waste, containing heavy metals. The model highlights soil degradation mechanisms, caused by direct and indirect impact of ecotoxicants on "phytocenosis- soil" system and their combination, frequently causing synergistic effect. The sequence of occurring changes here can be formalized as a theory of change (succession of interrelated events). Several stages are distinguished here - from heavy metals leaching (releasing) in waste and their migration downward the soil profile to phytoproductivity decrease and certain phytocenosis composition changes. Phytoproductivity decrease leads to the reduction of cellulose content introduced into the soil. The described feedback mechanism acts as a factor of sod-podzolic soil self-purification and stability. It has been shown, that using phytomass productivity index, integrally reflecting the worsening of soil properties complex, it is possible to solve the problems dealing with the dose-reflecting reactions creation and determination of critical levels of load for phytocenosis and corresponding soil-ecological risks. Soil-ecological risk in "phytocenosis- soil" system means probable negative changes and the loss of some ecosystem functions during the transformation process of dead organic substance energy for the new biomass composition. Soil-ecological risks estimation is

  13. Soil organic matter and soil biodiversity spots in urban and semi urban soils of southeast Mexico

    Science.gov (United States)

    Huerta, Esperanza

    2015-04-01

    We have observed how the constant use of compost or vermicompost has created spots of soil restoration in urban and semiurban soils of Chiapas (Huitepec and Teopisca), increasing soil organic matter amount, soil moisture and soil porosity, and enhancing then the presence of soil biodiversity; for example, in a Milpa with vermicompost (polyculture of Zea mays with Curcubita pepo, and Fasolius vulgaris) we have found a high density of an epigeic earthworm (640 ind.m2), Dichogaster bolahui, not present in the same type of soil just some meters of distance, in an Oak forest, where soil macroinvertebrates abundance decreased drastically. In another ecosystem within a Persea Americana culture, we found how above and below ground soil biodiversity is affected by the use of vermicompost, having clearly different microcosmos with and without vermicompost (30-50% more micro and macro invertebrates with vermicompost). So now in Campeche, within those soils that are classified by the mayas as tzequel, soils not use for agriculture, we have implemented home gardens and school gardens by the use of compost of vermicomposts in urban and semiurban soils. In school gardens (mainly primary schools) students have cultivated several plants with alimentary purposes; teachers have observed how the increase of soil biodiversity by the use of compost or vermicompost has enhanced the curiosity of children, even has promoted a more friendly behavior among students, they have learned how to do compost and how to apply it. Urban and semiurban soils can be modified by the use of compost and vermicompost, and soil biodiversity has extremely increased.

  14. Thermal remediation alters soil properties - a review.

    Science.gov (United States)

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Khan, Eakalak; Wick, Abbey F

    2018-01-15

    Contaminated soils pose a risk to human and ecological health, and thermal remediation is an efficient and reliable way to reduce soil contaminant concentration in a range of situations. A primary benefit of thermal treatment is the speed at which remediation can occur, allowing the return of treated soils to a desired land use as quickly as possible. However, this treatment also alters many soil properties that affect the capacity of the soil to function. While extensive research addresses contaminant reduction, the range and magnitude of effects to soil properties have not been explored. Understanding the effects of thermal remediation on soil properties is vital to successful reclamation, as drastic effects may preclude certain post-treatment land uses. This review highlights thermal remediation studies that have quantified alterations to soil properties, and it supplements that information with laboratory heating studies to further elucidate the effects of thermal treatment of soil. Notably, both heating temperature and heating time affect i) soil organic matter; ii) soil texture and mineralogy; iii) soil pH; iv) plant available nutrients and heavy metals; v) soil biological communities; and iv) the ability of the soil to sustain vegetation. Broadly, increasing either temperature or time results in greater contaminant reduction efficiency, but it also causes more severe impacts to soil characteristics. Thus, project managers must balance the need for contaminant reduction with the deterioration of soil function for each specific remediation project. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of thallium in cement oven dusts on the growth and thallium uptake of several culture plants for the determination of thallium thresholds in plants and soils. Wirkung des Thallium in Zementofenstaeuben auf Wachstum und Thallium-Aufnahme mehrerer Kulturpflanzen zur Ermittlung von Thallium-Grenzwerten in Pflanzen und Boeden

    Energy Technology Data Exchange (ETDEWEB)

    Makridis, H

    1987-02-27

    After preliminary experiments in the methodology of Tl-analysis in plants and soils, phytotoxic Tl-concentrations and specific toxicity symptoms of different crops (beans, rape) have been determined in hydroponic culture with TlCl/sub 3/.H/sub 2/O. In pot experiments, critical Tl-levels were evaluated with regard to yield and Tl-uptake of plants on different soils, as a basis for the classification of soilcontamination by Tl originating form cement klink dust. The latter is a main source of Tl-emissions. Thus, several dusts with differing Tl-concentrations were tested in extensive two-year pot-experiments with different plants, and critical levels for lime- and potash- containing dusts have been elaborated. (orig./MG)

  16. Soil friability

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl

    2011-01-01

    This review gathers and synthesizes literature on soil friability produced during the last three decades. Soil friability is of vital importance for crop production and the impact of crop production on the environment. A friable soil is characterized by an ease of fragmentation of undesirably large...... aggregates/clods and a difficulty in fragmentation of minor aggregates into undesirable small elements. Soil friability has been assessed using qualitative field methods as well as quantitative field and laboratory methods at different scales of observation. The qualitative field methods are broadly used...... by scientists, advisors and farmers, whereas the quantitative laboratory methods demand specialized skills and more or less sophisticated equipment. Most methods address only one aspect of soil friability, i.e. either the strength of unconfined soil or the fragment size distribution after applying a stress. All...

  17. Soil Erosion and Agricultural Sustainability

    Science.gov (United States)

    Montgomery, D. R.

    2009-04-01

    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system

  18. Efeito da adição de diferentes fontes de cálcio no movimento de cátions em colunas de solo Effect of several calcium sources on cation leaching using soil columns

    Directory of Open Access Journals (Sweden)

    I.C. de Maria

    1993-05-01

    Full Text Available No estudo realizado em colunas de solo montadas em laboratório, procurou-se avaliar o movimento do cálcio, e de outros cátions, após aplicação de calcário agrícola, gesso, calcário calcinado e uma mistura de calcário agrícola e gesso, comparados com um tratamento testemunha, em dois latossolos vermelho escuros de texturas diferentes: média e argilosa. Utilizaram-se colunas de PVC, com 5cm de diâmetro e 45cm de altura, e aplicaram-se em cada coluna 1,8 litros de água, parcelados em quatro vezes. Determinaram-se os cátions trocáveis presentes na água percolada e, no final do experimento, em cinco profundidades de cada solo. Os resultados mostraram que nos tratamentos gesso e calcário mais gesso as quantidades de Ca2+, Mg2+, K+ e Al3+ na solução percolada foram maiores, enquanto que os tratamentos calcário agrícola e calcário calcinado não promoveram perdas significativas de cátions. As maiores perdas ocorreram na primeira percolação no solo de textura média e na segunda no solo de textura argilosa. O gesso não modificou o pH dos solos, mas reduziu teores de bases no solo argiloso, enquanto que os calcários corrigiram o solo apenas próximo à camada de incorporação.Soil columns under controlled conditions were used to determine the movement of calcium and other cations after the application of lime, calcium oxide, gypsum and a mixture of Ume and gypsum, compared with a control treatment. Two Oxisols with different textures were used: clayey and silty. Rigid polyvinyl chloride (PVC columns (length, 45cm; diam, 5cm were used, applying 1.8 1 of water to each divided into four applications. Exchangeable cations were determined in the drainage water in 4 periods and in 5 dephts of the soil columns at the end of the experiment. The results showed that losses of Ca2+, Mg2+, K+ and A1(3+, were higher in the treatments with gypsum and lime plus gypsum. Amendments h'ke lime and calcium oxide did not promote significant losses

  19. Soil Mechanics

    OpenAIRE

    Verruijt, A.

    2010-01-01

    This book is the text for the introductory course of Soil Mechanics in the Department of Civil Engineering of the Delft University of Technology, as I have given from 1980 until my retirement in 2002. It contains an introduction into the major principles and methods of soil mechanics, such as the analysis of stresses, deformations, and stability. The most important methods of determining soil parameters, in the laboratory and in situ, are also described. Some basic principles of applied mecha...

  20. Soil structure characterized using computed tomographic images

    Science.gov (United States)

    Zhanqi Cheng; Stephen H. Anderson; Clark J. Gantzer; J. W. Van Sambeek

    2003-01-01

    Fractal analysis of soil structure is a relatively new method for quantifying the effects of management systems on soil properties and quality. The objective of this work was to explore several methods of studying images to describe and quantify structure of soils under forest management. This research uses computed tomography and a topological method called Multiple...

  1. Phytoremediation of Soil Trace Elements

    Science.gov (United States)

    Phytoremediation includes several distinct approaches to using plants to achieve soil remediation goals. Phytoextraction uses rare hyperaccumulator plants to accumulate in their shoots enough metals per year to achieve decontamination goals. Phytomining uses hyperaccumulators and biomass burn to pro...

  2. A soil mechanics approach to study soil compaction and traffic effect on the preconsolidation pressure of tropical soils

    International Nuclear Information System (INIS)

    Dias Junior, Moacir de Souza

    2004-01-01

    Several researchers have already demonstrated the causes and the effects of soil compaction. These studies showed that the soil compaction is a limiting factor in the agricultural production. The attributes of the soil conventionally monitored has not been capable to quantify the load support capacity of the soil, not allowing to foresee the levels of pressures that can be applied to the soils at different moisture conditions without additional soil compaction (structure degradation) happens. The researches done in the soil compressive behaviour of some tropical soils indicate that the pre-compression stress may be used as an alternative measure of the load support capacity and as a quantitative indicator of the structure sustainability of the tropical soils

  3. Pedoinformatics Approach to Soil Text Analytics

    Science.gov (United States)

    Furey, J.; Seiter, J.; Davis, A.

    2017-12-01

    The several extant schema for the classification of soils rely on differing criteria, but the major soil science taxonomies, including the United States Department of Agriculture (USDA) and the international harmonized World Reference Base for Soil Resources systems, are based principally on inferred pedogenic properties. These taxonomies largely result from compiled individual observations of soil morphologies within soil profiles, and the vast majority of this pedologic information is contained in qualitative text descriptions. We present text mining analyses of hundreds of gigabytes of parsed text and other data in the digitally available USDA soil taxonomy documentation, the Soil Survey Geographic (SSURGO) database, and the National Cooperative Soil Survey (NCSS) soil characterization database. These analyses implemented iPython calls to Gensim modules for topic modelling, with latent semantic indexing completed down to the lowest taxon level (soil series) paragraphs. Via a custom extension of the Natural Language Toolkit (NLTK), approximately one percent of the USDA soil series descriptions were used to train a classifier for the remainder of the documents, essentially by treating soil science words as comprising a novel language. While location-specific descriptors at the soil series level are amenable to geomatics methods, unsupervised clustering of the occurrence of other soil science words did not closely follow the usual hierarchy of soil taxa. We present preliminary phrasal analyses that may account for some of these effects.

  4. Soil Science and Global Issues

    Science.gov (United States)

    Lal, Rattan

    2015-04-01

    Sustainable management of soil is integral to any rational approach to addressing global issues of the 21st century. A high quality soil is essential to: i) advancing food and nutritional security, ii) mitigating and adapting to climate change, iii) improving quality and renewability of water, iv) enriching biodiversity, v) producing biofuel feedstocks for reducing dependence on fossil fuel, and vi) providing cultural, aesthetical and recreational opportunities. Being the essence of all terrestrial life, soil functions and ecosystem services are essential to wellbeing of all species of plants and animals. Yet, soil resources are finite, unequally distributed geographically, and vulnerable to degradation by natural and anthropogenic perturbations. Nonetheless, soil has inherent resilience, and its ecosystem functions and services can be restored over time. However, soil resilience depends on several key soil properties including soil organic carbon (SOC) concentration and pool, plant-available water capacity (PWAC), nutrient reserves, effective rooting depth, texture and clay mineralogy, pH, cation exchange capacity (CEC) etc. There is a close inter-dependence among these properties. For example, SOC concentration strongly affects, PWAC, nutrient reserve, activity and species diversity of soil flora and fauna, CEC etc. Thus, judicious management of SOC concentration to maintain it above the threshold level (~1.5-2%) in the root zone is critical to sustaining essential functions and ecosystem services. Yet, soils of some agroecosystems (e.g., those managed by resources-poor farmers and small landholders in the tropics and sub-tropics) are severely depleted of their SOC reserves. Consequently. Agronomic productivity and wellbeing of people dependent on degraded soils is jeopardized. The ecosystem C pool of the terrestrial biosphere has been mined by extractive practices, the nature demands recarbonization of its biosphere for maintenance of its functions and

  5. Soil Solution

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The characteristics of the soil solution in the root environment in the greenhouse industry differ much from those for field grown crops. This is caused firstly by the growing conditions in the greenhouse, which strongly differ from those in the field and secondly the function attributed to the soil

  6. Fire severity classification: Uses and abuses

    Science.gov (United States)

    Theresa B. Jain; Russell T. Graham

    2003-01-01

    Burn severity (also referred to as fire severity) is not a single definition, but rather a concept and its classification is a function of the measured units unique to the system of interest. The systems include: flora and fauna, soil microbiology and hydrologic processes, atmospheric inputs, fire management, and society. Depending on the particular system of interest...

  7. Soil washing

    International Nuclear Information System (INIS)

    Neuman, R.S.; Diel, B.N.; Halpern, Y.

    1992-01-01

    Disposal of soils or sludges contaminated with organic and inorganic compounds is a major problem for environmental remedial activities, hazardous waste generators, and the disposal industry. This paper reports that many of these wastes can be effectively treated utilizing soil washing technology. CWM has been developing soil washing technology over the past few years, with extensive work being conducted on the bench scale. These studies have demonstrated consistently high removal efficiencies (95-99%) for a wide variety of PCB and petroleum hydrocarbon contaminated waste. Recently, a comprehensive study examining the removal of both organic and inorganic contraminants from two different types of surrogate soil matrices was completed. In addition to establishing the range of contaminants that can be removed from soil, a method for surfactant/water separation was evaluated. For example, using a thermal phase separation method, approximately 90% of the surfactant could be recovered from the water

  8. Soil Forming Factors

    Science.gov (United States)

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil Forming Factors 2 A Top to Bottom Guide 3 Making a Soil Monolith 4 Soil Orders 5 State Soil Monoliths 6 Where in the Soil World Are You? >> A Top to

  9. What is Soil?

    Science.gov (United States)

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil? 2 The Skin of the Earth 3 Soil Ingredients 4 Soil Recipes 5 CLORPT for Short >> What Is Soil? Soils Make Life Plants grow in and from

  10. Alguns estudos preliminares sôbre possíveis problemas de fertilidade, em solos de diferentes campos cerrados de São Paulo e Goiás Some preliminary studies on fertility problems of soils from several "campos cerrados" in São Paulo and Goiás

    Directory of Open Access Journals (Sweden)

    A. C. McClung

    1958-01-01

    Full Text Available Êste trabalho representa uma primeira contribuição para o estudo da fertilidade dos solos de campos cerrados. Tais solos, que ocupam importante superfície do território nacional, apresentam muitas vezes boas propriedades físicas e regulares disponibilidades de água, que parecem estar em desacôrdo com a pobreza da vegetação nêles desenvolvida. Uma deficiência ou um agudo desequilíbrio de nutrientes deve, pois, estar envolvido. De fato, a cultura em vasos permitiu verificar uma acentuada deficiência em fósforo nas amostras estudadas, assim como um menor crescimento do capim que não recebeu nitrogênio. A produção foi também menor em todos os quatro solos de Goiás, quando se omitiram, num tratamento, enxôfre, cobre, zinco, ferro, boro e molibdênio.Evidence of severe phosphorus deficiency was found in grasses and legumes grown in pot culture on six soils from "campos cerrados" in São Paulo and Goiás. The minus-phosphorus treatment in most cases produced only 5 to 10% as much growth as the complete treatment. Dry matter production by pangola grass was lower on all four soils from Goiás when the elements iron, zinc, copper, boron, sulfur and molybdenum were omitted from the fertilizer misture. Similar results were obtained for alfafa on one soil from São Paulo. The data do not indicate which of these elements were involved in this response. Less growth of grass ocurred when nitrogen was omitted, but in no case, either with grasses or legumes, did the omission of potassium have a measurable effect on dry matter production. Omission of lime resulted in reduced growth of alfafa and soybeans, and, on one soil, of Pangola grass.

  11. Interpreting diel hysteresis between soil respiration and temperature

    Science.gov (United States)

    C. Phillips; N. Nickerson; D. Risk; B.J. Bond

    2011-01-01

    Increasing use of automated soil respiration chambers in recent years has demonstrated complex diel relationships between soil respiration and temperature that are not apparent from less frequent measurements. Soil surface flux is often lagged from soil temperature by several hours, which results in semielliptical hysteresis loops when surface flux is plotted as a...

  12. Using synthetic polymers to reduce soil erosion after forest fires in Mediterranean soils

    Science.gov (United States)

    Lado, Marcos; Ben-Hur, Meni; Inbar, Assaf

    2010-05-01

    Forest fires are a major environmental problem in the Mediterranean region because they result in a loss of vegetation cover, changes in biodiversity, increases in greenhouse gasses emission and a potential increase of runoff and soil erosion. The large increases in runoff and sediment yields after high severity fires have been attributed to several factors, among them: increase in soil water repellency; soil sealing by detached particles and by ash particles, and the loss of a surface cover. The presence of a surface cover increases infiltration, and decreases runoff and erosion by several mechanisms which include: rainfall interception, plant evapotranspiration, preservation of soil structure by increasing soil organic matter, and increasing surface roughness. The loss of vegetation cover as a result of fire leaves the surface of the soil exposed to the direct impact of the raindrops, and therefore the sensitivity of the soil to runoff generation and soil loss increases. In this work, we propose a new method to protect soils against post-fire erosion based on the application of synthetic polymers to the soil. Laboratory rainfall simulations and field runoff plots were used to analyze the suitability of the application of synthetic polymers to reduce soil erosion and stabilize soil structure in Mediterranean soils. The combination of these two processes will potentially favor a faster recovery of the vegetation structure. This method has been successfully applied in arable land, however it has not been tested in burnt forests. The outcome of this study may provide important managerial tools for forest management following fires.

  13. Agriculture: Soils

    Science.gov (United States)

    Productive soils, a favorable climate, and clean and abundant water resources are essential for growing crops, raising livestock, and for ecosystems to continue to provide the critical provisioning services that humans need.

  14. Identification of optimal soil hydraulic functions and parameters for predicting soil moisture

    Science.gov (United States)

    We examined the accuracy of several commonly used soil hydraulic functions and associated parameters for predicting observed soil moisture data. We used six combined methods formed by three commonly used soil hydraulic functions – i.e., Brooks and Corey (1964) (BC), Campbell (19...

  15. SoilGrids1km— global soil information based on automated mapping

    NARCIS (Netherlands)

    Hengl, T.; Mendes de Jesus, J.S.; Macmillan, R.A.; Batjes, N.H.; Heuvelink, G.B.M.; Carvalho Ribeiro, E.D.; Samuel Rosa, A.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Ruiperez Gonzalez, M.

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited

  16. Tunnelling in Soft Soil : Tunnel Boring Machine Operation and Soil Response

    NARCIS (Netherlands)

    Festa, D.; Broere, W.; Bosch, J.W.

    2013-01-01

    Constructing tunnels in soft soil with the use of Tunnel Boring Machines may induce settlements including soil movements ahead of the face, soil relaxation into the tail void, possible heave due to grouting, long lasting consolidation processes, and potentially several other mechanisms. A

  17. Soil solution and extractable soil nitrogen response to climate change in two boreal forest ecosystems

    NARCIS (Netherlands)

    Verburg, P.H.

    2005-01-01

    Several studies show that increases in soil temperature result in higher N mineralization rates in soils. It is, however, unclear if additional N is taken up by the vegetation or accumulates in the soil. To address this question two small, forested catchments in southern Norway were experimentally

  18. Lunar soil as shielding against space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. [Lawrence Berkeley National Laboratory, MS 83R0101, 1 Cyclotron Road, Berkeley, CA 94720 (United States)], E-mail: miller@lbl.gov; Taylor, L. [Planetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 (United States); Zeitlin, C. [Southwest Research Institute, Boulder, CO 80302 (United States); Heilbronn, L. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Guetersloh, S. [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); DiGiuseppe, M. [Northrop Grumman Corporation, Bethpage, NY 11714 (United States); Iwata, Y.; Murakami, T. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2009-02-15

    We have measured the radiation transport and dose reduction properties of lunar soil with respect to selected heavy ion beams with charges and energies comparable to some components of the galactic cosmic radiation (GCR), using soil samples returned by the Apollo missions and several types of synthetic soil glasses and lunar soil simulants. The suitability for shielding studies of synthetic soil and soil simulants as surrogates for lunar soil was established, and the energy deposition as a function of depth for a particular heavy ion beam passing through a new type of lunar highland simulant was measured. A fragmentation and energy loss model was used to extend the results over a range of heavy ion charges and energies, including protons at solar particle event (SPE) energies. The measurements and model calculations indicate that a modest amount of lunar soil affords substantial protection against primary GCR nuclei and SPE, with only modest residual dose from surviving charged fragments of the heavy beams.

  19. Soil compaction and growth of woody plants

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, T.T. [Univ. of California, Berkeley (United States). Dept. of Environmental Science, Policy and Management

    1999-07-01

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased

  20. Soil compaction and growth of woody plants

    International Nuclear Information System (INIS)

    Kozlowski, T.T.

    1999-01-01

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased

  1. Reduction in soil loss from erosion-susceptible soils amended with humic substances from oxidized coal

    International Nuclear Information System (INIS)

    Piccolo, A.; Pietramellara, G.; Mbagwu, J.S.C.

    1997-01-01

    Soils that pose high risk of erosion require amendment with either natural or synthetic soil conditioners to reduce soil loss hazards. The objective of this study was to evaluate the potential of using coal-derived humic substances (as soil conditioners) to reduce runoff erosion on erosion-susceptible soils. Surface samples of severely degraded soils from Principina in Tuscany and Bovolone in Venice in Italy were used to assess the effects of five rates (0, 0.05, 0.01, 0.50 and 1.00 g/kg) of humic acids (HA) on soil loss and other hydrological parameters. The results showed that amending erosion-susceptible soils with low rates of coal-derived humic substances is a potentially effective soil management practice for reducing erosion rates

  2. Mechanisms controlling radionuclide mobility in forest soils

    International Nuclear Information System (INIS)

    Delvaux, B.; Kruyts, N.; Maes, E.; Agapkina, G.I.; Kliashtorin, A.; Bunzl, K.; Rafferty, B.

    1996-01-01

    Soil processes strongly influence the radionuclide mobility in soils. The mobility of radionuclides in forest soils is governed by several processes involving both abiotic and biotic factors. The sorption-desorption process chiefly governs the activity of radionuclides in the soil solution, hence thereby their mobility and biological availability. Radiocaesium exhibits a very low mobility in mineral soils. Both mobility and bioavailability however increase as the thickness of organic layers and their content in organic matter increases. Clay minerals of micaceous origin strongly act as slinks for radiocaesium in forest soils. The magnitude of cesium mineral fixation in topsoils is expected to be the highest in mineral soils of Eutric cambisol type, and, to a lesser extent, of type of Distric cambisol and Podzoluvisol. A low mobility of radiocaesium in the surface horizons of forest soils may also be partially explained by a biological mobilization: fungi absorb radiocaesium and transport it to upper layers, thereby contributing to constantly recycle the radioelement in the organic horizons. This mechanism is probably important in soils with thick organic layers (Podsol, Histosol, and, to a lesser extent, Distric cambisol and Podzoluvisol). Radionuclides can be associated with soluble organic anions in the soil solution of forest acid soils. Such associations are highly mobile: they are stable in conditions of poor biological activity (low temperatures, acid soil infertility, water excess, etc.). Their magnitude is expected to be the highest in thick acid organic layers (soils of type Podzol and Histosol)

  3. Soil-Web: An online soil survey for California, Arizona, and Nevada

    Science.gov (United States)

    Beaudette, D. E.; O'Geen, A. T.

    2009-10-01

    Digital soil survey products represent one of the largest and most comprehensive inventories of soils information currently available. The complex structure of these databases, intensive use of codes and scientific jargon make it difficult for non-specialists to utilize digital soil survey resources. A project was initiated to construct a web-based interface to digital soil survey products (STATSGO and SSURGO) for California, Arizona, and Nevada that would be accessible to the general public. A collection of mature, open source applications (including Mapserver, PostGIS and Apache Web Server) were used as a framework to support data storage, querying, map composition, data presentation, and contextual links to related materials. Application logic was written in the PHP language to "glue" together the many components of an online soil survey. A comprehensive website ( http://casoilresource.lawr.ucdavis.edu/map) was created to facilitate access to digital soil survey databases through several interfaces including: interactive map, Google Earth and HTTP-based application programming interface (API). Each soil polygon is linked to a map unit summary page, which includes links to soil component summary pages. The most commonly used soil properties, land interpretations and ratings are presented. Graphical and tabular summaries of soil profile information are dynamically created, and aid with rapid assessment of key soil properties. Quick links to official series descriptions (OSD) and other such information are presented. All terminology is linked back to the USDA-NRCS Soil Survey Handbook which contains extended definitions. The Google Earth interface to Soil-Web can be used to explore soils information in three dimensions. A flexible web API was implemented to allow advanced users of soils information to access our website via simple web page requests. Soil-Web has been successfully used in soil science curriculum, outreach activities, and current research projects

  4. Bench Scale Treatability Studies of Contaminated Soil Using Soil Washing Technique

    OpenAIRE

    Gupta, M. K.; Srivastava, R. K.; Singh, A. K.

    2010-01-01

    Soil contamination is one of the most widespread and serious environmental problems confronting both the industrialized as well as developing nations like India. Different contaminants have different physicochemical properties, which influence the geochemical reactions induced in the soils and may bring about changes in their engineering and environmental behaviour. Several technologies exist for the remediation of contaminated soil and water. In the present study soil washing technique using...

  5. Effect of soil solarization on soil-borne pathogens

    International Nuclear Information System (INIS)

    Sobh, Hana

    1995-01-01

    -knot indices nor yields were significantly different in both treatments. At present, fumigation with methyl bromide is the most common method adopted by Lebanese farmers to control soil-borne pathogens of high value crops in greenhouses. Since methyl bromide is extremely toxic and damage the ozone layer, and its use is banned in several countries and may be banned world wide in year 2001, these preliminary results prove that soil solarization may stand as a good alternative control measure

  6. Several Cultures project

    International Nuclear Information System (INIS)

    Anon.

    Researches carried out in the 'Many Culture Project' of the Agricultural Nuclear Energy Center, Piracicaba, Sao Paulo State, Brazil, are described. Such researches comprise: genetic improvement of wheat; genetic improvement of rice; radioentomology of fruit flies (Ceratitis capitata); soil/sugar-cane relation; biological fixation of nitrogen by sugar-cane; radioentomology of the sugar-cane borer (Diatraea saccharalis); sugar-cane manuring; electron microscopy of B. mori and A. gemmatalis polyhedrosis; electron microscopy of some varieties of coffee-plant attacked with blight; nitrogen fixation in corn; confirmation of the extent of the concept of the value 'A'; behavior of the 14 C - and 35 S soil organic matter; fractionation of organic matter from the main types of Brazilian soils and measurement of the 14 C/ 12 C specific radioactivity; study of the radicular system of some cultures; influence of organic matter on the alteration of soils located in different Brazilian climatic zones. (M.A.) [pt

  7. Construction of an Yucatec Maya soil classification and comparison with the WRB framework

    OpenAIRE

    Zinck J Alfred; Bautista Francisco

    2010-01-01

    Abstract Background Mayas living in southeast Mexico have used soils for millennia and provide thus a good example for understanding soil-culture relationships and for exploring the ways indigenous people name and classify the soils of their territory. This paper shows an attempt to organize the Maya soil knowledge into a soil classification scheme and compares the latter with the World Reference Base for Soil Resources (WRB). Methods Several participative soil surveys were carried out in the...

  8. The History of Electromagnetic Induction Techniques in Soil Survey

    Science.gov (United States)

    Brevik, Eric C.; Doolittle, Jim

    2014-05-01

    Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales.

  9. Gap assessment in current soil monitoring networks across Europe for measuring soil functions

    Science.gov (United States)

    van Leeuwen, J. P.; Saby, N. P. A.; Jones, A.; Louwagie, G.; Micheli, E.; Rutgers, M.; Schulte, R. P. O.; Spiegel, H.; Toth, G.; Creamer, R. E.

    2017-12-01

    Soil is the most important natural resource for life on Earth after water. Given its fundamental role in sustaining the human population, both the availability and quality of soil must be managed sustainably and protected. To ensure sustainable management we need to understand the intrinsic functional capacity of different soils across Europe and how it changes over time. Soil monitoring is needed to support evidence-based policies to incentivise sustainable soil management. To this aim, we assessed which soil attributes can be used as potential indicators of five soil functions; (1) primary production, (2) water purification and regulation, (3) carbon sequestration and climate regulation, (4) soil biodiversity and habitat provisioning and (5) recycling of nutrients. We compared this list of attributes to existing national (regional) and EU-wide soil monitoring networks. The overall picture highlighted a clearly unbalanced dataset, in which predominantly chemical soil parameters were included, and soil biological and physical attributes were severely under represented. Methods applied across countries for indicators also varied. At a European scale, the LUCAS-soil survey was evaluated and again confirmed a lack of important soil biological parameters, such as C mineralisation rate, microbial biomass and earthworm community, and soil physical measures such as bulk density. In summary, no current national or European monitoring system exists which has the capacity to quantify the five soil functions and therefore evaluate multi-functional capacity of a soil and in many countries no data exists at all. This paper calls for the addition of soil biological and some physical parameters within the LUCAS-soil survey at European scale and for further development of national soil monitoring schemes.

  10. Soil Survey Geographic (SSURGO) - Magnesic Soils

    Data.gov (United States)

    California Natural Resource Agency — Magnesic soils is a subset of the SSURGO dataset containing soil family selected based on the magnesic content and serpentinite parent material. The following soil...

  11. Severe acute malnutrition and infection

    Science.gov (United States)

    Jones, Kelsey D J; Berkley, James A

    2014-01-01

    Severe acute malnutrition (SAM) is associated with increased severity of common infectious diseases, and death amongst children with SAM is almost always as a result of infection. The diagnosis and management of infection are often different in malnourished versus well-nourished children. The objectives of this brief are to outline the evidence underpinning important practical questions relating to the management of infectious diseases in children with SAM and to highlight research gaps. Overall, the evidence base for many aspects covered in this brief is very poor. The brief addresses antimicrobials; antipyretics; tuberculosis; HIV; malaria; pneumonia; diarrhoea; sepsis; measles; urinary tract infection; nosocomial Infections; soil transmitted helminths; skin infections and pharmacology in the context of SAM. The brief is structured into sets of clinical questions, which we hope will maximise the relevance to contemporary practice. PMID:25475887

  12. [Interrelationships between soil fauna and soil environmental factors in China: research advance].

    Science.gov (United States)

    Wang, Yi; Wei, Wei; Yang, Xing-zhong; Chen, Li-ding; Yang, Lei

    2010-09-01

    Soil fauna has close relations with various environmental factors in soil ecosystem. To explore the interrelationships between soil fauna and soil environmental factors is of vital importance to deep understand the dynamics of soil ecosystem and to assess the functioning of the ecosystem. The environmental factors affecting soil fauna can be classified as soil properties and soil external environment. The former contains soil basic physical and chemical properties, soil moisture, and soil pollution. The latter includes vegetation, land use type, landform, and climate, etc. From these aspects, this paper summarized the published literatures in China on the interrelationships between soil fauna and soil environmental factors. It was considered that several problems were existed in related studies, e.g., fewer researches were made in integrating soil fauna's bio-indicator function, research methods were needed to be improved, and the studies on the multi-environmental factors and their large scale spatial-temporal variability were in deficiency. Corresponding suggestions were proposed, i.e., more work should be done according to the practical needs, advanced experiences from abroad should be referenced, and comprehensive studies on multi-environmental factors and long-term monitoring should be conducted on large scale areas.

  13. Bench Scale Treatability Studies of Contaminated Soil Using Soil Washing Technique

    Directory of Open Access Journals (Sweden)

    M. K. Gupta

    2010-01-01

    Full Text Available Soil contamination is one of the most widespread and serious environmental problems confronting both the industrialized as well as developing nations like India. Different contaminants have different physicochemical properties, which influence the geochemical reactions induced in the soils and may bring about changes in their engineering and environmental behaviour. Several technologies exist for the remediation of contaminated soil and water. In the present study soil washing technique using plain water with surfactants as an enhancer was used to study the remediation of soil contaminated with (i an organic contaminant (engine lubricant oil and (ii an inorganic contaminant (heavy metal. The lubricant engine oil was used at different percentages (by dry weight of the soil to artificially contaminate the soil. It was found that geotechnical properties of the soil underwent large modifications on account of mixing with the lubricant oil. The sorption experiments were conducted with cadmium metal in aqueous medium at different initial concentration of the metal and at varying pH values of the sorbing medium. For the remediation of contaminated soil matrices, a nonionic surfactant was used for the restoration of geotechnical properties of lubricant oil contaminated soil samples, whereas an anionic surfactant was employed to desorb cadmium from the contaminated soil matrix. The surfactant in case of soil contaminated with the lubricant oil was able to restore properties to an extent of 98% vis-à-vis the virgin soil, while up to 54% cadmium was desorbed from the contaminated soil matrix in surfactant aided desorption experiments.

  14. Applicability of five models to simulate water infiltration into soil with added biochar

    Science.gov (United States)

    As a soil amendment, biochar can reduce soil bulk density, increase soil porosity, and alter soil aggregates and thus affect the infiltration. Researchers have proposed and revised several theoretical models to describe the process of soil infiltration. Although these models have been successfully u...

  15. Validating visual disturbance types and classes used for forest soil monitoring protocols

    Science.gov (United States)

    D. S. Page-Dumroese; A. M. Abbott; M. P. Curran; M. F. Jurgensen

    2012-01-01

    We describe several methods for validating visual soil disturbance classes used during forest soil monitoring after specific management operations. Site-specific vegetative, soil, and hydrologic responses to soil disturbance are needed to identify sensitive and resilient soil properties and processes; therefore, validation of ecosystem responses can provide information...

  16. Soil invertebrate fauna affect N2 O emissions from soil.

    Science.gov (United States)

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies. © 2013 John Wiley & Sons Ltd.

  17. Soil shrinkage characteristics in swelling soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to understand soil swelling and shrinkage mechanisms, and the development of desiccation cracks, to distinguish between soils having different magnitude of swelling, as well as the consequences on soil structural behaviour, to know methods to characterize soil swell/shrink potential and to construct soil shrinkage curves, and derive shrinkage indices, as well to apply them to assess soil management effects

  18. Carbon Storage in Soils: Climate vs. Geology

    International Nuclear Information System (INIS)

    Doetterl, Sebastian; Boeckx, Pascal; Stevens, Antoine; Van Oost, Kristof; Six, Johan; Merckx, Roel; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Zagal Venegas, Erick; Boudin, Mathieu

    2016-01-01

    In a recently published Nature Geoscience article, scientists took a closer look at the much-discussed topic of carbon storage in soils under Climate Change. In a large-scale study across Chile and the Antarctic Peninsula, they showed that the role of precipitation and temperature in controlling carbon dynamics in soils is less than currently considered in Global Ecosystem Models. Soils are important for carbon (C) storage and thus for atmospheric CO 2 concentrations. Whether soils act as a sink or source for atmospheric C generally depend on climatic factors, as they control plant growth (driving the incorporation of C into the soil), the activity of soil microorganism (driving the release of C from the soil to the atmosphere), as well as several other chemical processes in soils. However, we still do not fully understand the response of soil C to Climate Change. An international team of researchers led by Pascal Boeckx and Sebastian Doetterl from Ghent University, Belgium and Erick Zagal from University of Concepcion in Chile, have been investigating the interaction between climate, different types of soil minerals, and soil as sink or source for C. They studied this interaction by sampling soils from numerous locations representing different vegetation types in Chile and the Antarctic Peninsula

  19. SoilGrids1km — Global Soil Information Based on Automated Mapping

    Science.gov (United States)

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the Soil

  20. SoilGrids1km--global soil information based on automated mapping.

    Directory of Open Access Journals (Sweden)

    Tomislav Hengl

    Full Text Available BACKGROUND: Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. METHODOLOGY/PRINCIPAL FINDINGS: We present SoilGrids1km--a global 3D soil information system at 1 km resolution--containing spatial predictions for a selection of soil properties (at six standard depths: soil organic carbon (g kg-1, soil pH, sand, silt and clay fractions (%, bulk density (kg m-3, cation-exchange capacity (cmol+/kg, coarse fragments (%, soil organic carbon stock (t ha-1, depth to bedrock (cm, World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles, and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images, lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database. Prediction accuracies assessed using 5-fold cross-validation were between 23-51%. CONCLUSIONS/SIGNIFICANCE: SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1 weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2 difficulty to obtain covariates that capture soil forming factors, (3 low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is

  1. Soil and fertilizer nitrogen

    International Nuclear Information System (INIS)

    Winteringham, F.P.W.

    1984-01-01

    As a result of the intensified practices and effectively diminishing land resources per capita, increasing weights of both native soil- and added fertilizer-nitrogen will be lost to agriculture and its products, and will find their way into the environment. Soil-nitrogen levels and contingent productivity can nevertheless be maintained in the face of these losses on the basis of improved soil-N management. In some local situations nitrate levels in water for drinking purposes are likely to continue rising. In some cases agriculture and clearance practices are only one of several sources. In others they are clearly mainly responsible. In developing countries these losses represent those of a relatively increasingly costly input. This is due to the fact that industrial fertilizer nitrogen production is a particularly high energy-consuming process. In the more advanced industrialized countries they represent an addition to the problems and costs of environmental quality and health protection. The programmes, information and data reviewed here suggest that these problems can be contained by improved and extended soil and water management in agriculture on the basis of existing technology. In particular there appears to be enormous scope for the better exploitation of existing legumes both as non-legume crop alternatives or as biofertilizers which also possess more desirable C:N ratios than chemical fertilizer

  2. Soil moisture

    Science.gov (United States)

    L. L. Boersma; D. Kirkham; D. Norum; R. Ziemer; J. C. Guitjens; J. Davidson; J. N. Luthin

    1971-01-01

    Infiltration continues to occupy the attention of soil physicists and engineers. A theoretical and experimental analysis of the effect of surface sealing on infiltration by Edwards and Larson [1969] showed that raindrops reduced the infiltration rate by as much as 50% for a two-hour period of infiltration. The effect of raindrops on the surface infiltration rate of...

  3. Soil microbiology

    International Nuclear Information System (INIS)

    Wolf, D.C.; Legg, J.O.

    1984-01-01

    The major areas of soil microbiological and biochemical research which have involved both stable and radioactive isotopes are summarized. These include microbial decomposition of naturally occurring materials, microbial biomass, interactions of plants and microbes, denitrification, mineralization and immobilization of nitrogen and biological nitrogen fixation. (U.K.)

  4. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation.

    NARCIS (Netherlands)

    Ayuke, F.O.; Brussaard, L.; Vanlauwe, B.; Six, J.; Lelei, D.K.; Kibunja, C.N.; Pulleman, M.M.

    2011-01-01

    Maintenance of soil organic matter through integrated soil fertility management is important for soil quality and agricultural productivity, and for the persistence of soil faunal diversity and biomass. Little is known about the interactive effects of soil fertility management and soil macrofauna

  5. Basic Soils. Revision.

    Science.gov (United States)

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This curriculum guide is designed for use in teaching a course in basic soils that is intended for college freshmen. Addressed in the individual lessons of the unit are the following topics: the way in which soil is formed, the physical properties of soil, the chemical properties of soil, the biotic properties of soil, plant-soil-water…

  6. Aluminium, extractable from soil samples by the acid ammonium acetate soil-testing method

    Directory of Open Access Journals (Sweden)

    Osmo Mäkitie

    1968-05-01

    Full Text Available The extractant, 0.5 M acetic acid –0.5 M ammonium acetate at pH 4.65, which is used in soil-testing, extracts relatively high amounts of aluminium from acid soils. The mean values of acetate-extractable aluminium at pH 4.65, 1.75 meq Al/100 g of soil, and of exchangeable aluminium (M KCI extraction, 0.41 meq Al were obtained from a material of 30 samples of acid soils (Table 2. Several other acetic acid ammonium acetate extractants, from M acetic acid to M ammonium acetate solution were also used for studying the extractability of soil aluminium. The soil-testing extractant can be used for the estimation of the soluble amounts of aluminium in acid soils, however, further studies are needed for a better interpretation of the ammonium acetate extractable (at pH 4.65 aluminium in our soils.

  7. Methods of soil organic carbon determination in Brazilian savannah soils

    Directory of Open Access Journals (Sweden)

    Juliana Hiromi Sato

    2014-08-01

    Full Text Available Several methods exist for determining soil organic carbon, and each one has its own advantages and limitations. Consequently, a comparison of the experimental results obtained when these methods are employed is hampered, causing problems in the comparison of carbon stocks in soils. This study aimed at evaluating the analytical procedures used in the determination of carbon and their relationships with soil mineralogy and texture. Wet combustion methods, including Walkley-Black, Mebius and Colorimetric determination as well as dry combustion methods, such as Elemental and Gravimetric Analysis were used. Quantitative textural and mineralogical (kaolinite, goethite and gibbsite analyses were also carried out. The wet digestion methods underestimated the concentration of organic carbon, while the gravimetric method overestimated. Soil mineralogy interfered with the determination of carbon, with emphasis on the gravimetric method that was greatly influenced by gibbsite.

