WorldWideScience

Sample records for severely hot-deformed tungsten

  1. Microstructures and recrystallization behavior of severely hot-deformed tungsten

    International Nuclear Information System (INIS)

    Mathaudhu, S.N.; De Rosset, A.J.; Hartwig, K.T.; Kecskes, L.J.

    2009-01-01

    When coarse-grained (CG) tungsten (W) is heavily worked by equal-channel angular extrusion (ECAE), the grain size is reduced to the ultrafine-grained/nanocrystalline regimes (UFG/NC) and the strength and ductility increase. Because of the brittle nature of CG W, the material must be hot-extruded, and, if the temperatures are near the recrystallization temperature (T rc ), gains in properties may not be maximized. In this study, the recrystallization behavior of ECAE-processed CG W is examined as a function of the imparted strain (i.e., number of extrusions) and the hot-working extrusion temperature. Up to four ECAE passes were performed in tooling with a 90 deg. channel intersection, and at temperatures of 1000 deg. C or 1200 deg. C. Subsequent 60 min annealing of the worked material to 1600 deg. C allowed for the determination of T rc . Vickers microhardness measurements and scanning electron microscopy, were used to characterize the microstructures in the as-worked and recrystallized states. The ECAE-processed W shows increased microstructural break-up and refinement with increasing strain and decreasing hot-working temperature in the fully worked state. T rc was determined to be ∼1400 deg. C, which is nearly independent of the number of extrusions and the working temperature. These results show that if ECAE is accomplished below 1400 deg. C (i.e., at 1000 deg. C or lower) the attractive properties of the UFG/NC-worked W may be retained. Specifically, below 1000 deg. C, with increasing strain imparted to the material, high hardness values with a concomitant grain size refinement (∼350 nm) could be expected

  2. Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.

    Science.gov (United States)

    Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun

    2018-03-01

    The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.

  3. Orientation dependence of deformation and penetration behavior of tungsten single-crystal rods

    International Nuclear Information System (INIS)

    Bruchey, W.J.; Horwath, E.J.; Kingman, P.W.

    1991-01-01

    This paper reports on the performance of tungsten single crystals as kinetic energy penetrator materials that was investigated in a high length-to-diameter (L/D) rod geometry at sub-scale (1/4 geometric scale). The [111]. [110], and [100] crystal orientations were tested in this 74-g LD = 15 geometry penetrator (6.90-mm diameter x 102.5-mm length). Several 93% tungsten alloy and uranium 3/4 titanium rod geometries were also tested to baseline expected performance of typical penetrator material/geometry combinations. Performance was determined for semi-infinite penetration into RHA steel and finite penetration into 76.20-mm RHA steel. Of the orientation tested, the [100] orientation provided the best ballistic results, with superior performance to mass and geometric equivalent 93% tungsten alloy rods. The [100] orientation also provided similar performance to geometric equivalent uranium 3/4 titanium rods. Favorable slip/cleavage during the compressive loading of the penetration process to allow penetrator material flow without large scale plastic deformation, and final shear localization at a favorable angle for easy material flow away from the penetration interface, contribute to the [100] orientation crystals' excellent performance. The net result was less energy expenditure during penetrator flow and, therefore, more energy for deformation of RHA

  4. High Rate Plastic Deformation and Failure of Tungsten-Sintered Metals

    National Research Council Canada - National Science Library

    Bjerke, Todd

    2004-01-01

    The competition between plastic deformation and brittle fracture during high rate loading of a tungsten-sintered metal is examined through impact experiments, post-experiment microscopy, and numerical simulation...

  5. Effect of deformation ratios on grain alignment and magnetic properties of hot pressing/hot deformation Nd-Fe-B magnets

    Science.gov (United States)

    Guo, Zhaohui; Li, Mengyu; Wang, Junming; Jing, Zheng; Yue, Ming; Zhu, Minggang; Li, Wei

    2018-05-01

    The magnetic properties, microstructure and orientation degrees of hot pressing magnet and hot deformation Nd-Fe-B magnets with different deformation ratios have been investigated in this paper. The remanence (Br) and maximum magnetic energy product ((BH)max) were enhanced gradually with the deformation ratio increasing from 0% to 70%, whereas the coercivity (HCj) decreased. The scanning electron microscopy (SEM) images of fractured surfaces parallel to the pressure direction during hot deformation show that the grains tend to extend perpendicularly to the c-axes of Nd2Fe14B grains under the pressure, and the aspect ratios of the grains increase with the increase of deformation ratio. Besides, the compression stress induces the long axis of grains to rotate and the angle (θ) between c-axis and pressure direction decreases. The X-ray diffraction (XRD) patterns reveal that orientation degree improves with the increase of deformation ratio, agreeing well with the SEM results. The hot deformation magnet with a deformation ratio of 70% has the best Br and (BH)max, and the magnetic properties are as followed: Br=1.40 T, HCj=10.73 kOe, (BH)max=42.30 MGOe.

  6. Hot tungsten plate based ionizer for cesium plasma in a multi-cusp field experiment

    International Nuclear Information System (INIS)

    Patel, Amitkumar D.; Sharma, Meenakshee; Ramasubramanian, Narayanan; Chattopadhyay, Prabal K.

    2015-01-01

    In a newly proposed basic experiment, contact-ionized cesium ions will be confined by a multi cups magnetic field configuration. The cesium ion will be produced by impinging collimated neutral atoms on an ionizer consisting of the hot tungsten plate. The temperature of the tungsten plate will also be made high enough (∼2700 K) such that it will contribute electrons also to the plasma. It is expected that at this configuration the cesium plasma would be really quiescent and would be free from even the normal drift waves observed in the classical Q-machines. For the ionizer a design based on F. F. Chen's design was made. This ionizer is very fine machining and exotic material like Tungsten plate, Molybdenum screws, rings, and Boron Nitride ceramics etc. The fine and careful machining of these materials was very hard. In this paper, the experience about to join the tungsten wire to molybdenum plate and alloy of tantalum and molybdenum ring is described. In addition experimental investigations have been made to measure 2D temperature distribution profile of the Tungsten hot plate using infrared camera and the uniformity of temperature distribution over the hot plate surface is discussed. (author)

  7. Austenite strengthening and softening during hot deformation

    International Nuclear Information System (INIS)

    Tushinskij, L.I.; Vlasov, V.S.; Kazimirova, I.E.; Tokarev, A.O.

    1981-01-01

    Processes of formation of austenite structure of 20 and 12Kh18N10T steels during hot deformation and postdeformation isothermal holdings have been investigated by the methods of analysis of curves of hot deformation, high-temperature metallography and light microscopy. Deformation has been exercised by extention in vacuum with average 4x10 -2 s -1 rate. Deformation temperatures of steel 20 are 930 and 1000 deg C, of steel 12Kh18N10T - 1100 deg C. It is stated that dynamic recrystallization takes place in both investigated steels during hot deformation. In the carbonic steel it is developed by shifting sections of high-angular boundaries, flow stress in this case remains constant. Recrystallization is developed by subgrain coalescence in austenite steel, that brings about preservation of increased defect density in recrystallized volumes. As a result strengthening of steel is continued up to fracture during the increase of the deformation degree. Postdeformation weakening of 12Kh18N10T steel is slowed down as compared with weakening of carbonic steel [ru

  8. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    Science.gov (United States)

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-11-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  9. Comparative Investigation of Tungsten Fibre Nets Reinforced Tungsten Composite Fabricated by Three Different Methods

    Directory of Open Access Journals (Sweden)

    Linhui Zhang

    2017-07-01

    Full Text Available Tungsten fibre nets reinforced tungsten composites (Wf/W containing four net layers were fabricated by spark plasma sintering (SPS, hot pressing (HP and cold rolling after HP (HPCR, with the weight fraction of fibres being 17.4%, 10.5% and 10.5%, respectively. The relative density of the HPCRed samples is the highest (99.8% while that of the HPed composites is the lowest (95.1%. Optical and scanning electron microscopy and electron back scattering diffraction were exploited to characterize the microstructure, while tensile and hardness tests were used to evaluate the mechanical properties of the samples. It was found that partial recrystallization of fibres occurred after the sintering at 1800 °C. The SPSed and HPed Wf/W composites begin to exhibit plastic deformation at 600 °C with tensile strength (TS of 536 and 425 MPa and total elongation at break (TE of 11.6% and 23.0%, respectively, while the HPCRed Wf/W composites exhibit plastic deformation at around 400 °C. The TS and TE of the HPCRed Wf/W composites at 400 °C are 784 MPa and 8.4%, respectively. The enhanced mechanical performance of the Wf/W composites over the pure tungsten can be attributed to the necking, cracking, and debonding of the tungsten fibres.

  10. Fabrication of a tantalum-clad tungsten target for KENS

    International Nuclear Information System (INIS)

    Kawai, Masayoshi; Kikuchi, Kenji; Kurishita, Hiroaki; Li, J.-F.; Furusaka, Michihiro

    2001-01-01

    Since the cold neutron source intensity of KENS (the spallation neutron source at High Energy Accelerator Research Organization) was decreased into about a third of the designed value because a cadmium liner at the cold neutron source deformed and obstructed the neutron beam line, the target-moderator-and-reflector assembly (TMRA) has been replaced by a new one aimed at improving the neutron performance and recovering the cold neutron source. The tantalum target has also been replaced by a tantalum-clad tungsten one. In order to bond the tantalum-clad with the tungsten block, a hot isostatic press (HIP) process was applied and optimized. It was found that gaseous interstitial impurity elements severely attacked tantalum and embrittled, and that the getter materials such as zirconium and tantalum were effective to reduce the embrittlement

  11. Microstructure and tensile properties of tungsten at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tielong [Laboratory for Nuclear Materials, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Dai, Yong, E-mail: yong.dai@psi.ch [Laboratory for Nuclear Materials, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Lee, Yongjoong [European Spallation Source, Tunavägen 24, 223 63 Lund (Sweden)

    2016-01-15

    In order to support the development of the 5 MW spallation target for the European Spallation Source, the effect of fabrication process on microstructure, ductile-to-brittle transition temperature (DBTT), tensile and fracture behaviour of powder-metallurgy pure tungsten materials has been investigated. A hot-rolled (HR) tungsten piece of 12 mm thickness and a hot-forged (HF) piece of about 80 mm thickness were used to simulate the thin and thick blocks in the target. The two tungsten pieces were characterized with metallography analysis, hardness measurement and tensile testing. The HR piece exhibits an anisotropic grain structure with an average size of about 330 × 140 × 40 μm in rolling, long transverse and short transverse (thickness) directions. The HF piece possesses a bimodal grain structure with about 310 × 170 × 70 μm grain size in deformed part and about 25 μm sized grains remained from sintering process. Hardness (HV0.2) of the HR piece is slightly greater than that of the HF one. The ductility of the HR tungsten specimens is greater than that of the HF tungsten. For the HF tungsten piece, specimens with small grains in gauge section manifest lower ductility but higher strength. The DBTT evaluated from the tensile results is 250–300 °C for the HR tungsten and about 350 °C for the HF tungsten. - Highlights: • This work was conducted to support the development of the 5 MW spallation target for the European Spallation Source. • The effect of fabrication process on microstructure, ductile-to-brittle transition temperature and tensile behaviour was studied with hot-rolled and hot-forged tungsten. • The tungsten materials were characterized with metallography analysis, hardness measurement and tensile test in a temperature range of 25–500 °C. • The results indicate that the HR tungsten has better mechanical properties in terms of greater ductility and lower ductile-to-brittle transition temperature.

  12. W-Cu composites subjected to heavy hot deformation

    International Nuclear Information System (INIS)

    Yu, Yang; Xu, Xiaoqiang; Zhang, Wencong

    2017-01-01

    The effect of plastic deformation on the properties and microstructure of W-Cu composites produced by multi-pass hot extrusion with steel cup was investigated. W-Cu composites were sintered at 1 100 C and then the sintered billets were firstly extruded at 900 C with different extrusion ratios. The second hot extrusion was performed at 900 C. The plastic deformation of copper phase plays a dominant part during the whole extrusion process. The microstructural evolution of W phase during the whole processing of heavy hot deformation can be divided into different stages. Experimental results indicate that the W agglomeration will be broken into fine particles effectively when the accumulated plastic deformation amounts to 97.6 % after the second extrusion.

  13. W-Cu composites subjected to heavy hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang; Xu, Xiaoqiang; Zhang, Wencong [Harbin Institute of Technology-Weihai (China). School of Materials Science and Engineering

    2017-04-15

    The effect of plastic deformation on the properties and microstructure of W-Cu composites produced by multi-pass hot extrusion with steel cup was investigated. W-Cu composites were sintered at 1 100 C and then the sintered billets were firstly extruded at 900 C with different extrusion ratios. The second hot extrusion was performed at 900 C. The plastic deformation of copper phase plays a dominant part during the whole extrusion process. The microstructural evolution of W phase during the whole processing of heavy hot deformation can be divided into different stages. Experimental results indicate that the W agglomeration will be broken into fine particles effectively when the accumulated plastic deformation amounts to 97.6 % after the second extrusion.

  14. Hot deformation behavior and hot working characteristic of Nickel-base electron beam weldments

    International Nuclear Information System (INIS)

    Ning, Yongquan; Yao, Zekun; Guo, Hongzhen; Fu, M.W.

    2014-01-01

    Highlights: • The Hot deformation behavior of electron beam (EB) Nickel-base weldments was investigated. • The constitutive equation represented by temperature, strain rate and true strain was developed. • Processing map approach was adopted to optimize the hot forging process of EB weldments. • True strain has a great effect on the efficiency of power dissipation (η). -- Abstract: The electron beam welding (EBW) of Nickel-base superalloys was conducted, and the cylindrical compression specimens were machined from the central part of the electron beam (EB) weldments. The hot deformation behavior of EB weldments was investigated at the temperature of 960–1140 °C and the strain rate of 0.001–1.0 s −1 . The apparent activation energy of deformation was calculated to be 400 kJ/mol, and the constitutive equation that describes the flow stress as a function of strain rate and deformation temperature was proposed for modeling of the hot deformation process of EB weldments. The processing map approach was adopted to investigate the deformation mechanisms during the hot plastic deformation and to optimize the processing parameters of EB weldments. It is found that the true strain has a significant effect on the efficiency of power dissipation (η). The η value in the safe processing domain (1140 °C, 1.0 s −1 ) increases from 0.32 to 0.55. In the unsafe processing domain (1080 °C, 0.001 s −1 ), however, the η value greatly decreases with the increase of strain. When the strain is 0.40, the efficiency of power dissipation becomes negative. The flow instability is predicted to occur since the instability parameter ξ(ε) becomes negative. The hot deformation of EB weldments can be carried out safely in the domain with the strain rate range of 0.1–1.0 s −1 and the temperature range of 960–1140 °C. When the height reduction is about 50%, the optimum processing condition is (T opi : 1140 °C, ε opi : 1.0 s −1 ) with the peak efficiency of 0

  15. Hot deformation behavior and hot working characteristic of Nickel-base electron beam weldments

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Yongquan, E-mail: ningke521@163.com [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Yao, Zekun; Guo, Hongzhen [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Fu, M.W. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2014-01-25

    Highlights: • The Hot deformation behavior of electron beam (EB) Nickel-base weldments was investigated. • The constitutive equation represented by temperature, strain rate and true strain was developed. • Processing map approach was adopted to optimize the hot forging process of EB weldments. • True strain has a great effect on the efficiency of power dissipation (η). -- Abstract: The electron beam welding (EBW) of Nickel-base superalloys was conducted, and the cylindrical compression specimens were machined from the central part of the electron beam (EB) weldments. The hot deformation behavior of EB weldments was investigated at the temperature of 960–1140 °C and the strain rate of 0.001–1.0 s{sup −1}. The apparent activation energy of deformation was calculated to be 400 kJ/mol, and the constitutive equation that describes the flow stress as a function of strain rate and deformation temperature was proposed for modeling of the hot deformation process of EB weldments. The processing map approach was adopted to investigate the deformation mechanisms during the hot plastic deformation and to optimize the processing parameters of EB weldments. It is found that the true strain has a significant effect on the efficiency of power dissipation (η). The η value in the safe processing domain (1140 °C, 1.0 s{sup −1}) increases from 0.32 to 0.55. In the unsafe processing domain (1080 °C, 0.001 s{sup −1}), however, the η value greatly decreases with the increase of strain. When the strain is 0.40, the efficiency of power dissipation becomes negative. The flow instability is predicted to occur since the instability parameter ξ(ε) becomes negative. The hot deformation of EB weldments can be carried out safely in the domain with the strain rate range of 0.1–1.0 s{sup −1} and the temperature range of 960–1140 °C. When the height reduction is about 50%, the optimum processing condition is (T{sub opi}: 1140 °C, ε{sub opi}: 1.0 s{sup −1}) with

  16. Hot deformation behavior of delta-processed superalloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wangyanhit@yahoo.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); School of Aeronautics and Astronautics, Central South University, Changsha 410083 (China); Shao, W.Z.; Zhen, L.; Zhang, B.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-03-25

    Research highlights: {yields} The peak stress for hot deformation can be described by the Z parameter. {yields} The grain size of DRX was inversely proportional to the Z parameter. {yields} The dissolution of {delta} phases was greatly accelerated under hot deformation. {yields}The {delta} phase stimulated nucleation can serve as the main DRX mechanism. - Abstract: Flow stress behavior and microstructures during hot compression of delta-processed superalloy 718 at temperatures from 950 to 1100 deg. C with strain rates of 10{sup -3} to 1 s{sup -1} were investigated by optical microscopy (OM), electron backscatter diffraction (EBSD) technique and transmission electron microscopy (TEM). The relationship between the peak stress and the deformation conditions can be expressed by a hyperbolic-sine type equation. The activation energy for the delta-processed superalloy 718 is determined to be 467 kJ/mol. The change of the dominant deformation mechanisms leads to the decrease of stress exponent and the increase of activation energy with increasing temperature. The dynamically recrystallized grain size is inversely proportional to the Zener-Hollomon (Z) parameter. It is found that the dissolution rate of {delta} phases under hot deformation conditions is much faster than that under static conditions. Dislocation, vacancy and curvature play important roles in the dissolution of {delta} phases. The main nucleation mechanisms of dynamic recrystallization (DRX) for the delta-processed superalloy 718 include the bulging of original grain boundaries and the {delta} phase stimulated DRX nucleation, which is closely related to the dissolution behavior of {delta} phases under certain deformation conditions.

  17. Nd-Fe-B-Cu hot deformation processing: a comparison of deformation modes, microstructural development and magnetic properties

    International Nuclear Information System (INIS)

    Ferrante, M.; Sinka, V.; Assis, O.B.G.; Oliveira, I. de; Freitas, E. de

    1996-01-01

    Due to its relative simplicity and low cost the hot deformation of Nd-Fe-B ingots is rapidly reaching the status of a valid alternative to sintering. Among the possible deformation modes, pressing, rolling and forging are perhaps the most successful. This paper describes the research programme undertaken so far, by discussing the relationship between deformation mode, microstructure and magnetic properties of magnets produced by hot deformation mode, microstructure and magnetic properties of magnets produced by hot deformation of a number of Nd-fe-B-Cu alloys. Microstructural observation showed that both pressed and forged samples are characterized by a heterogeneous microstructure and from magnetic measurements it was concluded that magnetic properties differ when taken in the center or in the periphery of the sample. On the other hand roller magnets were homogeneous both in terms of microstructure and magnetic properties, and interpretations of the mechanisms of texture development and of microstructural development of hot deformed magnets is put forward. (author)

  18. Study on Hot Deformation Behavior of 7085 Aluminum Alloy during Backward Extrusion Process

    Directory of Open Access Journals (Sweden)

    R. B. Mei

    2015-01-01

    Full Text Available Compression test was carried out and the true stress-strain curves were obtained from the hot compression of 7085 alloy. A numerical simulation on the deformation behavior of 7085 aluminum alloy during the backward extrusion was also performed by finite element method. The results show that dynamic recrystallization occurs in the hot compression of 7085 alloy and the peak stress reaches higher values as the strain rate increases and deformation temperature decreases. The backward extrusion processes include contact deformation, initial deformation, and steady deformation. Severe plastic deformation of shear and compression occurs when the metal flowed into the channel between fillet of punch and wall of die so that the grain size can be refined by backward extrusion. The deformation in the region of top of wall is too small to meet the mechanical properties of requirements and the metal usually needs to be trimmed. The experiments with the same parameters as simulation had been carried out and the experimental cup after extrusion has better quality.

  19. Effect of thermomechanical conditions of deformation on structure and properties of tungsten wire

    International Nuclear Information System (INIS)

    Pavlov, I.M.; Ushakov, E.V.; Karavajtsev, V.I.; Drobysheva, E.K.; Tiraspol'skij, V.I.; Zelentsova, N.M.; Gruzdov, V.V.

    1983-01-01

    The purpose of the investigation is to specify the relation between conditions of plastic deformation of non-slacked tungsten, structure and properties of rods and wire. Planning multifactor experiments is chosen as the basic method for investigation. It is shown that rationai choice of plastic working conditions permits to reduce the tendency to lamination of tungsten wire. Growth of wire ductility is followed by decrease of its residual electroresistance. Rapid porocedure of return due to precipitation of dissolved admixtures is the main reason for improving plastic properties of the wire

  20. Hot compression deformation behavior of AISI 321 austenitic stainless steel

    Science.gov (United States)

    Haj, Mehdi; Mansouri, Hojjatollah; Vafaei, Reza; Ebrahimi, Golam Reza; Kanani, Ali

    2013-06-01

    The hot compression behavior of AISI 321 austenitic stainless steel was studied at the temperatures of 950-1100°C and the strain rates of 0.01-1 s-1 using a Baehr DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation ( Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950°C and the strain rate of 0.01 s-1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950°C, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti.

  1. Thermal stability of a highly-deformed warm-rolled tungsten plate in the temperature range 1100–1250 °C

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, A., E-mail: aalz@dtu.dk [Section of Materials and Surface Engineering, Department of Mechanical Engineering, Technical University of Denmark, 2800 Lyngby (Denmark); Sino-Danish Center for Education and Research, Denmark and China (Denmark); Juul Jensen, D. [Danish-Chinese Center for Nanometals, Section of Materials Science and Advanced Characterization, Department of Wind Energy, Technical University of Denmark, Risø Campus, 4000 Roskilde (Denmark); Sino-Danish Center for Education and Research, Denmark and China (Denmark); Luo, G.-N. [Fusion Reactor Materials Science and Technology Division, Institute of Plasma Physics, Chinese Academy of Sciences, 230031 Hefei, Anhui (China); Sino-Danish Center for Education and Research, Denmark and China (Denmark); Pantleon, W. [Section of Materials and Surface Engineering, Department of Mechanical Engineering, Technical University of Denmark, 2800 Lyngby (Denmark); Association EURATOM-DTU (Denmark); Sino-Danish Center for Education and Research, Denmark and China (Denmark)

    2015-10-15

    Highlights: • Annealing kinetics of highly-deformed tungsten up to 190 h between 1100 °C and 1250 °C. • Loss of mechanical strength characterized by Vickers hardness measurements. • Two distinct stages of recovery and recrystallization identified and described by established models. • Activation energy of recrystallization lower than after moderate deformation of tungsten. • Comparable to activation energy of grain boundary diffusion due to abundance of low angle boundaries. - Abstract: Pure tungsten is considered as armor material for the most critical parts of fusion reactors (i.e. the divertor and the first wall), among other reasons due to its high melting point (3422 °C) and recrystallization temperature. The thermal stability of a pure tungsten plate warm-rolled to a high plastic strain by 90% thickness reduction was investigated by isothermal annealing for up to 190 h in the temperature range between 1100 °C and 1250 °C. Vickers hardness testing allowed tracking the changes in mechanical properties caused by recovery and recrystallization. The hardness evolution could be rationalized in terms of a logarithmic recovery kinetics and a Johnson–Mehl–Avrami–Kolmogorov recrystallization kinetics accounting for an incubation time of recrystallization. The observed time spans for recrystallization and the corresponding recrystallization activation energy for this highly deformed plate suggest that large plastic deformations (e.g. applied during shaping) are only suitable to produce tungsten components to be used at relatively low temperatures (up to 900 °C for a 2 years lifespan). Higher operation temperatures will lead to fast degradation of the microstructure during operation.

  2. Thermal stability of a highly-deformed warm-rolled tungsten plate in the temperature range 1100–1250 °C

    International Nuclear Information System (INIS)

    Alfonso, A.; Juul Jensen, D.; Luo, G.-N.; Pantleon, W.

    2015-01-01

    Highlights: • Annealing kinetics of highly-deformed tungsten up to 190 h between 1100 °C and 1250 °C. • Loss of mechanical strength characterized by Vickers hardness measurements. • Two distinct stages of recovery and recrystallization identified and described by established models. • Activation energy of recrystallization lower than after moderate deformation of tungsten. • Comparable to activation energy of grain boundary diffusion due to abundance of low angle boundaries. - Abstract: Pure tungsten is considered as armor material for the most critical parts of fusion reactors (i.e. the divertor and the first wall), among other reasons due to its high melting point (3422 °C) and recrystallization temperature. The thermal stability of a pure tungsten plate warm-rolled to a high plastic strain by 90% thickness reduction was investigated by isothermal annealing for up to 190 h in the temperature range between 1100 °C and 1250 °C. Vickers hardness testing allowed tracking the changes in mechanical properties caused by recovery and recrystallization. The hardness evolution could be rationalized in terms of a logarithmic recovery kinetics and a Johnson–Mehl–Avrami–Kolmogorov recrystallization kinetics accounting for an incubation time of recrystallization. The observed time spans for recrystallization and the corresponding recrystallization activation energy for this highly deformed plate suggest that large plastic deformations (e.g. applied during shaping) are only suitable to produce tungsten components to be used at relatively low temperatures (up to 900 °C for a 2 years lifespan). Higher operation temperatures will lead to fast degradation of the microstructure during operation.

  3. An investigation into hot deformation of aluminum alloy 5083

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinipour, S.J. [Manufacturing Engineering Department, School of Mechanical Engineering, Nushirvani Institute of Technology, University of Mazandaran, P.O. Box 484, Shariati Avenue, Babol (Iran, Islamic Republic of)], E-mail: j.hosseini@nit.ac.ir

    2009-02-15

    In this paper the hot deformation behavior of Al-5083 commercial alloy is studied. For this purpose, hot tensile tests have been carried out at various temperatures and strain rates. Velocity jump tests have been performed to determine stress-strain rate curves at various temperatures and strains. The microstructures have been studied by optical and electron microscopy (SEM). It is found that continuous recrystallization occurs during hot deformation of the AA5083. Maximum elongation about 250% is obtained at 450 deg. C and strain rate of 0.005 s{sup -1}. The failure surface is narrow and failure occurs by necking.

  4. An investigation into hot deformation of aluminum alloy 5083

    International Nuclear Information System (INIS)

    Hosseinipour, S.J.

    2009-01-01

    In this paper the hot deformation behavior of Al-5083 commercial alloy is studied. For this purpose, hot tensile tests have been carried out at various temperatures and strain rates. Velocity jump tests have been performed to determine stress-strain rate curves at various temperatures and strains. The microstructures have been studied by optical and electron microscopy (SEM). It is found that continuous recrystallization occurs during hot deformation of the AA5083. Maximum elongation about 250% is obtained at 450 deg. C and strain rate of 0.005 s -1 . The failure surface is narrow and failure occurs by necking

  5. Predicting Hot Deformation of AA5182 Sheet

    Science.gov (United States)

    Lee, John T.; Carpenter, Alexander J.; Jodlowski, Jakub P.; Taleff, Eric M.

    Aluminum 5000-series alloy sheet materials exhibit substantial ductilities at hot and warm temperatures, even when grain size is not particularly fine. The relatively high strain-rate sensitivity exhibited by these non-superplastic materials, when deforming under solute-drag creep, is a primary contributor to large tensile ductilities. This active deformation mechanism influences both plastic flow and microstructure evolution across conditions of interest for hot- and warm-forming. Data are presented from uniaxial tensile and biaxial bulge tests of AA5182 sheet material at elevated temperatures. These data are used to construct a material constitutive model for plastic flow, which is applied in finite-element-method (FEM) simulations of plastic deformation under multiaxial stress states. Simulation results are directly compared against experimental data to explore the usefulness of this constitutive model. The effects of temperature and stress state on plastic response and microstructure evolution are discussed.

  6. Stress hot spots in viscoplastic deformation of polycrystals

    International Nuclear Information System (INIS)

    Rollett, A D; Li, J; Rohrer, G S; Lebensohn, R A; Groeber, M; Choi, Y

    2010-01-01

    The viscoplastic deformation of polycrystals under uniaxial loading is investigated to determine the relationship between hot spots in stress and their location in relation to the microstructure. A 3D full-field formulation based on fast Fourier transforms for the prediction of the viscoplastic deformation of poly-crystals is used with rate-sensitive crystal plasticity. Two measured polycrystalline structures are used to instantiate the simulations, as well as a fully periodic synthetic polycrystal adapted from a simulation of grain growth. Application of (Euclidean) distance maps shows that hot spots in stress tend to occur close to grain boundaries. It is also found that low stress regions lie close to boundaries. The radial distribution function of the hot spots indicates clustering. Despite the lack of texture in the polycrystals, the hot spots are strongly concentrated in (1 1 0) orientations, which can account for the observed clustering. All three microstructures yield similar results despite significant differences in topology

  7. The hot-deformability and quantitative description of the microstructure of hot-deformed Fe-Ni superalloy

    International Nuclear Information System (INIS)

    Ducki, K J; Rodak, K

    2011-01-01

    The paper presents the results of research concerning the influence of hot plastic forming parameters on the deformability and structure of a Fe-Ni austenitic alloy. The research was performed on a torsion plastometer in the range of temperatures of 900-1150 deg. C, at a strain rate 0.1 and 1.0 s -1 . Plastic properties of the alloy were characterized by the worked out flow curves and the temperature relationships of flow stress and strain limit. The structural inspections were performed on microsections taken from plastometric samples after so called f reezing . The stereological parameters as the recrystallized grain size, inhomogenity and grain shape have been determined. Functional relations between the Zener-Hollomon parameter and the peak stress and the mean grain size have been developed and the activation energy of the hot plastic deformation has been estimated. The examination of substructure on TEM allowed the calculation of structural parameters: the average subgrain area and the mean dislocation density. A detailed investigation has shown that the substructure is inhomogeneous, consists of dense dislocation walls, subgrains and recrystallized regions.

  8. The hot-deformability and quantitative description of the microstructure of hot-deformed Fe-Ni superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Ducki, K J; Rodak, K, E-mail: kazimierz.ducki@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    The paper presents the results of research concerning the influence of hot plastic forming parameters on the deformability and structure of a Fe-Ni austenitic alloy. The research was performed on a torsion plastometer in the range of temperatures of 900-1150 deg. C, at a strain rate 0.1 and 1.0 s{sup -1}. Plastic properties of the alloy were characterized by the worked out flow curves and the temperature relationships of flow stress and strain limit. The structural inspections were performed on microsections taken from plastometric samples after so called {sup f}reezing{sup .} The stereological parameters as the recrystallized grain size, inhomogenity and grain shape have been determined. Functional relations between the Zener-Hollomon parameter and the peak stress and the mean grain size have been developed and the activation energy of the hot plastic deformation has been estimated. The examination of substructure on TEM allowed the calculation of structural parameters: the average subgrain area and the mean dislocation density. A detailed investigation has shown that the substructure is inhomogeneous, consists of dense dislocation walls, subgrains and recrystallized regions.

  9. The hot-deformability and quantitative description of the microstructure of hot-deformed Fe-Ni superalloy

    Science.gov (United States)

    Ducki, K. J.; Rodak, K.

    2011-05-01

    The paper presents the results of research concerning the influence of hot plastic forming parameters on the deformability and structure of a Fe-Ni austenitic alloy. The research was performed on a torsion plastometer in the range of temperatures of 900-1150 °C, at a strain rate 0.1 and 1.0 s-1. Plastic properties of the alloy were characterized by the worked out flow curves and the temperature relationships of flow stress and strain limit. The structural inspections were performed on microsections taken from plastometric samples after so called "freezing". The stereological parameters as the recrystallized grain size, inhomogenity and grain shape have been determined. Functional relations between the Zener-Hollomon parameter and the peak stress and the mean grain size have been developed and the activation energy of the hot plastic deformation has been estimated. The examination of substructure on TEM allowed the calculation of structural parameters: the average subgrain area and the mean dislocation density. A detailed investigation has shown that the substructure is inhomogeneous, consists of dense dislocation walls, subgrains and recrystallized regions.

  10. Hot deformation effect on the kinetics of austenite transformation under continuous cooling conditions

    International Nuclear Information System (INIS)

    Bernshtejn, M.L.; Zajmovskij, V.A.; Kisteh, N.V.; Samedov, O.V.; Faldin, S.A.

    1979-01-01

    The effect of hot deformation on the kinetics of austenite transformations in the commercial 4040Kh 40KhN, and 40KhNMA steels on continuous cooling was studied. The transformations were studied using a dilatometer of a special design which permits a specimen to be fixed quickly in holders after hot deformation. It is stated that in hot-deformed austenite the pearlite transformation proceeds at higher temperatures and in a narrower temperature range. Austenite deformation provides an opportunity to obtain a more fine ferrite-pearlite structure and ensures a uniform distribution of a structurally free ferrite in the steel bulk. The effect of hot deformation on the structure of ferrite decomposition products in the 40KhN and 40KhNMA steels is more complicated, which is connected with a substantial change in the kinetics of pearlite and intermediate transformations

  11. Orientation dependence of deformation and penetration behavior of tungsten single crystal rods

    International Nuclear Information System (INIS)

    Bruchey, W.J. Jr.; Horwath, E.J.; Kingman, P.W.

    1991-01-01

    This paper reports on deformation and flow at a target/penetrator interface that occurs under conditions of high hydrostatic pressure and associated heat generation. To further elucidate the role of material structure in the penetration process, oriented single crystals of tungsten have been launched into steel targets and the residual penetrators recovered and analyzed. Both the penetration depth and the deformation characteristics were strongly influenced by the crystallographic orientation. Deformation modes for the left-angle 100 right-angle rod, which exhibited the best performance, appeared to involve considerable localized slip/cleavage and relatively less plastic working; the residual penetrator was extensively cracked and the eroded penetrator material was extruded in a smooth tube lined with an oriented array of discrete particle exhibiting cleavage fractures. Deformation appeared to be much less localized and to involve more extensive plastic working in the left-angle 011 right-angle rod, which exhibited the poorest penetration, while the left-angle 111 right-angle behaved in an intermediate fashion

  12. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean A., E-mail: dabuche@sandia.gov [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Karnesky, Richard A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Fang, Zhigang Zak; Ren, Chai [University of Utah, Department of Metallurgical Engineering, Salt Lake City, UT 84112 (United States); Oya, Yasuhisa [Shizuoka University, Graduate School of Science, Shizuoka (Japan); Otsuka, Teppei [Kyushu University, Department of Advanced Energy Engineering Science, Fukuoka (Japan); Yamauchi, Yuji [Hokkaido University, Third Division of Quantum Science and Engineering, Faculty of Engineering, Sapporo (Japan); Whaley, Josh A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States)

    2016-11-01

    Highlights: • We have designed and performed initial studies on a high temperature gas-driven permeation cell capable of operating at temperatures up to 1150 °C and at pressures between 0.1–1 atm. • Permeation measurements on ITER grade tungsten compare well with past studies by Frauenfelder and Zahkarov in the temperature range from 500 to 1000 °C. • First permeation measurements on Ti dispersoid-strengthened ultra-fine grained tungsten show higher permeation at 500 °C, but very similar permeation with ITER tungsten at 1000 °C. Diffusion along grain boundaries may be playing a role for this type of material. - Abstract: To address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungsten being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D{sub 2} pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation

  13. Coercivities of hot-deformed magnets processed from amorphous and nanocrystalline precursors

    International Nuclear Information System (INIS)

    Tang, Xin; Sepehri-Amin, H.; Ohkubo, T.; Hioki, K.; Hattori, A.; Hono, K.

    2017-01-01

    Hot-deformed magnets have been processed from amorphous and nanocrystalline precursors and their hard magnetic properties and microstructures have been investigated in order to explore the optimum process route. The hot-deformed magnets processed from an amorphous precursor exhibited the coercivity of 1.40 T that is higher than that processed from nanocrystalline powder, ∼1.28 T. The average grain size was larger in the magnets processed from amorphous precursor. Detailed microstructure analyses by aberration corrected scanning transmission electron microscopy revealed that the Nd + Pr concentrations in the intergranular phases were higher in the hot-deformed magnet processed from the amorphous precursor, which is considered to lead to the enhanced coercivity due to a stronger pinning force against magnetic domain wall motion.

  14. Hot deformation behavior of TC18 titanium alloy

    Directory of Open Access Journals (Sweden)

    Jia Bao-Hua

    2013-01-01

    Full Text Available Isothermal compression tests of TC18 titanium alloy at the deformation temperatures ranging from 25°C to 800°C and strain rate ranging from 10-4 to 10-2 s-1 were conducted by using a WDW-300 electronic universal testing machine. The hot deformation behavior of TC18 was characterized based on an analysis of the true stress-true strain curves of TC18 titanium alloy. The curves show that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the strain rate play an important role in the flow stress when increasing the temperatures. By taking the effect of strain into account, an improved constitutive relationship was proposed based on the Arrhenius equation. By comparison with the experimental results, the model prediction agreed well with the experimental data, which demonstrated the established constitutive relationship was reliable and can be used to predict the hot deformation behavior of TC18 titanium alloy.

  15. Hot-wire substoichiometric tungsten oxide films deposited in hydrogen environment with n-type conductivity

    International Nuclear Information System (INIS)

    Kostis, I; Vasilopoulou, M; Giannakopoulos, K; Papadimitropoulos, G; Davazoglou, D; Michalas, L; Papaioannou, G; Konofaos, N; Iliadis, A A; Kennou, S

    2012-01-01

    Substoichiometric tungsten oxide nanostructured films were synthesized by a hot-wire deposition technique in hydrogen-rich environment and characterized for their structural and electrical properties. A semiconducting behaviour was identified, allowing n-type conductivity even at room temperature which is an important result since it is well known that fully stoichiometric tungsten trioxide is nearly an insulator. Current-voltage characteristics for various temperatures were measured for tungsten oxide/Si heterostructures and analysed using proper modelling. As a result, the conduction mechanism inside the films was identified and found to be of a dual nature, with variable range hopping being dominant at near room temperatures. The saturation current was found to be thermally activated and the activation energy was calculated at 0.40 eV and the grain boundaries barrier at 150 meV. From Hall measurements it was also revealed that the dominant carriers are electrons and a carrier concentration of about 10 14 cm -3 was estimated.

  16. Tungsten and tungsten alloys by powder metallurgy

    International Nuclear Information System (INIS)

    Belhadjhamida, A.; German, R.M.

    1991-01-01

    Tungsten has a historical link with powder metallurgy and there is continued progress in expanding the available compositions and processing options. This paper starts with an introduction to the history of tungsten powder metallurgy and use this as a basis for analyzing some of the current trends. The literature base in tungsten processing is expanding and includes new alloys, microstructures, and processing routes. A few examples will be emphasize here to produce a frame work for this program, including description of sintering mechanisms for tungsten, liquid phase sintering advances, hot consolidation fundamentals, and options for complex shaping using powder injection modeling. For this base, subsequent presentations will expand on these fundamental advances

  17. An atomistic study of the deformation behavior of tungsten nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shuozhi [University of California, California NanoSystems Institute, Santa Barbara, CA (United States); Su, Yanqing [University of California, Department of Mechanical Engineering, Santa Barbara, CA (United States); Chen, Dengke [Georgia Institute of Technology, GWW School of Mechanical Engineering, Atlanta, GA (United States); Li, Longlei [Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA (United States)

    2017-12-15

    Large-scale atomistic simulations are performed to study tensile and compressive left angle 112 right angle loading of single-crystalline nanowires in body-centered cubic tungsten (W). Effects of loading mode, wire cross-sectional shape, wire size, strain rate, and crystallographic orientations of the lateral surfaces are explored. Uniaxial deformation of a W bulk single crystal is also investigated for reference. Our results reveal a strong tension-compression asymmetry in both the stress-strain response and the deformation behavior due to different yielding/failure modes: while the nanowires fail by brittle fracture under tensile loading, they yield by nucleation of dislocations from the wire surface under compressive loading. It is found that (1) nanowires have a higher strength than the bulk single crystal; (2) with a cross-sectional size larger than 10 nm, there exists a weak dependence of strength on wire size; (3) when the wire size is equal to or smaller than 10 nm, nanowires buckle under compressive loading; (4) the cross-sectional shape, strain rate, and crystallographic orientations of the lateral surfaces affect the strength and the site of defect initiation but not the overall deformation behavior. (orig.)

  18. Tensile behaviour of drawn tungsten wire used in tungsten fibre-reinforced tungsten composites

    International Nuclear Information System (INIS)

    Riesch, J; Feichtmayer, A; Fuhr, M; Gietl, H; Höschen, T; Neu, R; Almanstötter, J; Coenen, J W; Linsmeier, Ch

    2017-01-01

    In tungsten fibre-reinforced tungsten composites (W f /W) the brittleness problem of tungsten is solved by utilizing extrinsic toughening mechanisms. The properties of the composite are very much related to the properties of the drawn tungsten wire used as fibre reinforcements. Its high strength and capability of ductile deformation are ideal properties facilitating toughening of W f /W. Tensile tests have been used for determining mechanical properties and study the deformation and the fracture behaviour of the wire. Tests of as-fabricated and straightened drawn wires with a diameter between 16 and 150 μ m as well as wire electrochemically thinned to a diameter of 5 μ m have been performed. Engineering stress–strain curves and a microscopic analysis are presented with the focus on the ultimate strength. All fibres show a comparable stress–strain behaviour comprising necking followed by a ductile fracture. A reduction of the diameter by drawing leads to an increase of strength up to 4500 MPa as a consequence of a grain boundary hardening mechanism. Heat treatment during straightening decreases the strength whereas electrochemical thinning has no significant impact on the mechanical behaviour. (paper)

  19. Effects of excessive grain growth on the magnetic and mechanical properties of hot-deformed NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M., E-mail: linm@nimte.ac.c [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China); Wang, H.J. [Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081 (China); Yi, P.P.; Yan, A.R. [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China)

    2010-08-15

    The magnetic and mechanical properties of rare-earth magnets hot-deformed at temperature range 750-950 deg. C have been investigated. The grains tended to grow excessively from dozens of nanometers to several microns at the temperatures above 850 deg. C. The alignment of grains was disrupted by the hot deformation at the high temperatures. The Nd-rich phase was extruded at the temperatures which are higher than 850 deg. C. The Nd-rich phase extrusion resulted in the reduction of density by 1% and the reduction of remanence from 1.42 to 0.72 T. The reduction of grain boundaries caused by flat platelet-shaped grains changing to spherical grains and the weak binding strength among large grains of Nd{sub 2}Fe{sub 14}B phase may be the main reasons for the low mechanical strength of hot-deformed magnets.

  20. Effects of Fe fine powders doping on hot deformed NdFeB magnets

    International Nuclear Information System (INIS)

    Lin, Min; Wang, Huijie; Zheng, Jingwu; Yan, Aru

    2015-01-01

    The composite NdFeB magnets with blending melt-spun flakes and Fe fine powders were prepared by the hot-pressed and hot-deformed route. Characterizations of the hot-deformed NdFeB magnets affected by the doped Fe powders were tested. The doped Fe powders decrease the hot-deformed pressure when the strain is between 15 and 50%. XRD patterns show that the doped Fe powders have little influence on the c-axis alignment of hot-deformed NdFeB magnets in the press direction. The B r and the (BH) max get improved when the doped Fe powders are less than 3 wt%. The doped Fe of hot-deformed NdFeB magnets exists in the elongated state and the spherical state surrounded by the Nd-rich phase. With the Fe fraction increasing, the potential of magnet moves to the positive direction and the diameter of the Nyquist arc becomes larger, which indicate that the corrosion resistance improved effectively. The bending strength was enhanced by the elongated α-Fe phase embedded in the matrix 2:14:1 phase. - Highlights: • The doped Fe powders have little influence on the c-axis alignment of magnets. • The elongated Fe powders are more than the spherical Fe powders in the magnets. • The corrosion resistance is improved effectively with the increasing Fe fraction. • The bending strength is enhanced by the elongated α-Fe phase embedded in the matrix

  1. Effects of Fe fine powders doping on hot deformed NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Min, E-mail: linm@nimte.ac.cn [Ningbo Institute of Material Technology & Engineering Chinese Academy of Science, Ningbo 315201 (China); Wang, Huijie [Ningbo Jinji Strong Magnetic Material Company, Ningbo 315041 (China); Zheng, Jingwu [Zhejiang University of Technology, Hangzhou 310014 (China); Yan, Aru [Ningbo Institute of Material Technology & Engineering Chinese Academy of Science, Ningbo 315201 (China)

    2015-04-01

    The composite NdFeB magnets with blending melt-spun flakes and Fe fine powders were prepared by the hot-pressed and hot-deformed route. Characterizations of the hot-deformed NdFeB magnets affected by the doped Fe powders were tested. The doped Fe powders decrease the hot-deformed pressure when the strain is between 15 and 50%. XRD patterns show that the doped Fe powders have little influence on the c-axis alignment of hot-deformed NdFeB magnets in the press direction. The B{sub r} and the (BH){sub max} get improved when the doped Fe powders are less than 3 wt%. The doped Fe of hot-deformed NdFeB magnets exists in the elongated state and the spherical state surrounded by the Nd-rich phase. With the Fe fraction increasing, the potential of magnet moves to the positive direction and the diameter of the Nyquist arc becomes larger, which indicate that the corrosion resistance improved effectively. The bending strength was enhanced by the elongated α-Fe phase embedded in the matrix 2:14:1 phase. - Highlights: • The doped Fe powders have little influence on the c-axis alignment of magnets. • The elongated Fe powders are more than the spherical Fe powders in the magnets. • The corrosion resistance is improved effectively with the increasing Fe fraction. • The bending strength is enhanced by the elongated α-Fe phase embedded in the matrix.

  2. Influence of Plastic Deformation on Martensitic Transformation During Hot Stamping of Complex Structure Auto Parts

    Science.gov (United States)

    Shen, Yuhan; Song, Yanli; Hua, Lin; Lu, Jue

    2017-04-01

    The ultra-high strength steel auto parts manufactured by hot stamping are widely applied for weight reduction and safety improvement. During the hot stamping process, hot forming and quenching are performed in one step wherein plastic deformation and phase transformation simultaneously take place and affect each other. Thereinto, the influence of deformation on martensitic transformation is of great importance. In the present paper, the influence of plastic deformation on martensitic transformation during hot stamping of complex structure auto parts was investigated. For this purpose, a B-pillar reinforced panel in B1500HS steel was manufactured by hot stamping, and the process was simulated by finite element software based on a thermo-mechanical-metallurgical coupled model. Considering various deformation degrees, the microstructures and mechanical properties at four typical locations of the hot stamped B-pillar reinforced panel were detected. The results show that the martensitic content and the microhardness increase with the increase in the deformation amount. There are two reasons causing this phenomenon: (1) the increase in mechanical driving force and (2) the increased probability of the martensitic nucleation at crystal defects. The x-ray diffraction analysis indicates the carbon enrichment in retained austenite which results from the carbon diffusion during the low-carbon martensite formation. Furthermore, the carbon content decreases with the increase in the deformation amount, because the deformation of austenite suppresses the carbon diffusion.

  3. Coercivity of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering method

    Directory of Open Access Journals (Sweden)

    Tetsuji Saito

    2017-05-01

    Full Text Available The effects of Nd-Cu alloy powder addition on the microstructures and magnetic properties of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering (SPS method were investigated. The addition of a small amount of Nd-Cu alloy powder, up to 2%, significantly increased the coercivity of the Nd-Fe-B hot-deformed magnets without deteriorating the crystallographic alignment of the Nd2Fe14B phase. The Nd-Fe-B hot-deformed magnet with 2% Nd-Cu alloy powder had the same remanence value as the Nd-Fe-B hot-deformed magnet without Nd-Cu alloy powder addition, but the magnet with 2% Nd-Cu alloy powder exhibited higher coercivity and a higher maximum energy product than the magnet without Nd-Cu alloy powder addition.

  4. Hot Ductility and Compression Deformation Behavior of TRIP980 at Elevated Temperatures

    Science.gov (United States)

    Zhang, Mei; Li, Haiyang; Gan, Bin; Zhao, Xue; Yao, Yi; Wang, Li

    2018-02-01

    The hot ductility tests of a kind of 980 MPa class Fe-0.31C (wt pct) TRIP steel (TRIP980) with the addition of Ti/V/Nb were conducted on a Gleeble-3500 thermomechanical simulator in the temperatures ranging from 873 K to 1573 K (600 °C to 1300 °C) at a constant strain rate of 0.001 s-1. It is found that the hot ductility trough ranges from 873 K to 1123 K (600 °C to 850 °C). The recommended straightening temperatures are from 1173 K to 1523 K (900 °C to 1250 °C). The isothermal hot compression deformation behavior was also studied by means of Gleeble-3500 in the temperatures ranging from 1173 K to 1373 K (900 °C to 1100 °C) at strain rates ranging from 0.01 s-1 to 10 s-1. The results show that the peak stress decreases with the increasing temperature and the decreasing strain rate. The deformation activation energy of the test steel is 436.7 kJ/mol. The hot deformation equation of the steel has been established, and the processing maps have been developed on the basis of experimental data and the principle of dynamic materials model (DMM). By analyzing the processing maps of strains of 0.5, 0.7, and 0.9, it is found that dynamic recrystallization occurs in the peak power dissipation efficiency domain, which is the optimal area of hot working. Finally, the factors influencing hot ductility and thermal activation energy of the test steel were investigated by means of microscopic analysis. It indicates that the additional microalloying elements play important roles both in the loss of hot ductility and in the enormous increase of deformation activation energy for the TRIP980 steel.

  5. Hot Deformation Behavior of SiCP/A1-Cu Composite

    Directory of Open Access Journals (Sweden)

    CHENG Ming-yang

    2017-02-01

    Full Text Available Using the Gleeble-1500D simulator, the high temperature plastic deformation behavior of SiCp/Al-Cu composite were investigated at 350-500℃ with the strain rate of 0.01-10s-1. The true stress-strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the softening mechanism of dynamic recrystallization is a feature of high-temperature flow stress-strain curves of SiCp/A1-Cu composite, and the peak stress increases with the decrease of deformation temperature or the increase of strain rate.The flow stress behavior of the composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 320.79kJ/mol. The stable regions and the instability regions in the processing map were identified and the microstructures in different regions of processing map were studied.There are particle breakage and void in the instability regions.

  6. A constitutive equation for hot deformation range of 304 stainless steel considering grain sizes

    International Nuclear Information System (INIS)

    Parsa, M.H.; Ohadi, D.

    2013-01-01

    Highlights: • A hot deformation constitutive equation based on invariant theory is proposed. • Deformation variables are evaluated based on objectivity, entropy principle, etc. • Using hot compression tests, coefficients of equation have been found. • The ability of equation to show the variation of stress with strain is examined. - Abstract: A general constitutive equation based on the framework of invariant theory by consideration of hot deformation key variables and also the properties of the material such as initial grain size is presented in the current work. Soundness of the considered parameters to be used in the developed formula was initially verified based on the important axioms such as objectivity, entropy principle, and thermodynamics stability. To access the prediction ability of the method, the formula was simplified for the simple hot compression test. To evaluate the simplified formula, single-hit hot compression tests were carried out at the temperature range of 900–1100 °C under true strain rate of 0.01–1 s −1 on a AISI 304 stainless steel. The capability of proposed formula for reproducing the variation of flow stress with strain and the strain hardening rate with stress for the resultant flow stress data was examined. The good agreement between model predictions and actual results signified the applicability of this method as a general constitutive equation in hot deformation studies

  7. Fractographic peculiarities of cermet tungsten fracture

    International Nuclear Information System (INIS)

    Stepanenko, V.A.; Babak, A.V.; Uskov, E.I.

    1982-01-01

    Effect of test temperature on fracture peculiarities of cermets tungsten with initial cellular structure of deformation is shown. Tungsten crack resistance increases at temperatures to Tsub(x) (ductile-brittle transition temperature) and decreases at temperatures above Tsub(x). The degree of ceramics tungsten plasticity realization depends on its crack resistance

  8. Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten

    Science.gov (United States)

    Xu, Shuozhi; Startt, Jacob K.; Payne, Thomas G.; Deo, Chaitanya S.; McDowell, David L.

    2017-05-01

    Compared with face-centered cubic metals, twinned nanopillars in body-centered cubic (BCC) systems are much less explored partly due to the more complicated plastic deformation behavior and a lack of reliable interatomic potentials for the latter. In this paper, the fault energies predicted by two semi-empirical interatomic potentials in BCC tungsten (W) are first benchmarked against density functional theory calculations. Then, the more accurate potential is employed in large scale molecular dynamics simulations of tensile and compressive loading of twinned nanopillars in BCC W with different cross sectional shapes and sizes. A single crystal, a twinned crystal, and single crystalline nanopillars are also studied as references. Analyses of the stress-strain response and defect nucleation reveal a strong tension-compression asymmetry and a weak pillar size dependence in the yield strength. Under both tensile and compressive loading, plastic deformation in the twinned nanopillars is dominated by dislocation slip on {110} planes that are nucleated from the intersections between the twin boundary and the pillar surface. It is also found that the cross sectional shape of nanopillars affects the strength and the initial site of defect nucleation but not the overall stress-strain response and plastic deformation behavior.

  9. Recrystallization and embrittlement of sintered tungsten

    International Nuclear Information System (INIS)

    Bega, N.D.; Babak, A.V.; Uskov, E.I.

    1982-01-01

    The recrystallization of sintered tungsten with a cellular structure of deformation is studied as related to its embrittlement. It is stated that in case of preliminary recrystallization the sintered tungsten crack resistance does not depend on the testing temperature. The tungsten crack resistance is shown to lower with an increase of the structure tendency to primary recrystallization [ru

  10. Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Azarbarmas, M. [Faculty of Materials Science and Engineering, K.N. Toosi University of Technology, 1999143344 Tehran (Iran, Islamic Republic of); Aghaie-Khafri, M., E-mail: maghaei@kntu.ac.ir [Faculty of Materials Science and Engineering, K.N. Toosi University of Technology, 1999143344 Tehran (Iran, Islamic Republic of); Cabrera, J.M.; Calvo, J. [Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB – Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain)

    2016-12-15

    The hot deformation behavior of an IN718 superalloy was studied by isothermal compression tests under the deformation temperature range of 950–1100 °C and strain rate range of 0.001–1 s{sup −1} up to true strains of 0.05, 0.2, 0.4 and 0.7. Electron backscattered diffraction (EBSD) technique was employed to investigate systematically the effects of strain, strain rate and deformation temperature on the subgrain structures, local and cumulative misorientations and twinning phenomena. The results showed that the occurrence of dynamic recrystallization (DRX) is promoted by increasing strain and deformation temperature and decreasing strain rate. The microstructural changes showed that discontinuous dynamic recrystallization (DDRX), characterized by grain boundary bulging, is the dominant nucleation mechanism in the early stages of deformation in which DRX nucleation occurs by twining behind the bulged areas. Twin boundaries of nuclei lost their ∑3 character with further deformation. However, many simple and multiple twins can be also regenerated during the growth of grains. The results showed that continuous dynamic recrystallization (CDRX) is promoted at higher strains and large strain rates, and lower temperatures, indicating that under certain conditions both DDRX and CDRX can occur simultaneously during the hot deformation of IN718.

  11. Vacuum hot-pressed beryllium and TiC dispersion strengthened tungsten alloy developments for ITER and future fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Chen, Jiming; Lian, Youyun; Wu, Jihong; Xu, Zengyu; Zhang, Nianman; Wang, Quanming; Duan, Xuro [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Wang, Zhanhong; Zhong, Jinming [Northwest Rare Metal Material Research Institute, CNMC, Ningxia Orient Group Co. Ltd.,No.119 Yejin Road, Shizuishan City, Ningxia,753000 (China)

    2013-11-15

    Beryllium and tungsten have been selected as the plasma facing materials of the ITER first wall (FW) and divertor chamber, respectively. China, as a participant in ITER, will share the manufacturing tasks of ITER first-wall mockups with the European Union and Russia. Therefore ITER-grade beryllium has been developed in China and a kind of vacuum hot-pressed (VHP) beryllium, CN-G01, was characterized for both physical, and thermo-mechanical properties and high heat flux performance, which indicated an equivalent performance to U.S. grade S-65C beryllium, a reference grade beryllium of ITER. Consequently CN-G01 beryllium has been accepted as the armor material of ITER-FW blankets. In addition, a modification of tungsten by TiC dispersion strengthening was investigated and a W–TiC alloy with TiC content of 0.1 wt.% has been developed. Both surface hardness and recrystallization measurements indicate its re-crystallization temperature approximately at 1773 K. Deuterium retention and thermal desorption behaviors of pure tungsten and the TiC alloy were also measured by deuterium ion irradiation of 1.7 keV energy to the fluence of 0.5–5 × 10{sup 18} D/cm{sup 2}; a main desorption peak at around 573 K was found and no significant difference was observed between pure tungsten and the tungsten alloy. Further characterization of the tungsten alloy is in progress.

  12. Hot Deformation Behavior and Processing Maps of Diamond/Cu Composites

    Science.gov (United States)

    Zhang, Hongdi; Liu, Yue; Zhang, Fan; Zhang, Di; Zhu, Hanxing; Fan, Tongxiang

    2018-06-01

    The hot deformation behaviors of 50 vol pct uncoated and Cr-coated diamond/Cu composites were investigated using hot isothermal compression tests under the temperature and strain rate ranging from 1073 K to 1273 K (800 °C to 1000 °C) and from 0.001 to 5 s-1, respectively. Dynamic recrystallization was determined to be the primary restoration mechanism during deformation. The Cr3C2 coating enhanced the interfacial bonding and resulted in a larger flow stress for the Cr-coated diamond/Cu composites. Moreover, the enhanced interfacial affinity led to a higher activation energy for the Cr-coated diamond/Cu composites (238 kJ/mol) than for their uncoated counterparts (205 kJ/mol). The strain-rate-dependent constitutive equations of the diamond/Cu composites were derived based on the Arrhenius model, and a high correlation ( R = 0.99) was observed between the calculated flow stresses and experimental data. With the help of processing maps, hot extrusions were realized at 1123 K/0.01 s-1 and 1153 K/0.01 s-1 (850 °C/0.01 s-1 and 880 °C/0.01 s-1) for the uncoated and coated diamond/Cu composites, respectively. The combination of interface optimization and hot extrusion led to increases of the density and thermal conductivity, thereby providing a promising route for the fabrication of diamond/Cu composites.