  8. Soil carbon dynamics inferred from carbon isotope compositions of soil organic matter and soil respiration

    International Nuclear Information System (INIS)

    Koarashi, Jun; Asano, Tomohiro; Iida, Takao; Moriizumi, Jun

    2004-01-01

    To better understand 14 C cycling in terrestrial ecosystems, 14 C abundances were evaluated for fractionated soil organic matter (SOM) and soil respiration in an urban forest. In 2001 soil profile, Δ 14 C values of litter and bulk SOM increased rapidly from litter surface (62.7 per mille) to uppermost mineral soil layer (244.9 per mille), and then decreased sharply to 6 cm depth of mineral soil (125.0 per mille). Carbon enriched in 14 C by atmospheric nuclear weapons testing had penetrated to at least 16 cm depth of mineral soil. The average Δ 14 C in atmospheric CO 2 was 58.8 per mille in August 2001, suggesting recent carbon input to the topmost litter layer. Although a similar depth distribution was observed for Δ 14 C values of residual SOM after acid hydrolysis, the Δ 14 C values were slightly lower than those in bulk SOM. This indicates input of 'bomb' C into this organic fraction and higher 14 C abundance in acid-soluble SOM. The most of CO 2 may be derived from the microbial decomposition of the acid-soluble, or labile, SOM. Therefore, the labile SOM may become most influential pool for soil carbon cycling. In contrast, carbon in base-insoluble SOM remained considerably low in 14 C abundance at all depths, suggesting no or little incorporation of 'bomb' C to this fraction. Values of Δ 14 C in soil respiration ranged from 91.9 to 146.4 per mille in August 2001, showing a significant contribution from decomposition of SOM fixed over past 2-40 years. These results indicate that the use of bulk SOM as a representative of soil carbon pool would lead to severe misunderstand of the soil C dynamics on decadal and shorter time scales. (author)

  9. Distribution of rock fragments and their effects on hillslope soil erosion in purple soil, China

    Science.gov (United States)

    Wang, Xiaoyan

    2017-04-01

    Purple soil is widely distributed in Sichuan Basin and Three Gorges Reservoir Area. Purple soil region is abundant in soil fertility and hydrothermal resources, playing an important role in the agricultural development of China. Soil erosion has long been recognized as a major environmental problem in the purple soil region where the population is large and slope farming is commonly practiced, and rainstorm is numerous. The existence of rock fragments is one of the most important characteristics of purple soil. Rock fragments at the soil surface or in the soil layer affect soil erosion processes by water in various direct and indirect ways, thus the erosion processes of soil containing rock fragments have unique features. Against the severe soil degradation by erosion of purple soil slope, carrying out the research about the characteristics of purple soil containing rock fragments and understanding the influence of rock fragments on soil erosion processes have important significance, which would promote the rational utilization of purple soil slope land resources and accurate prediction of purple soil loss. Therefore, the aims of this study were to investigate the distribution of rock fragments in purple soil slope and the impact of rock fragment content on soil physical properties and soil erosion. First, field sampling methods were used to survey the spatial variability of rock fragments in soil profiles and along slope and the physical properties of soils containing rock fragments. Secondly, indoor simulated rainfall experiments were used to exam the effect of rock fragments in the soil layer on soil erosion processes and the relationships between rainfall infiltration, change of surface flow velocity, surface runoff volume and sediment on one hand, and rock fragment content (Rv, 0% 30%, which was determined according the results of field investigation for rock fragment distribution) on the other were investigated. Thirdly, systematic analysis about the

  10. Soil washing for brine removal

    International Nuclear Information System (INIS)

    Ayyachamy, J.S.; Atalay, A.; Zaman, M.

    1992-01-01

    During the exploration for oil and thereafter, brine transfer lines get ruptured releasing the brine which contaminates the surrounding soil. The salinity level in brine is very high, sometimes approaching or exceeding that of sea water. Soils contaminated with brine are unproductive and unsuitable for plant growth. Several investigators have documented the pollution of surface water and groundwater due to brine disposal from oil and needed to clean up such sites. The objective of this study is to develop a soil washing technique that can be used to remove brine sites were collected and used in the study. This paper reports on results which indicate that soil washing using various surface active agents is effective in removing the brine

  11. Soil Architecture and physicochemical functions

    DEFF Research Database (Denmark)

    de Jonge, Lis Wollesen; Møldrup, Per; Vendelboe, Anders Lindblad

    2012-01-01

    , and modeling of soil structure (architecture) and physical, chemical, and biological processes in different porous media systems and at different scales. Several studies in this special section also outline and discuss emerging and exciting interdisciplinary challenges for the rapidly growing vadose zone......Soils function as Earth's life support system, a thin layer full of life covering most of the terrestrial surfaces. Soils form the foundation of society. Norman Borlaug stated in his Nobel laureate lecture that “the first essential component of social justice is adequate food for all mankind.......” If we are to provide this component while sustaining environmental quality in the midst of a growing population and rapidly diminishing resources, it is imperative to study and obtain a deeper level of understanding of soil functions using state-of-the-art technologies as well as provide the next...

  12. Natural radionuclides in soils - relation between soil properties and the activities

    International Nuclear Information System (INIS)

    Fujiyoshi, Ryoko; Nakayama, Masashi; Sawamura, Sadashi

    2000-01-01

    Vertical profiles of natural radionuclides (K-40 and Ra-226) have been investigated in a soil core with 8 m in depth to elucidate its relation to the bed rock activity and to several soil properties. Pattern of the Ra-226 activity with soil depth suggests inhomogeneity of this nuclide during the accumulating process. Radiometric sorption experiments with Pb-210 as a tracer gave the result that almost all Pb(II) in the soil solution disappeared to be sorbed to the soil components

  13. Spectral estimation of soil properties in siberian tundra soils and relations with plant species composition

    DEFF Research Database (Denmark)

    Bartholomeus, Harm; Schaepman-Strub, Gabriela; Blok, Daan

    2012-01-01

    yields a good prediction model for K and a moderate model for pH. Using these models, soil properties are determined for a larger number of samples, and soil properties are related to plant species composition. This analysis shows that variation of soil properties is large within vegetation classes......Predicted global warming will be most pronounced in the Arctic and will severely affect permafrost environments. Due to its large spatial extent and large stocks of soil organic carbon, changes to organic matter decomposition rates and associated carbon fluxes in Arctic permafrost soils...

  14. Severe Aplastic Anemia (SAA)

    Science.gov (United States)

    ... page Print this page My Cart Severe aplastic anemia (SAA) Severe aplastic anemia (SAA) is a disease ... leukemia (ALL) Other diseases What is severe aplastic anemia (SAA)? SAA is a bone marrow disease. The ...

  15. Case studies: Soil mapping using multiple methods

    Science.gov (United States)

    Petersen, Hauke; Wunderlich, Tina; Hagrey, Said A. Al; Rabbel, Wolfgang; Stümpel, Harald

    2010-05-01

    Soil is a non-renewable resource with fundamental functions like filtering (e.g. water), storing (e.g. carbon), transforming (e.g. nutrients) and buffering (e.g. contamination). Degradation of soils is meanwhile not only to scientists a well known fact, also decision makers in politics have accepted this as a serious problem for several environmental aspects. National and international authorities have already worked out preservation and restoration strategies for soil degradation, though it is still work of active research how to put these strategies into real practice. But common to all strategies the description of soil state and dynamics is required as a base step. This includes collecting information from soils with methods ranging from direct soil sampling to remote applications. In an intermediate scale mobile geophysical methods are applied with the advantage of fast working progress but disadvantage of site specific calibration and interpretation issues. In the framework of the iSOIL project we present here some case studies for soil mapping performed using multiple geophysical methods. We will present examples of combined field measurements with EMI-, GPR-, magnetic and gammaspectrometric techniques carried out with the mobile multi-sensor-system of Kiel University (GER). Depending on soil type and actual environmental conditions, different methods show a different quality of information. With application of diverse methods we want to figure out, which methods or combination of methods will give the most reliable information concerning soil state and properties. To investigate the influence of varying material we performed mapping campaigns on field sites with sandy, loamy and loessy soils. Classification of measured or derived attributes show not only the lateral variability but also gives hints to a variation in the vertical distribution of soil material. For all soils of course soil water content can be a critical factor concerning a succesful

  16. Priorities for research in soil ecology.

    Science.gov (United States)

    Eisenhauer, Nico; Antunes, Pedro M; Bennett, Alison E; Birkhofer, Klaus; Bissett, Andrew; Bowker, Matthew A; Caruso, Tancredi; Chen, Baodong; Coleman, David C; de Boer, Wietse; de Ruiter, Peter; DeLuca, Thomas H; Frati, Francesco; Griffiths, Bryan S; Hart, Miranda M; Hättenschwiler, Stephan; Haimi, Jari; Heethoff, Michael; Kaneko, Nobuhiro; Kelly, Laura C; Leinaas, Hans Petter; Lindo, Zoë; Macdonald, Catriona; Rillig, Matthias C; Ruess, Liliane; Scheu, Stefan; Schmidt, Olaf; Seastedt, Timothy R; van Straalen, Nico M; Tiunov, Alexei V; Zimmer, Martin; Powell, Jeff R

    2017-07-01

    The ecological interactions that occur in and with soil are of consequence in many ecosystems on the planet. These interactions provide numerous essential ecosystem services, and the sustainable management of soils has attracted increasing scientific and public attention. Although soil ecology emerged as an independent field of research many decades ago, and we have gained important insights into the functioning of soils, there still are fundamental aspects that need to be better understood to ensure that the ecosystem services that soils provide are not lost and that soils can be used in a sustainable way. In this perspectives paper, we highlight some of the major knowledge gaps that should be prioritized in soil ecological research. These research priorities were compiled based on an online survey of 32 editors of Pedobiologia - Journal of Soil Ecology. These editors work at universities and research centers in Europe, North America, Asia, and Australia.The questions were categorized into four themes: (1) soil biodiversity and biogeography, (2) interactions and the functioning of ecosystems, (3) global change and soil management, and (4) new directions. The respondents identified priorities that may be achievable in the near future, as well as several that are currently achievable but remain open. While some of the identified barriers to progress were technological in nature, many respondents cited a need for substantial leadership and goodwill among members of the soil ecology research community, including the need for multi-institutional partnerships, and had substantial concerns regarding the loss of taxonomic expertise.

  17. Soil tillage

    OpenAIRE

    Dierauer, Hansueli

    2013-01-01

    The web platform offers a compilation of various formats and materials dealing with reduced tillage and its challenges regarding weeds. A selection of short movies about mechanical weeding, green manure and tailor-made machinery is listed. Leaflets and publications on reduced tillage can be downloaded. In there, different treatments and machinery are tested and compared to advice farmers on how to conserve soil while keeping weed under control. For Swiss farmers information on the leg...

  18. Soil sampling

    International Nuclear Information System (INIS)

    Fortunati, G.U.; Banfi, C.; Pasturenzi, M.

    1994-01-01

    This study attempts to survey the problems associated with techniques and strategies of soil sampling. Keeping in mind the well defined objectives of a sampling campaign, the aim was to highlight the most important aspect of representativeness of samples as a function of the available resources. Particular emphasis was given to the techniques and particularly to a description of the many types of samplers which are in use. The procedures and techniques employed during the investigations following the Seveso accident are described. (orig.)

  19. Effect of long-term farming strategies on soil microbiota and soil health

    Science.gov (United States)

    Sommermann, Loreen; Babin, Doreen; Sandmann, Martin; Smalla, Kornelia; Schellenberg, Ingo; Grosch, Rita; Geistlinger, Joerg

    2017-04-01

    Increasing food and energy demands have resulted in considerable intensification of farming practices, which brought about severe consequences for agricultural soils, e.g. loss of fertility, erosion and enrichment of soil-borne plant diseases. In order to maintain soil quality and health for the future, the development of more extensive and sustainable farming strategies is urgently needed. The soil microbiome is regarded as a key player in soil ecosystem functions, particularly the natural ability of soils to suppress plant pathogens (suppressiveness). Recent studies showed that soil microbial communities are influenced by agricultural management. To further analyze the effects of farming strategies on soil suppressiveness and plant performance, agricultural soils from three long-term field trials in Thyrow, Bernburg (both in Germany) and Therwil (Switzerland) were sampled and subjected to molecular profiling of soil bacteria and fungi using marker genes and high-throughput amplicon sequencing. Significant effects on bacterial as well as fungal community composition, including plant pathogenic and beneficial taxa, were observed among variants of tillage and crop rotation. The least effect on both communities had fertilization, with no significance between variants. Subsequently, the same soils were subjected to growth chamber pot experiments with lettuce as a model (Lactuca sativa). After a growth period of six weeks significant differences in lettuce shoot and soil microbial biomass were observed among soil samples of the different long-term trials. Furthermore, the lettuce rhizosphere exhibited diverse bacterial community compositions as observed by DGGE (denaturing gradient gel electrophoresis). Using group-specific PCR-DGGE fingerprints, bacterial responders to fertilization, soil management and crop rotation were identified among different taxonomic groups. Currently, bacterial and fungal amplicon sequencing of rhizosphere and bulk soil from these pot

  20. Digging up the Dirt on Soil Safety

    Science.gov (United States)

    Roy, Ken

    2010-01-01

    Should middle school science teachers be concerned about students bringing in unknown sources of soil to work on in class as the activity suggests? The science is well intended, but is it safe? What are some possible safety issues that might be of concern in dealing with soil samples? This month's column provides several examples of unsuspecting…

  1. Soil quality: key for sustainable production

    Directory of Open Access Journals (Sweden)

    Anna Benedetti

    2009-04-01

    Full Text Available In the last few years several definitions of “soil quality” have been advanced, but among them the most appreciated is “the ability of soils to interact with the ecosystem in order to maintain the biological productivity, the environmental quality and to promote animal and vegetal health” as defined by Doran and Parkin in 1994. Many researchers place more emphasis on its conceptual meaning for land planning and farm management, while others consider that definition to be worth nothing in order to understand soil properties and the concept of soil quality looks like the concept of “to be suitable for”. For this reason a definition of “soil use” is needed. The food quality is characterized by several properties: the healthiness and the nutritional value, the amount of the production, the typicalness and organoleptic properties, etc.. A lot of these properties depend on environmental quality and, in particular, on soil quality. In fact soil represents the natural substrate for growth and productivity of most of the plants that live on the Hearth because they get all the essential nutritional elements from it for their own development; consequently each nutritional element present into the soil as bioavailable form for the plants is potentially destined to entry in the animal (and human food chain. In the quality process of food productive process it will be important to assure the best soil quality as possible, without any unwanted element (which will not be discussed in this note and with the right amount of fertility elements in order to guarantee the best production. In this paper the relationships between soil quality, soil biodiversity and crop sustainability will be discussed. Finally the concept of soil “biota” as nodal point for the environment regulation and the application of the indicators for soil quality will be discussed.

  2. Soil quality: key for sustainable production

    Directory of Open Access Journals (Sweden)

    Stefano Mocali

    2011-02-01

    Full Text Available In the last few years several definitions of “soil quality” have been advanced, but among them the most appreciated is “the ability of soils to interact with the ecosystem in order to maintain the biological productivity, the environmental quality and to promote animal and vegetal health” as defined by Doran and Parkin in 1994. Many researchers place more emphasis on its conceptual meaning for land planning and farm management, while others consider that definition to be worth nothing in order to understand soil properties and the concept of soil quality looks like the concept of “to be suitable for”. For this reason a definition of “soil use” is needed. The food quality is characterized by several properties: the healthiness and the nutritional value, the amount of the production, the typicalness and organoleptic properties, etc.. A lot of these properties depend on environmental quality and, in particular, on soil quality. In fact soil represents the natural substrate for growth and productivity of most of the plants that live on the Hearth because they get all the essential nutritional elements from it for their own development; consequently each nutritional element present into the soil as bioavailable form for the plants is potentially destined to entry in the animal (and human food chain. In the quality process of food productive process it will be important to assure the best soil quality as possible, without any unwanted element (which will not be discussed in this note and with the right amount of fertility elements in order to guarantee the best production. In this paper the relationships between soil quality, soil biodiversity and crop sustainability will be discussed. Finally the concept of soil “biota” as nodal point for the environment regulation and the application of the indicators for soil quality will be discussed.

  3. Soil use and management

    NARCIS (Netherlands)

    Hartemink, A.E.; McBratney, A.B.; White, R.E.

    2009-01-01

    This four-volume set, edited by leading experts in soil science, brings together in one collection a series of papers that have been fundamental to the development of soil science as a defined discipline. Volume 3 on Soil Use and Management covers: - Soil evaluation and land use planning - Soil and

  4. Soil properties and processes

    NARCIS (Netherlands)

    Hartemink, A.E.; McBratney, A.B.; White, R.E.

    2009-01-01

    This four-volume set, edited by leading experts in soil science, brings together in one collection a series of papers that have been fundamental to the development of soil science as a defined discipline. Tis volume 2 on Soil Properties and Processes covers: - Soil physics - Soil (bio)chemistry -

  5. Soil and Pesticides

    Science.gov (United States)

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticides and the Environment Soil and Pesticides Related Topics: What Happens to Pesticides español Soil and Pesticides Soil can be degraded and the community of organisms living in the soil can

  6. Electrokinetic remediation on cadmium (CD) spiked soils

    Energy Technology Data Exchange (ETDEWEB)

    Sah Jy-Gau [Dept. of Environmental Science and Engineering, National Pingtung Univ. of Science and Technology, Pingtung (Taiwan); Yu Lin, L. [Dept. of Civil and Environmental Engineering, Christian Bros. Univ. Memphis, TN (United States)

    2001-07-01

    The objective of this study is to examine several variables, such as soil pH, adsorption capacity, fraction of Cd in soils, and organic content for Cd removal in contaminated soil using electrokinetic technology. Two different experimental modules were constructed in the laboratory. In the small module, most Cd was able to move and concentrate at or near the cathode zone in acidic soil and neutral soil under 8 volts after 30 days of electrification. However, the Cd removal efficiency did not improve even when the alkaline soil was soaked in stronger acid solutions. The results indicated that the removal efficiencies were influenced not only by the pH of conducting solutions, but also the pH of the soils. The removal efficiencies of Cd were reduced when a portion of organic peat moss was added into the soils. The increases of organic content in the soils inhibit the removal efficiency in electrokinetic technology. In the larger scale module, the removal efficiency of Cd was lower than that in the smaller module during a short period of time. Nevertheless, the efficiency was improved in the larger module while 16 volts electric pressure and 180 days were applied to the module. The results also showed that the sequence of removal efficiency of the three soils in larger module followed the changes of soil pH. From this study, it concluded that electrokinetic technology has a highly potential to removal Cd in contaminated soils. Within these influence variable studies, the soil pH and organic content are the most important factor in electrokinetic technology. Keywords: Electrokinetic Technique, Heavy Metal, Cd, Soil Remediation. (orig.)

  7. State-of-the-Art-Review of Collapsible Soils

    Directory of Open Access Journals (Sweden)

    A. A. AL-Rawas

    2000-12-01

    Full Text Available Collapsible soils are encountered in arid and semi-arid regions. Such soils cause potential construction problems due to their collapse upon wetting. The collapse phenomenon is primarily related to the open structure of the soil. Several soil collapse classifications based on parameters such as moisture content, dry density, Atterberg limits and clay content have been proposed in the literature as indicators of the soil collapse potential. Direct measurement of the magnitude of collapse, using laboratory and/or field tests, is essential once a soil showed indications of collapse potential. Treatment methods such as soil replacement, compaction control and chemical stabilization showed significant reduction in the settlement of collapsible soils. The design of foundations on collapsible soils depends on the depth of the soil, magnitude of collapse and economics of the design. Strip foundations are commonly used when collapsing soil extends to a shallow depth while piles and drilled piers are recommended in cases where the soil extends to several meters. This paper provides a comprehensive review of collapsible soils. These include the different types of collapsible soils, mechanisms of collapse, identification and classification methods, laboratory and field testing, treatment methods and guidelines for foundation design.

  8. Can we predict uranium bioavailability based on soil parameters? Part 1: Effect of soil parameters on soil solution uranium concentration

    International Nuclear Information System (INIS)

    Vandenhove, H.; Hees, M. van; Wouters, K.; Wannijn, J.

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for 238 U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K d , L kg -1 ) and the organic matter content (R 2 = 0.70) and amorphous Fe content (R 2 = 0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH = 6, log(K d ) was linearly related with pH [log(K d ) = - 1.18 pH + 10.8, R 2 = 0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex. - Uranium solubility in soil can be predicted from organic matter or amorphous iron content and pH or with complex multilinear models considering several soil parameters

  9. [Severe rhabdomyolysis secondary to severe hypernatraemic dehydration].

    Science.gov (United States)

    Mastro-Martínez, Ignacio; Montes-Arjona, Ana María; Escudero-Lirio, Margarita; Hernández-García, Bárbara; Fernández-Cantalejo Padial, José

    2015-01-01

    Rhabdomyolysis is a rare paediatric condition. The case is presented of a patient in whom this developed secondary to severe hypernatraemic dehydration following acute diarrhoea. Infant 11 months of age who presented with vomiting, fever, diarrhoea and anuria for 15 hours. Parents reported adequate preparation of artificial formula and oral rehydration solution. He was admitted with malaise, severe dehydration signs and symptoms, cyanosis, and low reactivity. The laboratory tests highlighted severe metabolic acidosis, hypernatraemia and pre-renal kidney failure (Sodium [Na] plasma 181 mEq/L, urine density> 1030). He was managed in Intensive Care Unit with gradual clinical and renal function improvement. On the third day, slight axial hypotonia and elevated cell lysis enzymes (creatine phosphokinase 75,076 IU/L) were observed, interpreted as rhabdomyolysis. He was treated with intravenous rehydration up to 1.5 times the basal requirements, and he showed a good clinical and biochemical response, being discharged 12 days after admission without motor sequelae. Severe hypernatraemia is described as a rare cause of rhabdomyolysis and renal failure. In critically ill patients, it is important to have a high index of suspicion for rhabdomyolysis and performing serial determinations of creatine phosphokinase for early detection and treatment. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Soil heat flux measurements in an open forest

    NARCIS (Netherlands)

    vanderMeulen, MJW; Klaassen, W; Kiely, G

    1996-01-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was

  11. Soil Heat Flux Measurements in an Open Forest

    NARCIS (Netherlands)

    Meulen, M.W.J. van der; Klaassen, W.

    1996-01-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was

  12. Mechanisms of hydrologic transport of soil contaminants in Mortandad Canyon

    International Nuclear Information System (INIS)

    Hakonson, T.E.; White, G.C.

    1981-01-01

    The initial focus of this research will be on the selective sorting and transport of soil particles as they relate to altering the distribution of contaminants in soils and sediments. Several field experiments employing radionuclide-labeled soil particle size fractions are planned to accomplish research objectives

  13. Manual for soil physical measurements; Version 3

    NARCIS (Netherlands)

    Stolte, J.

    1997-01-01

    Manuals are given for several laboratory methods for determining hydraulic conductivity, water retention and shrinkage characteristics of soil. Measurement techniques described are: the constant-head and falling-head methods for saturated conductivitythe drip infiltrometer for unsaturated

  14. Radionuclide migration studies in soil

    International Nuclear Information System (INIS)

    Marumo, J.T.

    1989-01-01

    In this work a brief description about retention and migration parameters of radionuclides in soil, including main methods to determine the distribution coefficient (K) are given. Some of several factors that can act on the migration are also mentioned. (author) [pt

  15. Computed tomography scanner applied to soil compaction studies

    International Nuclear Information System (INIS)

    Vaz, C.M.P.

    1989-11-01

    The soil compaction problem was studied using a first generation computed tomography scanner (CT). This apparatus gets images of soil cross sections samples, with resolution of a few millimeters. We performed the following laboratory and field experiments: basic experiments of equipment calibrations and resolutions studies; measurements of compacted soil thin layers; measurements of soil compaction caused by agricultural tools; stress-strain modelling in confined soil sample, with several moisture degree; characterizations of soil bulk density profile with samples collected in a hole (trench), comparing with a cone penetrometer technique. (author)

  16. Soil ingestion: a concern for acute toxicity in children.

    OpenAIRE

    Calabrese, E J; Stanek, E J; James, R C; Roberts, S M

    1997-01-01

    Several soil ingestion studies have indicated that some children ingest substantial amounts of soil on given days. Although the EPA has assumed that 95% of children ingest 200 mg soil/day or less for exposure assessment purposes, some children have been observed to ingest up to 25-60 g soil during a single day. In light of the potential for children to ingest such large amounts of soil, an assessment was made of the possibility for soil pica episodes to result in acute intoxication from conta...

  17. A soil-based model to predict radionuclide transfer in a soil-plant system

    International Nuclear Information System (INIS)

    Roig, M.; Vidal, M.; Tent, J.; Rauret, G.; Roca, M.C.; Vallejo, V.R.

    1998-01-01

    The aim of this work was to check if the main soil parameters predefined as ruling soil-plant transfer were sufficient to predict a relative scale of radionuclide mobility in mineral soils. Two agricultural soils, two radionuclides ( 85 Sr and 134 Cs), and two crops (lettuce and pea) were used in these experiments following radioactive aerosol deposition simulating the conditions of a site some distance far away from the center of a nuclear accident, for which condensed deposition would be the more significant contribution. The available fraction of these radionuclides was estimated in these soils from experiments in which various reagents were tested and several experimental conditions were compared. As a general conclusion, the soil parameters seemed to be sufficient for prediction purposes, although the model should be improved through the consideration of physiological aspects, especially those depending of the plant selectivity according to the composition of the soil solution

  18. Relationship between soil cellulolytic activity and suppression of seedling blight of barley in arable soils

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Knudsen, I.; Elmholt, S.

    2002-01-01

    the Hanes-Wolf transformation of the Michaelis-Menten equation. Soil samples from 6 to 13 cm depth were collected in the early spring as undisturbed blocks from 10 arable soils with different physico-chemical properties and cultivation history. Significant correlations were found between soil suppresiveness......The objective was to investigate the relationship between soil suppression of seedling blight of barley caused by Fusarium culmorum (W.G. Smith) Sacc. and the soil cellulolytic activity of beta-glucosidase, cellobiohydrolase and endocellulase. Disease suppression was investigated in bioassays...... with test soils mixed with sand, and barley seeds inoculated with F. culmorum. After 19 days, disease severity was evaluated on the barley seedlings. Soil cellulolytic activities were measured using 4-methylumbelliferyl-labelled fluorogenic substrates, and were expressed as V-max values obtained by using...

  19. SMOS validation of soil moisture and ocen salinity (SMOS) soil moisture over watershed networks in the U.S.

    Science.gov (United States)

    Estimation of soil moisture at large scale has been performed using several satellite-based passive microwave sensors and a variety of retrieval methods. The most recent source of soil moisture is the European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission. A thorough validation must b...

  20. Analysis on soil compressibility changes of samples stabilized with lime

    Directory of Open Access Journals (Sweden)

    Elena-Andreea CALARASU

    2016-12-01

    Full Text Available In order to manage and control the stability of buildings located on difficult foundation soils, several techniques of soil stabilization were developed and applied worldwide. Taking into account the major significance of soil compressibility on construction durability and safety, the soil stabilization with a binder like lime is considered one of the most used and traditional methods. The present paper aims to assess the effect of lime content on soil geotechnical parameters, especially on compressibility ones, based on laboratory experimental tests, for several soil categories in admixture with different lime dosages. The results of this study indicate a significant improvement of stabilized soil parameters, such as compressibility and plasticity, in comparison with natural samples. The effect of lime stabilization is related to an increase of soil structure stability by increasing the bearing capacity.

  1. Soil protection through almond tree cultivation

    International Nuclear Information System (INIS)

    Garcia, C.; Hernandez, T.; Moreno, J. L.; Bastida, F.; Masciandaro, G.; Mennone, C.; Ceccanti, B.

    2009-01-01

    Most threat to soil are particularly severe in areas with steps slopes and suffering dry periods followed by heavy rain such as the Mediterranean regions. Severity is aggravated by lacking or inappropriate farming systems. Therefore the objective of this work was to demonstrate that land management based on cultivation of new varieties of local crops (almond trees) suited to these conditions may result in a sustainable system to prevent soil degradation. (Author)

  2. Education in Soil Science: the Italian approach

    Science.gov (United States)

    Benedetti, Anna; Canfora, Loredana; Dazzi, Carmelo; Lo Papa, Giuseppe

    2017-04-01

    The Italian Society of Soil Science (SISS) was founded in Florence on February 18th, 1952. It is an association legally acknowledged by Decree of the President of the Italian Republic in February 1957. The Society is member of the International Union of Soil Sciences (IUSS) of the European Confederation of Soil Science Societies (ECSSS) and collaborates with several companies, institutions and organizations having similar objectives or policy aspects. SISS promotes progress, coordination and dissemination of soil science and its applications encouraging relationships and collaborations among soil lovers. Within the SISS there are Working Groups and Technical Committees for specific issues of interest. In particular: • the Working Group on Pedotechniques; • the Working Group on Hydromorphic and Subaqueous Soils and • the Technical Committee for Soil Education and Public Awareness. In this communication we wish to stress the activities developed since its foundation by SISS to spread soil awareness and education in Italy through this last Technical Committee, focusing also the aspect concerning grants for young graduates and PhD graduates to stimulate the involvement of young people in the field of soil science. Keywords: SISS, soil education and awareness.

  3. Uranium speciation in Fernald soils

    International Nuclear Information System (INIS)

    Morris, D.E.; Conradson, S.D.; Tait, C.D.; Chisholm-Brause, C.J.; Berg, J.; Musgrave, J.

    1992-01-01

    This report details progress made from January 1 to May 31, 1992 in this analytical support task to determine the speciation of uranium in contaminated soil samples from the Fernald Environmental Management Project site under the auspices of the Uranium in Soils Integrated Demonstration funded through the US DOE's Office of Technology Development. The authors' efforts have focused on characterization of soil samples collected by S.Y. Lee (Oak Ridge National Laboratory) from five locales at the Fernald site. These were chosen to sample a broad range of uranium source terms. On the basis of x-ray absorption spectroscopy data, they have determined that the majority of uranium (> 80--90%) exists in the hexavalent oxidation state for all samples examined. This is a beneficial finding from the perspective of remediation, because U(VI) species are more soluble in general than uranium species in other oxidation states. Optical luminescence data from many of the samples show the characteristic structured yellow-green emission from the uranyl (UO 2 2+ ) moiety. The luminescence data also suggest that much of the uranium in these soils is present as well-crystallized UO 2 2+ species. Some clear spectroscopic distinctions have been noted for several samples that illustrate significant differences in the speciation (1) from site to site, (2) within different horizons at the same site, and (3) within different size fractions of the soils in the same horizon at the same site. This marked heterogeneity in uranyl speciation suggests that several soil washing strategies may be necessary to reduce the total uranium concentrations within these soils to regulatory limits

  4. Effect of a controlled burn on the thermophysical properties of a dry soil using a new model of soil heat flow and a new high temperature heat flux sensor

    Science.gov (United States)

    W. J. Massman; J. M. Frank

    2004-01-01

    Some fires can be beneficial to soils but, if a fire is sufficiently intense, soil can be irreversible altered. We measured soil temperatures and heat fluxes at several soil depths before, during, and after a controlled surface burn at Manitou Experimental Forest (southern Colorado, USA) to evaluate its effects on the soil's thermophysical properties (thermal...

  5. Detailed Soils 24K

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set is a digital soil survey and is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was...

  6. Indicators: Soil Chemistry

    Science.gov (United States)

    The chemical makeup of the soil can provide information on wetland condition, wetland water quality and services being provided by the wetland ecosystem. Analyzing soil chemistry reveals if the soil is contaminated with a toxic chemical or heavy metal.

  7. Palmer Drought Severity Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — PDSI from the Dai dataset. The Palmer Drought Severity Index (PDSI) is devised by Palmer (1965) to represent the severity of dry and wet spells over the U.S. based...

  8. Effect of Soil Tillage Practices on Dynamic of Bacterial Communities in Soil

    OpenAIRE

    Mirna Mrkonjić Fuka; Mihaela Blažinkov; Viviane Radl; Danijel Jug; Nataša Hulak; Sulejman Redžepović; Michael Schloter

    2016-01-01

    Several studies have indicated that intensive tillage has notable effect on properties of the soil microbiota that may influence numerous important soils functions, e.g. mobilization of nutrients or change of the overall emission rates of greenhouse gases. Therefore, the aim of our study was to investigate dynamic of microbial communities in soil planted with soybean under different tillage systems. Moreover, abundance of populations harboring the nitrous- oxide reductase gene (nosZ) a...

  9. Historical Perspectives and Future Needs in the Development of the Soil Series Concept

    Science.gov (United States)

    Beaudette, Dylan E.; Brevik, Eric C.; Indorante, Samuel J.

    2016-04-01

    The soil series concept is an ever-evolving understanding of soil profile observations, their connection to the landscape, and functional limits on the range in characteristics that affect management. Historically, the soil series has played a pivotal role in the development of soil-landscape theory, modern soil survey methods, and concise delivery of soils information to the end-user-- in other words, soil series is the palette from which soil survey reports are crafted. Over the last 20 years the soil series has received considerable criticism as a means of soil information organization (soil survey development) and delivery (end-user application of soil survey data), with increasing pressure (internal and external) to retire the soil series. We propose that a modern re-examination of soil series information could help address several of the long-standing critiques of soil survey: consistency across survey vintage and political divisions and more robust estimates of soil properties and associated uncertainty. A new library of soil series data would include classic narratives describing morphology and management, quantitative descriptions of soil properties and their ranges, graphical depiction of the relationships between associated soil series, block diagrams illustrating soil-landscape models, maps of series distribution, and a probabilistic representation of a "typical" soil profile. These data would be derived from re-correlation of existing morphologic and characterization data informed by modern statistical methods and regional expertise.

  10. Tropical Soil Chemistry

    DEFF Research Database (Denmark)

    Borggaard, Ole K.

    and environmental protection. Tropical Soil Chemistry by Ole K. Borggaard provides an overview of the composition, occurrence, properties, processes, formation, and environmental vulnerability of various tropical soil types (using American Soil Taxonomy for classification). The processes and the external factors...... soil chemical issues are also presented to assess when, why, and how tropical soils differ from soils in other regions. This knowledge can help agricultural specialists in the tropics establish sustainable crop production. Readers are assumed to be familiar with basic chemistry, physics...

  11. A petroleum contaminated soil bioremediation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, K.; Hazen, T.

    1994-06-01

    The amount of petroleum contaminated soil (PCS) at the Savannah River site (SRS) that has been identified, excavated and is currently in storage has increased several fold during the last few years. Several factors have contributed to this problem: (1) South Carolina Department of Health ad Environmental control (SCDHEC) lowered the sanitary landfill maximum concentration for total petroleum hydrocarbons (TPH) in the soil from 500 to 100 parts per million (ppm), (2) removal and replacement of underground storage tanks at several sites, (3) most recently SCDHEC disallowed aeration for treatment of contaminated soil, and (4) discovery of several very large contaminated areas of soil associated with leaking underground storage tanks (LUST), leaking pipes, disposal areas, and spills. Thus, SRS has an urgent need to remediate large quantities of contaminated soil that are currently stockpiled and the anticipated contaminated soils to be generated from accidental spills. As long as we utilize petroleum based compounds at the site, we will continue to generate contaminated soil that will require remediation.

  12. A petroleum contaminated soil bioremediation facility

    International Nuclear Information System (INIS)

    Lombard, K.; Hazen, T.

    1994-01-01

    The amount of petroleum contaminated soil (PCS) at the Savannah River site (SRS) that has been identified, excavated and is currently in storage has increased several fold during the last few years. Several factors have contributed to this problem: (1) South Carolina Department of Health ad Environmental control (SCDHEC) lowered the sanitary landfill maximum concentration for total petroleum hydrocarbons (TPH) in the soil from 500 to 100 parts per million (ppm), (2) removal and replacement of underground storage tanks at several sites, (3) most recently SCDHEC disallowed aeration for treatment of contaminated soil, and (4) discovery of several very large contaminated areas of soil associated with leaking underground storage tanks (LUST), leaking pipes, disposal areas, and spills. Thus, SRS has an urgent need to remediate large quantities of contaminated soil that are currently stockpiled and the anticipated contaminated soils to be generated from accidental spills. As long as we utilize petroleum based compounds at the site, we will continue to generate contaminated soil that will require remediation

  13. Sorters for soil cleanup

    International Nuclear Information System (INIS)

    Bramlitt, E.T.; Johnson, N.R.; Tomicich, M.J.

    1991-01-01

    A soil sorter is a system with conveyor, radiation detectors, and a gate. The system activates the gate based on radiation measurements to sort soil to either clean or contaminated paths. Automatic soil sorters have been perfected for use in the cleanup of plutonium contaminated soil at Johnston Atoll. The cleanup processes soil through a plant which mines plutonium to make soil clean. Sorters at various locations in the plant effectively reduce the volume of soil for mining and they aid in assuring clean soil meets guidelines

  14. Influence of the soil-atmosphere exchange on the hydric profile induced in soil-structure system

    Directory of Open Access Journals (Sweden)

    A. Al Qadad

    2012-06-01

    Full Text Available Soil-atmosphere exchange leads to a moisture change in the soil. This can cause major damage to engineering structures due to the soil expansion and shrinkage. The soil-atmosphere exchange is related to several parameters, in particular the soil characteristics and climate conditions. The presence of an engineering structure causes a variation of the hydraulic profile in the soil, which can lead to heterogeneous soil movement and consequently to structural damage. This paper presents a coupled numerical model based on the consideration of both water flow in unsaturated soils and soil-atmosphere exchange. After the validation of the model, the paper presents its use for the analysis of the influence of the presence of structures on moisture change induced under climatic conditions recorded in a semi-arid region. Analysis shows that the presence of the structure leads to important change in the moisture distribution, in particular in the vicinity of the structure.

  15. Soil fauna: key to new carbon models

    Science.gov (United States)

    Filser, Juliane; Faber, Jack H.; Tiunov, Alexei V.; Brussaard, Lijbert; Frouz, Jan; De Deyn, Gerlinde; Uvarov, Alexei V.; Berg, Matty P.; Lavelle, Patrick; Loreau, Michel; Wall, Diana H.; Querner, Pascal; Eijsackers, Herman; José Jiménez, Juan

    2016-11-01

    Soil organic matter (SOM) is key to maintaining soil fertility, mitigating climate change, combatting land degradation, and conserving above- and below-ground biodiversity and associated soil processes and ecosystem services. In order to derive management options for maintaining these essential services provided by soils, policy makers depend on robust, predictive models identifying key drivers of SOM dynamics. Existing SOM models and suggested guidelines for future SOM modelling are defined mostly in terms of plant residue quality and input and microbial decomposition, overlooking the significant regulation provided by soil fauna. The fauna controls almost any aspect of organic matter turnover, foremost by regulating the activity and functional composition of soil microorganisms and their physical-chemical connectivity with soil organic matter. We demonstrate a very strong impact of soil animals on carbon turnover, increasing or decreasing it by several dozen percent, sometimes even turning C sinks into C sources or vice versa. This is demonstrated not only for earthworms and other larger invertebrates but also for smaller fauna such as Collembola. We suggest that inclusion of soil animal activities (plant residue consumption and bioturbation altering the formation, depth, hydraulic properties and physical heterogeneity of soils) can fundamentally affect the predictive outcome of SOM models. Understanding direct and indirect impacts of soil fauna on nutrient availability, carbon sequestration, greenhouse gas emissions and plant growth is key to the understanding of SOM dynamics in the context of global carbon cycling models. We argue that explicit consideration of soil fauna is essential to make realistic modelling predictions on SOM dynamics and to detect expected non-linear responses of SOM dynamics to global change. We present a decision framework, to be further developed through the activities of KEYSOM, a European COST Action, for when mechanistic SOM models

  16. Soil-structure interaction including nonlinear soil

    OpenAIRE

    Gicev, Vlado

    2008-01-01

    There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.

  17. The dissolved organic matter as a potential soil quality indicator in arable soils of Hungary.

    Science.gov (United States)

    Filep, Tibor; Draskovits, Eszter; Szabó, József; Koós, Sándor; László, Péter; Szalai, Zoltán

    2015-07-01

    Although several authors have suggested that the labile fraction of soils could be a potential soil quality indicator, the possibilities and limitations of using the dissolved organic matter (DOM) fraction for this purpose have not yet been investigated. The objective of this study was to evaluate the hypothesis that DOM is an adequate indicator of soil quality. To test this, the soil quality indices (SQI) of 190 arable soils from a Hungarian dataset were estimated, and these values were compared to DOM parameters (DOC and SUVA254). A clear difference in soil quality was found between the soil types, with low soil quality for arenosols (average SQI 0.5) and significantly higher values for gleysols, vertisols, regosols, solonetzes and chernozems. The SQI-DOC relationship could be described by non-linear regression, while a linear connection was observed between SQI and SUVA. The regression equations obtained for the dataset showed only one relatively weak significant correlation between the variables, for DOC (R (2) = 0.157(***); n = 190), while non-significant relationships were found for the DOC and SUVA254 values. However, an envelope curve operated with the datasets showed the robust potential of DOC to indicate soil quality changes, with a high R (2) value for the envelope curve regression equation. The limitations to using the DOM fraction of soils as a quality indicator are due to the contradictory processes which take place in soils in many cases.

  18. Spatial patterns of soil organic carbon stocks in Estonian arable soils

    Science.gov (United States)

    Suuster, Elsa; Astover, Alar; Kõlli, Raimo; Roostalu, Hugo; Reintam, Endla; Penu, Priit

    2010-05-01

    Soil organic carbon (SOC) determines ecosystem functions, influencing soil fertility, soil physical, chemical and biological properties and crop productivity. Therefore the spatial pattern of SOC stocks and its appropriate management is important at various scales. Due to climate change and the contribution of carbon store in the soils, the national estimates of soil carbon stocks should be determined. Estonian soils have been well studied and mapped at a scale 1:10,000. Previous studies have estimated SOC stocks based on combinations of large groups of Estonian soils and the mean values of the soil profile database, but were not embedded into the geo-referenced databases. These studies have estimated SOC stocks of Estonian arable soils 122.3 Tg. Despite of available soil maps and databases, this information is still very poorly used for spatial soil modelling. The aim of current study is to assess and model spatial pattern of SOC stocks of arable soils on a pilot area Tartu County (area 3089 sq km). Estonian digital soil map and soil monitoring databases are providing a good opportunity to assess SOC stocks at various scales. The qualitative nature of the initial data from a soil map prohibits any straightforward use in modelling. Thus we have used several databases to construct models and linkages between soil properties that can be integrated into soil map. First step was to reorganize the soil map database (44,046 mapping units) so it can be used as an input to modelling. Arable areas were distinguished by a field layer of Agricultural Registers and Information Board, which provides precise information of current land use as it is the basis of paying CAP subsidies. The estimates of SOC content were found by using the arable land evaluation database of Tartu from the Estonian Land Board (comprising 950 sq km and 31,226 fields), where each soil type was assessed separately and average SOC content grouped by texture was derived. SOC content of epipedon varies in

  19. Microstructure and stability of two sandy loam soils with different soil management

    NARCIS (Netherlands)

    Bouma, J.