  13. Direct observation of magnetization reversal of hot-deformed Nd-Fe-B magnet

    Science.gov (United States)

    Zhu, Xiaoyun; Tang, Xu; Pei, Ke; Tian, Yue; Liu, Jinjun; Xia, Weixing; Zhang, Jian; Liu, J. Ping; Chen, Renjie; Yan, Aru

    2018-01-01

    The dynamic magnetic domain structure in magnetization and demagnetization process of hot-deformed and NdCu-diffused Nd2Fe14B magnets were in-situ observed by Lorentz transmission electron microscopy (LTEM). The demagnetization process of hot-deformed sample is dominated by domain-wall pinning, while that of NdCu-diffused sample is mainly the magnetization reversal of single grains or grain aggregations. This firstly observed result gives an explicit evidence to understand the coercivity mechanism of magnetically segregated magnet. The effect of magnetic field of TEM on decrease in domain wall energy was theoretically analyzed, which helps to understand the in-situ observation process of magnetic materials.

  14. Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel

    International Nuclear Information System (INIS)

    Nikravesh, M.; Naderi, M.; Akbari, G.H.

    2012-01-01

    Highlights: ► Reduction of cooling rate, can cause to increase or decrease M s and M f . ► 40% hot plastic deformation hindered the martensitic transformation. ► Hot plastic deformation, caused to decrease M f and M s , while B s increased. ► The critical cooling rate increased 40 °C/s due to apply 40% hot deformation. - Abstract: During hot stamping process, hot forming, cooling and phase transformations are performed in a single step. As a matter of fact, multifunctional phenomena happen and affect each other. Among these phenomena, martensitic and bainitic transformations have the greatest importance. In the current research, the start temperatures of martensite and bainite of 22MnB5 boron steel have been measured in undeformed and 40% deformed conditions, and in various cooling rates from 0.4 °C/s to 100 °C/s by means of deformation dilatometer. It is concluded that, reduction of cooling rate, could bring about an increase or decrease in M s and M f , depending on other phases formation before martensite. Also, hot plastic deformation, hindered the martensitic transformation and decreased M f and M s especially at lower cooling rates, while B s increased. Furthermore, the critical cooling rate, increased about 40 °C/s by applying 40% hot plastic deformation.

  15. Microstructure, mechanical behaviour and fracture of pure tungsten wire after different heat treatments

    DEFF Research Database (Denmark)

    Zhao, P.; Riesch, J.; Höschen, T.

    2017-01-01

    Plastic deformation of tungsten wire is an effective source of toughening tungsten fibre-reinforced tungsten composites (Wf/W) and other tungsten fibre-reinforced composites. To provide a reference for optimization of those composites, unconstrained pure tungsten wire is studied after various hea...... a rather different microstructure. As-fabricated wire and wire recrystallized at 1273 K for 3 h show fine grains with a high aspect ratio and a substantial plastic deformability: a clearly defined tensile strength, high plastic work, similar necking shape, and the characteristic knife...

  16. The high temperature impact response of tungsten and chromium

    Science.gov (United States)

    Zaretsky, E. B.; Kanel, G. I.

    2017-09-01

    The evolution of elastic-plastic shock waves has been studied in pure polycrystalline tungsten and chromium at room and elevated temperatures over propagation distances ranging from 0.05 to 3 mm (tungsten) and from 0.1 to 2 mm (chromium). The use of fused silica windows in all but one experiment with chromium and in several high temperature experiments with tungsten led to the need for performing shock and optic characterization of these windows over the 300-1200 K temperature interval. Experiments with tungsten and chromium samples showed that annealing of the metals transforms the initial ramping elastic wave into a jump-like wave, substantially increasing the Hugoniot elastic limits of the metals. With increased annealing time, the spall strength of the two metals slightly increases. Both at room and at high temperatures, the elastic precursor in the two metals decays in two distinct regimes. At propagation distances smaller than ˜1 mm (tungsten) or ˜0.5 mm (chromium), decay is fast, with the dislocation motion and multiplication being controlled by phonon viscous drag. At greater distances, the rate of decay becomes much lower, with control of the plastic deformation being passed to the thermally activated generation and motion of dislocation double-kinks. The stress at which this transition takes place virtually coincides with the Peierls stress τP of the active glide system. Analysis of the annealing effects in both presently and previously studied BCC metals (i.e., Ta, V, Nb, Mo, W, and Cr) and of the dependencies of their normalized Peierls stresses τP(θ) /τP(0 ) on the normalized temperature θ=T /Tm allows one to conclude that the non-planar, split into several glide planes, structure of the dislocation core in these metals is mainly responsible for their plastic deformation features.

  17. Evaluation of alignment error of micropore X-ray optics caused by hot plastic deformation

    Science.gov (United States)

    Numazawa, Masaki; Ishi, Daiki; Ezoe, Yuichiro; Takeuchi, Kazuma; Terada, Masaru; Fujitani, Maiko; Ishikawa, Kumi; Nakajima, Kazuo; Morishita, Kohei; Ohashi, Takaya; Mitsuda, Kazuhisa; Nakamura, Kasumi; Noda, Yusuke

    2018-06-01

    We report on the evaluation and characterization of micro-electromechanical system (MEMS) X-ray optics produced by silicon dry etching and hot plastic deformation. Sidewalls of micropores formed by etching through a silicon wafer are used as X-ray reflecting mirrors. The wafer is deformed into a spherical shape to focus parallel incidence X-rays. We quantitatively evaluated a mirror alignment error using an X-ray pencil beam (Al Kα line at 1.49 keV). The deviation angle caused only by the deformation was estimated from angular shifts of the X-ray focusing point before and after the deformation to be 2.7 ± 0.3 arcmin on average within the optics. This gives an angular resolution of 12.9 ± 1.4 arcmin in half-power diameter (HPD). The surface profile of the deformed optics measured using a NH-3Ns surface profiler (Mitaka Kohki) also indicated that the resolution was 11.4 ± 0.9 arcmin in HPD, suggesting that we can simply evaluate the alignment error caused by the hot plastic deformation.

  18. Direct observation of magnetization reversal of hot-deformed Nd-Fe-B magnet

    Directory of Open Access Journals (Sweden)

    Xiaoyun Zhu

    2018-01-01

    Full Text Available The dynamic magnetic domain structure in magnetization and demagnetization process of hot-deformed and NdCu-diffused Nd2Fe14B magnets were in-situ observed by Lorentz transmission electron microscopy (LTEM. The demagnetization process of hot-deformed sample is dominated by domain-wall pinning, while that of NdCu-diffused sample is mainly the magnetization reversal of single grains or grain aggregations. This firstly observed result gives an explicit evidence to understand the coercivity mechanism of magnetically segregated magnet. The effect of magnetic field of TEM on decrease in domain wall energy was theoretically analyzed, which helps to understand the in-situ observation process of magnetic materials.

  19. Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel

    Energy Technology Data Exchange (ETDEWEB)

    Nikravesh, M., E-mail: nikravesh@yahoo.com [Department of Material Science and Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Naderi, M. [Department of Mining and Metallurgy, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Akbari, G.H. [Department of Material Science and Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of)

    2012-04-01

    Highlights: Black-Right-Pointing-Pointer Reduction of cooling rate, can cause to increase or decrease M{sub s} and M{sub f}. Black-Right-Pointing-Pointer 40% hot plastic deformation hindered the martensitic transformation. Black-Right-Pointing-Pointer Hot plastic deformation, caused to decrease M{sub f} and M{sub s}, while B{sub s} increased. Black-Right-Pointing-Pointer The critical cooling rate increased 40 Degree-Sign C/s due to apply 40% hot deformation. - Abstract: During hot stamping process, hot forming, cooling and phase transformations are performed in a single step. As a matter of fact, multifunctional phenomena happen and affect each other. Among these phenomena, martensitic and bainitic transformations have the greatest importance. In the current research, the start temperatures of martensite and bainite of 22MnB5 boron steel have been measured in undeformed and 40% deformed conditions, and in various cooling rates from 0.4 Degree-Sign C/s to 100 Degree-Sign C/s by means of deformation dilatometer. It is concluded that, reduction of cooling rate, could bring about an increase or decrease in M{sub s} and M{sub f}, depending on other phases formation before martensite. Also, hot plastic deformation, hindered the martensitic transformation and decreased M{sub f} and M{sub s} especially at lower cooling rates, while B{sub s} increased. Furthermore, the critical cooling rate, increased about 40 Degree-Sign C/s by applying 40% hot plastic deformation.

  20. Toughness enhancement of tungsten reinforced with short tungsten fibres

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhang, L.H. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Fang, Q.F., E-mail: qffang@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Zhang, T.; Wang, X.P.; Hao, T.; Liu, C.S. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-06

    The feasibility and toughening efficiency of the short tungsten fibre reinforcement on tungsten were investigated in W{sub f}/W composites fabricated by powder metallurgy method of spark plasma sintering. Fibres in the composites presented a Z-free laminar structure. Partial recrystallization of fibre grains occurred but fibre crack or damage was not detected. Fracture energy of W{sub f}/W composites was estimated in tensile tests, and the results indicated great toughness improvement over pure tungsten in virtue of frictional pullout and plastic deformation of fibres, and matrix-fibres interfacial debonding since 873 K. The specimen with mass fraction of 10% and fibre diameter of 100 µm exhibits the largest elongation of 9±1.1% and the highest ultimate strength of 482±13 MPa at 873 K.

  1. Modelling and simulations in hot deformation of steels

    International Nuclear Information System (INIS)

    Cabrera, J.M.

    2002-01-01

    Traditionally, hot forming has been employed to provide shape to metals. Nowadays, however, hot working not only produces the desired geometry, but also the mechanical characteristics required. An understanding of the thermomechanical behaviour of metals, and particularly steels, is essential in the simulation and control of the hot forming operations. Moreover, a right prediction of the final properties needs from accurate descriptions of the microstructural features occurring during the shaping step. For this purpose, the determination of constitutive equations describing the stress σ - strain ε relationships at a given strain rate ε, temperature T and initial microstructure, is a useful task. In this sense, computer simulations of hot working processes proportionate a benchmark to engineers and researchers and allow decreasing the cost of developing products and processes. With regard to the prediction of the final microstructure, the simulation of the hot plastic deformation usually gives unsatisfactory results. This is due to the inadequate constitutive equations employed by the conventional and commercial software available to describe the hot flow behaviour. There are scarce models which couple the typical hot working variables (temperature, strain and strain rate) with microstructural characteristics such as grain size. In this review work is presented how the latter limitation can be overcome by using physical-based constitutive equations, some of which have been partially developed by the present authors, where account of the interaction between microstructure and processing variables is taken. Moreover, a practical derivation of the latter expressions on an AISI-304 steel is presented. To conclude, some examples of industrial applications of the latter approach are also presented. Copyright (2002) AD-TECH - International Foundation for the Advancement of Technology Ltd

  2. Preparation and Dynamic Mechanical Properties at Elevated Temperatures of a Tungsten/Glass Composite

    Science.gov (United States)

    Gao, Chong; Wang, Yingchun; Ma, Xueya; Liu, Keyi; Wang, Yubing; Li, Shukui; Cheng, Xingwang

    2018-03-01

    Experiments were conducted to prepare a borosilicate glass matrix composite containing 50 vol.% tungsten and examine its dynamic compressive behavior at elevated temperatures in the range of 450-775 °C. The results show that the homogenous microstructure of the tungsten/glass composite with relative density of 97% can be obtained by hot-pressing sintering at 800 °C for 1 h under pressure of 30 MPa. Dynamic compressive testing was carried out by a separate Hopkinson pressure bar system with a synchronous device. The results show that the peak stress decreases and the composite transforms from brittle to ductile in nature with testing temperature increasing from 450 to 750 °C. The brittle-ductile transition temperature is about 500 °C. Over 775 °C, the composite loses load-bearing capacity totally because of the excessive softening of the glass phase. In addition, the deformation and failure mechanism were analyzed.

  3. Hot deformation behaviors and processing maps of B{sub 4}C/Al6061 neutron absorber composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yu-Li [School of Materials Science and Engineering, Taiyuan University Of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Wen-Xian, E-mail: Wangwenxian@tyut.edu.cn [School of Materials Science and Engineering, Taiyuan University Of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, Jun [School of Materials Science and Engineering, Taiyuan University Of Technology, Taiyuan 030024 (China); Department of Mechanical Engineering, Pennsylvania State University Erie, The Behrend College, Erie, PA 16563 (United States); Chen, Hong-Sheng [School of Materials Science and Engineering, Taiyuan University Of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-02-15

    In this study, the hot deformation behaviors of 30 wt.% B{sub 4}C/Al6061 neutron absorber composites (NACs) have been investigated by conducting isothermal compression tests at temperatures ranging from 653 K to 803 K and strain rates from 0.01 to 10 s{sup −1}. It was found that, during hot compression, the B{sub 4}C/Al6061 NACs exhibited a steady flow characteristic which can be expressed by the Zener-Hollomon parameter as a hyperbolic-sine function of flow stress. High average activation energy (185.62 kJ/mol) of B{sub 4}C/Al6061 NACs is noted in current study owing to the high content of B{sub 4}C particle. The optimum hot working conditions for B{sub 4}C/Al6061 NACs are found to be 760–803 K/0.01–0.05 s{sup −1} based on processing map and microstructure evolution. Typical material instabilities are thought to be attributed to void formation, adiabatic shear bands (ASB), particle debonding, and matrix cracking. Finally, the effect of the plastic deformation zones (PDZs) on the microstructure evolution in this 30 wt.% B{sub 4}C/Al6061 composite is found to be very important. - Highlights: •The hot deformation behavior of the 30 wt.% B{sub 4}C/Al6061 NACs was first analyzed. •The 3D efficiency map and the instability map are developed. •The optimum hot working conditions were identified and validated by SEM and TEM. •The hot deformation schematic diagram of 30 wt.% B{sub 4}C/Al6061 NACs is developed.

  4. A novel method for shape analysis: deformation of bubbles during wire drawing in doped tungsten

    International Nuclear Information System (INIS)

    Harmat, P.; Bartha, L.; Grosz, T.; Rosta, L.

    2001-01-01

    A novel technique has been developed for monitoring shape and size of microscopic pores, bubbles, second phase particles in deformed PM materials. The anisotropic small angle neutron scattering (ASANS) measurement provides direct visualization of the shape of second phase objects after rolling, swaging, wire drawing. Also in case of mixture of different objects e. g. uniformly elongated bubbles and spherical ones they can be separated and their morphological parameters like relative number density, diameter, aspect ratio can be obtained from the quantitative analysis of ASANS data. Rods and wires from K-AI-Si doped tungsten containing residual porosity and K filled bubbles were studied from 6 mm to 0.2 mm in diameter. The increase of the average aspect ratio (∼1/d) was found to be much slower than expected from the usual theory (∼1/d 3 ). Instead of 'constant volume' assumption, the 'constant length' seems to be reliable. The ASANS investigation revealed also the occurrence of a small amount of spherical bubbles after several steps of wire drawing. (author)

  5. Room temperature deformation mechanisms in ultrafine-grained materials processed by hot isostatic pressing

    International Nuclear Information System (INIS)

    Cao, W.Q.; Dirras, G.F.; Benyoucef, M.; Bacroix, B.

    2007-01-01

    Ultrafine-grained (uf-g) and microcrystalline-grained (mc-g) irons have been fabricated by hot isostatic pressing of nanopowders. The mechanical properties have been characterized by compressive tests at room temperature and the resulting microstructures and textures have been determined by combining electron back scatter diffraction and transmission electron microscopy. A transition of the deformation mode, from work hardening to work softening occurs for grain sizes below ∼1 μm, reflecting a transition of the deformation mode from homogeneous to localized deformation into shear bands (SBs). The homogeneous deformation is found to be lattice dislocation-based while the deformation within SBs involves lattice dislocations as well as boundary-related mechanisms, possibly grain boundary sliding accommodated by boundary opening

  6. Boron effect on stainless steel plasticity under hot deformation

    International Nuclear Information System (INIS)

    Bulat, S.I.; Kardonov, B.A.; Sorokina, N.A.

    1978-01-01

    The effect of boron on plasticity of stainless steels at temperatures of hot deformation has been studied at three levels of alloying, i.e. 0-0.01% (micro-alloying or modifying), 0.01-0.02% (low alloying) and 0.02-2.0% (high alloying). Introduction of 0.001-0.005% of boron increases hot plasticity of both low and high carbon stainless steels due to decrease in grain size and strengthening of grain boundaries. Microalloying by boron has a positive effect at temperatures below 1200-1220 deg C. At higher temperatures, particularly when its content exceeds 0.008%, boron deteriorates plasticity by increasing the size of grains and weakening their boundaries. 0.1-2% boron strengthen the stainless steel and dectease its plasticity

  7. Thermal stability of a highly-deformed warm-rolled tungsten plate in the temperature range 1100 °C to 1250 °C

    DEFF Research Database (Denmark)

    Alfonso Lopez, Angel; Juul Jensen, Dorte; Luo, G.-N.

    2015-01-01

    plastic strain by 90% thickness reduction was investigated by isothermal annealing for up to 190 h in the temperature range between 1100 °C and 1250 °C. Vickers hardness testing allowed tracking the changes in mechanical properties caused by recovery and recrystallization. The hardness evolution could......Pure tungsten is considered as armor material for the most critical parts of fusion reactors (i.e. the divertor and the first wall), among other reasons due to its high melting point (3422 °C) and recrystallization temperature. The thermal stability of a pure tungsten plate warm-rolled to a high...... suggest that large plastic deformations (e.g. applied during shaping) are only suitable to produce tungsten components to be used at relatively low temperatures (up to 900 °C for a 2 years lifespan). Higher operation temperatures will lead to fast degradation of the microstructure during operation....

  8. Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy

    Science.gov (United States)

    Zhang, Yi; Sun, Huili; Volinsky, Alex A.; Wang, Bingjie; Tian, Baohong; Liu, Yong; Song, Kexing

    2018-02-01

    Hot compressive deformation behavior of the Cu-Zr-Ce alloy has been investigated according to the hot deformation tests in the 550-900 °C temperature range and 0.001-10 s-1 strain rate range. Based on the true stress-true strain curves, the flow stress behavior of the Cu-Zr-Ce alloy was investigated. Microstructure evolution was observed by optical microscopy. Based on the experimental results, a constitutive equation, which reflects the relationships between the stress, strain, strain rate and temperature, has been established. Material constants n, α, Q and ln A were calculated as functions of strain. The equation predicting the flow stress combined with these materials constants has been proposed. The predicted stress is consistent with experimental stress, indicating that developed constitutive equation can adequately predict the flow stress of the Cu-Zr-Ce alloy. Dynamic recrystallization critical strain was determined using the work hardening rate method. According to the dynamic material model, the processing maps for the Cu-Zr and Cu-Zr-Ce alloy were obtained at 0.4 and 0.5 strain. Based on the processing maps and microstructure observations, the optimal processing parameters for the two alloys were determined, and it was found that the addition of Ce can promote the hot workability of the Cu-Zr alloy.

  9. An experimental study of deformation mechanism and microstructure evolution during hot deformation of Ti–6Al–2Zr–1Mo–1V alloy

    International Nuclear Information System (INIS)

    He, D.; Zhu, J.C.; Lai, Z.H.; Liu, Y.; Yang, X.W.

    2013-01-01

    Highlights: ► Isothermal tensile deformations were carried on Ti–6Al–2Zr–1Mo–1V titanium alloy. ► Deformation activations were calculated based on kinetics rate equations. ► Deformation mechanisms are dislocation creep and self-diffusion at 800 and 850 °C. ► Microstructure globularization mechanisms varied with deformation temperature. ► Recrystallization mechanism changed from CDRX to DDRX as temperature increasing. - Abstract: Isothermal tensile tests have been performed to study the deformation mechanisms and microstructure evolution of Ti–6Al–2Zr–1Mo–1V titanium alloy in the temperature range 750–850 °C and strain rate range 0.001–0.1 s −1 . The deformation activations have been calculated based on kinetics rate equation to investigate the hot deformation mechanism. Microstructures of deformed samples have been analyzed by electron backscatter diffraction (EBSD) to evaluate the influences of hot deformation parameters on the microstructure evolution and recrystallization mechanism. The results indicate that deformation mechanisms vary with deformation conditions: at medium (800 °C) and high (850 °C) temperature, the deformation is mainly controlled by the mechanisms of dislocation creep and self-diffusion, respectively. The microstructure globularization mechanisms also depend on deformation temperature: in the temperature range from 750 to 800 °C, the high angle grain boundaries are mainly formed via dislocation accumulation or subgrain boundaries sliding and subgrains rotation; while at high temperature of 850 °C, recrystallization is the dominant mechanism. Especially, the evolution of the recrystallization mechanism with the deformation temperature is first observed and investigated in TA15 titanium alloy

  10. Characterization of precipitates in a hot-deformed hypereutectic Al–Si alloy

    International Nuclear Information System (INIS)

    He Kezhun; Yu Fuxiao; Zhao Dazhi; Zuo Liang

    2012-01-01

    Highlights: ► Produce direct chill cast billet of Al–17.5Si–4.5Cu–1Zn–0.7Mg–0.5Ni alloy with fine structure. ► Direct chill cast Al–17.5Si–4.5Cu–1Zn–0.7Mg–0.5Ni alloys could be hot-deformed. ► The hot-deformed Al–17.5Si–4.5Cu–1Zn–0.7Mg–0.5Ni alloy exhibit superior mechanical properties. ► Offer HRTEM images and lattice parameters of θ″/θ′ (Al, Cu) and Q″/ Q′ (Al, Cu, Mg, Si) phases. - Abstract: The mechanical properties and precipitates of a hot-deformed Al–17.5Si–4.5Cu–1Zn–0.7Mg–0.5Ni alloy have been investigated by examining samples aged for periods of 4–16 h at temperatures of 120, 150 and 180 °C. The ultimate tensile strength of the alloy aged at 150 °C increases with the increase of aging time and achieves peak value of 396 MPa after 16 h of aging. High resolution transmission electron microscopy (HRTEM) observation and energy dispersive spectroscopy (EDS) were carried out to investigate the morphologies and compositions of the precipitates. It is proposed that the precipitation sequences of the alloy are likely to be as follows: supersaturated solid solution → GP zones → θ″ phase → θ′ phase → θ phase; supersaturated solid solution → GP zones → Q″ phase → Q′ phase → Q phase. The appearance of peak-strengthening can be attributed to the homogeneously distribution of the fine plate-shaped θ″ phase within the matrix.

  11. Structure and magnetic properties of hot deformed Nd2Fe14B magnets doped with DyHx nanoparticles

    Science.gov (United States)

    Wang, C. G.; Yue, M.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.

    2016-04-01

    Commercial NdFeB powders mixed with DyHx nanoparticles are hot pressed and hot deformed into anisotropic magnets by Spark Plasma Sintering (SPS). The hot deformed magnet exhibits strong c-axis crystallographic texture. The coercivity of the magnet doped with 1.0 wt% DyHx is increased by 66.7%, compared with the magnet without DyHx, while the remanence decreases only by 3%. TEM observation shows that there exists a continuous (Nd,Dy)2Fe14B layer between Nd-rich phase and NdFeB main phase.

  12. Factors affecting the deformation of tungsten (a literature survey)

    International Nuclear Information System (INIS)

    Ludwig, R.L.

    1978-01-01

    Background information relative to wrought tungsten forming was required in support of development studies. Seven principal areas of tungsten metallurgy were of interest: fabrication methods, delamination, recrystallization, heat treatment, fracture characteristics, impurity effects, and surface treatments. Pertinent information in Metal Abstracts from 1967 to mid 1977 was summarized for each area. Only a few papers were reviewed in their entirety; the great majority of information was derived from abstracts of the papers. 61 references

  13. Sequential and simultaneous thermal and particle exposure of tungsten

    International Nuclear Information System (INIS)

    Steudel, I; Huber, A; Kreter, A; Linke, J; Sergienko, G; Unterberg, B; Wirtz, M

    2016-01-01

    The broad array of expected loading conditions in a fusion reactor such as ITER necessitates high requirements on the plasma facing materials (PFMs). Tungsten, the PFM for the divertor region, the most affected part of the in-vessel components, must thus sustain severe, distinct exposure conditions. Accordingly, comprehensive experiments investigating sequential and simultaneous thermal and particle loads were performed on double forged pure tungsten, not only to investigate whether the thermal and particle loads cause damage but also if the sequence of exposure maintains an influence. The exposed specimens showed various kinds of damage such as roughening, blistering, and cracking at a base temperature where tungsten could be ductile enough to compensate the induced stresses exclusively by plastic deformation (Pintsuk et al 2011 J. Nucl. Mater. 417 481–6). It was found out that hydrogen has an adverse effect on the material performance and the loading sequence on the surface modification. (paper)

  14. Hot deformation behavior of AA5383 alloy

    Science.gov (United States)

    Du, Rou; Giraud, Eliane; Mareau, Charles; Ayed, Yessine; Santo, Philippe Dal

    2018-05-01

    Hot forming processes are widely used in deep drawing applications due to the ability of metallic materials to sustain large deformations. The optimization of such forming processes often requires the mechanical behavior to be accurately described. In this study, the hot temperature behavior of a 5383 aluminum alloy is investigated. In this perspective, different uniaxial tension tests have been carried out on dog-bone shaped specimens using a specific experimental device. The temperature and strain rate ranges of interest are 623˜723 K and 0.0001˜0.1 s-1, respectively. An inverse method has been used to determine the flow curves from the experimental force-displacement data. The material exhibits a slight flow stress increase beyond the yield point for most configurations. Softening phenomenon exists at high strain rates and high temperatures. A new model based on the modification of a modified Zerilli-Armstrong model is proposed to describe the stress-strain responses. Genetic algorithm optimization method is used for the identification of parameters for the new model. It is found that the new model has a good predictability under the experimental conditions. The application of this model is validated by shear and notched tension tests.

  15. Hetero- and homogeneous three-dimensional hierarchical tungsten oxide nanostructures by hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Houweling, Z.S., E-mail: Silvester.Houweling@asml.com [Utrecht University, Debye Institute for Nanomaterials Science, Nanophotonics—Physics of Devices, Princetonlaan 4, 3584 CB Utrecht (Netherlands); Harks, P.-P.R.M.L.; Kuang, Y.; Werf, C.H.M. van der [Utrecht University, Debye Institute for Nanomaterials Science, Nanophotonics—Physics of Devices, Princetonlaan 4, 3584 CB Utrecht (Netherlands); Geus, J.W. [Utrecht University, Inorganic Chemistry and Catalysis, Padualaan 8, 3584 CH Utrecht (Netherlands); Schropp, R.E.I. [Utrecht University, Debye Institute for Nanomaterials Science, Nanophotonics—Physics of Devices, Princetonlaan 4, 3584 CB Utrecht (Netherlands)

    2015-01-30

    We present the synthesis of three-dimensional tungsten oxide (WO{sub 3−x}) nanostructures, called nanocacti, using hot-wire chemical vapor deposition. The growth of the nanocacti is controlled through a succession of oxidation, reduction and re-oxidation processes. By using only a resistively heated W filament, a flow of ambient air and hydrogen at subatmospheric pressure, and a substrate heated to about 700 °C, branched nanostructures are deposited. We report three varieties of simple synthesis approaches to obtain hierarchical homo- and heterogeneous nanocacti. Furthermore, by using catalyst nanoparticles site-selection for the growth is demonstrated. The atomic, morphological and crystallographic compositions of the nanocacti are determined using a combination of electron microscopy techniques, energy-dispersive X-ray spectroscopy and electron diffraction. - Highlights: • Continuous upscalable hot-wire CVD of 3D hierarchical nanocacti • Controllable deposition of homo- and heterogeneous WO{sub 3−x}/WO{sub 3−y} nanocacti • Introduction of three synthesis routes comprising oxidation, reduction and re-oxidation processes • Growth of periodic arrays of hetero- and homogeneous hierarchical 3D nanocacti.

  16. Incorporation of tungsten metal fibers in a metal and ceramic matrix

    Directory of Open Access Journals (Sweden)

    V. Brozek

    2017-01-01

    Full Text Available Tungsten fibers have high tensile strength but a poor oxidation resistance at elevated temperatures. Using this first characteristic and to prevent oxidation of tungsten coated composite materials in which the primary requirement: reinforcement against destruction or deformation, was studied on tungsten fibers and tungsten wires which were coated by applying the metal and ceramic powders via plasma spraying device in plasma generator WSP®. Deposition took place in an atmosphere of Ar + 7 % H2, sufficient to reduce the oxidized trace amounts of tungsten.

  17. Deformation Characteristic and Constitutive Modeling of 2707 Hyper Duplex Stainless Steel under Hot Compression

    Directory of Open Access Journals (Sweden)

    Huabing Li

    2016-09-01

    Full Text Available Hot deformation behavior and microstructure evolution of 2707 hyper duplex stainless steel (HDSS were investigated through hot compression tests in the temperature range of 900–1250 °C and strain rate range of 0.01–10 s−1. The results showed that the flow behavior strongly depended on strain rate and temperature, and flow stress increased with increasing strain rate and decreasing temperature. At lower temperatures, many precipitates appeared in ferrite and distributed along the deformation direction, which could restrain processing of discontinuous dynamic recrystallization (DRX because of pinning grain boundaries. When the temperature increased to 1150 °C, the leading softening behaviors were dynamic recovery (DRV in ferrite and discontinuous DRX in austenite. When the temperature reached 1250 °C, softening behavior was mainly DRV in ferrite. The increase of strain rate was conducive to the occurrence of discontinuous DRX in austenite. A constitutive equation at peak strain was established and the results indicated that 2707 HDSS had a higher Q value (569.279 kJ·mol−1 than other traditional duplex stainless steels due to higher content of Cr, Mo, Ni, and N. Constitutive modeling considering strain was developed to model the hot deformation behavior of 2707 HDSS more accurately, and the correlation coefficient and average absolute relative error were 0.992 and 5.22%, respectively.

  18. Prediction of hot deformation behavior of high phosphorus steel using artificial neural network

    Science.gov (United States)

    Singh, Kanchan; Rajput, S. K.; Soota, T.; Verma, Vijay; Singh, Dharmendra

    2018-03-01

    To predict the hot deformation behavior of high phosphorus steel, the hot compression experiments were performed with the help of thermo-mechanical simulator Gleeble® 3800 in the temperatures ranging from 750 °C to 1050 °C and strain rates of 0.001 s-1, 0.01 s-1, 0.1 s-1, 0.5 s-1, 1.0 s-1 and 10 s-1. The experimental stress-strain data are employed to develop artificial neural network (ANN) model and their predictability. Using different combination of temperature, strain and strain rate as a input parameter and obtained experimental stress as a target, a multi-layer ANN model based on feed-forward back-propagation algorithm is trained, to predict the flow stress for a given processing condition. The relative error between predicted and experimental stress are in the range of ±3.5%, whereas the correlation coefficient (R2) of training and testing data are 0.99986 and 0.99999 respectively. This shows that a well-trained ANN model has excellent capability to predict the hot deformation behavior of materials. Comparative study shows quite good agreement of predicted and experimental values.

  19. Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. T. [Univ. of Wisconsin, Madison, WI (United States); Akerley, J. [Ormat Technologies Inc., Reno, NV (United States); Baluyut, E. C. [Univ. of Wisconsin, Madison, WI (United States); Cardiff, M. [Univ. of Wisconsin, Madison, WI (United States); Davatzes, N. C. [Temple Univ., Philadelphia, PA (United States). Dept. of Earth and Environmental Science; Feigl, K. L. [Univ. of Wisconsin, Madison, WI (United States); Foxall, W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fratta, D. [Univ. of Wisconsin, Madison, WI (United States); Mellors, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spielman, P. [Ormat Technologies Inc., Reno, NV (United States); Wang, H. F. [Univ. of Wisconsin, Madison, WI (United States); Zemach, E. [Ormat Technologies Inc., Reno, NV (United States)

    2016-05-01

    We analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions to measure and characterize time-dependent deformation at the Brady Hot Springs geothermal field in western Nevada due to extraction of fluids. The long axis of the ~4 km by ~1.5 km elliptical subsiding area coincides with the strike of the dominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. This signature occurs consistently in all of the well-correlated interferometric pairs spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, likely associated with damaged regions where fault segments mechanically interact. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing a high permeability conduit to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We also explore mechanisms that could potentially cause the observed deformation, including thermal contraction of rock, decline in pore pressure and dissolution of minerals over time.

  20. The hot deformation behavior and microstructure evolution of HA/Mg-3Zn-0.8Zr composites for biomedical application.

    Science.gov (United States)

    Liu, Debao; Liu, Yichi; Zhao, Yue; Huang, Y; Chen, Minfang

    2017-08-01

    The hot deformation behavior of nano-sized hydroxylapatite (HA) reinforced Mg-3Zn-0.8Zr composites were performed by means of Gleeble-1500D thermal simulation machine in a temperature range of 523-673K and a strain rate range of 0.001-1s -1 , and the microstructure evolution during hot compression deformation were also investigated. The results show that the flow stress increases increasing strain rates at a constant temperature, and decreases with increasing deforming temperatures at a constant strain rate. Under the same processing conditions, the flow stresses of the 1HA/Mg-3Zn-0.8Zr specimens are higher than those of the Mg-3Zn-0.8Zr alloy specimens, and the difference is getting closer with increasing deformation temperature. The hot deformation behaviors of Mg-3Zn-0.8Zr and 1HA/Mg-3Zn-0.8Zr can be described by constitutive equation of hyperbolic sine function with the hot deformation activation energy being 124.6kJ/mol and 125.3kJ/mol, respectively. Comparing with Mg-3Zn-0.8Zr alloy, the instability region in the process map of 1HA/Mg-3Zn-0.8Zr expanded to a bigger extent at the same conditions. The optimum process conditions of 1HA/Mg-3Zn-0.8Zr composite is concluded as between the temperature window of 573-623K with a strain rate range of 0.001-0.1s -1 . A higher volume fraction and smaller grain size of dynamic recrystallization (DRX) grains was observed in 1HA/Mg-3Zn-0.8Zr specimens after the hot compression deformation compared with Mg-3Zn-0.8Zr alloy, which was ascribed to the presence of the HA particles that play an important role in particle-stimulated nucleation (PSN) mechanism and can effectively hinder the migration of interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Microstructural Evolution and Constitutive Relationship of M350 Grade Maraging Steel During Hot Deformation

    Science.gov (United States)

    Chakravarthi, K. V. A.; Koundinya, N. T. B. N.; Narayana Murty, S. V. S.; Nageswara Rao, B.

    2017-03-01

    Maraging steels exhibit extraordinary strength coupled with toughness and are therefore materials of choice for critical structural applications in defense, aerospace and nuclear engineering. Thermo-mechanical processing is an important step in the manufacture of these structural components. This process assumes significance as these materials are expensive and the mechanical properties obtained depend on the microstructure evolved during thermo-mechanical processing. In the present study, M350 grade maraging steel specimens were hot isothermally compressed in the temperature range of 900-1200 °C and in the strain rate range of 0.001-100 s-1, and true stress-true strain curves were generated. The microstructural evolution as a function of strain rate and temperature in the deformed compression specimens was studied. The effect of friction between sample and compression dies was evaluated, and the same was found to be low. The measured flow stress data was used for the development of a constitutive model to represent the hot deformation behavior of this alloy. The proposed equation can be used as an input in the finite element analysis to obtain the flow stress at any given strain, strain rate, and temperature useful for predicting the flow localization or fracture during thermo-mechanical simulation. The activation energy for hot deformation was calculated and is found to be 370.88 kJ/mol, which is similar to that of M250 grade maraging steel.

  2. Flux threshold measurements of He-ion beam induced nanofuzz formation on hot tungsten surfaces

    International Nuclear Information System (INIS)

    Meyer, F W; Hijazi, H; Bannister, M E; Unocic, K A; Garrison, L M; Parish, C M

    2016-01-01

    We report measurements of the energy dependence of flux thresholds and incubation fluences for He-ion induced nano-fuzz formation on hot tungsten surfaces at UHV conditions over a wide energy range using real-time sample imaging of tungsten target emissivity change to monitor the spatial extent of nano-fuzz growth, corroborated by ex situ SEM and FIB/SEM analysis, in conjunction with accurate ion-flux profile measurements. The measurements were carried out at the multicharged ion research facility (MIRF) at energies from 218 eV to 8.5 keV, using a high-flux deceleration module and beam flux monitor for optimizing the decel optics on the low energy MIRF beamline. The measurements suggest that nano-fuzz formation proceeds only if a critical rate of change of trapped He density in the W target is exceeded. To understand the energy dependence of the observed flux thresholds, the energy dependence of three contributing factors: ion reflection, ion range and target damage creation, were determined using the SRIM simulation code. The observed energy dependence can be well reproduced by the combined energy dependences of these three factors. The incubation fluences deduced from first visual appearance of surface emissivity change were (2–4) × 10 23 m −2 at 218 eV, and roughly a factor of 10 less at the higher energies, which were all at or above the displacement energy threshold. The role of trapping at C impurity sites is discussed. (paper)

  3. The characteristic of deformability and quantitative description of the microstructure of hot-deformed Ni-Fe superalloy

    Directory of Open Access Journals (Sweden)

    Ducki K. J.

    2017-03-01

    Full Text Available The paper presents the results of research concerning the influence of hot plastic working parameters on the deformability and microstructure of a Ni-Fe superalloy. The research was performed on a torsion plastometer in the range of temperatures of 900-1150°C, at a strain rates 0.1 and 1.0 s-1. Plastic properties of the alloy were characterized by the worked out flow curves and the temperature relationships of flow stress and strain limit. The structural inspections were performed on microsections taken from plastometric samples after so-called “freezing”. The stereological parameters as the recrystallized grain size, inhomogenity and grain shape have been determined. Functional relations between the Zener-Hollomon parameter and the maximum yield stress and the average grain area have been developed and the activation energy for hot working has been estimated.

  4. Interface strength measurement of tungsten coatings on F82H substrates

    International Nuclear Information System (INIS)

    Kim, Hyoungil; El-Awady, Jaafar; Gupta, Vijay; Ghoniem, Nasr; Sharafat, Shahram

    2009-01-01

    In the current work, hot isostatic pressing is adopted to deposit tungsten coatings on F82H substrates. The interface strength of the W/F82H samples is measured using the Laser Spallation technique and the microstructure is analyzed to determine the strength of the coating. Finally, the failure mechanisms of the hot isostatic pressing versus vacuum plasma spraying tungsten coatings and their different failure strengths are compared. It is concluded that the hot isostatic pressing process ensures a good adhesion for the W/F82H interface while the vacuum plasma spraying process results in relatively lower failure strength for the W-coating itself due to the high porosity in the coating.

  5. Hot deforming effect on the isothermal transformation of a steel for hot working schedules; Efeito da deformacao a quente sobre a transformacao isotermica de um aco para trabalho a quente

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca Lima, Ricardo Fonseca de; Nogueira, Marcos Alexandre Stuart [Acos Villares SA, Rio de Janeiro, RJ (Brazil)

    1989-12-31

    The effect of hot deformation of austenite on its isothermal deformation at 645 deg C and on the final grain size, obtained after hardening, has been investigated. The deformation was given to compression with different degrees of reduction of the material. (author) 18 refs., 13 figs., 1 tab.

  6. Structure and magnetic properties of hot deformed Nd{sub 2}Fe{sub 14}B magnets doped with DyH{sub x} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.G.; Yue, M., E-mail: yueming@bjut.edu.cn; Zhang, D.T.; Liu, W.Q.; Zhang, J.X.

    2016-04-15

    Commercial NdFeB powders mixed with DyH{sub x} nanoparticles are hot pressed and hot deformed into anisotropic magnets by Spark Plasma Sintering (SPS). The hot deformed magnet exhibits strong c-axis crystallographic texture. The coercivity of the magnet doped with 1.0 wt% DyH{sub x} is increased by 66.7%, compared with the magnet without DyH{sub x}, while the remanence decreases only by 3%. TEM observation shows that there exists a continuous (Nd,Dy){sub 2}Fe{sub 14}B layer between Nd-rich phase and NdFeB main phase. - Highlights: • The hot deformed magnet exhibits strong c-axis crystallographic texture. • The coercivity of the magnet significantly improved, and the remanence decreases slight. • TEM observation shows that there exists a continuous (Nd,Dy){sub 2}Fe{sub 14}B layer.

  7. Cyclic hot firing results of tungsten-wire-reinforced, copper-lined thrust chambers

    Science.gov (United States)

    Kazaroff, John M.; Jankovsky, Robert S.

    1990-01-01

    An advanced thrust liner material for potential long life reusable rocket engines is described. This liner material was produced with the intent of improving the reusable life of high pressure thrust chambers by strengthening the chamber in the hoop direction, thus avoiding the longitudinal cracking due to low cycle fatigue that is observed in conventional homogeneous copper chambers, but yet not reducing the high thermal conductivity that is essential when operating with high heat fluxes. The liner material produced was a tungsten wire reinforced copper composite. Incorporating this composite into two hydrogen-oxygen test rocket chambers was done so that its performance as a reusable liner material could be evaluated. Testing results showed that both chambers failed prematurely, but the crack sites were perpendicular to the normal direction of cracking indicating a degree of success in containing the tremendous thermal strain associated with high temperature rocket engines. The failures, in all cases, were associated with drilled instrumentation ports and no other damages or deformations were found elsewhere in the composite liners.

  8. Enhanced Hot Tensile Ductility of Mg-3Al-1Zn Alloy Thin-Walled Tubes Processed Via a Combined Severe Plastic Deformation

    Science.gov (United States)

    Fata, A.; Eftekhari, M.; Faraji, G.; Mosavi Mashhadi, M.

    2018-05-01

    In the current study, combined parallel tubular channel angular pressing (PTCAP) and tube backward extrusion (TBE), as a recently developed severe plastic deformation (SPD) method, were applied at 300 °C on a commercial Mg-3Al-1Zn alloy tubes to achieve an ultrafine grained structure. Then, the microstructure, hardness, tensile properties, and fractography evaluations were done at room temperature on the SPD-processed samples. Also, to study the hot tensile ductility of the SPD-processed samples, tensile testing was performed at an elevated temperature of 400 °C, and then, the fractured surface of the tensile samples was studied. It was observed that a bimodal microstructure, with large gains surrounded by many tiny ones, was created in the sample processed by PTCAP followed by TBE. This microstructure led to reach higher hardness and higher strength at room temperature and also led to reach very high elongation to failure ( 181%) at 400 °C. Also, the value of elongation to failure for this sample was 14.1% at room temperature. The fractographic SEM images showed the occurrence of predominately ductile fracture in the samples pulled at 400 °C. This was mostly due to the nucleation of microvoids and their subsequent growth and coalescence with each other.

  9. Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718

    International Nuclear Information System (INIS)

    Wang, Y.; Shao, W.Z.; Zhen, L.; Zhang, X.M.

    2008-01-01

    Microstructure evolution during dynamic recrystallization (DRX) of superalloy 718 was studied by optical microscope and electron backscatter diffraction (EBSD) technique. Compression tests were performed at different strains at temperatures from 950 deg. C to 1120 deg. C with a strain rate of 10 -1 s -1 . Microstructure observations show that the recrystallized grain size as well as the fraction of new grains increases with the increasing temperature. A power exponent relationship is obtained between the dynamically recrystallized grain size and the peak stress. It is found that different nucleation mechanisms for DRX are operated in hot deformed superalloy 718, which is closely related to deformation temperatures. DRX nucleation and development are discussed in consideration of subgrain rotation or twinning taking place near the original grain boundaries. Particular attention is also paid to the role of continuous dynamic recrystallization (CDRX) at both higher and lower temperatures

  10. Overview of processing technologies for tungsten-steel composites and FGMs for fusion applications

    Directory of Open Access Journals (Sweden)

    Matějíček Jiří

    2015-06-01

    Full Text Available Tungsten is a prime candidate material for the plasma-facing components in future fusion devices, e.g. ITER and DEMO. Because of the harsh and complex loading conditions and the differences in material properties, joining of the tungsten armor to the underlying construction and/or cooling parts is a complicated issue. To alleviate the thermal stresses at the joint, a sharp interface may be replaced by a gradual one with a smoothly varying composition. In this paper, several techniques for the formation of tungsten-steel composites and graded layers are reviewed. These include plasma spraying, laser cladding, hot pressing and spark plasma sintering. Structure, composition and selected thermal and mechanical properties of representative layers produced by each of these techniques are presented. A summary of advantages and disadvantages of the techniques and an assessment of their suitability for the production of plasma-facing components is provided.

  11. Morphology and hot deformation of lamellar microstructures in zirconium and titanium alloys

    International Nuclear Information System (INIS)

    Vanderesse, N.

    2008-06-01

    This study aims at providing a precise description of the lamellar microstructures of two alloys, Zircaloy-4 and TA6V, and at characterizing their deformation at high temperature. New experimental techniques have been developed for these materials: instrumented Jominy end quench test, channel-die with mobile walls, X-ray microtomography. The main results underline the role of the alpha-GB phase formed at the prior beta grain boundaries on the variant selection in Zircaloy-4 and TA6-V. The three dimensional organization of the colonies in TA6V is also revealed for the first time and discussed in relationship with the formation of the microstructure. In hot compressed Zircaloy-4 several mechanisms of strain localization are observed. Twinning activity at 750 C, in particular, is clearly put into evidence. A classification of these heterogeneities is proposed and their influence on the recrystallization is discussed. (author)

  12. Dislocation-mediated strain hardening in tungsten: Thermo-mechanical plasticity theory and experimental validation

    Science.gov (United States)

    Terentyev, Dmitry; Xiao, Xiazi; Dubinko, A.; Bakaeva, A.; Duan, Huiling

    2015-12-01

    A self-consistent thermo-mechanical model to study the strain-hardening behavior of polycrystalline tungsten was developed and validated by a dedicated experimental route. Dislocation-dislocation multiplication and storage, as well dislocation-grain boundary (GB) pinning were the major mechanisms underlying the evolution of plastic deformation, thus providing a link between the strain hardening behavior and material's microstructure. The microstructure of the polycrystalline tungsten samples has been thoroughly investigated by scanning and electron microscopy. The model was applied to compute stress-strain loading curves of commercial tungsten grades, in the as-received and as-annealed states, in the temperature range of 500-1000 °C. Fitting the model to the independent experimental results obtained using a single crystal and as-received polycrystalline tungsten, the model demonstrated its capability to predict the deformation behavior of as-annealed samples in a wide temperature range and applied strain. The relevance of the dislocation-mediated plasticity mechanisms used in the model have been validated using transmission electron microscopy examination of the samples deformed up to different amounts of strain. On the basis of the experimental validation, the limitations of the model are determined and discussed.

  13. Study of the structural evolutions of crystalline tungsten oxide films prepared using hot-filament CVD

    International Nuclear Information System (INIS)

    Feng, P X; Wang, X P; Zhang, H X; Yang, B Q; Wang, Z B; Gonzalez-BerrIos, A; Morell, G; Weiner, B

    2007-01-01

    Structural evolutions of tungsten oxide(WO 3 ) samples on different substrates are studied using Raman spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction and x-ray photoelectron spectroscopy. The WO 3 samples are prepared using hot-filament CVD techniques. The focus of the study is on the evolutions of nano structures at different stages following deposition time. The experimental measurements reveal evolutions of the surface structures from uniform film to fractal-like structures, and eventually to nano particles, and crystalline structures from mono (0 1 0) crystalline thin film to polycrystalline thick film developments. The effect of high temperature on the nanostructured WO 3 is also investigated. Well-aligned nanoscale WO 3 rod arrays are obtained at a substrate temperature of up to 1400 deg. C. Further increasing the substrate temperature yields microscale crystalline WO 3 particles

  14. Hot Deformation Behavior and Pulse Current Auxiliary Isothermal Forging of Hot Pressing Sintering TiAl Based Alloys.

    Science.gov (United States)

    Shi, Chengcheng; Jiang, Shaosong; Zhang, Kaifeng

    2017-12-16

    This paper focuses on the fabrication of as-forged Ti46.5Al2Cr1.8Nb-(W, B) alloy via pulse current auxiliary isothermal forging (PCIF). The starting material composed of near gamma (NG) microstructure was fabricated by adopting pre-alloyed powders via hot pressing sintering (HPS) at 1300 °C. Isothermal compression tests were conducted at a strain rate range of 0.001-0.1 s -1 and a temperature range of 1125-1275 °C to establish the constitutive model and processing map. The optimal hot deformation parameters were successfully determined (in a strain rate range of 10 -3 -2.5 × 10 -3 s -1 and temperature range of 1130-1180 °C) based on the hot processing map and microstructure observation. Accordingly, an as-forged TiAl based alloy without cracks was successfully fabricated by PCIF processing at 1175 °C with a nominal strain rate of 10 -3 s -1 . Microstructure observation indicated that complete dynamic recrystallization (DRX) and phase transformation of γ→α₂ occurred during the PCIF process. The elongation of as-forged alloy was 136%, possessing a good secondary hot workability, while the sintered alloy was only 66% when tested at 900 °C with a strain rate of 2 × 10 -4 s -1 .

  15. Research on the hot deformation behavior of a Fe-Ni-Cr alloy (800H) at temperatures above 1000 °C

    Science.gov (United States)

    Cao, Yu; Di, Hongshuang

    2015-10-01

    Considering the pinning effect of fine carbides on grain boundaries, hot compression tests were performed above the dissolution temperature of Cr23C6 to investigate the hot deformation behavior of a Fe-Ni-Cr alloy (800H). The results show that the single peak stress associated with dynamic recrystalization (DRX) became more distinct at higher temperature and lower strain rate. The process of DRX was thoroughly stimulated when deformed above 1000 °C. Constitutive equations for hot deformation were established by regression analysis of conventional hyperbolic sine equation. The relationships between Zener-Hollomon parameter (Z) and the characteristic points of flow curves were established using the power law relation. Furthermore, kernel average misorientation (KAM) and grain orientation spread (GOS) were used to map the distribution of local misorientation and estimate the fraction of DRX, respectively. The critical strain and peak strain were used to predict the kinetics of DRX with the Avrami-type equation.

  16. Hot Deformation Behavior and a Two-Stage Constitutive Model of 20Mn5 Solid Steel Ingot during Hot Compression

    Directory of Open Access Journals (Sweden)

    Min Liu

    2018-03-01

    Full Text Available 20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft forging due to its strength, toughness, and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under a high temperature were not studied. For this article, hot compression experiments under temperatures of 850–1200 °C and strain rates of 0.01 s−1–1 s−1 were conducted using a Gleeble-1500D thermo-mechanical simulator. Flow stress-strain curves and microstructure after hot compression were obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relationship and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 solid steel ingot.

  17. Effect of deformations on the compactness of odd-Z superheavy nuclei formed in cold and hot fusion reactions

    Science.gov (United States)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2018-03-01

    Using the extended fragmentation theory, the compactness of hot and cold fusion reactions is analyzed for odd-Z nuclei ranging Z = 105- 117. The calculations for the present work are carried out at T = 0MeV and ℓ = 0 ħ, as the temperature and angular momentum effects remain silent while addressing the orientation degree of freedom (i.e. compact angle configuration). In the hot fusion, 48Ca (spherical) + actinide (prolate) reaction, the non-equatorial compact (nec) shape is obtained for Z = 113 nucleus. On the other hand, Z > 113 nuclei favor equatorial compact (ec) configuration. The distribution of barrier height (VB) illustrate that the ec-shape is obtained when the magnitude of quadrupole deformation of the nucleus is higher than the hexadecupole deformation. In other words, negligible or small -ve β4-deformations support ec configurations. On the other hand, large (+ve) magnitude of the β4-deformation suggests that the configuration appears for compact angle θc < 90 °, leading to nec structure. Similar deformation effects are observed for Bi-induced reactions, in which not belly-to-belly compact (nbbc) configurations are seen at θc = 42 °. In addition to the effect of β2 and β4-deformations, the exclusive role of octupole deformations (β3) is also analyzed. The β3-deformations do not follow the reflection symmetry as that of β2 and β4, leading to the possible occurrence of compact configuration within 0° to 180° angular range.

  18. Influence of recrystallization on thermal shock resistance of various tungsten grades

    International Nuclear Information System (INIS)

    Uytdenhouwen, I.; Decreton, M.; Hirai, T.; Linke, J.; Pintsuk, G.; Oost, G. van

    2007-01-01

    Thermal shock resistance of various tungsten grades (different manufacturing technologies and heat treatments) was examined under plasma disruption conditions, especially in the cracking regime, i.e. below the melting threshold. The tests have been simulated with the electron beam test facility JUDITH. The comparison of the thermal shock resistance showed that sintered tungsten appeared to be better than the deformed tungsten material and clear degradation after recrystallization was found. Damage processes linked to the mechanical properties of W are discussed

  19. Influence of sulphur and phosphorus on the hot deformation of Fe-Cr 13% high purity steel

    International Nuclear Information System (INIS)

    Lahreche, M.; Bouzabata, B.; Kobylanski, A.

    1995-01-01

    A series of Fe-Cr13%-C high purity steels containing increasing volume fractions of Sulphur (30, 60 and 100ppm) and Phosphorus (30, 60 and 100ppm) were prepared in order to study their hot deformation properties by tensile tests at various strain rates (10 -1 s -1 to 10 -4 s -1 ) and at temperatures from 700 C to 1100 C. It is observed that the hot ductility is lowered at 1000 C with the addition of sulphur. However, this decrease is relatively small (about 30% for 100ppm of sulphur) and quite similar for all additions of sulphur. When phosphorus is added, the embrittlement is along the whole deformed specimen. The usual criteria of ductility by parameter Z do not seem to be sufficient to describe this embrittlement. (orig.)

  20. Analysis of recrystallization behavior of hot-deformed austenite reconstructed from electron backscattering diffraction orientation maps of lath martensite

    International Nuclear Information System (INIS)

    Kubota, Manabu; Ushioda, Kohsaku; Miyamoto, Goro; Furuhara, Tadashi

    2016-01-01

    The recrystallization behavior of hot-deformed austenite of a 0.55% C steel at 800 °C was investigated by a method of reconstructing the parent austenite orientation map from an electron backscattering diffraction orientation map of lath martensite. Recrystallized austenite grains were clearly distinguished from un-recrystallized austenite grains. Very good correlation was confirmed between the static recrystallization behavior investigated mechanically by double-hit compression tests and the change in austenite microstructure evaluated by the reconstruction method. The recrystallization behavior of hot-deformed 0.55% C steel at 800 °C is directly revealed and it was observed that by addition of 0.1% V the recrystallization was significantly retarded.

  1. Experimental study of parallel multi-tungsten wire Z-pinch

    International Nuclear Information System (INIS)

    Huang Xianbin; China Academy of Engineering Physics, Mianyang; Lin Libin; Yang Libing; Deng Jianjun; Gu Yuanchao; Ye Shican; Yue Zhengpu; Zhou Shaotong; Li Fengping; Zhang Siqun

    2005-01-01

    The study of three parallel tungsten wire loads and five parallel tungsten wire loads implosion experiment on accelerator 'Yang' are reported. Tungsten wires (φ17 μm) with separation of 1 mm were used. The pinch was driven by a 350 kA peak current, 80 ns 10%-90% rise time. By means of pinhole camera and X-ray diagnostics technology, a non-uniform plasma column is formed among the wires and soft X-ray pulse are observed. the change of load current are analyzed, the development of sausage instability and kink instability, 'hot spot' effect and dispersion spot for plasma column are also discussed. (authors)

  2. Mechanism of texture formation by hot deformation in rapidly quenched FeNdB

    International Nuclear Information System (INIS)

    Li, L.; Graham, C.D. Jr.

    1990-01-01

    The development of crystallographic texture in rapidly quenched Fe 14 Nd 2 B has been investigated by hot deformation. The method was to catch the process in a state of partial completion, and then use transmission electron microscopy to examine the structure. The degree of texture formation was determined by x-ray diffraction and by magnetic measurements, and the hardness and the anisotropy in hardness were measured up to 600 degree C. It was concluded, in agreement with others but with additional evidence, that preferential growth of favorably oriented grains during plastic deformation produces the texture. The nature of the plastic deformation remains unclear, since no dislocations are observed in Fe 14 Nd 2 B. It was found that when samples are compressed at temperatures near 600 degree C under low stresses for long times, they become Nd rich at the bottom, presumably because of flow of the Nd-rich liquid phase under the influence of gravity. In such samples, plastic deformation and crystallographic orientation occurs preferentially at the Nd-rich end

  3. In-Situ Characterization of Deformation and Fracture Behavior of Hot-Rolled Medium Manganese Lightweight Steel

    Science.gov (United States)

    Zhao, Zheng-zhi; Cao, Rong-hua; Liang, Ju-hua; Li, Feng; Li, Cheng; Yang, Shu-feng

    2018-02-01

    The deformation and fracture behavior of hot-rolled medium manganese lightweight (0.32C-3.85Mn-4.18Al-1.53Si) steel was revealed by an in situ tensile test. Deformed δ-ferrite with plenty of cross-parallel deformation bands during in situ tensile tests provides δ-ferrite of good plasticity and ductility, although it is finally featured by the cleavage fracture. The soft and ductile δ-ferrite and high-volume fraction of austenite contribute to the superior mechanical properties of medium manganese lightweight steel heated at 800°C, with a tensile strength of 924 MPa, total elongation of 35.2% and product of the strength and elongation of 32.5 GPa %.

  4. Qualification and post-mortem characterization of tungsten mock-ups exposed to cyclic high heat flux loading

    Energy Technology Data Exchange (ETDEWEB)

    Pintsuk, G., E-mail: g.pintsuk@fz-juelich.de [Forschungszentrum Jülich GmbH, Euratom Association, D-52425 Jülich (Germany); Bobin-Vastra, I.; Constans, S. [AREVA NP PTCMI-F, Centre Technique, Fusion, F-71200 Le Creusot (France); Gavila, P. [Fusion for Energy, E-08019 Barcelona (Spain); Rödig, M. [Forschungszentrum Jülich GmbH, Euratom Association, D-52425 Jülich (Germany); Riccardi, B. [Fusion for Energy, E-08019 Barcelona (Spain)

    2013-10-15

    Highlights: • We characterize tungsten mono-block components after exposure to ITER relevant heat loads. • We qualify the manufacturing technology, i.e., hot isostatic pressing and hot radial pressing, and repair technologies. • We determine the microstructural influences, i.e., rod vs. plate material, on the damage evolution. • Needle like microstructures increase the risk of deep crack formation due to a limited fracture strength. -- Abstract: In order to evaluate the option to start the ITER operation with a full tungsten (W) divertor, high heat flux tests were performed in the electron beam facility FE200, Le Creusot, France. Thereby, in total eight small-scale and three medium-scale monoblock mock-ups produced with different manufacturing technologies and different tungsten grades were exposed to cyclic steady state heat loads. The applied power density ranges from 10 to 20 MW/m{sup 2} with a maximum of 1000 cycles at each particular loading step. Finally, on a reduced number of tiles, critical heat flux tests in the range of 30 MW/m{sup 2} were performed. Besides macroscopic and microscopic images of the loaded surface areas, detailed metallographic analyses were performed in order to characterize the occurring damages, i.e., crack formation, recrystallization, and melting. Thereby, the different joining technologies, i.e., hot radial pressing (HRP) vs. hot isostatic pressing (HIP) of tungsten to the Cu-based cooling tube, were qualified showing a higher stability and reproducibility of the HIP technology also as repair technology. Finally, the material response at the loaded top surface was found to be depending on the material grade, microstructural orientation, and recrystallization state of the material. These damages might be triggered by the application of thermal shock loads during electron beam surface scanning and not by the steady state heat load only. However, the superposition of thermal fatigue loads and thermal shocks as also expected

  5. Influences of silicon on the work hardening behavior and hot deformation behavior of Fe–25 wt%Mn–(Si, Al) TWIP steel

    International Nuclear Information System (INIS)

    Li, Dejun; Feng, Yaorong; Song, Shengyin; Liu, Qiang; Bai, Qiang; Ren, Fengzhang; Shangguan, Fengshou

    2015-01-01

    Highlights: • Influence of Si on work hardening behavior of Fe–25 wt%Mn TWIP steel was investigated. • Influence of Si on hot deformation behavior of Fe–25 wt%Mn TWIP steel was studied. • Si blocks dislocation glide and favors mechanical twinning in Fe–25 wt%Mn TWIP steel. • The addition of Si increases the hot deformation activation energy of Fe–25 wt%Mn TWIP steel. • The addition of Si retards the nucleation and growth of DRX grains of Fe–25 wt%Mn TWIP steel. - Abstract: The influence of silicon on mechanical properties and hot deformation behavior of austenitic Fe–25 wt%Mn TWIP steel was investigated by means of the comparison research between 25Mn3Al and 25Mn3Si3Al steel. The results show that the 25Mn3Si3Al steel has higher yield strength and higher hardness than that of 25Mn3Al steel because of the solution strengthening caused by Si atoms and possesses higher uniform deformation ability and tensile strength than that of 25Mn3Al steel due to the higher work hardening ability of 25Mn3Si3Al steel. 25Mn3Si3Al steel presents a clear four-stage curve of work hardening rate in course of cold compression. Quite the opposite, the 25Mn3Al steel presents a monotonic decline curve of work hardening rate. The difference of the work hardening behavior between 25Mn3Al and 25Mn3Si3Al steel can be attributed to the decline of stacking fault energy (SFE) caused by the addition of 3 wt% Si. The dislocation glide plays an important role in the plastic deformation of 25Mn3Al steel even though the mechanical twinning is still one of the main deformation mechanisms. The 3 wt% Si added into the 25Mn3Al steel blocks the dislocation glide and promotes the mechanical twinning, and then the dislocation glide characteristics cannot be observed in cold deformed microstructure of 25Mn3Si3Al steel. The hot compression tests reveal that the hot deformation resistance of the 25Mn3Si3Al steel is significantly higher than that of the 25Mn3Al steel due to the solid

  6. Ferroelectric properties of tungsten bronze morphotropic phase boundary systems

    International Nuclear Information System (INIS)

    Oliver, J.R.; Neurgaonkar, R.R.; Cross, L.E.; Pennsylvania State Univ., University Park, PA

    1989-01-01

    Tungsten bronze ferroelectrics which have a morphotropic phase boundary (MPB) can have a number or enhanced dielectric, piezoelectric, and electrooptic properties compared to more conventional ferroelectric materials. The structural and ferroelectric properties of several MPB bronze systems are presented, including data from sintered and hot-pressed ceramics, epitaxial thin films, and bulk single crystals. Included among these are three systems which had not been previously identified as morphotropic. The potential advantages and limitations of these MPB systems are discussed, along with considerations of the appropriate growth methods for their possible utilization in optical, piezoelectric, or pyroelectric device applications

  7. Analysis of hot leg natural circulation under station blackout severe accident

    International Nuclear Information System (INIS)

    Deng Jian; Cao Xuewu

    2007-01-01

    Under severe accidents, natural circulation flows are important to influence the accident progression and result in a pressurized water reactor (PWR). In a station blackout accident with no recovery of steam generator (SG) auxiliary feedwater (TMLB' severe accident scenario), the hot leg countercurrent natural circulation flow is analyzed by using a severe-accident code, to better understand its potential impacts on the creep-rupture timing among the surge line, the hot leg; and SG tubes. The results show that the natural circulation may delay the failure time of the hot leg. The recirculation ratio and the hot mixing factor are also calculated and discussed. (authors)

  8. Calculation of cracking under pulsed heat loads in tungsten manufactured according to ITER specifications

    International Nuclear Information System (INIS)

    Arakcheev, A.S.; Skovorodin, D.I.; Burdakov, A.V.; Shoshin, A.A.; Polosatkin, S.V.; Vasilyev, A.A.; Postupaev, V.V.; Vyacheslavov, L.N.; Kasatov, A.A.; Huber, A.; Mertens, Ph; Wirtz, M.; Linsmeier, Ch; Kreter, A.; Löwenhoff, Th; Begrambekov, L.; Grunin, A.; Sadovskiy, Ya

    2015-01-01

    A mathematical model of surface cracking under pulsed heat load was developed. The model correctly describes a smooth brittle–ductile transition. The elastic deformation is described in a thin-heated-layer approximation. The plastic deformation is described with the Hollomon equation. The time dependence of the deformation and stresses is described for one heating–cooling cycle for a material without initial plastic deformation. The model can be applied to tungsten manufactured according to ITER specifications. The model shows that the stability of stress-relieved tungsten deteriorates when the base temperature increases. This proved to be a result of the close ultimate tensile and yield strengths. For a heat load of arbitrary magnitude a stability criterion was obtained in the form of condition on the relation of the ultimate tensile and yield strengths.

  9. Reduction of blue tungsten oxide

    International Nuclear Information System (INIS)

    Wilken, T.; Wert, C.; Woodhouse, J.; Morcom, W.

    1975-01-01

    A significant portion of commercial tungsten is produced by hydrogen reduction of oxides. Although several modes of reduction are possible, hydrogen reduction is used where high purity tungsten is required and where the addition of other elements or compounds is desired for modification of the metal, as is done for filaments in the lamp industry. Although several investigations of the reduction of oxides have been reported (1 to 5), few principles have been developed which can aid in assessment of current commercial practice. The reduction process was examined under conditions approximating commercial practice. The specific objectives were to determine the effects of dopants, of water vapor in the reducing atmosphere, and of reduction temperature upon: (1) the rate of the reaction by which blue tungsten oxide is reduced to tungsten metal, (2) the intermediate oxides associated with reduction, and (3) the morphology of the resulting tungsten powder

  10. Chemically deposited tungsten fibre-reinforced tungsten – The way to a mock-up for divertor applications

    Directory of Open Access Journals (Sweden)

    J. Riesch

    2016-12-01

    Full Text Available The development of advanced materials is essential for sophisticated energy systems like a future fusion reactor. Tungsten fibre-reinforced tungsten composites (Wf/W utilize extrinsic toughening mechanisms and therefore overcome the intrinsic brittleness of tungsten at low temperature and its sensitivity to operational embrittlement. This material has been successfully produced and tested during the last years and the focus is now put on the technological realisation for the use in plasma facing components of fusion devices. In this contribution, we present a way to utilize Wf/W composites for divertor applications by a fabrication route based on the chemical vapour deposition (CVD of tungsten. Mock-ups based on the ITER typical design can be realized by the implementation of Wf/W tiles. A concept based on a layered deposition approach allows the production of such tiles in the required geometry. One fibre layer after the other is positioned and ingrown into the W-matrix until the final sample size is reached. Charpy impact tests on these samples showed an increased fracture energy mainly due to the ductile deformation of the tungsten fibres. The use of Wf/W could broaden the operation temperature window of tungsten significantly and mitigate problems of deep cracking occurring typically in cyclic high heat flux loading. Textile techniques are utilized to optimise the tungsten wire positioning and process speed of preform production. A new device dedicated to the chemical deposition of W enhances significantly, the available machine time for processing and optimisation. Modelling shows that good deposition results are achievable by the use of a convectional flow and a directed temperature profile in an infiltration process.

  11. Hot compressive deformation behavior of the as-quenched A357 aluminum alloy

    International Nuclear Information System (INIS)

    Yang, X.W.; Lai, Z.H.; Zhu, J.C.; Liu, Y.; He, D.

    2012-01-01

    Highlights: ► We create a thermal history curve which was applied to carry out compression tests. ► We make an analysis of deformation performance for as-quenched A357 alloy. ► We create a constitutive equation which has good accuracy. - Abstract: The objective of the present work was to establish an accurate thermal-stress mathematical model of the quenching operation for A357 (Al–7Si–0.6Mg) alloy and to investigate the deformation behavior of this alloy. Isothermal compression tests of as-quenched A357 alloy were performed in the temperature range of 350–500 °C and at the strain rate range of 0.001–1 s −1 . Experimental results show that the flow stress of as-quenched A357 alloy decreases with the increase of temperature and the decrease of strain rate. Based on the hyperbolic sine equation, a constitutive equation is a relation between 0.2 pct yield stress and deformation conditions (strain rate and deformation temperature) was established. The corresponding hot deformation activation energy (Q) for as-quenched A357 alloy is 252.095 kJ/mol. Under the different small strains (≤0.01), the constitutive equation parameters of as-quenched A357 alloy were calculated. Values of flow stress calculated by constitutive equation were in a very good agreement with experimental results. Therefore, it can be used as an accurate thermal-stress model to solve the problems of quench distortion of parts.

  12. Characterization of hot deformation behavior and processing map of FGH4096–GH4133B dual alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanhui; Ning, Yongquan, E-mail: ningke521@163.com; Nan, Yang; Liang, Houquan; Li, Yuzhi; Zhao, Zhanglong

    2015-06-05

    Highlights: • Hot deformation behavior of dual superalloys FGH4096–GH4133B was investigated. • Power dissipation maps built at different strains exhibit a continuous dynamic course. • Processing map approach was adopted to optimize hot forging process for dual superalloys. • Microstructure evolution at different deformation temperature and strain rate of dual superalloys was researched. - Abstract: The dual superalloys FGH4096–GH4133B were joined by the electron beam welding. Isothermal compression tests were carried out on electron beam weldments FGH4096–GH4133B alloys at the temperatures of 1020–1140 °C (the nominal γ′-transus temperature is about 1080 °C) and strain rates of 0.001–1.0 s{sup −1} with the height reduction of 50%. The results showed that the true stress–true strain curves are greatly affected by deformation temperature and strain rate. There is an intrinsic and necessary connection between the flow stress and thermal–dynamic behavior, which can be indicated by the true stress–true strain curves. The power dissipation maps at different strains exhibit that true strain has a great effect on processing maps. Processing maps under different strains were constructed for evaluation of the flow instability regime and optimization of processing parameters. When the true strain is 0.69, the optimum processing condition is around 1090−1130 °C/0.1−1.0 s{sup −1} with the peak efficiency of 0.58. The dynamic recrystallization mechanism and microstructure evolution in the welding seam of the studied dual-alloys have been discussed. High temperature and low strain rate are instrumental to dynamic recrystallization. The size of dynamically recrystallized grain decreased with the increase of strain rate and increased with the increase of deformation temperature. Based on the established combine processing map and microstructures, hot deformation process should be carried out under the condition of 1100−1120 °C/0.3−1.0 s

  13. Characterization of hot deformation behavior and processing map of FGH4096–GH4133B dual alloys

    International Nuclear Information System (INIS)

    Liu, Yanhui; Ning, Yongquan; Nan, Yang; Liang, Houquan; Li, Yuzhi; Zhao, Zhanglong

    2015-01-01

    Highlights: • Hot deformation behavior of dual superalloys FGH4096–GH4133B was investigated. • Power dissipation maps built at different strains exhibit a continuous dynamic course. • Processing map approach was adopted to optimize hot forging process for dual superalloys. • Microstructure evolution at different deformation temperature and strain rate of dual superalloys was researched. - Abstract: The dual superalloys FGH4096–GH4133B were joined by the electron beam welding. Isothermal compression tests were carried out on electron beam weldments FGH4096–GH4133B alloys at the temperatures of 1020–1140 °C (the nominal γ′-transus temperature is about 1080 °C) and strain rates of 0.001–1.0 s −1 with the height reduction of 50%. The results showed that the true stress–true strain curves are greatly affected by deformation temperature and strain rate. There is an intrinsic and necessary connection between the flow stress and thermal–dynamic behavior, which can be indicated by the true stress–true strain curves. The power dissipation maps at different strains exhibit that true strain has a great effect on processing maps. Processing maps under different strains were constructed for evaluation of the flow instability regime and optimization of processing parameters. When the true strain is 0.69, the optimum processing condition is around 1090−1130 °C/0.1−1.0 s −1 with the peak efficiency of 0.58. The dynamic recrystallization mechanism and microstructure evolution in the welding seam of the studied dual-alloys have been discussed. High temperature and low strain rate are instrumental to dynamic recrystallization. The size of dynamically recrystallized grain decreased with the increase of strain rate and increased with the increase of deformation temperature. Based on the established combine processing map and microstructures, hot deformation process should be carried out under the condition of 1100−1120 °C/0.3−1.0 s −1 with

  14. A novel unified dislocation density-based model for hot deformation behavior of a nickel-based superalloy under dynamic recrystallization conditions

    International Nuclear Information System (INIS)

    Lin, Y.C.; Wen, Dong-Xu; Chen, Xiao-Min; Chen, Ming-Song

    2016-01-01

    In this study, a novel unified dislocation density-based model is presented for characterizing hot deformation behaviors in a nickel-based superalloy under dynamic recrystallization (DRX) conditions. In the Kocks-Mecking model, a new softening item is proposed to represent the impacts of DRX behavior on dislocation density evolution. The grain size evolution and DRX kinetics are incorporated into the developed model. Material parameters of the developed model are calibrated by a derivative-free method of MATLAB software. Comparisons between experimental and predicted results confirm that the developed unified dislocation density-based model can nicely reproduce hot deformation behavior, DRX kinetics, and grain size evolution in wide scope of initial grain size, strain rate, and deformation temperature. Moreover, the developed unified dislocation density-based model is well employed to analyze the time-variant forming processes of the studied superalloy. (orig.)

  15. A novel unified dislocation density-based model for hot deformation behavior of a nickel-based superalloy under dynamic recrystallization conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.C. [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); Light Alloy Research Institute of Central South University, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Wen, Dong-Xu; Chen, Xiao-Min [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); Chen, Ming-Song [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China)

    2016-09-15

    In this study, a novel unified dislocation density-based model is presented for characterizing hot deformation behaviors in a nickel-based superalloy under dynamic recrystallization (DRX) conditions. In the Kocks-Mecking model, a new softening item is proposed to represent the impacts of DRX behavior on dislocation density evolution. The grain size evolution and DRX kinetics are incorporated into the developed model. Material parameters of the developed model are calibrated by a derivative-free method of MATLAB software. Comparisons between experimental and predicted results confirm that the developed unified dislocation density-based model can nicely reproduce hot deformation behavior, DRX kinetics, and grain size evolution in wide scope of initial grain size, strain rate, and deformation temperature. Moreover, the developed unified dislocation density-based model is well employed to analyze the time-variant forming processes of the studied superalloy. (orig.)

  16. Hot deformation behavior of 51.1Zr–40.2Ti–4.5Al–4.2V alloy in the single β phase field

    Directory of Open Access Journals (Sweden)

    Jingli Duan

    2015-02-01

    Full Text Available The hot deformation behavior of a newly developed 51.1Zr–40.2Ti–4.5Al–4.2 V alloy was investigated by compression tests in the deformation temperature range from 800 to 1050 °C and strain rate range from 10−3 to 100 s−1. At low temperatures and high strain rates, the flow curves exhibited a pronounced stress drop at the very beginning of deformation, followed by a slow decrease in flow stress with increasing strain. The magnitude of the stress drop increased with decreasing deformation temperature and increasing strain rate. At high temperatures and low strain rates, the flow curves exhibited typical characteristics of dynamic recrystallization. A hyperbolic-sine Arrhenius-type equation was used to characterize the dependences of the flow stress on deformation temperature and strain rate. The activation energy for hot deformation decreased slightly with increasing strain and then tended to be a constant value. A microstructural mechanism map was presented to help visualize the microstructure of this alloy under different deformation conditions.

  17. Behavior of porous tungsten under shock compression at room temperature

    International Nuclear Information System (INIS)

    Dandekar, D.P.; Lamothe, R.M.

    1977-01-01

    This work reports the results of room-temperature shock-compression experiments on porous tungsten. The porous tungsten was fabricated by sintering 1-μm tungsten particles. The initial density of the material was 15290 kg/m 3 . Around 97% of the pores in the material were interconnected. The main features of the results are as follows: (1) porous tungsten behaves as a linear elastic material to 1.43 GPa; (2) the shock wave following the elastic precursor is unstable in the material in the stress range 1.43--2.7 GPa; (3) a stable two-wave structure is established at and above 6.4 GPa; (4) the response of porous tungsten is accurately described by the Mie-Grueneisen equation of state at stresses above 4.9 GPa, the stress at which the voids suffer a complete extinction in the material; (5) the deformations induced in the material due to shock compression are irreversible; (6) the recentered Hugoniot of porous tungsten becomes stiffer with the increasing magnitude of initial compressive stress

  18. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    Science.gov (United States)

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting

  19. Mathematical modeling of phenomena of dynamic recrystallization during hot plastic deformation in high-carbon bainitic steel

    Directory of Open Access Journals (Sweden)

    T. Dembiczak

    2017-01-01

    Full Text Available Based on the research results, coefficients were determined in constitutive equations, describing the kinetics of dynamic recrystallization in high-carbon bainitic steel during hot deformation. The developed mathematical model takes into account the dependence of changing kinetics in the size evolution of the initial austenite grains, the value of strain, strain rate, temperature and time. Physical simulations were carried out on rectangular specimens measuring 10 × 15 × 20 mm. Compression tests with a plane state of deformation were carried out using a Gleeble 3800.

  20. Deepening of floating potential for tungsten target plate on the way to nanostructure formation

    International Nuclear Information System (INIS)

    Takamura, Shuichi; Miyamoto, Takanori; Ohno, Noriyasu

    2010-01-01

    Deepening of floating potential has been observed on the tungsten target plate immersed in high-density helium plasma with hot electron component on the way to nanostructure formation. The physical mechanism is thought to be a reduction of secondary electron emission from such a complex nano fiber-form structure on the tungsten surface. (author)

  1. Hot deformation behavior and microstructure evolution of TA15 titanium alloy with nonuniform microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pengfei; Zhan, Mei, E-mail: zhanmei@nwpu.edu.cn; Fan, Xiaoguang; Lei, Zhenni; Cai, Yang

    2017-03-24

    The flow behavior and microstructure evolution of a near α titanium alloy with nonuniform microstructure during hot deformation were studied by isothermal compression test and electron backscatter diffraction technique. It is found that the nonuniform microstructure prior to deformation consists of equiaxed α, lamellar α in the colony form and β phase, and the α colony keeps the Burgers orientation relationship with β phase. The flow stress of nonuniform microstructure exhibits significant flow softening after reaching the peak stress at a low strain, which is similar to the lamellar microstructure. Nevertheless, the existence of equiaxed α in nonuniform microstructure makes its flow stress and softening rate be lower than the lamellar microstructure. During deformation, the lamellar α undertakes most of the deformation and turns to be rotated, bended and globularized. Moreover, these phenomena exhibit significant heterogeneity due to the orientation dependence of the deformation of lamellar α. The continuous dynamic recrystallization and bending of lamellar α lead to the “fragmentation” during globularization of lamellar α. The bending of lamellar α is speculated as a form of plastic buckling, because the bending of lamellar α almost proceed in the manner of “rigid rotation” and presents opposite bending directions for the adjacent colonies.

  2. Effect of borides on hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Mingjia, E-mail: mingjiawangysu@126.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Fu, Yifeng [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Zixi; Li, Yanmei [Yanming Alloy Roll Co. Ltd, Qinhuangdao 066004 (China); Yang, Shunkai; Zhao, Hongchang; Li, Hangbo [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2017-02-15

    To investigate borides effect on the hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel, hot compression tests at the temperatures of 950– 1150 °C and the strain rates of 0.01– 10 s{sup −1} were performed. Flow stress curves indicated that borides increased the material's stress level at low temperature but the strength was sacrificed at temperatures above 1100 °C. A hyperbolic-sine equation was used to characterize the dependence of the flow stress on the deformation temperature and strain rate. The hot deformation activation energy and stress exponent were determined to be 355 kJ/mol and 3.2, respectively. The main factors leading to activation energy and stress exponent of studied steel lower than those of commercial 304 stainless steel were discussed. Processing maps at the strains of 0.1, 0.3, 0.5, and 0.7 showed that flow instability mainly concentrated at 950– 1150 °C and strain rate higher than 0.6 s{sup −1}. Results of microstructure illustrated that dynamic recrystallization was fully completed at both high temperature-low strain rate and low temperature-high strain rate. In the instability region cracks were generated in addition to cavities. Interestingly, borides maintained a preferential orientation resulting from particle rotation during compression. - Highlights: •The decrement of activation energy was affected by boride and boron solution. •The decrease of stress exponent was influenced by composition and Cottrell atmosphere. •Boride represented a preferential orientation caused by particle rotation.

  3. Study on hot deformation behavior and microstructure evolution of cast-extruded AZ31B magnesium alloy and nanocomposite using processing map

    International Nuclear Information System (INIS)

    Srinivasan, M.; Loganathan, C.; Narayanasamy, R.; Senthilkumar, V.; Nguyen, Q.B.; Gupta, M.

    2013-01-01

    Highlights: ► Hot deformation behavior of AZ31B Mg alloy and nanocomposite were studied. ► Activation energy of AZ31B Mg alloy and nanocomposite were determined. ► Twining, shear bands and flow localization were observed. - Abstract: The hot deformation behavior and microstructural evolution of cast-extruded AZ31B magnesium alloy and nanocomposite have been studied using processing-maps. Compression tests were conducted in the temperature range of 250–400 °C and strain rate range of 0.01–1.0 s −1 . The three-dimensional (3D) processing maps developed in this work, describe the variations of the efficiency of power dissipation and flow instability domains in the strain rate (ε) and temperature (T) space. The deformation mechanisms namely dynamic recrystallization (DRX), dynamic recovery (DRY) and instability regions were identified using processing maps. The deformation mechanisms were also correlated with transmission electron microscopy (TEM) and optical microscopy (OM). The optimal region for hot working has been observed at a strain rate (ε) of 0.01 s −1 and the temperature (T) of 400 °C for both magnesium alloy and nanocomposite. Few instability regimes have been identified in this study at higher strain rate (ε) and temperature (T). The stability domains have been identified in the lower strain rate regimes

  4. Investigation of Hardness Change for Spot Welded Tailored Blank in Hot Stamping Using CCT and Deformation-CCT Diagrams

    Science.gov (United States)

    Yogo, Yasuhiro; Kurato, Nozomi; Iwata, Noritoshi

    2018-04-01

    When an outer panel of a B-pillar is manufactured with the hot stamping process, reinforcements are spot welded on its inner side. Before reinforcements are added, the microstructure of the outer panel is martensite. However, reheating during spot welding changes the martensite to ferrite, which has a lower hardness in the heat-affected zone than in other areas. If spot welding is conducted before hot stamping for making a spot welded tailored blank, the microstructure in the spot welded tailored blank after hot stamping is martensite. This sequence of processes avoids hardness reduction due to spot welding. In this study, the hardness and microstructure around spot welded parts of the tailored blank were investigated. The results clearly showed that areas close to the spot welded parts are severely stretched during hot stamping. In addition, stretching suppresses the martensitic phase transformation and reduces the hardness. To characterize this phenomenon, a simulation was conducted that considered the effects of pre-strain on the phase transformation. A continuous cooling transformation (CCT) diagram and a deformation continuous cooling transformation (DCCT) diagram were made in order to quantify the effect of the cooling rate and pre-strain on the phase transformation and hardness. The hardness was then calculated using the experimentally measured CCT and DCCT diagrams and the finite element analysis results. The calculated hardness was compared with the experimental hardness. Good agreement was found between the calculated and experimental results.

  5. Investigation of Hardness Change for Spot Welded Tailored Blank in Hot Stamping Using CCT and Deformation-CCT Diagrams

    Science.gov (United States)

    Yogo, Yasuhiro; Kurato, Nozomi; Iwata, Noritoshi

    2018-06-01

    When an outer panel of a B-pillar is manufactured with the hot stamping process, reinforcements are spot welded on its inner side. Before reinforcements are added, the microstructure of the outer panel is martensite. However, reheating during spot welding changes the martensite to ferrite, which has a lower hardness in the heat-affected zone than in other areas. If spot welding is conducted before hot stamping for making a spot welded tailored blank, the microstructure in the spot welded tailored blank after hot stamping is martensite. This sequence of processes avoids hardness reduction due to spot welding. In this study, the hardness and microstructure around spot welded parts of the tailored blank were investigated. The results clearly showed that areas close to the spot welded parts are severely stretched during hot stamping. In addition, stretching suppresses the martensitic phase transformation and reduces the hardness. To characterize this phenomenon, a simulation was conducted that considered the effects of pre-strain on the phase transformation. A continuous cooling transformation (CCT) diagram and a deformation continuous cooling transformation (DCCT) diagram were made in order to quantify the effect of the cooling rate and pre-strain on the phase transformation and hardness. The hardness was then calculated using the experimentally measured CCT and DCCT diagrams and the finite element analysis results. The calculated hardness was compared with the experimental hardness. Good agreement was found between the calculated and experimental results.

  6. Efficacy of Tantalum Tungsten Alloys for Diffusion Barrier Applications

    Science.gov (United States)

    Smathers, D. B.; Aimone, P. R.

    2017-12-01

    Traditionally either Niobium, Tantalum or a combination of both have been used as diffusion barriers in Nb3Sn Multi-filament wire. Vanadium has also been used successfully but the ultimate RRR of the copper is limited unless an external shell of Niobium is included. Niobium is preferred over Tantalum when alternating current losses are not an issue as the Niobium will react to form Nb3Sn. Pure Tantalum tends to deform irregularly requiring extra starting thickness to ensure good barrier qualities. Our evaluations showed Tantalum lightly alloyed with 3 wt% Tungsten is compatible with the wire drawing process while deforming as well as or better than pure Niobium. Ta3wt%W has been processed as a single barrier and as a distributed barrier to fine dimensions. In addition, the higher modulus and strength of the Tantalum Tungsten alloy improves the overall tensile properties of the wire.

  7. Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Young, John P.; Askari, Hesam A.; Hovanski, Yuri; Heiden, Michael J.; Field, David P.

    2015-03-01

    Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energy for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.

  8. Effect of Aluminum Alloying on the Hot Deformation Behavior of Nano-bainite Bearing Steel

    Science.gov (United States)

    Yang, Z. N.; Dai, L. Q.; Chu, C. H.; Zhang, F. C.; Wang, L. W.; Xiao, A. P.

    2017-12-01

    Interest in using aluminum in nano-bainite steel, especially for high-carbon bearing steel, is gradually growing. In this study, GCr15SiMo and GCr15SiMoAl steels are introduced to investigate the effect of Al alloying on the hot deformation behavior of bearing steel. Results show that the addition of Al not only notably increases the flow stress of steel due to the strong strengthening effect of Al on austenite phase, but also accelerates the strain-softening rates for its increasing effect on stacking fault energy. Al alloying also increases the activation energy of deformation. Two constitutive equations with an accuracy of higher than 0.99 are proposed. The constructed processing maps show the expanded instability regions for GCr15SiMoAl steel as compared with GCr15SiMo steel. This finding is consistent with the occurrence of cracking on the GCr15SiMoAl specimens, revealing that Al alloying reduces the high-temperature plasticity of the bearing steel. On the contrary, GCr15SiMoAl steel possesses smaller grain size than GCr15SiMo steel, manifesting the positive effect of Al on bearing steel. Attention should be focused on the hot working process of bearing steel with Al.

  9. Atomic-scale investigation of interface-facilitated deformation twinning in severely deformed Ag-Cu nanolamellar composites

    International Nuclear Information System (INIS)

    An, X. H.; Cao, Y.; Liao, X. Z.; Zhu, S. M.; Nie, J. F.; Kawasaki, M.; Ringer, S. P.; Langdon, T. G.; Zhu, Y. T.

    2015-01-01

    We report an atomic-scale investigation of interface-facilitated deformation twinning behaviour in Ag-Cu nanolamellar composites. Profuse twinning activities in Ag supply partial dislocations to directly transmit across the Ag-Cu lamellar interface that promotes deformation twinning in the neighbouring Cu lamellae although the interface is severely deformed. The trans-interface twin bands change the local structure at the interface. Our analysis suggests that the orientation relationship and interfacial structure between neighbouring Ag-Cu lamellae play a crucial role in such special interface-facilitated twinning behaviour

  10. Static recrystallisation and precipitation after hot deformation of austenitic stainless steels containing molybdenum and niobium

    International Nuclear Information System (INIS)

    Lombry, R.; Rossard, C.; Thomas, B.J.

    1981-01-01

    In general the hot workability of austenite depends on the work hardening during deformation and the kinetics of the dynamic and static restoration processes. Static recrystallisation is a very important factor in the case of hot rolling. The present work was undertaken to determine the effect of additions of molybdenum or niobium on the kinetics of static recrystallisation. The results show that the rate of static recrystallisation of type 304, 316 and 347 stainless steels decreases in this order for a given amount of prior deformation (epsilon=0,44). The differences in the rates of recrystallisation increases as the temperature is lowered towards 900 deg C. The effect of molybdenum appears to be attribuable to a solute drag effect on the mobility of dislocations, subgrain boundaries or grain boundaries whereas niobium additions lead to the formation of NbC precipitates on the dislocation cell walls and sub boundaries. It is also shown that in the case of type 316 and type 347 steels the dynamic recrystallisation process (observed in type 304 steels at all temperatures above 900 deg C) is replaced by dynamic recovery at temperatures egal to or below about 1000 deg C [fr

  11. Micromagnetic simulation for the magnetization reversal process of Nd-Fe-B hot-deformed nanocrystalline permanent magnets

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2017-05-01

    Full Text Available We numerically demonstrated the magnetization reversal process inside a hot-deformed nanocrystalline permanent magnet. We performed large-scale micromagnetics simulation based on the Landau–Lifshitz–Gilbert equation with 0.1 billion calculation cells. The simulation model for the hot-deformed nanocrystalline permanent magnet consists of 2622 tabular grains that interact with each other by inter-grain exchange and dipole interactions. When the strength of the external field approached a coercive force, nucleation cores were created at the grain surface. The magnetization reversal was propagated by the inter-grain and dipole interactions. When the grains had overlapping regions parallel to the external field, the magnetization reversal propagated quickly between the grains due to the dipole interaction. In contrast, the motion of the magnetic domain wall was inhibited at interfaces between the grains perpendicular to the external field. Reversal magnetic domains had a pillar-shaped structure that is parallel to the external field. In the perpendicular direction, the reversal magnetic domain expanded gradually because of the inhibition of the domain wall motion.

  12. Annealing behavior of a cast Mg-Gd-Y-Zr alloy with necklace fine grains developed under hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yang, Xuyue, E-mail: yangxuyue@mail.csu.edu.cn [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083 (China); Xiao, Zhenyu; Zhang, Duxiu [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Wang, Jun [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Sakai, Taku [UEC Tokyo (The University of Electro-Communications), Chofu, Tokyo 182-8585 (Japan)

    2017-03-14

    The microstructure and texture development of a cast Mg-Gd-Y-Zr alloy during hot deformation and subsequent annealing were investigated by optical microscopy (OM) and electron backscattered diffraction (EBSD) technology. Initial microstructures with partially and fully developed new fine grains (NFGs), separately attended by continuous or interrupted hot forging, were various mixed grain structures composed of NFGs in necklace and retained coarse grains. It is shown that, during annealing, the development of grain size can be divided into three stages: i.e. an incubation of grain growth, a rapid coarsening and a normal grain growth. After a long time annealing of over 10{sup 4} ks at 693 K, the average grain size for samples continuous compressed to ε=1.2 and those interrupted compressed to ε=1.6 were close. Moreover, orientations of such strain-induced fine grains were relatively randomly distributed, leading to a weakened basal texture, while the basal plane of retained coarse grains were perpendicular to the forging direction. Such texture even became weaker during subsequent annealing. The results show that the development of necklace NFGs during hot deformation can be effective for homogeneous grain refinement under subsequent annealing.

  13. The effect of hot deformation on the bainite transformation of a working tool steel; Efeito da deformacao a quente sobre a transformacao bainitica de um aco ferramenta

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca Lima, Ricardo F. de; Carvalho, Miguel A.; Nogueira, Marcos A.S. [Acos Villares SA, Rio de Janeiro, RJ (Brazil)

    1989-12-31

    The effect of hot deformation of austenite on its isothermal transformation at 400 degrees Celsius for a hot working steel has been investigated. The degrees of transformation was varied and the results were analysed by optical metallography. Increasing the deformation, the bainite nucleation occurs in twins and grain boundaries, and also inside the austenitic grains. (author). 10 refs., 8 figs.

  14. Scanning electron microscopy and transmission electron microscopy study of hot-deformed gamma-TiAl-based alloy microstructure.

    Science.gov (United States)

    Chrapoński, J; Rodak, K

    2006-09-01

    The aim of this work was to assess the changes in the microstructure of hot-deformed specimens made of alloys containing 46-50 at.% Al, 2 at.% Cr and 2 at.% Nb (and alloying additions such as carbon and boron) with the aid of scanning electron microscopy and transmission electron microscopy techniques. After homogenization and heat treatment performed in order to make diverse lamellae thickness, the specimens were compressed at 1000 degrees C. Transmission electron microscopy examinations of specimens after the compression test revealed the presence of heavily deformed areas with a high density of dislocation. Deformation twins were also observed. Dynamically recrystallized grains were revealed. For alloys no. 2 and no. 3, the recovery and recrystallization processes were more extensive than for alloy no. 1.

  15. Rate controlling mechanisms during hot deformation of Mg–3Gd–1Zn magnesium alloy: Dislocation glide and climb, dynamic recrystallization, and mechanical twinning

    International Nuclear Information System (INIS)

    Mirzadeh, H.; Roostaei, M.; Parsa, M.H.; Mahmudi, R.

    2015-01-01

    Highlights: • Hot deformation behavior and dynamic recrystallization of GZ31 magnesium alloy. • Deducing the operative deformation mechanisms by constitutive analysis. • Viscous glide as the rate controlling step during hot working of GZ31 alloy. • Characterization of the effect of mechanical twinning on constitutive relations. - Abstract: The flow behavior of the Mg–3Gd–1Zn (GZ31) magnesium alloy during hot working was critically analyzed and dislocation glide in the form of a viscous drag process (viscous glide) was identified as the rate controlling mechanism due to interaction of rare earth Gd atoms with the moving dislocations. Mechanical twinning was shown to significantly affect the level of flow stress at high Zener–Hollomon parameters, i.e. low forming temperatures and high strain rates. Moreover, dynamic recrystallization (DRX) was found to be another responsible phenomenon for deviation of constitutive equations from the theoretical ones, namely the deformation activation energy based on diffusivity and the pre-defined Garofalo’s type hyperbolic sine power, during high-temperature thermomechanical processing of this creep resistant light alloy

  16. Tungsten foil laminate for structural divertor applications – Analyses and characterisation of tungsten foil

    International Nuclear Information System (INIS)

    Reiser, Jens; Rieth, Michael; Dafferner, Bernhard; Hoffmann, Andreas; Yi Xiaoou; Armstrong, David E.J.

    2012-01-01

    It has been attempted for several years to synthesise a tungsten material with a low brittle-to-ductile transition temperature and a high fracture toughness that can be used for structural parts. It was shown in our previous work that tungsten foil is ductile at room temperature and that this ductility can be transformed to bulk by synthesising a tungsten laminate. In this work we want to focus on tungsten foil and assess the microstructure as well as the mechanical properties of the foil. The assessment of the microstructure of 0.1 mm tungsten foil will be performed using electron microscopy. It will be shown that the grains of the tungsten foil have a dimension of 0.5 μm × 3 μm × 15 μm and a clear texture in (1 0 0) 〈0 1 1〉. This texture becomes even more pronounced by annealing. Three-point-bending tests with tungsten foil, as-received, will define the barriers: ductile at room temperature and brittle in liquid nitrogen (−196 °C). This shows that the ductility is a thermally activated process. Recrystallised tungsten foil (annealed for 1 h/2700 °C) shows ductile material behaviour at 200 °C. The paper closes with a discussion on the reasons of the ductility of 0.1 mm tungsten foil. These might be the ultra fine grained (UFG) microstructure or, in other words, a nano microstructure (see tungsten foil as-received), the high amount of mobile edge dislocations, and/or the foil effect, which means that dislocations can move to the surface and are annihilated (see tungsten foil recrystallised).

  17. Effect of tungsten on tensile properties and flow behaviour of RAFM steel

    Energy Technology Data Exchange (ETDEWEB)

    Vanaja, J., E-mail: jvanaja@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Laha, K.; Nandagopal, M. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India); Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India)

    2013-02-15

    Effect of tungsten in the range of 1–2 wt.% on tensile properties and flow behaviour of 9Cr–W–Ta–V Reduced Activation Ferritic–Martensitic (RAFM) steel has been investigated. The tungsten in the investigated range was found to have only minor effect on the tensile properties of the steel over the temperature range of 300–873 K and at a strain rate of 3 × 10{sup −3} s{sup −1}. The tensile flow behaviour of the RAFM steels was adequately described by the Voce’s constitutive equation. The tensile strength of the steels were predicted well from the parameters of the Voce’s constitutive equation. The Voce’s strain hardening parameter ‘n{sub v}’ was found to be quite sensitive to the tungsten content and predicted the onset of dislocation climbing process at relatively higher testing temperature with the increase in tungsten content. The equivalence between tensile and creep deformations and the influence of tungsten have been discussed.

  18. Effect of tungsten on tensile properties and flow behaviour of RAFM steel

    International Nuclear Information System (INIS)

    Vanaja, J.; Laha, K.; Nandagopal, M.; Sam, Shiju; Mathew, M.D.; Jayakumar, T.; Rajendra Kumar, E.

    2013-01-01

    Effect of tungsten in the range of 1–2 wt.% on tensile properties and flow behaviour of 9Cr–W–Ta–V Reduced Activation Ferritic–Martensitic (RAFM) steel has been investigated. The tungsten in the investigated range was found to have only minor effect on the tensile properties of the steel over the temperature range of 300–873 K and at a strain rate of 3 × 10 −3 s −1 . The tensile flow behaviour of the RAFM steels was adequately described by the Voce’s constitutive equation. The tensile strength of the steels were predicted well from the parameters of the Voce’s constitutive equation. The Voce’s strain hardening parameter ‘n v ’ was found to be quite sensitive to the tungsten content and predicted the onset of dislocation climbing process at relatively higher testing temperature with the increase in tungsten content. The equivalence between tensile and creep deformations and the influence of tungsten have been discussed

  19. Hydrogen blister formation on cold-worked tungsten with layered structure

    International Nuclear Information System (INIS)

    Nishijima, Dai; Sugimoto, Takanori; Takamura, Shuichi; Ye, Minyou; Ohno, Noriyasu

    2005-01-01

    Low-energy ( 10 21 m -2 s -1 ) hydrogen plasma exposures were performed on cold-worked powder metallurgy tungsten (PM-W), recrystallized cold-worked PM-W and hot-worked PM-W. Large blisters with a diameter of approximately 100-200 μm were observed only on the surface of cold-worked PM-W. The blister formation mechanism has not been clarified thus far. PM-W has a consisting of 1-μm-thick layers, which is formed by press-roll processing. A detailed observation of the cross section of those blisters shows for the first time that the blisters are formed by cleaving the upper layer along the stratified layer. These experimental results indicate that the manufacturing process of tungsten material is one of the key factors for blister formation on the tungsten surface. (author)

  20. The thermoviscoplastic response of polycrystalline tungsten in compression

    International Nuclear Information System (INIS)

    Lennon, A.M.; Ramesh, K.T.

    2000-01-01

    The thermomechanical response of commercially pure polycrystalline tungsten was investigated over a wide range of strain rates and temperatures. The material was examined in two forms: one an equiaxed recrystallized microstructure and the other a heavily deformed extruded microstructure that was loaded in compression along the extrusion axis. Low strain rate (10 -3 -10 0 s -1 ) compression experiments were conducted on an MTS servo-hydraulic load frame equipped with an infra-red furnace capable of sustaining specimen temperatures in excess of 600 C. High strain rate (10 3 -10 4 s -1 ) experiments were performed on a compression Kolsky bar equipped with an infra-red heating system capable of developing specimen temperatures as high as 800 C. Pressure-shear plate impact experiments were used to obtain shear stress versus shear strain curves at very high rates (∝10 4 -10 5 s -1 ). The recrystallized material was able to sustain very substantial plastic deformations in compression (at room temperature), with a flow stress that appears to be rate-dependent. Intergranular microcracks were developed during the compressive deformations. Under quasi-static loadings a few relatively large axial splitting cracks were formed, while under dynamic loadings a very large number of small, uniformly distributed microcracks (that did not link up to form macrocracks) were developed. The rate of nucleation of microcracks increased dramatically with strain rate. The extruded tungsten is also able to sustain large plastic deformations in compression, with a flow stress that increases with the rate of deformation. The strain hardening of the extruded material is lower than that of the recrystallized material, and is relatively insensitive to the strain rate. (orig.)

  1. Process for reclaiming tungsten from a hazardous waste

    International Nuclear Information System (INIS)

    Scheithauer, R.A.; MacInnis, M.B.; Miller, M.J.; Vanderpool, C.D.

    1984-01-01

    A process is disclosed wherein tungsten is recovered from hazardous waste material containing said tungsten, arsenic, and other impurities which can consist of magnesium, phosphorus, and silicon and the resulting waste is treated to render it nonhazardous according to EPA standards for arsenic. Said process involves digesting said hazardous waste material in an aqueous solution of an alkali metal hydroxide, adjusting the pH of the resulting solution to about 11.0 to about 13.0 with NaOH to precipitate essentially all of the magnesium and silicon species, filtering the digestion mix to remove the solids from said resulting solution which contains about 80 to about 100% of said tungsten and essentially none of said magnesium and said silicon, slurrying the hazardous solids in hot water, and adding to the slurry a ferric salt solution to precipitate ferric hydroxide, filtering this mixture to give a solid which passes the EPA standard test for solids with respect to arsenic

  2. Study of Microstructure of the Al-Fe Alloys After Hot Rolling Deformation

    Science.gov (United States)

    Jabłońska, Magdalena Barbara; Rodak, Kinga; Bednarczyk, Iwona

    The aim of the paper is a microstructure analysis of alloys from the Al-Fe system after hot rolling tests, conducted by using a scanning transmission electron microscopy STEM and scanning electron microscope equipped with EBSD detector. Hot rolling was carried out at Technical University of Ostrava, Faculty of Metallurgy and Material Engineering, Institute of Modelling and Control of Forming Processes. The samples were heated to a temperature of 1200°C. The EBSD and STEM techniques have been applied in order to determine the influence of chemical composition and deformation parameters on structural changes. The microstructure analysis has included parameters such us: grain/sub-grain size, area fraction of grains/subgrains, misorientation angles, grains/subgrains shape aspect ratio and dislocations structure. The research structure techniques in scanning-transmission electron microscopy revealed numerous FeAl28 alloy phase separations of secondary nucleating sites favoured energetically, which are the boundary of grains/subgrains and dislocations. These changes in the structure of the test results have been confirmed by EBSD, which revealed the presence of grains/subgrains misorientation angle boundaries above 15°.

  3. Crystal plasticity study of single crystal tungsten by indentation tests

    International Nuclear Information System (INIS)

    Yao, Weizhi

    2012-01-01

    Owing to its favorable material properties, tungsten (W) has been studied as a plasma-facing material in fusion reactors. Experiments on W heating in plasma sources and electron beam facilities have shown an intense micro-crack formation at the heated surface and sub-surface. The cracks go deep inside the irradiated sample, and often large distorted areas caused by local plastic deformation are present around the cracks. To interpret the crack-induced microscopic damage evolution process in W, one needs firstly to understand its plasticity on a single grain level, which is referred to as crystal plasticity. In this thesis, the crystal plasticity of single crystal tungsten (SCW) has been studied by spherical and Berkovich indentation tests and the finite element method with a crystal plasticity model. Appropriate values of the material parameters included in the crystal plasticity model are determined by fitting measured load-displacement curves and pile-up profiles with simulated counterparts for spherical indentation. The numerical simulations reveal excellent agreement with experiment. While the load-displacement curves and the deduced indentation hardness exhibit little sensitivity to the indented plane at small indentation depths, the orientation of slip directions within the crystals governs the development of deformation hillocks at the surface. It is found that several factors like friction, indentation depth, active slip systems, misoriented crystal orientation, misoriented sample surface and azimuthal orientation of the indenter can affect the indentation behavior of SCW. The Berkovich indentation test was also used to study the crystal plasticity of SCW after deuterium irradiation. The critical load (pop-in load) for triggering plastic deformation under the indenter is found to depend on the crystallographic orientation. The pop-in loads decrease dramatically after deuterium plasma irradiation for all three investigated crystallographic planes.

  4. In situ observation of structural change of nanostructured tungsten during annealing

    International Nuclear Information System (INIS)

    Yajima, Miyuki; Yoshida, Naoaki; Kajita, Shin; Tokitani, Masayuki; Baba, Tomotsugu; Ohno, Noriyasu

    2014-01-01

    Deformation of fiberform nanostructure and the dynamic behavior of helium (He) bubbles in fuzz tungsten (W) during annealing have been investigated by means of in situ cross-section observation using transmission electron microscopy and He desorption rate observation using thermal desorption spectroscopy (TDS). Thermal recovery of the nanostructure, such as shrinkage and coalescence of fine structure, annihilation of He bubbles, and large desorption of He gas, occurred around 1073–1173 K. The activation energy of He was estimated from a TDS peak that appeared around 300–400 K by using the Kissinger–Akahira–Sunose model-free-kinetics method. In addition, the TDS results of fiberform nanostructured tungsten were compared with those of tungsten samples irradiated with a high-energy He ion beam

  5. Microstructural development under interrupted hot deformation and the mechanical properties of a cast Mg–Gd–Y–Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhenyu [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yang, Xuyue [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Institute for Materials Microstructure, Central South University, Changsha 410083 (China); Yang, Yi; Zhang, Zhirou; Zhang, Duxiu; Li, Yi [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Sakai, Taku [UEC Tokyo (The University of Electro-Communications), Chofu, Tokyo 182-8585 (Japan)

    2016-01-15

    Microstructural development under interrupted hot deformation of a cast Mg–Gd–Y–Zr alloy was investigated by optical microscopy (OM) and electron backscattering diffraction (EBSD) technology and the resultant mechanical properties were detected through tensile tests at room temperature. Ultrafine grains (UFGs) were remarkably developed under the condition of interrupted hot forging, resulting in an improvement of ambient mechanical properties. The basal texture was weakened by an effective increase of the volume fraction of UFGs under interrupted hot forging. These resulted in an improvement of tensile ductility with little or no drop in strength, i.e. the volume fraction of UFGs was raised from 30% to 70%, leading to an increase of the ambient tensile elongation from 15% to 23%.

  6. Impact of residual by-products from tungsten film deposition on process integration due to nonuniformity of the tungsten film

    CERN Document Server

    Sidhwa, A; Gandy, T; Melosky, S; Brown, W; Ang, S; Naseem, H; Ulrich, R

    2002-01-01

    The effects of residual by products from a tungsten film deposition process and their impact on process integration due to the nonuniformity of the tungsten film were investigated in this work. The tungsten film deposition process involves three steps: nucleation, stabilization, and tungsten bulk fill. Six experiments were conducted in search for a solution to the problem. The resulting data suggest that excess nitrogen left in the chamber following the tungsten nucleation step, along with residual by products, causes a shift in the tungsten film uniformity during the tungsten bulk fill process. Data reveal that, due to the residual by products, an abnormal grain growth occurs causing a variation in the tungsten thickness across the wafer during the bulk fill step. Although several possible solutions were revealed by the experiments, potential integration problems limited the acceptable solutions to one. The solution chosen was the introduction of a 10 s pumpdown immediately following the nucleation step. Thi...

  7. Texture and microstructure development during hot deformation of ME20 magnesium alloy: Experiments and simulations

    International Nuclear Information System (INIS)

    Li, X.; Al-Samman, T.; Mu, S.; Gottstein, G.

    2011-01-01

    Highlights: → Second phase precipitates in ME20 hindered activation of tensile twinning at 300 deg. C. → New off-basal sheet texture during c-axis compression at low Z conditions. → Ce amplifies the role of pyramidal -slip over prismatic slip at 0.3T m . → Prismatic slip becomes equally important to deformation at 0.6T m . → Accurate texture predictions using a cluster-type Taylor model with grain interaction. - Abstract: The influence of deformation conditions and starting texture on the microstructure and texture evolution during hot deformation of a commercial rare earth (RE)-containing magnesium alloy sheet ME20 was investigated and compared with a conventional Mg sheet alloy AZ31. For all the investigated conditions, the two alloys revealed obvious distinctions in the flow behavior and the development of texture and microstructure, which was primarily attributed to the different chemistry of the two alloys. The presence of precipitates in the fine microstructure of the ME20 sheet considerably increased the recrystallization temperature and suppressed tensile twinning. This gave rise to an uncommon Mg texture development during deformation. Texture simulation using an advanced cluster-type Taylor approach with consideration of grain interaction was employed to correlate the unique texture development in the ME20 alloy with the activation scenarios of different deformation modes.

  8. Correlation of microstructure and compressive properties of amorphous matrix composites reinforced with tungsten continuous fibers or porous foams

    International Nuclear Information System (INIS)

    Son, Chang-Young; Lee, Sang-Bok; Lee, Sang-Kwan; Kim, Choongnyun Paul; Lee, Sunghak

    2010-01-01

    Zr-based amorphous alloy matrix composites reinforced with tungsten continuous fibers or porous foams were fabricated without pores or defects by liquid pressing process, and their microstructures and compressive properties were investigated. About 65-70 vol.% of tungsten reinforcements were homogeneously distributed inside the amorphous matrix. The compressive test results indicated that the tungsten-reinforced composites showed considerable plastic strain as the compressive load was sustained by fibers or foams. Particularly in the tungsten porous foam-reinforced composite, the compressive stress continued to increase according to the work hardening after the yielding, thereby leading to the maximum strength of 2764 MPa and the plastic strain of 39.4%. This dramatic increase in strength and ductility was attributed to the simultaneous and homogeneous deformation at tungsten foams and amorphous matrix since tungsten foams did not show anisotropy and tungsten/matrix interfaces were excellent.

  9. Hydrogen permeation properties of plasma-sprayed tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Pawelko, R.J.; Hankins, M.R.; Longhurst, G.R.; Neiser, R.A.

    1994-01-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D + 3 ion beam with fluxes of similar 6.5x10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  10. Hydrogen permeation properties of plasma-sprayed tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Pawelko, R.J. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Hankins, M.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Longhurst, G.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Neiser, R.A. (Sandia National Laboratories, Albuquerque, NM 87185 (United States))

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D[sup +][sub 3] ion beam with fluxes of similar 6.5x10[sup 19] D/m[sup 2] s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  11. Hot wire chemical vapor deposition: limits and opportunities of protecting the tungsten catalyzer from silicide with a cavity

    International Nuclear Information System (INIS)

    Frigeri, P.A.; Nos, O.; Bengoechea, S.; Frevert, C.; Asensi, J.M.; Bertomeu, J.

    2009-01-01

    Hot Wire Chemical Vapor Deposition (HW-CVD) is one of the most promising techniques for depositing the intrinsic microcrystalline silicon layer for the production of micro-morph solar cells. However, the silicide formation at the colder ends of the tungsten wire drastically reduces the lifetime of the catalyzer, thus limiting its industrial exploitation. A simple but interesting strategy to decrease the silicide formation is to hide the electrical contacts of the catalyzer in a long narrow cavity which reduces the probability of the silane molecules to reach the colder ends of the wire. In this paper, the working mechanism of the cavity is elucidated. Measurements of the thickness profile of the silicon deposited in the internal walls of the cavity have been compared with those predicted using a simple diffusion model based on the assumption of Knudsen flow. A lifetime study of the protected and unprotected wires has been carried out. The different mechanisms which determine the deterioration of the catalyzer have been identified and discussed.

  12. Tungsten

    International Nuclear Information System (INIS)

    Eschnauer, H.

    1978-01-01

    There is no substitute for tungsten in its main field of application so that the demand will not decrease, but there is a need for further important applications. If small variations are left out of account, a small but steady increase in the annual tungsten consumption can be expected. The amount of tungsten available will increase due to the exploritation of new deposits and the extension of existing mines. This tendency will probably be increased by the world-wide prospection. It is hard to make an assessment of the amount of tungsten are obtained in the People's Republic of china, the purchases of Eastern countries in the West, and the sales policy of the USA; pice forecasts are therefore hard to make. A rather interesting subject with regard to the tungsten cycle as a whole is the reprocessing of tungsten-containing wastes. (orig.) [de

  13. Effect of low-melting point phases on the microstructure and properties of spark plasma sintered and hot deformed Nd-Fe-B alloys

    Science.gov (United States)

    Zhang, Li; Wang, Meiyu; Yan, Xueliang; Lin, Ye; Shield, Jeffrey

    2018-04-01

    The effect of adding a low melting point Pr-Cu-Al alloy during spark plasma sintering of melt-spun Nd-Fe-B ribbons is investigated. Regions of coarse grains were reduced and overall grain refinement was observed after the addition of Pr68Cu25Al7, leading to an enhancement of coercivity from 12.7 kOe to 20.4 kOe. Hot deformation of the samples in the spark plasma sintering system resulted in the formation of platelet-like grains, producing crystallographic alignment and magnetic anisotropy. The hot deformation process improved the remanence and energy product but reduced the coercivity. The decrease of coercivity resulted from grain growth and aggregation of Pr and Nd elements at triple-junction phases.

  14. Tungsten dust remobilization under steady-state and transient plasma conditions

    Directory of Open Access Journals (Sweden)

    S. Ratynskaia

    2017-08-01

    Full Text Available Remobilization is one of the most prominent unresolved fusion dust-relevant issues, strongly related to the lifetime of dust in plasma-wetted regions, the survivability of dust on hot plasma-facing surfaces and the formation of dust accumulation sites. A systematic cross-machine study has been initiated to investigate the remobilization of tungsten micron-size dust from tungsten surfaces implementing a newly developed technique based on controlled pre-adhesion by gas dynamics methods. It has been utilized in a number of devices and has provided new insights on remobilization under steady-state and transient conditions. The experiments are interpreted with contact mechanics theory and heat conduction models.

  15. Total knee arthroplasty for severe valgus knee deformity.

    Science.gov (United States)

    Zhou, Xinhua; Wang, Min; Liu, Chao; Zhang, Liang; Zhou, Yixin

    2014-01-01

    Primary total knee arthroplasty (TKA) in severe valgus knees may prove challenging, and choice of implant depends on the severity of the valgus deformity and the extent of soft-tissue release. The purpose of this study was to review 8 to 11 years (mean, 10 years) follow-up results of primary TKA for varient-III valgus knee deformity with use of different type implants. Between January 2002 and January 2005, 20 women and 12 men, aged 47 to 63 (mean, 57.19 ± 6.08) years old, with varient-III valgus knees underwent primary TKA. Of the 32 patients, 37 knees had varient-III deformities. Pie crusting was carefully performed with small, multiple inside-out incisions, bone resection balanced the knee in lieu of soft tissue releases that were not used in the series. Cruciate-retaining knees (Gemini MKII, Link Company, Germany) were used in 13 knees, Genesis II (Simth & Nephew Company, USA) in 14 knees, and hinged knee (Endo-Model Company, Germany) in 10 knees. In five patients with bilateral variant-III TKAs, three patients underwent 1-stage bilateral procedures, and two underwent 2-stage procedures. All implants were cemented and the patella was not resurfaced. The Hospital for Special Surgery (HSS) knee score was assessed. Patients were followed up from 8 to 11 years. The mean HSS knee score were improved from 50.33 ± 11.60 to 90.06 ± 3.07 (P managed with rivaroxaban and thrombo-embolic deterrent stockings. There was no incidence of pulmonary embolism. Post-operative patient satisfaction was 80.7 ± 10.4 points in the groups. Prosthetic survival rate was 100% at mean 10 years postoperative. Not only hinged implants can be successfully used in variant-III valgus knees. As our results show, if proper ligament balancing techniques are used and proper ligament balance is attained, the knee may not require the use of a more constrained components. Our results also present alternative implant choices for severe knee deformities.