    1969-01-01

    A practical problem initiated this study. In the Haarlemmermeer, a former lake reclaimed about 1850, several farmers had difficulties with soil structure. Land, plowed in autumn, was very wet in spring. Free water was sometimes present on the soil surface. Planting and seeding were long delayed in

  20. Assessing soil fertility decline in the tropics using soil chemical data

    NARCIS (Netherlands)

    Hartemink, A.E.

    2006-01-01

    Soil fertility decline is perceived to be widespread in the upland soils of the tropics, particularly in sub-Saharan Africa. Most studies have used nutrient balances to assess the degree and extent of nutrient depletion; these have created awareness but suffer methodological problems as several of

  1. Development of soil quality metrics using mycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Baar, J.

    2010-07-01

    Based on the Treaty on Biological Diversity of Rio de Janeiro in 1992 for maintaining and increasing biodiversity, several countries have started programmes monitoring soil quality and the above- and below ground biodiversity. Within the European Union, policy makers are working on legislation for soil protection and management. Therefore, indicators are needed to monitor the status of the soils and these indicators reflecting the soil quality, can be integrated in working standards or soil quality metrics. Soil micro-organisms, particularly arbuscular mycorrhizal fungi (AMF), are indicative of soil changes. These soil fungi live in symbiosis with the great majority of plants and are sensitive to changes in the physico-chemical conditions of the soil. The aim of this study was to investigate whether AMF are reliable and sensitive indicators for disturbances in the soils and can be used for the development of soil quality metrics. Also, it was studied whether soil quality metrics based on AMF meet requirements to applicability by users and policy makers. Ecological criterions were set for the development of soil quality metrics for different soils. Multiple root samples containing AMF from various locations in The Netherlands were analyzed. The results of the analyses were related to the defined criterions. This resulted in two soil quality metrics, one for sandy soils and a second one for clay soils, with six different categories ranging from very bad to very good. These soil quality metrics meet the majority of requirements for applicability and are potentially useful for the development of legislations for the protection of soil quality. (Author) 23 refs.

  2. Severe accident phenomena

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Kilpi, K.; Lindholm, I.; Maekynen, J.; Pekkarinen, E.; Sairanen, R.; Silde, A.

    1995-02-01

    Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)

  3. The use of earthworms in ecological soil classification and assessment concepts

    NARCIS (Netherlands)

    Rombke, J.; Jansch, S.; Didden, W.A.M.

    2005-01-01

    Without doubt, earthworms are the most important soil invertebrates in most soils worldwide, in terms of both biomass and activity. Several species are even considered to be ecosystem engineers. Earthworms are also known to influence soil structure, soil chemistry, and, in particular, processes like

  4. Local variation in conspecific plant density influences plant-soil feedback in a natural grassland

    NARCIS (Netherlands)

    Kos, M.; Veendrick, Johan; Bezemer, T.M.

    2013-01-01

    Several studies have argued that under field conditions plant–soil feedback may be related to the local density of a plant species, but plant–soil feedback is often studied by comparing conspecific and heterospecific soils or by using mixed soil samples collected from different locations and plant

  5. Evaluation of a simple, non-alkaline extraction protocol to quantify soil ergosterol

    NARCIS (Netherlands)

    De Ridder-Duine, A.S.; Smant, W.; Van der Wal, A.; Van Veen, J.A.; De Boer, W.

    2006-01-01

    Quantification of soil ergosterol is increasingly used as an estimate for soil fungal biomass. Several methods for extraction of ergosterol from soil have been published, perhaps the simplest being that described by Gong, P., Guan, X., Witter, E. [2001. A rapid method to extract ergosterol from soil

  6. Remediation of gasoline-contaminated soil by passive volatilization

    International Nuclear Information System (INIS)

    Donaldson, S.G.; Miller, G.C.; Miller, W.W.

    1992-01-01

    Loss of 10 hydrocarbons characteristic of those found in gasoline (benzene; n-heptane; toluene; m-xylene; n-nonane; n-propylbenzene; 1,2,4-trimethylbenzene; n-butylbenzene; 1,2,4,5-tetramethylbenzene; and n-dodecane) from 20-cm soil layers was investigated in several field experiments. Soil was spiked with 50 mg kg -1 of each compound, placed in pans outdoors, and subjected to one of five treatments: dry, unmixed soil; dry soil mixed weekly; soil watered once only; soil watered periodically; and soil watered and mixed periodically. Significantly greater rates of loss occurred from wet soils, with an average of 5.7% remaining in wet and mixed treatments at the 18- to 20-cm depth on Day 32 of the spring experiment, compared with 61% remaining in dry, unmixed soils. Following wetting of the soil by rain, less than 8% overall remained in any soil layer by Day 64. Loss was greatest during the summer experiment. By Day 32, only tetramethylbenzene and dodecane were measurable for the wet treatments, with totals below 5% at the 18- to 20-cm depth. An average of 48.6% remained in the dry soils. The final experiment during fall 1989 demonstrated loss of 500 mg kg -1 of unleaded gasoline from spiked soil. No measurable amounts remained after 8 d in wet and mixed treatments and 16 d in wet, unmixed treatments, bu 3.5% remained after 32 d in initially dry soil

  7. North American Soil Degradation: Processes, Practices, and Mitigating Strategies

    Directory of Open Access Journals (Sweden)

    R. L. Baumhardt

    2015-03-01

    Full Text Available Soil can be degraded by several natural or human-mediated processes, including wind, water, or tillage erosion, and formation of undesirable physical, chemical, or biological properties due to industrialization or use of inappropriate farming practices. Soil degradation occurs whenever these processes supersede natural soil regeneration and, generally, reflects unsustainable resource management that is global in scope and compromises world food security. In North America, soil degradation preceded the catastrophic wind erosion associated with the dust bowl during the 1930s, but that event provided the impetus to improve management of soils degraded by both wind and water erosion. Chemical degradation due to site specific industrial processing and mine spoil contamination began to be addressed during the latter half of the 20th century primarily through point-source water quality concerns, but soil chemical degradation and contamination of surface and subsurface water due to on-farm non-point pesticide and nutrient management practices generally remains unresolved. Remediation or prevention of soil degradation requires integrated management solutions that, for agricultural soils, include using cover crops or crop residue management to reduce raindrop impact, maintain higher infiltration rates, increase soil water storage, and ultimately increase crop production. By increasing plant biomass, and potentially soil organic carbon (SOC concentrations, soil degradation can be mitigated by stabilizing soil aggregates, improving soil structure, enhancing air and water exchange, increasing nutrient cycling, and promoting greater soil biological activity.

  8. Culturable fungi in potting soils and compost.

    Science.gov (United States)

    Haas, Doris; Lesch, Susanne; Buzina, Walter; Galler, Herbert; Gutschi, Anna Maria; Habib, Juliana; Pfeifer, Bettina; Luxner, Josefa; Reinthaler, Franz F

    2016-11-01

    In the present study the spectrum and the incidence of fungi in potting soils and compost was investigated. Since soil is one of the most important biotopes for fungi, relatively high concentrations of fungal propagules are to be expected. For detection of fungi, samples of commercial soils, compost and soils from potted plants (both surface and sub-surface) were suspended and plated onto several mycological media. The resulting colonies were evaluated qualitatively and quantitatively. The results from the different sampling series vary, but concentrations on the surface of potted plants and in commercial soils are increased tenfold compared to compost and sub-surface soils. Median values range from 9.5 × 10(4) colony forming units (CFU)/g to 5.5 × 10(5) CFU/g. The spectrum of fungi also varies in the soils. However, all sampling series show high proportion of Aspergillus and Penicillium species, including potentially pathogenic species such as Aspergillus fumigatus. Cladosporium, a genus dominant in the ambient air, was found preferably in samples which were in contact with the air. The results show that potentially pathogenic fungi are present in soils. Immunocompromised individuals should avoid handling soils or potted plants in their immediate vicinity. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Soil structural behaviour of flooded soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to: identify factors determining of the structural behaviour of flooded soils, as compared to those acting in upland soils; analyse the influence of reductive processes on aggregate stabilising agents; discuss mechanisms of structural deterioration and recovery during the flooding-drying cycle, on the basis of a case study: cattle trampling effects in the flooding Pampa of Argentina. Flooded soils, now known as Hydric soils, are characteristic of wetlands and irrigated fields cropped to rice (paddy soils). In them, water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year. Hydric soils belong to different taxa of the FAO-UNESCO Soil Map (2000). Fluvisols, Planosols and Gleysols are widespread distributed in the globe. The generation of redoximorphic features is due to different causes in each of them. Fluvisols are covered part of the year by surface water from river overflows; Planosols are soils having an impervious Bt horizon, supporting perched water during short periods; and Gleysols are soils affected by stagnant water tables during long periods

  10. Visual soil evaluation and soil compaction research

    DEFF Research Database (Denmark)

    M.L. Guimarães, Rachel; Keller, Thomas; Munkholm, Lars Juhl

    2017-01-01

    Following on from discussions that took place during the 19th International Conference of the International Soil Tillage Research Organization (ISTRO) in Montevideo, Uruguay, in 2012, the ISTRO working groups “Visual Soil Examination and Evaluation” (VSEE) and “Subsoil Compaction” decided...... to organize a joint workshop. The present special issue is an outcome from the workshop on “Soil structural quality of tropical soils: Visual evaluation methods and soil compaction prevention strategies” that was held 26–29 May 2014 in Maringá, Paraná, Brazil. There has been a long-lasting interest in Visual...... Soil Evaluation (VSE). An ISTRO working group was established more than 30 years ago with the objectives to exchange knowledge and experiences on field methods of visual-tactile soil assessment and to foster international cooperation on new or refined methods. The three previous meeting of the group...

  11. 11 Soil Microbial Biomass

    African Journals Online (AJOL)

    186–198. Insam H. (1990). Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil. Biol. Biochem. 22: 525–532. Insam H. D. and Domsch K. H. (1989). Influence of microclimate on soil microbial biomass. Soil Biol. Biochem. 21: 211–21. Jenkinson D. S. (1988). Determination of microbial.

  12. Hot fire, cool soil

    NARCIS (Netherlands)

    Stoof, C.R.; Moore, D.; Fernandes, P.; Stoorvogel, J.J.; Fernandes, R.; Ferreira, A.J.D.; Ritsema, C.J.

    2013-01-01

    Wildfires greatly increase a landscape's vulnerability to flooding and erosion events by removing vegetation and changing soils. Fire damage to soil increases with increasing soil temperature, and, for fires where smoldering combustion is absent, the current understanding is that soil temperatures

  13. Visual soil evaluation

    DEFF Research Database (Denmark)

    Visual Soil Evaluation (VSE) provides land users and environmental authorities with the tools to assess soil quality for crop performance. This book describes the assessment of the various structural conditions of soil, especially after quality degradation such as compaction, erosion or organic...... and nutrient leaching, and for diagnosing and rectifying erosion and compaction in soils....

  14. Restoring Soil Quality to Mitigate Soil Degradation

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2015-05-01

    Full Text Available Feeding the world population, 7.3 billion in 2015 and projected to increase to 9.5 billion by 2050, necessitates an increase in agricultural production of ~70% between 2005 and 2050. Soil degradation, characterized by decline in quality and decrease in ecosystem goods and services, is a major constraint to achieving the required increase in agricultural production. Soil is a non-renewable resource on human time scales with its vulnerability to degradation depending on complex interactions between processes, factors and causes occurring at a range of spatial and temporal scales. Among the major soil degradation processes are accelerated erosion, depletion of the soil organic carbon (SOC pool and loss in biodiversity, loss of soil fertility and elemental imbalance, acidification and salinization. Soil degradation trends can be reversed by conversion to a restorative land use and adoption of recommended management practices. The strategy is to minimize soil erosion, create positive SOC and N budgets, enhance activity and species diversity of soil biota (micro, meso, and macro, and improve structural stability and pore geometry. Improving soil quality (i.e., increasing SOC pool, improving soil structure, enhancing soil fertility can reduce risks of soil degradation (physical, chemical, biological and ecological while improving the environment. Increasing the SOC pool to above the critical level (10 to 15 g/kg is essential to set-in-motion the restorative trends. Site-specific techniques of restoring soil quality include conservation agriculture, integrated nutrient management, continuous vegetative cover such as residue mulch and cover cropping, and controlled grazing at appropriate stocking rates. The strategy is to produce “more from less” by reducing losses and increasing soil, water, and nutrient use efficiency.

  15. De-severing distance

    DEFF Research Database (Denmark)

    Jensen, Hanne Louise; de Neergaard, Maja

    2016-01-01

    De-severing Distance This paper draws on the growing body of mobility literature that shows how mobility can be viewed as meaningful everyday practices (Freudendal –Pedersen 2007, Cresswell 2006) this paper examines how Heidegger’s term de-severing can help us understand the everyday coping with ...

  16. Severe Bleeding: First Aid

    Science.gov (United States)

    ... 12, 2017. Jevon P, et al. Part 5 — First-aid treatment for severe bleeding. Nursing Times. 2008;104:26. Oct. 19, 2017 Original article: http://www.mayoclinic.org/first-aid/first-aid-severe-bleeding/basics/ART-20056661 . Mayo ...

  17. Allergy in severe asthma

    NARCIS (Netherlands)

    Del Giacco, Stefano R.; Bakirtas, A.; Bel, E.; Custovic, A.; Diamant, Z.; Hamelmann, E.; Heffler, E.; Kalayci, O.; Saglani, S.; Sergejeva, S.; Seys, S.; Simpson, A.; Bjermer, Leif

    It is well recognized that atopic sensitization is an important risk factor for asthma, both in adults and in children. However, the role of allergy in severe asthma is still under debate. The term 'Severe Asthma' encompasses a highly heterogeneous group of patients who require treatment on steps

  18. Soil organic matter studies

    International Nuclear Information System (INIS)

    1977-01-01

    A total of 77 papers were presented and discussed during this symposium, 37 are included in this Volume II. The topics covered in this volume include: biochemical transformation of organic matter in soils; bitumens in soil organic matter; characterization of humic acids; carbon dating of organic matter in soils; use of modern techniques in soil organic matter research; use of municipal sludge with special reference to heavy metals constituents, soil nitrogen, and physical and chemical properties of soils; relationship of soil organic matter and plant metabolism; interaction between agrochemicals and organic matter; and peat. Separate entries have been prepared for those 20 papers which discuss the use of nuclear techniques in these studies

  19. Soil water management

    International Nuclear Information System (INIS)

    Nielsen, D.R.; Cassel, D.K.

    1984-01-01

    The use of radiation and tracer techniques in investigations into soil water management in agriculture, hydrology etc. is described. These techniques include 1) neutron moisture gauges to monitor soil water content and soil water properties, 2) gamma radiation attenuation for measuring the total density of soil and soil water content, 3) beta radiation attenuation for measuring changes in the water status of crop plants and 4) radioactive and stable tracers for identifying pathways, reactions and retention times of the constituents in soils and groundwater aquifers. The number and spacing of soil observations that should be taken to represent the management unit are also considered. (U.K.)

  20. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    The total vegetated land area of the earth is about 11,500 hectare. Of this, about 12% is in South America. Of this, about 14% is degraded area. Water erosion, chemical degradation, wind erosion, and physical degradation have been reported as main types of degradation. In South America water erosion is a major process for soil degradation. Nevertheless, water erosion can be a consequence of degradation of the soil structure, especially the functional attributes of soil pores to transmit and retain water, and to facilitate root growth. Climate, soil and topographic characteristics determine runoff and erosion potential from agricultural lands. The main factors causing soil erosion can be divided into three groups: Energy factors: rainfall erosivity, runoff volume, wind strength, relief, slope angle, slope length; Protection factors: population density, plant cover, amenity value (pressure for use) and land management; and resistance factors: soil erodibility, infiltration capacity and soil management. The degree of soil erosion in a particular climatic zone, with particular soils, land use and socioeconomic conditions, will always result from a combination of the above mentioned factors. It is not easy to isolate a single factor. However, the soil physical properties that determine the soil erosion process, because the deterioration of soil physical properties is manifested through interrelated problems of surface sealing, crusting, soil compaction, poor drainage, impeded root growth, excessive runoff and accelerated erosion. When an unprotected soil surface is exposed to the direct impact of raindrops it can produce different responses: Production of smaller aggregates, dispersed particles, particles in suspension and translocation and deposition of particles. When this has occurred, the material is reorganized at the location into a surface seal. Aggregate breakdown under rainfall depends on soil strength and a certain threshold kinetic energy is needed to start

  1. Currency flaw severity. [Banknotes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.; Burnett, M.; Goodman, C.; Sherrod, R.; Schmoyer, R.; Harrison, C.; Uppuluri, R.

    1986-01-01

    A survey of currency flaw severity was carried out using 300 banknotes and 37 judges. Each judge assigned each note to one of five flaw severity categories. These categories correspond to severity grades of 1 to 5 with 1 equivalent to ''always accepted'' and 5 ''never accepted.'' An average flaw severity grade for each note was obtained by taking the mean of the severity grades assigned to that note by the 37 judges. Thus, each note has a single numerical real-number flaw grade between 1 and 5. Mathematical modeling of the currency flaw survey results is continuing with some very promising initial results. Our present model handles common excess ink and missing ink flaw types quite well. We plan to extend the model to ink level, mash, setoff and blanket impression flaw types.

  2. Predicting fire severity using surface fuels and moisture

    Science.gov (United States)

    Pamela G. Sikkink; Robert E. Keane

    2012-01-01

    Fire severity classifications have been used extensively in fire management over the last 30 years to describe specific environmental or ecological impacts of fire on fuels, vegetation, wildlife, and soils in recently burned areas. New fire severity classifications need to be more objective, predictive, and ultimately more useful to fire management and planning. Our...

  3. Cross-cutting activities: Soil quality and soil metagenomics

    OpenAIRE

    Motavalli, Peter P.; Garrett, Karen A.

    2008-01-01

    This presentation reports on the work of the SANREM CRSP cross-cutting activities "Assessing and Managing Soil Quality for Sustainable Agricultural Systems" and "Soil Metagenomics to Construct Indicators of Soil Degradation." The introduction gives an overview of the extensiveness of soil degradation globally and defines soil quality. The objectives of the soil quality cross cutting activity are: CCRA-4 (Soil Metagenomics)

  4. Ecological Role of Soils upon Radioactive Contamination

    Science.gov (United States)

    Tsvetnov, Evgeny; Shcheglov, Alexei; Tsvenova, Olga

    2016-04-01

    The ecological role of soils upon radioactive contamination is clearly manifested in the system of notions about ecosystems services, i.e., benefits gained by humans from ecosystems and their components, including soils (Millennium Ecosystem Assessment, 2005). For the soils, these services are considered on the basis of soil functions in the biosphere that belong to the protective ecosystem functions within the group of soil functions known under the names of "Buffer and protective biogeocenotic shield" (at the level of particular biogeocenoses) and "Protective shield of the biosphere" (at the global biospheric level) (according to Dobrovol'skii & Nikitin, 2005). With respect to radionuclides, this group includes (1) the depositing function, i.e., the accumulation and long-term sequestration of radioactive substances by the soil after atmospheric fallout; (2) the geochemical function, i.e., the regulation of horizontal and vertical fluxes of radionuclides in the system of geochemically conjugated landscapes and in the soil-groundwater and soil-plant systems; and (3) the dose-forming function that is manifested by the shielding capacity of the soil with respect to the external ionizing radiation (lowering of the dose from external radiation) and by the regulation of the migration of radionuclides in the trophic chain (lowering of the dose from internal radiation). The depositing and geochemical functions of the soils are interrelated, which is seen from quantitative estimates of the dynamics of the fluxes of radionuclides in the considered systems (soil-plant, soil-groundwater, etc.). The downward migration of radionuclides into the lower soil layers proceeds very slowly: for decades, more than 90% of the pool of radionuclides is stored in the topmost 10 cm of the soil profile. In the first 3-5 years after the fallout, the downward migration of radionuclides with infiltrating water flows decreases from several percent to decimals and hundredths of percent from the

  5. Soil stabilization 1982

    Science.gov (United States)

    Barenberg, E. J.; Thompson, M. R.; Tayabji, S. D.; Nussbaum, P. J.; Ciolko, A. T.

    Seven papers cover the following areas: design, construction and performance of lime, fly ash, and slag pavement; evaluation of heavily loaded cement stabilized bases; coal refuse and fly ash compositions; potential highway base course materials; lime soil mixture design considerations for soils of southeastern United States; short term active soil property changes caused by injection of lime and fly ash; soil cement for use in stream channel grade stabilization structures; and reaction products of lime treated southeastern soils.

  6. The soils of hydrographic basin of Râmna and some aspects regarding soil erosion

    Directory of Open Access Journals (Sweden)

    Zoia PREFAC

    2008-08-01

    Full Text Available The paper focuses on the soil spatial distribution analysis in Râmna basin, ranging till type and sub-type, according with the Romanian Soil Taxonomy System (2003 and deriving from the assessment of their chemical and physical features. For this purpose, several data were used, among which the soil map (1:200 000 and ICPA soil profile fiches, GIS-integrated through scanning – georeferencing – digitizing. The obtained results reflects the variety and complexity of Râmna basin’s soil layer, outlining six soil classes, with a different distributionaccording with the relief, the plain area being characterized by Cernisols and Salsodisols, while the hilly region is dominated by Luvisols and Cambisols classes. Both regions have common features, represented by Protisols and Anthrosols classes.

  7. Preliminary study of soil permeability properties using principal component analysis

    Science.gov (United States)

    Yulianti, M.; Sudriani, Y.; Rustini, H. A.

    2018-02-01

    Soil permeability measurement is undoubtedly important in carrying out soil-water research such as rainfall-runoff modelling, irrigation water distribution systems, etc. It is also known that acquiring reliable soil permeability data is rather laborious, time-consuming, and costly. Therefore, it is desirable to develop the prediction model. Several studies of empirical equations for predicting permeability have been undertaken by many researchers. These studies derived the models from areas which soil characteristics are different from Indonesian soil, which suggest a possibility that these permeability models are site-specific. The purpose of this study is to identify which soil parameters correspond strongly to soil permeability and propose a preliminary model for permeability prediction. Principal component analysis (PCA) was applied to 16 parameters analysed from 37 sites consist of 91 samples obtained from Batanghari Watershed. Findings indicated five variables that have strong correlation with soil permeability, and we recommend a preliminary permeability model, which is potential for further development.

  8. LANDSAT-1 data, its use in a soil survey program

    Science.gov (United States)

    Westin, F. C.; Frazee, C. J.

    1975-01-01

    The following applications of LANDSAT imagery were investigated: assistance in recognizing soil survey boundaries, low intensity soil surveys, and preparation of a base map for publishing thematic soils maps. The following characteristics of LANDSAT imagery were tested as they apply to the recognition of soil boundaries in South Dakota and western Minnesota: synoptic views due to the large areas covered, near-orthography and lack of distortion, flexibility of selecting the proper season, data recording in four parts of the spectrum, and the use of computer compatible tapes. A low intensity soil survey of Pennington County, South Dakota was completed in 1974. Low intensity inexpensive soil surveys can provide the data needed to evaluate agricultural land for the remaining counties until detailed soil surveys are completed. In using LANDSAT imagery as a base map for publishing thematic soil maps, the first step was to prepare a mosaic with 20 LANDSAT scenes from several late spring passes in 1973.

  9. HT oxidation activity of soil irradiated with gamma radiation

    International Nuclear Information System (INIS)

    Momoshima, Noriyuki; Tjahaja, P.I.; Takashima, Yoshimasa

    1992-01-01

    The HT oxidation activity was examined for soils irradiated with 60 Co γ-rays at various doses. The HT oxidation rate decreased with increase of initial H 2 concentration, indicating a similar oxidation mechanism between HT and H 2 . Irradiated soils showed decrease of oxidation activity with dose suggests that HT and H 2 oxidation activities were affected by sterilization with γ-rays. The decline of the oxidation activity with dose was analyzed by a composite of two components with different radiosensitivity and they were considered to be activities of soil microorganisms and abiotic soil enzymes. The oxidation activity due to soil microorganisms would be important at low dose range and more radioresistant abiotic soil enzymes would be responsible for the oxidation activity observed at more than several kGy. In non-irradiated soil about half of the oxidation activity was considered resulting from abiotic soil enzymes. (author)

  10. Remediation of Soil Contaminated with Uranium using a Biological Method

    International Nuclear Information System (INIS)

    Park, Hye Min; Kim, Gye Nam; Shon, Dong Bin; Lee, Ki Won; Chung, Un Soo; Moon, Jai Kwon

    2011-01-01

    Bioremediation is a method to cleanup contaminants in soil or ground water with microorganisms. The biological method can reduce the volume of waste solution and the construction cost and operation cost of soil remediation equipment. Bioremediation can be divided into natural attenuation, bioaugmentation, biostimulation. Biostimulation is technology to improve natural purification by adding nutritional substances, supplying oxygen and controlling pH. In this study, penatron, that is a nutritional substances, was mixed with soil. Optimum conditions for mixing ratios of penatron and soil, and the pH of soil was determined through several bioremediation experiments with soil contaminated with uranium. Also, under optimum experiment conditions, the removal efficiencies of soil and concrete according to reaction time were measured for feasibility analysis of soil and concrete bioremediations

  11. Net carbon allocation in soybean seedlings as influenced by soil water stress at two soil temperatures

    International Nuclear Information System (INIS)

    McCoy, E.L.; Boersma, L.; Ekasingh, M.

    1990-01-01

    The influence of water stress at two soil temperatures on allocation of net photoassimilated carbon in soybean (Glycine max [L.] Merr.) was investigated using compartmental analysis. The experimental phase employed classical 14 C labeling methodology with plants equilibrated at soil water potentials of -0.04, -0.25 and -0.50 MPa; and soil temperatures of 25 and 10C. Carbon immobilization in the shoot apex generally followed leaf elongation rates with decreases in both parameters at increasing water stress at both soil temperatures. However, where moderate water stress resulted in dramatic declines in leaf elongation rates, carbon immobilization rates were sharply decreased only at severe water stress levels. Carbon immobilization was decreased in the roots and nodules of the nonwater stressed treatment by the lower soil temperature. This relation was reversed with severe water stress, and carbon immobilization in the roots and nodules was increased at the lower soil temperature. Apparently, the increased demand for growth and/or carbon storage in these tissues with increased water stress overcame the low soil temperature limitations. Both carbon pool sizes and partitioning of carbon to the sink tissues increased with moderate water stress at 25C soil temperature. Increased pool sizes were consistent with whole plant osmotic adjustment at moderate water stress. Increased partitioning to the sinks was consistent with carbon translocation processes being less severely influenced by water stress than is photosynthesis

  12. Severe childhood malnutrition

    DEFF Research Database (Denmark)

    Bhutta, Zulfiqar A; Berkley, James A; Bandsma, Robert H J

    2017-01-01

    The main forms of childhood malnutrition occur predominantly in children malnutrition. Here, we use...... the term 'severe malnutrition' to describe these conditions to better reflect the contributions of chronic poverty, poor living conditions with pervasive deficits in sanitation and hygiene, a high prevalence of infectious diseases and environmental insults, food insecurity, poor maternal and fetal...... nutritional status and suboptimal nutritional intake in infancy and early childhood. Children with severe malnutrition have an increased risk of serious illness and death, primarily from acute infectious diseases. International growth standards are used for the diagnosis of severe malnutrition and provide...

  13. Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd.

    Science.gov (United States)

    Lu, Huanping; Li, Zhian; Fu, Shenglei; Méndez, Ana; Gascó, Gabriel; Paz-Ferreiro, Jorge

    2015-01-01

    The main goal of phytoremediation is to improve ecosystem functioning. Soil biochemical properties are considered as effective indicators of soil quality and are sensitive to various environmental stresses, including heavy metal contamination. The biochemical response in a soil contaminated with cadmium was tested after several treatments aimed to reduce heavy metal availability including liming, biochar addition and phytoextraction using Amaranthus tricolor L. Two biochars were added to the soil: eucalyptus pyrolysed at 600 °C (EB) and poultry litter at 400 °C (PLB). Two liming treatments were chosen with the aim of bringing soil pH to the same values as in the treatments EB and PLB. The properties studied included soil microbial biomass C, soil respiration and the activities of invertase, β-glucosidase, β-glucosaminidase, urease and phosphomonoesterase. Both phytoremediation and biochar addition improved soil biochemical properties, although results were enzyme specific. For biochar addition these changes were partly, but not exclusively, mediated by alterations in soil pH. A careful choice of biochar must be undertaken to optimize the remediation process from the point of view of metal phytoextraction and soil biological activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. SOIL moisture data intercomparison

    Science.gov (United States)

    Kerr, Yann; Rodriguez-Frenandez, Nemesio; Al-Yaari, Amen; Parens, Marie; Molero, Beatriz; Mahmoodi, Ali; Mialon, Arnaud; Richaume, Philippe; Bindlish, Rajat; Mecklenburg, Susanne; Wigneron, Jean-Pierre

    2016-04-01

    The Soil Moisture and Ocean Salinity satellite (SMOS) was launched in November 2009 and started delivering data in January 2010. Subsequently, the satellite has been in operation for over 6 years while the retrieval algorithms from Level 1 to Level 2 underwent significant evolutions as knowledge improved. Other approaches for retrieval at Level 2 over land were also investigated while Level 3 and 4 were initiated. In this présentation these improvements are assessed by inter-comparisons of the current Level 2 (V620) against the previous version (V551) and new products either using neural networks or Level 3. In addition a global evaluation of different SMOS soil moisture (SM) products is performed comparing products with those of model simulations and other satellites (AMSR E/ AMSR2 and ASCAT). Finally, all products were evaluated against in situ measurements of soil moisture (SM). The study demonstrated that the V620 shows a significant improvement (including those at level1 improving level2)) with respect to the earlier version V551. Results also show that neural network based approaches can yield excellent results over areas where other products are poor. Finally, global comparison indicates that SMOS behaves very well when compared to other sensors/approaches and gives consistent results over all surfaces from very dry (African Sahel, Arizona), to wet (tropical rain forests). RFI (Radio Frequency Interference) is still an issue even though detection has been greatly improved while RFI sources in several areas of the world are significantly reduced. When compared to other satellite products, the analysis shows that SMOS achieves its expected goals and is globally consistent over different eco climate regions from low to high latitudes and throughout the seasons.

  15. Aggregate stability and soil degradation in the tropics

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.

    2004-01-01

    Aggregate stability is a measure of the structural stability of soils. Factors that influence aggregate stability are important in evaluating the ease with which soils erode by water and/or wind, the potential of soils to crust and/or seal, soil permeability, quasi-steady state infiltration rates and seedling emergence and in predicting the capacity of soils to sustain long-term crop production. Aggregate stability of soils can be measured by the wet-sieving or raindrop techniques. A reduction in soil aggregate stability implies an increase in soil degradation. Hence aggregate stability and soil degradation are interwoven. The measures used can either be preventive or remedial. Preventive practices minimize the chances of soil degradation occurring or the magnitude or severity of the damage when the degradation manifests. These include in Nigeria, (i) manuring and mulching, (ii) planted fallows and cover crops, (iii) sustainable farming systems, (iv) adequate rotations, (v) home gardens or compound farms, (vi) alley cropping and related agro forestry systems, and (vii) chemical fertilizers which are mainly remedial measures. Because of alterations in soil properties that affect particular land uses, soils may degrade for one crop (maize rather sorghum). As long as some land use is possible soil degradation is not always an absolute concept. Decline in agricultural productivity should be evaluated in terms of inputs such as fertilizer use, water management and tillage methods. We can alleviate some types of soil degradation by use of micronutrients, inorganic fertilizers and organic residues. Soil that responds to management practices cannot be said to be degraded. Since crop growth depends on weather, degraded soils may be more sensitive to harsh weather (e.g. drought, temperature) than undegraded soils. A soil is degraded if its productivity falls below the economic threshold even under favourable weather conditions or with judicious inputs. All human

  16. Soil aggregation and slope stability related to soil density, root length, and mycorrhiza

    Science.gov (United States)

    Graf, Frank; Frei, Martin

    2013-04-01

    Eco-engineering measures combine the use of living plants and inert mechanical constructions to protect slopes against erosion and shallow mass movement. Whereas in geotechnical engineering several performance standards and guidelines for structural safety and serviceability of construction exist, there is a lack of comparable tools in the field of ecological restoration. Various indicators have been proposed, including the fractal dimension of soil particle size distribution, microbiological parameters, and soil aggregate stability. We present results of an soil aggregate stability investigation and compare them with literature data of the angle of internal friction ?' which is conventionally used in slope stability analysis and soil failure calculation. Aggregate stability tests were performed with samples of differently treated moraine, including soil at low (~15.5 kN/m³) and high (~19.0 kN/m³) dry unit weight, soil planted with Alnus incana (White Alder) as well as the combination of soil planted with alder and inoculated with the mycorrhizal fungus Melanogaster variegatus s.l. After a 20 weeks growth period in a greenhouse, a total of 100 samples was tested and evaluated. Positive correlations were found between the soil aggregate stability and the three variables dry unit weight, root length per soil volume, and degree of mycorrhization. Based on robust statistics it turned out that dry unit weight and mycorrhization degree were strongest correlated with soil aggregate stability. Compared to the non-inoculated control plants, mycorrhized White Alder produced significantly more roots and higher soil aggregate stability. Furthermore, the combined biological effect of plant roots and mycorrhizal mycelia on aggregate stability on soil with low density (~15.5 kN/m³) was comparable to the compaction effect of the pure soil from 15.5 to ~19.0 kN/m³. Literature data on the effect of vegetation on the angle of internal friction ?' of the same moraine showed

  17. Several complex variables

    International Nuclear Information System (INIS)

    Field, M.J.

    1976-01-01

    Topics discussed include the elementary of holomorphic functions of several complex variables; the Weierstrass preparation theorem; meromorphic functions, holomorphic line bundles and divisors; elliptic operators on compact manifolds; hermitian connections; the Hodge decomposition theorem. ( author)

  18. Severe malaria in Europe

    DEFF Research Database (Denmark)

    Kurth, Florian; Develoux, Michel; Mechain, Matthieu

    2017-01-01

    BACKGROUND: Malaria remains one of the most serious infections for travellers to tropical countries. Due to the lack of harmonized guidelines a large variety of treatment regimens is used in Europe to treat severe malaria. METHODS: The European Network for Tropical Medicine and Travel Health (Trop......Net) conducted an 8-year, multicentre, observational study to analyse epidemiology, treatment practices and outcomes of severe malaria in its member sites across Europe. Physicians at participating TropNet centres were asked to report pseudonymized retrospective data from all patients treated at their centre...... for microscopically confirmed severe Plasmodium falciparum malaria according to the 2006 WHO criteria. RESULTS: From 2006 to 2014 a total of 185 patients with severe malaria treated in 12 European countries were included. Three patients died, resulting in a 28-day survival rate of 98.4%. The majority of infections...

  19. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    Science.gov (United States)

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits. © 2014 SETAC.

  20. Interactive effects of soil acidity and fluoride on soil solution aluminium chemistry and barley (Hordeum vulgare L.) root growth.

    Science.gov (United States)

    Manoharan, V; Loganathan, P; Tillman, R W; Parfitt, R L

    2007-02-01

    A greenhouse study was conducted to determine if concentrations of fluoride (F), which would be added to acid soils via P fertilisers, were detrimental to barley root growth. Increasing rates of F additions to soil significantly increased the soil solution concentrations of aluminium (Al) and F irrespective of the initial adjusted soil pH, which ranged from 4.25 to 5.48. High rates of F addition severely restricted root growth; the effect was more pronounced in the strongly acidic soil. Speciation calculations demonstrated that increasing rates of F additions substantially increased the concentrations of Al-F complexes in the soil. Stepwise regression analysis showed that it was the combination of the activities of AlF2(1+) and AlF(2+) complexes that primarily controlled barley root growth. The results suggested that continuous input of F to soils, and increased soil acidification, may become an F risk issue in the future.

  1. Severe accident management guidelines

    International Nuclear Information System (INIS)

    Uhle, Jennifer

    2014-01-01

    The events at Fukushima Daiichi have highlighted the importance of Severe Accident Management Guidelines (SAMGs). As the world has learned from the catastrophe and countries are considering changes to their nuclear regulatory programs, the content of SAMGs and their regulatory control are being evaluated. This presentation highlights several factors that are being addressed in the United States as rulemaking is underway pertaining to SAMGs. The question of how to be prepared for the unexpected is discussed with specific insights gleaned from Fukushima. (author)

  2. Allergy in severe asthma.

    Science.gov (United States)

    Del Giacco, S R; Bakirtas, A; Bel, E; Custovic, A; Diamant, Z; Hamelmann, E; Heffler, E; Kalayci, Ö; Saglani, S; Sergejeva, S; Seys, S; Simpson, A; Bjermer, L

    2017-02-01

    It is well recognized that atopic sensitization is an important risk factor for asthma, both in adults and in children. However, the role of allergy in severe asthma is still under debate. The term 'Severe Asthma' encompasses a highly heterogeneous group of patients who require treatment on steps 4-5 of GINA guidelines to prevent their asthma from becoming 'uncontrolled', or whose disease remains 'uncontrolled' despite this therapy. Epidemiological studies on emergency room visits and hospital admissions for asthma suggest the important role of allergy in asthma exacerbations. In addition, allergic asthma in childhood is often associated with severe asthma in adulthood. A strong association exists between asthma exacerbations and respiratory viral infections, and interaction between viruses and allergy further increases the risk of asthma exacerbations. Furthermore, fungal allergy has been shown to play an important role in severe asthma. Other contributing factors include smoking, pollution and work-related exposures. The 'Allergy and Asthma Severity' EAACI Task Force examined the current evidence and produced this position document on the role of allergy in severe asthma. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Soil hydraulic properties of Cuban soils

    International Nuclear Information System (INIS)

    Ruiz, M.E.; Medina, H.

    2004-01-01

    Because soil hydraulic properties are indispensable for determining soil water retention and soil water movement, their input for deterministic crop simulation models is essential. From these models is possible to access the effect of the weather changes, soil type or different irrigation schedules on crop yields. With these models, possibilities are provided to answer questions regarding virtual 'what happen if' experiments with a minimum of fieldwork. Nevertheless, determining soil hydraulic properties can be very difficult owing to unavailability of necessary equipment or the lack of personal with the proper knowledge for those tasks. These deficiencies are a real problem in developing countries, and even more so when there is not enough financial possibilities for research work. This paper briefly presents the way these properties have been accessed for Cuban soils, which methods have been used and the work now in progress. (author)

  4. Modeling and Prediction of Soil Water Vapor Sorption Isotherms

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    Soil water vapor sorption isotherms describe the relationship between water activity (aw) and moisture content along adsorption and desorption paths. The isotherms are important for modeling numerous soil processes and are also used to estimate several soil (specific surface area, clay content.......93) for a wide range of soils; and (ii) develop and test regression models for estimating the isotherms from clay content. Preliminary results show reasonable fits of the majority of the investigated empirical and theoretical models to the measured data although some models were not capable to fit both sorption...... directions accurately. Evaluation of the developed prediction equations showed good estimation of the sorption/desorption isotherms for tested soils....

  5. Acid-base status and changes in Swedish forest soils

    International Nuclear Information System (INIS)

    Karltun, Erik; Stendahl, Johan; Lundin, Lars

    2003-01-01

    In this paper we use data from the Swedish National Survey of Forest Soils and Vegetation (NSFSV) to evaluate the present acid-base status of forest soils to try to answer the following questions. Which role do anthropogenic and biological acidification play for the present acid-base status of the soil profile? What is the present acid-base status of Swedish forest soils and how large areas may be considered as severely acidified? Do the current tendencies in soil acid-base status correspond with the positive development in surface waters?

  6. Transport of complexed cyanide in soil

    International Nuclear Information System (INIS)

    Meeussen, J.C.L.; Zee, S.E.A.T.M. van der; Bosma, W.J.P.; Keizer, M.G.

    1994-01-01

    Contamination of the soil with cyanide is common at sites of several types of industries. Risks for adverse effects of this cyanide for human health or for the environment are largely determined by the behaviour of this cyanide in soil. In acidic soils this behaviour is probably dominated by precipitation and dissolution of prussian blue, Fe 4 (Fe(CN) 6 ) 3 (s), an iron cyanide precipitate. Calculations of multi-component cyanide transport, including equilibrium with this solid phase, iron hydroxide and several redox reactions, are compared with cyanide concentrations observed in contaminated soils. The calculated cyanide concentrations, as well as the pH and redox potentials, agree well with the field situations

  7. [Microscopic soil fungi - bioindicators organisms contaminated soil].

    Science.gov (United States)

    Donerian, L G; Vodianova, M A; Tarasova, Zh E

    In the paper there are considered methodological issues for the evaluation of soil biota in terms of oil pollution. Experimental studies have shown that under the exposure of a various levels of oil pollution meeting certain gradations of the state and optimal alteration in microbocenosis in sod-podzolic soils, there is occurred a transformation of structure of the complex of micromycetes and the accumulation of toxic species, hardly typical for podzolic soils - primarily represantatives of the genus Aspergillus (A.niger and A. versicolor), Paecilomyces (P.variotii Bainer), Trichoderma (T.hamatum), the genus of phytopathogens Fusarium (F.oxysporum), dermatophytes of genus Sporothrix (S. schenckii) and dark-colored melanin containing fungi of Dematiaceae family. Besides that there are presented data on the study of microbiocenosis of the urban soil, the urban soil differed from the zone soil, but shaped in similar landscape and climatic conditions, and therefore having a tendency to a similar response from the side of microorganisms inhabiting the soil. Isolated complex of soil microscopic fungi is described by many authors as a complex, characteristic for soils of megalopolises. This allowed authors of this work to suggest that in urban soils the gain in the occurrence of pathogenic species micromycetes also increases against a background of chronic, continuously renewed inflow of petroleum hydrocarbons from various sources of pollution. Because changes in the species composition of micromycetes occurred in accordance with the increasing load of oil, so far as microscopic soil fungi can be recommended as a bioindicator organisms for oil. In the article there is also provided information about the distinctive features of modern DNA identification method of soil microscopic fungi and accepted in our country methodology of isolation of micromycetes with the use of a nutrient Czapek medium.