  16. Unified description of the softening behavior of beta-metastable and alpha+beta titanium alloys during hot deformation

    International Nuclear Information System (INIS)

    Poletti, Cecilia; Germain, Lionel; Warchomicka, Fernando; Dikovits, Martina; Mitsche, Stefan

    2016-01-01

    In this work, we propose a unified description of the softening behavior of a β metastable alloy and Ti6Al4V alloy. In the first part we provide sound evidence that the hot deformation of Ti6Al4V of the beta phase above and below the beta transus temperature takes place solely by dynamic recovery at moderate strains, similarly to the behavior of the Ti5Al5Mo5V3Cr1Zr near-beta alloy. This study was possible due to the combination of the fast cooling rates achieved after controlled hot deformation and the reconstruction of the parent beta phase from electron backscattered diffraction measurements of the frozen alpha phase by using an innovative developed algorithm. The dynamic recovery as a common dynamic restoration behavior for Ti6Al4V and Ti5Al5Mo5V3Cr1Zr is described mathematically with a Derby type relationship of the subgrain size and the stress of the beta phase. A rule of mixture allows the determination of the load partition between the two allotropic phases.

  17. Microstructure and microtexture evolutions of deformed oxide layers on a hot-rolled microalloyed steel

    International Nuclear Information System (INIS)

    Yu, Xianglong; Jiang, Zhengyi; Zhao, Jingwei; Wei, Dongbin; Zhou, Cunlong; Huang, Qingxue

    2015-01-01

    Highlights: • Microtexture development of deformed oxide layers is investigated. • Magnetite shares the {0 0 1} fibre texture with wustite. • Hematite develops the {0 0 0 1} basal fibre parallel to the oxide growth. • Stress relief and ion vacancy diffusion mechanism for magnetite seam. - Abstract: Electron backscatter diffraction (EBSD) analysis has been presented to investigate the microstructure and microtexture evolutions of deformed oxide scale formed on a microalloyed steel during hot rolling and accelerated cooling. Magnetite and wustite in oxide layers share a strong {0 0 1} and a weak {1 1 0} fibres texture parallel to the oxide growth. Trigonal hematite develops the {0 0 0 1} basal fibre parallel to the crystallographic plane {1 1 1} in magnetite. Taylor factor estimates have been conducted to elucidate the microtexture evolution. The fine-grained magnetite seam adjacent to the substrate is governed by stress relief and ions vacancy diffusion mechanism

  18. Influence of structures on fracture and fracture toughness of cemented tungsten carbides

    International Nuclear Information System (INIS)

    Zhao, W.; Zhang, X.

    1987-01-01

    A study was made of the influence of structures on fracture and fracture toughness of cemented tungsten carbides with different compositions and grain sizes. The measurement of the fracture toughness of cemented tungsten carbide was carried out using single edge notched beam. The microstructural parameters and the proportion for each fracture mode on the fracture surface were obtained. The brittle fracture of the alloy is mainly due to the interfacial decohesion fracture following the interface of the carbide crystals. It has been observed that there are localized fractures region ahead of the crack tip. The morphology of the crack propagation path as well as the slip structure in the cobalt phase of the deformed region have been investigated. In addition, a study of the correlation between the plane strain fracture toughness and microstructural parameters, such as mean free path of the cobalt phase, tungsten carbide grain size and the contiguity of tungsten carbide crystals was also made

  19. Hot Deformation Behavior of SA508Gr.4N Steel for Reactor Pressure Vessels

    Directory of Open Access Journals (Sweden)

    YANG Zhi-qiang

    2017-08-01

    Full Text Available The high-temperature plastic deformation and dynamic recrystallization behavior of SA508Gr.4N steel were investigated through hot deformation tests in a Gleeble1500D thermal mechanical simulator. The compression tests were performed in the temperature range of 1050-1250℃ and the strain rate range of 0.001-0.1s-1 with true strain of 0.16. The results show that from the high-temperature true stress-strain curves of the SA508Gr.4N steel, the main feature is dynamic recrystallization,and the peak stress increases with the decrease of deformation temperature or the increase of strain rate, indicating the experimental steel is temperature and strain rate sensitive material. The constitutive equation for SA508Gr.4N steel is established on the basis of the true stress-strain curves, and exhibits the characteristics of the high-temperature flow behavior quite well, while the activation energy of the steel is determined to be 383.862kJ/mol. Furthermore, an inflection point is found in the θ-σ curve, while the -dθ/dσ-σ curve shows a minimum value. The critical strain increases with increasing strain rate and decreasing deformation temperature. A linear relationship between critical strain (εc and peak strain (εp is found and could be expressed as εc/εp=0.517. The predicted model of critical strain could be described as εc=8.57×10-4Z0.148.

  20. Ab initio and DFT benchmarking of tungsten nanoclusters and tungsten hydrides

    International Nuclear Information System (INIS)

    Skoviera, J.; Novotny, M.; Cernusak, I.; Oda, T.; Louis, F.

    2015-01-01

    We present several benchmark calculations comparing wave-function based methods and density functional theory for model systems containing tungsten. They include W 4 cluster as well as W 2 , WH and WH 2 molecules. (authors)

  1. Precipitation behavior in a nitride-strengthened martensitic heat resistant steel during hot deformation

    Directory of Open Access Journals (Sweden)

    Wenfeng Zhang

    2015-09-01

    Full Text Available The stress relaxation curves for three different hot deformation processes in the temperature range of 750–1000 °C were studied to develop an understanding of the precipitation behavior in a nitride-strengthened martensitic heat resistant steel (Zhang et al., Mater. Sci. Eng. A, 2015 [1]. This data article provides supporting data and detailed information on how to accurately analysis the stress relaxation data. The statistical analysis of the stress peak curves, including the number of peaks, the intensity of the peaks and the integral value of the pumps, was carried out. Meanwhile, the XRD energy spectrum data was also calculated in terms of lattice distortion.

  2. Fabrication of tungsten probe for hard tapping operation in atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guebum, E-mail: hanguebum@live.co.kr [Department of Physics and Optical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, Indiana 47803 (United States); Department of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of); Ahn, Hyo-Sok, E-mail: hsahn@seoultech.ac.kr [Manufacturing Systems and Design Engineering Programme, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of)

    2016-02-15

    We propose a method of producing a tungsten probe with high stiffness for atomic force microscopy (AFM) in order to acquire enhanced phase contrast images and efficiently perform lithography. A tungsten probe with a tip radius between 20 nm and 50 nm was fabricated using electrochemical etching optimized by applying pulse waves at different voltages. The spring constant of the tungsten probe was determined by finite element analysis (FEA), and its applicability as an AFM probe was evaluated by obtaining topography and phase contrast images of a Si wafer sample partly coated with Au. Enhanced hard tapping performance of the tungsten probe compared with a commercial Si probe was confirmed by conducting hard tapping tests at five different oscillation amplitudes on single layer graphene grown by chemical vapor deposition (CVD). To analyze the damaged graphene sample, the test areas were investigated using tip-enhanced Raman spectroscopy (TERS). The test results demonstrate that the tungsten probe with high stiffness was capable of inducing sufficient elastic and plastic deformation to enable obtaining enhanced phase contrast images and performing lithography, respectively. - Highlights: • We propose a method of producing highly stiff tungsten probes for hard tapping AFM. • Spring constant of tungsten probe is determined by finite element method. • Enhanced hard tapping performance is confirmed. • Tip-enhanced Raman spectroscopy is used to identify damage to graphene.

  3. Fabrication of tungsten probe for hard tapping operation in atomic force microscopy

    International Nuclear Information System (INIS)

    Han, Guebum; Ahn, Hyo-Sok

    2016-01-01

    We propose a method of producing a tungsten probe with high stiffness for atomic force microscopy (AFM) in order to acquire enhanced phase contrast images and efficiently perform lithography. A tungsten probe with a tip radius between 20 nm and 50 nm was fabricated using electrochemical etching optimized by applying pulse waves at different voltages. The spring constant of the tungsten probe was determined by finite element analysis (FEA), and its applicability as an AFM probe was evaluated by obtaining topography and phase contrast images of a Si wafer sample partly coated with Au. Enhanced hard tapping performance of the tungsten probe compared with a commercial Si probe was confirmed by conducting hard tapping tests at five different oscillation amplitudes on single layer graphene grown by chemical vapor deposition (CVD). To analyze the damaged graphene sample, the test areas were investigated using tip-enhanced Raman spectroscopy (TERS). The test results demonstrate that the tungsten probe with high stiffness was capable of inducing sufficient elastic and plastic deformation to enable obtaining enhanced phase contrast images and performing lithography, respectively. - Highlights: • We propose a method of producing highly stiff tungsten probes for hard tapping AFM. • Spring constant of tungsten probe is determined by finite element method. • Enhanced hard tapping performance is confirmed. • Tip-enhanced Raman spectroscopy is used to identify damage to graphene.

  4. Pressing and tubes rolling out of tungsten of gas phase deposition

    International Nuclear Information System (INIS)

    Korolev, Yu.M.; Kosachev, L.S.; Semiletov, S.S.; Solov'ev, V.F.; Sorkin, V.A.

    1987-01-01

    The possibility of increasing ductility of tubes of tungsten fluoride using heat treatment and plastic deformation- pressing and thermal rolling are studied. When designing the processes of treatment it should be necessarily taken into account that structural state of initial blanks as well as the ratio of deformations in radial and tangential directions under pressing with a rigid needle strongly affects technological properties of pressed tubes. The columnar structure of blanks is undesirable for its embrittlement affects the pressed tubes

  5. High-coercivity ultrafine-grained anisotropic Nd–Fe–B magnets processed by hot deformation and the Nd–Cu grain boundary diffusion process

    International Nuclear Information System (INIS)

    Sepehri-Amin, H.; Ohkubo, T.; Nagashima, S.; Yano, M.; Shoji, T.; Kato, A.; Schrefl, T.; Hono, K.

    2013-01-01

    The grain boundary diffusion process using an Nd 70 Cu 30 eutectic alloy has been applied to hot-deformed anisotropic Nd–Fe–B magnets, resulting in a substantial enhancement of coercivity, from 1.5 T to 2.3 T, at the expense of remanence. Scanning electron microscopy showed that the areal fraction of an Nd-rich intergranular phase increased from 10% to 37%. The intergranular phase of the hot-deformed magnet initially contained ∼55 at.% ferromagnetic element, while it diminished to an undetectable level after the process. Microscale eutectic solidification of Nd/NdCu as well as a fine lamellae structure of Nd 70 (Co,Cu) 30 /Nd were observed in the intergranular phase. Micromagnetic simulations indicated that the reduction of the magnetization in the intergranular phases leads to the enhancement of coercivity in agreement with the experimental observation

  6. Shear strength of shock-loaded polycrystalline tungsten

    International Nuclear Information System (INIS)

    Asay, J.R.; Chhabildas, L.C.; Dandekar, D.P.

    1980-01-01

    Previous experiments have suggested that tungsten undergoes a significant loss of shear strength when shock loaded to stresses greater than 7 GPa. In order to investigate this effect in more detail, a series of experiments was conducted in which polycrystalline tungsten was first shock loaded to approximately 10 GPa and then either unloaded or reloaded from the shocked state. Analysis of measured time-resolved wave profiles indicates that during initial compression to 9.7 GPa, the shear stress in polycrystalline tungsten increases to a maximum value of 1.1 GPA near a longitudinal stress of 5 GPa, but decreases to a final value of 0.8 GPa for stresses approaching 10 GPa. During reloading from a longitudinal stress of 9.7 GPa to a final value of approx.14 GPa, the shear stress increases to a peak value of 1.2 GPa and softens to 1.0 GPa in the final state. During unloading from the shocked state, the initial response is elastic with a strong Baushinger effect. Examination of a recovered sample shows evidence for both deformation slipping and twinning, which may be responsible for the observed softening

  7. Coercivity enhancement in hot deformed Nd2Fe14B-type magnets by doping low-melting RCu alloys (R = Nd, Dy, Nd + Dy)

    Science.gov (United States)

    Lee, Y. I.; Huang, G. Y.; Shih, C. W.; Chang, W. C.; Chang, H. W.; You, J. S.

    2017-10-01

    Magnetic properties of the anisotropic NdFeB magnets prepared by hot pressing followed by die-upsetting NdFeB MQU-F powders doped with low-melting RCu alloy powders were explored, where RCu stands for Nd70Cu30, Dy70Cu30 and (Nd0.5Dy0.5)70Cu30, respectively. In addition, the post-annealing at 600 °C was employed to modify the microstructures and the magnetic properties of the hot deformed magnets. It is found that doping RCu alloy powders is effective in enhancing the coercivity of the hot deformed NdFeB magnets from 15.1 kOe to 16.3-19.5 kOe. For Nd70Cu30-doped magnets, the increment of coercivity is only 1.2 kOe. Meanwhile, Dy70Cu30-doped and (Nd0.5Dy0.5)70Cu30-doped magnets show an almost identical enhancement of coercivity of about 4.4 kOe. Importantly, the latter magnet shows a beneficial effect of reducing the usage of Dy from 1.6 wt% to 0.8 wt%. TEM analysis shows that nonmagnetic Nd, Dy and Cu appear at grain boundary and isolate the magnetic grains, leading to an enhancement of coercivity. Doping lower melting point Dy-lean (Nd0.5Dy0.5)70Cu30 powders into commercial MQU-F powders for making high coercivity hot deformed NdFeB magnets might be a potential and economic way for mass production.

  8. Characterization of strengthening mechanism and hot deformation behavior of powder metallurgy molybdenum

    International Nuclear Information System (INIS)

    Xiao, Meili; Li, Fuguo; Xie, Hangfang; Wang, Yufeng

    2012-01-01

    Highlights: → Dynamic recrystallization of powder metallurgy molybdenum occurs in the temperature region (1200-1450 o C). → The value of strain hardening index n decreases along with the temperature rising. → The value of strain-rate sensitivity exponent m increases slowly at first and achieves a peak value at 1350 o C. → Deformation strengthening is the main strengthening mechanism at low temperature. → Rheological strengthening becomes the primary strengthening mechanism at high temperature. -- Abstract: The high-temperature deformation behavior of powder metallurgy molybdenum has been investigated based on a series of isothermal hot compression tests, which were carried out on a Gleeble-1500 thermal mechanical simulator in a wide range of temperatures (900-1450 o C) and strain rates (0.01-10 s -1 ). Through the research on the experimental stress-strain curves, it reveals that dynamic recrystallization softening effect of powder metallurgy molybdenum occurs in the temperature range from 1200 o C to 1450 o C, in which the flow stress is significantly sensitive to temperature. In comparison with the value of strain hardening index n which decreases along with the temperature rising, the value of strain-rate sensitivity exponent m does not change obviously; however, it increases slowly with the increasing of temperature at first and achieves a peak value at 1350 o C. Furthermore, relying on the comparison of mean value of n and m, it is suggested that deformation strengthening is the main strengthening mechanism at low temperature while the rheological strengthening changes into the primary strengthening mechanism at high temperature.

  9. Results of high heat flux tests and structural analysis of the new solid tungsten divertor tile for ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jaksic, Nikola, E-mail: nikola.jaksic@ipp.mpg.de; Greuner, Henri; Herrmann, Albrecht; Böswirth, Bernd; Vorbrugg, Stefan

    2015-10-15

    Highlights: • The main motivation for the HHF investigation of tungsten tiles was an untypical deformation of some specimens under thermal loading, observed during the previous tests in GLADIS test facility. • A nonlinear finite element (FE) model for simulations of the GLADIS tests has been built. • The unexpected plastic deformations are mainly caused by internal stresses due to the manufacturing process. The small discrepancies among the FEA investigated and measured plastic deformations are most likely caused, beside of the practical difficulties by measuring of low items, also by tile internal stresses. • The influences of the residual stresses caused by special production processes have to be taken into account by design of the structural part made of solid tungsten. - Abstract: Tungsten as plasma-facing material for fusion devices is currently the most favorable candidate. In general solid tungsten is used for shielding the plasma chamber interior against the high heat generated from the plasma. For the purposes of implementation at ASDEX Upgrade and as a contribution to ITER the thermal performance of tungsten tiles has been extensively tested in the high heat flux test facility GLADIS during the development phase and beyond. These tests have been performed on full scale tungsten tile prototypes including their clamping and cooling structure. Simulating the adiabatically thermal loading due to plasma operation in ASDEX Upgrade, the tungsten tiles have been subjected to a thermal load with central heat flux of 10–24 MW/m{sup 2} and absorbed energy between 370 and 680 kJ. This loading results in maximum surface temperatures between 1300 °C and 2800 °C. The tests in GLADIS have been accompanied by intensive numerical investigations using FEA methods. For this purpose a multiple nonlinear finite element model has been set up. This paper discusses the main results of the high heat flux final tests and their numerical simulation. Moreover, first

  10. Results of high heat flux tests and structural analysis of the new solid tungsten divertor tile for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Jaksic, Nikola; Greuner, Henri; Herrmann, Albrecht; Böswirth, Bernd; Vorbrugg, Stefan

    2015-01-01

    Highlights: • The main motivation for the HHF investigation of tungsten tiles was an untypical deformation of some specimens under thermal loading, observed during the previous tests in GLADIS test facility. • A nonlinear finite element (FE) model for simulations of the GLADIS tests has been built. • The unexpected plastic deformations are mainly caused by internal stresses due to the manufacturing process. The small discrepancies among the FEA investigated and measured plastic deformations are most likely caused, beside of the practical difficulties by measuring of low items, also by tile internal stresses. • The influences of the residual stresses caused by special production processes have to be taken into account by design of the structural part made of solid tungsten. - Abstract: Tungsten as plasma-facing material for fusion devices is currently the most favorable candidate. In general solid tungsten is used for shielding the plasma chamber interior against the high heat generated from the plasma. For the purposes of implementation at ASDEX Upgrade and as a contribution to ITER the thermal performance of tungsten tiles has been extensively tested in the high heat flux test facility GLADIS during the development phase and beyond. These tests have been performed on full scale tungsten tile prototypes including their clamping and cooling structure. Simulating the adiabatically thermal loading due to plasma operation in ASDEX Upgrade, the tungsten tiles have been subjected to a thermal load with central heat flux of 10–24 MW/m"2 and absorbed energy between 370 and 680 kJ. This loading results in maximum surface temperatures between 1300 °C and 2800 °C. The tests in GLADIS have been accompanied by intensive numerical investigations using FEA methods. For this purpose a multiple nonlinear finite element model has been set up. This paper discusses the main results of the high heat flux final tests and their numerical simulation. Moreover, first results

  11. Atom Probe Tomography of Phase and Grain Boundaries in Experimentally-Deformed and Hot-Pressed Wehrlite

    Science.gov (United States)

    Cukjati, J.; Parman, S. W.; Cooper, R. F.; Zhao, N.

    2017-12-01

    Atom probe tomography (APT) was used to characterize the chemistry of three grain boundaries: an olivine-olivine (ol-ol) and olivine-clinopyroxene (ol-cpx) boundary in fine-grained experimentally-deformed wehrlite and an ol-cpx boundary in a fine-grained, hot-pressed wehrlite. Grain boundaries were extracted and formed into APT tips using a focused ion beam (FIB). The tips were analyzed in a reflectron-equipped LEAP4000HR (Harvard University) at 1% or 0.5% detection rate, 5pJ laser energy and 100kHz pulse rate. Total ion counts are between 40 and 100 million per tip. Examination of grain and phase boundaries in wehrlite are of interest since slow-diffusing and olivine-incompatible cations present in cpx (e.g. Ca and Al) may control diffusion-accommodated grain boundary sliding and affect mantle rheology (Sundberg & Cooper, 2008). At steady state, ol-cpx aggregates are weaker than either ol or cpx end member, the results of which are not currently well-explained. We investigate grain boundary widths to understand the transport of olivine-incompatible elements. Widths of grain/phase boundary chemical segregation are between 3nm and 6nm for deformed ol-ol and ol-cpx samples; minimally-deformed (hot-pressed) samples having slightly wider chemical segregation widths. Chemical segregation widths were determined from profiles of Na, Al, P, Cl, K, Ca, or Ni, although not all listed elements can be used for all samples (e.g. Na, K segregation profiles can only be observed for ol-ol sample). These estimates are consistent with prior estimates of grain boundary segregation by atom probe tomography on ol-ol and opx-opx samples (Bachhav et al., 2015) and are less than ol-ol interface widths analyzed by STEM/EDX (Hiraga, Anderson, & Kohlstedt, 2007). STEM/EDX will be performed on deformed wehrlite to investigate chemical profile as a function of applied stress orientation and at length scales between those observable by APT and EPMA. Determination of phase boundary chemistry and

  12. Analysis Of Deformation And Microstructural Evolution In The Hot Forgingof The Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Kukuryk M.

    2015-09-01

    Full Text Available The paper presents the analysis of the three-dimensional strain state for the cogging process of the Ti-6Al-4V alloy using the finite element method, assuming the rigid-plastic model of the deformed body. It reports the results of simulation studies on the metal flow pattern and thermal phenomena occurring in the hot cogging process conducted on three tool types. The computation results enable the determination of the distribution of effective strain, effective stress, mean stress and temperature within the volume of the blank. This solution has been complemented by adding the model of microstructure evolution during the cogging process. The numerical analysis was made using the DEFORM-3D consisting of a mechanical, a thermal and a microstructural parts. The comparison of the theoretical study and experimental test results indicates a potential for the developed model to be employed for predicting deformations and microstructure parameters.

  13. Subgrain and dislocation structure changes in hot-deformed high-temperature Fe-Ni austenitic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ducki, K.J.; Rodak, K.; Hetmanczyk, M.; Kuc, D

    2003-08-28

    The influence of plastic deformation on the substructure of a high-temperature austenitic Fe-Ni alloy has been presented. Hot-torsion tests were executed at constant strain rates of 0.1 and 1.0 s{sup -1}, at testing temperatures in the range 900-1150 deg. C. The examination of the microstructure was carried out, using transmission electron microscopy. Direct measurements on the micrographs allowed the calculation of structural parameters: the average subgrain area, and the mean dislocation density. A detailed investigation has shown that the microstructure is inhomogeneous, consisting of dense dislocation walls, subgrains and recrystallized regions.

  14. Subgrain and dislocation structure changes in hot-deformed high-temperature Fe-Ni austenitic alloy

    International Nuclear Information System (INIS)

    Ducki, K.J.; Rodak, K.; Hetmanczyk, M.; Kuc, D.

    2003-01-01

    The influence of plastic deformation on the substructure of a high-temperature austenitic Fe-Ni alloy has been presented. Hot-torsion tests were executed at constant strain rates of 0.1 and 1.0 s -1 , at testing temperatures in the range 900-1150 deg. C. The examination of the microstructure was carried out, using transmission electron microscopy. Direct measurements on the micrographs allowed the calculation of structural parameters: the average subgrain area, and the mean dislocation density. A detailed investigation has shown that the microstructure is inhomogeneous, consisting of dense dislocation walls, subgrains and recrystallized regions

  15. Weldability Characteristics of Sintered Hot-Forged AISI 4135 Steel Produced through P/M Route by Using Pulsed Current Gas Tungsten Arc Welding

    Science.gov (United States)

    Joseph, Joby; Muthukumaran, S.; Pandey, K. S.

    2016-01-01

    Present investigation is an attempt to study the weldability characteristics of sintered hot-forged plates of AISI 4135 steel produced through powder metallurgy (P/M) route using matching filler materials of ER80S B2. Compacts of homogeneously blended elemental powders corresponding to the above steel were prepared on a universal testing machine (UTM) by taking pre-weighed powder blend with a suitable die, punch and bottom insert assembly. Indigenously developed ceramic coating was applied on the entire surface of the compacts in order to protect them from oxidation during sintering. Sintered preforms were hot forged to flat, approximately rectangular plates, welded by pulsed current gas tungsten arc welding (PCGTAW) processes with aforementioned filler materials. Microstructural, tensile and hardness evaluations revealed that PCGTAW process with low heat input could produce weldments of good quality with almost nil defects. It was established that PCGTAW joints possess improved tensile properties compared to the base metal and it was mainly attributed to lower heat input, resulting in finer fusion zone grains and higher fusion zone hardness. Thus, the present investigation opens a new and demanding field in research.

  16. Effect of Plastic Hot Deformation on the Hardness and Continuous Cooling Transformations of 22MnB5 Microalloyed Boron Steel

    Science.gov (United States)

    Barcellona, A.; Palmeri, D.

    2009-05-01

    The strains, transformation temperatures, microstructure, and microhardness of a microalloyed boron and aluminum precoated steel, which has been isothermally deformed under uniaxial tensile tests, have been investigated at temperatures between 873 and 1223 K, using a fixed strain rate value of 0.08 s-1. The effect of each factor, such as temperature and strain value, has been later valued considering the shift generated on the continuous cooling transformation (CCT) diagram. The experimental results consist of the starting temperatures that occur for each transformation, the microhardness values, and the obtained microstructure at the end of each thermomechanical treatment. All the thermomechanical treatments were performed using the thermomechanical simulator Gleeble 1500. The results showed that increasing hot prestrain (HPS) values generate, at the same cooling rate, lower hardness values; this means that the increasing of HPS generates a shift of the CCT diagram toward a lower starting time for each transformation. Therefore, high values of hot deformations during the hot stamping process require a strict control of the cooling process in order to ensure cooling rate values that allow maintaining good mechanical component characteristics. This phenomenon is amplified when the prestrain occurs at lower temperatures, and thus, it is very sensitive to the temperature level.

  17. Study of Low Work Function Materials for Hot Cavity Resonance Ionization Laser Ion Sources

    CERN Document Server

    Catherall, R; Fedosseev, V; Marsh, B; Mattolat, C; Menna, Mariano; Österdahl, F; Raeder, S; Schwellnus, F; Stora, T; Wendt, K; CERN. Geneva. AB Department

    2008-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization on the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high-temperature, low-work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE / CERN, Geneva and RISIKO / University of Mainz.

  18. Study of low work function materials for hot cavity resonance ionization laser ion sources

    CERN Document Server

    Schwellnus, F; Crepieux, B; Fedosseev, V N; Marsh, B A; Mattolat, Ch; Menna, M; Österdahl, F K; Raeder, S; Stora, T; Wendta, K

    2009-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization of the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high temperature, low work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE/CERN, Geneva and RISIKO/University of Mainz.

  19. Hydrogen permeation properties of plasma-sprayed tungsten*1

    Science.gov (United States)

    Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.

  20. Sub-surface microstructure of single and polycrystalline tungsten after high flux plasma exposure studied by TEM

    Energy Technology Data Exchange (ETDEWEB)

    Dubinko, A., E-mail: adubinko@sckcen.be [Institute for Nuclear Material Sciences, SCK-CEN, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, 9000 Ghent (Belgium); Terentyev, D. [Institute for Nuclear Material Sciences, SCK-CEN, 2400 Mol (Belgium); Bakaeva, A. [Institute for Nuclear Material Sciences, SCK-CEN, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, 9000 Ghent (Belgium); Hernández-Mayoral, M. [Division of Materials, CIEMAT, 28040 Madrid (Spain); De Temmerman, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul-lez-Durance Cedex (France); Buzi, L. [Forschungszentrum Julich, Inst. Energie & Klimaforsch Plasmaphys, D-52425 Julich (Germany); Noterdaeme, J.-M. [Department of Applied Physics, Ghent University, 9000 Ghent (Belgium); Unterberg, B. [Forschungszentrum Julich, Inst. Energie & Klimaforsch Plasmaphys, D-52425 Julich (Germany)

    2017-01-30

    Highlights: • Plasma exposure induces dislocation-dominated microstructure as indicated by TEM. • Plasma exposure increases surface dislocation density by an order of magnitude in the polycrystalline tungsten. • Intensive dislocation-grain boundary interaction observed in polycrystalline tungsten. • Dislocation loops are observed in both polycrystalline and single crystal tungsten. - Abstract: We have performed high flux plasma exposure of tungsten and subsequent microstructural characterization using transmission electron microscopy (TEM) techniques. The aim was to reveal the nanometric features in the sub-surface region as well as to compare the microstructural evolution in tungsten single crystal and ITER-relevant specification. In both types of samples, TEM examination revealed the formation of a dense dislocation network and dislocation tangles. The estimated dislocation density in the sub-surface region was of the order of 10{sup 14} m{sup −2} and it gradually decreased with a depth position of the examined sample. Besides individual dislocation lines, networks and tangles, the interstitial dislocation loops have been observed in all examined samples only after the exposure. Contrary to that, examination of the pristine single crystal W and backside of the plasma-exposed samples did not reveal the presence of dislocation loops and tangles. This clearly proves that high flux plasma exposure induces severe plastic deformation in the sub-surface region irrespective of the presence of initial dislocations and sub-grains, and the formation of dislocation tangles, networks and interstitial loops is a co-product of thermal stress and intensive plasma particles uptake.

  1. Mechanical and microstructural aspects of severe plastic deformation of austenitic steel

    Science.gov (United States)

    Rodak, K.; Pawlicki, J.; Tkocz, M.

    2012-05-01

    The paper presents the effects of severe plastic deformation by multiple compression in the orthogonal directions on the microstructure and the mechanical properties of austenitic steel. Several deformation variants were conducted with different number of passes. FEM simulations were performed in order to evaluate the actual values of the effective strain in the examined, central parts of the compressed samples. The deformed microstructure was investigated by means of the scanning transmission electron microscopy (STEM) and the scanning electron microscopy (SEM) supported by the electron back scattered diffraction (EBSD). X-ray phase analysis was performed to evaluate the martensite volume fraction. The mechanical properties were determined by means of the digital image correlation method and hardness testing. It is shown that the applied forming technique leads to strong grain refinement in the austenitic steel. Moreover, deformation induces the martensitic γ- α' transformation. The microstructural changes cause an improvement in the strength properties. The material exhibits the ultimate tensile strength of 1560 MPa and the yield stress of 1500 MPa after reaching the effective strain of 10.

  2. Mechanical and microstructural aspects of severe plastic deformation of austenitic steel

    International Nuclear Information System (INIS)

    Rodak, K; Pawlicki, J; Tkocz, M

    2012-01-01

    The paper presents the effects of severe plastic deformation by multiple compression in the orthogonal directions on the microstructure and the mechanical properties of austenitic steel. Several deformation variants were conducted with different number of passes. FEM simulations were performed in order to evaluate the actual values of the effective strain in the examined, central parts of the compressed samples. The deformed microstructure was investigated by means of the scanning transmission electron microscopy (STEM) and the scanning electron microscopy (SEM) supported by the electron back scattered diffraction (EBSD). X-ray phase analysis was performed to evaluate the martensite volume fraction. The mechanical properties were determined by means of the digital image correlation method and hardness testing. It is shown that the applied forming technique leads to strong grain refinement in the austenitic steel. Moreover, deformation induces the martensitic γ– α' transformation. The microstructural changes cause an improvement in the strength properties. The material exhibits the ultimate tensile strength of 1560 MPa and the yield stress of 1500 MPa after reaching the effective strain of 10.

  3. Deformation mechanism study of a hot rolled Zr-2.5Nb alloy by transmission electron microscopy. I. Dislocation microstructures in as-received state and at different plastic strains

    Energy Technology Data Exchange (ETDEWEB)

    Long, Fei; Daymond, Mark R., E-mail: mark.daymond@queensu.ca; Yao, Zhongwen [Department of Mechanical and Materials Engineering, Queen' s University Kingston, Ontario K7L 3N6 (Canada)

    2015-03-07

    Thin foil dog bone samples prepared from a hot rolled Zr-2.5Nb alloy have been deformed by tensile deformation to different plastic strains. The development of slip traces during loading was observed in situ through SEM, revealing that deformation starts preferentially in certain sets of grains during the elastic-plastic transition region. TEM characterization showed that sub-grain boundaries formed during hot rolling consisted of screw 〈a〉 dislocations or screw 〈c〉 and 〈a〉 dislocations. Prismatic 〈a〉 dislocations with large screw or edge components have been identified from the sample with 0.5% plastic strain. Basal 〈a〉 and pyramidal 〈c + a〉 dislocations were found in the sample that had been deformed with 1.5% plastic strain, implying that these dislocations require larger stresses to be activated.

  4. Tungsten carbide and tungsten-molybdenum carbides as automobile exhaust catalysts

    International Nuclear Information System (INIS)

    Leclercq, L.; Daubrege, F.; Gengembre, L.; Leclercq, G.; Prigent, M.

    1987-01-01

    Several catalyst samples of tungsten carbide and W, Mo mixed carbides with different Mo/W atom ratios, have been prepared to test their ability to remove carbon monoxide, nitric oxide and propane from a synthetic exhaust gas simulating automobile emissions. Surface characterization of the catalysts has been performed by X-ray photoelectron spectroscopy (XPS) and selective chemisorption of hydrogen and carbon monoxide. Tungsten carbide exhibits good activity for CO and NO conversion, compared to a standard three-way catalyst based on Pt and Rh. However, this W carbide is ineffective in the oxidation of propane. The Mo,W mixed carbides are markedly different having only a very low activity. 9 refs.; 10 figs.; 5 tabs

  5. A review of penetration mechanisms and dynamic properties of tungsten and depleted uranium penetrators

    International Nuclear Information System (INIS)

    Andrew, S.P.; Caligiuri, R.D.; Eiselstein, L.E.

    1991-01-01

    Kinetic energy penetrators must posses the best possible combination of hardness, stiffness, strength, and fracture toughness characteristics to be effective against modern armor systems. Over the last decade, depleted uranium (DU) and tungsten alloys have been the materials of choice for kinetic energy penetrators. Du and tungsten perform abut the same against semi-infinite targets, and DU outperforms tungsten penetrators in oblique, spaced array targets, but because of environmental and subsequent cost concerns, effort has focused on improving the performance of tungsten penetrators over the last few years. However, despite recent improvements in material properties, the penetration performance of tungsten still lags behind that of DU. One possible reason is the difference in deformation mechanisms at the leading edge of the penetrator during the penetration process-DU alloys tend to shear band and sharpen as they penetrate the target material, whereas tungsten penetrators tend to mushroom and blunt. As a first step to determine whether shear banding is truly the reason for superior DU performance, a review of the fabrication, high strain-rate properties, and penetration phenomena of penetrators manufactured from both tungsten and DU alloys. Specifically, the effects of composition, processing, and heat treatment on material properties and penetration mechanisms of these alloys are discussed

  6. Micro creep mechanisms of tungsten

    International Nuclear Information System (INIS)

    Levoy, R.; Hugon, I.; Burlet, H.; Baillin, X.; Guetaz, L.

    2000-01-01

    Due to its high melting point (3410 deg C), tungsten offers good mechanical properties at elevated temperatures for several applications in non-oxidizing environment. The creep behavior of tungsten is well known between 1200 and 2500 deg C and 10 -3 to 10 -1 strain. However, in some applications when dimensional stability of components is required, these strains are excessive and it is necessary to know the creep behavior of the material for micro-strains (between 10 -4 and 10 -6 ). Methods and devices used to measure creep micro-strains are presented, and creep equations (Norton and Chaboche laws) were developed for wrought, annealed and recrystallized tungsten. The main results obtained on tungsten under low stresses are: stress exponent 1, symmetry of micro-strains in creep-tension and creep-compression, inverse creep (threshold stress), etc. TEM, SEM and EBSD studies allow interpretation of the micro-creep mechanism of tungsten under low stresses and low temperature (∼0.3 K) like the Harper-Dorn creep. In Harper-Dorn creep, micro-strains are associated with the density and the distribution of dislocations existing in the crystals before creep. At 975 deg C, the initial dislocation structure moves differently whether or not a stress is applied. To improve the micro-creep behavior of tungsten, a heat treatment is proposed to create the optimum dislocation structure. (authors)

  7. Microstructure and texture evolution of different high manganese cast steels during hot deformation and subsequent treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M.N.S.; Andrade, C.D.; Abreu, H.F.G. de; Klug, J.; Masoumi, M., E-mail: mohammad@alu.ufc.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Depto. de Engenharia Metalurgica e de Materiais; Ferreira, W.M. [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Curso de Engenharia Mecanica

    2016-07-01

    Microstructure and texture evolution were studied in two different austenitic high manganese cast steels in each processing condition. Special attention was paid to the effects of hot deformation and subsequent treatment on grain orientation behavior. The roles of Mn and C elements as well as heat treatment processes were investigated by Thermo-Calc. The texture evolutions in the as-cast, solution heat treatment, as-rolled and subsequent treatment were explored via orientation distribution function. The results showed that face-centred cube austenite was developed in steels. Strong {110}<115> texture component was characterized in as-cast in both alloys. Then, the inhomogeneity microstructure and the pronounced microsegregations were removed by annealing and Brass {110}<112>, {110}<111> and {221}<102> components were formed. Finally, cube {001}<100> component was developed during hot rolling in samples. (author)

  8. Microstructure and texture evolution of different high manganese cast steels during hot deformation and subsequent treatment

    International Nuclear Information System (INIS)

    Lima, M.N.S.; Andrade, C.D.; Abreu, H.F.G. de; Klug, J.; Masoumi, M.; Ferreira, W.M.

    2016-01-01

    Microstructure and texture evolution were studied in two different austenitic high manganese cast steels in each processing condition. Special attention was paid to the effects of hot deformation and subsequent treatment on grain orientation behavior. The roles of Mn and C elements as well as heat treatment processes were investigated by Thermo-Calc. The texture evolutions in the as-cast, solution heat treatment, as-rolled and subsequent treatment were explored via orientation distribution function. The results showed that face-centred cube austenite was developed in steels. Strong {110}<115> texture component was characterized in as-cast in both alloys. Then, the inhomogeneity microstructure and the pronounced microsegregations were removed by annealing and Brass {110}<112>, {110}<111> and {221}<102> components were formed. Finally, cube {001}<100> component was developed during hot rolling in samples. (author)

  9. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  10. Changes in the state of heat-resistant steel induced by repeated hot deformation

    Science.gov (United States)

    Lyubimova, Lyudmila L.; Fisenko, Roman N.; Tashlykov, Alexander A.; Tabakaev, Roman B.

    2018-01-01

    This work deals with the problems of structural regeneration by thermal restoration treatment (TRT). These include the lack of a structural sign showing that TRT is possible, a consensus on TRT modes, the data on the necessary relaxation depth of residual stresses, or criteria of structural restoration. Performing a TRT without solving these problems may deteriorate the properties of steel or even accelerate its destruction. With this in view, the purpose of this work is to determine experimentally how the residual stress state changes under thermal and mechanical loads in order to specify the signs of the restoration of structure and structural stability. The object of this research is unused 12Cr1MoV steel that has been aged naturally for 13 years. Using X-ray dosimetry with X-ray spectral analysis, we study the distribution of internal residual stresses of the first kind during the repeated hot deformation. After repeated thermal deformation, the sample under study transforms from a viscoelastic Maxwell material into a Kelvin-Voigt material, which facilitates structural stabilization. A sign of this is the relaxation limit increase, prevention of continuous decay of an α-solid solution of iron and restoration of the lattice parameter.

  11. Atomistic simulations of the effect of embedded hydrogen and helium on the tensile properties of monocrystalline and nanocrystalline tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhe [Department of Physics, Beihang University, Beijing 100191 (China); Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States); Kecskes, Laszlo J. [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD 21005 (United States); Zhu, Kaigui, E-mail: kgzhu@buaa.edu.cn [Department of Physics, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191 (China); Wei, Qiuming, E-mail: qwei@uncc.edu [Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States)

    2016-12-01

    Uniaxial tensile properties of monocrystalline tungsten (MC-W) and nanocrystalline tungsten (NC-W) with embedded hydrogen and helium atoms have been investigated using molecular dynamics (MD) simulations in the context of radiation damage evolution. Different strain rates have been imposed to investigate the strain rate sensitivity (SRS) of the samples. Results show that the plastic deformation processes of MC-W and NC-W are dominated by different mechanisms, namely dislocation-based for MC-W and grain boundary-based activities for NC-W, respectively. For MC-W, the SRS increases and a transition appears in the deformation mechanism with increasing embedded atom concentration. However, no obvious embedded atom concentration dependence of the SRS has been observed for NC-W. Instead, in the latter case, the embedded atoms facilitate GB sliding and intergranular fracture. Additionally, a strong strain enhanced He cluster growth has been observed. The corresponding underlying mechanisms are discussed. - Highlights: • Uniaxial tensile behavior of monocrystal tungsten (C-W) and nanocrystalline W (NC-W) have been investigated. • Dislocation-based activities dominate the plastic deformation of MC-W. • Grain boundary-based activities dominate the plastic deformation of NC-W. • H/He atoms have significant impacts on the tensile behavior of MC-W and NC-W. • Strong strain enhanced He cluster growth has been revealed.

  12. Net-shape and crack-free production of Nd–Fe–B magnets by hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Dirba, I., E-mail: dirba@fm.tu-darmstadt.de [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany); IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, 01171 Dresden (Germany); Sawatzki, S. [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany); IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, 01171 Dresden (Germany); Gutfleisch, O. [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany)

    2014-03-15

    In order to reduce the amount of material waste and therefore to use the precious rare earth element Nd in a more efficient way, routes for the production of crack-free hot-deformed nanocrystalline Nd–Fe–B magnets (using melt-spun ribbons as a precursor) have been investigated. In contrast to the conventional route in which material flows into a cavity, pressing tool has been used in order to exert a back pressure during backward extrusion, leading to crack-free and net-shape production of radially oriented ring magnets, without detrimental influence on magnetic properties. Micrographs demonstrate overall good alignment of elongated platelet shaped grains with radially oriented c-axis in most parts of the ring. A mean remanence J{sub r} = 1.27 T and coercivity μ{sub 0i}H{sub c} = 1.5 T has been obtained. Degree of texture reaches around 0.7. Furthermore, die-upsetting has been performed for different degrees of deformation to obtain crack-free, mechanically and magnetically homogenous, axially oriented tablet magnets.

  13. Tungsten or Wolfram: Friend or Foe?

    Science.gov (United States)

    Zoroddu, Maria A; Medici, Serenella; Peana, Massimiliano; Nurchi, Valeria M; Lachowicz, Joanna I; Laulicht-Glickc, Freda; Costa, Max

    2018-01-01

    Tungsten or wolfram was regarded for many years as an enemy within the tin smelting and mining industry, because it conferred impurity or dirtiness in tin mining. However, later it was considered an amazing metal for its strength and flexibility, together with its diamond like hardness and its melting point which is the highest of any metal. It was first believed to be relatively inert and an only slightly toxic metal. Since early 2000, the risk exerted by tungsten alloys, its dusts and particulates to induce cancer and several other adverse effects in animals as well as humans has been highlighted from in vitro and in vivo experiments. Thus, it becomes necessary to take a careful look at all the most recent data reported in the scientific literature, covering the years 2001-2016. In fact, the findings indicate that much more attention should be devoted to thoroughly investigate the toxic effects of tungsten and the involved mechanisms of tungsten metal or tungsten metal ions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Effect of Strength Coefficient of Bainite on Micromechanical Deformation and Failure Behaviors of Hot-Rolled 590FB Steel during Uniaxial Tension

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Young; Choi, Shi-Hoon [Sunchon National University, Suncheon (Korea, Republic of); Kim, Sung Il [POSCO Technical Research Laboratories, Gwangyang (Korea, Republic of)

    2016-11-15

    The effect of the strength coefficient (K{sub B}) of bainite on micromechanical deformation and failure behaviors of a hot-rolled 590MPa steel (590FB) during uniaxial tension was simulated using the elasto-plastic finite element method (FEM). The spatial distribution of the constituent phases was obtained using a phase identification technique based on optical microstructure. Empirical equations which depend on chemical composition were used to determine the stress-strain relationship of the constituent phases of the 590FB steel. The stress-strain partitioning and failure behavior were analyzed by increasing the K{sub B} of bainite. The elasto-plastic FEM results revealed that effective strain in the ferrite-bainite boundaries, and maximum principal stress in fibrous bainite, were enhanced as the K{sub B} increased. The elasto-plastic FEM results also demonstrated that the K{sub B} significantly affects the micromechanical deformation and failure behaviors of the hot-rolled 590FB steel during uniaxial tension.

  15. Rib fixation for severe chest deformity due to multiple rib fractures.

    Science.gov (United States)

    Igai, Hitoshi; Kamiyoshihara, Mitsuhiro; Nagashima, Toshiteru; Ohtaki, Yoichi

    2012-01-01

    The operative indications for rib fracture repair have been a matter of debate. However, several reports have suggested that flail chest, pain on respiration, and chest deformity/defect are potential conditions for rib fracture repair. We describe our experience of rib fixation in a patient with severe chest deformity due to multiple rib fractures. A 70-year-old woman was admitted with right-sided multiple rib fractures (2nd to 7th) and marked chest wall deformity without flailing caused by an automobile accident. Collapse of the chest wall was observed along the middle anterior axillary line. At 11 days after the injury, surgery was performed to repair the chest deformity, as it was considered to pose a risk of restrictive impairment of pulmonary function or chronic intercostal pain in the future. Operative findings revealed marked displacement of the superior 4 ribs, from the 2nd to the 5th, and collapse of the osseous chest wall towards the thoracic cavity. After exposure of the fracture regions, ribs fixations were performed using rib staplers. The total operation time was 90 minutes, and the collapsed portion of the chest wall along the middle anterior axillary line was reconstructed successfully.

  16. Calculation of recovery plasticity in multistage hot forging under isothermal conditions.

    Science.gov (United States)

    Zhbankov, Iaroslav G; Perig, Alexander V; Aliieva, Leila I

    2016-01-01

    A widely used method for hot forming steels and alloys, especially heavy forging, is the process of multistage forging with pauses between stages. The well-known effect which accompanies multistage hot forging is metal plasticity recovery in comparison with monotonic deformation. A method which takes into consideration the recovery of plasticity in pauses between hot deformations of a billet under isothermal conditions is proposed. This method allows the prediction of billet forming limits as a function of deformation during the forging stage and the duration of the pause between the stages. This method takes into account the duration of pauses between deformations and the magnitude of subdivided deformations. A hot isothermal upsetting process with pauses was calculated by the proposed method. Results of the calculations have been confirmed with experimental data.

  17. The gate oxide integrity of CVD tungsten polycide

    International Nuclear Information System (INIS)

    Wu, N.W.; Su, W.D.; Chang, S.W.; Tseng, M.F.

    1988-01-01

    CVD tungsten polycide has been demonstrated as a good gate material in recent very large scale integration (VLSI) technology. CVD tungsten silicide offers advantages of low resistivity, high temperature stability and good step coverage. On the other hand, the polysilicon underlayer preserves most characteristics of the polysilicon gate and acts as a stress buffer layer to absorb part of the thermal stress origin from the large thermal expansion coefficient of tungsten silicide. Nevertheless, the gate oxide of CVD tungsten polycide is less stable or reliable than that of polysilicon gate. In this paper, the gate oxide integrity of CVD tungsten polycide with various thickness combinations and different thermal processes have been analyzed by several electrical measurements including breakdown yield, breakdown fluence, room temperature TDDB, I-V characteristics, electron traps and interface state density

  18. Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation

    International Nuclear Information System (INIS)

    L-Cancelos, R.; Varas, F.; Viéitez, I.; Martín, E.

    2016-01-01

    Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved. (paper)

  19. Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation

    Science.gov (United States)

    L-Cancelos, R.; Varas, F.; Martín, E.; Viéitez, I.

    2016-03-01

    Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved.

  20. Microstructural modelling and lubrication study during zirconium alloy hot extrusion

    International Nuclear Information System (INIS)

    Gaudout, B.

    2009-01-01

    Using torsion tests (with strain rate jumps) and an experimental hot mini-extrusion apparatus, several samples zirconium alloy have been deformed: Zircaloy-4 (high α range) and Zr-1Nb (α + β domain). The fragmentation of the microstructure and post-dynamic grain growth have been examined. The main difference between these two alloys is that Zr-1Nb does not show grain growth during a heat treatment within the α + β domain after hot deformation. The recrystallization volume fraction has been measured on extruded samples with or without heat treatment. These rheological and microstructural data have been used to determine the parameters of a microstructural model including: a work-hardening model (Laaasraoui/Jonas), a continuous dynamic recrystallization model (Gourdet/Montheillet) and a grain growth model. This model leads to a good prediction of recrystallization volume fraction for Zircaloy-4 extrusion. However, the Zr-1Nb model cannot be validated because of the difficulty to observe deformed microstructures. Extrusion process is lubricated with a solid film. Trapping tests show that this lubricant is thermoviscoplastic. Friction along the container and several observations show the lubrication is not realized by a continuous film. Indeed, the heterogeneousness of deformation of these alloys causes a rupture of the lubricant film. Experiments and numerical simulations show that the radial gradient of axial displacement is affected by friction but also by stress softening of the alloys. (author)

  1. Analysis Of Deformation And Microstructural Evolution In The Hot Forging Of The Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Kukuryk M.

    2015-06-01

    Full Text Available The paper presents the analysis of the three-dimensional strain state for the cogging process of the Ti-6Al-4V alloy using the finite element method, assuming the rigid-plastic model of the deformed body. It reports the results of simulation studies on the metal flow pattern and thermal phenomena occurring in the hot cogging process conducted on three tool types. The computation results enable the determination of the distribution of effective strain, effective stress, mean stress and temperature within the volume of the blank. This solution has been complemented by adding the model of microstructure evolution during the cogging process. The numerical analysis was made using the DEFORM-3D consisting of a mechanical, a thermal and a microstructural parts. The comparison of the theoretical study and experimental test results indicates a potential for the developed model to be employed for predicting deformations and microstructure parameters.

  2. Dynamic behavior and microstructural evolution during moderate to high strain rate hot deformation of a Fe–Ni–Cr alloy (alloy 800H)

    International Nuclear Information System (INIS)

    Cao, Yu; Di, Hongshuang; Zhang, Jiecen; Yang, Yaohua

    2015-01-01

    The objective of the study is to fundamentally understand the dynamic behavior of alloy 800H at moderate to high strain rate using hot compression tests and propose nucleation mechanism associated with dynamic crystallization (DRX). We firstly investigated the dynamic behavior of alloy 800H with industrial scale strain rates using hot compression tests and adiabatic correction was performed to correct as-measured flow curves. Secondly, a Johnson–Cook model was established by using the corrected data and could give a precise prediction of elevated temperature flow stress for the studied alloy. Finally, the nucleation mechanism of DRX grains at high strain rates was studied. The results showed that the predominant nucleation mechanism for DRX is the formation of “bulge” at parent grain boundary. Additionally, the fragmentation of original grain at low deformation temperatures and the twinning near the bulged regions at high deformation temperatures also accelerate the DRX process

  3. Dynamic behavior and microstructural evolution during moderate to high strain rate hot deformation of a Fe-Ni-Cr alloy (alloy 800H)

    Science.gov (United States)

    Cao, Yu; Di, Hongshuang; Zhang, Jiecen; Yang, Yaohua

    2015-01-01

    The objective of the study is to fundamentally understand the dynamic behavior of alloy 800H at moderate to high strain rate using hot compression tests and propose nucleation mechanism associated with dynamic crystallization (DRX). We firstly investigated the dynamic behavior of alloy 800H with industrial scale strain rates using hot compression tests and adiabatic correction was performed to correct as-measured flow curves. Secondly, a Johnson-Cook model was established by using the corrected data and could give a precise prediction of elevated temperature flow stress for the studied alloy. Finally, the nucleation mechanism of DRX grains at high strain rates was studied. The results showed that the predominant nucleation mechanism for DRX is the formation of "bulge" at parent grain boundary. Additionally, the fragmentation of original grain at low deformation temperatures and the twinning near the bulged regions at high deformation temperatures also accelerate the DRX process.

  4. Microstructural evolution of bainitic steel severely deformed by equal channel angular pressing.

    Science.gov (United States)

    Nili-Ahmadabadi, M; Haji Akbari, F; Rad, F; Karimi, Z; Iranpour, M; Poorganji, B; Furuhara, T

    2010-09-01

    High Si bainitic steel has been received much of interest because of combined ultra high strength, good ductility along with high wear resistance. In this study a high Si bainitic steel (Fe-0.22C-2.0Si-3.0Mn) was used with a proper microstructure which could endure severe plastic deformation. In order to study the effect of severe plastic deformation on the microstructure and properties of bainitic steel, Equal Channel Angular Pressing was performed in two passes at room temperature. Optical, SEM and TEM microscopies were used to examine the microstructure of specimens before and after Equal Channel Angular Pressing processing. X-ray diffraction was used to measure retained austenite after austempering and Equal Channel Angular Pressing processing. It can be seen that retained austenite picks had removed after Equal Channel Angular Pressing which could attributed to the transformation of austenite to martensite during severe plastic deformation. Enhancement of hardness values by number of Equal Channel Angular Pressing confirms this idea.

  5. Ultra fine grained Ti prepared by severe plastic deformation

    Science.gov (United States)

    Lukáč, F.; Čížek, J.; Knapp, J.; Procházka, I.; Zháňal, P.; Islamgaliev, R. K.

    2016-01-01

    The positron annihilation spectroscopy was employed for characterisation of defects in pure Ti with ultra fine grained (UFG) structure. UFG Ti samples were prepared by two techniques based on severe plastic deformation (SPD): (i) high pressure torsion (HPT) and (ii) equal channel angular pressing (ECAP). Although HPT is the most efficient technique for grain refinement, the size of HPT-deformed specimens is limited. On the other hand, ECAP is less efficient in grain refinement but enables to produce larger samples more suitable for industrial applications. Characterisation of defects by positron annihilation spectroscopy was accompanied by hardness testing in order to monitor the development of mechanical properties of UFG Ti.

  6. Modification of Flow Stress Curves and Constitutive Equations During Hot Compression Deformation of 5083 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    FU Ping

    2017-08-01

    Full Text Available The flow stress behavior of 5083 aluminum alloy was investigated under hot compression deformation at 523-723K,strain rates of 0.01-10s-1 and true strains of 0-0.7 with Gleeble-3800 thermal simulator. Based on the heat transfer effect on alloy deformation heat effect, the flow stress curves were corrected. The results show that influence of heat conduction can not be neglected and becomes more obvious with the increase of true strain. The corrected flow stress has little influence on the peak stress, but the steady flow stress softening trends to be diminished to some degree. The flow stress can be predicted by the Zener-Hollomon parameters in the constitutive equation. The corrected measured value exhibits a good agreement with the flow stress predicted by the constitutive equation, and the average relative error is only 5.21%.

  7. Cell response to nanocrystallized metallic substrates obtained through severe plastic deformation.

    Science.gov (United States)

    Bagherifard, Sara; Ghelichi, Ramin; Khademhosseini, Ali; Guagliano, Mario

    2014-06-11

    Cell-substrate interface is known to control the cell response and subsequent cell functions. Among the various biophysical signals, grain structure, which indicates the repeating arrangement of atoms in the material, has also proved to play a role of significant importance in mediating the cell activities. Moreover, refining the grain size through severe plastic deformation is known to provide the processed material with novel mechanical properties. The potential application of such advanced materials as biomedical implants has recently been evaluated by investigating the effect of different substrate grain sizes on a wide variety of cell activities. In this review, recent advances in biomedical applications of severe plastic deformation techniques are highlighted with special attention to the effect of the obtained nano/ultra-fine-grain size on cell-substrate interactions. Various severe plastic deformation techniques used for this purpose are discussed presenting a brief description of the mechanism for each process. The results obtained for each treatment on cell morphology, adhesion, proliferation, and differentiation, as well as the in vivo studies, are discussed. Finally, the advantages and challenges regarding the application of these techniques to produce multifunctional bio-implant materials are addressed.

  8. Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process

    International Nuclear Information System (INIS)

    Liu, Lihua; Sepehri-Amin, H.; Ohkubo, T.; Yano, M.; Kato, A.; Shoji, T.; Hono, K.

    2016-01-01

    Nd-M (M = Al, Cu, Ga, Zn, Mn) alloys with compositions close to eutectic points were investigated as diffusion sources for the grain boundary diffusion process to hot-deformed Nd-Fe-B magnets. Coercivity enhancement was observed for most of the alloys. Among them, the sample processed with Nd 90 Al 10 exhibited the highest coercivity of 2.5 T at room temperature. However, the sample processed with Nd 70 Cu 30 exhibited the highest coercivity of 0.7 T at 200 ° C. Microstructural observations using scanning transmission electron microscope (STEM) showed that nonferromagnetic Nd-rich intergranular phase envelops the Nd 2 Fe 14 B grains after the diffusion process. Abnormal grain growth and the dissolution of Al into the Nd 2 Fe 14 B grains were observed in the sample processed with Nd 90 Al 10 , which explains its inferior thermal stability of coercivity compared to the sample processed with Nd 70 Cu 30 . The coercivity enhancement and poor thermal stability of the coercivity of the Nd 90 Al 10 diffusion-processed sample are discussed based on microstructure studies by transmission electron microscopy. - Highlights: • Coercivity of hot-deformed Nd-Fe-B magnets is enhanced by the infiltration of various R-TM eutectic alloys. • The sample infiltrated with Nd 90 Al 10 shows the highest coercivity of 2.5 T at room temperature. • At 200 °C, Nd 70 Cu 30 diffusion-processed sample possesses the highest coercivity of 0.7 T.

  9. Polymer deformation and filling modes during microembossing

    Science.gov (United States)

    Rowland, Harry D.; King, William P.

    2004-12-01

    This work investigates the initial stages of polymer deformation during hot embossing micro-manufacturing at processing temperatures near the glass transition temperature (Tg) of polymer films having sufficient thickness such that polymer flow is not supply limited. Several stages of polymer flow can be observed by employing stamp geometries of various widths and varying imprint conditions of time and temperature to modulate polymer viscosity. Experiments investigate conditions affecting cavity filling phenomena, including apparent polymer viscosity. Stamps with periodic ridges of height and width 4 µm and periodicity 30, 50 and 100 µm emboss trenches into polymethyl methacrylate films at Tg - 10 °C time, temperature and load are correlated with replicated polymer shape, height and imprinted area. Polymer replicates are measured by atomic force microscopy and inspected by scanning electron microscopy. Cavity size and the temperature dependence of polymer viscosity significantly influence the nature of polymer deformation in hot embossing micro-manufacturing and must be accounted for in rational process design.

  10. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    Science.gov (United States)

    Riesch, J.; Han, Y.; Almanstötter, J.; Coenen, J. W.; Höschen, T.; Jasper, B.; Zhao, P.; Linsmeier, Ch; Neu, R.

    2016-02-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself.

  11. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    International Nuclear Information System (INIS)

    Riesch, J; Han, Y; Höschen, T; Zhao, P; Neu, R; Almanstötter, J; Coenen, J W; Jasper, B; Linsmeier, Ch

    2016-01-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself. (paper)

  12. Hot Deformation and Processing Window Optimization of a 70MnSiCrMo Carbide-Free Bainitic Steel.

    Science.gov (United States)

    Han, Ying; Sun, Yu; Zhang, Wei; Chen, Hua

    2017-03-21

    The hot deformation behavior of a high carbon carbide-free bainitic steel was studied through isothermal compression tests that were performed on a Gleeble-1500D thermal mechanical simulator at temperatures of 1223-1423 K and strain rates of 0.01-5 s -1 . The flow behavior, constitutive equations, dynamic recrystallization (DRX) characteristics, and processing map were respectively analyzed in detail. It is found that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the single-peak DRX can be easily observed at high temperatures and/or low strain rates. The internal relationship between the flow stress and processing parameters was built by the constitutive equations embracing a parameter of Z/A, where the activation energy for hot deformation is 351.539 kJ/mol and the stress exponent is 4.233. In addition, the DRX evolution and the critical conditions for starting DRX were discussed. Then the model of the DRX volume fraction was developed with satisfied predictability. Finally, the processing maps at different strains were constructed according to the dynamic material model. The safety domains and flow instability regions were identified. The best processing parameters of this steel are within the temperature range of 1323-1423 K and strain rate range of 0.06-1 s -1 .

  13. Hot Deformation and Processing Window Optimization of a 70MnSiCrMo Carbide-Free Bainitic Steel

    Directory of Open Access Journals (Sweden)

    Ying Han

    2017-03-01

    Full Text Available The hot deformation behavior of a high carbon carbide-free bainitic steel was studied through isothermal compression tests that were performed on a Gleeble-1500D thermal mechanical simulator at temperatures of 1223–1423 K and strain rates of 0.01–5 s−1. The flow behavior, constitutive equations, dynamic recrystallization (DRX characteristics, and processing map were respectively analyzed in detail. It is found that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the single-peak DRX can be easily observed at high temperatures and/or low strain rates. The internal relationship between the flow stress and processing parameters was built by the constitutive equations embracing a parameter of Z/A, where the activation energy for hot deformation is 351.539 kJ/mol and the stress exponent is 4.233. In addition, the DRX evolution and the critical conditions for starting DRX were discussed. Then the model of the DRX volume fraction was developed with satisfied predictability. Finally, the processing maps at different strains were constructed according to the dynamic material model. The safety domains and flow instability regions were identified. The best processing parameters of this steel are within the temperature range of 1323–1423 K and strain rate range of 0.06–1 s−1.

  14. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    Science.gov (United States)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  15. Development and characterisation of a tungsten-fibre reinforced tungsten composite

    International Nuclear Information System (INIS)

    Riesch, Johann

    2012-01-01

    In tungsten-fibre reinforced tungsten, tungsten wire is combined with a tungsten matrix. The outstanding ductility of the fibres and extrinsic mechanisms of energy dissipation lead to an intense toughening. With extensive analytical and experimental investigations a manufacturing method based on chemical vapour infiltration is developed and first material is produced. The toughening mechanisms are shown by means of sophisticated mechanical experiments i.a. X-ray microtomography.

  16. Severe Sunburn After a Hot Air Balloon Ride: A Case Report and Literature Review.

    Science.gov (United States)

    Ozturk, Sinan; Karagoz, Huseyin

    2015-01-01

    Hot air balloon tours are very popular among travelers worldwide. Preventable burn injuries associated with hot air balloon rides have been reported during crashes into power lines, in propane burner explosions, and following contact with the propane burner tanks. We present a case of severe repeated sunburn, which poses another risk of preventable injury during hot air balloon rides, and briefly discuss the injury epidemiology of hot air balloon rides. © 2015 International Society of Travel Medicine.

  17. Plasma exposure of different tungsten grades with plasma accelerators under ITER-relevant conditions

    International Nuclear Information System (INIS)

    Makhlaj, Vadym A; Garkusha, Igor E; Aksenov, Nikolay N; Byrka, Oleg V; Bazylev, Boris; Landman, Igor; Linke, Jochen; Wirtz, Marius; Malykhin, Sergey V; Pugachov, Anatoliy T; Sadowski, Marek J; Skladnik-Sadowska, Elzbieta

    2014-01-01

    This paper presents the results of tungsten irradiation experiments performed with three plasma facilities: the QSPA Kh-50 quasi-steady-state plasma accelerator, the PPA pulsed plasma gun and the magneto-plasma compressor. Targets made of different kinds of tungsten (sintered, rolled and deformed) were irradiated with powerful plasma streams at heat fluxes relevant to edge-localized modes in ITER. The irradiated targets were analyzed and two different meshes of cracks were identified. It has been shown that the major cracks do not depend on the tungsten grade. This has been attributed to ductile-to-brittle transition effects. Meshes of inter-granular micro-cracks were detected for energy loads above the melting threshold and these were probably caused by the re-solidification process. The blister-like and cellular-like structures were observed on sample surfaces exposed to helium and hydrogen plasmas. (paper)

  18. Investigating Corrosion, Wear Resistance and Friction of AA5454-O Series after its Severe Deformation by Rolling

    Directory of Open Access Journals (Sweden)

    Sinan SEZEK

    2017-02-01

    Full Text Available AA5454-O is an easily wrought, or in other words, a ductile aluminium alloy, however, its mechanical properties are inferior as compared to those of other alloys. The change taking place in corrosion resistance of AA5454-O alloy as a result of its severe plastic deformation (SPD by rolling has been investigated in this study. It has been observed that significant changes occurred in abrasion wear and corrosion resistances of AA5454-O alloy, which was severely deformed up to 80 % by rolling process. Corrosion resistance of the alloy that was severely deformed by rolling has increased. The effect of deformation rate on corrosion has been investigated by applying potentiodynamic test whereas on the other hand such change has been evidenced also through corrosion test. It has been observed that friction coefficient of severely deformed AA5454-O alloy varied by around 10 %, and that, associated with such change, its wear resistance also increased considerably. It has been determined that, as a result of severe deformation by rolling, hardness values rose in areas where the alloy was in contact with rolling surface. In this study, wear resistance of severely deformed alloy has been investigated as well. It has been observed that deformation value contributed positively to the increase in wear resistance.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14650

  19. Severe plastic deformation of copper and Al-Cu alloy using multiple channel-die compression

    International Nuclear Information System (INIS)

    Parimi, A.K.; Robi, P.S.; Dwivedy, S.K.

    2011-01-01

    Research highlights: → SPD of copper and Al-Cu alloy by multiple channel-die compression tests.→ Extensive grain refinement resulting in nano-sized grains after SPD. → Investigation of micro-structure using optical microscope and SEM. → Shear band formation as the failure mechanism in the two phase Al-Cu alloy. → Difficulty in obtaining SPD for Al-Cu alloy in this method. -- Abstract: Severe plastic deformation studies of copper and Al-Cu alloy by multiple channel-die compression tests were investigated. The materials were tested under plane strain condition by maintaining a constant strain rate of 0.001/s. Extensive grain refinement was observed resulting in nano-sized grains after severe plastic deformation with concomitant increase in flow stress and hardness. The microstructural investigation of the severely deformed materials was investigated using optical microscope and scanning electron microscope. Shear band formation was identified as the failure mechanism in the two phase Al-Cu alloy. The results indicate difficulty in obtaining severe plastic deformation for alloys having two phase micro-structure.

  20. Effects of internal gas pressure and microstructure on the mechanisms of hot-pressing and swelling in ceramics. Progress report, June 1, 1976--March 31, 1977

    International Nuclear Information System (INIS)

    Solomon, A.A.

    1977-02-01

    The low temperature isostatic pressurization system has been completed, operated successfully and calibrated. The new high temperature TD tungsten vessel and MoSi 2 element furnace system has also been designed and is presently under construction. Porous CoO single crystals have been grown using a ''skull melting'' process. Automated quantitative microscopy techniques are being developed using the KONTRON system to examine porosity evaluation during hot-pressing and sintering. Initial sintering experiments under variable isostatic pressures from 100 μm Hg to 2000 psi reveal no significant effect of ambient pressure. Nor were differences observed in sintering kinetics when either Helium or Argon were used as the pressurizing gas. Swelling experiments, conducted by reducing the ambient pressure after pore closure, revealed dramatic changes in density. The densification rates also appeared to depend on history, suggesting that mechanical deformation may play a dominant role in hot-pressing, at least during transients

  1. Characterization of ITER tungsten qualification mock-ups exposed to high cyclic thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Pintsuk, Gerald, E-mail: g.pintsuk@fz-juelich.de [Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Bednarek, Maja; Gavila, Pierre [Fusion for Energy, E-08019 Barcelona (Spain); Gerzoskovitz, Stefan [Plansee SE, Innovation Services, 6600 Reutte (Austria); Linke, Jochen [Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Lorenzetto, Patrick; Riccardi, Bruno [Fusion for Energy, E-08019 Barcelona (Spain); Escourbiac, Frederic [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 Saint Paul lez Durance (France)

    2015-10-15

    Highlights: • Mechanical deformation of CuCrZr in case a thermal barrier layer has been formed due to impurity content in the cooling water. • Crack formation at the W/Cu interface starting at the block edge. • Porosity formation in the pure Cu interlayer. • Microstructural changes in tungsten down to the W/Cu interface, which indicates also high temperatures for the pure Cu interlayer. • Macrocrack formation in tungsten which is assumed to be ductile at the initiation point and brittle when proceeding toward the cooling tube. - Abstract: High heat flux tested small-scale tungsten monoblock mock-ups (5000 cycles at 10 MW/m{sup 2} and up to 1000 cycles at 20 MW/m{sup 2}) manufactured by Plansee and Ansaldo were characterized by metallographic means. Therein, the macrocrack formation and propagation in tungsten, its recrystallization behavior and the surface response to different heat load facilities were investigated. Furthermore, debonding at the W/Cu interface, void formation in the soft copper interlayer and microcrack formation at the inner surface of the CuCrZr cooling tube were found.

  2. Experimental and numerical simulations of ELM-like transient damage behaviors to different grade tungsten and tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Lian, Youyun; Chen, Lei; Chen, Zhenkui; Chen, Jiming; Duan, Xuru [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Fan, Jinlian [Central South University, Changsha 410083 (China); Song, Jiupeng [Xiamen Honglu Tungsten & Molybdenum Industry Co., Ltd, Xiamen (China)

    2015-08-15

    Transient heat loads, such as plasma disruptions and ELMs, could induce plastic deformations, cracking, melting, even fatigue cracks and creep of tungsten (W) surface. A high purity W, CVD-W coating, TiC dispersion strengthened and K doped tungsten alloys were tested in a 60 kW electron-beam facility by simulating the transient load events under different base temperatures. It was found that CVD-W, W-TiC and W-K alloys have higher crack thresholds than high purity W, meanwhile CVD-W is more sensitive to the crack disappearing at elevated base temperatures. On the other hand, repetitive pulse loading like ELMs can induce serious network cracks even the power density was quite lower than the crack threshold determined by a single shot. The ABAQUS code was used to simulate the crack behaviors of ITER grade pure W by a single shot and a FE-SAFE code was adopted to estimate the fatigue life under ELMs-like loads. A good agreement with experiment results was found.

  3. Surface mechanical attrition treatment of tungsten and its behavior under low energy deuterium plasma implantation relevant to ITER divertor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.Y.; Yuan, Y.; Fu, B.Q.; Godfrey, A.; Liu, W. [Tsinghua Univ.. Lab. of Advanced Materials, Beijing (China); Zhang, Y.B. [Technical Univ. og Denmark. DTU Risoe Campus, Roskilde (Denmark); Tao, N.R. [Chinese Academy of Sciences, Shenyang (China)

    2012-11-01

    In the light of a foreseen application for tungsten (W) as an ITER divertor material samples have been plastically deformed by a surface mechanical attrition treatment (SMAT) and by cold rolling. The resistance to blister formation by low energy deuterium implantation in these samples has been examined, with the result that the structure is significantly improved as the structural scale is reduced to the nanometer range in the SMAT sample. The distribution of blisters in this sample is however bimodal, due to the formation of several very large blisters, which are heterogeneously distributed. The observations suggest that process optimization must be a next step in the development with a view to the application of plastically deformed W in a fusion reactor. (Author)

  4. Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Okan, E-mail: unalokan78@gmail.com [Mechanical Engineering Department, Bartın University, Bartın 74100 (Turkey); Varol, Remzi [Mechanical Engineering Department, Suleyman Demirel University, Isparta 32200 (Turkey)

    2015-10-01

    Highlights: • CSP and SSP treatments transform austenite to metastable martensite structure. • Nanograin layer thickness after CSP and SSP is 8 μm and 22 μm, respectively. • Shot peening leads to carbon segregation from coarse to nano grain layer. • Repeening is an effective way to reduce surface roughness. - Abstract: Air blast conventional shot peening (CSP), severe shot peening (SSP) and repeening (RP) as a severe plastic deformation applications on AISI 304 austenitic stainless steel is addressed. Shot peened specimens are investigated based on optical, FESEM and digital microscope. The investigations present the austenite transformation to metastable martensite via mechanical twinning due to plastic deformation with high strain rates. It is found that SSP induces thicker nanograin layer with compared to CSP. In XRD studies, the austenite peaks broaden by means of severe shot peening and FWHM increase reveals the grain size reduction below 25 nm regimes on the surface. In EDAX line analysis of CSP specimen, carbon content increase has been detected from deformed layer through the nanocrystalline layer then the content reduces. The carbon segregation takes place due to the energy level distinction between dislocations and Fe−C bonds. 3d contour digital microscope studies and roughness investigations reveal that SSP has deleterious side effect on the surface roughness and surface flatness. However, RP is an effective way to reduce the surface roughness to reasonable values.

  5. Post-examination of helium-cooled tungsten components exposed to DEMO specific cyclic thermal loads

    International Nuclear Information System (INIS)

    Ritz, G.; Hirai, T.; Linke, J.; Norajitra, P.; Giniyatulin, R.; Singheiser, L.

    2009-01-01

    A concept of helium-cooled tungsten finger module was developed for the European DEMO divertor. The concept was realized and tested under DEMO specific cyclic thermal loads up to 10 MW/m 2 . The modules were examined carefully before and after loading by metallography and microstructural analyses. While before loading mainly discrete and shallow cracks were found on the tungsten surface due to the manufacturing process, dense crack networks were observed at the loaded surfaces due to the thermal stress. In addition, cracks occurred in the structural, heat sink part and propagated along the grains orientation of the deformed tungsten material. Facilitated by cracking, the molten brazing metal between the tungsten plasma facing material and the W-La 2 O 3 heat sink, that could not withstand the operational temperatures, infiltrated the tungsten components and, due to capillary forces, even reached the plasma facing surface through the cracks. The formed cavity in the brazed layer reduced the heat conduction and the modules were further damaged due to overheating during the applied heat loads. Based on this detailed characterization and possible improvements of the design and of the manufacturing routes are discussed.

  6. Reducing tool wear by partial cladding of critical zones in hot form tool by laser metal deposition

    Science.gov (United States)

    Vollmer, Robert; Sommitsch, Christof

    2017-10-01

    This paper points out a production method to reduce tool wear in hot stamping applications. Usually tool wear can be observed at locally strongly stressed areas superimposed with gliding movement between blank and tool surface. The shown solution is based on a partial laser cladding of the tool surface with a wear resistant coating to increase the lifespan of tool inserts. Preliminary studies showed good results applying a material combination of tungsten carbide particles embedded in a metallic matrix. Different Nickel based alloys welded on hot work tool steel (1.2343) were tested mechanically in the interface zone. The material with the best bonding characteristic is chosen and reinforced with spherical tungsten carbide particles in a second laser welding step. Since the machining of tungsten carbides is very elaborate a special manufacturing strategy is developed to reduce the milling effort as much as possible. On special test specimens milling tests are carried out to proof the machinability. As outlook a tool insert of a b-pillar is coated to perform real hot forming tests.

  7. Effect of intercritical deformation on microstructure and mechanical properties of a low-silicon aluminum-added hot-rolled directly quenched and partitioned steel

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiao-Dong, E-mail: tan.x@mpie.de [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf (Germany); Xu, Yun-Bo, E-mail: yunbo_xu@126.com [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Ponge, Dirk [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf (Germany); Yang, Xiao-Long; Hu, Zhi-Ping; Peng, Fei [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Ju, Xiao-Wei [CERI LONG PRODUCT CO., LTD., Beijing 100176 (China); Wu, Di [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Raabe, Dierk [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf (Germany)

    2016-02-22

    Here, we applied hot-rolling in conjunction with direct quenching and partitioning (HDQ&P) processes with different rolling schedules to a low-C low-Si Al-added steel. Ferrite was introduced into the steel by intercritical rolling and air cooling after hot-rolling. The effect of intercritcal deformation on the microstructure evolution and mechanical properties was investigated. The promotion of austenite stabilization and the optimization of the TRIP effect due to a moderate degree of intercritical deformation were systematically explored. The results show that the addition of 1.46 wt% of Al can effectively promote ferrite formation. An intercritical deformation above 800 °C can result in a pronounced bimodal grain size distribution of ferrite and some elongated ferrite grains containing sub-grains. The residual strain states of both austenite and ferrite and the occurrence of bainite transformation jointly increase the retained austenite fraction due to its mechanical stabilization and the enhanced carbon partitioning into austenite from its surrounding phases. An intercritical deformation below 800 °C can profoundly increase the ferrite fraction and promote the recrystallization of deformed ferrite. The formation of this large fraction of ferrite enhances the carbon enrichment in the untransformed austenite and retards the bainite transformation during the partitioning process and finally enhances martensite transformation and decreases the retained austenite fraction. The efficient TRIP effect of retained austenite and the possible strain partitioning of bainite jointly improve the work hardening and formability of the steel and lead to the excellent mechanical properties with relatively high tensile strength (905 MPa), low yield ratio (0.60) and high total elongation (25.2%).

  8. Effect of temperature and geometric parameters on elastic properties of tungsten nanowire: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit; Mahboob, Monon [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Islam, M. Zahabul [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-07-12

    Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10 K ~ 1500 K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAM potential is used for molecular dynamic simulation. We applied constant strain rate of 10{sup 9} s{sup −1} to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.

  9. New deformation model of grain boundary strengthening in polycrystalline metals

    International Nuclear Information System (INIS)

    Trefilov, V.I.; Moiseev, V.F.; Pechkovskij, Eh.P.

    1988-01-01

    A new model explaining grain boundary strengthening in polycrystalline metals and alloys by strain hardening due to localization of plastic deformation in narrow bands near grain boundaries is suggested. Occurrence of localized deformation is caused by different flow stresses in grains of different orientation. A new model takes into account the active role of stress concentrator, independence of the strengthening coefficient on deformation, influence of segregations. Successful use of the model suggested for explanation of rhenium effect in molybdenum and tungsten is alloys pointed out

  10. Plasma hot machining for difficult-to-cut materials, 1

    International Nuclear Information System (INIS)

    Kitagawa, Takeaki; Maekawa, Katsuhiro; Kubo, Akihiko

    1987-01-01

    Machinability of difficult-to-cut materials has been a great concern to manufacturing engineers since demands for new materials in the aerospace and nuclear industries are more and more increasing. The purpose of this study is to develop a hot machining to improve machinability of high hardness materials. A plasma arc is used for heating materials cut. The surface just after being heated is removed as a chip by tungsten carbide tools. The turning experiments of high hardness steels with aid of plasma arc heating show not only the decrease in cutting forces but also the following effectiveness: (1) The application of the plasma hot machining to the condition, under which a built-up edge (BUE) appears in turning 0.46%C steel, makes the BUE disappeared, bringing less flank wear. (2) In the case of 18%Mn steel cutting, deep groove wear on the end-cutting edge diminishes, and roughness of the machined surface is improved by the prevention from chatter. (3) Although the chilled cast iron has high hardness of above HB = 350, the plasma hot machining makes it possible to cut it with tungsten carbide tools having less chipping and flank wear. (author)

  11. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation. A unified elasto-viscoplastic constitutive model

    International Nuclear Information System (INIS)

    Chen, Ming-Song; Lin, Y.C.; Li, Kuo-Kuo; Chen, Jian

    2016-01-01

    In authors' previous work (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0371-6, 2016), the nonlinear unloading behavior of a typical Ni-based superalloy was investigated by hot compressive experiments with intermediate unloading-reloading cycles. The characters of unloading curves were discussed in detail, and a new elasto-viscoplastic constitutive model was proposed to describe the nonlinear unloading behavior of the studied Ni-based superalloy. Still, the functional relationships between the deformation temperature, strain rate, pre-strain and the parameters of the proposed constitutive model need to be established. In this study, the effects of deformation temperature, strain rate and pre-strain on the parameters of the new constitutive model proposed in authors' previous work (Chen et al. 2016) are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate and pre-strain. (orig.)

  12. Nanostructures by Severe Plastic Deformation of Steels: Advantages and Problems

    Directory of Open Access Journals (Sweden)

    Dobatkin, S. V.

    2006-01-01

    Full Text Available The aim of this paper is to consider the features of structure evolution during severe plastic deformation (SPD of steels and its influence on mechanical properties. The investigation have been carried out mainly on low carbon steels as well as on austenitic stainless steels after SPD by torsion under high pressure (HPT and equal channel angular (ECA pressing. Structure formation dependencies on temperature deformation conditions, strain degree, chemical composition, initial state and pressure are considered. The role of phase transformations for additional grain refinement, namely, martensitic transformation, precipitation of carbide particles during SPD and heating is underlined.

  13. Clinical Evaluation of Fused/Ankylosed Hip with Severe Flexion Deformity after Conversion to Total Hip Arthroplasty

    Directory of Open Access Journals (Sweden)

    Saroj Kumar Suwal

    2016-06-01

    Conclusions: THA is an effective treatment for ankylosed hip with severe flexion deformity although complications are noted more than routine hip arthroplasties. Keywords: ankylosed hip; fused hip; severe flexion deformity; total hip arthroplasty. | PubMed

  14. Dislocation-mediated trapping of deuterium in tungsten under high-flux high-temperature exposures

    Science.gov (United States)

    Bakaeva, A.; Terentyev, D.; De Temmerman, G.; Lambrinou, K.; Morgan, T. W.; Dubinko, A.; Grigorev, P.; Verbeken, K.; Noterdaeme, J. M.

    2016-10-01

    The effect of severe plastic deformation on the deuterium retention in tungsten exposed to high-flux low-energy plasma (flux ∼1024 m-2 s-1, energy ∼50 eV and fluence up to 5 × 1025 D/m2) was studied experimentally in a wide temperature range (460-1000 K) relevant for application in ITER. The desorption spectra in both reference and plastically-deformed samples were deconvoluted into three contributions associated with the detrapping from dislocations, deuterium-vacancy clusters and pores. As the exposure temperature increases, the positions of the release peaks in the plastically-deformed material remain in the same temperature range but the peak amplitudes are altered as compared to the reference material. The desorption peak attributed to the release from pores (i.e. cavities and bubbles) was suppressed in the plastically deformed samples for the low-temperature exposures, but became dominant for exposures above 700 K. The observed strong modulation of the deuterium storage in "shallow" and "deep" traps, as well as the reduction of the integral retention above 700 K, suggest that the dislocation network changes its role from "trapping sites" to "diffusion channels" above a certain temperature. The major experimental observations of the present work are in line with recent computational assessment based on atomistic and mean field theory calculations available in literature.

  15. Experimental evidence for several spheroid growth mechanisms in the liquid-phase sintered tungsten-base composites

    International Nuclear Information System (INIS)

    Zukas, E.G.; Rogers, P.S.Z.; Rogers, R.S.

    1976-01-01

    The generally accepted mechanism for spheroid growth during sintering of tungsten-base composites in the presence of a liquid phase is the dissolution of the small spheroids with simultaneous precipitation of tungsten from the molten matrix onto the larger spheroids, the process being driven by the difference in surface energy between the larger and smaller spheroids. From theoretical considerations, the slope of the straight line of log diameter versus log time should be 1 / 3 for this process. The experimental evidence for the dissolution and reprecipitation mechanism is meager, being based primarily on the spheroid growth rate during the latter stages of liquid-phase sintering. Experimental evidence is presented that shows spheroid growth taking place in systems where the tungsten and the matrix are mutually insoluble thereby making dissolution and reprecipitation impossible. Furthermore, the results from these studies and others using the usual matrix compositions indicate that spheroid growth takes place predominantly by the combination or coalescence of two or more spheroids. Deposition of tungsten from the molten matrix also occurs, although not necessarily on spheroid surfaces which have the lowest surface energy. Thus, many mechanisms, each depending on temperature and other variables, operate simultaneously. A satisfactory theoretical treatment must include them all

  16. Tungsten foil laminate for structural divertor applications – Joining of tungsten foils

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Jens, E-mail: jens.reiser@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Mrotzek, Tobias; Hoffmann, Andreas [PLANSEE SE, Reutte (Austria); Armstrong, D.E.J.; Yi, Xiaoou [University of Oxford, Department of Materials (United Kingdom)

    2013-05-15

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  17. Hot ductility of continuously cast structural steels

    International Nuclear Information System (INIS)

    Pytel, S.M.

    1995-01-01

    The objective of this investigation was to explain the hot ductility of the structural steels characterized by different amount of carbon and morphology of sulfides. Two different rolling processes were simulated under computer controlled, high temperature deformation MTS system. Results of this study show that morphology of sulfides as well as temperature and amount of deformation are responsible for level of hot ductility of the steel tested. (author)

  18. Trends in tungsten coil atomic spectrometry

    Science.gov (United States)

    Donati, George L.

    Renewed interest in electrothermal atomic spectrometric methods based on tungsten coil atomizers is a consequence of a world wide increasing demand for fast, inexpensive, sensitive, and portable analytical methods for trace analysis. In this work, tungsten coil atomic absorption spectrometry (WCAAS) and tungsten coil atomic emission spectrometry (WCAES) are used to determine several different metals and even a non-metal at low levels in different samples. Improvements in instrumentation and new strategies to reduce matrix effects and background signals are presented. Investigation of the main factors affecting both WCAAS and WCAES analytical signals points to the importance of a reducing, high temperature gas phase in the processes leading to atomic cloud generation. Some more refractory elements such as V and Ti were determined for the first time by double tungsten coil atomic emission spectrometry (DWCAES). The higher temperatures provided by two atomizers in DWCAES also allowed the detection of Ag, Cu and Sn emission signals for the first time. Simultaneous determination of several elements by WCAES in relatively complex sample matrices was possible after a simple acid extraction. The results show the potential of this method as an alternative to more traditional, expensive methods for fast, more effective analyses and applications in the field. The development of a new metallic atomization cell is also presented. Lower limits of detection in both WCAAS and WCAES determinations were obtained due to factors such as better control of background signal, smaller, more isothermal system, with atomic cloud concentration at the optical path for a longer period of time. Tungsten coil-based methods are especially well suited to applications requiring low sample volume, low cost, sensitivity and portability. Both WCAAS and WCAES have great commercial potential in fields as diverse as archeology and industrial quality control. They are simple, inexpensive, effective

  19. Isotropic and anisotropic nanocrystalline NdFeB-based magnets prepared by spark plasma sintering and hot deformation

    International Nuclear Information System (INIS)

    Liu, Z.W.; Huang, Y.L.; Huang, H.Y.; Zhong, X.C.; Yu, Y.H.; Zeng, D.C.

    2011-01-01

    Isotropic and anisotropic NdFeB permanent magnets were prepared by Spark Plasma Sintering (SPS) and SPS followed hot deformation (HD), respectively, using melt spun NdFeB ribbons with various compositions as starting materials. It is found that, based on RE-rich composition, SPSed magnets sintered at low temperatures (<700 C) almost maintained the uniform fine grain structure inherited from rapid quenching. At higher temperatures, a distinct two-zone (coarse grain and fine grain zones) structure was formed in the SPSed magnets. The SPS temperature and pressure have important effects on the grain structure, which led to the variations in the magnetic properties. By employing low SPS temperature and high pressure, high-density magnets with negligible coarse grain zone and an excellent combination of magnetic properties can be obtained. For single phase NdFeB alloy, because of the deficiency of Nd-rich phases, it is relatively difficult to consolidate micro-sized melt spun powders into high density bulk magnet, but generally a larger particle size is beneficial to achieve better magnetic properties. Anisotropic magnets with a maximum energy product of approx. equal to 38 MGOe were produced by the SPS+HD process. HD did not lead to obvious grain growth and the two-zone structure still existed in the hot deformed magnets. The results indicated that nanocrystalline NdFeB magnets without significant grain growth and with excellent properties could be obtained by SPS and HD processes. (author)

  20. A review of penetration mechanisms and dynamic properties of tungsten and depleted uranium penetrators

    International Nuclear Information System (INIS)

    Andrew, S.P.; Caligiuri, R.D.; Eiselstein, L.E.

    1991-01-01

    Over the last decade, depleted uranium (DU) and tungsten alloys have been the materials of choice for kinetic energy penetrators. However, despite improvements in mechanical properties in recent years, the penetration performance of tungsten still lags behind that of DU. One possible reason is the difference in deformation mechanisms- DU alloys tend to shear band as they penetrate the target material, whereas tungsten penetrators tend to mushroom. As a first step to determining whether shear banding is truly the reason for superior DU performance, a review and summary of the available information was performed. This paper presents a state-of-the-art review of the formulation, high strain- rate properties, and penetration phenomena of penetrators manufactured from both tungsten and DU alloys. Specifically, the effects of composition, processing, and heat treatment on mechanical properties and penetration mechanisms of these alloys are discussed. Penetration data and models for penetration mechanisms (in particular shear banding) are also presented, as well as the applicability of these models and their salient features

  1. Hot wire TIG temper bead welding for nuclear repairs

    International Nuclear Information System (INIS)

    Lambert, J.A.; Gilston, P.F.

    1989-08-01

    A preliminary assessment has been carried out to determine the suitability of the hot wire tungsten inert gas (TIG) welding process for the repair of thick section, ferritic steel nuclear pressure vessels. The objective has been to identify a hot wire TIG temper bead procedure, suitable for repairs without post weld heat treatment. This procedure involves depositing two weld layers with carefully selected welding parameters such that overlapping thermal cycles produce a refined and tempered heat affected zone, HAZ, microstructure. (author)

  2. Coercivity of the Nd–Fe–B hot-deformed magnets diffusion-processed with low melting temperature glass forming alloys

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, U.M.R. [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Liu, Lihua [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Akiya, T.; Sepehri-Amin, H.; Ohkubo, T. [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Sakuma, N.; Yano, M.; Kato, A. [Advanced Material Engineering Division, Toyota Motor Corporation, Susono 410-1193 (Japan); Hono, K., E-mail: kazuhiro.hono@nims.go.jp [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan)

    2016-08-15

    Nd- and Pr-based alloys with bulk glass forming ability and low melting temperatures, Nd{sub 60}Al{sub 10}Ni{sub 10}Cu{sub 20} and Pr{sub 60}Al{sub 10}Ni{sub 10}Cu{sub 20}, were used for grain boundary diffusion process to enhance the coercivity of hot-deformed magnets. The coercivity increment was proportional to the weight gain after the diffusion process. For the sample with 64% weight gain, the coercivity increased up to 2.8 T, which is the highest value for bulk Nd–Fe–B magnets that do not contain heavy rare-earth elements, Dy or Tb. Approximately half of the intergranular regions were amorphous and the remaining regions were crystalline. Magnetic isolation of the Nd{sub 2}Fe{sub 14}B grains by the Nd-rich amorphous/crystalline intergranular phases is attributed to the large coercivity enhancement. The coercivity does not change after the crystallization of the intergranular phase, indicating that the coercivity is not influenced by the strain at the interface with the crystalline intergranular phase. - Highlights: • Bulk-glass forming alloys were infiltrated into hot-deformed Nd–Fe–B magnets. • Very high coercivity of 2.8 T was attained without heavy rare-earth elements. • Approximately half of the inter-granular regions were amorphous. • Crystallization of amorphous intergranular phase does not change coercivity.

  3. A Novel Method of Modeling the Deformation Resistance for Clad Sheet

    International Nuclear Information System (INIS)

    Hu Jianliang; Yi Youping; Xie Mantang

    2011-01-01

    Because of the excellent thermal conductivity, the clad sheet (3003/4004/3003) of aluminum alloy is extensively used in various heat exchangers, such as radiator, motorcar air conditioning, evaporator, and so on. The deformation resistance model plays an important role in designing the process parameters of hot continuous rolling. However, the complex behaviors of the plastic deformation of the clad sheet make the modeling very difficult. In this work, a novel method for modeling the deformation resistance of clad sheet was proposed by combining the finite element analysis with experiments. The deformation resistance model of aluminum 3003 and 4004 was proposed through hot compression test on the Gleeble-1500 thermo-simulation machine. And the deformation resistance model of clad sheet was proposed through finite element analysis using DEFORM-2D software. The relationship between cladding ratio and the deformation resistance was discussed in detail. The results of hot compression simulation demonstrate that the cladding ratio has great effects on the resistance of the clad sheet. Taking the cladding ratio into consideration, the mathematical model of the deformation resistance for clad sheet has been proved to have perfect forecasting precision of different cladding ratio. Therefore, the presented model can be used to predict the rolling force of clad sheet during the hot continuous rolling process.

  4. High-energy, high-rate consolidation of tungsten and tungsten-based composite powders

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, S.K.; Persad, C.; Bourell, D.L.; Marcus, H.L. (Center for Materials Science and Engineering, Univ. of Texas, Austin (USA))

    1991-01-20

    Tungsten and tungsten-based heavy alloys are well known for their superior mechanical properties at elevated temperatures. However, unalloyed tungsten is difficult to consolidate owing to its very high melting temperature (3683 K). The additions of small amounts of low-melting elements such as iron, nickel, cobalt and copper, facilitate the powder processing of dense heavy alloys at moderate temperatures. Energetic high-current pulses have been used recently for powder consolidation. In this paper, the use of a homopolar generator as a power source to consolidate selected tungsten and tungsten-based alloys is examined. Various materials were consolidated including unalloyed tungsten, W-Nb, W-Ni, and tungsten heavy alloy with boron carbide. The effect of process parameters such as pressure and specific energy input on the consolidation of different alloy systems is described in terms of microstructure and property relationships. (orig.).

  5. Advanced smart tungsten alloys for a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J. W.; Bram, M.; Gonzalez-Julian, J.

    2017-06-01

    The severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten-chromium-yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten-chroimium-titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.

  6. Hot deformation of a Fe-Mn-Al-C steel susceptible of κ-carbide precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano, O.A., E-mail: oscar.zambrano@correounivalle.edu.co [Research Group of Fatigue and Surfaces (GIFS), Mechanical Engineering School, Universidad del Valle, Cali (Colombia); Research Group of Tribology, Polymers, Powder Metallurgy and Processing of Solid Waste (TPMR), Materials Engineering School, Universidad del Valle, Cali (Colombia); Valdés, J. [Research Group of Fatigue and Surfaces (GIFS), Mechanical Engineering School, Universidad del Valle, Cali (Colombia); Aguilar, Y. [Research Group of Tribology, Polymers, Powder Metallurgy and Processing of Solid Waste (TPMR), Materials Engineering School, Universidad del Valle, Cali (Colombia); Coronado, J.J.; Rodríguez, S.A. [Research Group of Fatigue and Surfaces (GIFS), Mechanical Engineering School, Universidad del Valle, Cali (Colombia); Logé, Roland E. [Thermomechanical Metallurgy Laboratory – PX Group Chair, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-2002 Neuchâtel (Switzerland)

    2017-03-24

    The mechanical properties of Fe-Mn-Al-C steel are significantly enhanced after κ-carbide precipitation via aging; however, most aging treatments are energy demanding because they require relatively high temperatures and extended holding times. This research determined that the precipitation of these carbides can also occur within a few seconds of thermomechanical treatments (TMTs). This behaviour has not been reported post-TMTs for this steel group. Hot compression tests were performed on Fe-21Mn-11Al-1.5C-2Si wt% specimens at test temperatures ranging from 900 °C to 1150 °C and strain rates varying from 0.01 s{sup −1} to 1 s{sup −1}. The effects of strain rate and test temperature on dynamic recrystallization behaviour were evaluated. The microstructures were characterized by scanning electron microscope and electron backscatter diffraction. Hardness tests were performed before and after applying processes studied i.e., TMT and aging treatment to determine the change in hardness induced. Particularly, nanoindentation tests were also used to collect indirect evidence about the deformation mechanisms. The load-displacement curves P-h and (P/h)-h showed the occurrence of several pop-ins and slope changes related to the nucleation of dislocations and strain-induced phase transformations. The occurrence of these phenomena is discussed.

  7. Complex deformation routes for direct recycling aluminium alloy scrap via industrial hot extrusion

    Science.gov (United States)

    Paraskevas, Dimos; Kellens, Karel; Kampen, Carlos; Mohammadi, Amirahmad; Duflou, Joost R.

    2018-05-01

    This paper presents the final results of an industrial project, aiming for direct hot extrusion of wrought aluminium alloy scrap at an industrial scale. Two types of complex deformation/extrusion routes were tested for the production of the same profile, starting from AA6060 scrap in form of machining chips. More specifically scrap-based billets were extruded through: a 2-porthole and a 4-porthole die-set, modified for enhanced scrap consolidation and grain refinement. For comparison reasons, cast billets of the same alloy were extruded through the modified 2-porthole die set. The tensile testing results as well as microstructural investigations show that the 4-porthole extrusion route further improves scrap consolidation compared to the 2-porthole die output. The successful implementation of solid state recycling, directly at industrial level, indicates the technological readiness level of this research.

  8. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    International Nuclear Information System (INIS)

    Zhu, C.C.; Song, Y.T.; Peng, X.B.; Wei, Y.P.; Mao, X.; Li, W.X.; Qian, X.Y.

    2016-01-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads. - Graphical abstract: From the comparison between the experimental curves and the predicted curves calculated by adopting the corrected m, it is very clear that the new model is of great capability to explain the deformation behavior of the tungsten material under dynamic compression at high temperatures. (EC, PC and PCM refers to experimental curve, predicted curve and predicted curve with a corrected m. Different colors represent different scenarios.). - Highlights: • Test research on dynamic properties of tungsten at working temperature range and strain rate range of divertors. • Constitutive equation descrbing strain hardening, strain rate hardening and temperature softening. • A guidance to estimate dynamical response and damage evolution of tungsten divertor components under impact.

  9. The creep deformation behavior of a single-crystal Co–Al–W-base superalloy at 900 °C

    International Nuclear Information System (INIS)

    Shi, L.; Yu, J.J.; Cui, C.Y.; Sun, X.F.

    2015-01-01

    The creep deformation behavior of a single-crystal Co–Al–W–Ni–Cr–Ta alloy with low tungsten content has been studied at stresses between 275 and 310 MPa at 900 °C. The alloy exhibits comparable creep strength with that of Co–Al–W-base alloys containing more tungsten. The creep deformation consists of three stages, the primary stage, the steady-state stage and the tertiary stage, when described by the creep strain rate versus time curve. At 900 °C, γ′ precipitates tend to raft along the direction of applied tensile stress in the steady-state creep stage and a topologically inverted and rafting γ/γ′ microstructure is formed in the tertiary stage. The main deformation mechanism in the primary creep stage is dislocation shearing of γ′ precipitates, and in the following creep stages, the dominant deformation mechanism is dislocations bypassing γ′ precipitates

  10. Deep inelastic reactions and isomers in neutron-rich nuclei across the perimeter of the A = 180 - 190 deformed region

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Lane, G.J.; Byrne, A.P.; Watanabe, H.; Hughes, R.O.; Kondev, F.G.; Carpenter, M.P.; Janssens, R.V.F.; Lauritsen, T.; Lister, C.J.; Seweryniak, D.; Zhu, S.; Chowdhury, P.; Shi, Y.; Xu, F.R.

    2014-01-01

    Recent results on high-spin isomers populated in deep-inelastic reactions in the transitional tungsten-osmium region are outlined with a focus on 190 Os, 192 Os and 194 Os. As well as the characterization of several two-quasineutron isomers, the 12 + and 20 + isomers in 192 Os are interpreted as manifestations of maximal rotation alignment within the neutron i(13/2) and possibly proton h(11/2) shells at oblate deformation. (authors)

  11. A thermostatistical theory for solid solution effects in the hot deformation of alloys: an application to low-alloy steels

    International Nuclear Information System (INIS)

    Galindo-Nava, E I; Rivera-Díaz-del-Castillo, P E J; Perlade, A

    2014-01-01

    The hot deformation of low-alloy steels is described by a thermostatistical theory of plastic deformation. This is based on defining a statistical entropy term that accounts for the energy dissipation due to possible dislocation displacements. In this case, dilute substitutional and interstitial atom effects alter such paths. The dislocation population is described by a single parameter equation, with the parameter being the average dislocation density. Solute effects incorporate additional dislocation generation sources. They alter the energy barriers corresponding to the activation energies for dislocation recovery, grain nucleation and growth. The model is employed to describe work hardening and dynamic recrystallization softening in fifteen steels for a wide range of compositions, temperatures and strain rates. Maps for dynamic recrystallization occurrence are defined in terms of processing conditions and composition. (paper)

  12. Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lihua [Elements Strategy Initiative Center for Magnetic Materials, National Institute of Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8577 (Japan); Sepehri-Amin, H.; Ohkubo, T. [Elements Strategy Initiative Center for Magnetic Materials, National Institute of Materials Science, Tsukuba 305-0047 (Japan); Yano, M.; Kato, A.; Shoji, T. [Toyota Motor Corporation, Advanced Material Engineering Div., Susono 410-1193 (Japan); Hono, K., E-mail: kazuhiro.hono@nims.go.jp [Elements Strategy Initiative Center for Magnetic Materials, National Institute of Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8577 (Japan)

    2016-05-05

    Nd-M (M = Al, Cu, Ga, Zn, Mn) alloys with compositions close to eutectic points were investigated as diffusion sources for the grain boundary diffusion process to hot-deformed Nd-Fe-B magnets. Coercivity enhancement was observed for most of the alloys. Among them, the sample processed with Nd{sub 90}Al{sub 10} exhibited the highest coercivity of 2.5 T at room temperature. However, the sample processed with Nd{sub 70}Cu{sub 30} exhibited the highest coercivity of 0.7 T at 200 {sup °}C. Microstructural observations using scanning transmission electron microscope (STEM) showed that nonferromagnetic Nd-rich intergranular phase envelops the Nd{sub 2}Fe{sub 14}B grains after the diffusion process. Abnormal grain growth and the dissolution of Al into the Nd{sub 2}Fe{sub 14}B grains were observed in the sample processed with Nd{sub 90}Al{sub 10}, which explains its inferior thermal stability of coercivity compared to the sample processed with Nd{sub 70}Cu{sub 30}. The coercivity enhancement and poor thermal stability of the coercivity of the Nd{sub 90}Al{sub 10} diffusion-processed sample are discussed based on microstructure studies by transmission electron microscopy. - Highlights: • Coercivity of hot-deformed Nd-Fe-B magnets is enhanced by the infiltration of various R-TM eutectic alloys. • The sample infiltrated with Nd{sub 90}Al{sub 10} shows the highest coercivity of 2.5 T at room temperature. • At 200 °C, Nd{sub 70}Cu{sub 30} diffusion-processed sample possesses the highest coercivity of 0.7 T.

  13. Hot Roll Bonding of Aluminum to Twin-Roll Cast (TRC) Magnesium and Its Subsequent Deformation Behavior

    Science.gov (United States)

    Saleh, H.; Schmidtchen, M.; Kawalla, R.

    2018-02-01

    In an experiment in which twin-roll cast AZ31 magnesium alloy and commercial purity aluminum (AA 1050) sheets were bonded by hot rolling as Al/Mg/Al laminate composites, it was found that increasing the preheating temperatures up to 400 °C enhances the bonding strength of composites. Further increases in the preheating temperatures accelerate the magnesium oxide growth and thus reduce the bonding strength. The influence of the reduction ratio on the bonding properties was also studied, whereby it was observed that increasing the rolling reduction led to an increase in the bonding strength. The experimental results show that the optimum bonding strength can be obtained at rolling temperatures of 375-400 °C with a 50-60% reduction in thickness. On the other hand, the subsequent deformation behavior of composite was assessed using plane strain compression and deep drawing tests. We demonstrate that the composites produced using the optimum roll bonding conditions exhibited sufficient bonding during subsequent deformation and did not reveal any debonding at the bonding interface.

  14. Further development of the tungsten-fibre reinforced tungsten composite

    Energy Technology Data Exchange (ETDEWEB)

    Gietl, Hanns; Hoeschen, Till; Riesch, Johann [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Aumann, Martin; Coenen, Jan [Forschungszentrum Juelich, IEK4, 52425 Juelich (Germany); Huber, Philipp [Lehrstuhl fuer Textilmaschinenbau und Institut fuer Textiltechnik (ITA), 52062 Aachen (Germany); Neu, Rudolf [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Technische Universitaet Muenchen, 85748 Garching (Germany)

    2016-07-01

    For the use in a fusion device tungsten has a unique property combination. The brittleness below the ductile-to-brittle transition temperature and the embrittlement during operation e.g. by overheating, neutron irradiation are the main drawbacks for the use of pure tungsten. Tungsten fibre-reinforced tungsten composites utilize extrinsic mechanisms to improve the toughness. After proofing that this idea works in principle the next step is the conceptual proof for the applicability in fusion reactors. This will be done by producing mock-ups and testing them in cyclic high heat load tests. For this step all constituents of the composite, which are fibre, matrix and interface, and all process steps need to be investigated. Tungsten fibres are investigated by means of tension tests to find the optimum diameter and pretreatment. New interface concepts are investigated to meet the requirements in a fusion reactor, e.g. high thermal conductivity, low activation. In addition weaving processes are evaluated for their use in the fibre preform production. This development is accompanied by an extensive investigation of the materials properties e.g. single fibre tension tests.

  15. Demonstration of production of tungsten metal powder and its consolidation into shapes

    International Nuclear Information System (INIS)

    Majumdar, S.; Kishor, J.; Paul, B.; Kain, V.; Dey, G.K.

    2016-01-01

    Tungsten is a strategically important metal used as plasma facing component in fusion reactors, radiation shields in cancer therapy machines, ammunition in defence applications, high speed cutting tools etc. The primary resources or minerals occurring in India contain a very low value (0.25-0.5 wt. %) of tungsten. Mineral beneficiation processes involving crushing, grinding, primary and secondary gravity separation, floatation are essential to produce the ore-concentrate suitable for further processing up to the preparation of the intermediate ammonium para-tungstate (APT). APT was further converted to tungsten tri-oxide (WO_3). Hydrogen reduction of WO_3 producing high purity W metal powder was demonstrated in large scale batches. Densification of W powder was further studied using vacuum hot pressing at 1950°C, and high density W metal plates of 5 mm thickness and 60 mm diameter were produced. The products obtained at every stage were systematically characterized using X-Ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and electron backscattered diffraction (EBSD) techniques. (author)

  16. Advanced Gas Tungsten Arc Weld Surfacing Current Status and Application

    Directory of Open Access Journals (Sweden)

    Stephan Egerland

    2015-09-01

    Full Text Available Abstract Gas Shielded Tungsten Arc Welding (GTAW – a process well-known providing highest quality weld results joined though by lower performance. Gas Metal Arc Welding (GMAW is frequently chosen to increase productivity along with broadly accepted quality. Those industry segments, especially required to produce high quality corrosion resistant weld surfacing e.g. applying nickel base filler materials, are regularly in consistent demand to comply with "zero defect" criteria. In this conjunction weld performance limitations are overcome employing advanced 'hot-wire' GTAW systems. This paper, from a Welding Automation perspective, describes the technology of such devices and deals with the current status is this field – namely the application of dual-cathode hot-wire electrode GTAW cladding; considerably broadening achievable limits.

  17. Microstructure, Properties and Atomic Level Strain in Severely Deformed Rare Metal Niobium

    Directory of Open Access Journals (Sweden)

    Lembit KOMMEL

    2012-12-01

    Full Text Available The mechanical and physical properties relationship from atomic level strain/stress causes dislocation density and electrical conductivity relationship, as well as crystallites deformation and hkl-parameter change in the severely deformed pure refractory rare metal Nb at ambient temperature and during short processing times. The above mentioned issues are discussed in this study. For ultrafine-grained and nanocrystalline microstructure forming in metal the equal-channel angular pressing and hard cyclic viscoplastic deformation were used. The flat deformation and heat treatment at different parameters were conducted as follows. The focused ion beam method was used for micrometric measures samples manufacturied under nanocrystalline microstructure study by transmission electron microscope. The microstructure features of metal were studied under different orientations by X-ray diffraction scattering method, and according to the atomic level strains, dislocation density, hkl-parameters and crystallite sizes were calculated by different computation methods. According to results the evolutions of atomic level strains/stresses, induced by processing features have great influence on the microstructure and advanced properties forming in pure Nb. Due to cumulative strain increase the tensile stress and hardness were increased significantly. In this case the dislocation density of Nb varies from 5.0E+10 cm–2 to 2.0E+11 cm–2. The samples from Nb at maximal atomic level strain in the (110 and (211 directions have the maximal values of hkl-parameters, highest tensile strength and hardness but minimal electrical conductivity. The crystallite size was minimal and relative atomic level strain maximal in (211 orientation of crystal. Next, flat deformation and heat treatment increase the atomic level parameters of severely deformed metal.DOI: http://dx.doi.org/10.5755/j01.ms.18.4.3091

  18. Hot flashes severity, complementary and alternative medicine use, and self-rated health in women with breast cancer.

    Science.gov (United States)

    Chandwani, Kavita D; Heckler, Charles E; Mohile, Supriya G; Mustian, Karen M; Janelsins, Michelle; Peppone, Luke J; Bushunow, Peter; Flynn, Patrick J; Morrow, Gary R

    2014-01-01

    Hot flashes (HF) are a common distressing symptom in women with breast cancer (BC). Current pharmacologic options are moderately effective and are associated with bothersome side effects. Complementary and alternative medicine is commonly used by cancer patients. However, information on the association of hot flashes severity with such use and self-rated health is lacking. To examine the hot flashes severity in women with breast cancer and its association with complementary and alternative medicine use and self-rated health (SRH). Longitudinal multicenter study to assess information needs of cancer outpatients. Patients with a diagnosis of breast cancer who were scheduled to undergo chemotherapy and/or radiotherapy. Hot flashes severity (0 = not present and 10 = as bad as you can imagine), use of complementary and alternative medicine (yes/no), and self-rating of health (SRH) status post-treatment and six-months thereafter (1-5, higher score = better SRH). The majority of women with HF (mean age = 54.4 years) were Caucasian and married, with higher education, and 93% had received surgical treatment for BC. At the end of treatment, 79% women reported experiencing HF [mean severity = 5.87, standard deviation (SD) = 2.9]; significantly more severe HF were reported by younger women with poor SRH, poor performance status, and those reporting doing spiritual practices. At follow-up, 73% had HF (mean severity = 4.86, SD = 3.0), and more severe HF were reported by younger women with poor self-rated health who had undergone chemotherapy plus radiotherapy, used vitamins, and did not exercise. A high percentage of women experienced hot flashes at the end of treatment and at six-month follow-up. A significant association of hot flashes severity with spiritual practice, increased vitamin use, and reduced exercise emphasize the need for future studies to confirm the results. This can facilitate safe use of complementary and alternative medicine and favorable outcomes while

  19. Deuterium trapping in tungsten

    Science.gov (United States)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  20. Deuterium trapping in tungsten

    International Nuclear Information System (INIS)

    Poon, M.

    2004-01-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D 2 molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  1. Deuterium trapping in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M

    2004-07-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D{sub 2} molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  2. Hot deformation behavior of austenite in HSLA-100 microalloyed steel

    International Nuclear Information System (INIS)

    Momeni, A.; Arabi, H.; Rezaei, A.; Badri, H.; Abbasi, S.M.

    2011-01-01

    Research highlights: → The flow stress is well fitted by the exponential constitutive equation. → The average value of apparent activation energy for hot deformation is 377 kJ mol -1 . → A yield point phenomenon is observed on flow curves at high temperatures. → The Avrami exponent is determined around unity for dynamic recrystallization. - Abstract: Dynamic recrystallization of austenite in the Cu-bearing HSLA-100 steel was investigated by hot compression testing at a temperature range of 850-1150 deg. C and a strain rate of 0.001-1 s -1 . The obtained flow curves at temperatures higher than 950 deg. C were typical of DRX while at lower temperatures the flow curves were associated with work hardening without any indication of DRX. At high temperatures, flow stress exhibited a linear relation with temperature while at temperatures below 950 deg. C the behavior changed to non-linear. Hence, the temperature of 950 deg. C was introduced as the T nr of the alloy. All the flow curves showed a yield point elongation like phenomenon which was attributed to the interaction of solute atoms, notably carbon, and moving dislocations. The maximum elongation associated with the yield point phenomenon was observed at about 950 deg. C. Since the maximum yield point elongation was observed about the calculated T nr , it was concluded that carbon atoms were responsible for it. It was also concluded that the temperature at which the yield point elongation reaches the maximum value increases as strain rate rises. The stress and strain of the characteristic points of DRX flow curves were successfully correlated to the Zener-Hollomon parameter, Z, by power-law equations. The constitutive exponential equation was found more precise than the hyperbolic sine equation for modeling the dependence of flow stress on Z. The apparent activation energy for DRX was determined as 377 kJ mol -1 . The kinetics of DRX was modeled by an Avrami-type equation and the Avrami's exponent was

  3. FEM investigation and thermo-mechanic tests of the new solid tungsten divertor tile for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Jaksic, Nikola; Greuner, Henri; Herrmann, Albrecht

    2013-01-01

    Highlights: • New solid tungsten divertor for fusion experiment ASDEX Upgrade. • Design validation in the high heat flux (HHF) test facility GLADIS (Garching Large Divertor Sample Test Facility). • FEA simulation. -- Abstract: A new solid tungsten divertor for the fusion experiment ASDEX Upgrade is under construction at present. A new divertor tile design has been developed to improve the thermal performance of the current divertor made of tungsten coated fine grain graphite. Compared to thin tungsten coatings, divertor tiles made of massive tungsten allow to extend the operational range and to study the plasma material interaction of tungsten in more detail. The improved design for the solid tungsten divertor was tested on different full scale prototypes with a hydrogen ion beam. The influence of a possible material degradation due to thermal cracking or recrystallization can be studied. Furthermore, intensive Finite Element Method (FEM) numerical analysis with the respective test parameters has been performed. The elastic–plastic calculation was applied to analyze thermal stress and the observed elastic and plastic deformation during the heat loading. Additionally, the knowledge gained by the tests and especially by the numerical analysis has been used to optimize the shape of the divertor tiles and the accompanying divertor support structure. This paper discusses the main results of the high heat flux tests and their numerical simulations. In addition, results from some special structural mechanic analysis by means of FEM tools are presented. Finally, first results from the numerical lifecycle analysis of the current tungsten tiles will be reported

  4. Dislocation-mediated trapping of deuterium in tungsten under high-flux high-temperature exposures

    Energy Technology Data Exchange (ETDEWEB)

    Bakaeva, A. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400, Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000, Ghent (Belgium); Terentyev, D., E-mail: dterenty@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400, Mol (Belgium); De Temmerman, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067, St Paul Lez Durance Cedex (France); Lambrinou, K. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400, Mol (Belgium); Morgan, T.W. [FOM Institute DIFFER, De Zaale 20, 5612 AJ, Eindhoven (Netherlands); Dubinko, A.; Grigorev, P. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400, Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000, Ghent (Belgium); Verbeken, K. [Department of Materials Science and Engineerin, Ghent University, St. Pietersnieuwstraat 41, 9000, Ghent (Belgium); Noterdaeme, J.M. [Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000, Ghent (Belgium)

    2016-10-15

    The effect of severe plastic deformation on the deuterium retention in tungsten exposed to high-flux low-energy plasma (flux ∼10{sup 24} m{sup −2} s{sup −1}, energy ∼50 eV and fluence up to 5 × 10{sup 25} D/m{sup 2}) was studied experimentally in a wide temperature range (460–1000 K) relevant for application in ITER. The desorption spectra in both reference and plastically-deformed samples were deconvoluted into three contributions associated with the detrapping from dislocations, deuterium-vacancy clusters and pores. As the exposure temperature increases, the positions of the release peaks in the plastically-deformed material remain in the same temperature range but the peak amplitudes are altered as compared to the reference material. The desorption peak attributed to the release from pores (i.e. cavities and bubbles) was suppressed in the plastically deformed samples for the low-temperature exposures, but became dominant for exposures above 700 K. The observed strong modulation of the deuterium storage in “shallow” and “deep” traps, as well as the reduction of the integral retention above 700 K, suggest that the dislocation network changes its role from “trapping sites” to “diffusion channels” above a certain temperature. The major experimental observations of the present work are in line with recent computational assessment based on atomistic and mean field theory calculations available in literature.

  5. Mechanism of the electrochemical hydrogen reaction on smooth tungsten carbide and tungsten electrodes

    International Nuclear Information System (INIS)

    Wiesener, K.; Winkler, E.; Schneider, W.

    1985-01-01

    The course of the electrochemical hydrogen reaction on smooth tungsten-carbide electrodes in hydrogen saturated 2.25 M H 2 SO 4 follows a electrochemical sorption-desorption mechanism in the potential range of -0.4 to +0.1 V. At potentials greater than +0.1 V the hydrogen oxidation is controlled by a preliminary chemical sorption step. Concluding from the similar behaviour of tungsten-carbide and tungsten electrodes after cathodic pretreatment, different tungsten oxides should be involved in the course of the hydrogen reaction on tungsten carbide electrodes. (author)

  6. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    International Nuclear Information System (INIS)

    Igitkhanov, Yu.; Bazylev, B.; Landman, I.; Boccaccini, L.

    2013-01-01

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ∼14 MW/m 2 . It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface

  7. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    Energy Technology Data Exchange (ETDEWEB)

    Igitkhanov, Yu., E-mail: juri.igitkhanov@lhm.fzk.de [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany); Bazylev, B.; Landman, I. [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany); Boccaccini, L. [Karlsruhe Institute of Technology, INR, Karlsruhe (Germany)

    2013-07-15

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ∼14 MW/m{sup 2}. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface.