  8. Soil heating and impact of prescribed burning

    Science.gov (United States)

    Stoof, Cathelijne

    2016-04-01

    Prescribed burning is highly uncommon in the Netherlands, where wildfire awareness is increasing but its risk management does not yet include fuel management strategies. A major exception is on two military bases, that need to burn their fields in winter and spring to prevent wildfires during summer shooting practice. Research on these very frequent burns has so far been limited to effects on biodiversity, yet site managers and policy makers have questions regarding the soil temperatures reached during these burns because of potential impact on soil properties and soil dwelling fauna. In March 2015, I therefore measured soil and litter temperatures under heath and grass vegetation during a prescribed burn on military terrain in the Netherlands. Soil and litter moisture were sampled pre- and post-fire, ash was collected, and fireline intensity was estimated from flame length. While standing vegetation was dry (0.13 g water/g biomass for grass and 0.6 g/g for heather), soil and litter were moist (0.21 cm3/cm3 and 1.6 g/g, respectively). Soil heating was therefore very limited, with maximum soil temperature at the soil-litter interface remaining being as low as 6.5 to 11.5°C, and litter temperatures reaching a maximum of 77.5°C at the top of the litter layer. As a result, any changes in physical properties like soil organic matter content and bulk density were not significant. These results are a first step towards a database of soil heating in relation to fuel load and fire intensity in this temperate country, which is not only valuable to increase understanding of the relationships between fire intensity and severity, but also instrumental in the policy debate regarding the sustainability of prescribed burns.

  9. Space-time modeling of soil moisture

    Science.gov (United States)

    Chen, Zijuan; Mohanty, Binayak P.; Rodriguez-Iturbe, Ignacio

    2017-11-01

    A physically derived space-time mathematical representation of the soil moisture field is carried out via the soil moisture balance equation driven by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version, it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions observed in empirical data. This decay resulting from variations in local topography as well as in local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil moisture dynamics with the objective to deflate its correlation structure at small spatial scales which are not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These scales of order of several meters to several hundred meters are of great importance in ecohydrologic dynamics. Properties of space-time correlation functions and spectral densities of the model with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabilities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting the derived model to a soil moisture dataset is presented in detail.

  10. Laboratory Tests for Dispersive Soil Viscosity Determining

    Science.gov (United States)

    Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Sobolev, E. S.

    2017-11-01

    There are several widespread methods for soil viscosity determining now. The standard shear test device and torsion test apparatus are the most commonly used installations to do that. However, the application of them has a number of disadvantages. Therefore, the specialists of Moscow State University of Civil Engineering proposed a new device to determine the disperse soil viscosity on the basis of a stabilometer with the B-type camera (viscosimeter). The paper considers the construction of a viscosimeter and the technique for determining soil viscosity inside this tool as well as some experimental verification results of its work.

  11. Adsorption and diffusion of plutonium in soil

    International Nuclear Information System (INIS)

    Brown, D.A.

    The behavior of plutonium (Pu) was studied in three soils that varied in texture, CEC, pH, organic matter content and mineralogy (Fuquay, Muscatine, Burbank). Two isotopes, 238 Pu and 239 Pu, were used in order to detect Pu over a range of several orders of magnitude. Unless added in a chelated form, Pu was added to the soil as a nitrate in .01 N HNO 3 to simulate the release of acidic waste on the soil and to prevent rapid Pu hydrolysis or polymerization

  12. Severe childhood malnutrition.

    Science.gov (United States)

    Bhutta, Zulfiqar A; Berkley, James A; Bandsma, Robert H J; Kerac, Marko; Trehan, Indi; Briend, André

    2017-09-21

    The main forms of childhood malnutrition occur predominantly in children malnutrition. Here, we use the term 'severe malnutrition' to describe these conditions to better reflect the contributions of chronic poverty, poor living conditions with pervasive deficits in sanitation and hygiene, a high prevalence of infectious diseases and environmental insults, food insecurity, poor maternal and fetal nutritional status and suboptimal nutritional intake in infancy and early childhood. Children with severe malnutrition have an increased risk of serious illness and death, primarily from acute infectious diseases. International growth standards are used for the diagnosis of severe malnutrition and provide therapeutic end points. The early detection of severe wasting and kwashiorkor and outpatient therapy for these conditions using ready-to-use therapeutic foods form the cornerstone of modern therapy, and only a small percentage of children require inpatient care. However, the normalization of physiological and metabolic functions in children with malnutrition is challenging, and children remain at high risk of relapse and death. Further research is urgently needed to improve our understanding of the pathophysiology of severe malnutrition, especially the mechanisms causing kwashiorkor, and to develop new interventions for prevention and treatment.

  13. Sustainable agriculture a challenge for soil microbiology

    Directory of Open Access Journals (Sweden)

    Nubia Moreno Sarmiento

    2016-01-01

    Full Text Available Soils: a solid foundation for life, was the theme of the celebration of 2015, the General Assembly of the UN, decides to declare as the International Year of Soils, considering that these are the foundation of agricultural development, the essential functions of ecosystems and food security. It is therefore a key to sustaining life on Earth element. During that year several actions that contributed to the awareness of their problems and protection of soil resources were made. One was that FAO, reviewed and published in June 2015, the World Soil Charter (originally developed in 1982. The World Soil Charter of Revised, as a preamble quote: 1. Soils are essential for life on Earth, but pressures on soil resources are reaching critical limits. Careful soil management is an essential factor of sustainable agriculture and also provides a valuable tool to regulate climate and a way to safeguard ecosystem services and biodiversity spring. 2. In the final document of the UN Conference on Sustainable Development, held in Rio de Janeiro (Brazil in June 2012, "The future we want" economic and social importance of good management is recognized land, including land, particularly its contribution to economic growth, biodiversity, sustainable agriculture, food security, poverty eradication, empowerment of women, measures to address climate change and increase water availability.

  14. Microorganisms as bioindicators of pollutants in soil

    Directory of Open Access Journals (Sweden)

    Milošević Nada

    2010-01-01

    Full Text Available Microorganisms are the predominant portion of the soil's biological phase and they are indicators of soil health and quality. Soil microorganisms a take part in degradation of organic and inorganic compounds, b their activity, number and diversity may serve as bioindicators of toxic effects on soil biological activity, c some microbial species may be used for soil bioremediation and d some sensitive microbes are used in eco-toxicity tests. The primary microbial population starts to decompose herbicides several days after their arrival into the soil. The secondary population produces induced enzymes and decomposes herbicides after a period of adaptation. Certain microbial groups are indifferent to the applied herbicides. Effect of heavy metals on soil microbial activity depends on the element, their concentration, microbial species, as well as physical and chemical soil properties. Toxic level of individual pollutants depends on their origin and composition. However, combined application of chemicals makes room for the occurrence of synergistic toxic effects detrimental for the ecosystem and human health. .

  15. Soil Structure - A Neglected Component of Land-Surface Models

    Science.gov (United States)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.

    2017-12-01

    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity

  16. Soil water repellency at old crude oil spill sites

    International Nuclear Information System (INIS)

    Roy, J.L.

    1999-08-01

    This thesis presents the current state of knowledge regarding the cause of soil water repellency and characterizes disaggregated nonwettable surface soils found at old crude oil spill sites. Pollution-induced water repellency generally develops following prolonged exposures of soil to liquid- or vapour-phase petroleum hydrocarbons. The condition varies significantly in terms of severity and persistence. Soil water repellency retards plant growth and disturbs the hydrological balance of ecosystems. Disaggregated water-repellent soils are also very susceptible to dispersal by erosion, posing a threat to the productivity of surrounding soils. The author described the probable causes of soil water repellency under the following three main themes: (1) accumulation of hydrophobic organic material in soil, (2) redistribution and re-organisation of this material in soil, and (3) stabilisation of the hydrophobic organic material. This final process is necessary to ensure persistence of induced water repellency symptoms. Petroleum residues as water-repellent substances in weathered nonwettable oil-contaminated soils were also discussed and a hypothesis about soil water repellency was presented which deals with flexible conformation in organic matter coatings. Processes leading to the development of soil water repellency following crude oil contamination were also described. It was determined that soil water repellency is a function of the packing density and the chain conformation of amphiphilic organic molecules in the outermost layer of soil organic matter coatings. This research suggests that the fractional coverage of alkyl chains on soil particle surfaces determines the degree of water repellency that is displayed by soil. It was shown that prompt remediation of some oil-contaminated plots can effectively prevent the development of soil water repellency. 4 refs., 32 tabs., 22 figs., 5 appendices

  17. Soil washing technology evaluation

    International Nuclear Information System (INIS)

    Suer, A.

    1995-04-01

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis

  18. Mercury content in volcanic soils across Europe and its relationship with soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Rodriguez, Susana; Fernandez-Calvino, David; Arias-Estevez, Manuel; Novoa-Munoz, Juan Carlos [Vigo Univ., Ourense (Spain). Area de Edafoloxia e Quimica Agricola; Pontevedra-Pombal, Xabier; Taboada, Teresa; Martinez-Cortizas, Antonio; Garcia-Rodeja, Eduardo [Universidad de Santiago, Coruna (Spain). Dept. Edafoloxia e Quimica Agricola

    2012-04-15

    Volcanoes are a natural source of Hg, whose deposition can occur in neighbouring soils. This study examines the role of soil compounds in the geochemical behaviour of total Hg (Hg{sub T}) in volcanic soils. An estimation of Hg from lithological origin is also assessed to ascertain the relevance of other sources in Hg{sub T} accumulated in volcanic soils. Twenty soil profiles developed from volcanic materials and located across European volcanic regions were selected for this study. The general characterisation of soils included total C, N and S content and Al and Fe distribution determined using traditional methods. The total content of major and trace elements was determined using X-ray fluorescence spectrometry (XRF). The total Hg content of soil samples was measured with atomic absorption spectroscopy using a solid sample Hg analyser. Lithogenic Hg was calculated in the uppermost soil considering Al, Ti and Zr as conservative reference elements. Several statistical analyses (Pearson correlations, Mann-Whitney tests, stepwise multiple regressions and analysis of variance) were carried to ascertain the role of soil parameters and characteristics in the Hg accumulation in volcanic soils. The total Hg ranged from 3.0 to 640 ng g{sup -1} and it tended to diminish with soil depth except in some soils where the lithological discontinuities resulted in high values of Hg{sub T} in the Bw horizons. More than 75% of the Hg{sub T} variance could be attributed to distinct contents of organic matter, Al- and Fe-humus complexes and inorganic non-crystalline Al and Fe compounds in ''andic'', ''vitric'' and ''non-andic'' horizons. The degree of pedogenetic soil evolution notably influenced the Hg{sub T} soil content. Lithogenic Hg (1.6-320 ng g{sup -1}) was correlated with Al-humus complexes and clay content, suggesting the relevance of pedogenetic processes, whereas exogenic Hg (1.4-180 ng g{sup -1}) was correlated

  19. Severe accident behavior

    International Nuclear Information System (INIS)

    Denning, R.S.

    1986-01-01

    The purpose of this paper is to provide an overview of severe accident behavior. The term source term is defined and a brief history of the regulatory use of source term is presented. The processes in severe accidents in light water reactors are described with particular emphasis on the relationships between accident thermal-hydraulics and chemistry. Those factors which have the greatest impact on predicted source terms are identified. Design differences between plants that affect source term estimation are also described. The principal unresolved issues are identified that are the focus of ongoing research and debate in the technical community

  20. GEMAS - Soil geochemistry and health implications

    Science.gov (United States)

    Ernstsen, Vibeke; Ladenberger, Anna; Wragg, Joanna; Gulan, Aleksandra

    2014-05-01

    The GEMAS Project resulted in a large coherent data set displaying baseline levels of elements in agricultural and grazing land soil, which has a wide variety of applications. Medical geology is an emerging new discipline providing a link between geoscience and medicine by interpreting natural geological factors in relation to human and animal health and their geographical distribution. Medical geology shows not only problems related to harmful health effects of natural geological materials and processes, but also deals with their beneficial aspects. Since the GEMAS project demonstrates the importance of geological factors in geochemical patterns in European soil, this data set can be used in improving our understanding of how the geological processes may affect human health in Europe. The main potential health problems are related to deficiency of nutrients in soil and toxic effects of potentially harmful elements. Deficiency in macro- (e.g., K, Fe, Mg, P) and micro-nutrients (e.g., Se, Zn, Cl) can be responsible for a reduction in crop productivity and certain health issues for livestock and humans. On the other hand, bioavailability of crucial elements depends on soil parameters, e.g., pH; namely, low pH in soil (in northern Europe) makes more micronutrients bioavailable, with the exception of Mo, P and Ca. Rocks underlying the soil layer have a major impact on soil composition, and soil parent material can be a main source of toxic metals, for instance, soil developed on black shale (e.g., Oslo region) shows potentially toxic levels of metals, such as As, Cd, U, Zn and Pb. High content of organic matter is another factor amplifying the toxic levels of metals in soil. Several important topics with health implications can be then addressed using the GEMAS data set, namely, soil properties and element bioavailability, arsenic toxicity, selenium deficiency, potential health effects of liming, uranium in European soil, influence of recent and historical volcanic

  1. Stabilization of Horseshoe Lake Road using Geofibers and Soil-Sement

    Science.gov (United States)

    2012-04-03

    One solution to reducing the cost of importing gravel in areas where available soils are predominately silts and : sands is to stabilize the local soils with geofibers and synthetic fluids. There have been several studies which : have evaluated impro...

  2. Severe congenital neutropenia

    DEFF Research Database (Denmark)

    Borregaard, Niels

    2014-01-01

    In this issue of Blood, Tidwell et al1 demonstrate that mutations in the start codon (protein synthesis is initiated at the codon ATG) of neutrophil elastase (ELANE) result in the production of N-terminally truncated elastase, which mislocates to the nucleus and results in severe congenital neutr...... neutropenia (SCN)....

  3. Severe asthma in childhood

    International Nuclear Information System (INIS)

    Ciznar, P.

    2013-01-01

    Patients with severe asthma are clinically, physiologically and biologically a heterogeneous group. About half of children referred for medical examination for severe asthma have true severe, therapy resistant asthma. The rest of referred patients have difficult to treat asthma. Symptoms persist mostly due to drug non-compliance, inappropriate inhalation technique, persistent environmental exposures or co-morbid conditions. Compared with adults have children more frequently atopic form of severe asthma. This is associated with eosinophilia in peripheral blood and sensitization to inhaled allergens. The IgE levels are high. Therapy of co-morbidities and improvement of treatment compliance lead in most cases to full asthma control. Proportion of children will benefit from biologics like anti-IgE monoclonal antibody, administered by subcutaneous injections in 2 to 4 week intervals. By this therapy it is not only possible to suppress symptoms, but also decrease the total steroid dose and the risk of adverse effects associated with its long-term administration. By achieving a full asthma control we lower future risk of exacerbations and probably improve long-term prognosis of disease, frequently persisting for the rest of life. (author)

  4. The impact of land use on water loss and soil desiccation in the soil profile

    Science.gov (United States)

    Zhang, Jing; Wang, Li

    2018-02-01

    Farmlands have gradually been replaced by apple orchards in Shaanxi province, China, and there will be a risk of severe soil-water-storage deficit with the increasing age of the apple trees. To provide a theoretical basis for the sustainable development of agriculture and forestry in the Loess Plateau, soil water content in a 19-year-old apple orchard, a 9-year-old apple orchard, a cornfield and a wheat field in the Changwu Tableland was investigated at different depths from January to October 2014. The results showed that: (1) the soil moisture content is different across the soil profile—for the four plots, the soil moisture of the cornfield is the highest, followed by the 9-year-old apple orchard and the wheat field, and the 19-year-old apple orchard has the lowest soil moisture. (2) There are varying degrees of soil desiccation in the four plots: the most serious degree of desiccation is in the 19-year-old apple orchard, followed by the wheat field and the cornfield, with the least severe desiccation occurring in the 9-year-old apple orchard. Farmland should replace apple orchards for an indefinite period while there is an extremely desiccated soil layer in the apple orchard so as to achieve the purpose of sustainable development. It will be necessary to reduce tree densities, and to carry out other research, if development of the economy and ecology of Changwu is to be sustainable.

  5. Changes in soil moisture drive soil methane uptake along a fire regeneration chronosequence in a eucalypt forest landscape.

    Science.gov (United States)

    Fest, Benedikt; Wardlaw, Tim; Livesley, Stephen J; Duff, Thomas J; Arndt, Stefan K

    2015-11-01

    Disturbance associated with severe wildfires (WF) and WF simulating harvest operations can potentially alter soil methane (CH4 ) oxidation in well-aerated forest soils due to the effect on soil properties linked to diffusivity, methanotrophic activity or changes in methanotrophic bacterial community structure. However, changes in soil CH4 flux related to such disturbances are still rarely studied even though WF frequency is predicted to increase as a consequence of global climate change. We measured in-situ soil-atmosphere CH4 exchange along a wet sclerophyll eucalypt forest regeneration chronosequence in Tasmania, Australia, where the time since the last severe fire or harvesting disturbance ranged from 9 to >200 years. On all sampling occasions, mean CH4 uptake increased from most recently disturbed sites (9 year) to sites at stand 'maturity' (44 and 76 years). In stands >76 years since disturbance, we observed a decrease in soil CH4 uptake. A similar age dependency of potential CH4 oxidation for three soil layers (0.0-0.05, 0.05-0.10, 0.10-0.15 m) could be observed on incubated soils under controlled laboratory conditions. The differences in soil CH4 uptake between forest stands of different age were predominantly driven by differences in soil moisture status, which affected the diffusion of atmospheric CH4 into the soil. The observed soil moisture pattern was likely driven by changes in interception or evapotranspiration with forest age, which have been well described for similar eucalypt forest systems in south-eastern Australia. Our results imply that there is a large amount of variability in CH4 uptake at a landscape scale that can be attributed to stand age and soil moisture differences. An increase in severe WF frequency in response to climate change could potentially increase overall forest soil CH4 sinks. © 2015 John Wiley & Sons Ltd.

  6. CONSIDERATIONS ON URBAN SOILS

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2005-10-01

    Full Text Available Urban soil is an material that has been manipulated, disturbed or transported by man’s activities in the urban environment and is used as a medium for plant growth and for constructions. The physical, chemical, and biological properties are generally less favorable as a rooting medium than soil found on the natural landscape. The main characteristics of urban soils are: great vertical and spatial variability; modified soil structure leading to compaction; presence of a surface crust; modified soil reaction, usually elevated; restricted aeration and water drainage; modified abundance of chemical elements, interrupted nutrient cycling and soil organism activity; presence of anthropic materials contaminants and pollutants; modified soil temperature regime. The urbic horizon is designated as U (always capital letter and for indication of processes are used different small letters. It is necessary elaboration a new classification of urban soils for our country.

  7. Enchytraeids as indicator of soil quality in temporary organic grass-clover leys under contrasting management

    DEFF Research Database (Denmark)

    Maraldo, Kristine; Schmelz, Rüdiger; Larsen, Thomas

    2015-01-01

    One objective in organic farming is to sustain the quality of the soil resource. Because enchytraeids are an important soil faunal component, they stand as bioindicators of soil quality. We tested this candidature in a field experiment on loamy sand soil with 1- and 4-year old grass-clover leys...... interactions among soil physical, chemical and biological properties suggest that enchytraeid abundance is not a feasible stand-alone indicator of management impacts on soil quality in temporary grass-clover leys but may candidate as one of several biological key parameters in more comprehensive soil quality...

  8. iSOIL: Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping

    Science.gov (United States)

    Dietrich, Peter; Werban, Ulrike; Sauer, Uta

    2010-05-01

    High-resolution soil property maps are one major prerequisite for the specific protection of soil functions and restoration of degraded soils as well as sustainable land use, water and environmental management. To generate such maps the combination of digital soil mapping approaches and remote as well as proximal soil sensing techniques is most promising. However, a feasible and reliable combination of these technologies for the investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats is missing. Furthermore, there is insufficient dissemination of knowledge on digital soil mapping and proximal soil sensing in the scientific community, to relevant authorities as well as prospective users. As one consequence there is inadequate standardization of techniques. At the poster we present the EU collaborative project iSOIL within the 7th framework program of the European Commission. iSOIL focuses on improving fast and reliable mapping methods of soil properties, soil functions and soil degradation risks. This requires the improvement and integration of advanced soil sampling approaches, geophysical and spectroscopic measuring techniques, as well as pedometric and pedophysical approaches. The focus of the iSOIL project is to develop new and to improve existing strategies and innovative methods for generating accurate, high resolution soil property maps. At the same time the developments will reduce costs compared to traditional soil mapping. ISOIL tackles the challenges by the integration of three major components: (i)high resolution, non-destructive geophysical (e.g. Electromagnetic Induction EMI; Ground Penetrating Radar, GPR; magnetics, seismics) and spectroscopic (e.g., Near Surface Infrared, NIR) methods, (ii)Concepts of Digital Soil Mapping (DSM) and pedometrics as well as (iii)optimized soil sampling with respect to profound soil scientific and (geo)statistical strategies. A special focus of iSOIL lies on the

  9. Soil Quality Impacts of Current South American Agricultural Practices

    Directory of Open Access Journals (Sweden)

    Ana B. Wingeyer

    2015-02-01

    Full Text Available Increasing global demand for oil seeds and cereals during the past 50 years has caused an expansion in the cultivated areas and resulted in major soil management and crop production changes throughout Bolivia, Paraguay, Uruguay, Argentina and southern Brazil. Unprecedented adoption of no-tillage as well as improved soil fertility and plant genetics have increased yields, but the use of purchased inputs, monocropping i.e., continuous soybean (Glycine max (L. Merr., and marginal land cultivation have also increased. These changes have significantly altered the global food and feed supply role of these countries, but they have also resulted in various levels of soil degradation through wind and water erosion, soil compaction, soil organic matter (SOM depletion, and nutrient losses. Sustainability is dependent upon local interactions between soil, climate, landscape characteristics, and production systems. This review examines the region’s current soil and crop conditions and summarizes several research studies designed to reduce or prevent soil degradation. Although the region has both environmental and soil resources that can sustain current agricultural production levels, increasing population, greater urbanization, and more available income will continue to increase the pressure on South American croplands. A better understanding of regional soil differences and quantifying potential consequences of current production practices on various soil resources is needed to ensure that scientific, educational, and regulatory programs result in land management recommendations that support intensification of agriculture without additional soil degradation or other unintended environmental consequences.

  10. Soil Erodibility Parameters Under Various Cropping Systems of Maize

    Science.gov (United States)

    van Dijk, P. M.; van der Zijp, M.; Kwaad, F. J. P. M.

    1996-08-01

    For four years, runoff and soil loss from seven cropping systems of fodder maize have been measured on experimental plots under natural and simulated rainfall. Besides runoff and soil loss, several variables have also been measured, including rainfall kinetic energy, degree of slaking, surface roughness, aggregate stability, soil moisture content, crop cover, shear strength and topsoil porosity. These variables explain a large part of the variance in measured runoff, soil loss and splash erosion under the various cropping systems. The following conclusions were drawn from the erosion measurements on the experimental plots (these conclusions apply to the spatial level at which the measurements were carried out). (1) Soil tillage after maize harvest strongly reduced surface runoff and soil loss during the winter; sowing of winter rye further reduced winter erosion, though the difference with a merely tilled soil is small. (2) During spring and the growing season, soil loss is reduced strongly if the soil surface is partly covered by plant residues; the presence of plant residue on the surface appeared to be essential in achieving erosion reduction in summer. (3) Soil loss reductions were much higher than runoff reductions; significant runoff reduction is only achieved by the straw system having flat-lying, non-fixed plant residue on the soil surface; the other systems, though effective in reducing soil loss, were not effective in reducing runoff.

  11. Electrochemical soil remediation - accelerated soil weathering?

    Energy Technology Data Exchange (ETDEWEB)

    Ottosen, L.M.; Villumsen, A.; Hansen, H.K.; Jensen, P.E.; Pedersen, A.J. [Dept. of Civil Engineering, Technical Univ. of Denmark, Lyngby (Denmark); Ribeiro, A.B. [Dept. of Environmental Sciences and Engineering, New Univ. of Lisbon, Monte da Caparica (Portugal)

    2001-07-01

    In electrochemical soil remediation systems, where enhancement solutions and complexing agents are not used, a developing acidic front is mobilizing the heavy metals and the electric current is removing the mobilized elements from the soil. The hypotheses investigated in this paper is whether this process may be comparable to the chemical soil weathering that occurs in the environment due to the acidic rain, where the mobilized elements are removed from the soil by the penetrating water. Even through the weathering process is highly accelerated in the electrochemical cell. This paper shows results from electrodialytic remediation experiments performed with four different Danish heavy metal polluted soils. The main emphasis is laid on the relation between the developing acidic front and electromigration of Cu, Zn, Mn, Mg, Fe and Ca. (orig.)

  12. Soil conservation measures: exercises

    OpenAIRE

    Figueiredo, Tomás de; Fonseca, Felícia

    2009-01-01

    Exercises proposed under the topic of Soil Conservation Measures addresses to the design of structural measure, namely waterways in the context of a soil conservation plan. However, to get a better insight on the actual meaning of soil loss as a resource loss, a prior exercise is proposed to students. It concerns calculations of soil loss due to sheet (interrill) erosion and to gully erosion, and allows the perception through realistic number of the impact of these mechanism...

  13. Resilient modulus of black cotton soil

    Directory of Open Access Journals (Sweden)

    K.H. Mamatha

    2017-03-01

    Full Text Available Resilient modulus (MR values of pavement layers are the basic input parameters for the design of pavements with multiple layers in the current mechanistic empirical pavement design guidelines. As the laboratory determination of resilient modulus is costly, time consuming and cumbersome, several empirical models are developed for the prediction of resilient modulus for different regions of the world based on the database of resilient modulus values of local soils. For use of these relationships there is a need to verify the suitability of these models for local conditions. Expansive clay called black cotton soil (BC soil is found in several parts of India and is characterized by low strength and high compressibility. This soil shows swell – shrink behaviour upon wetting and drying and are problematic. The BC soil shows collapse behaviour on soaking and therefore the strength of the soil needs to be improved. Additive stabilization is found to be very effective in stabilizing black cotton soils and generally lime is used to improve the strength and durability of the black cotton soil. In this paper, the results of repeated load tests on black cotton soil samples for the determination of MR under soaked and unsoaked conditions at a relative compaction levels of 100% and 95% of both standard and modified proctor conditions are reported. The results indicate that the black cotton soil fails to meet the density requirement of the subgrade soil and shows collapse behaviour under soaked condition. To overcome this, lime is added as an additive to improve the strength of black cotton soil and repeated load tests were performed as per AASHTO T 307 - 99 for MR determination. The results have shown that the samples are stable under modified proctor condition with MR values ranging from 36 MPa to 388 MPa for a lime content of 2.5% and curing period ranging from 7 to 28 days. Also, it is observed that, the CBR based resilient modulus is not in agreement

  14. Integrated management in calcareous soils

    International Nuclear Information System (INIS)

    Castilla, Luis A; Salive, A

    2001-01-01

    Rice growing is developed in different kinds of soils, and some of the have high bases saturation, especially calcium and magnesium, as well as medium to high carbonate contents. This causes negative effects in the development and growth of the rice plant. As a consequence, several researching actions have been under-taken, and they are aimed at becoming this problem in economically manageable. Among the strategies we have, some of them are as follows: evaluating rice varieties presenting tolerance to these soils; using inorganic fertilizers looking for a response to elements, sources, dose and application times; evaluating organic fertilizers, mainly the green ones; using amendments, and physical soil management. According to the results, we have the fertilization response with major and minor elements and with the statistical differences at a 0.05% level. A response was found with elements such as zinc, copper, boron, iron, phosphorus and potassium. However, the efficiency of these elements depends on the addition of amendments as sulfur, the use of green fertilizers and farming systems that eliminate the superficial compaction of these soils, besides the use of varieties which are more tolerant to alkalinity, just like Fedearroz-50

  15. Phytoextraction of excess soil phosphorus

    International Nuclear Information System (INIS)

    Sharma, Nilesh C.; Starnes, Daniel L.; Sahi, Shivendra V.

    2007-01-01

    In the search for a suitable plant to be used in P phytoremediation, several species belonging to legume, vegetable and herb crops were grown in P-enriched soils, and screened for P accumulation potentials. A large variation in P concentrations of different plant species was observed. Some vegetable species such as cucumber (Cucumis sativus) and yellow squash (Cucurbita pepo var. melopepo) were identified as potential P accumulators with >1% (dry weight) P in their shoots. These plants also displayed a satisfactory biomass accumulation while growing on a high concentration of soil P. The elevated activities of phosphomonoesterase and phytase were observed when plants were grown in P-enriched soils, this possibly contributing to high P acquisition in these species. Sunflower plants also demonstrated an increased shoot P accumulation. This study shows that the phytoextraction of phosphorus can be effective using appropriate plant species. - Crop plants such as cucumber, squash and sunflower accumulate phosphorus and thus can be used in the phytoextraction of excess phosphorus from soils

  16. Phytoextraction of excess soil phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Nilesh C. [Department of Biology, Western Kentucky University, 1906 College Heights Boulevard 11080, Bowling Green, KY 42101-1080 (United States); Starnes, Daniel L. [Department of Biology, Western Kentucky University, 1906 College Heights Boulevard 11080, Bowling Green, KY 42101-1080 (United States); Sahi, Shivendra V. [Department of Biology, Western Kentucky University, 1906 College Heights Boulevard 11080, Bowling Green, KY 42101-1080 (United States)]. E-mail: shiv.sahi@wku.edu

    2007-03-15

    In the search for a suitable plant to be used in P phytoremediation, several species belonging to legume, vegetable and herb crops were grown in P-enriched soils, and screened for P accumulation potentials. A large variation in P concentrations of different plant species was observed. Some vegetable species such as cucumber (Cucumis sativus) and yellow squash (Cucurbita pepo var. melopepo) were identified as potential P accumulators with >1% (dry weight) P in their shoots. These plants also displayed a satisfactory biomass accumulation while growing on a high concentration of soil P. The elevated activities of phosphomonoesterase and phytase were observed when plants were grown in P-enriched soils, this possibly contributing to high P acquisition in these species. Sunflower plants also demonstrated an increased shoot P accumulation. This study shows that the phytoextraction of phosphorus can be effective using appropriate plant species. - Crop plants such as cucumber, squash and sunflower accumulate phosphorus and thus can be used in the phytoextraction of excess phosphorus from soils.

  17. Phosphorus in agricultural soils:

    NARCIS (Netherlands)

    Ringeval, Bruno; Augusto, Laurent; Monod, Hervé; Apeldoorn, van D.F.; Bouwman, A.F.; Yang, X.; Achat, D.L.; Chini, L.P.; Oost, van K.; Guenet, Bertrand; Wang, R.; Decharme, B.; Nesme, T.; Pellerin, S.

    2017-01-01

    Phosphorus (P) availability in soils limits crop yields in many regions of the World, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we

  18. Thermal Properties of Soils

    Science.gov (United States)

    1981-12-01

    plagio - clase feldspar and pyroxene. The tine fraction may Surface area and its effects contain the clay "sheet" minerals (i.e. kaolinite. illite...Pyroxene, Kaoliniwe Unified By By Ortho. Plagio . amphibole, Basic clay min. Hematite Soil Soil soil petrogr. X.ray clase clase and Igneous and clay and no

  19. Restoration of contaminated soils

    International Nuclear Information System (INIS)

    Miranda J, Jose Eduardo

    2009-01-01

    A great variety of techniques are used for the restoration of contaminated soils. The contamination is present by both organic and inorganic pollutants. Environmental conditions and soil characteristics should take into account in order to implement a remedial technique. The bioremediation technologies are showed as help to remove a variety of soil contaminants. (author) [es

  20. Soil burden by radionuclides

    International Nuclear Information System (INIS)

    Blum, W.E.H.; Wenzel, W.W.

    1989-01-01

    Natural radioactivity - half-lifes and radiation type of man-made nuclides, radionuclide behaviour in soils, effects on soil condition and soil functions are described. The only mode of decontamination is by decay and thus primarily dependent on the half-life of nuclides

  1. Soil life under stress

    NARCIS (Netherlands)

    Tobor-Kaplon, Maria Agnieszka

    2006-01-01

    In this thesis I studied how long-term soil contamination affects microbial populations and processes, ecosystem properties and functional stability. I also investigated which parameters are suitable as indicators of soil quality in long-term contaminated soils. I found that contamination had a

  2. Biogeochemistry of paddy soils

    NARCIS (Netherlands)

    Kögel-Knabner, I.; Amelung, W.; Cao, Z.; Fiedler, S.; Frenzel, P.; Jahn, R.; Kalbitz, K.; Kölbl, A.; Schloter, M.

    2010-01-01

    Paddy soils make up the largest anthropogenic wetlands on earth. They may originate from any type of soil in pedological terms, but are highly modified by anthropogenic activities. The formation of these Anthrosols is induced by tilling the wet soil (puddling), and the flooding and drainage regime

  3. ISRIC - World Soil Information

    NARCIS (Netherlands)

    Dent, D.L.

    2006-01-01

    ISRICWorld Soil Information is an independent foundation, funded by the Netherlands Government with a mandate to increase knowledge of the land, its soils in particular, and to support the sustainable use of land resources; in short, to help people understand soils. Its aims are to -Inform and

  4. Harvesting soil with potatoes

    DEFF Research Database (Denmark)

    Egelyng, Henrik

    2017-01-01

    Norwegian authorities demand soil leaving potato packing plants to be deposited as waste. Depositing soil from potato processing plants is associated with significant cost for Norwegian producers. Therefore CYCLE investigated potato soil harvesting from an innovation and socio-economic perspective....

  5. Soils Newsletter, Vol. 38, No. 2, January 2016

    International Nuclear Information System (INIS)

    2016-02-01

    In 2015 the Soil and Water Management and Crop Nutrition (SWMCN) Subprogramme held several events to celebrate the “International Year of Soils” (IYS), to raise awareness and improve the understanding on the importance of soil for food security and essential ecosystem functions. The side event on ‘Managing Soils for Climate-Smart Agriculture’ on 16 September 2015 during the 59th IAEA General Conference was well attended with more than 80 participants including many country delegations attending the IAEA General Conference. The four speakers from Member States showcased the successes and impacts in the field as well as their experience on the importance of soils in global food security, the impacts of climate change on soil and the crucial roles of nuclear applications for climate-smart agriculture. Similarly, the one-day conference on 7 December 2015 on “Celebration of the 2015 International Year of Soils: Achievements and Future Challenges”, with the International Union of Soil Science (IUSS), to coincide with World Soil Day on 5 December and to mark the closing of IYS. Speakers from all Regional Soil Science Societies reported on their achievements with regards to managing soils for sustainable crop production and intensification. Working groups discussed future challenges and opportunities for soil research and development, and international partnership and collaboration. The roles of isotopic and nuclear techniques for managing soils to combat land degradation, improve soil fertility and resource use efficiency, while reducing the environmental impacts of agriculture, and improving the nutritional quality of crops were highlighted during the conference. At the event, participants proclaimed the ‘Vienna Soil Declaration: Soil matters for humans and ecosystems’, which sets the framework for future research in soil science and links achievements to the United Nations’ Sustainable Development Goals and global endeavours to combat climate change

  6. Evaluation of soil saturation, soil chemistry, and early spring soil and air temperatures as risk factors in yellow-cedar decline.

    Science.gov (United States)

    D.V. D' Amore; P.E. Hennon

    2006-01-01

    Yellow-cedar (Callitropsis nootkatensis (D. Don) Oerst.) is a valuable tree species that is experiencing a widespread decline and mortality in southeast Alaska. This study evaluated the relative importance of several potential risk factors associated with yellow-cedar decline: soil saturation, soil aluminum (Al) toxicity or calcium (Ca) deficiency...

  7. [Severe depression : psychoanalysis].

    Science.gov (United States)

    Bouvet de la Maisonneuve, O

    2009-12-01

    The indication for psychoanalysis in severe depression is not clear. And yet, demands for this type of intervention are increasing, despite the absence of any form of consensus on the subject. Freud considered depression as a failure of analytical efforts and, based on this observation, revised his theory, in particular to include the notions of narcissism and the death drive. Many analysts have been reluctant to follow his teachings on this last point and provide depressed patients with analytical-type therapies aimed at restoring narcissism. Melanie Klein pushed Freud's ideas about depression even further and brought such therapies back to the heart of analytical practice. Jacques Lacan took the debate to another level by proposing an overhaul of the principles on which analysis has been based. Today, while following certain precautionary rules, true psychoanalyses can be proposed to patients with severe depression, whether of the bipolar, recurring or even neurotic type that can reach this level of severity. Copyright 2009 L'Encéphale. Published by Elsevier Masson SAS.. All rights reserved.

  8. Management of severe accidents

    International Nuclear Information System (INIS)

    Jankowski, M.W.

    1987-01-01

    The definition and the multidimensionality aspects of accident management have been reviewed. The suggested elements in the development of a programme for severe accident management have been identified and discussed. The strategies concentrate on the two tiered approaches. Operative management utilizes the plant's equipment and operators capabilities. The recovery managment concevtrates on preserving the containment, or delaying its failure, inhibiting the release, and on strategies once there has been a release. The inspiration for this paper was an excellent overview report on perspectives on managing severe accidents in commercial nuclear power plants and extending plant operating procedures into the severe accident regime; and by the most recent publication of the International Nuclear Safety Advisory Group (INSAG) considering the question of risk reduction and source term reduction through accident prevention, management and mitigation. The latter document concludes that 'active development of accident management measures by plant personnel can lead to very large reductions in source terms and risk', and goes further in considering and formulating the key issue: 'The most fruitful path to follow in reducing risk even further is through the planning of accident management.' (author)

  9. Several real variables

    CERN Document Server

    Kantorovitz, Shmuel

    2016-01-01

    This undergraduate textbook is based on lectures given by the author on the differential and integral calculus of functions of several real variables. The book has a modern approach and includes topics such as: •The p-norms on vector space and their equivalence •The Weierstrass and Stone-Weierstrass approximation theorems •The differential as a linear functional; Jacobians, Hessians, and Taylor's theorem in several variables •The Implicit Function Theorem for a system of equations, proved via Banach’s Fixed Point Theorem •Applications to Ordinary Differential Equations •Line integrals and an introduction to surface integrals This book features numerous examples, detailed proofs, as well as exercises at the end of sections. Many of the exercises have detailed solutions, making the book suitable for self-study. Several Real Variables will be useful for undergraduate students in mathematics who have completed first courses in linear algebra and analysis of one real variable.

  10. Epidemiology of severe trauma.

    Science.gov (United States)

    Alberdi, F; García, I; Atutxa, L; Zabarte, M

    2014-12-01

    Major injury is the sixth leading cause of death worldwide. Among those under 35 years of age, it is the leading cause of death and disability. Traffic accidents alone are the main cause, fundamentally in low- and middle-income countries. Patients over 65 years of age are an increasingly affected group. For similar levels of injury, these patients have twice the mortality rate of young individuals, due to the existence of important comorbidities and associated treatments, and are more likely to die of medical complications late during hospital admission. No worldwide, standardized definitions exist for documenting, reporting and comparing data on severely injured trauma patients. The most common trauma scores are the Abbreviated Injury Scale (AIS), the Injury Severity Score (ISS) and the Trauma and Injury severity Score (TRISS). Documenting the burden of injury also requires evaluation of the impact of post-trauma impairments, disabilities and handicaps. Trauma epidemiology helps define health service and research priorities, contributes to identify disadvantaged groups, and also facilitates the elaboration of comparable measures for outcome predictions. Copyright © 2014 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  11. Management of severe accidents

    International Nuclear Information System (INIS)

    Jankowski, M.W.

    1988-01-01

    The definition and the multidimensionality aspects of accident management have been reviewed. The suggested elements in the development of a programme for severe accident management have been identified and discussed. The strategies concentrate on the two tiered approaches. Operative management utilizes the plant's equipment and operators capabilities. The recovery management concentrates on preserving the containment, or delaying its failure, inhibiting the release, and on strategies once there has been a release. The inspiration for this paper was an excellent overview report on perspectives on managing severe accidents in commercial nuclear power plants and extending plant operating procedures into the severe accident regime; and by the most recent publication of the International Nuclear Safety Advisory Group (INSAG) considering the question of risk reduction and source term reduction through accident prevention, management and mitigation. The latter document concludes that active development of accident management measures by plant personnel can lead to very large reductions in source terms and risk, and goes further in considering and formulating the key issue: The most fruitful path to follow in reducing risk even further is through the planning of accident management

  12. Geotechnical characteristics of some Iraqi gypseous soils

    Directory of Open Access Journals (Sweden)

    Schanz Tom

    2018-01-01

    Full Text Available In Iraq, especially in the last three decades, extensive developments have been evidenced in the regions of gypseous soils due to the need of construction of many numbers of strategic projects. Failure of different structures constructed on gypseous soil in various regions in Iraq have been noticed. For this purpose, three areas in northern Iraq were selected (Samarra, Tikrit and Baiji to study their geotechnical characteristics due to their high gypsum contents as well as many engineering problems are faced due to dissolution of gypsum. The experimental work involves testing of many properties such as: scanning electron microscopy (SEM, XRD, chemical, physical, compressibility, collapsibility, shear strength and suction. At low stress level, the test results revealed that, higher collapse potential (CP is recorded for Tikrit soil. While at low stress level, higher CP is obtained for Baiji soil indicating the increase in CP with decreasing gypsum content. Furthermore, the CP significantly increases with increasing stress level and soaking period at a particular stress level. According to severity classification of the collapse potential, Baiji soil is considered as moderate trouble to slight, while Tikrit soil is considered as trouble to moderate. After soaking, both soils become trouble. As well as, the results showed a reduction in Tikrit soil shear parameters ( φ and c after soaking period of 6 and 24 hrs as 12.2 to 9.2% in the internal friction angle and 91.5 to 94.2% in cohesion, respectively with respect to dry condition. Maximum total suction is measured for low consistency soils (liquid limit < 30% represented by Tikrit soil.