  8. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    Science.gov (United States)

    Igitkhanov, Yu.; Bazylev, B.; Landman, I.; Boccaccini, L.

    2013-07-01

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ˜14 MW/m2. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface.

  9. Tungsten Alloy Outgassing Measurements

    CERN Document Server

    Rutherfoord, John P; Shaver, L

    1999-01-01

    Tungsten alloys have not seen extensive use in liquid argon calorimeters so far. Because the manufacturing process for tungsten is different from the more common metals used in liquid argon there is concern that tungsten could poison the argon thereby creating difficulties for precision calorimetry. In this paper we report measurements of outgassing from the tungsten alloy slugs proposed for use in the ATLAS FCal module and estimate limits on potential poisoning with reasonable assumptions. This estimate gives an upper limit poisoning rate of tungsten slugs.

  10. Criteria for prediction of plastic instabilities for hot working processes. (Part I: Theoretical review)

    International Nuclear Information System (INIS)

    Al Omar, A.; Prado, J. M.

    2010-01-01

    Hot working processes often induce high levels of deformation at high strain rates, and impose very complex multiaxial modes of solicitation. These processes are essentially limited by apparition and development of plastic instabilities. These may be the direct cause of rapid crack propagation, which lead to a possible final rupture. The complexity of deformation modes and the simultaneous intervention of several parameters have led many researchers to develop various criteria, with different approaches, to predict the occurrence of defects and to optimize process control parameters. The aim of the present paper is to summarize the general characteristics of some instability criteria, widely used in the literature, for the prediction of plastic instabilities during hot working. It was considered appropriate to divide the work into two parts: part I presents the phenomenological criteria for the prediction of plastic instabilities, based on descriptive observation of microscopic phenomena of the deformation (strain hardening and strain rate sensitivity), and discusses the continuum criteria based on the principle of maximum rate of entropy production of irreversible thermodynamics applied to continuum mechanics of large plastic flow. Also, this part provides a bibliographical discussion among several authors with regard to the physical foundations of dynamic materials model. In part II, of the work, a comparative study has been carried out to characterize the flow instability during a hot working process of a medium carbon microalloyed using phenomenological and continuum criteria. (Author) 83 refs.

  11. Sensitivity of hot-cathode ionization vacuum gages in several gases

    Science.gov (United States)

    Holanda, R.

    1972-01-01

    Four hot-cathode ionization vacuum gages were calibrated in 12 gases. The relative sensitivities of these gages were compared to several gas properties. Ionization cross section was the physical property which correlated best with gage sensitivity. The effects of gage accelerating voltage and ionization-cross-section energy level were analyzed. Recommendations for predicting gage sensitivity according to gage type were made.

  12. Surface flow in severe plastic deformation of metals by sliding

    International Nuclear Information System (INIS)

    Mahato, A; Yeung, H; Chandrasekar, S; Guo, Y

    2014-01-01

    An in situ study of flow in severe plastic deformation (SPD) of surfaces by sliding is described. The model system – a hard wedge sliding against a metal surface – is representative of surface conditioning processes typical of manufacturing, and sliding wear. By combining high speed imaging and image analysis, important characteristics of unconstrained plastic flow inherent to this system are highlighted. These characteristics include development of large plastic strains on the surface and in the subsurface by laminar type flow, unusual fluid-like flow with vortex formation and surface folding, and defect and particle generation. Preferred conditions, as well as undesirable regimes, for surface SPD are demarcated. Implications for surface conditioning in manufacturing, modeling of surface deformation and wear are discussed

  13. High-temperature deformation of B2 NiAl-base alloys

    International Nuclear Information System (INIS)

    Lee, I.G.; Ghosh, A.K.

    1994-01-01

    The high-temperature deformation behavior of three rapidly solidified and processed NiAl-base alloys--NiAl, NiAl containing 2 pct TiB 2 , and NiAl containing 4 pct HfC--have been studied and their microstructural and textural changes during deformation characterized. Compressions tests were conducted at 1,300 and 1,447 K at strain rates ranging from 10 -6 to 10 -2 s -1 . HfC-containing material showed dispersion strengthening as well as some degree of grain refinement over NiAl, while TiB 2 dispersoid-containing material showed grain refinement as well as secondary recrystallization and did not improve high-temperature strength. Hot-pack rolling was also performed to develop thin sheet materials (1.27-mm thick) and from these alloys. Without dispersoids, NiAl rolled easily at 1,223 K and showed low flow stress and good ductility during the hot-rolling operation. Rolling of dispersoid-containing alloys was difficult due to strain localization and edge-cracking effects, resulting partly from the high flow stress at the higher strain rate during the rolling operation. Sheet rolling initially produced a {111} texture, which eventually broke into multiple-texture components with severe deformation

  14. Hot deformed anisotropic nanocrystalline NdFeB based magnets prepared from spark plasma sintered melt spun powders

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Y.H.; Huang, Y.L. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2013-09-01

    Highlights: • Microstructure evolution and its influence on the magnetic properties were investigated. • The increase of stray field and weakening of domain-wall pinning effects were the main reasons of the decrease of the coercivity with increasing the compression ratio. • The influences of non-uniform plastic deformation on the microstructure and magnetic properties were investigated. • Magnetic properties and temperature coefficient of coercivity are indeed very promising without heavy rare earth elements. -- Abstract: Anisotropic magnets were prepared by spark plasma sintering (SPS) followed by hot deformation (HD) using melt-spun powders as the starting material. Good magnetic properties with the remanence J{sub r} > 1.32 T and maximum of energy product (BH){sub max} > 303 kJ/m{sup 3} have been obtained. The microstructure evolution during HD and its influence on the magnetic properties were investigated. The fine grain zone and coarse grain zone formed in the SPS showed different deformation behaviors. The microstructure also had an important effect on the temperature coefficients of coercivity. A strong domain-wall pinning model was valid to interpret the coercivity mechanism of the HDed magnets. The increase of stray field and weakening of domain-wall pinning effects were the main reasons of the decrease of the coercivity with increasing the compression ratio. The influences of non-uniform plastic deformation on the microstructure and magnetic properties were investigated. The polarization characteristics of HDed magnets were demonstrated. It was found out that the HDed magnets had better corrosion resistance than the counterpart sintered magnet.

  15. Reduction of tensile residual stresses during the drawing process of tungsten wires

    International Nuclear Information System (INIS)

    Rodriguez Ripoll, Manel; Weygand, Sabine M.; Riedel, Hermann

    2010-01-01

    Tungsten wires are commonly used in the lighting industry as filaments for lamps. During the drawing process, the inhomogeneous deformation imparted by the drawing die causes tensile residual stresses at the wire surface in circumferential direction. These stresses have a detrimental effect for the wire because they are responsible for driving longitudinal cracks, known as splits. This work proposes two methods for reducing the residual stresses during wire drawing, namely applying an advanced die geometry and performing an inexpensive post-drawing treatment based on targeted bending operations. These two methods are analyzed with finite element simulations using material parameters obtained by mechanical tests on tungsten wires at different temperatures as input data. The computed results predict a substantial reduction of the circumferential residual stresses, thus reducing the risk of splitting.

  16. Effect of composition on the high rate dynamic behaviour of tungsten heavy alloys

    Directory of Open Access Journals (Sweden)

    Latif Kesemen

    2015-01-01

    Full Text Available Tungsten heavy alloys are currently used as kinetic energy penetrators in military applications due to their high density and superior mechanical properties. In the literature, quasi-static properties of different tungsten heavy alloys based on W-Ni-Cu and W-Ni-Fe ternary systems are well documented and presented. However, comparison of the dynamic behaviour of these alloys in terms of the correlation between quasi-static mechanical characterization and dynamical properties is lacking. In the present study, dynamic properties of tungsten heavy alloys having different binder phase compositions (90W-7Ni-3Cu and 90W-8Ni-2Fe at different projectile velocities were investigated. The examined and tested alloys were produced through the conventional powder metallurgy route of mixing, cold compaction and sintering. Mechanical characterization of these alloys was performed. In the ballistic tests, cylindrical tungsten heavy alloys with L/D ratio of 3 were impacted to hardened steel target at different projectile velocities. After the ballistic tests, deformation characteristics of test specimens during dynamic loading were evaluated by comparing the change of length and diameter of the specimens versus kinetic energy densities. The study concluded that 90W-8Ni-2Fe alloy has better perforation characteristics than 90W-7Ni-3Cu alloy.

  17. An experimental study on joining of severe plastic deformed aluminium materials with friction welding method

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Mumin [Mechanical Engineering Department, Trakya University, 22030 Edirne (Turkey)], E-mail: mumins@trakya.edu.tr; Erol Akata, H.; Ozel, Kaan [Mechanical Engineering Department, Trakya University, 22030 Edirne (Turkey)

    2008-07-01

    In this study, 5083 aluminium alloys, which were exposed to severe plastic deformation, were joined with friction welding method and the variation in mechanical properties of the joints was experimentally investigated. Severe plastic deformation methods can be classified as equal channel angular pressing (ECAP) (in other words, equal cross section lateral extrusion - ECSLE) and cyclic extrusion-compression. Aluminium alloy as test material 5083 and square cross-sectional equal channel angular pressing die for severe plastic deformation were used in the study. Firstly 5083 alloys, as purchased, were joined with friction welding method. The optimum parameters for friction time, upset time, friction pressure and upset pressure, which are necessary for welding, were obtained. Afterwards, 5083 aluminium materials as purchased were prepared as square cross-section and then 1-pass severe plastic deformation was applied to specimen by equal channel angular pressing die. The obtained parts as square form were prepared as cylindrical form by machining and then the parts were joined by continuous drive friction welding equipment that was designed and produced in laboratory conditions before. Later, the tensile strengths of the parts, obtained at optimum conditions, were compared with those of the joined parts as purchased form. Then, hardness variations and microstructures of joints were examined. Finally, the obtained results were commented on.

  18. Numerical simulation of the dynamic recrystallization behaviour in hot precision forging helical gears

    Directory of Open Access Journals (Sweden)

    Feng Wei

    2015-01-01

    Full Text Available In hot precision forging helical gears, the dynamic recrystallization phenomena will occur, which affect the microstructure of the formed part and in turn decide their mechanical properties. To investigate the effect of deformation temperature on the dynamic recrystallization in hot precision forging helical gears, a three dimensional (3D finite element (FE model was created by coupling the thermo-mechanical model with the microstructure evolution model developed based on the hot compressive experimental data of 20CrMnTiH steel. The hot precision forging process was simulated and the effect laws of the deformation temperature on the microstructure evolution the formed part were investigated. The results show that the dynamic recrystallization volume fraction and the average grain sizes increased with the increasing deformation temperature and the higher deformation temperature is beneficial to dynamic recrystallization and grain refinement.

  19. Studies on formability of sintered aluminum composites during hot deformation using strain hardening parameters

    Directory of Open Access Journals (Sweden)

    Sumesh Narayan

    2017-04-01

    Full Text Available Formability is the limit to which a material can be deformed before failure and is upmost importance in powder metallurgy (PM forming process. This is because the presence of porosity in the PM part after the sintering process. In this study two key strain hardening parameters are used to study the workability behavior or determining the failure zone. This can be used for design of PM parts and most importantly the die design as repressing needs to be employed before pores appear as cracks on the free surface. It is nearly impossible to produce defect free parts if this failure occurs. The hot formability behavior of aluminum metal matrix composites (MMC's that is, Al-4TiC, Al-4WC, Al-4Fe3C and Al-4Mo2C (by weight percentage are presented in this paper.

  20. Thermodynamics of the hydrogen-carbon-oxygen-tungsten system, as applied to the manufacture of tungsten and tungsten carbide

    International Nuclear Information System (INIS)

    Schwenke, G.K.

    2001-01-01

    The thermodynamics of the quaternary hydrogen-carbon oxygen-tungsten system and its binary and ternary sub-systems are reviewed. Published thermodynamic data are evaluated, and expression for free energies of formation are chosen. These expressions are integrated with and equilibrium-calculating algorithm, producing a powerful tool for understanding and improving the manufacture of tungsten and tungsten carbide. Three examples are presented: reduction/carburization of tungstic oxide with hydrogen, carbon, and methane. (author)

  1. Deformability of Oxide Inclusions in Tire Cord Steels

    Science.gov (United States)

    Zhang, Lifeng; Guo, Changbo; Yang, Wen; Ren, Ying; Ling, Haitao

    2018-04-01

    The deformation of oxide inclusions in tire cord steels during hot rolling was analyzed, and the factors influencing their deformability at high and low temperatures were evaluated and discussed. The aspect ratio of oxide inclusions decreased with the increasing reduction ratio of the steel during hot rolling owing to the fracture of the inclusions. The aspect ratio obtained after the first hot-rolling process was used to characterize the high-temperature deformability of the inclusions. The deformation first increased and then decreased with the increasing (MgO + Al2O3)/(SiO2 + MnO) ratio of the inclusions. It also increased with the decreasing melting temperatures of the inclusions. Young's modulus was used to evaluate the low-temperature deformability of the inclusions. An empirical formula was fitted to calculate the Young's moduli of the oxides using the mean atomic volume. The moduli values of the inclusions causing wire fracture were significantly greater than the average. To reduce fracture in tire cord steel wires during cold drawing, it is proposed that inclusions be controlled to those with high SiO2 content and extremely low Al2O3 content. This proposal is based on the hypothesis that the deformabilities of oxides during cold drawing are inversely proportional to their Young's moduli. The future study thus proposed includes an experimental confirmation for the abovementioned predictions.

  2. Control of microstructure during hot working of zirconium alloys

    International Nuclear Information System (INIS)

    Chakravartty, J.K.; Banerjee, S.

    2005-01-01

    Hot working is considered to be the most important step involved in the fabrication of zirconium alloys for nuclear reactor applications for two reasons: i) the scale of the microstructure and texture of the final product is decided at this stage and ii) the hot deformed microstructure provides a suitable starting microstructure for the subsequent fabrication steps. The resultant microstructure in turn controls the properties of the final product. In order to obtain final product with a suitable microstructure and with specified mechanical properties on a repeatable basis the control of microstructure during hot working is of paramount importance. This is usually done by studying the constitutive behaviour of the material under hot working conditions and by constructing processing maps. In the latter method, strain rate sensitivity is mapped as a function of temperature and strain rate to delineate domains within the bounds of which a specific deformation mechanism dominates. Detail microstructural analysis is then carried out on the samples deformed within the domains. Using this methodology, processing maps have been constructed for various zirconium alloys. These maps have been found to be very useful for optimizing the hot workability and control of microstructure of zirconium alloys. (author)

  3. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    Science.gov (United States)

    López-Ruiz, P.; Ordás, N.; Lindig, S.; Koch, F.; Iturriza, I.; García-Rosales, C.

    2011-12-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  4. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    International Nuclear Information System (INIS)

    López-Ruiz, P; Ordás, N; Iturriza, I; García-Rosales, C; Lindig, S; Koch, F

    2011-01-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  5. Characterization of gait in female patients with moderate to severe hallux valgus deformity.

    Science.gov (United States)

    Chopra, S; Moerenhout, K; Crevoisier, X

    2015-07-01

    Hallux valgus is one of the most common forefoot problems in females. Studies have looked at gait alterations due to hallux valgus deformity, assessing temporal, kinematic or plantar pressure parameters individually. The present study, however, aims to assess all listed parameters at once and to isolate the most clinically relevant gait parameters for moderate to severe hallux valgus deformity with the intent of improving post-operative patient prognosis and rehabilitation. The study included 26 feet with moderate to severe hallux valgus deformity and 30 feet with no sign of hallux valgus in female participants. Initially, weight bearing radiographs and foot and ankle clinical scores were assessed. Gait assessment was then performed utilizing pressure insoles (PEDAR) and inertial sensors (Physilog) and the two groups were compared using a non-parametric statistical hypothesis test (Wilcoxon rank sum, Phallux valgus group compared to controls and 9 gait parameters (effect size between 1.03 and 1.76) were successfully isolated to best describe the altered gait in hallux valgus deformity (r(2)=0.71) as well as showed good correlation with clinical scores. Our results, and nine listed parameters, could serve as benchmark for characterization of hallux valgus and objective evaluation of treatment efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Substitution of thoriated tungsten electrodes in Switzerland

    International Nuclear Information System (INIS)

    Kunz, H.; Piller, G.

    2006-01-01

    Thoriated tungsten electrodes are frequently used for inert gas welding (TIG/WIG). The use of these electrodes can lead to doses which are well above the limit for the general population (1mSv/year). This has been shown by different investigations, for example from the ''Berufsgenossenschaft''. With these findings in mind, the regulatory authorities (Swiss Federal Office of Public Health (SFOPH) and Swiss National Accident Insurance Association (Suva)) started in 1999 to examine the justification of thoriated tungsten electrodes and a possible substitution with products containing no radioactive material. Up to this time, the use of thoriated tungsten electrodes could be justified since no thorium-free products leading to comparable results were available on the market. This was also the reason why the SFOPH approved several types of these electrodes. Discussions with formation centers for welding and inquiries made at welding shops, trading companies and producers showed that in the mean-time thorium-free products with comparable welding specifications and results became available on the market. Since the 1 January 2004, thoriated tungsten electrodes can only be used if the user has obtained the corresponding license from the SFOPH. The use of thoriated tungsten electrodes is thus not completely forbidden, but very strict conditions have to be fulfilled. Up to now and due to the involvement of the relevant partners, the substitution process has not met any problem. Neither trading companies nor users made any opposition and no request for obtaining a license for thoriated tungsten electrodes was made. (orig.)

  7. The influence of crystal defects on the elastic properties of tungsten metals

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hongyan [School of Physical Science Technology, Southwest Jiaotong University, Chengdu 610031 (China); Huang, Zheng, E-mail: zhhuang@home.swjtu.edu.cn [School of Physical Science Technology, Southwest Jiaotong University, Chengdu 610031 (China); Wen, Shulong [Laboratory of Advanced Technology of Materials (Ministry of Education),Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); Chen, Ji ming; Liu, Xiang [Fusion Science of Southwestern Institute of Physics, Chengdu, Sichuan 610041 (China); Pan, Min, E-mail: mpan@home.swjtu.edu.cn [Laboratory of Advanced Technology of Materials (Ministry of Education),Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); Western Superconducting Technologies Co., Ltd., Xi’an, Shanxi 710018 (China); Zhao, Yong [Laboratory of Advanced Technology of Materials (Ministry of Education),Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-11-01

    Highlights: • The energy of FCC structure generated during the plastic deformation was higher than that of the BCC structure, thus the system energy was consumed. • The energy of HCP lattice was higher than that of FCC lattices. The two kinds of lattices form the twin belt with a long range periodic order, and so the system stress changed periodically with the strain. • The growth of the disordered structure not only destroyed the long range periodic structure of the twin belt, but also produced a cavity, which absorbed a large amount of energy and finally made the system fractured. • The effect of temperature on the fracture was equivalent to the effect of the vacancy, and the correlation between temperature and vacancy was quadratic. - Abstract: The four stretching process stages of the elastic, plastic, stalemate, and fracture were represented for the metal tungsten by using molecular dynamics method. The young's modulus, yield strain and yield stress were calculated. The microscopic mechanics of the stretching process is analyzed. The energy of FCC and HCP generated was higher than that of BCC, so that the energy of the system increased, and the stress level was lower in the plastic deformation stage. In the late stage of plastic deformation, the growth of the twin belt was of long range ordered periodic structure, which made the system stress change periodically. In the Stalemate Stage of deformation, the other disordered structure, setting in the HCP structure of the twin belt, growed to absorb energy and generate cavity under stress and makes the lattice fracture. The yield stress of metal tungsten decreases monotonically with temperature and vacancy. The effects of temperature and vacancy on the lattice fracture were discussed.

  8. Strength and structure during hot deformation of nickel-base superalloys

    International Nuclear Information System (INIS)

    Ribeiro, N.D.; Sellars, C.M.

    1984-01-01

    The effect of deformational variables on the flow stress and microstructure developed by plane strain compression testing and experimental rolling of three otherwise well characterized nickel-base super alloys, Nimonic 80A, Nimonic 90 and Waspaloy are presented. Rolled or tested samples were sectioned longitudinally at mid-width and were prepared for optical metallography. X-ray analysis of particles observed in several samples was carried out on polished and lightly etehed surfaces using a diffractometer with CoKα radiation. For other samples, energy dispersive x-ray analysis was also carried out in a scanning microscope. (E.G.) [pt

  9. Potentiometric determination of the tungsten content of tantalum-tungsten alloys with chromium II

    International Nuclear Information System (INIS)

    Gavra, Z.; Ronen, S.; Levin, R.

    1977-05-01

    A method was developed for the potentiometric determination of the tungsten content of tantalum-tungsten alloys of different compositions. These were dissolved under conditions that enabled the tungsten content to be determined with chromium (II). Phosphoric acid was selected as a suitable complexing agent for the prevention of the precipitation of tungsten and tantalum compounds. The use of chromium (II) required an oxygen-tight system and therefore the work was carried out in suitable vessels for storage and tritation

  10. High temperature diffusion of hafnium in tungsten and a tungsten-hafnium carbide alloy

    International Nuclear Information System (INIS)

    Ozaki, Y.; Zee, R.H.

    1994-01-01

    Refractory metals and ceramics are used extensively in energy systems due to their high temperature properties. This is particularly important in direct conversion systems where thermal to electric conversion efficiency is a direct function of temperature. Tungsten, which has the highest melting temperature among elemental metals, does not possess sufficient creep resistance at temperature above 1,600 K. Different dispersion strengthened tungsten alloys have been developed to extend the usefulness of tungsten to higher temperatures. One of these alloys, tungsten with 0.4 mole percent of finely dispersed HfC particles (W-HfC), has the optimum properties for high temperature applications. Hafnium carbide is used as the strengthening agent due to its high chemical stability and its compatibility with tungsten. The presence of HfC particles retards the rate of grain growth as well as restricting dislocation motion. Both of which are beneficial for creep resistance. The long term behavior of this alloy depends largely on the evolution of its microstructure which is governed by the diffusion of its constituents. Data on the diffusion of carbon in tungsten and tungsten self-diffusion are available, but no direct measurements have been made on the diffusion of hafnium in tungsten. The only diffusion data available are estimated from a coarsening study and these data are highly unreliable. In this study, the diffusion behavior of hafnium in pure tungsten and in a W-HfC alloy was directly measured by means of Secondary Ion Mass Spectroscopy (SIMS). The selection of the W-HfC alloy is due to its importance in high temperature engineering applications, and its higher recrystallization temperature. The presence of HfC particles in tungsten restricts grain growth resulting in better high temperature creep resistance. The higher recrystallization temperature allows measurements to be made over a wider range of temperatures at a relatively constant grain size

  11. Plasma etching of patterned tungsten

    International Nuclear Information System (INIS)

    Franssila, S.

    1993-01-01

    Plasma etching of tungsten is discussed from the viewpoint of thin film structure and integrated circuit process engineering. The emphasis is on patterned tungsten etching for silicon device and X-ray mask fabrication. After introducing tungsten etch chemistries and mechanisms, microstructural aspects of tungsten films (crystal structure, grain size, film density, defects, impurities) in relation to etching are discussed. Approaches to etch process optimization are presented, and the current state-of-the-art of patterned tungsten etching is reviewed. (orig.)

  12. Tungsten alloy research at the US Army Materials Technology Laboratory

    International Nuclear Information System (INIS)

    Dowding, R.J.

    1991-01-01

    This paper reports that recent research into tungsten heavy alloys at the U. S. Army Materials Technology Laboratory (MTL) has explored many areas of processing and process development. The recrystallization and respheroidization of tungsten grains in a heavily cold worked heavy alloy has been examined and resulted in the identification of a method of grain refinement. Another area of investigation has been lightly cold worked. It was determined that it was possible to increase the strength and hardness of the tungsten grains by proper hat treatment. MTL has been involved in the Army's small business innovative research (SBIR) program and several programs have been funded. Included among these are a method of coating the tungsten powders with the alloying elements and the development of techniques of powder injection molding of heavy alloys

  13. Heat transfer in rod bundles with severe clad deformations

    International Nuclear Information System (INIS)

    Ihle, P.

    1984-04-01

    The content of the paper is focused on heat transfer conditions during the reflood phase of a LOCA in slightly to severely deformed PWR fuel rod bundle geometries. The status of analytical and, especially, of experimental work is described as far as it is possible within this frame. Emphasis is placed on the presentation of the results of ''Flooding Experiments with Blocked Arrays'' (FEBA), a program performed at the Kernforschungszentrum Karlsruhe in the frame of the Project Nuclear Safety (PNS). (orig./WL) [de

  14. The effects of tantalum addition on the microtexture and mechanical behaviour of tungsten for ITER applications

    International Nuclear Information System (INIS)

    Tejado, E.; Carvalho, P.A.; Munoz, A.; Dias, M.; Correia, J.B.

    2015-01-01

    Tungsten (W) and its alloys are very promising materials for producing plasma-facing components (PFCs) in the fusion power reactors of the near future, even as a structural part in them. However, whereas the properties of pure tungsten are suitable for a PFC, its structural applications are still limited due to its low toughness, ductile to brittle transition temperature and recrystallization behaviour. Therefore, many efforts have been made to improve its performance by alloying tungsten with other elements. Hence, in this investigation, the thermo-mechanical performance of two new tungsten-tantalum materials has been evaluated. Materials with W–5wt.%Ta and W–15wt.%Ta were processed by mechanical alloying (MA) and later consolidation by hot isostatic pressing (HIP), with distinct settings for each composition. Thus, it was possible to determine the relationship between the microstructure and the addition of Ta with the macroscopic mechanical properties. These were measured by means of hardness, flexural strength and fracture toughness, in the temperature range of 300–1473 K. The microstructure and the fracture surfaces features of the tested materials were analysed by Field Emission Scanning Electron Microscopy (FESEM).

  15. The effects of tantalum addition on the microtexture and mechanical behaviour of tungsten for ITER applications

    Energy Technology Data Exchange (ETDEWEB)

    Tejado, E., E-mail: elena.tejado@mater.upm.es [Departamento de Ciencia de Materiales-CIME, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid (Spain); Centro Nacional de Investigaciones Metalúrgicas (CSIC), Madrid (Spain); Carvalho, P.A. [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); ICEMS, Departamento de Bioengenharia, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Munoz, A. [Departamento de Física, Universidad Carlos III, Leganés (Spain); Dias, M. [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Correia, J.B. [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 1649-038 Lisboa (Portugal); and others

    2015-12-15

    Tungsten (W) and its alloys are very promising materials for producing plasma-facing components (PFCs) in the fusion power reactors of the near future, even as a structural part in them. However, whereas the properties of pure tungsten are suitable for a PFC, its structural applications are still limited due to its low toughness, ductile to brittle transition temperature and recrystallization behaviour. Therefore, many efforts have been made to improve its performance by alloying tungsten with other elements. Hence, in this investigation, the thermo-mechanical performance of two new tungsten-tantalum materials has been evaluated. Materials with W–5wt.%Ta and W–15wt.%Ta were processed by mechanical alloying (MA) and later consolidation by hot isostatic pressing (HIP), with distinct settings for each composition. Thus, it was possible to determine the relationship between the microstructure and the addition of Ta with the macroscopic mechanical properties. These were measured by means of hardness, flexural strength and fracture toughness, in the temperature range of 300–1473 K. The microstructure and the fracture surfaces features of the tested materials were analysed by Field Emission Scanning Electron Microscopy (FESEM).

  16. Deformation texture and microtexture development in zircaloy-2

    International Nuclear Information System (INIS)

    Vanitha, C.; Kiran Kumar, M.; Samajdar, I.; Vishvanathan, N.N.; Dey, G.K.; Tewari, R.; Srivastava, D.; Banerjee, S.

    2002-01-01

    In the present study, two starting materials used were as-cast Zircaloy-2 with random texture and the finished tube with relatively stronger starting texture. Specimens of the alloys were hot rolled to various strains at different temperature. The texture measurement was carried out and was represented in the form of Orientation Distribution Function which showed a sluggish texture development on high temperature deformation. In the case of as cast alloy with increase in strain at a constant deformation temperature, development in the texture was significant. Upon increasing the working temperature, rate of the overall texture development has been found to reduce. This could be due to reduced slip-twin activities, recovery or due to recrystallization. Microstructural and relative hardening studies were carried out for understanding the mechanisms of deformation texture developments at warm and hot working stages. In the case of finished tube having initially strong texture exhibited slower development in texture on warm and hot rolling. (author)

  17. Influence of grain boundaries on the fracture toughness of tungsten alloys

    International Nuclear Information System (INIS)

    Gludovatz, B.; Faleschini, M.; Pippan, R.; Hoffmann, A.

    2007-01-01

    Full text of publication follows: Tungsten and tungsten alloys are possible candidates for future fusion reactors because of their high melting points, high thermal conductivity and their high erosion resistance. Since these materials have a body-centered cubic (bcc) structure, they show a typical change in fracture behaviour from brittle at low temperatures to ductile at high temperatures. For that reason the fracture behaviour of pure tungsten (W), potassium doped tungsten (AKS) and tungsten with 1 wt% La 2 O 3 (WL10) was studied, taking into account the influence of temperature and fabrication condition. Especially AKS has been studied to investigate the longitudinal splitting of the AKS-wires, the crack propagation direction with the lowest fracture toughness. This alloy subjected to intense deformation leads to a material with an elongated grain structure after recrystallization because of the potassium bubbles. Fracture toughness has been investigated by means of 3-point bending (3PB) specimens, double cantilever beam (DCB) specimens and compact tension (CT) specimens. Tests were performed in the range -196 deg. C to more than 1000 deg. C. Though all these materials show an expected increase in fracture toughness with increasing temperature, influences like texture, chemical composition, grain boundary segregation and dislocation density seem to have an extreme influence on the obtained results. These influences can especially be seen in the fracture behaviour and morphology, where two kinds of fracture can occur: on one hand the trans-crystalline and on the other hand the intercrystalline fracture. Therefore techniques like electron backscatter diffraction, auger electron spectroscopy and X-ray line profile analysis were used to determine the parameter influencing fracture toughness. Also new testing techniques have been devised and successfully applied. Additional tests like an 'in-situ EBSD' technique for investigating the formation of dislocations during

  18. Constitutive law for thermally-activated plasticity of recrystallized tungsten

    Science.gov (United States)

    Zinovev, Aleksandr; Terentyev, Dmitry; Dubinko, Andrii; Delannay, Laurent

    2017-12-01

    A physically-based constitutive law relevant for ITER-specification tungsten grade in as-recrystallized state is proposed. The material demonstrates stages III and IV of the plastic deformation, in which hardening rate does not drop to zero with the increase of applied stress. Despite the classical Kocks-Mecking model, valid at stage III, the strain hardening asymptotically decreases resembling a hyperbolic function. The material parameters are fitted by relying on tensile test data and by requiring that the strain and stress at the onset of diffuse necking (uniform elongation and ultimate tensile strength correspondingly) as well as the yield stress be reproduced. The model is then validated in the temperature range 300-600 °C with the help of finite element analysis of tensile tests which confirms the reproducibility of the experimental engineering curves up to the onset of diffuse necking, beyond which the development of ductile damage accelerates the material failure. This temperature range represents the low temperature application window for tungsten as divertor material in fusion reactor ITER.

  19. Development of quantitative atomic modeling for tungsten transport study using LHD plasma with tungsten pellet injection

    Science.gov (United States)

    Murakami, I.; Sakaue, H. A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.

    2015-09-01

    Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from plasmas of the large helical device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) emission of W24+ to W33+ ions at 1.5-3.5 nm are sensitive to electron temperature and useful to examine the tungsten behavior in edge plasmas. We can reproduce measured EUV spectra at 1.5-3.5 nm by calculated spectra with the tungsten atomic model and obtain charge state distributions of tungsten ions in LHD plasmas at different temperatures around 1 keV. Our model is applied to calculate the unresolved transition array (UTA) seen at 4.5-7 nm tungsten spectra. We analyze the effect of configuration interaction on population kinetics related to the UTA structure in detail and find the importance of two-electron-one-photon transitions between 4p54dn+1- 4p64dn-14f. Radiation power rate of tungsten due to line emissions is also estimated with the model and is consistent with other models within factor 2.

  20. Falling hammer use evaluation for hot deformation hardness testing; Avaliacao do uso de um martelo de queda, para a determinacao da resistencia a deformacao a quente

    Energy Technology Data Exchange (ETDEWEB)

    Beck, J.C.P.C.; Cauduro, Carlos R.; Schaeffer, Lirio [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil)

    1990-12-31

    This work performs a evaluation of the characteristics hot leaking of a 8620 stainless steel, deformed at 870 deg C. The tools associated with the measurements was described and a comparison between the theoretical values and the values experimentally obtained from the performed tests. 5 figs., 3 refs.

  1. Hot spot formation on different tokamak wall materials

    International Nuclear Information System (INIS)

    Nedospasov, A.V.; Bezlyudny, I.V.

    1998-01-01

    The thermal contraction phenomenon and generation of 'hot spots' due to thermoemission were described. The paper consider non-linear stages of heat contraction on the graphite, beryllium, tungsten and vanadium wall. It is shown that on the beryllium surface hot spot can't appear due to strong cooling by sublimation. For other materials the conditions of hot spot appearance due to local superheating of the wall have been calculated and their parameters were found: critical surface temperature, size of spots and their temperature profiles, heat fluxes from plasma to the spots. It have been calculated fluxes of sublimating materials from spots to the plasma. It is noticed that nominal temperature of the grafite divertor plate, accepted in ITER's project to being equal 1500 C, is lower then critical temperature of the development heat contraction due to thermoemission. (orig.)

  2. Hot Deformation Behavior and Processing Map of Mg-3Sn-2Ca-0.4Al-0.4Zn Alloy

    Directory of Open Access Journals (Sweden)

    Chalasani Dharmendra

    2018-03-01

    Full Text Available Among newly developed TX (Mg-Sn-Ca alloys, TX32 alloy strikes a good balance between ductility, corrosion, and creep properties. This study reports the influence of aluminum and zinc additions (0.4 wt % each to TX32 alloy on its strength and deformation behavior. Uniaxial compression tests were performed under various strain rates and temperature conditions in the ranges of 0.0003–10 s−1 and 300–500 °C, respectively. A processing map was developed for TXAZ3200 alloy, and it exhibits three domains that enable good hot workability in the ranges (1 300–340 °C/0.0003–0.001 s−1; (2 400–480 °C/0.01–1 s−1; and (3 350–500 °C/0.0003–0.01 s−1. The occurrence of dynamic recrystallization in these domains was confirmed from the microstructural observations. The estimated apparent activation energy in Domains 2 and 3 (219 and 245 kJ/mole is higher than the value of self-diffusion in magnesium. This is due to the formation of intermetallic phases in the matrix that generates back stress. The strength of TXAZ3200 alloy improved up to 150 °C as compared to TX32 alloy, suggesting solid solution strengthening due to Al and Zn. Also, the hot deformation behavior of TXAZ3200 alloy was compared in the form of processing maps with TX32, TX32-0.4Al, TX32-0.4Zn, and TX32-1Al-1Zn alloys.

  3. Tensile properties of irradiated TZM and tungsten

    International Nuclear Information System (INIS)

    Steichen, J.M.

    1975-04-01

    The effect of neutron irradiation on the elevated temperature tensile properties of TZM and tungsten has been experimentally determined. Specimens were irradiated at a temperature of approximately 720 0 F to fluences of 0.4 and 0.9 x 10 22 n/cm 2 (E greater than 0.1 MeV). Test parameters for both control and irradiated specimens included strain rates from 3 x 10 -4 to 1 s -1 and temperatures from 72 to 1700 0 F. The results of these tests were correlated with a rate-temperature parameter (T ln A/epsilon) to provide a concise description of material behavior over the range of deformation conditions of this study. The yield strength of the subject materials was significantly increased by decreasing temperature, increasing strain rate, and increasing fluence. Ductility was significantly reduced at any temperature or strain rate by increasing fluence. Cleavage fractures occurred in both unirradiated and irradiated specimens when the yield strength was elevated to the effective cleavage stress by temperature and/or strain rate. Neutron irradiation for the conditions of this study increased the ductile-to-brittle transition temperature of tungsten by approximately 300 0 F and TZM by approximately 420 0 F. (U.S.)

  4. Development of quantitative atomic modeling for tungsten transport study Using LHD plasma with tungsten pellet injection

    International Nuclear Information System (INIS)

    Murakami, I.; Sakaue, H.A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.

    2014-10-01

    Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from currentless plasmas of the Large Helical Device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) lines of W 24+ to W 33+ ions are very sensitive to electron temperature (Te) and useful to examine the tungsten behavior in edge plasmas. Based on the first quantitative analysis of measured spatial profile of W 44+ ion, the tungsten concentration is determined to be n(W 44+ )/n e = 1.4x10 -4 and the total radiation loss is estimated as ∼4 MW, of which the value is roughly half the total NBI power. (author)

  5. Yield strength of molybdenum, tantalum and tungsten at high strain rates and very high temperatures

    International Nuclear Information System (INIS)

    Škoro, G.P.; Bennett, J.R.J.; Edgecock, T.R.; Booth, C.N.

    2012-01-01

    Highlights: ► New experimental data on the yield strength of molybdenum, tantalum and tungsten. ► High strain rate effects at record high temperatures (up to 2700 K). ► Test of the consistency of the Zerilli–Armstrong model at very high temperatures. - Abstract: Recently reported results of the high strain rate, high temperature measurements of the yield strength of tantalum and tungsten have been analyzed along with new experimental results on the yield strength of molybdenum. Thin wires are subjected to high stress by passing a short, fast, high current pulse through a thin wire; the amplitude of the current governs the stress and the repetition rate of the pulses determines the temperature of the wire. The highest temperatures reached in the experiments were 2100 °C (for molybdenum), 2250 °C (for tantalum) and 2450 °C (for tungsten). The strain-rates in the tests were in the range from 500 to 1500 s −1 . The parameters for the constitutive equation developed by Zerilli and Armstrong have been determined from the experimental data and the results have been compared with the data obtained at lower temperatures. An exceptionally good fit is obtained for the deformation of tungsten.

  6. Hot Ductility Behavior of an 8 Pct Cr Roller Steel

    Science.gov (United States)

    Wang, Zhenhua; Sun, Shuhua; Shi, Zhongping; Wang, Bo; Fu, Wantang

    2015-04-01

    The hot ductility of an 8 pct Cr roller steel was determined between 1173 K and 1473 K (900 °C and 1200 °C) at strain rates of 0.01 to 10 s-1 through tensile testing. The fracture morphology was observed using scanning electron microscopy, and the microstructure was examined through optical microscopy and transmission electron microscopy. The dependence of the hot ductility behavior on the deformation conditions, grain size, and precipitation was analyzed. The relationship between the reduction in area and the natural logarithm of the Zener-Hollomon parameter (ln Z) was found to be a second-order polynomial. When ln Z was greater than 40 s-1, the hot ductility was poor and fracture was mainly caused by incompatible deformation between the grains. When ln Z was between 32 and 40 s-1, the hot ductility was excellent and the main fracture mechanism was void linking. When ln Z was below 32 s-1, the hot ductility was poor and fracture was mainly caused by grain boundary sliding. A fine grain structure is beneficial for homogenous deformation and dynamic recrystallization, which induces better hot ductility. The effect of M7C3 carbide particles dispersed in the matrix on the hot ductility was small. The grain growth kinetics in the 8 pct Cr steel were obtained between 1373 K and 1473 K (1100 °C and 1200 °C). Finally, optimized preheating and forging procedures for 8 pct Cr steel rollers are provided.

  7. Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  8. Information extraction from FN plots of tungsten microemitters

    Energy Technology Data Exchange (ETDEWEB)

    Mussa, Khalil O. [Department of Physics, Mu' tah University, Al-Karak (Jordan); Mousa, Marwan S., E-mail: mmousa@mutah.edu.jo [Department of Physics, Mu' tah University, Al-Karak (Jordan); Fischer, Andreas, E-mail: andreas.fischer@physik.tu-chemnitz.de [Institut für Physik, Technische Universität Chemnitz, Chemnitz (Germany)

    2013-09-15

    Tungsten based microemitter tips have been prepared both clean and coated with dielectric materials. For clean tungsten tips, apex radii have been varied ranging from 25 to 500 nm. These tips were manufactured by electrochemical etching a 0.1 mm diameter high purity (99.95%) tungsten wire at the meniscus of two molar NaOH solution. Composite micro-emitters considered here are consisting of a tungsten core coated with different dielectric materials—such as magnesium oxide (MgO), sodium hydroxide (NaOH), tetracyanoethylene (TCNE), and zinc oxide (ZnO). It is worthwhile noting here, that the rather unconventional NaOH coating has shown several interesting properties. Various properties of these emitters were measured including current–voltage (IV) characteristics and the physical shape of the tips. A conventional field emission microscope (FEM) with a tip (cathode)–screen (anode) separation standardized at 10 mm was used to electrically characterize the electron emitters. The system was evacuated down to a base pressure of ∼10{sup −8}mbar when baked at up to ∼180°C overnight. This allowed measurements of typical field electron emission (FE) characteristics, namely the IV characteristics and the emission images on a conductive phosphorus screen (the anode). Mechanical characterization has been performed through a FEI scanning electron microscope (SEM). Within this work, the mentioned experimental results are connected to the theory for analyzing Fowler–Nordheim (FN) plots. We compared and evaluated the data extracted from clean tungsten tips of different radii and determined deviations between the results of different extraction methods applied. In particular, we derived the apex radii of several clean and coated tungsten tips by both SEM imaging and analyzing FN plots. The aim of this analysis is to support the ongoing discussion on recently developed improvements of the theory for analyzing FN plots related to metal field electron emitters, which in

  9. Information extraction from FN plots of tungsten microemitters

    International Nuclear Information System (INIS)

    Mussa, Khalil O.; Mousa, Marwan S.; Fischer, Andreas

    2013-01-01

    Tungsten based microemitter tips have been prepared both clean and coated with dielectric materials. For clean tungsten tips, apex radii have been varied ranging from 25 to 500 nm. These tips were manufactured by electrochemical etching a 0.1 mm diameter high purity (99.95%) tungsten wire at the meniscus of two molar NaOH solution. Composite micro-emitters considered here are consisting of a tungsten core coated with different dielectric materials—such as magnesium oxide (MgO), sodium hydroxide (NaOH), tetracyanoethylene (TCNE), and zinc oxide (ZnO). It is worthwhile noting here, that the rather unconventional NaOH coating has shown several interesting properties. Various properties of these emitters were measured including current–voltage (IV) characteristics and the physical shape of the tips. A conventional field emission microscope (FEM) with a tip (cathode)–screen (anode) separation standardized at 10 mm was used to electrically characterize the electron emitters. The system was evacuated down to a base pressure of ∼10 −8 mbar when baked at up to ∼180°C overnight. This allowed measurements of typical field electron emission (FE) characteristics, namely the IV characteristics and the emission images on a conductive phosphorus screen (the anode). Mechanical characterization has been performed through a FEI scanning electron microscope (SEM). Within this work, the mentioned experimental results are connected to the theory for analyzing Fowler–Nordheim (FN) plots. We compared and evaluated the data extracted from clean tungsten tips of different radii and determined deviations between the results of different extraction methods applied. In particular, we derived the apex radii of several clean and coated tungsten tips by both SEM imaging and analyzing FN plots. The aim of this analysis is to support the ongoing discussion on recently developed improvements of the theory for analyzing FN plots related to metal field electron emitters, which in

  10. The effects of composition and thermal path on hot ductility of forging steels

    Science.gov (United States)

    Connolly, Brendan M.

    This work examines the effects of composition and thermal path on the hot ductility of several forging steels with varied aluminum and nitrogen content. The primary mechanisms and controlling factors related to hot ductility are identified with a focus on the role of precipitates and segregation. The unique thermal paths and solidification structures of large cross-section forging ingots are discussed. Hot ductility testing is performed in a manner that approximates industrial conditions experienced by large cross-section forging ingots. A computer model for precipitation of aluminum nitride and vanadium nitride in austenite is presented. Industrial material is examined for comparison to experimental findings. It is found that increased aluminum and nitrogen content coarsens the as-solidified structure. The combined effects of microsegregation and uphill diffusion during deformation allow for carbide precipitation at prior austenite grain boundaries which reduces the hot ductility.

  11. Study of the microstructure evolution of ferritic stainless ODS steels during hot working

    International Nuclear Information System (INIS)

    Karch, Abdellatif

    2014-01-01

    The production of ODS steels involves a powder consolidation step usually using the hot extrusion (HE) process. The anisotropic properties of extruded materials, especially in the ODS ferritic grades (≥wt%12Cr), need a better understanding of the metallurgical phenomena which may occur during HE and lead to the observed microstructure. The hot working behavior of these materials is of particular interest. The methodology of this work includes the microstructure analysis after interrupted hot extrusion, hot torsion and hot compression (1000-1200 C) tests of ferritic steels with 14%Cr and different amounts in Ti and Y 2 O 3 . The microstructure evolution during hot extrusion process is associated with continuous dynamic recrystallization (CDRX). It leads to the creation of new grains by the formation of low angle boundaries, and then the increase of their misorientation under plastic deformation. The investigations highlight also the role of precipitation on the kinetics of this mechanism; it remains incomplete in the presence of fine and dense nano-precipitates. After hot deformation in torsion and compression, it is noticed that both precipitates and temperature deformation have a significant impact on the deformation mechanisms and microstructure evolution. Indeed, the CDRX is dominant when temperature and amount of reinforcement are limited. However, when they are increased, limited microstructure evolution is observed. In this case, the results are interpreted through a mechanism of strain accommodation at grain boundaries, with low dislocation activity in the bulk of the grains. (author) [fr

  12. Simulation of cracks in tungsten under ITER specific heat loads

    International Nuclear Information System (INIS)

    Peschany, S.

    2006-01-01

    The problem of high tritium retention in co-deposited carbon layers on the walls of ITER vacuum chamber motivates investigation of materials for the divertor armour others than carbon fibre composite (CFC). Tungsten is most probable material for CFC replacement as the divertor armour because of high vaporisation temperature and heat conductivity. In the modern ITER design tungsten is a reference material for the divertor cover, except for the separatrix strike point armoured with CFC. As divertor armour, tungsten should withstand severe heat loads at off-normal ITER events like disruptions, ELMs and vertical displacement events. Experiments on tungsten heating with plasma streams and e-beams have shown an intense crack formation at the surface of irradiated sample [ V.I. Tereshin, A.N. Bandura, O.V. Byrka et al. Repetitive plasma loads typical for ITER type-I ELMs: Simulation at QSPA Kh-50.PLASMA 2005. ed. By Sadowski M.J., AIP Conference Proceedings, American Institute of Physics, 2006, V 812, p. 128-135., J. Linke. Private communications.]. The reason for tungsten cracking under severe heat loads is thermo stress. It appears as due to temperature gradient in solid tungsten as in resolidified layer after cooling down. Both thermo stresses are of the same value, but the gradiental stress is compressive and the stress in the resolidified layer is tensile. The last one is most dangerous for crack formation and it was investigated in this work. The thermo stress in tungsten that develops during cooling from the melting temperature down to room temperature is ∼ 8-16 GPa. Tensile strength of tungsten is much lower, < 1 GPa at room temperature, and at high temperatures it drops at least for one order of magnitude. As a consequence, various cracks of different characteristic scales appear at the heated surface of the resolidified layer. For simulation of the cracks in tungsten the numeric code PEGASUS-3D [Pestchanyi and I. Landman. Improvement of the CFC structure to

  13. Textbook tests with tungsten

    CERN Multimedia

    Barbara Warmbein

    2010-01-01

    CERN's linear collider detector group joins forces with CALICE in building the world's first tungsten hadronic calorimeter.   Hadronic calorimeter prototype made of tungsten for the linear collider detector being equipped with CALICE scintillators. In a hall for test beam experiments at CERN, next to the CLOUD climate experiment and an irradiation facility, sits a detector prototype that is in many ways a first. It's the first ever hadronic sandwich calorimeter (HCal) prototype made of tungsten. It's the first prototype for a detector for the Compact Linear Collider Study CLIC, developed by the linear collider detector R&D group (LCD group) at CERN. And it's the first piece of hardware that results directly from the cooperation between CLIC and ILC detector study groups. Now its makers are keen to see first particle showers in their detector. The tungsten calorimeter has just moved from a workshop at CERN, where it was assembled from finely polished tungsten squares and triangles, into the ...

  14. Thermal stability of warm-rolled tungsten

    DEFF Research Database (Denmark)

    Alfonso Lopez, Angel

    to assess the effect of the processing parameters. Characterization of theannealed state reveals the effect of the degree of deformation on the recovery and recrystallizationannealing phenomena. This allowed comparing recrystallization kinetics (in terms of nucleation andgrowth) in dependence on initial......Pure tungsten is considered as armor material for the most critical parts of fusion reactors (thedivertor and the blanket first wall), mainly due to its high melting point (3422 °C). This is becauseboth the divertor and the first wall have to withstand high temperatures during service which...... mayalter the microstructure of the material by recovery, recrystallization and grain growth, and maycause degradation in material properties as a loss in mechanical strength and embrittlement.For this reason, this project aims towards establishing the temperature and time regime under whichrecovery...

  15. Stress-relaxation tests in the work-hardening regime of tungsten single crystals below 300 K

    International Nuclear Information System (INIS)

    Brunner, D.

    2008-01-01

    The influence of work hardening on the results of stress-relaxation tests was studied for highly pure tungsten single crystals isothermally deformed at four temperatures of 274, 241, 131, and 78 K. A method accounting for strong work hardening on the determination of the strain-rate sensitivity from stress-relaxation tests is introduced by establishing special diagrams of SR tests denoted as YX diagrams

  16. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    Science.gov (United States)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance; HAPL Team

    2005-12-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  17. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    International Nuclear Information System (INIS)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance

    2005-01-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  18. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    Directory of Open Access Journals (Sweden)

    Liu Wang

    2015-11-01

    Full Text Available Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W-polytetrafluoroethylene (PTFE-aluminum (Al with density of 4.12 g/cm3, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt% can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s−1 coupled with the absorbed energy per unit volume of 120 J/cm3, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  19. Hot ductility of a microalloyed steel in the intermediate temperature range

    International Nuclear Information System (INIS)

    Darsouni, A.; Bouzabata, B.; Montheillet, F.

    1995-01-01

    In this study hot ductility has been determined from tensile tests for two states of a microalloyed steel: after casting and after rolling processes. Hot deformations were carried out at speeds varying from 10 -4 s -1 to 10 -2 s -1 and temperatures from 750 C to 1100 C. Two heat treatments were chosen before hot deformation. A ferrite precipitation is observed at austenitic grain boundaries in the intercritical temperature range, causing intergranular embrittlement. Ductility trough is deeper in the as-cast samples due to the growth of large grain size. Also, precipitation makes the hot ductility curve wider and deeper around 900 C. The results show a decrease in hot ductility. Minimum values of hot ductility are determined for (ITC) treatment at 900 C and for (DTC) treatment at 800 C. For this second treatment another decrease in hot ductility was observed at 900 C. We can explain hot ductility losses by the presence of precipitates in the austenitic region and the presence of the two-phase structure in the intercritical region. (orig.)

  20. Process for recovering tungsten from alkaline leaching solution of tungsten ores

    International Nuclear Information System (INIS)

    Onozaki, S.; Nemoto, S.; Hazeyama, T.

    1976-01-01

    This invention relates to a process for recovering tungsten from an alkaline leaching solution of tungsten ores. This invention comprises adjusting the pH of an alkaline leaching solution which is obtained by lixiviating ore containing tungsten with an alkaline solution to 7--8 with acid to oxidize molybdic acid ions in the solution, adding a sulfide donor, then precipitating molybdenum sulfide compounds by adjusting the pH value of the solution to 2--3. Tungstic acid ions are recovered as calcium tungstate by the addition of a calcium ion donor after the molybdenum sulfide compounds are separated

  1. The ideal tensile strength and deformation behavior of a tungsten single crystal

    International Nuclear Information System (INIS)

    Liu Yuelin; Zhou Hongbo; Zhang Ying; Jin Shuo; Lu Guanghong

    2009-01-01

    We employ first-principles total energy method based on the density functional theory with the generalized gradient approximation to investigate the ideal tensile strengths of a bcc tungsten (W) single crystal systemically. The ideal tensile strengths are shown to be 29.1, 49.2 and 37.6 GPa for bcc W in the [0 0 1], [1 1 0] and [1 1 1] directions, respectively. The [0 0 1] direction is shown to be the weakest direction due to the occurrence of structure transition at the lower strain and the [1 1 0] direction is strongest. The results can provide a useful reference for W as a PFM in the nuclear fusion Tokamak.

  2. Tungsten transport in the plasma edge at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Janzer, Michael Arthur

    2015-04-30

    The Plasma Facing Components (PFC) will play a crucial role in future deuterium-tritium magnetically confined fusion power plants, since they will be subject to high energy and particle loads, but at the same time have to ensure long lifetimes and a low tritium retention. These requirements will most probably necessitate the use of high-Z materials such as tungsten for the wall materials, since their erosion properties are very benign and, unlike carbon, capture only little tritium. The drawback with high-Z materials is, that they emit strong line radiation in the core plasma, which acts as a powerful energy loss mechanism. Thus, the concentration of these high-Z materials has to be controlled and kept at low levels in order to achieve a burning plasma. Understanding the transport processes in the plasma edge is essential for applying the proper impurity control mechanisms. This control can be exerted either by enhancing the outflux, e.g. by Edge Localized Modes (ELM), since they are known to expel impurities from the main plasma, or by reducing the influx, e.g. minimizing the tungsten erosion or increasing the shielding effect of the Scrape Off Layer (SOL). ASDEX Upgrade (AUG) has been successfully operating with a full tungsten wall for several years now and offers the possibility to investigate these edge transport processes for tungsten. This study focused on the disentanglement of the frequency of type-I ELMs and the main chamber gas injection rate, two parameters which are usually linked in H-mode discharges. Such a separation allowed for the first time the direct assessment of the impact of each parameter on the tungsten concentration. The control of the ELM frequency was performed by adjusting the shape of the plasma, i.e. the upper triangularity. The radial tungsten transport was investigated by implementing a modulated tungsten source. To create this modulated source, the linear dependence of the tungsten erosion rate at the Ion Cyclotron Resonance

  3. Deformation effects in the Si + C and Si + Si reactions

    Indian Academy of Sciences (India)

    The possible occurrence of highly deformed configurations is investigated in the. ¼ ... Fusion–fission; nuclear deformation; exclusive light charge particle measurements. .... In hot rotating nuclei formed in heavy-ion reactions, the energy level.

  4. Information extraction from FN plots of tungsten microemitters.

    Science.gov (United States)

    Mussa, Khalil O; Mousa, Marwan S; Fischer, Andreas

    2013-09-01

    Tungsten based microemitter tips have been prepared both clean and coated with dielectric materials. For clean tungsten tips, apex radii have been varied ranging from 25 to 500 nm. These tips were manufactured by electrochemical etching a 0.1 mm diameter high purity (99.95%) tungsten wire at the meniscus of two molar NaOH solution. Composite micro-emitters considered here are consisting of a tungsten core coated with different dielectric materials-such as magnesium oxide (MgO), sodium hydroxide (NaOH), tetracyanoethylene (TCNE), and zinc oxide (ZnO). It is worthwhile noting here, that the rather unconventional NaOH coating has shown several interesting properties. Various properties of these emitters were measured including current-voltage (IV) characteristics and the physical shape of the tips. A conventional field emission microscope (FEM) with a tip (cathode)-screen (anode) separation standardized at 10 mm was used to electrically characterize the electron emitters. The system was evacuated down to a base pressure of ∼10(-8) mbar when baked at up to ∼180 °C overnight. This allowed measurements of typical field electron emission (FE) characteristics, namely the IV characteristics and the emission images on a conductive phosphorus screen (the anode). Mechanical characterization has been performed through a FEI scanning electron microscope (SEM). Within this work, the mentioned experimental results are connected to the theory for analyzing Fowler-Nordheim (FN) plots. We compared and evaluated the data extracted from clean tungsten tips of different radii and determined deviations between the results of different extraction methods applied. In particular, we derived the apex radii of several clean and coated tungsten tips by both SEM imaging and analyzing FN plots. The aim of this analysis is to support the ongoing discussion on recently developed improvements of the theory for analyzing FN plots related to metal field electron emitters, which in particular

  5. Correlation of microstructure with dynamic deformation behavior and penetration performance of tungsten heavy alloys fabricated by mechanical alloying

    Science.gov (United States)

    Kim, Dong-Kuk; Lee, Sunghak; Ryu, Ho Jin; Hyunghong, Soon; Noh, Joon-Woong

    2000-10-01

    In this study, tungsten heavy alloy specimens were fabricated by mechanical alloying (MA), and their dynamic torsional properties and penetration performance were investigated. Dynamic torsional tests were conducted on the specimens fabricated with different sintering temperatures after MA, and then the test data were compared with those of a conventionally processed specimen. Refinement of tungsten particles was obtained after MA, but contiguity was seriously increased, thereby leading to low ductility and impact energy. Specimens in which both particle size and contiguity were simultaneously reduced by MA and two-step sintering and those having higher matrix fraction by partial MA were successfully fabricated. The dynamic test results indicated that the formation of adiabatic shear bands was expected because of the plastic localization at the central area of the gage section. Upon highspeed impact testing of these specimens, self-sharpening was promoted by the adiabatic shear band formation, but their penetration performance did not improve since much of kinetic energy of the penetrators was consumed for the microcrack formation due to interfacial debonding and cleavage fracture of tungsten particles. In order to improve penetration performance as well as to achieve selfsharpening by applying MA, conditions of MA and sintering process should be established so that alloy densification, particle refinement, and contiguity reduction can be simultaneously achieved.

  6. EBSD analysis of tungsten-filament carburization during the hot-wire CVD of multi-walled carbon nanotubes

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2014-02-01

    Full Text Available the carburization of tungsten filaments. During the synthesis, the W-filaments transform to W(sub2)C and WC.W-carbide growth followed a parabolic behavior corresponding to the diffusion of C as the rate-determining step. The grain size of W, W(sub2)C, and WC...

  7. A new classification for 'Pistol Grip Deformity'. Correlation between the severity of the deformity and the grade of osteoarthritis of the hip

    International Nuclear Information System (INIS)

    Ipach, Ingmar; Mittag, F.; Sachsenmaier, S.; Kluba, T.; Heinrich, P.

    2011-01-01

    Purpose: Two types of femoroacetabular impingement (FAI) are described as reasons for the early development of osteoarthritis of the hip. Cam impingement develops from contact between an abnormal head-neck junction and the acetabular rim. Pincer impingement is characterized by local or general overcoverage of the femoral head by the acetabular rim. Both forms might cause early osteoarthritis of the hip. A decreased head/neck offset has been recognized on AP pelvic views and labeled as 'pistol grip deformity'. The aim of the study was to develop a classification for this deformity with regard to the stage of osteoarthritis of the hip. Materials and Methods: 76 pelvic and axial views were analyzed for alpha angle and head ratio. 22 of them had a normal shape in the head-neck region and no osteoarthritis signs, 27 had a 'pistol grip deformity' and osteoarthritis I and 27 had a 'pistol grip deformity' and osteoarthritis II -IV . The CART method was used to develop a classification. Results: There was a statistically significant correlation between alpha angle and head ratio. A statistically significant difference in alpha angle and head ratio was seen between the three groups. Using the CART method, we developed a three-step classification system for the 'pistol grip deformity' with very high accuracy. This deformity was aggravated by increasing age. Conclusion: Using this model it is possible to differentiate between normal shapes of the head-neck junction and different severities of the pistol grip deformity. (orig.)

  8. Microstructural characterization of IF steel after severe plastic deformation via ARB and subsequent heat treatment

    International Nuclear Information System (INIS)

    Oliveira, F.C.; Abrantes, A.L.A.; Lins, J.F.C.

    2010-01-01

    This study aimed to evaluate the microstructural evolution of a titanium stabilized IF steel deformed to warm through the ARB process for 5 consecutive cycles and then annealing at 600 deg C for 1 h. The material was characterized with the aid of the techniques of scanning electron microscopy and electron backscatter diffraction (Electron Backscatter Diffraction - EBSD). An intense process of microstructural refinement was observed in the deformed material and the phenomenon of dynamic recovery was predominant. It can be concluded that the annealing of severely deformed material was not sufficient for a complete recrystallization of the microstructure. (author)

  9. Optimization of tungsten-steel joints for plasma facing components in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Heuer, Simon; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik, Juelich (Germany); Weber, Thomas; Linke, Jochen [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Werkstoffstruktur und -eigenschaften, Juelich (Germany); Matejicek, Jiri [Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic)

    2015-07-01

    Tungsten, joint to a martensitic-ferritic EUROFER97 structure, is a promising plasma facing material composite for fusion reactors. Due to the effect of mismatch in thermo-mechanical properties direct bonding is not feasible. Current research is therefore ongoing on interlayer systems. While the adhesion was already improved by the utilization of a discrete Cu, Ti or V interlayer, that is able to relax stresses by plastic deformation, joints still do not resist the expected load cycles in a fusion reactor. Therefore, alternatives for the interface are needed. This contribution presents research on functionally graded materials (FGM). The particular microstructure of a graded interlayer allows re-distributing macro stresses from a discrete interface to a greater volume while avoiding in particular Cu which tends to swell under neutron irradiation. A parameter study on the basis of finite element analysis will be presented as well as first results of several processing routes for FGM that shall be evaluated and benchmarked by mechanical as well as thermal testing.

  10. Hot wire radicals and reactions

    International Nuclear Information System (INIS)

    Zheng Wengang; Gallagher, Alan

    2006-01-01

    Threshold ionization mass spectroscopy is used to measure radical (and stable gas) densities at the substrate of a tungsten hot wire (HW) reactor. We report measurements of the silane reaction probability on the HW and the probability of Si and H release from the HW. We describe a model for the atomic H release, based on the H 2 dissociation model. We note major variations in silicon-release, with dependence on prior silane exposure. Measured radical densities versus silane pressure yield silicon-silane and H-silane reaction rate coefficients, and the dominant radical fluxes to the substrate

  11. Mechanical properties of molybdenum alloyed liquid phase-sintered tungsten-based composites

    International Nuclear Information System (INIS)

    Kemp, P.B.; German, R.M.

    1995-01-01

    Tungsten-based composites are fabricated from mixed elemental powders using liquid phase sintering, usually with a nickel-iron matrix. During sintering, the tungsten undergoes grain growth, leading to microstructure coarsening that lowers strength but increases ductility. Often the desire is to increase strength at the sacrifice of ductility, and historically, this has been performed by postsintering deformation. There has been considerable research on alloying to adjust the as-sintered mechanical properties to match those of swaged alloys. Prior reports cover many additions, seemingly including much of the periodic table. Unfortunately, many of the modified alloys proved disappointing, largely due to degraded strength at the tungsten-matrix interface. Of these modified alloys, the molybdenum-containing systems exhibit a promising combination of properties, cost, and processing ease. For example, the 82W-8Mo-7Ni-3Fe alloy gives a yield strength that is 34% higher than the equivalent 90W-7Ni-3Fe alloy (from 535 to 715 MPa) but with a 33% decrease in fracture elongation (from 30 to 20% elongation). This article reports on experiments geared to promoting improved properties in the W-Mo-Ni-Fe alloys. However, unlike the prior research which maintained a constant Ni + Fe content and varied the W:Mo ratio, this study considers the Mo:(Ni + Fe) ratio effect for 82, 90, and 93 wt pct W

  12. Thermal response of plasma sprayed tungsten coating to high heat flux

    International Nuclear Information System (INIS)

    Liu, X.; Yang, L.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Xu, Z.

    2004-01-01

    In order to investigate the thermal response of tungsten coating on carbon and copper substrates by vacuum plasma spray (VPS) or inert gas plasma spray (IPS), annealing and cyclic heat load experiments of these coatings were conducted. It is indicated that the multi-layered tungsten and rhenium interface of VPS-W/CFC failed to act as a diffusion barrier at elevated temperature and tungsten carbides were developed after 1 h incubation time when annealing temperature was higher than 1600 deg. C. IPS-W/Cu and W/C without an intermediate bonding layer were failed by the detachment of the tungsten coating at 900 and 1200 deg. C annealing for several hours, respectively. Cyclic heat load of electron beam with 35 MW/m 2 and 3-s pulse duration indicated that IPS-W/Cu samples failed with local detachment of the tungsten coating within 200 cycles and IPS-W/C showed local cracks by 300 cycles, but VPS-W/CFC withstood 1000 cycles without visible damages. However, crack creation and propagation in VPS-W/CFC were also observed under higher heat load

  13. Impact of the Superpave hot mix asphalt properties on its permanent deformation behavior

    Directory of Open Access Journals (Sweden)

    Qasim Zahra

    2018-01-01

    Full Text Available In Iraq, the severity of rutting has increased in asphalt pavements possibly due to the increase in truck axle loads, tyre pressure, and high pavement temperature in summer. As of late, Superpave has been accounted as an enhanced system for performance based design, analysis of asphalt pavement performance prediction for asphalt concrete mixes. In this research the development of permanent deformation in asphalt concrete under repeated loadings was investigated, Wheel-Tracking apparatus has been used in a factorial testing program during which 44 slab samples were tested to simulate actual pavement. The objectives of the present research include; investigating the main factors affecting rutting in asphalt concrete mixture, quantifying the effect of SBS polymer and steel reinforcement on asphalt concrete mixtures in addition to studying the effect of variables on the asphalt concrete mixes against moisture sensitivity. It has been determined that that increasing of compaction temperature from 110 to 150°C will decrease the permanent deformation by 20.5 and 15.6 percent for coarse and fine gradation control asphalt mixtures, respectively. While the permanent deformation decreases by 21.3 percent when the compaction temperature is increased from 110 to 150°C for coarse gradation SBS modified asphalt mixtures.

  14. Tungsten Filament Fire

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  15. Vaporization of tungsten-metal in steam at high temperatures

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.

    2000-01-01

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate

  16. Tungsten-Based Mesoporous Silicates W-MMM-E as Heterogeneous Catalysts for Liquid-Phase Oxidations with Aqueous H2O2

    Directory of Open Access Journals (Sweden)

    Nataliya Maksimchuk

    2018-02-01

    Full Text Available Mesoporous tungsten-silicates, W-MMM-E, have been prepared following evaporation-induced self-assembly methodology and characterized by elemental analysis, XRD, N2 adsorption, STEM-HAADF (high angle annular dark field in scanning-TEM mode, DRS UV-vis, and Raman techniques. DRS UV-vis showed the presence of two types of tungsten oxo-species in W-MMM-E samples: isolated tetrahedrally and oligomeric octahedrally coordinated ones, with the ratio depending on the content of tungsten in the catalyst. Materials with lower W loading have a higher contribution from isolated species, regardless of the preparation method. W-MMM-E catalyzes selectively oxidize of a range of alkenes and organic sulfides, including bulky terpene or thianthrene molecules, using green aqueous H2O2. The selectivity of corresponding epoxides reached 85–99% in up to 80% alkene conversions, while sulfoxides formed with 84–90% selectivity in almost complete sulfide conversions and a 90–100% H2O2 utilization efficiency. The true heterogeneity of catalysis over W-MMM-E was proved by hot filtration tests. Leaching of inactive W species depended on the reaction conditions and initial W loading in the catalyst. After optimization of the catalyst system, it did not exceed 20 ppm and 3 ppm for epoxidation and sulfoxidation reactions, respectively. Elaborated catalysts could be easily retrieved by filtration and reused several times with maintenance of the catalytic behavior.

  17. Preliminary result on quantitative analysis using Zn-like tungsten EUV spectrum in Large Helical Device

    International Nuclear Information System (INIS)

    Morita, Shigeru; Dong, Chunfeng; Wang, Erhui

    2013-01-01

    Tungsten study through visible, vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) spectroscopy has been recently started in Large Helical Device (LHD) for developing the diagnostic method in International Thermonuclear Experimental Reactor (ITER) and understanding the tungsten transport in helical system. In order to study the tungsten spectra from core plasmas of LHD, several tungsten spectra are observed in EUV range by injecting a carbon pellet with tungsten. Zn-like tungsten spectrum with 4p-4s transition is clearly identified at 60.9Å in high-temperature phase (T_e ≥ 2.3 keV) of NBI discharges in addition to several unresolved transition arrays with 6g-4f, 5g-4f, 5f-4d, 5g-4f, 4f-4d and 4d-4p transitions in range of 10-70Å. Radial profile of the Zn-like tungsten is also successfully observed with enough intensity in order of 10"1"6 photons.cm"-"2.s"-"1. The radial emissivity profile reconstructed from the chord-integrated intensity profile is analyzed with combination of HULLAC code for emission coefficient calculation of the Zn-like transition and impurity transport code included ADPAK code for calculation of ionization and recombination rate coefficients. Thus, a total tungsten ion density of 3.5x10"1"0 cm"-"3 at the plasma center is reasonably obtained in discharge with central electron density of 4x10"1"3 cm"-"3 as the first experimental trial. The present result demonstrates that the Zn-like 4p-4s transition is applicable to the tungsten diagnostics in high-temperature plasmas. (author)

  18. Hot flush frequency and severity at baseline as predictors of time to transient and stable treatment success: pooled analysis of two CE/BZA studies.

    Science.gov (United States)

    Pinkerton, JoAnn V; Bushmakin, Andrew G; Bobula, Joel; Lavenberg, Joanne; Komm, Barry S; Abraham, Lucy

    2017-12-01

    To evaluate the impact of baseline hot flush frequency and severity on time to symptom improvement during treatment with conjugated estrogens/bazedoxifene (CE/BZA). Data were pooled through week 12 from two randomized placebo-controlled trials (SMART-1 and SMART-2) of nonhysterectomized postmenopausal women with hot flushes treated with CE 0.45 mg/BZA 20 mg or CE 0.625 mg/BZA 20 mg. Time to transient and stable improvement (≥ 50% reduction in hot flush frequency/severity) was estimated using nonparametric models. Transient improvement in hot flush frequency occurred earlier in women treated with CE 0.45 mg/BZA 20 mg with less frequent versus more frequent baseline hot flushes per day: median time to transient improvement was 2, 7, and 11 days for women with hot flushes per day at baseline, respectively (P = 0.0009). Transient improvement in severity occurred earlier for women with less severe versus more severe baseline hot flushes: median time to transient improvement was 2, 6, and 16 days for women with mild, moderate, and severe hot flushes at baseline, respectively (P hot flushes take longer to achieve transient improvements with CE/BZA and should be encouraged to continue treatment, as it may take longer than a few weeks to achieve significant improvement.

  19. Tungsten behaviour under anodic polarization

    International Nuclear Information System (INIS)

    Vas'ko, A.T.; Patsyuk, F.N.

    1980-01-01

    Electrochemical investigations have been carried out to identify the state of elements of the tungsten galvanic coating. Active zones on anode polarization curves in the hydrogen region of galvanic tungsten are established. The difference in the behaviour of monocrystal and galvanic tungsten electrodes is shown to be connected with the oxidation of hydrogen in the galvanic sediment

  20. Suppression of tungsten accumulation during ELMy H-mode by lower hybrid wave heating in the EAST tokamak

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2017-08-01

    Full Text Available EAST tokamak has been equipped with upper tungsten divertor since 2014. The tungsten accumulation has been often observed in NBI-heated H-mode discharges suggesting deleterious tungsten confinement in the plasma core. It causes not only H-L back transition but also plasma disruption in several discharges. Suppression of the tungsten accumulation is therefore the most important issue in EAST to achieve a long pulse H-mode discharge. In order to study the tungsten behavior in the long pulse discharge, tungsten spectra have been measured at 20–140Å. The tungsten density, nw, is evaluated from the intensity of tungsten unresolved transition array (W-UTA in a wavelength range of 45–70Å which is composed of several ionization stages of tungsten, e.g. W27+-W45+ at Te0∼2.5keV. It is found that the tungsten accumulation can be suppressed when the 4.6GHz LHW with PLHW∼0.8MW is superimposed on the NBI phase (PNBI= 1.9MW. During the superimposed phase the ELM frequency, fELM, increases from ∼30Hz to ∼60Hz and the tungsten density is halved compared to the NBI-heated discharge. The H-mode discharge can be thus steadily sustained for longer period. It is found that the nw is a large function of the ratio of LHW power to the total injection power, PLHW/(PLHW+PNBI, and the nw can be reduced, at least, in an order of magnitude smaller than that in NBI-heated discharges at PLHW/(PLHW+PNBI≥0.8. The result strongly suggests a possible way toward the steady H-mode discharge.

  1. Improvement of Functional Properties by Sever Plastic Deformation on Parts of Titanium Biomaterials

    Science.gov (United States)

    Czán, Andrej; Babík, Ondrej; Daniš, Igor; Martikáň, Pavol; Czánová, Tatiana

    2017-12-01

    Main task of materials for invasive implantology is their biocompatibility with the tissue but also requirements for improving the functional properties of given materials are increasing constantly. One of problems of materials biocompatibility is the impossibility to improve of functional properties by change the percentage of the chemical elements and so it is necessary to find other innovative methods of improving of functional properties such as mechanical action in the form of high deformation process. This paper is focused on various methods of high deformation process such as Equal Channel Angular Pressing (ECAP) when rods with record strength properties were obtained.The actual studies of the deformation process properties as tri-axial compress stress acting on workpiece with high speed of deformation shows effects similar to results obtained using the other methods, but in lower levels of stress. Hydrostatic extrusion (HE) is applying for the purpose of refining the structure of the commercially pure titanium up to nano-scale. Experiments showed the ability to reduce the grain size below 100 nm. Due to the significant change in the performance of the titanium materials by severe plastic deformation is required to identify the processability of materials with respect to the identification of created surfaces and monitoring the surface integrity, where the experimental results show ability of SPD technologies application on biomaterials.

  2. ELASTO-PLASTIC DEFORMATION OF COMPOSITE POWDERS WITH LAYERED CARBON AND CARBIDE-FORMING ELEMENT COATING

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2012-01-01

    Full Text Available Coating structure formation under magnetron spraying of titanium and carbon cathodes and combined cathodes, namely cobalt (EP 131 – nickel, tungsten – carbon have been investigated under conditions of carbide separate synthesis within the temperature range of 650–1200 °C. Usage of cobalt and nickel particles as matrix material leads to their rapid thermal expansion under heating during sintering process in the dilatometer. Subsequent plastic deformation of sintered samples provides obtaining a composite powder material that is a composite with framing structure of cobalt, titanium and tungsten carbides in the coatings.

  3. Absence of translational energy accomodation of O2 on clean and oxidized tungsten, specularly and diffusely scattered

    International Nuclear Information System (INIS)

    Auerbach, D.; Becker, C.; Cowin, J.; Wharton, L.

    1977-01-01

    The authors have determined by a direct molecular beam velocity measurement that translational energy accomodation of O 2 molecules scattered from a reactive hot polycrystalline tungsten target is very inefficient. Translational energy accomodation is inefficient whether the surface is clean or covered with oxygen atoms to a varying extent, even though in the latter case the scattering is diffuse. On a clean tungsten surface the scattering of the O 2 is specular. The results shows directly that diffuse scattering does not imply or require large energy accomodation. They also show that this surface covered with atoms matching the incoming beam atoms is not an efficient energy accomodator. Thus a diminished role for mass matching in energy transfer is apparent. (Auth.)

  4. Helium bubble bursting in tungsten

    International Nuclear Information System (INIS)

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-01-01

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz

  5. EUV spectroscopy of highly charged tungsten ions relevant to hot plasmas

    International Nuclear Information System (INIS)

    Biedermann, C.; Radtke, R.; Fuchs, T.; Fussmann, G.; Schwob, J.L.; Mandelbaum, P.; Doron, R.

    2001-01-01

    The radiation from tungsten ions in the extreme ultraviolet spectral region was investigated using a 2-m grazing-incidence spectrometer in conjunction with the Berlin electron beam ion trap. Operating EBIT at beam energies between 900 eV and 1.7 keV In-like W 25+ to Sr-like W 36+ ions could selectively be excited, and a bright emission band of about 2 A width was measured which shifts from 50 to 54 A when raising the charge state. The band of partially unresolved lines originates from 4l-4l' transitions of ions having an open 4d subshell. Atomic structure calculations with the HULLAC code package show that the narrowing and shift of the line band emission can be interpreted in the framework of the unresolved transition array using mixed configurations. The theoretical spectrum analysis applies a collisional-radiative model to account for the low electron density of EBIT and reproduces the variations of the observed emission pattern. (orig.)

  6. Scanning tunneling microscopy measurements of the spin Hall effect in tungsten films by using iron-coated tungsten tips

    Science.gov (United States)

    Xie, Ting; Dreyer, Michael; Bowen, David; Hinkel, Dan; Butera, R. E.; Krafft, Charles; Mayergoyz, Isaak

    2018-05-01

    Scanning tunneling microscopy experiments using iron-coated tungsten tips and current-carrying tungsten films have been conducted. An asymmetry of the tunneling current with respect to the change of the direction of the bias current through a tungsten film has been observed. It is argued that this asymmetry is a manifestation of the spin Hall effect in the current-carrying tungsten film. Nanoscale variations of this asymmetry across the tungsten film have been studied by using the scanning tunneling microscopy technique.

  7. Constitutive Equation and Hot Compression Deformation Behavior of Homogenized Al–7.5Zn–1.5Mg–0.2Cu–0.2Zr Alloy

    Directory of Open Access Journals (Sweden)

    Jianliang He

    2017-10-01

    Full Text Available The deformation behavior of homogenized Al–7.5Zn–1.5Mg–0.2Cu–0.2Zr alloy has been studied by a set of isothermal hot compression tests, which were carried out over the temperature ranging from 350 °C to 450 °C and the strain rate ranging from 0.001 s−1 to 10 s−1 on Gleeble-3500 thermal simulation machine. The associated microstructure was studied using electron back scattered diffraction (EBSD and transmission electron microscopy (TEM. The results showed that the flow stress is sensitive to strain rate and deformation temperature. The shape of true stress-strain curves obtained at a low strain rate (≤0.1 s−1 conditions shows the characteristic of dynamic recrystallization (DRX. Two Arrhenius-typed constitutive equation without and with strain compensation were established based on the true stress-strain curves. Constitutive equation with strain compensation has more precise predictability. The main softening mechanism of the studied alloy is dynamic recovery (DRV accompanied with DRX, particularly at deformation conditions, with low Zener-Holloman parameters.

  8. Effect of grain refinement by severe plastic deformation on the next-neighbor misorientation distribution

    International Nuclear Information System (INIS)

    Toth, L.S.; Beausir, B.; Gu, C.F.; Estrin, Y.; Scheerbaum, N.; Davies, C.H.J.

    2010-01-01

    Next-neighbor misorientation distributions (NNMD) in severely deformed polycrystalline materials are commonly measured by orientation imaging. A procedure is proposed which enables the separation of NNMD of ultrafine-grained materials into two parts: the distribution of misorientations between newly emerged grains within the original ('parent') grain interior ('internal daughter grains') and the distribution of misorientations between grains adjacent to an original grain boundary on its opposite sides ('grain boundary daughter grains'). The procedure is based on electron backscatter diffraction orientation map analyses carried out on different planes of deformed samples considering the evolution of the grain size and shape during severe plastic deformation. It was applied to copper processed by up to three passes of equal-channel angular pressing. A characteristic feature of the measured NNMD is the occurrence of a double peak, which is clearly due to the differences between the NNMD of the two distinct populations of new grains defined above. The peak at low angles represents mainly the continual grain subdivision process in the interior of a parent grain (and is associated with internal daughter grains), while the peak at large angles is due to the high angle misorientations of the grain boundary daughter grains.

  9. Contributory Factors Related to Permanent Deformation of Hot Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Alaa Husein Abd

    2017-03-01

    Full Text Available Permanent deformation (Rutting of asphalt pavements which appears in many roads in Iraq, have caused a major impact on pavement performance by reducing the useful service life of pavement and creating services hazards for highway users. The main objective of this research is investigating the effect of some contributory factors related to permanent deformation of asphalt concrete mixture. To meet the objectives of this research, available local materials are used including asphalt binder, aggregates, mineral filler and modified asphalt binder. The Superpave mix design system was adopted with varying volumetric compositions. The Superpave Gyratory Compactor was used to compact 24 asphalt concrete cylindrical specimens. To collect the required data and investigate the development of permanent deformation in asphalt concrete under repeated loadings, Wheel-Tracking apparatus has been used in a factorial testing program during which 44 slab samples; with dimensions of 400×300×50 mm; were tested to simulate . actual pavement. Based on wheel-tracking test results, it has been concluded that increasing the compaction temperature from 110 to 150ºC caused a decreasing in permanent deformation by 20.5 and 15.6 percent for coarse and fine gradation control asphalt mixtures respectively. While the permanent deformation decreased about 21.3 percent when the compaction temperature is increased from 110 to 150ºC for coarse gradation asphalt mixtures modified with styrene butadiene styrene SBS with 3 percent by asphalt binder weight.

  10. Tungsten - rhenium alloys wire: overview of thermomechanical processing and properties data

    International Nuclear Information System (INIS)

    Bryskin, B.

    2001-01-01

    The scope of this study encompasses the compositional modifications of the tungsten-rhenium dual system (W-3/5 Re up to W-27 Re) as well as some of the tungsten-molybdenum-rhenium ternary system. The alloys of interest are considered with a specific representation of powder metallurgy route based on doped or undoped tungsten vs. vacuum melted materials. This paper constitutes an in-depth review of structural and mechanical properties and systematic compilation of challenges necessary to provide the quality consistency of severely drawn filaments. The issue of thermomechanical processing trends is addressed as an important part of W-Re fabrication technology to achieve further improvement in design properties of rod and wire. (author)

  11. Scanning tunneling microscopy measurements of the spin Hall effect in tungsten films by using iron-coated tungsten tips

    Directory of Open Access Journals (Sweden)

    Ting Xie

    2018-05-01

    Full Text Available Scanning tunneling microscopy experiments using iron-coated tungsten tips and current-carrying tungsten films have been conducted. An asymmetry of the tunneling current with respect to the change of the direction of the bias current through a tungsten film has been observed. It is argued that this asymmetry is a manifestation of the spin Hall effect in the current-carrying tungsten film. Nanoscale variations of this asymmetry across the tungsten film have been studied by using the scanning tunneling microscopy technique.

  12. Influence of Severe Plastic Deformation on Mechanical Properties and Structure of Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Ondřej Hilšer

    2016-09-01

    Full Text Available Article is devoted to analysis of ECAP (Equal Channel Angular Pressing method, which uses a high degree of deformation to achieve a very fine-grained structure of formed material. Utilization of The ECAP technology enables attainment of required properties of selected materials by using of severe plastic deformation (SPD methods. In the experimental part the influence of the number of passes through forming tool with classical geometry (angle of 90° between channels was studied to achieve maximum hardening (expressed by deformation resistance and achieved value of hardness HV10. Also the metallographic analysis (detection of achieved grain refinement was carried out. From comparison of results achieved at both alloys it can be stated that for given forming by ECAP method the EN AW-8006 alloy is preferable, because higher strength degree was obtained by achieving of very fine grained structure. When using the same method of forming by ECAP method the EN AW-2024 alloy has lower hardening and structure refinement.

  13. Micro-powder injection moulding of tungsten

    International Nuclear Information System (INIS)

    Zeep, B.

    2007-12-01

    For He-cooled Divertors as integral components of future fusion power plants, about 300000 complex shaped tungsten components are to be fabricated. Tungsten is the favoured material because of its excellent properties (high melting point, high hardness, high sputtering resistance, high thermal conductivity). However, the material's properties cause major problems for large scale production of complex shaped components. Due to the resistance of tungsten to mechanical machining, new fabrication technologies have to be developed. Powder injection moulding as a well established shaping technology for a large scale production of complex or even micro structured parts might be a suitable method to produce tungsten components for fusion applications but is not yet commercially available. The present thesis is dealing with the development of a powder injection moulding process for micro structured tungsten components. To develop a suitable feedstock, the powder particle properties, the binder formulation and the solid load were optimised. To meet the requirements for a replication of micro patterned cavities, a special target was to define the smallest powder particle size applicable for micro-powder injection moulding. To investigate the injection moulding performance of the developed feedstocks, experiments were successfully carried out applying diverse cavities with structural details in micro dimension. For debinding of the green bodies, a combination of solvent debinding and thermal debinding has been adopted for injection moulded tungsten components. To develop a suitable debinding strategy, a variation of the solvent debinding time, the heating rate and the binder formulation was performed. For investigating the thermal consolidation behaviour of tungsten components, sinter experiments were carried out applying tungsten powders suitable for micro-powder injection moulding. First mechanical tests of the sintered samples showed promising material properties such as a

  14. COMPUTER MODELING IN DEFORM-3D FOR ANALYSIS OF PLASTIC FLOW IN HIGH-SPEED HOT EXTRUSION OF BIMETALLIC FORMATIVE PARTS OF DIE TOOLING

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2015-01-01

    Full Text Available The modern development of industrial production is closely connected with the use of science-based and high technologies to ensure competitiveness of the manufactured products on the world market. There is also much tension around an energy- and resource saving problem which can be solved while introducing new technological processes and  creation of new materials that provide productivity increase through automation and improvement of tool life. Development and implementation of such technologies are rather often considered as time-consuming processes  which are connected with complex calculations and experimental investigations. Implementation of a simulation modelling for materials processing using modern software products serves an alternative to experimental and theoretical methods of research.The aim of this paper is to compare experimental results while obtaining bimetallic samples of a forming tool through the method of speed hot extrusion and the results obtained with the help of computer simulation using DEFORM-3D package and a finite element method. Comparative analysis of plastic flow of real and model samples has shown that the obtained models provide high-quality and reliable picture of plastic flow during high-speed hot extrusion. Modeling in DEFORM-3D make it possible to eliminate complex calculations and significantly reduce a number of experimental studies while developing new technological processes.

  15. An experimental study of plastic deformation of materials

    DEFF Research Database (Denmark)

    Knudsen, Tine

    The thesis falls in three parts, focusing on different aspects of plastic deformation of metals. Part I investigates the dislocation structures induced by hot deformation and compares these with the structures after cold deformation. In particular, it is shown that the dislocation structures...... after cold deformation by calorimetry and by analysis of the dislocation structure. The stored energy measured by calorimetry is found to be larger than that determined from the dislocation structure by a factor between 1.9 and 2.7, and this factor decreases with the plastic strain. Part III aimed...

  16. Hybrid simulation research on formation mechanism of tungsten nanostructure induced by helium plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Atsushi M., E-mail: ito.atsushi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Takayama, Arimichi; Oda, Yasuhiro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tamura, Tomoyuki; Kobayashi, Ryo; Hattori, Tatsunori; Ogata, Shuji [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Ohno, Noriyasu; Kajita, Shin [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yajima, Miyuki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Noiri, Yasuyuki [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yoshimoto, Yoshihide [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Saito, Seiki [Kushiro National College of Technology, Kushiro, Hokkaido 084-0916 (Japan); Takamura, Shuichi [Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392 (Japan); Murashima, Takahiro [Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-Ward, Sendai 980-8578 (Japan); Miyamoto, Mitsutaka [Shimane University, Matsue, Shimane 690-8504 (Japan); Nakamura, Hiroaki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-08-15

    The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity.

  17. Characterization of thermomechanical damage on tungsten surfaces during long-duration plasma transients

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, David, E-mail: david.rivera.ucla@gmail.com; Crosby, Tamer; Sheng, Andrew; Ghoniem, Nasr M.

    2014-12-15

    A new experimental facility constructed at UCLA for the simulation of high heat flux effects on plasma-facing materials is described. The High Energy Flux Test Facility (HEFTY) is equipped with a Praxair model SG-100 plasma gun, which is nominally rated at 80 kW of continuous operation, of which approximately 30 kW reaches the target due to thermal losses. The gun is used to impart high intermittent heat flux to metal samples mounted within a cylindrical chamber. The system is capable of delivering an instantaneous heat flux in the range of 30–300 MW/m{sup 2}, depending on sample proximity to the gun. The duration of the plasma heat flux is in the range of 1–1000 s, making it ideal for studies of mild plasma transients of relatively long duration. Tungsten and tungsten-copper alloy metal samples are tested in these transient heat flux conditions, and the surface is characterized for damage evaluation using optical, SEM, XRD, and micro-fabrication techniques. Results from a Finite Element (FE) thermo-elastoplasticity model indicate that during the heat-up phase of a plasma transient pulse, the majority of the sample surface is under compressive stresses leading to plastic deformation of the surface. Upon sample cooling, the recovered elastic strain of cooler parts of the sample exceeds that from parts that deformed plastically, resulting in a tensile surface self-stress (residual surface stress). The intensity of the residual tensile surface stress is experimentally correlated with the onset of complex surface fracture morphology on the tungsten surface, and extending below the surface region. Micro-compression mechanical tests of W micro-pillars show that the material has significant plasticity, failing by a “barreling” mode before plasma exposure, and by normal dislocation slip and localized shear after plasma exposure. Ongoing modeling of the complex thermo-fracture process, coupled with elasto-plasticity is based on a phase field approach for distributed

  18. Characterization and performances of cobalt-tungsten and molybdenum-tungsten carbides as anode catalyst for PEFC

    International Nuclear Information System (INIS)

    Izhar, Shamsul; Yoshida, Michiko; Nagai, Masatoshi

    2009-01-01

    The preparation of carbon-supported cobalt-tungsten and molybdenum-tungsten carbides and their activity as an anode catalyst for a polymer electrolyte fuel cell were investigated. The electrocatalytic activity for the hydrogen oxidation reaction over the catalysts was evaluated using a single-stack fuel cell and a rotating disk electrode. The characterization of the catalysts was performed by XRD, temperature-programmed carburization, temperature-programmed reduction and X-ray photoelectron spectroscopy. The maximum power densities of the 30 wt% 873 K-carburized cobalt-tungsten and molybdenum-tungsten mixed with Ketjen carbon (cobalt-tungsten carbide (CoWC)/Ketjen black (KB) and molybdenum-tungsten carbide (MoWC)/KB) were 15.7 and 12.0 mW cm -2 , respectively, which were 14 and 11%, compared to the in-house membrane electrode assembly (MEA) prepared from a 20 wt% Pt/C catalyst. The CoWC/KB catalyst exhibited the highest maximum power density compared to the MoWC/KB and WC/KB catalysts. The 873 K-carburized CoW/KB catalyst formed the oxycarbided and/or carbided CoW that are responsible for the excellent hydrogen oxygen reaction

  19. Volatility from copper and tungsten alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Smolik, G.R.; Neilson, R.M. Jr.; Piet, S.J.

    1989-01-01

    Accident scenarios for fusion power plants present the potential for release and transport of activated constituents volatilized from first wall and structural materials. The extent of possible mobilization and transport of these activated species, many of which are ''oxidation driven'', is being addressed by the Fusion Safety Program at the Idaho National Engineering Laboratory (INEL). This report presents experimental measurements of volatilization from a copper alloy in air and steam and from a tungsten alloy in air. The major elements released included zinc from the copper alloy and rhenium and tungsten from the tungsten alloy. Volatilization rates of several constituents of these alloys over temperatures ranging from 400 to 1200 degree C are presented. These values represent release rates recommended for use in accident assessment calculations. 8 refs., 3 figs., 5 tabs

  20. High Temperature Deformation Behavior and Microstructure Evolution of Ti-4Al-4Fe-0.25Si Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Woo; Lee, Yongmoon; Lee, Chong Soo [Pohang University of Science and Technology, Pohang (Korea, Republic of); Yeom, Jong-Taek [Korea Institute of Materials Science, Changwon (Korea, Republic of); Lee, Gi Yeong [KPCM Incorporated, Gyeongsan (Korea, Republic of)

    2016-05-15

    Hot deformation behavior of Ti-4Al-4Fe-0.25Si alloy with martensite microstructure was investigated by compression tests at temperatures of 1023 – 1173 K (α+β phase region) and strain rates of 10{sup -3} – 1 s{sup -1}. By analyzing the deformation behavior, plastic deformation instability parameters including strain rate sensitivity, deformation temperature sensitivity, efficiency of power dissipation, and Ziegler’s instability were evaluated as a function of deformation temperature and strain rate, and they were further examined by drawing deformation processing maps. The microstructure evolution was also studied to determine the deformation conditions under which equiaxed α phase was formed in the microstructure without remnants or kinked α phase platelets and shear bands, these last two of which cause severe cracks during post-forming process. Based on the combined results of the processing maps and the microstructure analysis, the optimum α+β forging conditions for Ti-4Al-4Fe-0.25Si alloy were determined.

  1. Irradiation effects in tungsten-copper laminate composite

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, L.M., E-mail: garrisonlm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, L.L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Byun, T.S. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Reiser, J.; Rieth, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-12-01

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10{sup 25} n/m{sup 2}, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039 dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. For elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile. - Highlights: • Fusion reactors need a tough, ductile tungsten plasma-facing material. • The unirradiated tungsten-copper laminate is more ductile than tungsten alone. • After neutron irradiation, the composite has significantly less ductility. • The tungsten behavior appears to dominate the overall composite behavior.

  2. Crystallite growth in nanocrystalline tungsten; rate determining mechanism and the role of contaminations

    International Nuclear Information System (INIS)

    Hegedűs, Zoltán; Meka, Sai Ramudu; Mittemeijer, Eric J.

    2016-01-01

    The thermal stability of nanocrystalline tungsten was investigated by tracing the evolution of the microstructure as a function of (isothermal) annealing time at different temperatures (800−875 °C). To this end especially in situ X-ray diffraction and transmission electron microscopy methods were applied to ball milled tungsten powder. Initially the dislocation density and the crystallite/domain size decreased and increased rapidly, respectively. Upon prolonged annealing the crystallite growth rate decelerated and even became nil: a saturation crystallite size, increasing with increasing annealing temperature, was attained. Application of all available isothermal growth models to the experimental data resulted in very low values for the activation energy (60−120 kJ/mol) indicating that recovery of the deformed microstructure is the dominantly occurring process, leading to pronounced crystallite/domain growth. The effect on the growth kinetics of different levels of contaminations, which exert a drag force on the moving boundaries, was also investigated.

  3. An investigation of tungsten by neutron activation techniques

    International Nuclear Information System (INIS)

    Svetsreni, R.

    1978-01-01

    This investigation used neutron from Plutonium-Beryllium source (5 curie) to analyse the amount of tungsten in tungsten oxide which was extracted from tungsten ores, slag and tungsten alloy of tungsten iron and carbon. The technique of neutron activation analysis with NaI(Tl) gamma detector 3'' x 3'' and 1024 multichannel analyzer. The dilution technique was used by mixing Fe 2 O 3 or pure sand into the sample before irradiation. In this study self shielding effect in the analysis of tungsten was solved and the detection limit of the tungsten in the sample was about 0.5%

  4. Interaction domains in die-upset NdFeB magnets in dependence on the degree of deformation

    International Nuclear Information System (INIS)

    Khlopkov, K.; Gutfleisch, O.; Schaefer, R.; Hinz, D.; Mueller, K.-H.; Schultz, L.

    2004-01-01

    The magnetic domain structure of NdFeB magnets has been studied using high resolution, digitally enhanced Kerr-microscopy. Melt-spun NdFeB powder (MQU-F TM ) was hot pressed into fully dense samples and then hot deformed to axially textured magnets. Various degrees of deformation (height reduction) up to 76% have been realized. Pronounced interaction domains have been observed only in magnets, which were deformed to a degree of deformation of at least 52%. With increasing alignment of the grains the interaction domains become more and more visible and their size increases

  5. Kinetics of low pressure chemical vapor deposition of tungsten silicide from dichlorocilane reduction of tungsten hexafluoride

    International Nuclear Information System (INIS)

    Srinivas, D.; Raupp, G.B.; Hillman, J.

    1990-01-01

    The authors report on experiments to determine the intrinsic surface reaction rate dependences and film properties' dependence on local reactant partial pressures and wafer temperature in low pressure chemical vapor deposition (LPCVD) of tungsten silicide from dichlorosilane reduction of tungsten hexafluoride. Films were deposited in a commercial-scale Spectrum CVD cold wall single wafer reactor under near differential, gradientless conditions. Over the range of process conditions investigated, deposition rate was found to be first order in dichlorosillane and negative second order in tungsten hexafluoride partial pressure. The apparent activation energy in the surface reaction limited regime was found to be 70-120 kcal/mol. The silicon to tungsten ratio of as deposited silicide films ranged from 1.1 to 2.4, and increased with increasing temperature and dichlorosillane partial pressure, and decreased with increasing tungsten hexafluoride pressure. These results suggest that the apparent silicide deposition rate and composition are controlled by the relative rates of at least two competing reactions which deposit stoichiometric tungsten silicides and/or silicon

  6. Dynamic Recrystallization and Hot Workability of 316LN Stainless Steel

    Directory of Open Access Journals (Sweden)

    Chaoyang Sun

    2016-07-01

    Full Text Available To identify the optimal deformation parameters for 316LN austenitic stainless steel, it is necessary to study the macroscopic deformation and the microstructural evolution behavior simultaneously in order to ascertain the relationship between the two. Isothermal uniaxial compression tests of 316LN were conducted over the temperature range of 950–1150 °C and for the strain rate range of 0.001–10 s−1 using a Gleeble-1500 thermal-mechanical simulator. The microstructural evolution during deformation processes was investigated by studying the constitutive law and dynamic recrystallization behaviors. Dynamic recrystallization volume fraction was introduced to reveal the power dissipation during the microstructural evolution. Processing maps were developed based on the effects of various temperatures, strain rates, and strains, which suggests that power dissipation efficiency increases gradually with increasing temperature and decreasing stain rate. Optimum regimes for the hot deformation of 316LN stainless steel were revealed on conventional hot processing maps and verified effectively through the examination of the microstructure. In addition, the regimes for defects of the product were also interpreted on the conventional hot processing maps. The developed power dissipation efficiency maps allow optimized processing routes to be selected, thus enabling industry producers to effectively control forming variables to enhance practical production process efficiency.

  7. Prediction of Hot Tearing Using a Dimensionless Niyama Criterion

    Science.gov (United States)

    Monroe, Charles; Beckermann, Christoph

    2014-08-01

    The dimensionless form of the well-known Niyama criterion is extended to include the effect of applied strain. Under applied tensile strain, the pressure drop in the mushy zone is enhanced and pores grow beyond typical shrinkage porosity without deformation. This porosity growth can be expected to align perpendicular to the applied strain and to contribute to hot tearing. A model to capture this coupled effect of solidification shrinkage and applied strain on the mushy zone is derived. The dimensionless Niyama criterion can be used to determine the critical liquid fraction value below which porosity forms. This critical value is a function of alloy properties, solidification conditions, and strain rate. Once a dimensionless Niyama criterion value is obtained from thermal and mechanical simulation results, the corresponding shrinkage and deformation pore volume fractions can be calculated. The novelty of the proposed method lies in using the critical liquid fraction at the critical pressure drop within the mushy zone to determine the onset of hot tearing. The magnitude of pore growth due to shrinkage and deformation is plotted as a function of the dimensionless Niyama criterion for an Al-Cu alloy as an example. Furthermore, a typical hot tear "lambda"-shaped curve showing deformation pore volume as a function of alloy content is produced for two Niyama criterion values.

  8. [Severe burns of lower limb due to association of hot water and citrullus colocynthis].

    Science.gov (United States)

    Fejjal, N; Gharib, N E; El Mazouz, S; Abbassi, A; Belmahi, A

    2011-06-30

    The case is reported of a patient suffering from severe burns through having used Citrullus colocynthis as a medicinal plant together with hot water. This led to carbonization of the foot and to its amputation. A description of the plant and its toxicity is given.

  9. Hydrogen retention properties of polycrystalline tungsten and helium irradiated tungsten

    International Nuclear Information System (INIS)

    Hino, T.; Koyama, K.; Yamauchi, Y.; Hirohata, Y.

    1998-01-01

    The hydrogen retention properties of a polycrystalline tungsten and tungsten irradiated by helium ions with an energy of 5 keV were examined by using an ECR ion irradiation apparatus and a technique of thermal desorption spectroscopy, TDS. The polycrystalline tungsten was irradiated at RT with energetic hydrogen ions, with a flux of 10 15 H cm -2 and an energy of 1.7 keV up to a fluence of 5 x 10 18 H cm -2 . Subsequently, the amount of retained hydrogen was measured by TDS. The heating temperature was increased from RT to 1000 C, and the heating rate was 50 C min -1 . Below 1000 C, two distinct hydrogen desorption peaks were observed at 200 C and 400 C. The retained amount of hydrogen was observed to be five times smaller than that of graphite, but the concentration in the implantation layer was comparable with that of graphite. Also, the polycrystalline tungsten was irradiated with 5 keV helium ions up to a fluence of 1.4 x 10 18 He cm -2 , and then re-irradiated with 1.7 keV hydrogen ions. The amount of retained hydrogen in this later experiment was close to the value in the case without prior helium ion irradiation. However, the amount of hydrogen which desorbed around the low temperature peak, 200 C, was largely enhanced. The desorption amount at 200 C saturated for the helium fluence of more than 5 x 10 17 He cm -2 . The present data shows that the trapping state of hydrogen is largely changed by the helium ion irradiation. Additionally, 5 keV helium ion irradiation was conducted on a sample pre-implanted with hydrogen ions to simulate a helium ion impact desorption of hydrogen retained in tungsten. The amount of the hydrogen was reduced as much as 50%. (orig.)

  10. Ricochet of a tungsten heavy alloy long-rod projectile from deformable steel plates

    International Nuclear Information System (INIS)

    Lee, Woong; Lee, Heon-Joo; Shin, Hyunho

    2002-01-01

    Ricochet of a tungsten heavy alloy long-rod projectile from oblique steel plates with a finite thickness was investigated numerically using a full three-dimensional explicit finite element method. Three distinctive regimes resulting from oblique impact depending on the obliquity, namely simple ricochet, critical ricochet and target perforation, were investigated in detail. Critical ricochet angles were calculated for various impact velocities and strengths of the target plates. It was predicted that critical ricochet angle increases with decreasing impact velocities and that higher ricochet angles were expected if higher strength target materials are employed. Numerical predictions were compared with existing two-dimensional analytical models. Experiments were also carried out and the results supported the predictions of the numerical analysis

  11. Deformation inhomogeneity in large-grained AA5754 sheets

    International Nuclear Information System (INIS)

    Zhu Guozhen; Hu Xiaohua; Kang Jidong; Mishra, Raja K.; Wilkinson, David S.

    2011-01-01

    Research highlights: → Microstructure and strain relationship at individual grain level was studied. → 'Hot spots' nucleate early and most keep growing throughout deformation stages. → 'Hot spots' are correlated with 'soft' grains and soft-evolution grains. → Grains with high Schmid factors tend to be 'soft' grains. → Grains with the direction close to tensile axis tend to become softer. - Abstract: Models for deformation and strain localization in polycrystals that incorporate microstructural features including particles are computationally intensive due to the large variation in scale in going from particles to grains to a specimen. As a result such models are generally 2-D in nature. This is an issue for experimental validation. We have therefore studied deformation heterogeneities and strain localization behavior of coarse-grained alloys with only two grains across the sample thickness, therefore mimicking 2-D behavior. Aluminum alloy sheets (AA5754) have been investigated by a number of surface techniques, including digital image correlation, slip trace analysis and electron backscattered diffraction, at the individual grain level. Local strain concentration zones appear from the very beginning of deformation, which then maintain sustained growth and lead, in one of these regions, to localization and final fracture. These 'hot spots' occur in areas with locally soft grains (i.e. grains with or close to the tensile direction) and soft-evolution orientations (i.e. grains with close to the tensile direction). These grains can be correlated with Taylor and/or Schmid factors.

  12. High pulse number thermal shock tests on tungsten with steady state particle background

    Science.gov (United States)

    Wirtz, M.; Kreter, A.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Sergienko, G.; Steudel, I.; Unterberg, B.; Wessel, E.

    2017-12-01

    Thermal fatigue of metallic materials, which will be exposed to severe environmental conditions e.g. plasma facing materials in future fusion reactors, is an important issue in order to predict the life time of complete wall components. Therefore experiments in the linear plasma device PSI-2 were performed to investigate the synergistic effects of high pulse number thermal shock events (L = 0.38 GW m-2, Δt = 0.5 ms) and stationary D/He (6%) plasma particle background on the thermal fatigue behavior of tungsten. Similar to experiments with pure thermal loads, the induced microstructural and surface modifications such as recrystallization and roughening as well as crack formation become more pronounced with increasing number of thermal shock events. However, the amount of damage significantly increases for synergistic loads showing severe surface roughening, plastic deformation and erosion resulting from the degradation of the mechanical properties caused by bombardment and diffusion of D/He to the surface and the bulk of the material. Additionally, D/He induced blistering and bubble formation were observed for all tested samples, which could change the thermal and mechanical properties of near surface regions.

  13. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    Science.gov (United States)

    Hoenig, C.L.

    1993-08-31

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1,800 C and 30 PSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  14. Tungsten wire and tubing joined by nickel brazing

    Science.gov (United States)

    1965-01-01

    Thin tungsten wire and tungsten tubing are brazed together using a contacting coil of nickel wire heated to its melting point in an inert-gas atmosphere. This method is also effective for brazing tungsten to tungsten-rhenium parts.

  15. Closed-cage tungsten oxide clusters in the gas phase.

    Science.gov (United States)

    Singh, D M David Jeba; Pradeep, T; Thirumoorthy, Krishnan; Balasubramanian, Krishnan

    2010-05-06

    During the course of a study on the clustering of W-Se and W-S mixtures in the gas phase using laser desorption ionization (LDI) mass spectrometry, we observed several anionic W-O clusters. Three distinct species, W(6)O(19)(-), W(13)O(29)(-), and W(14)O(32)(-), stand out as intense peaks in the regular mass spectral pattern of tungsten oxide clusters suggesting unusual stabilities for them. Moreover, these clusters do not fragment in the postsource decay analysis. While trying to understand the precursor material, which produced these clusters, we found the presence of nanoscale forms of tungsten oxide. The structure and thermodynamic parameters of tungsten clusters have been explored using relativistic quantum chemical methods. Our computed results of atomization energy are consistent with the observed LDI mass spectra. The computational results suggest that the clusters observed have closed-cage structure. These distinct W(13) and W(14) clusters were observed for the first time in the gas phase.

  16. Implantation driven permeation behavior of deuterium through pure tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hirofumi E-mail: nakamura@tpl.tokai.jaeri.go.jp; Hayashi, Takumi; Nishi, Masataka; Arita, Makoto; Okuno, Kenji

    2001-09-01

    Implantation driven permeation behavior of deuterium through pure tungsten has been investigated to estimate the amount of tritium permeation through its barrier in a thermo-nuclear fusion device. The permeation experiments were performed on pure tungsten foil of 25 {mu}m thickness under conditions of incident flux of 1.9x10{sup 18}-1.1x10{sup 19} D{sup +}/m{sup 2}s, incident ion energy of 200-2000 eV, and specimen temperature of 512-660 K. As a result of this steady-state permeation experiment, the rate-determining process of deuterium permeation was found to be controlled by diffusion at both implanted and permeated sides. On the other hand, transient permeation was strongly affected by trap effect in the specimen. Simulation analysis using TMAP code on transient permeation behavior indicates the existence of a trap site with a trap energy of nearly 1eV and with a trap density of over several ten's ppm in tungsten.

  17. Implantation driven permeation behavior of deuterium through pure tungsten

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Hayashi, Takumi; Nishi, Masataka; Arita, Makoto; Okuno, Kenji

    2001-01-01

    Implantation driven permeation behavior of deuterium through pure tungsten has been investigated to estimate the amount of tritium permeation through its barrier in a thermo-nuclear fusion device. The permeation experiments were performed on pure tungsten foil of 25 μm thickness under conditions of incident flux of 1.9x10 18 -1.1x10 19 D + /m 2 s, incident ion energy of 200-2000 eV, and specimen temperature of 512-660 K. As a result of this steady-state permeation experiment, the rate-determining process of deuterium permeation was found to be controlled by diffusion at both implanted and permeated sides. On the other hand, transient permeation was strongly affected by trap effect in the specimen. Simulation analysis using TMAP code on transient permeation behavior indicates the existence of a trap site with a trap energy of nearly 1eV and with a trap density of over several ten's ppm in tungsten

  18. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States); Oksuz, Betul Akgol [Genome Technology Center, New York University Langone Medical Center, New York, NY 10016 (United States); Shen, Steven [Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016 (United States); Peana, Massimiliano; Medici, Serenella; Zoroddu, Maria Antonietta [Department of Chemistry and Pharmacy, University of Sassari, Sassari (Italy); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States)

    2015-10-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten's ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer-related pathways in transformed clones as determined by RNA sequencing. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data show the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. - Highlights: • Tungsten (W) induces cell transformation and increases migration in vitro. • W increases xenograft growth in nude mice. • W altered the expression of cancer-related genes such as those involved in leukemia. • Some of the dysregulated leukemia genes include, CD74, CTGF, MST4, and HOXB5. • For the first time, data is presented that demonstrates tungsten's carcinogenic potential.

  19. Microstructures in the 6060 aluminium alloy after various severe plastic deformation treatments

    International Nuclear Information System (INIS)

    Adamczyk-Cieslak, Boguslawa; Mizera, Jaroslaw; Kurzydlowski, Krzysztof Jan

    2011-01-01

    This paper presents the results concerning the microstructural refinement of the industrial 6060 aluminium alloy processed by severe plastic deformation (SPD). The high level of plastic deformation was achieved using the three methods: hydrostatic extrusion (HE), equal channel angular extrusion (ECAE) and extrusion torsion (ET), which differed in the dynamics of the loading, intensity and homogeneity of the plastic strain field. Microstructure analyses were performed before and after SPD deformation using a transmission (TEM) and a scanning electron microscope (SEM). The refined microstructures were examined qualitatively and quantitatively by the stereological methods and computer image analyses. The microstructure of the industrial 6060 aluminium alloy after deformation was characterized by an average grain size of about 0.4 μm. The results show that the precipitates strongly affect the degree of refinement and the mechanism of microstructural transformations. During the SPD, the second phase particles break apart and homogenize. The HE method generates the largest increase of the volume fraction of the small primary particles. Moreover, the HE process is most effective in reducing the primary particle size. During HE and ECAE processes the second phase precipitates dissolve partially and change their shape. - Research Highlights: → SPD results in a significant increase in the density of the small primary particles. → SPD homogenizes the particle size distribution. → HE and ECAE processes bring nano-grains in the vicinity of the primary particles. → HE and ECAE processing results in the β' precipitates partial dissolutions. → During HE and ECAE processes the β' particles change their shape.

  20. Environmental fate of tungsten from military use

    International Nuclear Information System (INIS)

    Clausen, Jay L.; Korte, Nic

    2009-01-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use

  1. Grain refinement through severe plastic deformation (SPD) processing

    International Nuclear Information System (INIS)

    Izairi, N.; Vevecka - Priftaj, A.

    2012-01-01

    There is considerable current interest in processing metallic samples through procedures involving the imposition of severe plastic deformation (SPD). These procedures lead to very significant grain refinement to the submicrometer or even the nanometer level, resulting in advanced physical properties. Among various SPD processes, Equal Channel Angular Pressing, High pressure Torsion and Accumulated Roll Bonding have been widely used for many metals and alloys. In the present work, we present an overview of the most used methods of SPD for grain refinement and the production of bulk nano structured materials with enhancement in their mechanical and functional properties. In order to examine the potential for using ECAP to refine the grain size and improve the mechanical properties, two commercial 5754 Al alloy and AA 3004 , were selected for study. Processing by ECAP gives a reduction in the grain size and an increase in the microhardness. (Author)

  2. Matrix composition effects on the tensile properties of tungsten-molybdenum heavy alloys

    International Nuclear Information System (INIS)

    Bose, A.; German, R.N.

    1990-01-01

    Tungsten-base heavy alloys are liquid-phase sintered from mixed tungsten, nickel, and iron powders. The sintered product is a composite consisting of interlaced tungsten and solidified matrix (W-Ni-Fe) phases. These alloys are most useful in applications requiring high density, strength, and toughness. The design of improved tungsten heavy alloys has been the subject of several research investigations. Much success has taken place through improved processing, but parallel compositional studies have resulted in new microstructure-property combinations. As part of these investigations, the Ni/Fe ratio has been varied, with the general conclusion that optimal strength and ductility occur with a ratio between 2 and 4. Brittle intermetallic phases can form outside of this composition range. Historically, a 7/3 Ni/Fe ratio has been selected for processing studies. Recently, others reported higher ductilities and impact energies for 90 and 93 pct W heavy alloys with the 8/2 Ni/Fe ratio. Alternatively, these alloys can be strengthened by both solid solution and grain size refinement through incorporation of molybdenum, tantalum, or rhenium. These additions are soluble in both the tungsten and matrix phases and retard solution-reprecipitation during liquid phase sintering. In this study, the alloy composition was varied in the nickel/iron ratio and molybdenum was partially substituted for tungsten. The sintered tensile properties are assessed vs these compositional variations

  3. Modelling the void deformation and closure by hot forging of ingot castings

    DEFF Research Database (Denmark)

    Christiansen, Peter; Hattel, Jesper Henri; Kotas, Petr

    2012-01-01

    by mechanical deformation. The aim of this paper is to analyze numerically if and to what degree the voids areclosed by the forging. Using the commercial simulation software ABAQUS, both simplified model ingots and physically manufactured ingots containing prescribed void distributions are deformed and analyzed....... The analysis concernsboth the void density change and the location of the voids in the part after deformation. The latter can be important for the subsequent reliability of the parts, for instance regarding fatigue properties. The analysis incorporates the Gurson yield criterion for metals containing voids...... and focuses on how the voids deform depending on their size and distribution in the ingot as well ashow the forging forces are applied....

  4. Numerical simulation of springback of medium-thick plates in local hot rolling

    Directory of Open Access Journals (Sweden)

    XIE Dong

    2017-10-01

    Full Text Available [Objectives] In order to understand the factors of springback in the local hot rolling of medium-thick steel plates,[Methods] a 3D thermal-elastic-plastic analysis is conducted to investigate the factors affecting the amount of springback. Through a series of numerical analyses,the influence of deformation temperature,temperature field distribution,plate size and local loading are examined. [Results] The results show that when the deformation temperature exceeds a certain level at which material yield stress begins to decrease significantly,the springback will reduce markedly with the increase in temperature. Due to the distribution characteristics of the deformation area,the influence of temperature distribution on springback where the local deformation scale is larger is dominated by the three dimensions of temperature field distribution. Changes in the length and width of the plate have a certain influence on the springback,in which changes to the length of a plate where the local deformation scale is larger have a more obvious influence on springback. The springback of the plate decreases with the increase of local loading. [Conclusions] The results of this study can assist in the optimization of parameters in the automatic hot rolling of thick plates,while also having a basic guiding effect on the further study of springback in the local hot rolling of thick plates.

  5. Thermal shock behaviour of different tungsten grades under varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, Oliver Marius

    2012-07-19

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm{sup -2} at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced

  6. Thermal shock behaviour of different tungsten grades under varying conditions

    International Nuclear Information System (INIS)

    Wirtz, Oliver Marius

    2012-01-01

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm -2 at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced damages

  7. ITER tungsten divertor design development and qualification program

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, T., E-mail: takeshi.hirai@iter.org [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Escourbiac, F.; Carpentier-Chouchana, S.; Fedosov, A.; Ferrand, L.; Jokinen, T.; Komarov, V.; Kukushkin, A.; Merola, M.; Mitteau, R.; Pitts, R.A.; Shu, W.; Sugihara, M. [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Riccardi, B. [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Suzuki, S. [JAEA, Fusion Research and Development Directorate JAEA, 801-1 Mukouyama, Naka, Ibaragi 311-0193 (Japan); Villari, R. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati, Rome (Italy)

    2013-10-15

    Highlights: • Detailed design development plan for the ITER tungsten divertor. • Latest status of the ITER tungsten divertor design. • Brief overview of qualification program for the ITER tungsten divertor and status of R and D activity. -- Abstract: In November 2011, the ITER Council has endorsed the recommendation that a period of up to 2 years be set to develop a full-tungsten divertor design and accelerate technology qualification in view of a possible decision to start operation with a divertor having a full-tungsten plasma-facing surface. To ensure a solid foundation for such a decision, a full tungsten divertor design, together with a demonstration of the necessary high performance tungsten monoblock technology should be completed within the required timescale. The status of both the design and technology R and D activity is summarized in this paper.