  13. Soil erosion and its control in Chile - An overview

    International Nuclear Information System (INIS)

    Ellies, A.

    2000-01-01

    Accelerate erosion in Chile is a consequence from land use that degrade soil such as compaction, loss of organic matter and soil structure. The erosion is favored by the very hilly landscape of the country that increases erosivity index and the high erodibility given by an elevated annual rate of rainfall with irregular distribution. Several experiences have demonstrated that adequate crop management and crop rotations can minimize erosion. The most effective control is achieved conserving and improving soil structure with management systems that include regular use of soil-improving crops, return of crop residues and tillage practices, thus avoiding unnecessary breakdown soil or compacted soil structure. Conservation tillage increased organic matter levels improving stabile soil structure, aeration and infiltration. (author) [es

  14. Method for spiking soil samples with organic compounds

    DEFF Research Database (Denmark)

    Brinch, Ulla C; Ekelund, Flemming; Jacobsen, Carsten S

    2002-01-01

    We examined the harmful side effects on indigenous soil microorganisms of two organic solvents, acetone and dichloromethane, that are normally used for spiking of soil with polycyclic aromatic hydrocarbons for experimental purposes. The solvents were applied in two contamination protocols to either...... higher than in control soil, probably due mainly to release of predation from indigenous protozoa. In order to minimize solvent effects on indigenous soil microorganisms when spiking native soil samples with compounds having a low water solubility, we propose a common protocol in which the contaminant...... tagged with luxAB::Tn5. For both solvents, application to the whole sample resulted in severe side effects on both indigenous protozoa and bacteria. Application of dichloromethane to the whole soil volume immediately reduced the number of protozoa to below the detection limit. In one of the soils...

  15. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils.

    Science.gov (United States)

    Koopmans, G F; Römkens, P F A M; Fokkema, M J; Song, J; Luo, Y M; Japenga, J; Zhao, F J

    2008-12-01

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg(-1). A biomass production of 1 and 5 t dm ha(-1) yr(-1) yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production.

  16. Enhanced bioremediation of PAH contaminated soils from coal processing sites

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1995-01-01

    The polycyclic aromatic hydrocarbons (PAH) are a potential hazard to health due to their carcinogenic, mutagenic nature and acute toxicity and there is an imminent need for remediation of PAH contaminated soils abounding the several coke oven and town gas sites. Aerobic biological degradation of PAHs is an innovative technology and has shown high decontamination efficiencies, complete mineralization of contaminants, and is environmentally safe. The present study investigates the remediation of PAH contaminated soils achieved using Acinetobacter species and fungal strain Phanerochaete Chrysosporium. The soil used for the experiments was an industrially contaminated soil obtained from Alberta Research Council (ARC) primary cleanup facility, Alberta, Canada. Soil characterization was done using High Performance Liquid Chromatography (HPLC) to qualitatively and quantitatively determine the contaminants in the soil. Artificially contaminated soil was also used for some experiments. All the experiments were conducted under completely mixed conditions with suitable oxygen and nutrient amendments. The removal efficiency obtained for various PAHs using the two microorganisms was compared

  17. Uptake of Organic Contaminants from Soil into Vegetables and Fruits

    DEFF Research Database (Denmark)

    Trapp, Stefan; Legind, Charlotte Nielsen

    2011-01-01

    Contaminants may enter vegetables and fruits by several pathways: by uptake with soil pore water, by diffusion from soil or air, by deposition of soil or airborne particles, or by direct application. The contaminant-specific and plantspecific properties that determine the importance...... of these pathways are described in this chapter. A variety of models have been developed, specific for crop types and with steady-state or dynamic solutions. Model simulations can identify sensitive properties and relevant processes. Persistent, polar (log KOW contaminants have...... the highest potential for accumulation from soil, and concentrations in leaves may be several hundred times higher than in soil. However, for most contaminants the accumulation in vegetables or fruits is much lower. Lipophilic (log KOW > 3) contaminants are mainly transported to leaves by attached soil...

  18. Does fire severity influence shrub resprouting after spring prescribed burning?

    Science.gov (United States)

    Fernández, Cristina; Vega, José A.; Fonturbel, Teresa

    2013-04-01

    Prescribed burning is commonly used to reduce the risk of severe wildfire. However, further information about the associated environmental effects is required to help forest managers select the most appropriate treatment. To address this question, we evaluated if fire severity during spring prescribed burning significantly affects the resprouting ability of two common shrub species in shrubland under a Mediterranean climate in NW Spain. Fire behaviour and temperatures were recorded in tagged individuals of Erica australis and Pterospartum tridentatum during prescribed burning. The number and length of resprouted shoots were measured three times (6, 12 and 18 months) after the prescribed burning. The influence of a series of fire severity indicators on some plant resprouting vigour parameters was tested by canonical correlation analysis. Six months and one year after prescribed burning, soil burn severity (measured by the absolute reduction in depth of the organic soil layer, maximum temperatures in the organic soil layer and the mineral soil surface during burning and the post-fire depth of the organic soil layer) reduced the resprouting vigour of E. australis and P. tridentatum. In contrast, direct measurements of fire effects on plants (minimum branch diameter, duration of temperatures above 300 °C in the shrub crown and fireline intensity) did not affect the post-fire plant vigour. Soil burn severity during spring prescribed burning significantly affected the short-term resprouting vigour in a mixed heathland in Galicia. The lack of effects eighteen months after prescribed burning indicates the high resilience of these species and illustrates the need to conciliate fire prevention and conservation goals.

  19. Soil, Food Security and Human Health

    Science.gov (United States)

    Oliver, Margaret

    2017-04-01

    "Upon this handful of soil our survival depends. Husband it and it will grow food, our fuel, and our shelter and surround us with beauty. Abuse it and the soil will collapse and die, taking humanity with it" Vedas Sanskrit Scripture, 1500 BC. As the world's population increases issues of food security become more pressing as does the need to sustain soil fertility and to minimize soil degradation. Soil and land are finite resources, and agricultural land is under severe competition from many other uses. Lack of adequate food and food of poor nutritional quality lead to under-nutrition of different degrees, all of which can cause ill- or suboptimal-health. The soil can affect human health directly and indirectly. Direct effects of soil or its constituents result from its ingestion, inhalation or absorption. For example, hook worms enter the body through the skin and cause anaemia, and fungi and dust can be inhaled resulting in respiratory problems. The soil is the source of actinomycetes on which our earliest antibiotics are based (actinomycin, neomycin and streptomycin). Furthermore, it is a potential reservoir of new antibiotics with methods such as functional metagenomics to identify antibiotic resistant genes. Indirect effects of soil arise from the quantity and quality of food that humans consume. Trace elements can have both beneficial and toxic effects on humans, especially where the range for optimal intake is narrow as for selenium. Deficiencies of four trace elements, iodine, iron, selenium and zinc, will be considered because of their substantial effects on human health. Relations between soil and human health are often difficult to extricate because of the many confounding factors present such as the source of food, social factors and so on. Nevertheless, recent scientific understanding of soil processes and factors that affect human health are enabling greater insight into the effects of soil on our health. Multidisciplinary research that includes soil

  20. Transfer of 137Cs from soil to plants in different types of soils

    International Nuclear Information System (INIS)

    Todorovic, D.; Radenkovic, M.; Popovic, D.; Djuric, G.

    1998-01-01

    The investigations were carried out in two mountainous regions in the West and South region of the country). Three main types of soils were examined: shale, limestone and the mixed type, and several plants: grass, meadow flora, pinewood, blueberries, an endemic species of Mt. Sara and the bioindicators: moss and lichen. The transfer factors lay in the range of 0.1 - 2.0 in dependence on the type of soil and plant (3.0 - 10.0 for the bioindicator plants). The vertical distribution of 13' 7Cs in the first 15 cm layer of the soil indicates a slow migration of Chernobyl cesium through soil, except on riversides where the wash-out effect plays a role. Generally, the concentration of 137 Cs in soils strongly depends on the configuration of the ground

  1. Development of effective methods for determination of boron in soils and soil solutions

    Directory of Open Access Journals (Sweden)

    Мaruan Tanasheva

    2012-12-01

    Full Text Available This paper is related to serious ecological problem in agriculture: soil degradation in rice fields in South Kazakhstan and in particular, to boron toxicity in rice, which resulted in reduced crop yields. The following abiotic factors were studied to determine the ability of boron to accumulate in rice fields: soil type, soil properties like salinity and acidity', season (level of precipitation, water logging /water shortage. The results shows that the severity of boron excess for fertility of rice crop which depends on boron ionic composition in soil. Adverse impact of both boron deficiency and boron excess are discussed. The necessity of boron fertilizers is shown for soils with high boron mobility.

  2. Bioindication with soil microfauna

    International Nuclear Information System (INIS)

    Aescht, E.; Foissner, W.

    1992-01-01

    The state of a soil can be characterised through its inhabitant micro-, meso-, and macrofauna. For an appropriate assessment of soil quality at least one representative of each of these size categories should be studied (e.g. testacea, mites, earthworms). This contribution summarizes the insights gained from microscopic soil fauna in this context. The following practical examples are discussed: pesticides, organic and artificial fertilisers, soil compaction, ecological and conventional farming, recolonisation. The 'weighted cenosis index' represents a quantitative measure for the influence of anthropogenic activity on a soil. (orig.) [de

  3. ES1406 COST Action: Soil fauna: Key to Soil Organic Matter Dynamicsand Fertility. How far have we got?

    DEFF Research Database (Denmark)

    Jiménez, Juan; Filser, Juliane; Barot, Sébastien

    Soil organic matter (SOM) is key to soil fertility, climate change mitigation, combatting land degradation, and the conservation of above- and below-ground biodiversity and associated ecosystem services like decomposition, nutrient cycling, carbon sequestration, detoxification and maintenance...... of soil physico-chemical properties. SOM dynamics represent the balance between the input of plant material (residues, root-derived materials) and the output through decomposition (OM mineralization) by organisms, erosion and leaching. Approximately 20% of global CO2 emissions, one third of global CH4...... emissions and two thirds of N2O emissions originate from soils. In many soils, most of the macro-aggregate structure is formed by the activities of soil invertebrates and roots, with important consequences for soil organic matter dynamics, carbon sequestration and water infiltration at several spatial...

  4. Soil map disaggregation improved by soil-landscape relationships, area-proportional sampling and random forest implementation

    DEFF Research Database (Denmark)

    Møller, Anders Bjørn; Malone, Brendan P.; Odgers, Nathan

    implementation generally improved the algorithm’s ability to predict the correct soil class. The implementation of soil-landscape relationships and area-proportional sampling generally increased the calculation time, while the random forest implementation reduced the calculation time. In the most successful......Detailed soil information is often needed to support agricultural practices, environmental protection and policy decisions. Several digital approaches can be used to map soil properties based on field observations. When soil observations are sparse or missing, an alternative approach...... is to disaggregate existing conventional soil maps. At present, the DSMART algorithm represents the most sophisticated approach for disaggregating conventional soil maps (Odgers et al., 2014). The algorithm relies on classification trees trained from resampled points, which are assigned classes according...

  5. Severe fuel damage projects

    International Nuclear Information System (INIS)

    Sdouz, G.

    1987-10-01

    After the descriptions of the generation of a Severe Fuel Damage Accident in a LWR the hypothetical course of such an accident is explained. Then the most significant projects are described. At each project the experimental facility, the most important results and the concluding models and codes are discussed. The selection of the projects is concentrated on the German Projekt Nukleare Sicherheit (PNS), tests performed at the Idaho National Engineering Laboratory (INEL) and smaller projects in France and Great Britain. 25 refs., 26 figs. (Author)

  6. Microbial community structure and activity in a Colorado Rocky Mountain forest soil scarred by slash pile burning

    Science.gov (United States)

    Aida E. Jimenez Esquilin; Mary E. Stromberger; William J. Massman; John M. Frank; Wayne D. Shepperd

    2007-01-01

    Tree thinning and harvesting produces large amounts of slash material which are typically disposed of by burning, often resulting in severe soil heating. We measured soil chemical properties and microbial community structure and function over time to determine effects of slash pile burning in a ponderosa pine forest soil. Real time data were collected for soil...

  7. Soil amendments effects on radiocesium translocation in forest soils.

    Science.gov (United States)

    Sugiura, Yuki; Ozawa, Hajime; Umemura, Mitsutoshi; Takenaka, Chisato

    2016-12-01

    We conducted an experiment to investigate the potential of phytoremediation by soil amendments in a forest area. To desorb radiocesium ( 137 Cs) from variable charges in the soil, ammonium sulfate (NH 4 + ) and elemental sulfur (S) (which decrease soil pH) were applied to forest soil collected from contaminated area at a rate of 40 and 80 g/m 2 , respectively. A control condition with no soil treatment was also considered. We defined four groups of aboveground conditions: planted with Quercus serrata, planted with Houttuynia cordata, covered with rice straw as litter, and unplanted/uncovered (control). Cultivation was performed in a greenhouse with a regular water supply for four months. Following elemental sulfur treatment, soil pH values were significantly lower than pH values following ammonium sulfate treatment and no treatment. During cultivation, several plant species germinated from natural seeds. No clear differences in aboveground tissue 137 Cs concentrations in planted Q. serrata and H. cordata were observed among the treatments. However, aboveground tissue 137 Cs concentration values in the germinated plants following elemental sulfur treatment were higher than the values following the ammonium sulfate treatment and no treatment. Although biomass values for Q. serrata, H. cordata, and germinated plants following elemental sulfur treatment tended to be low, the total 137 Cs activities in the aboveground tissue of germinated plants were higher than those following ammonium sulfate treatment and no treatment in rice straw and unplanted conditions. Although no significant differences were observed, 137 Cs concentrations in rice straw following ammonium sulfate and elemental sulfur treatments tended to be higher than those in the control case. The results of this study indicate that elemental sulfur lowers the soil pH for a relatively long period and facilitates 137 Cs translocation to newly emerged and settled plants or litter, but affects plant growth in

  8. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  9. One reason, several logics

    Directory of Open Access Journals (Sweden)

    Evandro Agazzi

    2011-06-01

    Full Text Available Humans have used arguments for defending or refuting statements long before the creation of logic as a specialized discipline. This can be interpreted as the fact that an intuitive notion of "logical consequence" or a psychic disposition to articulate reasoning according to this pattern is present in common sense, and logic simply aims at describing and codifying the features of this spontaneous capacity of human reason. It is well known, however, that several arguments easily accepted by common sense are actually "logical fallacies", and this indicates that logic is not just a descriptive, but also a prescriptive or normative enterprise, in which the notion of logical consequence is defined in a precise way and then certain rules are established in order to maintain the discourse in keeping with this notion. Yet in the justification of the correctness and adequacy of these rules commonsense reasoning must necessarily be used, and in such a way its foundational role is recognized. Moreover, it remains also true that several branches and forms of logic have been elaborated precisely in order to reflect the structural features of correct argument used in different fields of human reasoning and yet insufficiently mirrored by the most familiar logical formalisms.

  10. Several crimes solved

    CERN Multimedia

    Relations with the Host States Service

    2007-01-01

    A member of a contractor's personnel suspected of having committed several thefts in and around Building 180 has recently been questioned by the French police. He was immediately tried by the court in Bourg-en-Bresse and sentenced to six months in prison, with a requirement to serve at least three months. His arrest was facilitated, among other things, by a video recording, fast and detailed statements to the CERN Fire Brigade and close collaboration between the members of the personnel concerned, the Reception and Access Control Service and the police. Several laptops and other items of electronic equipment were seized during a search of the culprit's home. A stolen digital camera has yet to be returned to its owner as he has not reported the theft to the CERN Fire Brigade and the police. The person concerned is therefore requested to go to the Gendarmerie in Saint-Genis-Pouilly with the necessary proof of ownership. In addition, the French authorities have informed CERN that the presumed authors of the a...

  11. Severe service sealing solutions

    International Nuclear Information System (INIS)

    Metcalfe, R.; Wensel, R.

    1994-09-01

    Successful sealing usually requires much more than initial leak-tightness. Friction and wear must also be acceptable, requiring a good understanding of tribology at the sealing interface. This paper describes various sealing solutions for severe service conditions. The CAN2A and CAN8 rotary face seals use tungsten carbide against carbon-graphite to achieve low leakage and long lifetime in nuclear main coolant pumps. The smaller CAN6 seal successfully uses tungsten carbide against silicon carbide in reactor water cleanup pump service. Where friction in CANDU fuelling machine rams must be essentially zero, a hydrostatic seal using two silicon carbide faces is the solution. In the NRU reactor moderator pumps, where pressure is much lower, eccentric seals that prevent boiling at the seal faces are giving excellent service. All these rotary face seals rely on supplementary elastomer seals between their parts. An integrated engineering approach to high performance sealing with O-rings is described. This is epitomized in critical Space Shuttle applications, but is increasingly being applied in CANDU plants. It includes gland design, selection and qualification of material, quality assurance, detection of defects and the effects of lubrication, surface finish, squeeze, stretch and volume constraints. In conclusion, for the severe service applications described, customized solutions have more than paid for themselves by higher reliability, lower maintenance requirements and reduced outage time. (author)

  12. From soil in art towards Soil Art

    Science.gov (United States)

    Feller, C.; Landa, E. R.; Toland, A.; Wessolek, G.

    2015-02-01

    The range of art forms and genres dealing with soil is wide and diverse, spanning many centuries and artistic traditions, from prehistoric painting and ceramics to early Renaissance works in Western literature, poetry, paintings, and sculpture, to recent developments in cinema, architecture and contemporary art. Case studies focused on painting, installation, and cinema are presented with the view of encouraging further exploration of art about, in, with, or featuring soil or soil conservation issues, created by artists, and occasionally scientists, educators or collaborative efforts thereof.

  13. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals

    Science.gov (United States)

    Keesstra, Saskia D.; Bouma, Johan; Wallinga, Jakob; Tittonell, Pablo; Smith, Pete; Cerdà, Artemi; Montanarella, Luca; Quinton, John N.; Pachepsky, Yakov; van der Putten, Wim H.; Bardgett, Richard D.; Moolenaar, Simon; Mol, Gerben; Jansen, Boris; Fresco, Louise O.

    2016-04-01

    In this forum paper we discuss how soil scientists can help to reach the recently adopted UN Sustainable Development Goals (SDGs) in the most effective manner. Soil science, as a land-related discipline, has important links to several of the SDGs, which are demonstrated through the functions of soils and the ecosystem services that are linked to those functions (see graphical abstract in the Supplement). We explore and discuss how soil scientists can rise to the challenge both internally, in terms of our procedures and practices, and externally, in terms of our relations with colleague scientists in other disciplines, diverse groups of stakeholders and the policy arena. To meet these goals we recommend the following steps to be taken by the soil science community as a whole: (i) embrace the UN SDGs, as they provide a platform that allows soil science to demonstrate its relevance for realizing a sustainable society by 2030; (ii) show the specific value of soil science: research should explicitly show how using modern soil information can improve the results of inter- and transdisciplinary studies on SDGs related to food security, water scarcity, climate change, biodiversity loss and health threats; (iii) take leadership in overarching system analysis of ecosystems, as soils and soil scientists have an integrated nature and this places soil scientists in a unique position; (iii) raise awareness of soil organic matter as a key attribute of soils to illustrate its importance for soil functions and ecosystem services; (iv) improve the transfer of knowledge through knowledge brokers with a soil background; (v) start at the basis: educational programmes are needed at all levels, starting in primary schools, and emphasizing practical, down-to-earth examples; (vi) facilitate communication with the policy arena by framing research in terms that resonate with politicians in terms of the policy cycle or by considering drivers, pressures and responses affecting impacts of land

  14. Uptake of radionuclides by plants growing on Brazilian soil: the effect of soil ageing

    International Nuclear Information System (INIS)

    Wasserman, Maria A.; Rochedo, Elaine R.R.; Ferreira, Ana C.M.; Vidal Perez, Daniel

    2008-01-01

    The behaviour of radionuclides in soil is governed by several mechanisms that can vary significantly according to the specific reactivity of each element and soil properties. The 137 Cs is one of radionuclides that generally reduces with time its mobility and phytoavailability due to irreversible fixation in high activity clay mineral such as illite, vermiculite and montmorilonite. A long-term experimental essay using Brazilian soils was done in order to determine the effect of ageing of contamination on 137 Cs mobility in soils and transfer to plants. To perform this study, 4 different soils with different properties were contaminated with 137 Cs at different period: The older contamination refers to an urban soil contaminated at the Goiania accident (1987). A similar type of Goiania's soil (Ferralsol rich in Gibbsite) was artificially contaminated with 137 Cs in 1993. A subtropical class of soil (Nitisol) was contaminated in 1996 and two other tropical soils were contaminated in 2000 (Acrisol and Ferralsol rich in Goethite). The time's effect was studied by characterizing the evolution of soil properties and the changes in the distribution of radionuclides between phases till 2006. In addition, the phytoavailability was evaluated by carrying out experiments in lysimeters where radish was sowed at different periods:1996, 2000 and 2004. These results showed that the phytoavailability changed with time only in 2 situations: after changes in some soil properties such as pH or due to Cs fixation in high activity clay mineral when it was present in the soils even as trace mineral. The 137 Cs distribution in soil showed that Fe oxides are the main sink for this element in all type of soil and 14 years after contamination, the 137 Cs was still available for plants in the Ferralsol Gbbiste rich. In the Nitisol, 5 years after contamination, the 137 Cs was not detected as in the slightly acidic phase of sequential extraction neither detectable in radish roots or leaves

  15. Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles

    Science.gov (United States)

    Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge

    2010-05-01

    Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be

  16. Statistical Modelling of the Soil Dielectric Constant

    Science.gov (United States)

    Usowicz, Boguslaw; Marczewski, Wojciech; Bogdan Usowicz, Jerzy; Lipiec, Jerzy

    2010-05-01

    The dielectric constant of soil is the physical property being very sensitive on water content. It funds several electrical measurement techniques for determining the water content by means of direct (TDR, FDR, and others related to effects of electrical conductance and/or capacitance) and indirect RS (Remote Sensing) methods. The work is devoted to a particular statistical manner of modelling the dielectric constant as the property accounting a wide range of specific soil composition, porosity, and mass density, within the unsaturated water content. Usually, similar models are determined for few particular soil types, and changing the soil type one needs switching the model on another type or to adjust it by parametrization of soil compounds. Therefore, it is difficult comparing and referring results between models. The presented model was developed for a generic representation of soil being a hypothetical mixture of spheres, each representing a soil fraction, in its proper phase state. The model generates a serial-parallel mesh of conductive and capacitive paths, which is analysed for a total conductive or capacitive property. The model was firstly developed to determine the thermal conductivity property, and now it is extended on the dielectric constant by analysing the capacitive mesh. The analysis is provided by statistical means obeying physical laws related to the serial-parallel branching of the representative electrical mesh. Physical relevance of the analysis is established electrically, but the definition of the electrical mesh is controlled statistically by parametrization of compound fractions, by determining the number of representative spheres per unitary volume per fraction, and by determining the number of fractions. That way the model is capable covering properties of nearly all possible soil types, all phase states within recognition of the Lorenz and Knudsen conditions. In effect the model allows on generating a hypothetical representative of

  17. Flotation separation of uranium from contaminated soils

    International Nuclear Information System (INIS)

    Misra, M.; Mehta, R.; Garcia, H.; Chai, C.D.; Smith, R.W.

    1995-01-01

    The volume of low-level contaminated soil at the Department of Energy's Nuclear Weapon Sites are in the order of several million tons. Most of the contaminants are uranium, plutonium, other heavy metals and organic compounds. Selected physical separation processes have shown demonstrated potential in concentrating the radionuclides in a small fraction of the soil. Depending upon the size, nature of bonding and distributions of radionuclides, more than 90% of the radionuclide activity can be concentrated in a small volume of fraction of the soil. The physico-chemical separation processes such as flotation in a mechanical and microbubble tall column cell have shown promising applications in cleaning up the high volume contaminated soil

  18. Thinking and Countermeasures for Rational Utilization of Soil Fertility in Modern Agriculture Developping

    Directory of Open Access Journals (Sweden)

    WENG Bo-qi

    2014-02-01

    Full Text Available Soil is not only an important foundation for agricultural production, but also is the safeguard of human survival. Soil quality is close-ly related with food safety and argo-ecological environment. Soil fertility is the support of modern agricultural development. Multiple disci-plines and specialties are involved in researches of soil cultivating process. Nowadays, the understanding of soil fertility has changed from a-gricultural production to environmental security and resource exploitation, even larger scales to ecological health and global soil change. In this review, the characteristics and inherent link between soil and agriculture were comprehensive expounded from the aspects of long-term fertilization trials, soil cultivation techniques, and modern agriculture development. The challenge and prospect faced in soil science research field were also analyzed. Finally, several suggestions and countermeasures were proposed to the researches of soil science in future.

  19. Creating Common Ground: Activities of the Soil Health Dialog Workgroup

    Science.gov (United States)

    Lindbo, David L.; Moebius-Clune, Bianca; Hatfield, Jerry; Buckner, William; Conklin, Neil; McMahon, Sean; Haney, Richard; Muller, Paul; Martin, Larkin; Shaw, Richard; Eyrich, Ted; Martens, Klaas; Archuleta, Ray; Thompson, Mary

    2014-05-01

    The concept of Soil Health has come to forefront as a soil management concept for soil scientists, agronomists, producers, land-use planners, and environmental advocates. Although many see this simply as a way to increase organic matter in the soil it is much more than that and has implications to a broader management decisions. A diverse group of stake holders ranging from scientists to consultants, conventional to organic farmers, governmental to NGOs met to start a dialog about soil health with an overarching goal to adopt practices that will improve soil health across a wide area and for a wide variety of land uses. The group recognized the critical need for using soil health as a cornerstone of sustainable soil management. The group also realized that a consistent and coherent message about soil health needed to be developed that would be inclusive to all stake holders. Furthermore the group recognized that if soil health is to be promoted we all need to know and agree on how to measure it and interpret the results. The first outcome from the meeting was the creation of several teams comprised of individuals with the diverse interests as list above. The first was tasked to review and develop a definition of soil health. The first group, after much debate, decided on the adoption of the USDA-NRCS definition of Soil Health as the most effective way to begin. This definition was presented as a press release from the Farm Foundation in early December 2013 in conjunction with World Soil Day. The second group was tasked to review, develop or recommend standard measurement techniques to assess soil health. The methods group is in the process of reviewing methods and hopes to have a preliminary list out for broader review by mid-year. This presentation reviews current progress and asks for input from the Soil Science community at large.

  20. Measurement by phase severance

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1987-03-01

    It is claimed that the measurement process is more accurately described by ''quasi-local phase severance'' than by ''wave function collapse''. The approach starts from the observation that the usual route to quantum mechanics starting from the Hamilton-Jacobi equations throws away half the degrees of freedom, namely, the classical initial state parameters. To overcome this difficulty, the full set of Hamilton-Jacobi equations is interpreted as operator equations acting on a state vector. The measurement theory presented is based on the conventional S-matrix boundary condition of N/sub A/ free particles in the distant past and N/sub B/ free particles in the distant future and taking the usual free particle wave functions, multiplied by phase factors

  1. CANDU severe accident analysis

    International Nuclear Information System (INIS)

    Negut, Gheorghe; Catana, Alexandru; Prisecaru, Ilie; Dupleac, Daniel

    2007-01-01

    Romania is a EU member since January first 2007. This country faces now new challenges which imply also the nuclear power reactors now in operation. Romania operates since 1996 a CANDU nuclear power reactor and soon will start up a second unit. In EU PWR reactors are mostly operated, so that the Romania's reactors have to meet EU standards. Safety analysis guidelines require to model severe accidents for reactors of this type. Starting from previous studies a thermal-hydraulic model for a degraded CANDU core was developed. The initiating event is assumed to be a LOCA with simultaneous loss of moderator and coolant and the failure of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperatures inside a pressure tube reaches 1000 deg. C, a contact between pressure tube and calandria tube occurs and the decay heat is transferred to the moderator. Due to the lack of cooling, the moderator eventually begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) uncover, then disintegrate and fall down to the calandria vessel bottom. All the quantity of calandria moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield water tank surrounding the calandria vessel. The thermal hydraulics phenomena described above are modeled, analyzed and compared with the existing data. (authors)

  2. Long-term bioventing performance in low-permeability soils

    International Nuclear Information System (INIS)

    Phelps, M.B.; Stanin, F.T.; Downey, D.C.

    1995-01-01

    Short-term and long-term bioventing treatability testing has shown that in situ air injection and extraction is a practical method for sustaining increased oxygen levels and enhancing aerobic biodegradation of petroleum hydrocarbons in low-permeability soils. At several test sites, initial physical parameter analysis of soils and air permeability tests indicated that impacted soils (fine sandy silts and clays) had low air permeabilities. Measurements of depleted soil-gas oxygen levels and increased soil-gas carbon dioxide levels indicated that the natural process of aerobic biodegradation of petroleum hydrocarbons was oxygen-limited. Initial treatability testing consisted of air permeability tests to measure the permeability of the soils to air and in situ respiration tests to measure the rates at which native microorganisms could biodegrade the contaminants when provided with sufficient oxygen. During the long-term treatment period, active air injection or extraction systems were operated for 1 year or longer. Soil gas was periodically monitored within the treatment zone to evaluate the success of the bioventing systems in increasing soil-gas oxygen levels in the low-permeability soils. Follow-up respiration tests and soil and soil-gas sampling were conducted to evaluate changes in respiration rates and contaminant concentrations with time

  3. An Overview of Soil Models for Earthquake Response Analysis

    Directory of Open Access Journals (Sweden)

    Halida Yunita

    2015-01-01

    Full Text Available Earthquakes can damage thousands of buildings and infrastructure as well as cause the loss of thousands of lives. During an earthquake, the damage to buildings is mostly caused by the effect of local soil conditions. Depending on the soil type, the earthquake waves propagating from the epicenter to the ground surface will result in various behaviors of the soil. Several studies have been conducted to accurately obtain the soil response during an earthquake. The soil model used must be able to characterize the stress-strain behavior of the soil during the earthquake. This paper compares equivalent linear and nonlinear soil model responses. Analysis was performed on two soil types, Site Class D and Site Class E. An equivalent linear soil model leads to a constant value of shear modulus, while in a nonlinear soil model, the shear modulus changes constantly,depending on the stress level, and shows inelastic behavior. The results from a comparison of both soil models are displayed in the form of maximum acceleration profiles and stress-strain curves.

  4. Soil quality, theory and applications. a critical analysis

    Directory of Open Access Journals (Sweden)

    Elio Coppola

    2009-04-01

    Full Text Available In its common meaning, the concept of “soil quality” is based on evaluating criteria that are subjective and “anthropocentric” rather than objective and “pedocentric”. Several “desirable” or “undesirable” soil conditions and characteristics are considered from the human point of view, disregarding the pedogenetic features. Such an approach perilously leads to support the idea of a “pedogenetic discrimination”, which a priori privileges “superior” vs. “inferior” soils, thus discrediting a large part of soil Subgroups, Great Groups, Suborders, and even whole taxonomic Orders. So, a number of soil functions, such as genic reserve guarantee of space-temporal bio-diversity, environmental good cradle of civilization, foundation of the landscape, as well as upholder of man heritage, are neglected at all. If “quality” only concerned rich and fertile soils, there would be the great and looming risk to definitively take “poor” soils away from agriculture, landscape and global pedological reserve. It is necessary to reconsider the concept of “soil quality” as “soil functionality”, that is to say “aptitude of soil to express its own potential”, bringing out the essential environmental, socio-economic and cultural soil roles on the basis of the inherent conditions and characteristics arising from its peculiar pedogenetic history.

  5. Biological parameters in technogenic soils of a former sulphur mine

    Science.gov (United States)

    Siwik-Ziomek, Anetta; Brzezińska, Małgorzata; Lemanowicz, Joanna; Koper, Jan; Szarlip, Paweł

    2018-04-01

    This study was conducted on the soils originating from a reclamation area of the former sulphur mine in Tarnobrzeg, Poland. Soil was sampled 16 years after the completion of mining works with the open-pit method at Machów, as well as 7 years after sulphur mining via the `smelting' method in the Jeziórko mine was abandoned. Several biological parameters were examined: soil respiration, soil microbial biomass and the activity of rhodanese and arylsulphatase enzymes taking part in sulphur transformation within the site's soils. The soils showed a high total sulphur and sulphates content. The SO42- constituted a large fraction of total sulphur, in some cases, exceeding 80% or even 95% of total sulphur. The soil pH decreased due to the degrading effects of sulphur mining. In the soils studied from the locations with the lowest soil pH value, no activity of arylsulphatase was reported and the activity of rhodanese was lowest. The highest soil respiration values were recorded from the 0-5 cm layer in the areas covered with forest vegetation. A high soil respiration value at the waste heap at Machów wherein a very high concentration of Stot and SO42- was observed can be due to the ability of fungi to produce hyphal strands and to survive unfavourable conditions.

  6. Soil enzyme dynamics in chlorpyrifos-treated soils under the influence of earthworms.

    Science.gov (United States)

    Sanchez-Hernandez, Juan C; Notario Del Pino, J; Capowiez, Yvan; Mazzia, Christophe; Rault, Magali

    2018-01-15

    Earthworms contribute, directly and indirectly, to contaminant biodegradation. However, most of bioremediation studies using these annelids focus on pollutant dissipation, thus disregarding the health status of the organism implied in bioremediation as well as the recovery of indicators of soil quality. A microcosm study was performed using Lumbricus terrestris to determine whether earthworm density (2 or 4individuals/kg wet soil) and the time of exposure (1, 2, 6, 12, and 18wk) could affect chlorpyrifos persistence in soil initially treated with 20mg active ingredientkg -1 wet soil. Additionally, selected earthworm biomarkers and soil enzyme activities were measured as indicators of earthworm health and soil quality, respectively. After an 18-wk incubation period, no earthworm was killed by the pesticide, but clear signs of severe intoxication were detected, i.e., 90% inhibition in muscle acetylcholinesterase and carboxylesterase (CbE) activities. Unexpectedly, the earthworm density had no significant impact on chlorpyrifos dissipation rate, for which the measured half-life ranged between 30.3d (control soils) and 44.5d (low earthworm density) or 36.7d (high earthworm density). The dynamic response of several soil enzymes to chlorpyrifos exposure was examined calculating the geometric mean and the treated-soil quality index, which are common enzyme-based indexes of microbial functional diversity. Both indexes showed a significant and linear increase of the global enzyme response after 6wk of chlorpyrifos treatment in the presence of earthworms. Examination of individual enzymes revealed that soil CbE activity could decrease chlorpyrifos-oxon impact upon the rest of enzyme activities. Although L. terrestris was found not to accelerate chlorpyrifos dissipation, a significant increase in the activity of soil enzyme activities was achieved compared with earthworm-free, chlorpyrifos-treated soils. Therefore, the inoculation of organophosphorus-contaminated soils with L

  7. Screening of soil corrosivity by field testing: Results and design of an electrochemical soil corrosion probe

    DEFF Research Database (Denmark)

    Nielsen, Lars vendelbo; Bruun, Niels Kåre

    1996-01-01

    The corrosivity of different types of soil have been assessed by exposing carbon-steel plates at 50 different locations in Denmark for an extended period of time. The investigations included weight loss measurements and analysis of the chemical compositions of the corrosion products formed...... on the plates during exposure. An electrochemical soil corrosion probe has been designed and manufactured allowing for simultaneous measurements of several qauntities to predict corrosion. The probe consists of individual sections capable of measuring redox-potential, corrosion potential, soil resistivity...

  8. Scientific support, soil information and education provided by the Austrian Soil Science Society

    Science.gov (United States)

    Huber, Sigbert; Baumgarten, Andreas; Birli, Barbara; Englisch, Michael; Tulipan, Monika; Zechmeister-Boltenstern, Sophie

    2015-04-01

    The Austrian Soil Science Society (ASSS), founded in 1954, is a non-profit organisation aiming at furthering all branches of soil science in Austria. The ASSS provides information on the current state of soil research in Austria and abroad. It organizes annual conferences for scientists from soil and related sciences to exchange their recent studies and offers a journal for scientific publications. Annually, ASSS awards the Kubiena Research Prize for excellent scientific studies provided by young scientists. In order to conserve and improve soil science in the field, excursions are organized, also in cooperation with other scientific organisations. Due to well-established contacts with soil scientists and soil science societies in many countries, the ASSS is able to provide its members with information about the most recent developments in the field of soil science. This contributes to a broadening of the current scientific knowledge on soils. The ASSS also co-operates in the organisation of excursions and meetings with neighbouring countries. Several members of the ASSS teach soil science at various Austrian universities. More detail on said conferences, excursions, publications and awards will be given in the presentation. Beside its own scientific journal, published once or twice a year, and special editions such as guidebooks for soil classification, the ASSS runs a website providing information on the Society, its activities, meetings, publications, awards and projects. Together with the Environment Agency Austria the ASSS runs a soil platform on the internet. It is accessible for the public and thus informs society about soil issues. This platform offers a calendar with national and international soil events, contacts of soil related organisations and networks, information on national projects and publications. The society has access to products, information material and information on educational courses. Last but not least information on specific soil

  9. Soil Response to Global Change: Soil Process Domains and Pedogenic Thresholds (Invited)

    Science.gov (United States)

    Chadwick, O.; Kramer, M. G.; Chorover, J.

    2013-12-01

    The capacity of soil to withstand perturbations, whether driven by climate, land use change, or spread of invasive species, depends on its chemical composition and physical state. The dynamic interplay between stable, well buffered soil process domains and thresholds in soil state and function is a strong determinant of soil response to forcing from global change. In terrestrial ecosystems, edaphic responses are often mediated by availability of water and its flux into and through soils. Water influences soil processes in several ways: it supports biological production, hence proton-donor, electron-donor and complexing-ligand production; it determines the advective removal of dissolution products, and it can promote anoxia that leads microorganisms to utilize alternative electron acceptors. As a consequence climate patterns strongly influence global distribution of soil, although within region variability is governed by other factors such as landscape age, parent material and human land use. By contrast, soil properties can vary greatly among climate regions, variation which is guided by the functioning of a suite of chemical processes that tend to maintain chemical status quo. This soil 'buffering' involves acid-base reactions as minerals weather and oxidation-reduction reactions that are driven by microbial respiration. At the planetary scale, soil pH provides a reasonable indicator of process domains and varies from about 3.5 to10, globally, although most soils lie between about 4.5 and 8.5. Those that are above 7.5 are strongly buffered by the carbonate system, those that are characterized by neutral pH (7.5-6) are buffered by release of non-hydrolyzing cations from primary minerals and colloid surfaces, and those that are buffered by hydrolytic aluminum on colloidal surfaces. Alkali and alkaline (with the exception of limestone parent material) soils are usually associated with arid and semiarid conditions, neutral pH soils with young soils in both dry and wet

  10. Aluminium fractionation of European volcanic soils by selective dissolution techniques

    NARCIS (Netherlands)

    Garcia-Rodeja, E.; Novoa, J.C.; Pontevedra, X.; Martinez-Cortizas, A.; Buurman, P.

    2004-01-01

    Several selective dissolution methods were used to differentiate Al forms in 12 soils formed from volcanic materials (64 andic, vitric and organic horizons) in Iceland, Azores (Portugal), Tenerife (Spain) and Italy. The soils differ in many properties because of differences in parent materials,

  11. Understanding the Mechanism of Soil Erosion from Outdoor Model ...

    African Journals Online (AJOL)

    A method for obtaining important data on eroded soils, using a one eight experimental slope model is presented. The scope of the investigation herein described encompassed three locations in the south- eastern parts of Nigeria, which are belts of severe erosion, namely Opi-Nsukka, Agulu and Udi, [Fig. 1.] Soil samples ...

  12. Simulating climate change impact on soil erosion using RUSLE model

    Indian Academy of Sciences (India)

    Climate change, particularly due to the changed precipitation trend, can have a severe impact on soil erosion. The effect is more pronounced on the higher slopes of the Himalayan region. The goal of this study was to estimate the impact of climate change on soil erosion in a watershed of the Himalayan region using ...

  13. Soil quality improvement through conversion to sprinkler irrigation

    Science.gov (United States)

    Conversion from furrow to sprinkler irrigation is a recommended conservation practice for improved water use efficiency (and/or erosion control), but effects on soil quality indicators were unknown. Several soil quality indicators were therefore quantified within a northwestern U.S. Conservation Eff...

  14. A selection of sensing techniques for mapping soil hydraulic properties

    NARCIS (Netherlands)

    Knotters, M.; Egmond, van F.M.; Bakker, G.; Walvoort, D.J.J.; Brouwer, F.

    2017-01-01

    Data on soil hydraulic properties are needed as input for many models, such as models to predict unsaturated water movement and crop growth, and models to predict leaching of nutrients and pesticides to groundwater. The soil physics database of the Netherlands shows several lacunae, and a

  15. Soil Erosion Study through Simulation: An Educational Tool.

    Science.gov (United States)

    Huber, Thomas P.; Falkenmayer, Karen

    1987-01-01

    Discusses the need for education about soil erosion and advocates the use of the Universal Soil Loss Equation (USLE) to show the impacts of human and natural action on the land. Describes the use of a computer simulated version of the USLE in several environmental and farming situations. (TW)

  16. Upscaling soil saturated hydraulic conductivity from pore throat characteristics

    Science.gov (United States)

    Upscaling and/or estimating saturated hydraulic conductivity Ksat at the core scale from microscopic/macroscopic soil characteristics has been actively under investigation in the hydrology and soil physics communities for several decades. Numerous models have beendeveloped based on different approac...

  17. Model for tritiated water transport in soil

    International Nuclear Information System (INIS)

    Galeriu, D.; Paunescu, N.

    1999-01-01

    Chemical forms of tritium released from nuclear facilities are mostly water (HTO) and hydrogen (HT, TT). Elemental tritium is inert in vegetation and superior animals, but the microorganisms from soil oxidize HT to HTO. After an atmospheric HT emission, in short time an equivalent quantity of HTO is re-emitted from soil. In the vicinity of a tritium source the spatial and temporary distribution of HTO is dependent on the chemical form of tritium releases. During routine tritium releases (continuously and constant releases), the local distribution of tritium reaches equilibrium, and specific activities of tritium in environmental compartments are almost equal. The situation is very different after an accidental emission. Having in view, harmful effects of tritium when it is incorporated into the body several models were developed for environmental tritium transport and dose assessment. The tritium transport into the soil is an important part of the environmental tritium behavior, but, unfortunately, in spite of the importance of this problem the corresponding modeling is unsatisfactory. The aim of this paper was the improvement of the TRICAIAP model, and the application of the model to BIOMOVS scenario. The BIOMOVS scenario predicts HTO concentrations in soil during 30 days, after one hour atmospheric HTO emission. The most important conclusions of the paper are: the principal carrier of tritium into the soil is water; the transfer processes are the reactions of water in soil and the diffusion due to concentration gradient; atmosphere-soil transport is dependent of surface characteristics (granulation, humidity, roughness, etc.); the conversion rate of HT to HTO is not well known and is dependent on active microorganism concentration in soil and on soil humidity. More experimental data are needed to decrease the uncertainty of transfer parameter, for the definition of the influence of vegetation, etc. (authors)

  18. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method

    International Nuclear Information System (INIS)

    Ouhadi, V.R.; Yong, R.N.; Shariatmadari, N.; Saeidijam, S.; Goodarzi, A.R.; Safari-Zanjani, M.

    2010-01-01

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of 'calcite or carbonate' (CaCO 3 ) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.

  19. The influence of organic matter on sorption and fate of glyphosate in soil - Comparing different soils and humic substances

    Energy Technology Data Exchange (ETDEWEB)

    Albers, Christian N., E-mail: calbers@ruc.d [Dept. of Geochemistry, Geological Survey of Denmark and Greenland, DK-1350 Copenhagen (Denmark); Dept. of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Banta, Gary T. [Dept. of Environmental, Social and Spatial Change, Roskilde University, DK-4000 Roskilde (Denmark); Hansen, Poul Erik [Dept. of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Jacobsen, Ole S. [Dept. of Geochemistry, Geological Survey of Denmark and Greenland, DK-1350 Copenhagen (Denmark)

    2009-10-15

    Soil organic matter (SOM) is generally believed not to influence the sorption of glyphosate in soil. To get a closer look on the dynamics between glyphosate and SOM, we used three approaches: I. Sorption studies with seven purified soil humic fractions showed that these could sorb glyphosate and that the aromatic content, possibly phenolic groups, seems to aid the sorption. II. Sorption studies with six whole soils and with SOM removed showed that several soil parameters including SOM are responsible for the strong sorption of glyphosate in soils. III. After an 80 day fate experiment, approx40% of the added glyphosate was associated with the humic and fulvic acid fractions in the sandy soils, while this was the case for only approx10% of the added glyphosate in the clayey soils. Glyphosate sorbed to humic substances in the natural soils seemed to be easier desorbed than glyphosate sorbed to amorphous Fe/Al-oxides. - Glyphosate was sorbed by purified humic substances and a significant amount of glyphosate was found to be associated with soil organic matter in whole soils.

  20. The influence of organic matter on sorption and fate of glyphosate in soil - Comparing different soils and humic substances

    International Nuclear Information System (INIS)

    Albers, Christian N.; Banta, Gary T.; Hansen, Poul Erik; Jacobsen, Ole S.

    2009-01-01

    Soil organic matter (SOM) is generally believed not to influence the sorption of glyphosate in soil. To get a closer look on the dynamics between glyphosate and SOM, we used three approaches: I. Sorption studies with seven purified soil humic fractions showed that these could sorb glyphosate and that the aromatic content, possibly phenolic groups, seems to aid the sorption. II. Sorption studies with six whole soils and with SOM removed showed that several soil parameters including SOM are responsible for the strong sorption of glyphosate in soils. III. After an 80 day fate experiment, ∼40% of the added glyphosate was associated with the humic and fulvic acid fractions in the sandy soils, while this was the case for only ∼10% of the added glyphosate in the clayey soils. Glyphosate sorbed to humic substances in the natural soils seemed to be easier desorbed than glyphosate sorbed to amorphous Fe/Al-oxides. - Glyphosate was sorbed by purified humic substances and a significant amount of glyphosate was found to be associated with soil organic matter in whole soils.

  1. Relationships between soil properties and community structure of soil macroinvertebrates in oak-history forests along an acidic deposition gradient

    Energy Technology Data Exchange (ETDEWEB)

    Kuperman, R.G. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-02-01

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggest that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.

  2. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method

    Energy Technology Data Exchange (ETDEWEB)

    Ouhadi, V.R., E-mail: vahidouhadi@yahoo.ca [Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Yong, R.N. [RNY Geoenvironmental Research, North Saanich (Canada); Shariatmadari, N. [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Saeidijam, S.; Goodarzi, A.R.; Safari-Zanjani, M. [Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2010-01-15

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of 'calcite or carbonate' (CaCO{sub 3}) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.

  3. A "high severity" spruce beetle outbreak in Wyoming causes moderate-severity carbon cycle perturbations

    Science.gov (United States)

    Berryman, E.; Frank, J. M.; Speckman, H. N.; Bradford, J. B.; Ryan, M. G.; Massman, W. J.; Hawbaker, T. J.

    2017-12-01

    Bark beetle outbreaks in Western North American forests are often considered a high-severity disturbance from a carbon (C) cycling perspective, but field measurements that quantify impacts on C dynamics are very limited. Often, factors out of the researcher's control complicate the separation of beetle impacts from other drivers of C cycling variability and restrict statistical inference. Fortuitously, we had four years of pre-spruce beetle outbreak C cycle measurements in a subalpine forest in southeastern Wyoming (Glacier Lakes Ecosystem Experiments Site, or GLEES) and sustained intermittent monitoring for nearly a decade after the outbreak. Here, we synthesize published and unpublished pre- and post-outbreak measurements of key C cycle stocks and fluxes at GLEES. Multiple lines of evidence, including chamber measurements, eddy covariance measurements, and tracking of soil and forest floor C pools over time, point to the GLEES outbreak as a moderate-severity disturbance for C loss to the atmosphere, despite 70% to 80% of overstory tree death. Reductions in NEE were short-lived and the forest quickly returned to a carbon-neutral state, likely driven by an uptick in understory growth. Effect of mortality on the C cycle was asymmetrical, with a 50% reduction in net carbon uptake (NEE) two years into the outbreak, yet no measureable change in either ecosystem or growing season soil respiration. A small pulse in soil respiration occurred but was only detectable during the winter and amounted to < 10% of NEE. Possible reasons for the lack of measureable respiration response are discussed with emphasis on lessons learned for monitoring and modeling future outbreaks. We suggest a comprehensive assessment and definition of "moderate-severity" disturbances for Western forests and suggest that all tree mortality events may not be high-severity when it comes to C fluxes.

  4. Spatial soil information in South Africa: Situational analysis, limitations and challenges

    Directory of Open Access Journals (Sweden)

    Garry Paterson

    2015-05-01

    Full Text Available Soil information is vital for a range of purposes; however, soils vary greatly over short distances, making accurate soil data difficult to obtain. Soil surveys were first carried out in the 1920s, and the first national soil map was produced in 1940. Several regional studies were done in the 1960s, with the national Land Type Survey completed in 2002. Subsequently, the transfer of soil data to digital format has allowed a wide range of interpretations, but many data are still not freely available as they are held by a number of different bodies. The need for soil data is rapidly expanding to a range of fields, including health, food security, hydrological modelling and climate change. Fortunately, advances have been made in fields such as digital soil mapping, which enables the soil surveyors to address the need. The South African Soil Science fraternity will have to adapt to the changing environment in order to comply with the growing demands for data. At a recent Soil Information Workshop, soil scientists from government, academia and industry met to concentrate efforts in meeting the current and future soil data needs. The priorities identified included: interdisciplinary collaboration; expansion of the current national soil database with advanced data acquisition, manipulation, interpretation and countrywide dissemination facilities; and policy and human capital development in newly emerging soil science and environmental fields. It is hoped that soil information can play a critical role in the establishment of a national Natural Agricultural Information System.

  5. Effects of natural and synthetic soil conditioners on soil moisture ...

    African Journals Online (AJOL)

    The efficacy of a natural soil conditioner, Coco-Peat (C-P), and synthetic soil conditioners, Terawet (T-200) and Teraflow (T-F), in improving soil moisture content were examined on five Ghanaian soil series (Akroso, Akuse, Amo, Hake and Oyarifa). In general, the water retention of T-200 and C-P treated soils were similar ...

  6. Modelling soil anaerobiosis from water retention characteristics and soil respiration

    NARCIS (Netherlands)

    Schurgers, G.; Dörsch, P.; Bakken, L.; Leffelaar, P.A.; Egil Haugen, L.

    2006-01-01

    Oxygen is a prerequisite for some and an inhibitor to other microbial functions in soils, hence the temporal and spatial distribution of oxygen within the soil matrix is crucial in soil biogeochemistry and soil biology. Various attempts have been made to model the anaerobic fraction of the soil

  7. Treatment of severe tinnitus.

    Science.gov (United States)

    Laurikainen, E; Johansson, R; Akaan-Penttilä, E; Haapaniemi, J

    2000-01-01

    In 1995-96 we selected a group of 26 patients who were suffering from severe invalidating idiopathic tinnitus (IT) in order to evaluate the efficacy of rehabilitation and some alternative therapies. All patients were assessed thoroughly by means of audiology and radiology regarding any objective cause for the symptom. In order to help patients control their symptom by increasing knowledge and adding supportive elements, they were given basic education (presentations of the anatomy and physiology of the ear and hearing system, psychological and social aspects of IT, guided and non-guided group discussions, relaxation therapy, physiotherapy, music therapy) for 4 months, comprising one 2-h session bi-weekly. This type of group therapy was found to be extremely helpful, although no objective evaluation revealed effects on IT sensation (VAS) or psychometric measures (SLC-90). In a second limb of the study, the same patients attended a 6-day intensive course in a spa. The purpose was to evaluate the possible usefulness of the widely recommended alternative therapies for IT. All patients had an opportunity to sample the treatments. Six months later only a few had tried any of these treatments, but all reported that the lessons were the most helpful in association with supportive group discussions. The results indicated that none of these therapies can be recommended, based on rational medical practise.

  8. Long-term manure applications improve soil productivity and sustain high crop yield for acidic red soils

    Science.gov (United States)

    Intensive use of chemical nitrogen (N) fertilizers has resulted in severely reduced productivity of red soils (Ferralic Cambisol) due to accelerated acidification. Manure has been shown to be effective in improving soil productivity by preventing or reversing the acidification process, but little in...

  9. Advances in soil dynamics

    DEFF Research Database (Denmark)

    Advances in Soil Dynamics, Volume 3, represents the culmination of the work undertaken by the Advances in Soil Dynamics Monograph Committee, PM-45-01, about 15 years ago to summarize important developments in this field over the last 35 years. When this project was initiated, the main goal...... was to abridge major strides made in the general area of soil dynamics during the sixties, seventies, and eighties. However, by about the mid-nineties soil dynamics research in the US and much of the developed world had come to a virtual standstill. Although significant progress was made prior to the mid......-nineties, we still do not have a sound fundamental knowledge of soil-machine and soil-plant interactions. It is the hope of the editors that these three volumes will provide a ready reference for much needed future research in this area....

  10. Morbidity of severe obesity.

    Science.gov (United States)

    Kral, J G

    2001-10-01

    Although obesity is an easy diagnosis to make, its etiologies, pathophysiology, and symptomatology are extraordinarily complex. Progress in surgical technique and anesthesiological management has substantially improved the safety of performing operations on the severely obese in the last 20 years. These improvements have occurred more or less empirically, without a full understanding of etiology or pathophysiology, although this has advanced concomitantly with improvements in practice. This review has attempted to provide a framework to facilitate progress in the neglected areas of patient selection and choice of operation, in an effort to improve long-term outcome. Despite the disparate etiologies of obesity and its diverse comorbidities and complications, there are unifying interdependent pathogenetic mechanisms of great relevance to the practice of antiobesity surgery. The rate of eating, whether driven by HPA dysfunction, ambient stress, or related hereditary susceptibility factors including the increased energy demands of an expanded body fat mass, participates in a cycle that results in disordered satiety (see Fig. 3). This leads to substrate overload, causing extensive metabolic abnormalities such as atherogenesis, insulin resistance, thrombogenesis, and carcinogenesis. This interpretation of the pathophysiology of obesity ironically accords with the original meaning of the word obesity: "to overeat." The ultimate solution to the problem of obesity--preventing it--will not be forthcoming until the food industry is forced to lower production and change its marketing strategies, as the liquor and tobacco industries in the United States were compelled to do. This cannot occur until the large and fast-growing populations of industrialized nations become educated in the personal implications of the energy principle. Regardless of whether school curricula are modified to prioritize health education, the larger problems of cultural and economic change remain for

  11. Soil Health Management under Hill Agroecosystem of North East India

    Directory of Open Access Journals (Sweden)

    R. Saha

    2012-01-01

    Full Text Available The deterioration of soil quality/health is the combined result of soil fertility, biological degradation (decline of organic matter, biomass C, decrease in activity and diversity of soil fauna, increase in erodibility, acidity, and salinity, and exposure of compact subsoil of poor physicochemical properties. Northeast India is characterized by high soil acidity/Al+3 toxicity, heavy soil, and carbon loss, severe water scarcity during most parts of year though it is known as high rainfall area. The extent of soil and nutrient transfer, causing environmental degradation in North eastern India, has been estimated to be about 601 million tones of soil, and 685.8, 99.8, 511.1, 22.6, 14.0, 57.1, and 43.0 thousand tones of N, P, K, Mn, Zn, Ca, and Mg, respectively. Excessive deforestation coupled with shifting cultivation practices have resulted in tremendous soil loss (200 t/ha/yr, poor soil physical health in this region. Studies on soil erodibility characteristics under various land use systems in Northeastern Hill (NEH Region depicted that shifting cultivation had the highest erosion ratio (12.46 and soil loss (30.2–170.2 t/ha/yr, followed by conventional agriculture system (10.42 and 5.10–68.20 t/ha/yr, resp.. The challenge before us is to maintain equilibrium between resources and their use to have a stable ecosystem. Agroforestry systems like agri-horti-silvi-pastoral system performed better over shifting cultivation in terms of improvement in soil organic carbon; SOC (44.8%, mean weight diameter; MWD (29.4%, dispersion ratio (52.9%, soil loss (99.3%, soil erosion ratio (45.9%, and in-situ soil moisture conservation (20.6% under the high rainfall, moderate to steep slopes, and shallow soil depth conditions. Multipurpose trees (MPTs also played an important role on soil rejuvenation. Michelia oblonga is reported to be a better choice as bioameliorant for these soils as continuous leaf litter and root exudates improved soil physical

  12. Disposal of the radioactive contaminated soils from the NPP site

    International Nuclear Information System (INIS)

    Matusek, I.; Plsko, J.; Sajtlava, M.; Hulla, J.; Kovacs, T.

    2004-01-01

    Disposal of contaminated soils at site of NPP is one of the most important task within the frame of research and development tasks of the NPP decommissioning. The works within this field can be seen in several areas. Considered soil activity monitoring, observation of its geo-technical and geo-chemical parameters, volume balance, research of the radio nuclides behaviour in the soil and simulation of their influence on the surrounding environment with special emphasis on underground water, project studies and construction of the disposal facility for contaminated soils. This work presents overview of gained results in the mentioned areas of the research and development. (author)

  13. Soil-dithiocarbamate interactions

    International Nuclear Information System (INIS)

    Raghu, K.

    1980-01-01

    Soil is the ultimate repository of the pesticides applied for the control of plant pests and diseases. A variety of interactions like leaching, adsorption, chemical and microbial degradation etc take place between soil and pesticide. Results on work on two dialkyldithiocarbamates viz. thiram (tetramethylthiuram disulfide) and ziram (zinc dimethyldithiocarbamate) with respect to above interactions in soil are discussed and summarised. 35 S-labelled thiram and ziram were used in the studies. (author)

  14. Soil Management for Hardwood Production

    Science.gov (United States)

    W. M. Broadfoot; B. G. Blackmon; J. B. Baker

    1971-01-01

    Soil management is the key to successful hardwood management because soil properties are probably the most important determinants of forest productivity. Because of the lack of soil uniformity, however, many foresters have become frustrated with attempts to relate soil to satisfactory growth. Since soil scientists have been unable to predict site quality for trees in...

  15. Continuous measurements of H2 and CO deposition onto soil: a laboratory soil chamber experiment

    Science.gov (United States)

    Ghosh, P.; Eiler, J.; Smith, N. V.; Thrift-Viveros, D. L.

    2004-12-01

    Hydrogen uptake in soil is the largest single component of the global budget of atmospheric H2, and is the most important parameter for predicting changes in atmospheric concentration with future changing sources (anthropogenic and otherwise). The rate of hydrogen uptake rate by soil is highly uncertain [1]. As a component of the global budget, it is simply estimated as the difference among estimates for other recognized sources and sinks, assuming the atmosphere is presently in steady state. Previous field chamber experiments [2] show that H2 deposition velocity varies complexly with soil moisture level, and possibly with soil organic content and temperature. We present here results of controlled soil chamber experiments on 3 different soil blocks (each ~20 x ~20 x ~21 cm) with a controlled range of moisture contents. All three soils are arid to semi arid, fine grained, and have organic contents of 10-15%. A positive air pressure (slightly higher than atmospheric pressure) and constant temperature and relative humidity was maintained inside the 10.7 liter, leak-tight plexiglass chamber, and a stream of synthetic air with known H2 concentration was continuously bled into the chamber through a needle valve and mass flow meter. H2, CO and CO2 concentrations were continuously analyzed in the stream of gas exiting the chamber, using a TA 3000 automated Hg-HgO reduced gas analyzer and a LI-820 CO2 gas analyzer. Our experimental protocol involved waiting until concentrations of analyte gases in the exiting gas stream reached a steady state, and documenting how that steady state varied with various soil properties and the rate at which gases were delivered to the chamber. The rate constants for H2 and CO consumption in the chamber were measured at several soil moisture contents. The calculated deposition velocities of H2 and CO into the soil are positively correlated with steady-state concentrations, with slopes and curvatures that vary with soil type and moisture level

  16. Diversity and activity of denitrifiers of Chilean arid soil ecosystems

    Directory of Open Access Journals (Sweden)

    Julieta eOrlando

    2012-04-01

    Full Text Available The Chilean sclerophyllous matorral is a Mediterranean semiarid ecosystem affected by erosion, with low soil fertility and limited by nitrogen. However, limitation of resources is even more severe for desert soils such as from the Atacama Desert, one of the most extreme arid deserts on Earth. Topsoil organic matter, nitrogen and moisture content were significantly higher in the semiarid soil compared to the desert soil. Although the most significant loss of biologically preferred nitrogen from terrestrial ecosystems occurs via denitrification, virtually nothing is known on the activity and composition of denitrifier communities thriving in arid soils. In this study, we explored denitrifier communities from two soils with profoundly distinct edaphic factors. While denitrification activity in the desert soil was below detection limit, the semiarid soil sustained denitrification activity. To elucidate the genetic potential of the soils to sustain denitrification processes we performed community analysis of denitrifiers based on nitrite reductase (nirK and nirS genes as functional marker genes for this physiological group. Presence of nirK-type denitrifiers in both soils was demonstrated but failure to amplify nirS from the desert soil suggests very low abundance of nirS-type denitrifiers shedding light on the lack of denitrification activity. Phylogenetic analysis showed a very low diversity of nirK with only three distinct genotypes in the desert soil which conditions presumably exert a high selection pressure. While nirK diversity was also limited to only few, albeit distinct genotypes, the semiarid matorral soil showed a surprisingly broad genetic variability of the nirS gene. The Chilean matorral is a shrub land plant community which form vegetational patches stabilizing the soil and increasing its nitrogen and carbon content. These islands of fertility may sustain the development and activity of the overall microbial community and of

  17. Diversity and activity of denitrifiers of chilean arid soil ecosystems.

    Science.gov (United States)

    Orlando, Julieta; Carú, Margarita; Pommerenke, Bianca; Braker, Gesche

    2012-01-01

    The Chilean sclerophyllous matorral is a Mediterranean semiarid ecosystem affected by erosion, with low soil fertility, and limited by nitrogen. However, limitation of resources is even more severe for desert soils such as from the Atacama Desert, one of the most extreme arid deserts on Earth. Topsoil organic matter, nitrogen and moisture content were significantly higher in the semiarid soil compared to the desert soil. Although the most significant loss of biologically preferred nitrogen from terrestrial ecosystems occurs via denitrification, virtually nothing is known on the activity and composition of denitrifier communities thriving in arid soils. In this study we explored denitrifier communities from two soils with profoundly distinct edaphic factors. While denitrification activity in the desert soil was below detection limit, the semiarid soil sustained denitrification activity. To elucidate the genetic potential of the soils to sustain denitrification processes we performed community analysis of denitrifiers based on nitrite reductase (nirK and nirS) genes as functional marker genes for this physiological group. Presence of nirK-type denitrifiers in both soils was demonstrated but failure to amplify nirS from the desert soil suggests very low abundance of nirS-type denitrifiers shedding light on the lack of denitrification activity. Phylogenetic analysis showed a very low diversity of nirK with only three distinct genotypes in the desert soil which conditions presumably exert a high selection pressure. While nirK diversity was also limited to only few, albeit distinct genotypes, the semiarid matorral soil showed a surprisingly broad genetic variability of the nirS gene. The Chilean matorral is a shrub land plant community which form vegetational patches stabilizing the soil and increasing its nitrogen and carbon content. These islands of fertility may sustain the development and activity of the overall microbial community and of denitrifiers in particular.

  18. Evaluating the new soil erosion map of Hungary

    Science.gov (United States)

    Waltner, István; Centeri, Csaba; Takács, Katalin; Pirkó, Béla; Koós, Sándor; László, Péter; Pásztor, László

    2017-04-01

    With growing concerns on the effects of climate change and land use practices on our soil resources, soil erosion by water is becoming a significant issue internationally. Since the 1964 publication of the first soil erosion map of Hungary, there have been several attempts to provide a countrywide assessment of erosion susceptibility. However, there has been no up-to-date map produced in the last decade. In 2016, a new, 1:100 000 scale soil erosion map was published, based on available soil, elevation, land use and meteorological data for the extremely wet year of 2010. The map utilized combined outputs for two spatially explicit methods: the widely used empirical Universal Soil Loss Equation (USLE) and the process-based Pan-European Soil Erosion Risk Assessment (PESERA) models. The present study aims to provide a detailed analysis of the model results. In lieu of available national monitoring data, information from other sources were used. The Soil Degradation Subsystem (TDR) of the National Environmental Information System (OKIR) is a digital database based on a soil survey and farm dairy data collected from representative farms in Hungary. During the survey all kind of degradation forms - including soil erosion - were considered. Agricultural and demographic data was obtained from the Hungarian Central Statistical Office (KSH). Data from an interview-based survey was also used in an attempt to assess public awareness of soil erosion risks. Point-based evaluation of the model results was complemented with cross-regional assessment of soil erosion estimates. This, combined with available demographic information provides us with an opportunity to address soil erosion on a community level, with the identification of regions with the highest risk of being affected by soil erosion.

  19. Soil manganese enrichment from industrial inputs: a gastropod perspective.

    Directory of Open Access Journals (Sweden)

    Despina-Maria Bordean

    Full Text Available Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems.

  20. Earthworms and Soil Pollutants

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Tamae

    2011-11-01

    Full Text Available Although the toxicity of metal contaminated soils has been assessed with various bioassays, more information is needed about the biochemical responses, which may help to elucidate the mechanisms involved in metal toxicity. We previously reported that the earthworm, Eisenia fetida, accumulates cadmium in its seminal vesicles. The bio-accumulative ability of earthworms is well known, and thus the earthworm could be a useful living organism for the bio-monitoring of soil pollution. In this short review, we describe recent studies concerning the relationship between earthworms and soil pollutants, and discuss the possibility of using the earthworm as a bio-monitoring organism for soil pollution.

  1. Radioisotopes in soil science

    International Nuclear Information System (INIS)

    Kotur, S.C.

    2004-01-01

    Soils form a thin veneer of the Earth that sustain the entire flora and fauna of the terra firma. To that extent the soil as a natural resource is very precious and needs to be managed in a sustainable manner. The fate of degradation of pesticides in soil and build-up of heavy metals in the overall biosafety scenario is also studied gainfully using radioisotopes. Radioisotopes are a very potent tool in the hands of the Soil Scientists, perhaps, the most important among the peaceful applications in service of the mankind

  2. Microbiological soil regeneration

    International Nuclear Information System (INIS)

    Behrens, D.; Wiesner, J.

    1992-01-01

    The Interdiciplinary Task Force ''Environmental Biotechnology - Soil'' of DECHEMA aims to pool the knowledge potential of the Dechema study committees on environmental biotechnology and soil protection with a view to the advancement of microbiological soil decontamination techniques. This conference volume on the 9th expert meeting of Dechema on environmental protection subjects entitled ''Microbiological Soil Regeneration'', held on February 27th and 28th, 1991, and the subsequent compilation of results give an intermediate account of the ongoing work of the Dechema Task Force. (orig.) [de

  3. Soil physics and agriculture

    International Nuclear Information System (INIS)

    Dourado Neto, Durval; Reichardt, K.; Sparovek, G.

    2004-01-01

    The approach that integrates knowledge is very important in Agriculture, including farmers, extensionists, researchers and professors. The specialists, including the soil physicists, must have a global view of the crop production system. Therefore, their expertise can be useful for the society. The Essence of scientific knowledge is its practical application. The soil physics is a sub area of Agronomy. There are many examples of this specific subject related to Agriculture. This paper will focus, in general, the following cases: (i) erosion, environmental pollution and human health, (ii) plant population and distribution, soil fertility, evapo-transpiration and soil water flux density, and (iii) productivity, effective root depth, water deficit and yield

  4. Electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Hansen, Lene

    1997-01-01

    It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective......It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective...

  5. Soil erosion and deposition before and after fire in oak savannas

    Science.gov (United States)

    Peter F. Ffolliott; Gerald J. Gottfried; Hui Chen; Aaron T. Kauffman; Cody L. Stropki; Daniel G. Neary

    2013-01-01

    Effects of low severity prescribed burning treatments and a wildfire on soil erosion and deposition in the oak savannas in the Southwestern Borderlands are reported. Measurements in the spring and fall, respectively, characterize soil movements following winter rains and high-intensity summer rainstorms. Annual values are also presented. Relationships between soil...

  6. Nitrate and dissolved organic carbon mobilization in response to soil freezing variability

    Science.gov (United States)

    Colin B. Fuss; Charles T. Driscoll; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer; Jorge Durán; Jennifer L. Morse

    2016-01-01

    Reduced snowpack and associated increases in soil freezing severity resulting from winter climate change have the potential to disrupt carbon (C) and nitrogen (N) cycling in soils. We used a natural winter climate gradient based on elevation and aspect in a northern hardwood forest to examine the effects of variability in soil freezing depth, duration, and frequency on...

  7. RISK ASSESSMENT AND REMEDIATION OF SOILS CONTAMINATED BY MINING AND SMELTING OF LEAD, ZINC AND CADMIUM

    Science.gov (United States)

    Mining nd smelting of Pb, Zn and Cd ores have caused widespread soil contamination in many countries. In locations with severe soil contamination, and strongly acidic soil or mine waste, ecosystems are devastated. Research has shown that An phytotoxicity, Pb-induced phosphate def...

  8. Phosphorus forms in soils of Oban Hills, Akamkpa, Cross River State ...

    African Journals Online (AJOL)

    Oban Hills is located at Akamkpa in the Southern Senatorial District of Cross River, State, Nigeria. Phosphorus (P)-rich soil from the Hills is expected to have an effect on retention and distribution in the highly acidic soils surrounding the area inundated for several years. Phosphorus forms in the soils of the Hills varied with ...

  9. Extraction of Pentachlorophenol from Soils using Environmentally Benign Lactic Acid Solutions

    Science.gov (United States)

    Soil contamination with pentachlorophenol (PCP) is widespread across the globe. Soil washing/extraction is a common technique to remove this compound. Several soil washing/extraction solutions have been used but a majority of them have the problem of persistence in the environmen...

  10. Hierarchical saturation of soil carbon pools near a natural CO2 spring

    NARCIS (Netherlands)

    Kool, D.M.; Chung, H.; Tate, K.R.; Ross, D.J.; Newton, P.C.D.; Six, J.

    2007-01-01

    Soil has been identified as a possible carbon (C) sink to mitigate increasing atmospheric CO2 concentration. However, several recent studies have suggested that the potential of soil to sequester C is limited and that soil may become saturated with C under increasing CO2 levels. To test this concept

  11. Social and economic factors for adoption of soil and water conservation in West Usambara highlands, Tanzania

    NARCIS (Netherlands)

    Tenge, A.J.M.; Graaff, de J.; Hella, J.P.

    2004-01-01

    Accelerated soil erosion is one of the major constraints to agricultural production in many parts of the Tanzanian highlands. Although several soil and water conservation technologies have been developed and promoted, the adoption of many recommended measures is minimal and soil erosion continues to

  12. Sorghum-cowpea intercropping : an effective technique against runoff and soil erosion in the Sahel

    NARCIS (Netherlands)

    Zougmore, R.; Kambou, F.N.; Ouattara, K.; Guillobez, S.

    2000-01-01

    In the Central Plateau of Burkina Faso, runoff on bare soil amounts to 40␘f annual rainfall and soil losses reach 4 to 8 Mg ha-? a-?, despite slopes of under 3ÐSeveral studies have shown that mulching the soil surface can reduce runoff by over 60ÐHowever, the scarcity of straw and the

  13. Soils Newsletter, Vol. 32, No. 1, July 2009

    International Nuclear Information System (INIS)

    2009-07-01

    In this Newsletter, one will see several developments in the Soil and Water Management and Crop Nutrition Section Subprogramme which provide information and technical support to Member States in the areas of land and water management for sustainable agriculture

  14. Pre-study Tierp. Soils, rocks and deformation zones

    International Nuclear Information System (INIS)

    Bergman, T.; Johansson, Rune; Linden, A.H.; Rudmark, L.; Stephens, M.; Isaksson, Hans; Lindroos, H.

    1999-12-01

    Soil and geology of the Tierp area is described, as well as the Baltic area Loevstabukten. It is found that several areas might be of interest for further investigations as potential sites for a Swedish repository for spent fuels

  15. Computer Aided Design for Soil Classification Relational Database ...

    African Journals Online (AJOL)

    unique firstlady

    engineering, several developers were asked what rules they applied to identify ... classification is actually a part of all good science. As Michalski ... by a large number of soil scientists. .... and use. The calculus relational database processing is.

  16. Soil microbial activities and its relationship with soil chemical ...

    African Journals Online (AJOL)

    The fields assessed are organically managed Soils (OMS), Inorganically Managed Soils (IMS) and an Uncultivated Land having grass coverage (ULS). Soil Microbial Respiration (SMR), Microbial Biomass Carbon (MBC), Microbial Biomass Nitrogen (MBN) and Microbial Biomass Phosphorus (MBP) were analyzed.

  17. Soil Survey Geographic (SSURGO) - Kinds and Distribution of Soils

    Data.gov (United States)

    California Natural Resource Agency — This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The...

  18. Soil surface roughness decay in contrasting climates, tillage types and management systems

    Science.gov (United States)

    Vidal Vázquez, Eva; Bertol, Ildegardis; Tondello Barbosa, Fabricio; Paz-Ferreiro, Jorge

    2014-05-01

    Soil surface roughness describes the variations in the elevation of the soil surface. Such variations define the soil surface microrelief, which is characterized by a high spatial variability. Soil surface roughness is a property affecting many processes such as depression storage, infiltration, sediment generation, storage and transport and runoff routing. Therefore the soil surface microrelief is a key element in hydrology and soil erosion processes at different spatial scales as for example at the plot, field or catchment scale. In agricultural land soil surface roughness is mainly created by tillage operations, which promote to different extent the formation of microdepressions and microelevations and increase infiltration and temporal retention of water. The decay of soil surface roughness has been demonstrated to be mainly driven by rain height and rain intensity, and to depend also on runoff, aggregate stability, soil reface porosity and soil surface density. Soil roughness formation and decay may be also influenced by antecedent soil moisture (either before tillage or rain), quantity and type of plant residues over the soil surface and soil composition. Characterization of the rate and intensity of soil surface roughness decay provides valuable information about the degradation of the upper most soil surface layer before soil erosion has been initiated or at the very beginning of soil runoff and erosion processes. We analyzed the rate of decay of soil surface roughness from several experiments conducted in two regions under temperate and subtropical climate and with contrasting land use systems. The data sets studied were obtained both under natural and simulated rainfall for various soil tillage and management types. Soil surface roughness decay was characterized bay several parameters, including classic and single parameters such as the random roughness or the tortuosity and parameters based on advanced geostatistical methods or on the fractal theory. Our

  19. Status of soil acidification in North America

    Science.gov (United States)

    M. E. Fenn; T. G. Huntington; S. B. McLaughlin; C. Eagar; A. Gomez; R. B. Cook

    2006-01-01

    Forest soil acidification and depletion of nutrient cations have been reported for several forested regions in North America, predominantly in the eastern United States, including the northeast and in the central Appalachians, but also in parts of southeastern Canada and the southern U.S. Continuing regional inputs of nitrogen and sulfur are of concern because of...

  20. Soil architecture and distribution of organic matter

    NARCIS (Netherlands)

    Kooistra, M.J.; Noordwijk, van M.

    1996-01-01

    The biological component of soil structure varies greatly in quality and quantity, occurs on different scales, and varies throughout the year. It is far less predictable than the physical part and human impact. The occurrence and distribution of organic matter depends on several processes, related

  1. Structural equation modelling for digital soil mapping

    NARCIS (Netherlands)

    Angelini, Marcos E.

    2018-01-01

    Climate change and land degradation are of increasing societal and governmental concern. For this reason, several international programs have been initiated in the last decade, such as the 4 per 1000 initiative and the Sustainable Development Goals of United Nations. The soil science community is

  2. An Establishment of Rainfall-induced Soil Erosion Index for the Slope Land in Watershed

    Science.gov (United States)

    Tsai, Kuang-Jung; Chen, Yie-Ruey; Hsieh, Shun-Chieh; Shu, Chia-Chun; Chen, Ying-Hui

    2014-05-01

    With more and more concentrated extreme rainfall events as a result of climate change, in Taiwan, mass cover soil erosion occurred frequently and led to sediment related disasters in high intensity precipiton region during typhoons or torrential rain storms. These disasters cause a severely lost to the property, public construction and even the casualty of the resident in the affected areas. Therefore, we collected soil losses by using field investigation data from the upstream of watershed where near speific rivers to explore the soil erosion caused by heavy rainfall under different natural environment. Soil losses induced by rainfall and runoff were obtained from the long-term soil depth measurement of erosion plots, which were established in the field, used to estimate the total volume of soil erosion. Furthermore, the soil erosion index was obtained by referring to natural environment of erosion test plots and the Universal Soil Loss Equation (USLE). All data collected from field were used to compare with the one obtained from laboratory test recommended by the Technical Regulation for Soil and Water Conservation in Taiwan. With MATLAB as a modeling platform, evaluation model for soil erodibility factors was obtained by golden section search method, considering factors contributing to the soil erosion; such as degree of slope, soil texture, slope aspect, the distance far away from water system, topography elevation, and normalized difference vegetation index (NDVI). The distribution map of soil erosion index was developed by this project and used to estimate the rainfall-induced soil losses from erosion plots have been established in the study area since 2008. All results indicated that soil erodibility increases with accumulated rainfall amount regardless of soil characteristics measured in the field. Under the same accumulated rainfall amount, the volume of soil erosion also increases with the degree of slope and soil permeability, but decreases with the

  3. Human induced impacts on soil organic carbon in southwest Iceland

    Science.gov (United States)

    Gísladóttir, Guðrún; Erlendsson, Egill; Lal, Rattan

    2013-04-01

    The Icelandic environment has been strongly influenced by natural processes during the Holocene. Since settlement in AD 874, the introduction of grazing animals and other land use has drastically affected the natural environment. This includes the diminishing of vegetative cover, which has led to soil exposure and accelerated erosion over large areas, especially when in conjunction with harsh climate. This has specifically impacted processes and properties of volcanic soils (Andosols), which are subject to accelerated erosion by wind and water. While approximately 46% of the land surface in Iceland has sustained continuous vegetation cover, large areas have lost some or all of their soil cover formed during the postglacial era. Elsewhere, remaining soils have sparse or no vegetation cover, thus impairing soil carbon (C) sequestration. Among their multifunctional roles, soils support plant growth, increase soil biotic activity, enhance nutrient storage and strengthen the cycling of water and nutrients. In contrast, soil degradation by accelerated erosion and other processes impairs soil quality, reduces soil structure and depletes the soil organic matter (SOM) pool. Depletion of the SOM pool has also global implications because the terrestrial C pool is the third largest pool and strongly impacts the global C cycle. Erosional-depositional processes may deplete soil organic C (SOC) by erosion and increase by deposition. Some SOC-enriched sediments are redistributed over the landscape, while others are deposited in depression sites and transported into aquatic ecosystems. SOC decomposition processes are severely constrained in some environmental settings and any SOC buried under anaerobic conditions is protected against decomposition. Yet, the impact of the SOC transported by erosional processes and redistributed over the landscape is not fully understood because the variability in its turnover characteristics has not been widely studied. Thus, the fate of C

  4. SOIL DEGRADATION PROCESSES FROM POLLUTION

    Directory of Open Access Journals (Sweden)

    Popov Leonid

    2012-06-01

    Full Text Available Investigations found HCH and DDT residuals in bottom sediments from several reservoirs and lakes as well as the main rivers, Nistru and Prut (concentrations ranged between 0.2 and 15.8 ppb. The concentration of PCBs in the topsoil collected beneath the capacitors battery at the Vulcănesti substation reached a level of 7100 ppm which is exceeding the MAC by five orders of magnitude (!. With no exception, allowable concentrations of PCBs in soil were exceeded also on the territory of other investigated substations, with peaks registered at the Briceni substation (2545 ppm and the Orhei substation (1959 ppm.

  5. Antimony bioavailability in mine soils

    International Nuclear Information System (INIS)

    Flynn, Helen C.; Meharg, Andy A.; Bowyer, Phillipa K.; Paton, Graeme I.

    2003-01-01

    Antimony has low bioavailability in mining and smelting contaminated soils and bacterial biosensors are not suitable for its detection. - Five British former mining and smelting sites were investigated and found to have levels of total Sb of up to 700 mg kg -1 , indicating high levels of contamination which could be potentially harmful. However, this level of Sb was found to be biologically unavailable over a wide range of pH values, indicating that Sb is relatively unreactive and immobile in the surface layers of the soil, remaining where it is deposited rather than leaching into lower horizons and contaminating ground water. Sb, sparingly soluble in water, was unavailable to the bacterial biosensors tested. The bioluminescence responses were correlated to levels of co-contaminants such as arsenic and copper, rather than to Sb concentrations. This suggests that soil contamination by Sb due to mining and smelting operations is not a severe risk to the environment or human health provided that it is present as immobile species and contaminated sites are not used for purposes which increase the threat of exposure to identified receptors. Co-contaminants such as arsenic and copper are more bioavailable and may therefore be seen as a more significant risk

  6. Characterization of Soil Organic Matter from African Dark Earth (AfDE) Soils

    Science.gov (United States)

    Plante, A. F.; Fujiu, M.; Ohno, T.; Solomon, D.; Lehmann, J.; Fraser, J. A.; Leach, M.; Fairhead, J.

    2014-12-01

    Anthropogenic Dark Earths are soils generated through long-term human inputs of organic and pyrogenic materials. These soils were originally discovered in the Amazon, and have since been found in Australia and in this case in Africa. While tropical soils are typically characterized by low soil organic matter (SOM) concentrations, African Dark Earths (AfDE) are black, highly fertile and carbon-rich soils formed through an extant but ancient soil management system. The objective of this study was to characterize the organic matter accumulated in AfDE and contrast it with non-AfDE soils. Characterization of bulk soil organic matter of several (n=11) AfDE and non-AfDE pairs of surface (0-15 cm) soils using thermal analysis techniques (TG-DSC-EGA) resulted in substantial differences in SOM composition and the presence of pyrogenic C. Such pyrogenic organic matter is generally considered recalcitrant, but the fertility gains in AfDE are generated by labile, more rapidly cycling pools of SOM. As a result, we characterized hot water- and pyrophosphate-extractable pools of SOM using fluorescence (EEM/PARAFAC) and high resolution mass spectrometry (FT-ICR-MS). EEM/PARAFAC data suggests that AfDE samples had a greater fraction of their DOM that was more humic-like than the paired non-AfDE samples. Similarly, FT-ICR-MS analyses of extracts suggest that differences among the sites analyzed were larger than between the paired AfDE and non-AfDE extracts. Overall, in spite of substantial differences in the composition of bulk SOM, the extractable fractions appear to be relatively similar between the AfDE and non-AfDE soils.

  7. Changes in soil temperature during prescribed burns impact local arthropod communities

    Science.gov (United States)

    Verble-Pearson, Robin; Perry, Gad

    2016-04-01

    As wildfires increase in severity and intensity globally, the development of methods to assess their effects on soils is of increasing importance. We examined soil arthropod communities in the southern United States and estimated their abundance, species richness, and composition in areas recently impacted by prescribed burns. In addition, we placed thermal probes in soils and correlated soil temperatures to arthropod responses. Longer fire residence times resulted in greater soil heating which resulted in decreases in arthropod abundance and species richness and shifts in species composition. We believe that these results may be useful in developing tools to assess fire effects on soil systems.

  8. Study of 222Rn variations in the soil air

    International Nuclear Information System (INIS)

    Holy, K.; Boehm, R.; Matos, M.; Polaskova, A.; Hola, O.

    1998-01-01

    A significant source of radon in the indoor atmosphere is represented by 222 Rn in the soil air, ie., by the fraction of radon atoms produced by alpha decay of 226 Ra in soil grains that escaped into soil pores. In the paper the results are presented of a three year monitoring of radon in soil air, using a 125 ml Lucas type scintillation cell. Radon concentration depth profiles in the soil in various seasons of the year were also measured, and saturated concentration of radon in soil air was found at a depth of about 2 m. Monthly variations in the radon concentration were observed over several months and the possible causes of the variations are discussed. Daily courses of radon concentration were also measured and the results are presented. (A.K.)

  9. Biodegradation of carbofuran in pretreated and non-pretreated soils

    International Nuclear Information System (INIS)

    Camper, N.D.; Fleming, M.M.; Skipper, H.D.

    1987-01-01

    Carbofuran (2,2-dihydro-2,2-dimethyl-7-benzofuranylmethyl-carbamate) is a broad spectrum insecticide which is effective against soil insects in corn, rice, sugar cane, peanuts, cotton and pests on potatoes. Decreased effectiveness of insect control in soils treated with carbofuran was observed after soils had been treated for a number of years. Loss of efficacy was not related to insect resistance or soil leaching. Irreversible adsorption was not involved; however, the carbofuran levels in the soil were lower than expected. Repeated applications of carbofuran increased the rate of degradation. The objective of these experiments was to study the potential of enhanced 14 C-carbofuran degradation in two South Carolina soils which had been treated for several successive years. The degree of degradation and type of degradation products were also determined

  10. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles

    Directory of Open Access Journals (Sweden)

    Maaike evan Agtmaal

    2015-07-01

    Full Text Available There is increasing evidence that microbial volatiles (VOCs play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil microbial community composition would affect the production by soils of VOCs suppressing the plant-pathogenic oomycete Pythium. Using pyrosequencing of 16S ribosomal gene fragments we compared the composition of bacterial communities in sandy soils that had been exposed to anaerobic disinfestation (AD, a treatment used to kill harmful soil organisms, with the composition in untreated soils. Three months after the AD treatment had been finished, there was still a clear legacy effect of the former anaerobic stress on bacterial community composition with a strong increase in relative abundance of the phylum Bacteroidetes and a significant decrease of the phyla Acidobacteria, Planctomycetes, Nitrospirae, Chloroflexi and Chlorobi. This change in bacterial community composition coincided with loss of production of Pythium suppressing soil volatiles (VOCs and of suppression of Pythium impacts on Hyacinth root development. One year later, the composition of the bacterial community in the AD soils was reflecting that of the untreated soils. In addition, both production of Pythium-suppressing VOCs and suppression of Pythium in Hyacinth bioassays had returned to the levels of the untreated soil. GC/MS analysis identified several VOCs, among which compounds known to be antifungal, that were produced in the untreated soils but not in the AD soils. These compounds were again produced 15 months after the AD treatment. Our data indicate that soils exposed to a drastic stress can temporarily lose pathogen suppressive characteristics and that both loss and return of these suppressive characteristics coincides with shifts in the soil bacterial community composition. Our data are

  11. Soil radiological characterisation and remediation at CIEMAT

    International Nuclear Information System (INIS)

    Correa, Cristina; Garcia Tapias, Esther; Leganes, Jose

    2012-01-01

    Located in Madrid, CIEMAT is the Spanish Centre for Energy-Related, Environmental and Technological Research. It used to have more than 60 facilities in operation that allowed a wide range of activities in the nuclear field and in the application of ionising radiations. At present, the centre includes several facilities; some of them are now obsolete, shut down and in dismantling phases. In 2000 CIEMAT started the 'Integrated plan for the improvement of CIEMAT facilities (PIMIC)', which includes activities for the decontamination, dismantling, rehabilitation of obsolete installations and soil remediation activities. A small contaminated area named with the Spanish word 'Lenteja' (Lentil), has had to be remediate and restored. In the 70's, an incidental leakage of radioactive liquid occurred during a transference operation from the Reprocessing Plant to the Liquid Treatment Installation, and contaminated about 1000 m 3 of soil. Remediation activities in this area started with an exhaustive radiological characterisation of the soil, including surface samples and up to 16 meters boreholes, and the development of a comprehensive radiological characterization methodology for pre-classification of materials. Once the framework was defined the following tasks were being carried out: preparation of the area, soil extraction activities and final radiological characterisation for release purposes. Next step will be the refilling of the resulting hole from the removal soil activities. This paper will describe the soil radiological characterization and remediation activities at the Lentil Zone in Ciemat Research Centre. (authors)

  12. Ecotoxicogenomic assessment of diclofenac toxicity in soil

    International Nuclear Information System (INIS)

    Chen, Guangquan; Braver, Michiel W. den; Gestel, Cornelis A.M. van; Straalen, Nico M. van; Roelofs, Dick

    2015-01-01

    Diclofenac is widely used as nonsteroidal anti-inflammatory drug leaving residues in the environment. To investigate effects on terrestrial ecosystems, we measured dissipation rate in soil and investigated ecotoxicological and transcriptome-wide responses in Folsomia candida. Exposure for 4 weeks to diclofenac reduced both survival and reproduction of F. candida in a dose-dependent manner. At concentrations ≥200 mg/kg soil diclofenac remained stable in the soil during a 21-day incubation period. Microarrays examined transcriptional changes at low and high diclofenac exposure concentrations. The results indicated that development and growth were severely hampered and immunity-related genes, mainly directed against bacteria and fungi, were significantly up-regulated. Furthermore, neural metabolic processes were significantly affected only at the high concentration. We conclude that diclofenac is toxic to non-target soil invertebrates, although its mode of action is different from the mammalian toxicity. The genetic markers proposed in this study may be promising early markers for diclofenac ecotoxicity. - Highlights: • Diclofenac is toxic to the non-target soil invertebrate Folsomia candida. • Diclofenac mainly caused mortality and thus only indirectly affected reproduction. • Diclofenac mode of action in F. candida was checked with gene expression profiling. • Diclofenac significantly affected development, growth and immune related processes. • Diclofenac nervous system activity in F. candida was different from that in mammals. - Diclofenac is toxic to non-target soil invertebrates with a mode of action clearly different from mammalian toxicity

  13. Comparison of absolute biochemical parameters of undisturbed soils in Mediterranean environments (NE Spain) with corresponding parameters relative to soil organic carbon

    OpenAIRE

    Jiménez de Ridder, Patrícia; Marando, Graciela; Josa March, Ramon; Ginovart Gisbert, Marta; Ras Sabido, Antoni; Bonmati Pont, Manuel

    2017-01-01

    The study of soil quality requires the establishment of quality standards. To this end, several authors have highlighted the need to create databases of quality indicators, such as biochemical properties, for different types of undisturbed soils under various climates and to establish standardised methodologies for their development. In Spain, studies of the quality of native soils were initiated > 15 years ago by several groups of authors from differing locations, but little is known regardi...

  14. Mechanical impedance of soil crusts and water content in loamy soils

    Science.gov (United States)

    Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa

    2013-04-01

    Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows

  15. Soil treatment engineering

    Science.gov (United States)

    Ivica, Kisic; Zeljka, Zgorelec; Aleksandra, Percin

    2017-10-01

    Soil is loose skin of the Earth, located between the lithosphere and atmosphere, which originated from parent material under the influence of pedogenetic processes. As a conditionally renewable natural resource, soil has a decisive influence on sustainable development of global economy, especially on sustainable agriculture and environmental protection. In recent decades, a growing interest prevails for non-production soil functions, primarily those relating to environmental protection. It especially refers to protection of natural resources whose quality depends directly on soil and soil management. Soil contamination is one of the most dangerous forms of soil degradation with the consequences that are reflected in virtually the entire biosphere, primarily at heterotrophic organisms, and also at mankind as a food consumer. Contamination is correlated with the degree of industrialization and intensity of agrochemical usage. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The negative effects caused by pollution are undeniable: reduced agricultural productivity, polluted water sources and raw materials for food are only a few of the effects of soil degradation, while almost all human diseases (excluding AIDS) may be partly related to the transport of contaminants, in the food chain or the air, to the final recipients - people, plants and animals. The remediation of contaminated soil is a relatively new scientific field which is strongly developing in the last 30 years and becoming a more important subject. In order to achieve quality remediation of contaminated soil it is very important to conduct an inventory as accurately as possible, that is, to determine the current state of soil contamination.

  16. Potential factors affecting accumulation of unsupported 210Pb in soil

    International Nuclear Information System (INIS)

    Mihailović, Aleksandra; Vučinić Vasić, Milica; Todorović, Nataša; Hansman, Jan; Vasin, Jovica; Krmar, Miodrag

    2014-01-01

    Airborne 210 Pb, daughter of 222 Rn, is frequently used as a tracer in different studies concerning atmospheric transport, sedimentation, soil erosion, dating, etc. Concentration of 210 Pb was measured in 40 soil samples collected in urban and industrial areas in order to get evidence of possible influence of some factors on accumulation of airborne 210 Pb in soil. Different soil properties such as the content of organic matter, free CaCO 3 , and available phosphorus (P 2 O 5 ) were measured to explore their possible correlation with the amount of 210 Pb. Special attention was given to the correlation between 210 Pb and stable lead accumulated in the soil. Several samples were taken near a battery manufacturer to check if extremely high concentrations of lead can affect the uptake of the airborne 210 Pb in soil. Soil samples were also taken at different depths to investigate the penetration of lead through the soil. - Highlights: • 210 Pb and 137 Cs were measured in samples of urban soil. • Organic matter, free CaCO 3 content, available phosphorus, and lead were measured in soil samples. • There is no statistically significant correlation between 210 Pb and lead, CaCO 3 and phosphorus. • A strong positive correlation between 210 Pb and organic matter was observed

  17. Can ash clog soil pores?

    Science.gov (United States)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands

  18. Assessing soil ecotoxicity of methyl tert-butyl ether using earthworm bioassay; closed soil microcosm test for volatile organic compounds

    International Nuclear Information System (INIS)

    An, Youn-Joo

    2005-01-01

    An earthworm bioassay was conducted to assess ecotoxicity in methyl tert-butyl ether (MTBE)-amended soils. Ecotoxicity of MTBE to earthworms was evaluated by a paper contact method, natural field soil test, and an OECD artificial soil test. All tests were conducted in closed systems to prevent volatilization of MTBE out of test units. Test earthworm species were Perionyx excavatus and Eisenia andrei. Mortality and abnormal morphology of earthworms exposed to different concentrations of MTBE were examined. MTBE was toxic to both earthworm species and the severity of response increased with increasing MTBE concentrations. Perionyx excavatus was more sensitive to MTBE than Eisenia andrei in filter papers and two different types of soils. MTBE toxicity was more severe in OECD artificial soils than in field soils, possibly due to the burrowing behavior of earthworms into artificial soils. The present study demonstrated that ecotoxicity of volatile organic compounds such as MTBE can be assessed using an earthworm bioassay in closed soil microcosm with short-term exposure duration. - Earthworm bioassay can be a good protocol to assess soil ecotoxicity of volatile organic compounds such as MTBE

  19. A Simple Model of the Variability of Soil Depths

    Directory of Open Access Journals (Sweden)

    Fang Yu

    2017-06-01

    Full Text Available Soil depth tends to vary from a few centimeters to several meters, depending on many natural and environmental factors. We hypothesize that the cumulative effect of these factors on soil depth, which is chiefly dependent on the process of biogeochemical weathering, is particularly affected by soil porewater (i.e., solute transport and infiltration from the land surface. Taking into account evidence for a non-Gaussian distribution of rock weathering rates, we propose a simple mathematical model to describe the relationship between soil depth and infiltration flux. The model was tested using several areas in mostly semi-arid climate zones. The application of this model demonstrates the use of fundamental principles of physics to quantify the coupled effects of the five principal soil-forming factors of Dokuchaev.

  20. Soil/Rock Properties Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Soil/Rock Properties LaboratoryLocation: Spokane SiteThe Soil/Rock Properties Laboratory is contained in the soils bay, a 4,700 sq. ft. facility that provides space...

  1. Construction of an Yucatec Maya soil classification and comparison with the WRB framework

    Directory of Open Access Journals (Sweden)

    Zinck J Alfred

    2010-02-01

    Full Text Available Abstract Background Mayas living in southeast Mexico have used soils for millennia and provide thus a good example for understanding soil-culture relationships and for exploring the ways indigenous people name and classify the soils of their territory. This paper shows an attempt to organize the Maya soil knowledge into a soil classification scheme and compares the latter with the World Reference Base for Soil Resources (WRB. Methods Several participative soil surveys were carried out in the period 2000-2009 with the help of bilingual Maya-Spanish-speaking farmers. A multilingual soil database was built with 315 soil profile descriptions. Results On the basis of the diagnostic soil properties and the soil nomenclature used by Maya farmers, a soil classification scheme with a hierarchic, dichotomous and open structure was constructed, organized in groups and qualifiers in a fashion similar to that of the WRB system. Maya soil properties were used at the same categorical levels as similar diagnostic properties are used in the WRB system. Conclusions The Maya soil classification (MSC is a natural system based on key properties, such as relief position, rock types, size and quantity of stones, color of topsoil and subsoil, depth, water dynamics, and plant-supporting processes. The MSC addresses the soil properties of surficial and subsurficial horizons, and uses plant communities as qualifier in some cases. The MSC is more accurate than the WRB for classifying Leptosols.

  2. Construction of an Yucatec Maya soil classification and comparison with the WRB framework.

    Science.gov (United States)

    Bautista, Francisco; Zinck, J Alfred

    2010-02-13

    Mayas living in southeast Mexico have used soils for millennia and provide thus a good example for understanding soil-culture relationships and for exploring the ways indigenous people name and classify the soils of their territory. This paper shows an attempt to organize the Maya soil knowledge into a soil classification scheme and compares the latter with the World Reference Base for Soil Resources (WRB). Several participative soil surveys were carried out in the period 2000-2009 with the help of bilingual Maya-Spanish-speaking farmers. A multilingual soil database was built with 315 soil profile descriptions. On the basis of the diagnostic soil properties and the soil nomenclature used by Maya farmers, a soil classification scheme with a hierarchic, dichotomous and open structure was constructed, organized in groups and qualifiers in a fashion similar to that of the WRB system. Maya soil properties were used at the same categorical levels as similar diagnostic properties are used in the WRB system. The Maya soil classification (MSC) is a natural system based on key properties, such as relief position, rock types, size and quantity of stones, color of topsoil and subsoil, depth, water dynamics, and plant-supporting processes. The MSC addresses the soil properties of surficial and subsurficial horizons, and uses plant communities as qualifier in some cases. The MSC is more accurate than the WRB for classifying Leptosols.

  3. Misrepresentation of hydro-erosional processes in rainfall simulations using disturbed soil samples

    Science.gov (United States)

    Thomaz, Edivaldo L.; Pereira, Adalberto A.

    2017-06-01

    Interrill erosion is a primary soil erosion process which consists of soil detachment by raindrop impact and particle transport by shallow flow. Interill erosion affects other soil erosion sub-processes, e.g., water infiltration, sealing, crusting, and rill initiation. Interrill erosion has been widely studied in laboratories, and the use of a sieved soil, i.e., disturbed soil, has become a standard method in laboratory experiments. The aims of our study are to evaluate the hydro-erosional response of undisturbed and disturbed soils in a laboratory experiment, and to quantify the extent to which hydraulic variables change during a rainstorm. We used a splash pan of 0.3 m width, 0.45 m length, and 0.1 m depth. A rainfall simulation of 58 mm h- 1 lasting for 30 min was conducted on seven replicates of undisturbed and disturbed soils. During the experiment, several hydro-physical parameters were measured, including splashed sediment, mean particle size, runoff, water infiltration, and soil moisture. We conclude that use of disturbed soil samples results in overestimation of interrill processes. Of the nine assessed parameters, four displayed greater responses in the undisturbed soil: infiltration, topsoil shear strength, mean particle size of eroded particles, and soil moisture. In the disturbed soil, five assessed parameters displayed greater responses: wash sediment, final runoff coefficient, runoff, splash, and sediment yield. Therefore, contextual soil properties are most suitable for understanding soil erosion, as well as for defining soil erodibility.

  4. Soil Oxidation-Reduction in Wetlands and Its Impact on Plant Functioning

    Science.gov (United States)

    Pezeshki, S. R.; DeLaune, R. D.

    2012-01-01

    Soil flooding in wetlands is accompanied by changes in soil physical and chemical characteristics. These changes include the lowering of soil redox potential (Eh) leading to increasing demand for oxygen within the soil profile as well as production of soil phytotoxins that are by-products of soil reduction and thus, imposing potentially severe stress on plant roots. Various methods are utilized for quantifying plant responses to reducing soil conditions that include measurement of radial oxygen transport, plant enzymatic responses, and assessment of anatomical/morphological changes. However, the chemical properties and reducing nature of soil environment in which plant roots are grown, including oxygen demand, and other associated processes that occur in wetland soils, pose a challenge to evaluation and comparison of plant responses that are reported in the literature. This review emphasizes soil-plant interactions in wetlands, drawing attention to the importance of quantifying the intensity and capacity of soil reduction for proper evaluation of wetland plant responses, particularly at the process and whole-plant levels. Furthermore, while root oxygen-deficiency may partially account for plant stress responses, the importance of soil phytotoxins, produced as by-products of low soil Eh conditions, is discussed and the need for development of methods to allow differentiation of plant responses to reduced or anaerobic soil conditions vs. soil phytotoxins is emphasized. PMID:24832223

  5. Estimating soil zinc concentrations using reflectance spectroscopy

    Science.gov (United States)

    Sun, Weichao; Zhang, Xia

    2017-06-01

    Soil contamination by heavy metals has been an increasingly severe threat to nature environment and human health. Efficiently investigation of contamination status is essential to soil protection and remediation. Visible and near-infrared reflectance spectroscopy (VNIRS) has been regarded as an alternative for monitoring soil contamination by heavy metals. Generally, the entire VNIR spectral bands are employed to estimate heavy metal concentration, which lacks interpretability and requires much calculation. In this study, 74 soil samples were collected from Hunan Province, China and their reflectance spectra were used to estimate zinc (Zn) concentration in soil. Organic matter and clay minerals have strong adsorption for Zn in soil. Spectral bands associated with organic matter and clay minerals were used for estimation with genetic algorithm based partial least square regression (GA-PLSR). The entire VNIR spectral bands, the bands associated with organic matter and the bands associated with clay minerals were incorporated as comparisons. Root mean square error of prediction, residual prediction deviation, and coefficient of determination (R2) for the model developed using combined bands of organic matter and clay minerals were 329.65 mg kg-1, 1.96 and 0.73, which is better than 341.88 mg kg-1, 1.89 and 0.71 for the entire VNIR spectral bands, 492.65 mg kg-1, 1.31 and 0.40 for the organic matter, and 430.26 mg kg-1, 1.50 and 0.54 for the clay minerals. Additionally, in consideration of atmospheric water vapor absorption in field spectra measurement, combined bands of organic matter and absorption around 2200 nm were used for estimation and achieved high prediction accuracy with R2 reached 0.640. The results indicate huge potential of soil reflectance spectroscopy in estimating Zn concentrations in soil.

  6. Functional soil microbial diversity across Europe estimated by EEA, MicroResp and BIOLOG

    DEFF Research Database (Denmark)

    Winding, Anne; Rutgers, Michiel; Creamer, Rachel

    consisting of 81 soil samples covering five Biogeograhical Zones and three land-uses in order to test the sensitivity, ease and cost of performance and biological significance of the data output. The techniques vary in how close they are to in situ functions; dependency on growth during incubation......Soil microorganisms are abundant and essential for the bio-geochemical processes of soil, soil quality and soil ecosystem services. All this is dependent on the actual functions the microbial communities are performing in the soil. Measuring soil respiration has for many years been the basis...... of estimating soil microbial activity. However, today several techniques are in use for determining microbial functional diversity and assessing soil biodiversity: Methods based on CO2 development by the microbes such as substrate induced respiration (SIR) on specific substrates have lead to the development...

  7. A Brief History of the use of Electromagnetic Induction Techniques in Soil Survey

    Science.gov (United States)

    Brevik, Eric C.; Doolittle, James

    2017-04-01

    Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools and increased the amount and types of data that can be gathered with a single pass. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales. The future should witness a greater use of multiple-frequency and multiple-coil EMI sensors and integration with other sensors to assess the spatial variability of soil properties. Data analysis

  8. Interactive effects of soil acidity and fluoride on soil solution aluminium chemistry and barley (Hordeum vulgare L.) root growth

    International Nuclear Information System (INIS)

    Manoharan, V.; Loganathan, P.; Tillman, R.W.; Parfitt, R.L.

    2007-01-01

    A greenhouse study was conducted to determine if concentrations of fluoride (F), which would be added to acid soils via P fertilisers, were detrimental to barley root growth. Increasing rates of F additions to soil significantly increased the soil solution concentrations of aluminium (Al) and F irrespective of the initial adjusted soil pH, which ranged from 4.25 to 5.48. High rates of F addition severely restricted root growth; the effect was more pronounced in the strongly acidic soil. Speciation calculations demonstrated that increasing rates of F additions substantially increased the concentrations of Al-F complexes in the soil. Stepwise regression analysis showed that it was the combination of the activities of AlF 2 1+ and AlF 2+ complexes that primarily controlled barley root growth. The results suggested that continuous input of F to soils, and increased soil acidification, may become an F risk issue in the future. - Addition of high rates of fluoride to strongly acidic soils can reduce barley root growth due to the toxicity of aluminium-fluoride complexes formed in soil solution

  9. Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders

    Directory of Open Access Journals (Sweden)

    Guo-Chun eDing

    2012-08-01

    Full Text Available Considering their key role for ecosystem processes, it is important to understand the response of microbial communities in unpolluted soils to pollution with polycyclic aromatic hydrocarbons (PAH. Phenanthrene, a model compound for PAH, was spiked to a Cambisol and a Luvisol soil. Total community DNA from phenanthrene-spiked and control soils collected on days 0, 21 and 63 were analyzed based on PCR-amplified 16S rRNA genefragments. Denaturing gradient gel electrophoresis (DGGE fingerprints of bacterial communities increasingly deviated with time between spiked and control soils. In taxon specific DGGE, significant responses of Alphaproteobacteria and Actinobacteria became only detectable after 63 days, while significant effects on Betaproteobacteria were detectable in both soils after 21 days. Comparison of the taxonomic distribution of bacteria in spiked and control soils on day 63 as revealed by pyrosequencing indicated soil type specific negative effects of phenanthrene on several taxa, many of them belonging to the Gamma-, Beta- or Deltaproteobacteria. Bacterial richness and evenness decreased in spiked soils. Despite the significant differences in the bacterial community structure between both soils on day 0, similar genera increased in relative abundance after PAH spiking, especially Sphingomonas and Polaromonas. However, this did not result in an increased overall similarity of the bacterial communities in both soils.

  10. Soil-wood interactions

    NARCIS (Netherlands)

    Wal, van der Annemieke; klein Gunnewiek, Paulien; Boer, de Wietse

    2017-01-01

    Wood-inhabiting fungi may affect soil fungal communities directly underneath decaying wood via their exploratory hyphae. In addition, differences in wood leachates between decaying tree species may influence soil fungal communities. We determined the composition of fungi in 4-yr old decaying logs

  11. Soil and vegetation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  12. Soils, peatlands, and biomonitoring

    Science.gov (United States)

    James Doolittle

    2009-01-01

    Soils are three-dimensional (3D) natural bodies conSlStmg of unconsolidated mineral and organic materials that form a continuous blanket over most of the earth's land sUlface. At all sca les of measurements, soils are exceedingly complex and variable in biological, chemical, physical, mineralogical, and electromagnetic properties....

  13. Scour in cohesive soils

    Science.gov (United States)

    2015-05-01

    This study of scour in cohesive soils had two objectives. The first was to introduce and demonstrate a new ex situ erosion testing device (ESTD) that can mimic the near-bed flow of open channels to erode cohesive soils within a specified range of she...

  14. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In

  15. The Global Soil Partnership

    Science.gov (United States)

    Montanarella, Luca

    2015-07-01

    The Global Soil Partnership (GSP) has been established, following an intensive preparatory work of the Food and Agriculture Organization of the United Nations (FAO) in collaboration with the European Commission (EC), as a voluntary partnership coordinated by the FAO in September 2011 [1]. The GSP is open to all interested stakeholders: Governments (FAO Member States), Universities, Research Organizations, Civil Society Organizations, Industry and private companies. It is a voluntary partnership aiming towards providing a platform for active engagement in sustainable soil management and soil protection at all scales: local, national, regional and global. As a “coalition of the willing” towards soil protection, it attempts to make progress in reversing soil degradation with those partners that have a genuine will of protecting soils for our future generations. It openly aims towards creating an enabling environment, despite the resistance of a minority of national governments, for effective soil protection in the large majority of the countries that are genuinely concerned about the rapid depletion of their limited soil resources.

  16. Complex conductivity of soils

    NARCIS (Netherlands)

    Revil, A.; Coperey, A.; Shao, Z.; Florsch, N.; Fabricus, I.L.; Deng, Y.; Delsman, J.R.; Pauw, P.S.; Karaoulis, M.; Louw, P.G.B. de; Baaren, E.S. van; Dabekaussen, W.; Menkovic, A.; Gunnink, J.L.

    2017-01-01

    The complex conductivity of soils remains poorly known despite the growing importance of this method in hydrogeophysics. In order to fill this gap of knowledge, we investigate the complex conductivity of 71 soils samples (including four peat samples) and one clean sand in the frequency range 0.1 Hz

  17. Soil Health Educational Resources

    Science.gov (United States)

    Hoorman, James J.

    2015-01-01

    Soil health and cover crops are topics of interest to farmers, gardeners, and students. Three soil health and cover crop demonstrations provide educational resources. Demonstrations one outlines two educational cover crop seed displays, including the advantages and disadvantages. Demonstration two shows how to construct and grow a cover crop root…

  18. The soil life cycle

    NARCIS (Netherlands)

    Leeuwen, van J.P.

    2016-01-01

    Soil is one of the most important natural resource for life on Earth and provides important ecosystem services, such as food production, carbon sequestration, water regulation and contaminant attenuation. Soil quality, defined as the soil’s ability to provide these services, is drastically

  19. Creative Soil Conservation

    Science.gov (United States)

    Smith, Martha

    2010-01-01

    Take plant lessons outdoors with this engaging and inquiry-based activity in which third-grade students learn how to apply soil conservation methods to growing plants. They also collect data and draw conclusions about the effectiveness of their method of soil conservation. An added benefit to this activity is that the third-grade students played…

  20. An overview of the measurements of soil moisture and modeling of moisture flux in FIFE

    Science.gov (United States)

    Wang, J. R.

    1992-01-01

    Measurements of soil moisture and calculations of moisture transfer in the soil medium and at the air-soil interface were performed over a 15-km by 15-km test site during FIFE in 1987 and 1989. The measurements included intensive soil moisture sampling at the ground level and surveys at aircraft altitudes by several passive and active microwave sensors as well as a gamma radiation device.

  1. Exploration of Hydrocarbon Degrading Bacteria on Soils Contaminated by Crude Oil From South Sumatera

    OpenAIRE

    Napoleon, A; Probowati, D S

    2014-01-01

    The goal of this research was to explore hydrocarbon degrading bacteria on crude oil contaminated soil with potential to degrade hydrocarbon in oil pollutant. The research started by early August 2013 till January 2014. Soil sampling for this research was taken on several places with contaminated soil location such as Benakat, Rimau, and Pengabuan all of it located in South Sumatera. Conclusion from this research Isolates obtained from three (3) sites of contaminated soil and treated using SB...

  2. Microbial Population Dynamics Associated with Crude-Oil Biodegradation in Diverse Soils

    OpenAIRE

    Hamamura, Natsuko; Olson, Sarah H.; Ward, David M.; Inskeep, William P.

    2006-01-01

    Soil bacterial population dynamics were examined in several crude-oil-contaminated soils to identify those organisms associated with alkane degradation and to assess patterns in microbial response across disparate soils. Seven soil types obtained from six geographically distinct areas of the United States (Arizona, Oregon, Indiana, Virginia, Oklahoma, and Montana) were used in controlled contamination experiments containing 2% (wt/wt) crude oil spiked with [1-14C]hexadecane. Microbial populat...

  3. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil

    International Nuclear Information System (INIS)

    Bengtsson, Goeran; Toerneman, Niklas; Yang Xiuhong

    2010-01-01

    Hotspots and coldspots of concentration and biodegradation of polycyclic aromatic hydrocarbons (PAHs) marginally overlapped at the 0.5-100 m scale in a creosote contaminated soil in southern Sweden, suggesting that concentration and biodegradation had little spatial co-variation. Biodegradation was substantial and its spatial variability considerable and highly irregular, but it had no spatial autocorrelation. The soil concentration of PAHs explained only 20-30% of the variance of their biodegradation. Soil respiration was spatially autocorrelated. The spatial uncoupling between biodegradation and soil respiration seemed to be governed by the aging of PAHs in the soil, since biodegradation of added 13 C phenanthrene covaried with both soil respiration and microbial biomass. The latter two were also correlated with high concentrations of phospholipid fatty acids (PLFAs) that are common in gram-negative bacteria. However, several of the hotspots of biodegradation coincided with hotspots for the distribution of a PLFA indicative of fungal biomass. - Hotspots of PAH biodegradation in a creosote contaminated soil do not coincide with hotspots of PAH concentration, microbial biomass and respiration.

  4. Variation of Desert Soil Hydraulic Properties with Pedogenic Maturity

    Science.gov (United States)

    Nimmo, J. R.; Perkins, K. S.; Mirus, B. B.; Schmidt, K. M.; Miller, D. M.; Stock, J. D.; Singha, K.

    2006-12-01

    Older alluvial desert soils exhibit greater pedogenic maturity, having more distinct desert pavements, vesicular (Av) horizons, and more pronounced stratification from processes such as illuviation and salt accumulation. These and related effects strongly influence the soil hydraulic properties. Older soils have been observed to have lower saturated hydraulic conductivity, and possibly greater capacity to retain water, but the quantitative effect of specific pedogenic features on the soil water retention or unsaturated hydraulic conductivity (K) curves is poorly known. With field infiltration/redistribution experiments on three different-aged soils developed within alluvial wash deposits in the Mojave National Preserve, we evaluated effective hydraulic properties over a scale of several m horizontally and to 1.5 m depth. We then correlated these properties with pedogenic features. The selected soils are (1) recently deposited sediments, (2) a soil of early Holocene age, and (3) a highly developed soil of late Pleistocene age. In each experiment we ponded water in a 1-m-diameter infiltration ring for 2.3 hr. For several weeks we monitored subsurface water content and matric pressure using surface electrical resistance imaging, dielectric-constant probes, heat-dissipation probes, and tensiometers. Analysis of these data using an inverse modeling technique gives the water retention and K properties needed for predictive modeling. Some properties show a consistent trend with soil age. Progressively more developed surface and near-surface features such as desert pavement and Av horizons are the likely cause of an observed consistent decline of infiltration capacity with soil age. Other properties, such as vertical flow retardation by layer contrasts, appear to have a more complicated soil-age dependence. The wash deposits display distinct depositional layering that has a retarding effect on vertical flow, an effect that may be less pronounced in the older Holocene soil

  5. Radioiodine in soils

    International Nuclear Information System (INIS)

    Szabova, T.

    1981-01-01

    Behaviour was studied of radioiodine in different soil subtypes sampled in the vicinity of the A-1 nuclear power plant at Jaslovske Bohunice. Radioiodine sorption is mainly affected by the amount of humus and by the clay fraction of soil. The highest sorption was recorded for meadow chernozem and the lowest for rendzina soils. At the same pH, soils with a higher level of organic matter adsorb more radioiodine. Upon applying radioiodate in soil samples, reduction to iodide takes place. Under the action of anions, radioiodine sorption decreases, the effect decreasing as follows: H 2 PO 4 - >SO 2- >Cl - >NO 3 - . The highest desorption was caused by 0.1 N NaOH solution. (author)

  6. Climate-smart soils

    Science.gov (United States)

    Paustian, Keith; Lehmann, Johannes; Ogle, Stephen; Reay, David; Robertson, G. Philip; Smith, Pete

    2016-04-01

    Soils are integral to the function of all terrestrial ecosystems and to food and fibre production. An overlooked aspect of soils is their potential to mitigate greenhouse gas emissions. Although proven practices exist, the implementation of soil-based greenhouse gas mitigation activities are at an early stage and accurately quantifying emissions and reductions remains a substantial challenge. Emerging research and information technology developments provide the potential for a broader inclusion of soils in greenhouse gas policies. Here we highlight ‘state of the art’ soil greenhouse gas research, summarize mitigation practices and potentials, identify gaps in data and understanding and suggest ways to close such gaps through new research, technology and collaboration.

  7. Electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Karlsmose, Bodil; Ottosen, Lisbeth M.; Hansen, Lene

    1999-01-01

    The paper gives an overview of how heavy metals can be found in the soil and the theory of electrodialytic remediation. Basically electrodialytic remediation works by passing electric current through the soil, and the heavy metals in ionic form will carry some of the current. Ion-exchange membranes...... prevents the protons and the hydroxides ions from the electrode processes to enter the soil. The heavy metals are collected in a concentration compartment, which is separated from the soil by ion-exchange membranes. Examples from remediation experiments are shown, and it is demonstrated that it is possible...... to remediate soil polluted with heavy metals be this method. When adding desorbing agents or complexing agents, chosing the right current density, electrolyte and membranes, the proces can be optimised for a given remediation situation. Also electroosmosis is influencing the system, and if extra water...

  8. Managing soil natural capital

    DEFF Research Database (Denmark)

    Cong, Ronggang; Termansen, Mette; Brady, Mark

    2017-01-01

    Farmers are exposed to substantial weather and market related risks. Rational farmers seek to avoid large losses. Future climate change and energy price fluctuations therefore make adaptating to increased risks particularly important for them. Managing soil natural capital—the capacity of the soil...... to generate ecosystem services of benefit to farmers—has been proven to generate the double dividend: increasing farm profit and reducing associated risk. In this paper we explore whether managing soil natural capital has a third dividend: reducing the downside risk (increasing the positive skewness of profit......). This we refer to as the prudence effect which can be viewed as an adaptation strategy for dealing with future uncertainties through more prudent management of soil natural capital. We do this by developing a dynamic stochastic portfolio model to optimize the stock of soil natural capital—as indicated...

  9. The Changing Model of Soil

    Science.gov (United States)

    Richter, D. D.; Yaalon, D.

    2012-12-01

    The contemporary genetic model of soil is changing rapidly in response to advances in soil science and to human and environmental forcings in the 21st century (Richter and Yaalon, 2012). Three ongoing changes in the model of soil include that: (1) lower soil boundaries are much deeper than the solum, historically the O to B horizons, (2) most soils are polygenetic paleosols, products of soil-forming processes that have ranged widely over soils' lifetimes, and (3) soils are globally human-natural bodies, no longer natural bodies. Together, these changes in the model of soil mean that human forcings are a global wave of soil polygenesis altering fluxes of matter and energy and transforming soil thermodynamics as potentially very deep systems. Because soils are non-linear systems resulting from high-order interactions of physics, chemistry, and biology, trajectories of how human forcings alter soils over decades are not readily predictable and require long-term soil observations. There is much to learn about how soils are changing internally as central components of management systems and externally in relation to wider environments. To be critical, research has been remarkably superficial in studies of soil, reductionist in approach, and lacking in time-series observations of responses to soil management. While this criticism may sound negative, it creates significant opportunities for contemporary soil scientists.

  10. Cultural Patterns of Soil Understanding

    Science.gov (United States)

    Patzel, Nikola; Feller, Christian

    2017-04-01

    Living soil supports all terrestrial ecosystems. The only global threat to earth's soils comes from human societies' land use and resource consuming activities. Soil perception and understanding by soil scientists are mainly drawn from biophysical parameters and found within Cartesian rationality, and not, or much less consciously from its rather intangible cultural dimension. But nevertheless, human soil perception, soil awareness, and soil relation are a cultural phenomenon, too. Aiming at soil awareness and education, it is of first order importance for the soil science community and the IUSS to study, discuss and communicate also about the cultural perceptions and representations of soil. For any society, cultural patterns in their relation to soil encompass: (i) General culturally underlying structures like (religious or 'secular') myths and belief systems. (ii) The personal, individual relation to/with and behaviour towards soil. This includes implicit concepts of soil being part integral concepts of landscape because the large majority of humans don't see soil as a distinct object. This communication would be to make evident: (i) the importance of cultural patterns and psychic/psychological background concerning soil, by case studies and overviews on different cultural areas, (ii) the necessity to develop reflections on this topic as well to communicate about soil with large public, as to raise awareness soil scientists to the cultural dimension of soils. A working group was recently founded at IUSS (Division 4) on this topic.

  11. Relaxometry in soil science

    Science.gov (United States)

    Schaumann, G. E.; Jaeger, F.; Bayer, J. V.

    2009-04-01

    NMR relaxometry is a sensitive, informative and promising method to study pore size distribution in soils as well as many kinds of soil physicochemical processes, among which are wetting, swelling or changes in the macromolecular status. Further, it is a very helpful method to study interactions between molecules in soil organic matter and it can serve to study the state of binding of water or organic chemicals to soil organic matter. The method of Relaxometry excite the nuclei of interest and their relaxation kinetics are observed. The relaxation time is the time constant of this first order relaxation process. Most applications of relaxometry concentrate on protons, addressing water molecules or H-containing organic molecules. In this context, 1H-NMR relaxometry may be used as an analysis method to determine water uptake characteristics of soils, thus gaining information about water distribution and mobility as well as pore size distribution in wet and moist samples. Additionally, it can also serve as a tool to study mobility of molecular segments in biopolymers. Principally, relaxometry is not restricted to protons. In soil science, relaxometry is also applied using deuterium, xenon and other nuclei to study pore size distribution and interactions. The relaxation time depends on numerous parameters like surface relaxivity, diffusion and interactions between nuclei as well as between nuclei and the environment. One- and two-dimensional methods address the relation between relaxation time and diffusion coefficients and can give information about the interconnectivity of pores. More specific information can be gained using field cycling techniques. Although proton NMR relaxometry is a very promising method in soil science, it has been applied scarcely up to now. It was used to assess changes in molecular rigidity of humic substances. A very recent study shows the potential of NMR relaxometry to assess the pore size distribution of soils in a fast and non

  12. Soil 137Cs background values in monsoon region of china

    International Nuclear Information System (INIS)

    Zhang Mingli; Yang Hao; Wang Xiaolei; Wang Yihong; Xu Congan; Yang Jiudong; Rong Jing

    2009-01-01

    Land degradation,, which is resulted from the soil erosion, is one of the major environmental problems. It severely affects the food supplies, environmental safety and the sustainable development in China. Some areas in the monsoon region are suffering from the acute soil erosion. To find out the degree of soil erosion, the proven technique of 137 Cs tracer is definitely one of the best methods, and the key is to ascertain the accuracy of soil 137 Cs background value. The distributions of 137 Cs were explored in soil profiles by detecting the 137 Cs of soil cores from the Yimeng mountain area in Shandong Province, hills in the southern area of Jiangsu Province and Dianchi catchment in Yunnan Province, respectively. We found that the depth of 137 Cs distribution is not the same in the soils of various areas. But the 137 Cs activity shows an exponential distribution in the uncultivated soil and demonstrates a strong correlation with the soil depth, while the 137 Cs activity proves uniform in the soil plowing layer of the cultivated land. The study shows the 137 Cs background values of three areas: 1737.1 Bq/m 2 in Yimeng mountain area, 1847.6 Bq/m 2 in southern area of hills in Jiangsu, 918.0 Bq/m 2 in Dianchi catchment. The certainty of 137 Cs background value can technically support the use of 137 Cs technique to study the spatial pattern of soil erosion, deposition and the land degradation, which provides the support for the sustainable utilization of soil resource, the assessment of economical benefit and loss and the evaluation of water and soil conservation measures. (authors)

  13. Evaluation of soil damping techniques used in soil structure interaction analysis of a nuclear power plant

    International Nuclear Information System (INIS)

    Nelson, T.A.

    1982-01-01

    A prediction of dynamic soil properties at the site of a nuclear power plant plays a very important role in the seismic analysis of the facility. Conventional modal analysis procedures can accommodate virtually any range of equivalent elastic soil stiffness which is used to characterize the site. However, high radiation damping associated with energy dissipation in the soil half-space is difficult to accommodate in an elastic modal solution to the dynamic problem. Several methods are available to combine the soil damping with the structural damping in a composite modal damping coefficient. However, even with this convenient representation, the resulting large fractions of critical damping can make modal solutions to the problems suspect. This paper is based on experience gained in this area during studies performed for the Nuclear Regulatory Commission involving seismic analyses of power plants

  14. Relating soil microbial activity to water content and tillage-induced differences in soil structure

    DEFF Research Database (Denmark)

    Schjønning, Per; Thomsen, Ingrid Kaag; Petersen, Søren O

    2011-01-01

    Several studies have identified optima in soil water content for aerobic microbial activity, and this has been ascribed to a balance between gas and solute diffusivity as limiting processes. We investigated the role of soil structure, as created by different tillage practices (moldboard ploughing......, MP, or shallow tillage, ST), in regulating net nitrification, applied here as an index of aerobic microbial activity. Intact soil cores were collected at 0–4 and 14–18 cm depth from a fine sandy (SAND) and a loamy (LOAM) soil. The cores were drained to one of seven matric potentials ranging from − 15...... content to a maximum and then decreased. This relationship was modelled with a second order polynomium. Model parameters did not show any tillage effect on the optimum water content, but the optimum coincided with a lower matric potential in ST (SAND: − 140 to –197 hPa; LOAM: − 37 to − 65 hPa) than in MP...

  15. 3D Structure of Tillage Soils

    Science.gov (United States)

    González-Torre, Iván; Losada, Juan Carlos; Falconer, Ruth; Hapca, Simona; Tarquis, Ana M.

    2015-04-01

    Soil structure may be defined as the spatial arrangement of soil particles, aggregates and pores. The geometry of each one of these elements, as well as their spatial arrangement, has a great influence on the transport of fluids and solutes through the soil. Fractal/Multifractal methods have been increasingly applied to quantify soil structure thanks to the advances in computer technology (Tarquis et al., 2003). There is no doubt that computed tomography (CT) has provided an alternative for observing intact soil structure. These CT techniques reduce the physical impact to sampling, providing three-dimensional (3D) information and allowing rapid scanning to study sample dynamics in near real-time (Houston et al., 2013a). However, several authors have dedicated attention to the appropriate pore-solid CT threshold (Elliot and Heck, 2007; Houston et al., 2013b) and the better method to estimate the multifractal parameters (Grau et al., 2006; Tarquis et al., 2009). The aim of the present study is to evaluate the effect of the algorithm applied in the multifractal method (box counting and box gliding) and the cube size on the calculation of generalized fractal dimensions (Dq) in grey images without applying any threshold. To this end, soil samples were extracted from different areas plowed with three tools (moldboard, chissel and plow). Soil samples for each of the tillage treatment were packed into polypropylene cylinders of 8 cm diameter and 10 cm high. These were imaged using an mSIMCT at 155keV and 25 mA. An aluminium filter (0.25 mm) was applied to reduce beam hardening and later several corrections where applied during reconstruction. References Elliot, T.R. and Heck, R.J. 2007. A comparison of 2D and 3D thresholding of CT imagery. Can. J. Soil Sci., 87(4), 405-412. Grau, J, Médez, V.; Tarquis, A.M., Saa, A. and Díaz, M.C.. 2006. Comparison of gliding box and box-counting methods in soil image analysis. Geoderma, 134, 349-359. González-Torres, Iván. Theory and

  16. The behavior of P in tropical soils

    International Nuclear Information System (INIS)

    Bittencourt, V.C.; Zambello Junior, E.

    1975-06-01

    The experimental data showed that the whole P retention process depends on the levels and the reactivities of the iron oxides in the soils. It was established that the retention mechanism occurs in 2 or 3 stages and it is related to both the maximum adsorption and the absorbent capacity of the several soils as determined by the Langmuir and the Freundlich equations respectively. The final step of the P interaction which shows small rate constants is due to a diffusion of the phosphate ions from the oxide surface to the internal layers producing more stable iron-phosphate compounds

  17. Processes regulating nitric oxide emissions from soils

    DEFF Research Database (Denmark)

    Pilegaard, Kim

    2013-01-01

    , the net result is complex and dependent on several factors such as nitrogen availability, organic matter content, oxygen status, soil moisture, pH and temperature. This paper reviews recent knowledge on processes forming NO in soils and the factors controlling its emission to the atmosphere. Schemes......Nitric oxide (NO) is a reactive gas that plays an important role in atmospheric chemistry by influencing the production and destruction of ozone and thereby the oxidizing capacity of the atmosphere. NO also contributes by its oxidation products to the formation of acid rain. The major sources...

  18. Severity parameters for steam cracking

    NARCIS (Netherlands)

    Golombok, M.; Bijl, J.L.M.; Kornegoor, M.

    2001-01-01

    There are several ways to measure severity in steam cracking which are all a function of residence time, temperature, and pressure. Many measures of severity are not practicable for experimental purposes. Our experimental study shows that methane make is the best measure of severity because it is an

  19. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists ?

    OpenAIRE

    Bottinelli, N.; Jouquet, Pascal; Capowiez, Y.; Podwojewski, Pascal; Grimaldi, Michel; Peng, X.

    2015-01-01

    These last twenty years have seen the development of an abundant literature on the influence of soil macrofauna on soil structure. Amongst these organisms, earthworms, termites and ants are considered to play a key role in regulating the physical, chemical and microbiological properties of soils. Due to these influential impacts, soil ecologists consider these soil macro-invertebrates as ‘soil engineers’ and their diversity and abundance are nowadays considered as relevant bioindi...

  20. The role of soil in NBT applications to landmine detection problem

    International Nuclear Information System (INIS)

    Obhodas, Jasmina; Sudac, Davorin; Nad, Karlo; Valkovic, Vlado; Nebbia, Giancarlo; Viesti, Giuseppe

    2003-01-01

    Long-term observations of soil water content as well as determination of physical and chemical properties of different types of soils in Croatia were made in order to provide the necessary background information for landmine explosive detection. Soil water content is the key attribute of soil as a background in neutron backscattering technique (NBT) landmine detection application. If the critical value of the soil water content is reached, the detection of landmine explosives is not possible. It is recommended that soil moisture content for NBT application does not exceed 0.1 kg.kg-1 [1]. Nineteen representative samples of different soil types from different parts of Croatia were collected in order to establish soil bank with the necessary physical and chemical properties determined for each type of soil. In addition soil water content was measured on daily and weekly basis on several locations in Croatia. This procedure also included daily soil moisture measurements in the test field made of different types of soils from several locations in Croatia. This was done in order to evaluate the behavior of different types of soils under the same weather conditions

  1. PRINCIPAL COMPONENT ANALYSIS OF FACTORS DETERMINING PHOSPHATE ROCK DISSOLUTION ON ACID SOILS

    Directory of Open Access Journals (Sweden)

    Yusdar Hilman

    2016-10-01

    Full Text Available Many of the agricultural soils in Indonesia are acidic and low in both total and available phosphorus which severely limits their potential for crops production. These problems can be corrected by application of chemical fertilizers. However, these fertilizers are expensive, and cheaper alternatives such as phosphate rock (PR have been considered. Several soil factors may influence the dissolution of PR in soils, including both chemical and physical properties. The study aimed to identify PR dissolution factors and evaluate their relative magnitude. The experiment was conducted in Soil Chemical Laboratory, Universiti Putra Malaysia and Indonesian Center for Agricultural Land Resources Research and Development from January to April 2002. The principal component analysis (PCA was used to characterize acid soils in an incubation system into a number of factors that may affect PR dissolution. Three major factors selected were soil texture, soil acidity, and fertilization. Using the scores of individual factors as independent variables, stepwise regression analysis was performed to derive a PR dissolution function. The factors influencing PR dissolution in order of importance were soil texture, soil acidity, then fertilization. Soil texture factors including clay content and organic C, and soil acidity factor such as P retention capacity interacted positively with P dissolution and promoted PR dissolution effectively. Soil texture factors, such as sand and silt content, soil acidity factors such as pH, and exchangeable Ca decreased PR dissolution.

  2. [Dynamic observation, simulation and application of soil CO2 concentration: a review].

    Science.gov (United States)

    Sheng, Hao; Luo, Sha; Zhou, Ping; Li, Teng-Yi; Wang, Juan; Li, Jie

    2012-10-01

    Soil CO2 concentration is the consequences of biological activities in above- and below-ground, and its fluctuation may significantly affect the future atmospheric CO2 concentration and the projected climate change. This paper reviewed the methodologies for measuring the soil CO2 concentration in situ as well as their advantages and disadvantages, analyzed the variation patterns and controlling factors of soil CO2 concentration across the temporal (diurnal, several days, seasonal and inter-annual) and spatial (soil profile, site and landscape) scales, introduced the primary empirical and mechanical models for estimating and predicting soil CO2 concentration, and summarized the applications and constraints of soil CO2 concentration gradient in determining soil respiration. Four research priorities were proposed, i. e., to develop new techniques for collecting and determining the soil CO2 in severe soil conditions (e. g., flooding, lithoso and others), to approach the responses of soil CO2 concentration to weather change and related regulation mechanisms, to strengthen the researches on the spatial heterogeneity of soil CO2 concentration, and to expand the applications of soil CO2 concentration gradient in the measurement of tropical-subtropical soil respiration.

  3. Radiography as a tool in understanding soil insect behavior in turfgrass

    International Nuclear Information System (INIS)

    Villani, M.G.; Wright, R.J.

    1987-01-01

    In an effort to gain a more realistic picture of the events that occur within the soil matrix an x-ray technique has been developed that has been used to study seed insects, parasitized cocoons, and wood boring insects in trees to study soil insect movement and behavior. This technique makes it possible to study the movement of the target insects within simulated or natural soil blocks over time. This method also shows physical properties of the soil matrix: particle size, extent of compaction, differences in soil moisture, horizons, and random soil heterogeneity. Blocks of soil up to 14'' x 17'' x 5'' have been removed from the field and x-rayed in my laboratory using this technique. These radiographs are of sufficient quality to determine the movement of white grubs in situ. Such blocks retain their field characteristics and therefore allow for the careful monitoring and manipulation of the system over relatively long (several months) periods of time. Radiographic data are presented which document the behavior of several white grub species in response to dynamic soil ecosystem processes such as moisture and temperature flux. Additional data on the effects of specific soil insecticides on the behavior of white grubs in the soil and the movement of these insecticides through the soil profile are also presented. The importance of understanding the dynamic interaction of soil insect and soil insecticide provided through x-ray technology, both in understanding white grub behavior in the field and maximizing management efforts is discussed

  4. Comparison of Capability of Digitizing Methods to Predict Soil classification According to the Soil Taxonomy and World Reference Base for Soil Resources

    Directory of Open Access Journals (Sweden)

    zohreh mosleh

    2017-02-01

    Full Text Available Introduction: Soil classification generally aims to establish a taxonomy based on breaking the soil continuum into homogeneous groups that can highlight the essential differences in soil properties and functions between classes.The two most widely used modern soil classification schemes are Soil Taxonomy (ST and World Reference Base for Soil Resources (WRB.With the development of computers and technology, digital and quantitative approaches have been developed. These new techniques that include the spatial prediction of soil properties or classes, relies on finding the relationships between soil and the auxiliary information that explain the soil forming factors or processes and finally predict soil patterns on the landscape. These approaches are commonly referred to as digital soil mapping (DSM (14. A key component of any DSM mapping activity is the method used to define the relationship between soil observation and auxiliary information (4. Several types of machine learning approaches have been applied for digital soil mapping of soil classes, such as logistic and multinomial logistic regressions (10,12, random forests (15, neural networks (3,13 and classification trees (22,4. Many decisions about the soil use and management are based on the soil differences that cannot be captured by higher taxonomic levels (i.e., order, suborder and great group (4. In low relief areas such as plains, it is expected that the soil forming factors are more homogenous and auxiliary information explaining soil forming factors may have low variation and cannot show the soil variability. Materials and Methods: The study area is located in the Shahrekord plain of Chaharmahal-Va-Bakhtiari province. According tothe semi-detailed soil survey (16, 120 pedons with approximate distance of 750 m were excavated and described according to the “field book for describing and sampling soils” (19. Soil samples were taken from different genetic horizons, air dried and

  5. Effects of straw mulching on soil evaporation during the soil thawing ...

    Indian Academy of Sciences (India)

    26

    Keywords: straw mulching, soil water evaporation, soil thawing period, freezing depth, soil liquid water .... moisture and the soil water evaporation process. The Songnen Plain ...... soils on soil infiltration and evaporation: Water Sci. Technol.

  6. Extent of Cropland and Related Soil Erosion Risk in Rwanda

    Directory of Open Access Journals (Sweden)

    Fidele Karamage

    2016-06-01

    Full Text Available Land conversion to cropland is one of the major causes of severe soil erosion in Africa. This study assesses the current cropland extent and the related soil erosion risk in Rwanda, a country that experienced the most rapid population growth and cropland expansion in Africa over the last decade. The land cover land use (LCLU map of Rwanda in 2015 was developed using Landsat-8 imagery. Based on the obtained LCLU map and the spatial datasets of precipitation, soil properties and elevation, the soil erosion rate of Rwanda was assessed at 30-m spatial resolution, using the Revised Universal Soil Loss Equation (RUSLE model. According to the results, the mean soil erosion rate was 250 t·ha−1·a−1 over the entire country, with a total soil loss rate of approximately 595 million tons per year. The mean soil erosion rate over cropland, which occupied 56% of the national land area, was estimated at 421 t·ha−1·a−1 and was responsible for about 95% of the national soil loss. About 24% of the croplands in Rwanda had a soil erosion rate larger than 300 t·ha−1·a−1, indicating their unsuitability for cultivation. With a mean soil erosion rate of 1642 t·ha−1·a−1, these unsuitable croplands were responsible for 90% of the national soil loss. Most of the unsuitable croplands are distributed in the Congo Nile Ridge, Volcanic Range mountain areas in the west and the Buberuka highlands in the north, regions characterized by steep slopes (>30% and strong rainfall. Soil conservation practices, such as the terracing cultivation method, are paramount to preserve the soil. According to our assessment, terracing alone could reduce the mean cropland soil erosion rate and the national soil loss by 79% and 75%, respectively. After terracing, only a small proportion of 7.6% of the current croplands would still be exposed to extreme soil erosion with a rate >300 t·ha−1·a−1. These irremediable cropland areas should be returned to mountain forest to

  7. Soil bacteria for remediation of polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Springael, D; Bastiaens, L; Carpels, M; Mergaey, M; Diels, L

    1996-09-18

    Soil bacteria, specifically adapted to contaminated soils, may be used for the remediation of polluted soils. The Flemish research institute VITO has established a collection of bacteria, which were isolated from contaminated areas. This collection includes microbacteria degrading mineral oils (Pseudomonas sp., Acinetobacter sp. and others), microbacteria degrading polycyclic aromatic hydrocarbons (genera Sphingomonas and Mycobacterium), microbacteria degrading polychlorobiphenyls (genus Ralstonia and strains related to beta-Proteobacteria), and metal resistant bacteria with plasmid borne resistances to Cd, Zn, Ni, Co, Cu, Hg, and Cr. Bench-scale reactors were developed to investigate the industrial feasibility of bioremediation. Batch Stirred Tank Reactors were used to evaluate the efficiency of oil degraders. Soils, contaminated with non-ferrous metals, were treated using a Bacterial Metal Slurry Reactor. It was found that the reduction of the Cd concentration may vary strongly from sample to sample: reduction factors vary from 95 to 50%. Is was shown that Cd contained in metallic sinter and biologically unavailable Cd could not be removed.

  8. BOREAS TE-01 SSA Soil Lab Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a set of soil properties for the SSA. The soil samples were collected at sets of soil pits. Major soil properties include soil horizon; dry...

  9. BOREAS TE-01 SSA Soil Lab Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides a set of soil properties for the SSA. The soil samples were collected at sets of soil pits. Major soil properties include soil...

  10. CO2 response to rewetting of hydrophobic soils - Can soil water repellency inhibit the 'Birch effect'?

    Science.gov (United States)

    Sanchez-Garcia, Carmen; Urbanek, Emilia; Doerr, Stefan

    2017-04-01

    Rewetting of dry soils is known to cause a short-term CO2 pulse commonly known as the 'Birch effect'. The displacement of CO2 with water during the process of wetting has been recognised as one of the sources of this pulse. The 'Birch effect' has been extensively observed in many soils, but some studies report a lack of such phenomenon, suggesting soil water repellency (SWR) as a potential cause. Water infiltration in water repellent soils can be severely restricted, causing overland flow or increased preferential flow, resulting in only a small proportion of soil pores being filled with water and therefore small gas-water replacement during wetting. Despite the suggestions of a different response of CO2 fluxes to wetting under hydrophobic conditions, this theory has never been tested. The aim of this study is to test the hypothesis that CO2 pulse does not occur during rewetting of water repellent soils. Dry homogeneous soils at water-repellent and wettable status have been rewetted with different amounts of water. CO2 flux as a response to wetting has been continuously measured with the CO2 flux analyser. Delays in infiltration and non-uniform heterogeneous water flow were observed in water repellent soils, causing an altered response in the CO2 pulse in comparison to typically observed 'Birch effect' in wettable systems. The main conclusion from the study is that water repellency not only affects water relations in soil, but has also an impact on greenhouse gas production and transport and therefore should be included as an important parameter during the sites monitoring and modelling of gas fluxes.

  11. [Heavy Metals Accmultio in the Caofeidian Reclamation Soils: Indicated by Soil Magnetic Susceptibility].

    Science.gov (United States)

    Xue, Yong; Zhou, Qian; Li, Yuan; Zhang, Hai-bo; Hu, Xue-feng; Luo, Yong-ming

    2016-04-15

    The environmental magnetism method has been widely applied to identify soil heavy metal pollution, which is characterized by simplicity, efficiency, non-destructivity and sensitivity. The present study used magnetic susceptibility to assess the accumulation of heavy metals in soils of the Caofeidian industrial zone which is a typical reclamation area in northern China. The study area was divided into three sub-zones based on the function, including industrial zone, living zone, natural tidal flat and wetland. A total of 35 topsoil samples (0-10 cm) and 3 soil profiles were collected from the three sub-zones. Magnetic susceptibility (X(lf)), iron oxide (Fe2O3) contents and heavy metals contents (Cr, Ni, Cu, Zn, As, Pb, Mn and V) of the samples were analyzed. The results showed that X(lf) values and heavy metals contents exhibited higher spatial variability in the top soil of the industrial zone, indicating the severe impacts of industrial activities. In the soil profiles of the industrial and living zones, all heavy metals were enriched to different degrees in the upper layer (0-20 cm). However, there was no significant change of heavy metal contents in the soil profiles of tidal flat which was far from the industrial area. The X(lf) value was significantly (P soil. This indicated that X(lf) could be used as an indicator for heavy metal accumulation in the industrial zone. However, the X(lf) value was not suitable to be an indicator to show the heavy metal accumulation in the soils of living zone and natural tidal flat. This might be associated with the different sources of magnetic materials among the different sub-zones and the special characteristics of the soils in the tidal flat and wetland.

  12. Physical soil quality indicators for monitoring British soils

    Science.gov (United States)

    Corstanje, Ron; Mercer, Theresa G.; Rickson, Jane R.; Deeks, Lynda K.; Newell-Price, Paul; Holman, Ian; Kechavarsi, Cedric; Waine, Toby W.

    2017-09-01

    Soil condition or quality determines its ability to deliver a range of functions that support ecosystem services, human health and wellbeing. The increasing policy imperative to implement successful soil monitoring programmes has resulted in the demand for reliable soil quality indicators (SQIs) for physical, biological and chemical soil properties. The selection of these indicators needs to ensure that they are sensitive and responsive to pressure and change, e.g. they change across space and time in relation to natural perturbations and land management practices. Using a logical sieve approach based on key policy-related soil functions, this research assessed whether physical soil properties can be used to indicate the quality of British soils in terms of their capacity to deliver ecosystem goods and services. The resultant prioritised list of physical SQIs was tested for robustness, spatial and temporal variability, and expected rate of change using statistical analysis and modelling. Seven SQIs were prioritised: soil packing density, soil water retention characteristics, aggregate stability, rate of soil erosion, depth of soil, soil structure (assessed by visual soil evaluation) and soil sealing. These all have direct relevance to current and likely future soil and environmental policy and are appropriate for implementation in soil monitoring programmes.

  13. Describing Soils: Calibration Tool for Teaching Soil Rupture Resistance

    Science.gov (United States)

    Seybold, C. A.; Harms, D. S.; Grossman, R. B.

    2009-01-01

    Rupture resistance is a measure of the strength of a soil to withstand an applied stress or resist deformation. In soil survey, during routine soil descriptions, rupture resistance is described for each horizon or layer in the soil profile. The lower portion of the rupture resistance classes are assigned based on rupture between thumb and…

  14. Combination of soil classification and some selected soil properties ...

    African Journals Online (AJOL)

    The advantage in the combined use of soil classification and top soil analysis for explaining crop yield variation was examined. Soil properties and yields of maize (Zea mays L) on different soil types were measured on farmers' fields for 2 years. Yield prediction improved from 2 per cent at the Order and Association levels to ...

  15. Physical soil quality indicators for monitoring British soils

    Directory of Open Access Journals (Sweden)

    R. Corstanje

    2017-09-01

    Full Text Available Soil condition or quality determines its ability to deliver a range of functions that support ecosystem services, human health and wellbeing. The increasing policy imperative to implement successful soil monitoring programmes has resulted in the demand for reliable soil quality indicators (SQIs for physical, biological and chemical soil properties. The selection of these indicators needs to ensure that they are sensitive and responsive to pressure and change, e.g. they change across space and time in relation to natural perturbations and land management practices. Using a logical sieve approach based on key policy-related soil functions, this research assessed whether physical soil properties can be used to indicate the quality of British soils in terms of their capacity to deliver ecosystem goods and services. The resultant prioritised list of physical SQIs was tested for robustness, spatial and temporal variability, and expected rate of change using statistical analysis and modelling. Seven SQIs were prioritised: soil packing density, soil water retention characteristics, aggregate stability, rate of soil erosion, depth of soil, soil structure (assessed by visual soil evaluation and soil sealing. These all have direct relevance to current and likely future soil and environmental policy and are appropriate for implementation in soil monitoring programmes.

  16. Iodine in soil

    International Nuclear Information System (INIS)

    Johanson, Karl Johan

    2000-12-01

    A literature study of the migration and the appearance of iodine isotopes in the bio-sphere particularly in soil is presented. Some important papers in the field of iodine appearance in soil and the appearance of 129 I in the surroundings of reprocessing plants are discussed. The most important conclusions are: 1. Iodine binds to organic matter in the soil and also to some oxides of aluminium and iron. 2. If the iodine is not bound to the soil a large fraction of added 129 I is volatilized after a rather short period. 3. The binding and also the volatilisation seems to be due to biological activity in the soil. It may take place within living microorganisms or by external enzymes excreted from microorganisms. 4. Due to variations in the composition of soil there may be a large variation in the distribution of 129 I in the vertical profile of soil - usually most of the 129 I in the upper layer - which also results in large variations in the 129 I uptake to plants

  17. Climate Strategic Soil Management

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2014-02-01

    Full Text Available The complex and strong link between soil degradation, climate change and food insecurity is a global challenge. Sustainable agricultural systems must be integral to any agenda to address climate change and variability, improve renewable fresh water supply and quality, restore degraded soils and ecosystems and advance food security. These challenges are being exacerbated by increasing population and decreasing per capita arable land area and renewable fresh water supply, the increasing frequency of extreme events, the decreasing resilience of agroecosystems, an increasing income and affluent lifestyle with growing preference towards meat-based diet and a decreasing soil quality and use efficiency of inputs. Reversing these downward spirals implies the implementation of proven technologies, such as conservation agriculture, integrated nutrient management, precision agriculture, agroforestry systems, etc. Restoration of degraded soil and desertified ecosystems and the creation of positive soil and ecosystem C budgets are important. Urban agriculture and green roofs can reduce the energy footprint of production chains for urban and non-urban areas and enhance the recycling of by-products. Researchable priorities include sustainable land use and soil/water management options, judicious soil governance and modus operandi towards payments to land managers for the provisioning of ecosystem services.

  18. Radon emanation from soils

    International Nuclear Information System (INIS)

    Markkanen, M.; Arvela, H.

    1992-01-01

    The results of gamma spectrometric sample measurements of radon ( 222 Rn) emanation coefficients and radium concentrations ( 226 Ra) from about 800 Finnish soil samples are presented. The radon emanation rate was measured in about 400 soil samples, using radon-tight cans and Lucas cells. The effects of water content and temperature on radon emanation were investigated, using various samples of different soil types. Radon emanation and the effect of water content on radon emanation were investigated separately for different grain sizes (samples of till). The results provide some information on radon emanation in different soil types and relate emanation in laboratory conditions to conditions in ground soil. In routine measurements of radon emanation from soil samples, use of a 5% water content was considered advisable. The correction coefficients of radon emanation varied between 0.3 and 1.5, depending on the water content and soil type. At 5% water content, hardly any difference was found between radon emanation at temperatures of 20 and 1 o C. Radon emanation was found to be an inverse function of grain sizes larger than 0.5 mm in diameter. (author)

  19. Soil washing treatability study

    International Nuclear Information System (INIS)

    Krstich, M.

    1995-12-01

    Soil washing was identified as a viable treatment process option for remediating soil at the FEMP Environmental Management Project (FEMP). Little information relative to the specific application and potential effectiveness of the soil washing process exists that applies to the types of soil at the FEMP. To properly evaluate this process option in conjunction with the ongoing FEMP Remedial Investigation/Feasibility Study (RI/FS), a treatability testing program was necessary to provide a foundation for a detailed technical evaluation of the viability of the process. In August 1991, efforts were initiated to develop a work plan and experimental design for investigating the effectiveness of soil washing on FEMP soil. In August 1992, the final Treatability Study Work Plan for Operable Unit 5: Soil Washing (DOE 1992) was issued. This document shall be referenced throughout the remainder of this report as the Treatability Study Work Plan (TSWP). The purpose of this treatability study was to generate data to support initial screening and the detailed analysis of alternatives for the Operable Unit 5 FS

  20. Iodine in soil

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, Karl Johan [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    2000-12-01

    A literature study of the migration and the appearance of iodine isotopes in the bio-sphere particularly in soil is presented. Some important papers in the field of iodine appearance in soil and the appearance of {sup 129}I in the surroundings of reprocessing plants are discussed. The most important conclusions are: 1. Iodine binds to organic matter in the soil and also to some oxides of aluminium and iron. 2. If the iodine is not bound to the soil a large fraction of added {sup 129}I is volatilized after a rather short period. 3. The binding and also the volatilisation seems to be due to biological activity in the soil. It may take place within living microorganisms or by external enzymes excreted from microorganisms. 4. Due to variations in the composition of soil there may be a large variation in the distribution of {sup 129}I in the vertical profile of soil - usually most of the {sup 129}I in the upper layer - which also results in large variations in the {sup 129}I uptake to plants.

  1. Parameterization of radiocaesium soil-plant transfer using soil characteristics

    International Nuclear Information System (INIS)

    Konoplev, A. V.; Drissner, J.; Klemt, E.; Konopleva, I. V.; Zibold, G.

    1996-01-01

    A model of radionuclide soil-plant transfer is proposed to parameterize the transfer factor by soil and soil solution characteristics. The model is tested with experimental data on the aggregated transfer factor T ag and soil parameters for 8 forest sites in Baden-Wuerttemberg. It is shown that the integral soil-plant transfer factor can be parameterized through radiocaesium exchangeability, capacity of selective sorption sites and ion composition of the soil solution or the water extract. A modified technique of (FES) measurement for soils with interlayer collapse is proposed. (author)

  2. Soil washing results for mixed waste pond soils at Hanford

    International Nuclear Information System (INIS)

    Gerber, M.A.; Freeman, H.D.; Baker, E.G.; Riemath, W.F.

    1991-01-01

    Soil washing technology was assessed as a means for remediating soil contaminated with mixed wastes primarily composed of heavy metals and radionuclides. The soils at the US Department of Energy's Hanford Site are considered suitable for soil washing because of their relatively low quantities of silt and clay. However, in a limited number of soil washing experiments using soils from different locations in the north pond of the 300 Area, the degree of decontamination achieved for the coarse fraction of the soil varied considerably. Part of this variation appears to be due to the presence of a discrete layer of contaminated sediment found in some of the samples

  3. [Bare Soil Moisture Inversion Model Based on Visible-Shortwave Infrared Reflectance].

    Science.gov (United States)

    Zheng, Xiao-po; Sun, Yue-jun; Qin, Qi-ming; Ren, Hua-zhong; Gao, Zhong-ling; Wu, Ling; Meng, Qing-ye; Wang, Jin-liang; Wang, Jian-hua

    2015-08-01

    Soil is the loose solum of land surface that can support plants. It consists of minerals, organics, atmosphere, moisture, microbes, et al. Among its complex compositions, soil moisture varies greatly. Therefore, the fast and accurate inversion of soil moisture by using remote sensing is very crucial. In order to reduce the influence of soil type on the retrieval of soil moisture, this paper proposed a normalized spectral slope and absorption index named NSSAI to estimate soil moisture. The modeling of the new index contains several key steps: Firstly, soil samples with different moisture level were artificially prepared, and soil reflectance spectra was consequently measured using spectroradiometer produced by ASD Company. Secondly, the moisture absorption spectral feature located at shortwave wavelengths and the spectral slope of visible wavelengths were calculated after analyzing the regular spectral feature change patterns of different soil at different moisture conditions. Then advantages of the two features at reducing soil types' effects was synthesized to build the NSSAI. Thirdly, a linear relationship between NSSAI and soil moisture was established. The result showed that NSSAI worked better (correlation coefficient is 0.93) than most of other traditional methods in soil moisture extraction. It can weaken the influences caused by soil types at different moisture levels and improve the bare soil moisture inversion accuracy.

  4. Operational assimilation of ASCAT surface soil wetness at the Met Office

    Directory of Open Access Journals (Sweden)

    I. Dharssi

    2011-08-01

    Full Text Available Currently, no extensive, near real time, global soil moisture observation network exists. Therefore, the Met Office global soil moisture analysis scheme has instead used observations of screen temperature and humidity. A number of new space-borne remote sensing systems, operating at microwave frequencies, have been developed that provide a more direct retrieval of surface soil moisture. These systems are attractive since they provide global data coverage and the horizontal resolution is similar to weather forecasting models. Several studies show that measurements of normalised backscatter (surface soil wetness from the Advanced Scatterometer (ASCAT on the meteorological operational (MetOp satellite contain good quality information about surface soil moisture. This study describes methods to convert ASCAT surface soil wetness measurements to volumetric surface soil moisture together with bias correction and quality control. A computationally efficient nudging scheme is used to assimilate the ASCAT volumetric surface soil moisture data into the Met Office global soil moisture analysis. This ASCAT nudging scheme works alongside a soil moisture nudging scheme that uses observations of screen temperature and humidity. Trials, using the Met Office global Unified Model, of the ASCAT nudging scheme show a positive impact on forecasts of screen temperature and humidity for the tropics, North America and Australia. A comparison with in-situ soil moisture measurements from the US also indicates that assimilation of ASCAT surface soil wetness improves the soil moisture analysis. Assimilation of ASCAT surface soil wetness measurements became operational during July 2010.

  5. [Effects of soil crusts on surface hydrology in the semiarid Loess hilly area].

    Science.gov (United States)

    Wei, Wei; Wen, Zhi; Chen, Li-Ding; Chen, Jin; Wu, Dong-Ping

    2012-11-01

    Soil crusts are distributed extensively in the Chinese Loess Plateau and play key roles in surface hydrological processes. In this study, a typical loess hilly region in Anjiagou catchment, Dingxi city, Gansu province was selected as the study region, and soil crusts in the catchment were investigated. Then, the hydrological effect of soil crusts was studied by using multi-sampling and hydrological monitoring experiments. Several key results were shown as follows. Firstly, compared with bared soil without crust cover, soil crusts can greatly reduce the bulk density, improve the porosity of soil, and raise the holding capacity of soil moisture which ranges from 1.4 to 1.9 times of that of bared soil. Secondly, the role of soil crust on rainfall interception was very significant. Moss crust was found to be strongest on rainfall interception, followed by synantectic crusts and lichen crusts. Bared soil without covering crusts was poorest in resisting rainfall splash. Thirdly, hydrological simulation experiments indicate that soil crusts play a certain positive role in promoting the water infiltration capacity, and the mean infiltration rate of the crusted soil was 2 times higher than that of the no-crust covered soils. While the accumulated infiltrated water amounts was also far higher than that of the bared soil.

  6. Mechanisms of Soil Carbon Sequestration

    Science.gov (United States)

    Lal, Rattan

    2015-04-01

    Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough

  7. CO2 efflux from soils with seasonal water repellency

    Science.gov (United States)

    Urbanek, Emilia; Doerr, Stefan H.

    2017-10-01

    Soil carbon dioxide (CO2) emissions are strongly dependent on pore water distribution, which in turn can be modified by reduced wettability. Many soils around the world are affected by soil water repellency (SWR), which reduces infiltration and results in diverse moisture distribution. SWR is temporally variable and soils can change from wettable to water-repellent and vice versa throughout the year. Effects of SWR on soil carbon (C) dynamics, and specifically on CO2 efflux, have only been studied in a few laboratory experiments and hence remain poorly understood. Existing studies suggest soil respiration is reduced with increasing severity of SWR, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known.Here we report on the first field-based study that tests whether SWR indeed reduces soil CO2 efflux, based on in situ measurements carried out over three consecutive years at a grassland and pine forest sites under the humid temperate climate of the UK.Soil CO2 efflux was indeed very low on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. Low CO2 efflux was also observed when SWR was absent, in spring and late autumn when soil temperatures were low, but also in summer when SWR was reduced by frequent rainfall events. The highest CO2 efflux occurred not when soil was wettable, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. Patchiness of SWR is likely to have created zones with two different characteristics related to CO2 production and transport. Zones with wettable soil or low persistence of SWR with higher proportion of water-filled pores are expected to provide water with high nutrient concentration resulting in higher microbial activity and CO2 production. Soil zones with high SWR persistence, on the other hand, are dominated by air-filled pores with low microbial activity, but facilitating O2

  8. PCB dechlorination in anaerobic soil slurry reactors

    International Nuclear Information System (INIS)

    Klasson, K.T.; Evans, B.S.

    1993-01-01

    Many industrial locations, including the US Department of Energy's, have identified needs for treatment of polychlorinated biphenyl (PCB) wastes and remediation of PCB-contaminated sites. Biodegradation of PCBs is a potentially effective technology for the treatment of PCB-contaminated soils and sludges, including mixed wastes; however, a practical remediation technology has not yet been demonstrated. In laboratory experiments, soil slurry bioreactors inoculated with microorganisms extracted from PCB-contaminated sediments from the Hudson River have been used to obtain anaerobic dechlorination of PCBS. The onset of dechlorination activity can be accelerated by addition of nutritional amendments and inducers. After 15 weeks of incubation with PCB-contaminated soil and nutrient solution, dechlorination has been observed under several working conditions. The best results show that the average chlorine content steadily dropped from 4.3 to 3.5 chlorines per biphenyl over a 15-week period

  9. Development of soil taxation and soil classification as furthered by the Austrian Soil Science Society

    Science.gov (United States)

    Baumgarten, Andreas

    2013-04-01

    Soil taxation and soil classification are important drivers of soil science in Austria. However, the tasks are quite different: whereas soil taxation aims at the evaluation of the productivity potential of the soil, soil classification focusses on the natural development and - especially nowadays - on functionality of the soil. Since the foundation of the Austrian Soil Science Society (ASSS), representatives both directions of the description of the soil have been involved in the common actions of the society. In the first years it was a main target to improve and standardize field descriptions of the soil. Although both systems differ in the general layout, the experts should comply with identical approaches. According to this work, a lot of effort has been put into the standardization of the soil classification system, thus ensuring a common basis. The development, state of the art and further development of both classification and taxation systems initiated and carried out by the ASSS will be shown.

  10. Propagation of soil moisture memory into the climate system

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2012-04-01

    Soil moisture is known for its integrative behaviour and resulting memory characteristics. Associated anomalies can persist for weeks or even months into the future, making initial soil moisture an important potential component in weather forecasting. This is particularly crucial given the role of soil moisture for land-atmosphere interactions and its impacts on the water and energy balances on continents. We present here an analysis of the characteristics of soil moisture memory and of its propagation into runoff and evapotranspiration in Europe, based on available measurements from several sites across the continent and expanding a previous analysis focused on soil moisture [1]. We identify the main drivers of soil moisture memory at the analysed sites, as well as their role for the propagation of soil moisture persistence into runoff and evapotranspiration memory characteristics. We focus on temporal and spatial variations in these relationships and identify seasonal and latitudinal differences in the persistence of soil moisture, evapotranspiration and runoff. Finally, we assess the role of these persistence characteristics for the development of agricultural and hydrological droughts. [1] Orth and Seneviratne: Analysis of soil moisture memory from observations in Europe; submitted to J. Geophysical Research.

  11. Aboveground Deadwood Deposition Supports Development of Soil Yeasts

    Directory of Open Access Journals (Sweden)

    Thorsten Wehde

    2012-12-01

    Full Text Available Unicellular saprobic fungi (yeasts inhabit soils worldwide. Although yeast species typically occupy defined areas on the biome scale, their distribution patterns within a single type of vegetation, such as forests, are more complex. In order to understand factors that shape soil yeast communities, soils collected underneath decaying wood logs and under forest litter were analyzed. We isolated and identified molecularly a total of 25 yeast species, including three new species. Occurrence and distribution of yeasts isolated from these soils provide new insights into ecology and niche specialization of several soil-borne species. Although abundance of typical soil yeast species varied among experimental plots, the analysis of species abundance and community composition revealed a strong influence of wood log deposition and leakage of organic carbon. Unlike soils underneath logs, yeast communities in adjacent areas harbored a considerable number of transient (phylloplane-related yeasts reaching 30% of the total yeast quantity. We showed that distinguishing autochthonous community members and species transient in soils is essential to estimate appropriate effects of environmental factors on soil fungi. Furthermore, a better understanding of species niches is crucial for analyses of culture-independent data, and may hint to the discovery of unifying patterns of microbial species distribution.

  12. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [ORNL; Pallin, Simon B [ORNL

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  13. Ekspansif soil solution in the villages at Trenggalek

    Science.gov (United States)

    Triastuti, Nusa Setiani

    2017-11-01

    District 2/3 hills with easy sliding and land survey results showed the soil because it consists of expansive soil Survey some villages who experience insatiability or failure, a secondary analysis of the data gathered from the expert on geology, Trenggalek geological map, Trenggalek geography. Ground location researched several villages, the Terbis village of focus discussion of the landslides and plan of relocation. In the watching a black. Colored soil and easily slide, showed very expansive soil due to montmorrelite. While soil relocation contour relative is more stable because the land of kaolin and invisible water sources that could push the land. Expansive soil in the village of solution should be cheap, easily obtainable, not damaging the fertility of the soil, groundwater should be awake to the source of life, ease of implementation, utilizing local materials and use modest tools and equipment. Under the soil surface do not get there water stored in the soil until deep the water because it will slide the ground. The analysis must meet the 7 items above and steady the contour. Design of building installed sub drain, the shallow bore foundations tied tie beam, floor plate into the unity of the structure.

  14. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    International Nuclear Information System (INIS)

    McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

    1994-01-01

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the 13 C content of soil CO 2 , CaCO 3 , precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The 13 C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing 13 C content with depth decreasing 13 C with altitude and reduced 13 C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO 2 loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids

  15. Shifts in the Physiology and Stoichiometric Needs of Soil Microbial Communities from Subarctic Soils in Response to Warming: Icelandic Geothermal Gradients as a Model.

    Science.gov (United States)

    Marañón-Jiménez, S.; Soong, J.; Leblans, N. I. W.; Sigurdsson, B. D.; Peñuelas, J.; Richter, A.; Asensio, D.; Fransen, E.; Janssens, I. A.

    2017-12-01

    Large amounts of CO2 can be released to the atmosphere from a faster mineralization of soil organic matter at warmer temperatures, thus inducing climate change feedbacks. Specifically, soils at high northern latitudes store more than half of the global surface soil carbon and are particularly vulnerable to temperature-driven C losses, since they warm more rapidly. Alterations to the temperature sensitivity, physiological functioning and stoichiometric constrains of soil microorganisms in response to rising temperatures can play a key role in these soil carbon (C) losses. We present results of several incubation experiments using soils from geothermal soil temperature gradients in Iceland that have undergone a range of warming intensities for seven years, encompassing the full range of IPCC warming scenarios for the northern region. Soil microbes from warmed soils did not show changes in their temperature sensitivity at the physiological level. On the contrary, seven years of chronic soil warming provoked a permanent increase of microbial metabolic quotients (i.e., respiration per unit of biomass), and a subsequent reduction in the C retained in biomass as substrate became limiting. After the initial depletion of labile soil C, increasing energy demands for metabolic maintenance and resource acquisition at higher temperatures may have triggered permanent functional changes or community shifts towards increasing respiratory costs of soil decomposers. Pointing to this, microbial communities showed a strong C limitation even at ambient soil temperatures, obscuring any metabolic response to nitrogen and phosphorous additions. The tight C:N stoichiometric constrains of soil microbial communities and the strong C limitation for microbial biomass may lead to a reduced capacity of microbial N retention, explaining the equivalent soil C and N losses found in response to soil warming. These results highlight the need to incorporate potential changes in microbial physiological

  16. Feedback of global warming to soil carbon cycling in forest ecosystems

    International Nuclear Information System (INIS)

    Nakane, Kaneyuki

    1993-01-01

    Thus in this study the simulation of soil carbon cycling and dynamics of its storage in several types of mature forests developed from the cool-temperate to the tropics was carried out for quantitatively assessing carbon loss from the soil under several scenarios of global warming, based on the model of soil carbon cycling in forest ecosystems (Nakane et al. 1984, 1987 and Nakane 1992). (J.P.N.)

  17. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    Science.gov (United States)

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. SoilEffects – start characterization of the experimental soil

    OpenAIRE

    Løes, Anne-Kristin; Johansen, Anders; Pommeresche, Reidun; Riley, Hugh

    2013-01-01

    This report describes the establishment, experimental plan and initial soil characteristics of the field experiment linked to the project “Effects of anaerobically digested manure on soil fertility - establishment of a long-term study under Norwegian conditions” (SoilEffects, 2010-14). The aim of the SoilEffects project is to identify potential risks and benefits for soil fertility when animal manure is anaerobically digested for biogas production. The field experiment was established on...

  19. Soil Microbes and soil microbial proteins: interactions with clay minerals

    International Nuclear Information System (INIS)

    Spence, A.; Kelleher, B. P.

    2009-01-01

    Bacterial enumeration in soil environments estimates that the population may reach approximately 10 1 0 g - 1 of soil and comprise up to 90% of the total soil microbial biomass. Bacteria are present in soils as single cells or multicell colonies and often strongly adsorb onto mineral surfaces such as sand and clay. The interactions of microbes and microbial biomolecules with these minerals have profound impacts on the physical, chemical and biological properties of soils. (Author)

  20. Trace elements in brazilian soils

    International Nuclear Information System (INIS)

    Rocha, Geraldo Cesar

    1995-01-01

    A literature revision on trace elements (Zn, B, Mn, Mo, Cu, Fe, and Cl) in Brazilian soils was prepared, with special attention to the chemical form and range in the soil, extraction methods and correlation of the amount in soils with soil properties