  8. Atomic-scale features of phase boundaries in hot deformed Nd–Fe–Co–B–Ga magnets infiltrated with a Nd–Cu eutectic liquid

    International Nuclear Information System (INIS)

    Woodcock, T.G.; Ramasse, Q.M.; Hrkac, G.; Shoji, T.; Yano, M.; Kato, A.; Gutfleisch, O.

    2014-01-01

    Hot deformed Nd–Fe–Co–B–Ga magnets were infiltrated with a Nd–Cu eutectic liquid, resulting in a 71% increase in coercivity to μ 0 H c = 2.4 T without the use of Dy, and a 22% decrease in remanence, attributed to the dilution effect. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy have been used to reveal the structure and chemical composition of phase boundaries in the magnets on the atomic scale. The results showed that the Nd–Cu liquid penetrated the ≈1 nm thick intergranular regions. The coercivity increase following infiltration was therefore attributed to improved volume fraction and distribution of the intergranular phases. Co enrichment in the outermost 1–2 unit cells at several {0 0 1} and {1 1 0} surfaces of the Nd 2 (Fe, Co) 14 B crystals was shown for the infiltrated sample. The as-deformed sample did not appear to show this Co enrichment. Molecular dynamics simulations indicated that the distorted layer at an {0 0 1} surface of a Nd 2 (Fe, Co) 14 B grain was significantly thicker with higher Co surface enrichment. The magnetocrystalline anisotropy may be reduced in such distorted regions, which could have a detrimental effect on coercivity. Such features may therefore play a role in limiting coercivity to a fraction of the anisotropy field. Interfacial segregation of Cu between Nd 2 (Fe, Co) 14 B and the Nd-rich intergranular phase occurred in the infiltrated sample. Step defects in Nd 2 (Fe, Co) 14 B {0 0 1} surfaces, a half or a whole unit cell in height, were also observed

  9. Hot deformation and processing maps of K310 cold work tool steel

    International Nuclear Information System (INIS)

    Ezatpour, H.R.; Sajjadi, S.A.; Haddad-Sabzevar, M.; Ebrahimi, G.R.

    2012-01-01

    Highlights: ► The steady state stresses are related to strain rate and temperature. ► The study led to n DRX = 3.95 and Q DRX = 219.65 kJ/(mol K) and α = 1.2 × 10 −2 MPa −1 . ► The safe domain occurs in the region of 1000–1100 °C for a strain rate of 0.1 s −1 . - Abstract: Hot working response of cold work tool steel K310 was investigated by means of compression test at temperature range of 900–1100 °C. The equivalent strain rates used in these tests were 0.01, 0.1 and 1 s −1 , respectively in order to obtain the processing and stability maps of the studied material following the Dynamic Material Model. All the zones of flow instability were studied through scanning electron microscopy (SEM). The microstructure of the samples after deformation was then analyzed by light microscopy and the differences were compared together. The steady state stress obtained from the flow curves was related to strain rate (ε . ) and temperature (T) by means of the well known Zener–Holloman equation. A least square analysis of the data led to n = 3.95 and Q DRX = 219.65 kJ/mol and α = 1.2 × 10 −2 MPa −1 . Also, hardness results showed that by increasing strain from peak to steady state strain, hardness was decreased.

  10. Bonding tungsten, W–Cu-alloy and copper with amorphous Fe–W alloy transition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song, E-mail: wangsongrain@163.com [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Ling, Yunhan, E-mail: yhling@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Zhao, Pei [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zang, Nanzhi [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Wang, Jianjun [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Shibin [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Jun [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Xu, Guiying [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-05-15

    W/Cu graded materials are the leading candidate materials used as the plasma facing components in a fusion reactor. However, tungsten and copper can hardly be jointed together due to their great differences in physical properties such as coefficient of thermal expansion and melting point, and the lack of solid solubility between them. To overcome those difficulties, a new amorphous Fe–W alloy transitional coating and vacuum hot pressing (VHP) method were proposed and introduced in this paper. The morphology, composition and structure of the amorphous Fe–W alloy coating and the sintering interface of the specimens were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The thermal shock resistance of the bonded composite was also tested. The results demonstrated that amorphous structure underwent change from amorphous to nano grains during joining process, and the joined W/Cu composite can endued plasma thermal shock resistance with energy density more than 5.33 MW/m{sup 2}. It provides a new feasible technical to join refractory tungsten to immiscible copper with amorphous Fe–W alloy coating.

  11. Vapor-transport of tungsten and its geologic application

    Energy Technology Data Exchange (ETDEWEB)

    Shibue, Y [Hyogo Univ. of Teacher Education, Hyogo (Japan)

    1988-11-10

    The volatility of tungsten in a hydrous system at elevated temperatures and pressures was examined, and a tentative model for the enrichment of tungsten in hydrothermal solutions for the deposits related to granitic activities was proposed. To produce vapor-saturated solution, 17 or 15ml of 20wt% NaCl solution was introduced into an autoclave. Ca(OH){sub 2} for tungsten and H{sub 2}WO{sub 4} for base metals were used as vapor-captures, and run products were identified by X-ray powder diffractometry. The results suggested that the ratio of tungsten to base metals was higher in a vapor phase than in a liquid phase, and more enrichment of tungsten in the vapor phase occurred at higher temperature and pressure under the coexistence of the vapor and liquid phase. The tentative model emphasizing the vapor-transport of tungsten could explain the presence of tungsten deposits without large mineralization of base metals. Geological schematic model for the generation of the hydrothermal solution enriched in tungsten compared with base metals was illustrated based on above mentioned results. 21 refs., 3 figs.

  12. Environmental fate of tungsten from military use

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jay L. [Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire, 03755 (United States)], E-mail: Jay.L.Clausen@erdc.usace.army.mil; Korte, Nic [1946 Clover Ct., Grand Junction, Colorado, 81506 (United States)

    2009-04-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use.

  13. Flow behaviour of a heat treated tungsten heavy alloy

    International Nuclear Information System (INIS)

    Das, Jiten; Sarkar, R.; Rao, G. Appa; Sankaranarayana, M.; Nandy, T.K.; Pabi, S.K.

    2012-01-01

    Highlights: ► An Arrhenius type of constitutive equation is proposed for the investigated alloy. ► Peierl's controlled dislocation motion is observed at low temperature. ► Transition from Peierl's to forest controlled mechanism is observed at 673 K. ► At room temperature predominantly tungsten grain, cleavage fracture is observed. ► At elevated temperature predominantly intergranular fracture is observed. - Abstract: Flow behaviour of a tungsten heavy alloy was studied in the strain rate-temperature range of 10 −5 –1/s and 298–973 K, respectively. It was observed in this study that the dislocation motion in tungsten heavy alloy was controlled by a Peierl's mechanism at low temperatures (up to 573 K). This was confirmed by the magnitude of apparent activation volume and apparent activation enthalpy as well as TEM observations. Apparent activation enthalpy in the Peierls regime, determined by several methods, was found to vary in between 22 and 37 kJ/mol. An Arrhenius type of constitutive equation was also proposed in the Peierls controlled regime for predicting flow stress as a function of temperature and strain rate. Transition temperature of rate controlling mechanism—from Peierl's mechanism to forest mechanism—was determined from the strain rate sensitivity and apparent activation volume estimation at several temperatures. The transition temperature was found to be about 673 K.

  14. Tungsten Speciation in Firing Range Soils

    Science.gov (United States)

    2011-01-01

    satisfactorily, such as: which tungsten mineral phase is present in soil and to what extent is adsorption important in regu- lating soil solution concentrations... soil solution rather than discrete mineral phases. Information provided in this report will assist the following organizations in future decision...the soil solution ERDC TR-11-1 43 must affect tungsten speciation in other ways. The precipitation of soil minerals also would limit tungsten

  15. Strain aging in tungsten heavy alloys

    International Nuclear Information System (INIS)

    Dowding, R.J.; Tauer, K.J.

    1991-01-01

    This paper reports on tungsten heavy alloys which are two-phase mixtures of body center cubic (BCC) tungsten surrounded by a face center cubic (FCC) matrix. The matrix is most often composed of nickel and iron in a ratio of 70:30 but, occasionally, the matrix may also contain cobalt or copper. Nickel, however, is always the primary matrix component. The tungsten heavy alloy is fabricated through powder metallurgy techniques. Elemental powders are blended, pressed to shape, and sintered. Depending upon the tungsten content, the sintering temperatures are usually in the range of 1450 degrees C to 1525 degrees C. These temperatures are high enough that, as a result, the matrix is at the liquid phase and the process is known as liquid phase sintering. At the liquid phase temperature, the matrix becomes saturated with tungsten, but this does not change the FCC character of the matrix. The sintering is usually done in a hydrogen atmosphere furnace in order to reduce the oxides on the tungsten powder surfaces and create clean, active surfaces which will enhance the adherence between the tungsten and the matrix. The hydrogen atmosphere also creates the presence of excess dissolved hydrogen in the alloy. It has been shown that the hydrogen degrades the toughness and ductility of the heavy alloy. A post-sintering vacuum heat treatment is generally required to insure that there is no residual hydrogen present. The as-sintered tensile strength of a 90% tungsten, 7% nickel, 3% iron alloy (90W) is in the range of 800 to 940 MPa and can be increased significantly by cold working, usually rolling or swaging. Swaging to reductions in area of 20% can result in tensile strengths of 1250 MPa or more. As the strength increases, the elongation, which may have been 30% or more, decreases to less than 5%

  16. Influence of fragment deformation and orientation on compact configuration of odd-Z superheavy nuclei

    International Nuclear Information System (INIS)

    Gurjit Kaur; Sandhu, Kirandeep; Sharma, Manoj K.

    2016-01-01

    The synthesis of heavy and superheavy nuclei is generally carried out by using hot and cold fusion reaction mechanisms. It has been noticed that, the cold fusion reactions occur at relatively low excitation energies (E*_C_N ∼ 10-20 MeV) whereas, the hot fusion reactions occur at excitation energies of E*_C_N ∼ 30- 50 MeV. The fusion mechanism is quite different in both the processes. In the cold fusion process, the interaction of spherical targets (Pb and Bi) with deformed light mass projectiles occurs. On the other hand, the fusion of deformed actinide targets with spherical "4"8Ca projectile characterize the hot interaction processes. Hence the deformations and orientations of targets and projectiles play extremely important role in the superheavy fusion process. The present analysis is carried out to aggrandize the work of which illustrate the role of deformations and orientations on even superheavy nuclei. Here, we extend this analysis for odd superheavy nuclei. It is relevant to note that the temperature and angular momentum effects are not included in the present analysis

  17. Study on entry criteria for severe accident management during hot leg LBLOCAs in a PWR

    International Nuclear Information System (INIS)

    Zhang, Longfei; Zhang, Dafa; Wang, Shaoming

    2007-01-01

    The risk of Large Break Loss of Coolant Accidents (LBLOCA) has been considered an important safety issue since the beginning of the nuclear power industry. The rapid depressurization occurs in the primary coolant circuit when a large break appears in a Pressurized Water Reactors (PWR).Then the coolant temperature reaches saturation at a very low pressure. The core outlet fluid temperatures maybe not reliable indicators of the core damage states at a such lower pressure. The problem is how to decide the time for water injection in the SAM (Severe Accident Management). An alternative entry criterion is the fluid temperature just above the hot channel in which the fluid temperature showed maximum among all the channels. For that reason, a systematic study of entry criterion of SAM for different hot leg break sizes in a 3-loop PWR has been started using the detailed system thermal hydraulic and severe accident analysis code package, RELAP/SCDAPSIM. Best estimate calculations of the large break LOCA of 15 cm, 20 cm and 25 cm without accident managements and in the case of high-pressure safety injection as the accident management were performed in this paper. The analysis results showed that the core exit temperatures are not reliable indicators of the peak core temperatures and core damage states once peak core temperatures reach 1500 K, and the proposed entry criteria for SAM at the time when the core outlet temperature reaches 900 K is not effective to prevent core melt. Then other analyses were performed with a parameter of fluid temperature just above the hot channel. The latter analysis showed that earlier water injection when the fluid temperature just above the hot channel reaches 900 K is effective to prevent further core melt. Since fuel surface and hot channel have spatial distribution and depend on a period of cycle operation, a series of thermocouples are required to install just above the fuel assembly. The maximum exit temperature of 900 K that captured by

  18. Developments in Processing by Severe Plastic Deformation at the 3rd Pan American Materials Congress

    Science.gov (United States)

    Figueiredo, Roberto B.; Kawasaki, Megumi; Langdon, Terence G.

    2017-10-01

    The 3rd Pan American Materials Congress in San Diego, California, February 26-March 2, 2017, provided an opportunity to bring together many participants working in the field of severe plastic deformation. This article provides a brief review of these activities.

  19. Deoti surgical flap and sphincteroplasty for treatment of severe perineal deformity

    Directory of Open Access Journals (Sweden)

    Beatriz D.S. Rodrigues

    2017-04-01

    Full Text Available Purpose: Anal incontinence is a very stigmatizing condition, which affects biopsychosocially the patient. It is a neglected, but quite common complication of obstetric and anorectal surgery, however it has treatment options. None of the treatment options have exceptional efficacy rates and still associated with risk of recurrence. The surgery techniques known are: anterior and posterior shortening procedure; post-anal repair; anterior elevator plasty and external sphincter plication; total pelvic floor repair and sphincter repair. None of them use a flap rotation of adipose tissue. The purpose is to propose a new surgery technique of anal sphincteroplasty, which uses flap rotation, for severe perineal deformity associated with anal incontinence. Methods: Patient with severe perineal deformity and anal incontinence treated with a new surgery technique of sphincteroplasty with flap rotation. Results: The severe perineal deformity was corrected with both esthetic and functional results. Anal continence measured by Wexner and Jorge assessment in a follow-up period of 2 years after the intervention. Pictures and video show esthetic and functional aspects. Conclusion: This is the first time that a flap rotation is used to treat a severe perineal deformity. And the technique presented promising outcomes, which allows perineum reconstruction that is similar to the original anatomy. Therefore, this technique is justified to better evaluate its efficiency and the impact on patients’ prognosis. Resumo: Objetivo: A incontinência anal é uma condição muito estigmatizante, que afeta biopsicossocialmente o paciente. É uma complicação negligenciada, mas bastante comum da cirurgia obstétrica e anorretal, no entanto, tem opções de tratamento. Nenhuma das opções de tratamento tem taxas de eficácia excepcionais e ainda está associada ao risco de recorrência. As técnicas cirúrgicas conhecidas são: procedimento de encurtamento anterior e posterior

  20. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation

    Directory of Open Access Journals (Sweden)

    Masahide Sato, Nobuhiro Tsuji, Yoritoshi Minamino and Yuichiro Koizumi

    2004-01-01

    Full Text Available The surface of the various kinds of metallic materials sheets were severely deformed by wire-brushing at ambient temperature to achieve nanocrystalline surface layer. The surface layers of the metallic materials developed by the near surface severe plastic deformation (NS-SPD were characterized by means of TEM. Nearly equiaxed nanocrystals with grain sizes ranging from 30 to 200 nm were observed in the near surface regions of all the severely scratched metallic materials, which are Ti-added ultra-low carbon interstitial free steel, austenitic stainless steel (SUS304, 99.99 wt.%Al, commercial purity aluminum (A1050 and A1100, Al–Mg alloy (A5083, Al-4 wt.%Cu alloy, OFHC-Cu (C1020, Cu–Zn alloy (C2600 and Pb-1.5%Sn alloy. In case of the 1050-H24 aluminum, the depth of the surface nanocrystalline layer was about 15 μm. It was clarified that wire-brushing is an effective way of NS-SPD, and surface nanocrystallization can be easily achieved in most of metallic materials.

  1. Microstructural evolution in tungsten and copper probes under hydrogen irradiation at ISTTOK

    International Nuclear Information System (INIS)

    Nunes, D.; Mateus, R.; Nogueira, I.D.; Carvalho, P.A.; Correia, J.B.; Shohoji, N.; Gomes, R.B.; Fernandes, H.; Silva, C.; Franco, N.; Alves, E.

    2009-01-01

    Commercially pure tungsten and copper wires acting as Langmuir probes to estimate edge parameters of ISTTOK plasma have been investigated for long term hydrogen migration. The microstructure of both materials revealed recrystallization and strong grain growth at the most severely exposed regions. A low number of large bubbles was observed at the most severely exposed regions, whereas a high density of small intergranular bubbles was found at more moderately exposed regions. Bubble distribution, lattice parameter, grain size, Young's modulus and microhardness were assessed across longitudinal sections of the probes. The results indicate that bubble formation in tungsten and copper first wall components can be expected to occur and strategies for minimization of this retention phenomenon need to be implemented.

  2. Numerical Modeling of Fluid Flow, Heat Transfer and Arc-Melt Interaction in Tungsten Inert Gas Welding

    Science.gov (United States)

    Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi

    2017-04-01

    The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.

  3. Influence of severe plastic deformation obtained by warm rolling on microstructure and mechanical properties of the ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Luana Alves; Campos, Wagner Reis Costa; Vilela, Jefferson José, E-mail: luana_alves_barbosa@hotmail.com, E-mail: wrrc@cdtn.br, E-mail: jjv@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Miqueletti, Estevesson Ferreira; Mazzer, Eric Marchezini; Santos, Dagoberto B., E-mail: estevess@demet.ufmg.br, E-mail: marchezini@demet.ufmg.br, E-mail: dsantos@demet.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Generation IV reactors require research on new materials. For example, materials that will be used in the reactor vessel must be resistant to creep and have high toughness. Grain refining is a technique used to improve toughness. This grain refinement can be achieved by severe plastic deformation. In this work, the stainless steel 409 was used to simulate the EUROFER one type of ODS steel. The rolling process was applied to make the severe plastic deformation. The rolling was performed at 600°C which corresponds to the warm working condition in the absence of dynamic recrystallization. The rolling schedule studied allowed a logarithmic strain accumulation of 3.16. The rolled sheet had a yield stress of 822 MPa and a hardness of 302 HV. The grains became quite elongated characteristic of a severe plastic deformation. The recrystallization temperature of the rolled sheet was approximately 500°C. It was obtained by heat treatment and hardness measurement. (author)

  4. Influence of severe plastic deformation obtained by warm rolling on microstructure and mechanical properties of the ferritic stainless steel

    International Nuclear Information System (INIS)

    Barbosa, Luana Alves; Campos, Wagner Reis Costa; Vilela, Jefferson José; Miqueletti, Estevesson Ferreira; Mazzer, Eric Marchezini; Santos, Dagoberto B.

    2017-01-01

    Generation IV reactors require research on new materials. For example, materials that will be used in the reactor vessel must be resistant to creep and have high toughness. Grain refining is a technique used to improve toughness. This grain refinement can be achieved by severe plastic deformation. In this work, the stainless steel 409 was used to simulate the EUROFER one type of ODS steel. The rolling process was applied to make the severe plastic deformation. The rolling was performed at 600°C which corresponds to the warm working condition in the absence of dynamic recrystallization. The rolling schedule studied allowed a logarithmic strain accumulation of 3.16. The rolled sheet had a yield stress of 822 MPa and a hardness of 302 HV. The grains became quite elongated characteristic of a severe plastic deformation. The recrystallization temperature of the rolled sheet was approximately 500°C. It was obtained by heat treatment and hardness measurement. (author)

  5. Fabrication of tungsten wire needles

    International Nuclear Information System (INIS)

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading

  6. Mechanical twinning and texture evolution in severely deformed Ti-6Al-4V at high temperatures

    International Nuclear Information System (INIS)

    Yapici, Guney Guven; Karaman, Ibrahim; Luo Zhiping

    2006-01-01

    We have investigated the deformation behavior and texture evolution of two-phase Ti-6Al-4V subjected to severe plastic deformation using equal channel angular extrusion (ECAE) at a high temperature (∼0.55T m ). Significant deformation twinning activity was observed after one and two ECAE passes in a 90 deg, die at 800 deg. C. Twinning activity at such a high temperature is a first-time observation in this material and is attributed to the high strain and stress levels imposed during ECAE. High stress levels and the stress state can affect the separation of twinning partials considerably. Resolved shear stress magnitudes on twin partials were found to be high during the ECAE process that helps the nucleation of mechanical twinning. The twinning mode was identified as the {101-bar 1} type using electron diffraction patterns which is one of the twinning modes observed in Ti at temperatures above 350 deg. C. Although only one twinning variant was mainly evident after one pass, multiple twin variants of the same mode were observed after the second pass with a significant increase in twin volume fraction. ECAE processing aligned the basal planes of the hexagonal close-packed α phase, initially having a random texture, with the ECAE shear plane. Texture evolution during ECAE was successfully predicted using a viscoplastic self-consistent crystal plasticity framework capturing the effect of the observed twinning mode on texture. Mechanical twins formed during ECAE and grain refinement led to a noteworthy improvement in flow stresses under tension and compression at room temperature. A strong directional anisotropy in yield strengths was also evident which cannot be explained only by crystallographic texture. It was speculated that the asymmetry of critical resolved shear stresses of deformation modes and the processing-induced deformation structure should play a role. With the supporting evidence from our previous works on the severe plastic deformation of other

  7. Hot soup! Correlating the severity of liquid scald burns to fluid and biomedical properties.

    Science.gov (United States)

    Loller, Cameron; Buxton, Gavin A; Kerzmann, Tony L

    2016-05-01

    Burns caused by hot drinks and soups can be both debilitating and costly, especially to pediatric and geriatric patients. This research is aimed at better understanding the fluid properties that can influence the severity of skin burns. We use a standard model which combines heat transfer and biomedical equations to predict burn severity. In particular, experimental data from a physical model serves as the input to our numerical model to determine the severity of scald burns as a consequence of actual fluid flows. This technique enables us to numerically predict the heat transfer from the hot soup into the skin, without the need to numerically estimate the complex fluid mechanics and thermodynamics of the potentially highly viscous and heterogeneous soup. While the temperature of the soup is obviously is the most important fact in determining the degree of burn, we also find that more viscous fluids result in more severe burns, as the slower flowing thicker fluids remain in contact with the skin for longer. Furthermore, other factors can also increase the severity of burn such as a higher initial fluid temperature, a greater fluid thermal conductivity, or a higher thermal capacity of the fluid. Our combined experimental and numerical investigation finds that for average skin properties a very viscous fluid at 100°C, the fluid must be in contact with the skin for around 15-20s to cause second degree burns, and more than 80s to cause a third degree burn. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  8. The tungsten powder study of the dispenser cathode

    International Nuclear Information System (INIS)

    Bao Jixiu; Wan Baofei

    2006-01-01

    The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 deg. C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment

  9. The tungsten powder study of the dispenser cathode

    Science.gov (United States)

    Bao, Ji-xiu; Wan, Bao-fei

    2006-06-01

    The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 °C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment.

  10. Optimization of armour geometry and bonding techniques for tungsten-armoured high heat flux components

    International Nuclear Information System (INIS)

    Giniyatulin, R.N.; Komarov, V.L.; Kuzmin, E.G.; Makhankov, A.N.; Mazul, I.V.; Yablokov, N.A.; Zhuk, A.N.

    2002-01-01

    Joining of tungsten with copper-based cooling structure and armour geometry optimization are the major aspects in development of the tungsten-armoured plasma facing components (PFC). Fabrication techniques and high heat flux (HHF) tests of tungsten-armoured components have to reflect different PFC designs and acceptable manufacturing cost. The authors present the recent results of tungsten-armoured mock-ups development based on manufacturing and HHF tests. Two aspects were investigated--selection of armour geometry and examination of tungsten-copper bonding techniques. Brazing and casting tungsten-copper bonding techniques were used in small mock-ups. The mock-ups with armour tiles (20x5x10, 10x10x10, 20x20x10, 27x27x10) mm 3 in dimensions were tested by cyclic heat fluxes in the range of (5-20) MW/m 2 , the number of thermal cycles varied from hundreds to several thousands for each mock-up. The results of the tests show the applicability of different geometry and different bonding technique to corresponding heat loading. A medium-scale mock-up 0.6-m in length was manufactured and tested. HHF tests of the medium-scale mock-up have demonstrated the applicability of the applied bonding techniques and armour geometry for full-scale PFC's manufacturing

  11. Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fiflis, P., E-mail: fiflis1@illinois.edu; Connolly, N.; Ruzic, D.N.

    2016-12-15

    Helium ion bombardment of tungsten at temperatures between approximately one third and one half of its melting point has shown growth of nanostructures colloquially referred to as “fuzz”. The nanostructures take the form of thin tendrils of diameter about 30 nm and grow out of the bulk material. Tungsten will and does compose one of the key materials for plasma facing components (PFCs) in fusion reactors. The formation of nanostructured fuzz layers on PFCs would be detrimental to the performance of the reactor, and must therefore be avoided. Previous experiments have shown evidence that tungsten fuzz is initially grown by loop punching of helium bubbles created in the bulk. However, once the tendrils grow to sufficient length, the tendrils should intercept the entire helium flux, halting the production of fuzz. Fuzz continues to grow though. To increase the understanding of the mechanisms of tungsten fuzz formation, and thereby aid the avoidance of its production, a series of tests were performed to examine the validity of several theories regarding later stage tungsten fuzz growth. Tests showed that the fuzz formation was dependent solely on the bombardment of helium ions, and not on electric fields, or adatom diffusion. Experiments employing a tungsten coated molybdenum sample indicate the presence of a strong mixing layer and strongly suggest that tungsten fuzz growth continues to occur from the bottom up even as the tendrils grow in size. Tests also show a similarity between different metals exposed to helium ion fluxes where the ratio of bubble diameter to tendril diameter is constant.

  12. Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas

    International Nuclear Information System (INIS)

    Fiflis, P.; Connolly, N.; Ruzic, D.N.

    2016-01-01

    Helium ion bombardment of tungsten at temperatures between approximately one third and one half of its melting point has shown growth of nanostructures colloquially referred to as “fuzz”. The nanostructures take the form of thin tendrils of diameter about 30 nm and grow out of the bulk material. Tungsten will and does compose one of the key materials for plasma facing components (PFCs) in fusion reactors. The formation of nanostructured fuzz layers on PFCs would be detrimental to the performance of the reactor, and must therefore be avoided. Previous experiments have shown evidence that tungsten fuzz is initially grown by loop punching of helium bubbles created in the bulk. However, once the tendrils grow to sufficient length, the tendrils should intercept the entire helium flux, halting the production of fuzz. Fuzz continues to grow though. To increase the understanding of the mechanisms of tungsten fuzz formation, and thereby aid the avoidance of its production, a series of tests were performed to examine the validity of several theories regarding later stage tungsten fuzz growth. Tests showed that the fuzz formation was dependent solely on the bombardment of helium ions, and not on electric fields, or adatom diffusion. Experiments employing a tungsten coated molybdenum sample indicate the presence of a strong mixing layer and strongly suggest that tungsten fuzz growth continues to occur from the bottom up even as the tendrils grow in size. Tests also show a similarity between different metals exposed to helium ion fluxes where the ratio of bubble diameter to tendril diameter is constant.

  13. Thermal stability of carbon nanotubes probed by anchored tungsten nanoparticles

    Directory of Open Access Journals (Sweden)

    Xianlong Wei, Ming-Sheng Wang, Yoshio Bando and Dmitri Golberg

    2011-01-01

    Full Text Available The thermal stability of multiwalled carbon nanotubes (CNTs was studied in high vacuum using tungsten nanoparticles as miniaturized thermal probes. The particles were placed on CNTs inside a high-resolution transmission electron microscope equipped with a scanning tunneling microscope unit. The setup allowed manipulating individual nanoparticles and heating individual CNTs by applying current to them. CNTs were found to withstand high temperatures, up to the melting point of 60-nm-diameter W particles (~3400 K. The dynamics of W particles on a hot CNT, including particle crystallization, quasimelting, melting, sublimation and intradiffusion, were observed in real time and recorded as a video. Graphite layers reel off CNTs when melted or premelted W particles revolve along the tube axis.

  14. Effects of fusion relevant transient energetic radiation, plasma and thermal load on PLANSEE double forged tungsten samples in a low-energy plasma focus device

    Science.gov (United States)

    Javadi, S.; Ouyang, B.; Zhang, Z.; Ghoranneviss, M.; Salar Elahi, A.; Rawat, R. S.

    2018-06-01

    Tungsten is the leading candidate for plasma facing component (PFC) material for thermonuclear fusion reactors and various efforts are ongoing to evaluate its performance or response to intense fusion relevant radiation, plasma and thermal loads. This paper investigates the effects of hot dense decaying pinch plasma, highly energetic deuterium ions and fusion neutrons generated in a low-energy (3.0 kJ) plasma focus device on the structure, morphology and hardness of the PLANSEE double forged tungsten (W) samples surfaces. The tungsten samples were provided by Forschungszentrum Juelich (FZJ), Germany via International Atomic Energy Agency, Vienna, Austria. Tungsten samples were irradiated using different number of plasma focus (PF) shots (1, 5 and 10) at a fixed axial distance of 5 cm from the anode top and also at various distances from the top of the anode (5, 7, 9 and 11 cm) using fixed number (5) of plasma focus shots. The virgin tungsten sample had bcc structure (α-W phase). After PF irradiation, the XRD analysis showed (i) the presence of low intensity new diffraction peak corresponding to β-W phase at (211) crystalline plane indicating the partial structural phase transition in some of the samples, (ii) partial amorphization, and (iii) vacancy defects formation and compressive stress in irradiated tungsten samples. Field emission scanning electron microscopy showed the distinctive changes to non-uniform surface with nanometer sized particles and particle agglomerates along with large surface cracks at higher number of irradiation shots. X-ray photoelectron spectroscopy analysis demonstrated the reduction in relative tungsten oxide content and the increase in metallic tungsten after irradiation. Hardness of irradiated samples initially increased for one shot exposure due to reduction in tungsten oxide phase, but then decreased with increasing number of shots due to increasing concentration of defects. It is demonstrated that the plasma focus device provides

  15. Heat load and deuterium plasma effects on SPS and WSP tungsten

    Directory of Open Access Journals (Sweden)

    Vilémová Monika

    2015-06-01

    Full Text Available Tungsten is a prime choice for armor material in future nuclear fusion devices. For the realization of fusion, it is necessary to address issues related to the plasma–armor interactions. In this work, several types of tungsten material were studied, i.e. tungsten prepared by spark plasma sintering (SPS and by water stabilized plasma spraying (WSP technique. An intended surface porosity was created in the samples to model hydrogen/helium bubbles. The samples were subjected to a laser heat loading and a radiation loading of deuterium plasma to simulate edge plasma conditions of a nuclear fusion device (power density of 108 W/cm2 and 107 W/cm2, respectively, in the pulse intervals up to 200 ns. Thermally induced changes in the morphology and the damage to the studied surfaces are described. Possible consequences for the fusion device operation are pointed out.

  16. Variation of microstructures and mechanical properties of hot heading process of super heat resisting alloy Inconel 718

    International Nuclear Information System (INIS)

    Choi, Hong Seok; Ko, Dae Chul; Kim, Byung Min

    2007-01-01

    Metal forming is the process changing shapes and mechanical properties of the workpiece without initial material reduction through plastic deformation. Above all, because of hot working carried out above recrystallization temperature can be generated large deformation with one blow, it can produce with forging complicated parts or heat resisting super alloy such as Inconel 718 has the worst forgeability. In this paper, we established optimal variation of hot heading process of the Inconel 718 used in heat resisting component and evaluated mechanical properties hot worked product. Die material is SKD61 and initial temperature is 300 .deg. C. Initial billet temperature and punch velocity changed, relatively. Friction coefficient is 0.3 as lubricated condition of hot working. CAE is carried out using DEFORM software before marking the tryout part, and it is manufactured 150 ton screw press with optimal condition. It is know that forming load was decreased according to decreasing punch velocity

  17. Effect of preheating on the damage to tungsten targets after repetitive ITER ELM-like heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Makhlay, V A [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Bandura, A N [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Byrka, O V [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Garkusha, I E [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Chebotarev, V V [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Tereshin, V I [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Landman, I [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany)

    2007-03-15

    The behaviour of a preheated tungsten target under repetitive pulsed plasma impacts of the energy density 0.75 MJ m{sup -2} with the pulse duration of 0.25 ms was studied with the quasi-stationary plasma accelerator (QSPA) Kh-50. Two identical samples of pure sintered tungsten have been exposed to numbers of pulses exceeding 100. One sample was maintained at room temperature and the other sample preheated at 650 deg. C. The experiments demonstrated that on the cold surface some macro-cracks dominate, but on the hot surface they do not develop. However, in both cases some fine meshes of micro-cracks are observed. With increasing the number of exposures, the width of the micro-cracks gradually increases, achieving 0.8-1.5 {mu}m after 100 pulses. In addition, the SEM shows some cellular structure with the cell sizes about 0.3 {mu}m, and after large numbers of exposures some blisters of sizes up to 100-150 {mu}m appear.

  18. Thermal Spray Coating of Tungsten for Tokamak Device

    International Nuclear Information System (INIS)

    Jiang Xianliang; Gitzhofer, F; Boulos, M I

    2006-01-01

    Thermal spray, such as direct current (d.c.) plasma spray or radio frequency induced plasma spray, was used to deposit tungsten coatings on the copper electrodes of a tokamak device. The tungsten coating on the outer surface of one copper electrode was formed directly through d.c. plasma spraying of fine tungsten powder. The tungsten coating/lining on the inner surface of another copper electrode could be formed indirectly through induced plasma spraying of coarse tungsten powder. Scanning electron microscopy (SEM) was used to examine the cross section and the interface of the tungsten coating. Energy Dispersive Analysis of X-ray (EDAX) was used to analyze the metallic elements attached to a separated interface. The influence of the particle size of the tungsten powder on the density, cracking behavior and adhesion of the coating is discussed. It is found that the coarse tungsten powder with the particle size of 45 ∼ 75 μm can be melted and the coating can be formed only by using induced plasma. The coating deposited from the coarse powder has much higher cohesive strength, adhesive strength and crack resistance than the coating made from the fine powder with a particle size of 5 μm

  19. Tunneling from super- to normal-deformed minima in nuclei

    International Nuclear Information System (INIS)

    Khoo, T. L.

    1998-01-01

    An excited minimum, or false vacuum, gives rise to a highly elongated superdeformed (SD) nucleus. A brief review of superdeformation is given, with emphasis on the tunneling from the false to the true vacuum, which occurs in the feeding and decay of SD bands. During the feeding process the tunneling is between hot states, while in the decay it is from a cold to a hot state. The γ spectra connecting SD and normal-deformed (ND) states provide information on several physics issues: the decay mechanism; the spin/parity quantum numbers, energies and microscopic structures of SD bands; the origin of identical SD bands; the quenching of pairing with excitation energy; and the chaoticity of excited ND states at 2.5-5 MeV. Other examples of tunneling in nuclei, which are briefly described, include the possible role of tunneling in ΔI = 4 bifurcation in SD bands, sub-barrier fusion and proton emitters

  20. Tunneling from super- to normal-deformed minima in nuclei.

    Energy Technology Data Exchange (ETDEWEB)

    Khoo, T. L.

    1998-01-08

    An excited minimum, or false vacuum, gives rise to a highly elongated superdeformed (SD) nucleus. A brief review of superdeformation is given, with emphasis on the tunneling from the false to the true vacuum, which occurs in the feeding and decay of SD bands. During the feeding process the tunneling is between hot states, while in the decay it is from a cold to a hot state. The {gamma} spectra connecting SD and normal-deformed (ND) states provide information on several physics issues: the decay mechanism; the spin/parity quantum numbers, energies and microscopic structures of SD bands; the origin of identical SD bands; the quenching of pairing with excitation energy; and the chaoticity of excited ND states at 2.5-5 MeV. Other examples of tunneling in nuclei, which are briefly described, include the possible role of tunneling in {Delta}I = 4 bifurcation in SD bands, sub-barrier fusion and proton emitters.

  1. Hot mechanical behaviour of dispersion strengthened Cu alloys

    International Nuclear Information System (INIS)

    Garcia G, Jose; Espinoza G, Rodrigo; Palma H, Rodrigo; Sepulveda O, Aquiles

    2003-01-01

    This work is part of a research project which objective is the improvement of the high-temperature mechanical properties of copper, without an important decrease of the electrical or thermal conduction properties. The general hypothesis is that this will be done by the incorporation of nanometric ceramic dispersoids for hindering the dislocation and grain boundaries movement. In this context, the object of the present work is the study of the resistance to hot deformation of dispersion-strengthened copper alloys which have prepared by reactive milling. Two different alloys, Cu-2,39wt.%Ti-0.56wt.%C and Cu-1.18wt.%Al, were prepared so as obtain a copper matrix reinforced with nanometric TiC y Al 2 O 3 particles with a nominal total amount of 5 vol.%. The particles were developed by an in-situ formation process during milling. The materials were prepared in an attritor mill, and consolidated by extrusion at 750 o C, with an area reduction rate of 10:1. The resistance to hot deformation was evaluated by hot compression tests at 500 and 850 o C, at initial strain rates of 10 -3 and 10 -4 s-1. To evaluate the material softening due temperature, annealing at 400, 650 y 900 o C during 1h were applied; after that, hardness was measured at room temperature. Both studies alloys presented a higher resistance to hot deformation than pure copper, with or without milling. Moreover, the Cu-Ti-C alloy presented a mechanical resistance higher than that of the Cu-Al one. Both alloys presented strain-stress compression curves with a typical hot-work shape: an initial maximum followed by a stationary plateau. The Cu-Ti-C alloy had a higher hardness and did not present a hardness decay even after annealings at the higher temperature imposed (900 o C), while the Cu-Al alloy did exhibit a strong decay of hardness after the annealing at 900 o C. The best behaviour exhibited by the Cu-Ti C alloy, was attributed to the formation of a major quantity of dispersoids that in the Cu-Al alloy. In

  2. Operation of ASDEX Upgrade with tungsten coated walls

    International Nuclear Information System (INIS)

    Rohde, V.

    2002-01-01

    An alternative for low-Z materials in the main chamber of a future fusion device are high-Z materials, but the maximal tolerable concentration in the plasma core is restricted. A step by step approach to employ tungsten at the central column of ASDEX Upgrade was started in 1999. Meanwhile almost the whole central column is covered with tiles, which were coated by PVD with tungsten. Up to now 9000 s of plasma discharge covering all relevant scenarios were performed. Routine operation of ASDEX Upgrade was not affected by the tungsten. Typical concentrations below 10 -5 were found. The tungsten concentration is mostly connected to the transport into the core plasma, not to the tungsten erosion. It can be demonstrated, that additional central heating can eliminate the tungsten accumulation. These experiments demonstrate the compatibility of fusion plasmas with W plasma facing components under reactor relevant conditions. The erosion pattern found by post mortem analysis indicates that the main effect is ion sputtering. The main erosion of tungsten seems to occur during plasma ramp-up and ramp-down. (author)

  3. Synthesis and electrical characterization of tungsten oxide nanowires

    Institute of Scientific and Technical Information of China (English)

    Huang Rui; Zhu Jing; Yu Rong

    2009-01-01

    Tungsten oxide nanowires of diameters ranging from 7 to 200 nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour-solid (VS) mechanism. Tin powders are used to control oxygen concentration in the furnace, thereby assisting the growth of the tungsten oxide nanowires. The grown tungsten oxide nanowires are determined to be of crystalline W18O49. Ⅰ-Ⅴ curves are measured by an in situ transmission electron microscope (TEM) to investigate the electrical properties of the nanowires. All of the Ⅰ-Ⅴ curves observed are symmetric, which reveals that the tungsten oxide nanowires are semiconducting. Quantitative analyses of the experimental I V curves by using a metal-semiconductor-metal (MSM) model give some intrinsic parameters of the tungsten oxide nanowires, such as the carrier concentration, the carrier mobility and the conductivity.

  4. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    Science.gov (United States)

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  5. The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing

    DEFF Research Database (Denmark)

    Apps, P.J.; Bowen, Jacob R.; Prangnell, P.B.

    2003-01-01

    The effect of second-phase particles on the rate of grain refinement during severe deformation processing has been investigated, by comparing the microstructure evolution in an AA8079 aluminium alloy, containing 2.5 vol.% of ~2 μm particles, with that in a high purity, single-phase, Al-0.13% Mg a...... by an effective strain of only five in the particle-containing alloy, compared to ten in the single-phase material. The mechanisms that contribute to this acceleration of the grain refinement process are discussed.......The effect of second-phase particles on the rate of grain refinement during severe deformation processing has been investigated, by comparing the microstructure evolution in an AA8079 aluminium alloy, containing 2.5 vol.% of ~2 μm particles, with that in a high purity, single-phase, Al-0.13% Mg...... alloy, deformed identically by ECAE to an effective strain of ten. The materials were analysed by high-resolution EBSD orientation mapping, which revealed that grain refinement occurred at a dramatically higher rate in the particle-containing alloy. A submicron grain structure could be achieved...

  6. Constitutive modeling of two-phase metallic composites with application to tungsten-based composite 93W–4.9Ni–2.1Fe

    International Nuclear Information System (INIS)

    Lu, W.R.; Gao, C.Y.; Ke, Y.L.

    2014-01-01

    The two-phase metallic composites, composed by the metallic particulate reinforcing phase and the metallic matrix phase, have attracted a lot of attention in recent years for their excellent material properties. However, the constitutive modeling of two-phase metallic composites is still lacking currently. Most used models for them are basically oriented for single-phase homogeneous metallic materials, and have not considered the microstructural evolution of the components in the composite. This paper develops a new constitutive model for two-phase metallic composites based on the thermally activated dislocation motion mechanism and the volume fraction evolution. By establishing the relation between microscopic volume fraction and macroscopic state variables (strain, strain rate and temperature), the evolution law of volume fraction during the plastic deformation in two-phase composites is proposed for the first time and introduced into the new model. Then the new model is applied to a typical two-phase tungsten-based composite – 93W–4.9Ni–2.1Fe tungsten heavy alloy. It has been found that our model can effectively describe the plastic deformation behaviors of the tungsten-based composite, because of the introduction of volume fraction evolution and the connecting of macroscopic state variables and micromechanical characteristics in the constitutive model. The model's validation by experimental data indicates that our new model can provide a satisfactory prediction of flow stress for two-phase metallic composites, which is better than conventional single-phase homogeneous constitutive models including the Johnson–Cook (JC), Khan–Huang–Liang (KHL), Nemat-Nasser–Li (NNL), Zerilli–Armstrong (ZA) and Voyiadjis–Abed (VA) models

  7. Effects of process parameters on tungsten boride production from WO{sub 3} by self propagating high temperature synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yazici, Sertac [Metallurgical and Materials Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey); Derin, Bora, E-mail: bderin@itu.edu.tr [Metallurgical and Materials Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer We produced tungsten boride compounds by SHS method. Black-Right-Pointing-Pointer Mg containing byproducts were leached out by using a hot aqueous HCl media. Black-Right-Pointing-Pointer The ratio of W{sub 2}B{sub 5}/WB was found to be {approx}2.0 containing minor phases of W{sub 2}B and W. - Abstract: In the present study, the production parameters of tungsten boride compounds by self-propagating high-temperature synthesis (SHS) method and following leaching process were investigated. In the SHS stage, the products consisting of tungsten borides, magnesium oxide, magnesium borate, and also minor compounds were obtained by using different initial molar ratios of WO{sub 3}, Mg and B{sub 2}O{sub 3} as starting materials. In the leaching step, Mg containing byproducts, i.e. MgO and Mg{sub 3}B{sub 2}O{sub 6}, existed in the selected SHS product synthesized at 1:8:2.5 initial molar ratio of WO{sub 3}:Mg:B{sub 2}O{sub 3} were leached out by using aqueous HCl solution to obtain clean tungsten boride compounds at different experimental parameters which are time, acid concentration and temperature. The acid leaching experiments of the SHS product showed that optimum leaching conditions could be achieved by using 5.8 M HCl at 1/10 S/L ratio and the temperature of 80 Degree-Sign C for 60 min.

  8. Structure of deformed metals. Struktura deformirovannykh metallov

    Energy Technology Data Exchange (ETDEWEB)

    Bernshtein, M L

    1977-01-01

    A teaching aid for students at metallurgical and machine-building institutions of higher learning. It can also be used by engineering-technical personnel and scientists. A presentation is made of physical concepts on the mechanism of plastic deformation and its effect on fine structure, structure and properties of metals and alloys. An examination is made of the processes of recovery, polygonization and recrystallization during the heating of cold-deformed metals. The influence of thermal deformation is described to account for the interaction between admixture atoms and dislocations, phase and structural transformations. An examination is made of the phenomenon of superplasticity. Special attention is given to the process of hot deformation. An analysis is made of phenomena at the basis of hardening steel as a result of thermo-mechanical processing, including controlled rolling.

  9. Effect of high-flux H/He plasma exposure on tungsten damage due to transient heat loads

    Energy Technology Data Exchange (ETDEWEB)

    De Temmerman, G., E-mail: gregory.detemmerman@iter.org [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregion Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); ITER Organization, Route de Vinon sur Verdon, CS 90 096, 13067 Saint Paul-lez-Durance (France); Morgan, T.W.; Eden, G.G. van; Kruif, T. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregion Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); Wirtz, M. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Microstructure and Properties of Materials (IEK-2), EURATOM Association, 52425 Jülich (Germany); Matejicek, J.; Chraska, T. [Institute of Plasma Physics, Association EURATOM-IPP, CR Prague (Czech Republic); Pitts, R.A. [ITER Organization, Route de Vinon sur Verdon, CS 90 096, 13067 Saint Paul-lez-Durance (France); Wright, G.M. [MIT Plasma Science and Fusion Center, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2015-08-15

    The thermal shock behaviour of tungsten exposed to high-flux plasma is studied using a high-power laser. The cases of laser-only, sequential laser and hydrogen (H) plasma and simultaneous laser plus H plasma exposure are studied. H plasma exposure leads to an embrittlement of the material and the appearance of a crack network originating from the centre of the laser spot. Under simultaneous loading, significant surface melting is observed. In general, H plasma exposure lowers the heat flux parameter (F{sub HF}) for the onset of surface melting by ∼25%. In the case of He-modified (fuzzy) surfaces, strong surface deformations are observed already after 1000 laser pulses at moderate F{sub HF} = 19 MJ m{sup −2} s{sup −1/2}, and a dense network of fine cracks is observed. These results indicate that high-fluence ITER-like plasma exposure influences the thermal shock properties of tungsten, lowering the permissible transient energy density beyond which macroscopic surface modifications begin to occur.

  10. Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis

    International Nuclear Information System (INIS)

    Mishra, A.; Kad, B.K.; Gregori, F.; Meyers, M.A.

    2007-01-01

    The evolution of microstructure and the mechanical response of copper subjected to severe plastic deformation using equal channel angular pressing (ECAP) was investigated. Samples were subjected to ECAP under three different processing routes: B C , A and C. The microstructural refinement was dependent on processing with route B C being the most effective. The mechanical response is modeled by an equation containing two dislocation evolution terms: one for the cells/subgrain interiors and one for the cells/subgrain walls. The deformation structure evolves from elongated dislocation cells to subgrains to equiaxed grains with diameters of ∼200-500 nm. The misorientation between adjacent regions, measured by electron backscatter diffraction, gradually increases. The mechanical response is well represented by a Voce equation with a saturation stress of 450 MPa. Interestingly, the microstructures produced through adiabatic shear localization during high strain rate deformation and ECAP are very similar, leading to the same grain size. It is shown that both processes have very close Zener-Hollomon parameters (ln Z ∼ 25). Calculations show that grain boundaries with size of 200 nm can rotate by ∼30 deg. during ECAP, thereby generating and retaining a steady-state equiaxed structure. This is confirmed by a grain-boundary mobility calculation which shows that their velocity is 40 nm/s for a 200 nm grain size at 350 K, which is typical of an ECAP process. This can lead to the grain-boundary movement necessary to retain an equiaxed structure

  11. Processing of tungsten scrap into powders by electroerosion disintegration

    International Nuclear Information System (INIS)

    Fominskii, L.P.; Leuchuk, M.V.; Myuller, A.S.; Tarabrina, V.P.

    1985-01-01

    Utilization of tungsten and tungsten alloy swarf and other waste and also of rejected and worn parts is a matter of great importance in view of the shortage of this metal. The authors examine the electroerosion (EE) disintegration of tungsten in water as a means of utilizing swarf and other loose waste. Unlike chemical methods, EE disintegration ensures ecological purity since there are no effluent waters or toxic discharges. Swarf and trimmings of rods of diameters up to 20 mm obtained after the lathe-turning of tungsten bars sintered from PVN and PVV tungsten powders were disintegrated in water at room temperature between tungsten electrodes. The phase composition of the powder was studied using FeK /SUB alpha/ radiation, by x-ray diffraction methods in a DRON-2 diffractometer with a graphite monochromator on the secondary beam. When tungsten is heated to boiling during EE disintegration, the impurities present in it can evaporate and burn out. Thus, tungsten powder produced by EE disintegration can be purer than the starting metal

  12. Solvent extraction in analytical chemistry of tungsten (Review)

    International Nuclear Information System (INIS)

    Ivanov, V.M.; Busev, A.I.; Sokolova, T.A.

    1975-01-01

    The use of extraction for isolating and concentrating tungsten with subsequent determination by various methods is considered. For tungsten extractants of all types are employed: neutral, basic and acidic. Neutral extractants are used for isolating and concentrating tungsten, basic and acidic ones are employed, as a rule, for the isolation and subsequent determination of tungsten. This type of extractants is highly promising, since, selectively extracting tungsten, they allow its simultaneous determination. Neutral extractants are oxygen-containing solvents, TBP; basic extractants are aniline, pyridine, 1-naphthylamine, trialkylbenzylammoniumanitrate. As acidic reagents use is made of 8-oxyquinoline and its derivatives, oximes and hydroxamic acids, β-diketones, carbaminates. In the extraction radioactive isotope 185 W is employed

  13. Surface energy anisotropy of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R; Grenga, H E [Georgia Inst. of Tech., Atlanta (USA). School of Chemical Engineering

    1976-10-01

    Field-ion microscopy was used to study the faceting behavior and/or surface energy anisotropy of tungsten in vacuum and in hydrogen. In vacuum below 1700 K the activation energy for (110) facet growth agreed with values previously reported for surface diffusion on tungsten. The observed anisotropy values at 0.5 Tsub(m), where Tsub(m) is the absolute melting temperature of tungsten (approximately 3680 K), were different from those previously reported at higher temperatures and more nearly agreed with broken bond calculations based on Mie potential using m=5, n=8, and a 1.5% lattice expansion. Hydrogen appeared to have a negligible effect on surface energy anisotropy, but did preferentially increase surface diffusion rates on (310) regions.

  14. Oxide dispersion strengthened ferritic alloys. 14/20% chromium: effects of processing on deformation texture, recrystallization and tensile properties

    International Nuclear Information System (INIS)

    Regle, H.

    1994-01-01

    The ferritic oxide dispersion strengthened alloys are promising candidates for high temperature application materials, in particular for long life core components of advanced nuclear reactors. The aim of this work is to control the microstructure, in order to optimise the mechanical properties. The two ferritic alloys examined here, MA956 and MA957, are obtained by Mechanical Alloying techniques. They are characterised by quite anisotropic microstructure and mechanical properties. We have investigated the influence of hot and cold working processes (hot extrusion, swaging and cold-drawing) and recrystallization heat treatments on deformation textures, microstructures and tensile properties. The aim was to control the size of the grains and their anisotropic shape, using recrystallization heat treatments. After consolidation and hot extrusion, as-received materials present a extremely fine microstructure with elongated grains and a very strong (110) deformation texture with single-crystal character. At that stage of processing, recrystallization temperature are very high (1450 degrees C for MA957 alloy and 1350 degrees C for MA956 alloy) and materials develop millimetric recrystallized grains. Additional hot extrusion induce a fibre texture. Cold-drawing maintains a fibre texture, but the intensity decreases with increasing cold-work level. For both materials, the decrease of texture intensities correspond to a decrease of the recrystallization temperatures (from 1350 degrees C for a low cold-work level to 750 degrees C for 60 % cold-deformation, case of MA956 alloy) and a refinement of the grain size (from a millimetric size to less than an hundred of micrometer). Swaging develop a cyclic component where the intensity increases with increasing deformation in this case, the recrystallization temperature remains always very high and the millimetric grain size is slightly modified, even though cold-work level increases. Technologically, cold-drawing is the only way

  15. Genotoxic Changes to Rodent Cells Exposed in Vitro to Tungsten, Nickel, Cobalt and Iron

    Directory of Open Access Journals (Sweden)

    Stephanie Bardack

    2014-03-01

    Full Text Available Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted.

  16. High Heat Load Properties of Ultra Fine Grain Tungsten

    International Nuclear Information System (INIS)

    Zhou, Z.; Du, J.; Ge, C.; Linke, J.; Pintsuk, G.; Song, S.X.

    2007-01-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 μm, 1 μm and 3 μm were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m 2 respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m 2 . Particle erosions occurred for tungsten with 3 μm size at 0.33 GW/m 2 and for tungsten with 0.2 and 1 μm size at 0.55 GW/m 2 . The weight loss of tungsten with 0.2, 1 and 3 μm size are 2,0.1,0.6 mg respectively at 0.88 GW/m 2 . The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 μm size has the best performance. (authors)

  17. High Heat Load Properties of Ultra Fine Grain Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Du, J.; Ge, C. [Lab. of Special Ceramic and P/M, University of Science and Technology, 100083 Beijing (China); Linke, J.; Pintsuk, G. [FZJ-Forschungszentrum Juelich GmbH, Association Euratom-FZJ, Institut fur Plasmaphysik, Postfach 1913, D-52425 Juelich (Germany); Song, S.X. [Research Center on Fusion Materials (RCFM), University of Science and Technology Beijing (USTB), 100083 Beijing (China)

    2007-07-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 {mu}m, 1 {mu}m and 3 {mu}m were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m{sup 2} respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m{sup 2}. Particle erosions occurred for tungsten with 3 {mu}m size at 0.33 GW/m{sup 2} and for tungsten with 0.2 and 1 {mu}m size at 0.55 GW/m{sup 2}. The weight loss of tungsten with 0.2, 1 and 3 {mu}m size are 2,0.1,0.6 mg respectively at 0.88 GW/m{sup 2}. The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 {mu}m size has

  18. The influence of Fe content on spreading ability of tungsten heavy alloys matrix on tungsten surface

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2011-07-01

    Full Text Available The results of experimental study of tungsten spreading ability with W-Ni-Co-Fe matrix are presented. The aim of these investigations was to see how Fe concentration in W – Ni – Co matrix influences the wettability of tungsten grains during liquid phase sintering. Four green compact specimens containing 50%W, 10%Co and Ni + Fe = 40% but with different Ni to Fe ratio were prepared. The cylindrical specimen 5mm diameter and 5mm height were put on clean pure tungsten substrate and then 20 minutes heated at 1520oC in hydrogen atmosphere. After heating the specimens were carefully measured and then the specimens for structure observations were prepared. It was concluded, that increase of Fe content decrease the melting temperature of W – Ni – Co alloy. The melting point decrease caused by Fe content increase substantially the spreading ability of tungsten substrate with W – Ni – Co alloy. Metallography investigations showed some microstructure changes in “reaction zone” identified in tungsten substrate – (WNi40-xCo10Fex interface. The results of the study confirmed our earlier observations that even relative small Fe addition promotes Weight Heavy Alloys (WHA liquid phase sintering.

  19. Tungsten--carbide critical assembly

    International Nuclear Information System (INIS)

    Hansen, G.E.; Paxton, H.C.

    1975-06-01

    The tungsten--carbide critical assembly mainly consists of three close-fitting spherical shells: a highly enriched uranium shell on the inside, a tungsten--carbide shell surrounding it, and a steel shell on the outside. Ideal critical specifications indicate a rather low computed value of k/sub eff/. Observed and calculated fission-rate distributions for 235 U, 238 U, and 237 Np are compared, and calculated leakage neutrons per fission in various energy groups are given. (U.S.)

  20. Halo-gravity traction in the treatment of severe spinal deformity: a systematic review and meta-analysis.

    Science.gov (United States)

    Yang, Changsheng; Wang, Huafeng; Zheng, Zhaomin; Zhang, Zhongmin; Wang, Jianru; Liu, Hui; Kim, Yongjung Jay; Cho, Samuel

    2017-07-01

    Halo-gravity traction has been reported to successfully assist in managing severe spinal deformity. This is a systematic review of all studies on halo-gravity traction in the treatment of spinal deformity to provide information for clinical practice. A comprehensive search was conducted for articles on halo-gravity traction in the treatment of spinal deformity according to the PRISMA guidelines. Appropriate studies would be included and analyzed. Preoperative correction rate of spinal deformity, change of pulmonary function and prevalence of complications were the main measurements. Sixteen studies, a total of 351 patients, were included in this review. Generally, the initial Cobb angle was 101.1° in the coronal plane and 80.5° in the sagittal plane, and it was corrected to 49.4° and 56.0° after final spinal fusion. The preoperative correction due to traction alone was 24.1 and 19.3%, respectively. With traction, the flexibility improved 6.1% but postoperatively the patients did not have better correction. Less aggressive procedures and improved pulmonary function were observed in patients with traction. The prevalence of traction-related complications was 22% and three cases of neurologic complication related to traction were noted. The prevalence of total complications related to surgery was 32% and that of neurologic complications was 1%. Partial correction could be achieved preoperatively with halo-gravity traction, and it may help decrease aggressive procedures, improve preoperative pulmonary function, and reduce neurologic complications. However, traction could not increase preoperative flexibility or final correction. Traction-related complications, although usually not severe, were not rare.

  1. Electrokinetic treatment of firing ranges containing tungsten-contaminated soils

    International Nuclear Information System (INIS)

    Braida, Washington; Christodoulatos, Christos; Ogundipe, Adebayo; Dermatas, Dimitris; O'Connor, Gregory

    2007-01-01

    Tungsten-based alloys and composites are being used and new formulations are being considered for use in the manufacturing of different types of ammunition. The use of tungsten heavy alloys (WHA) in new munitions systems and tungsten composites in small caliber ammunition could potentially release substantial amounts of this element into the environment. Although tungsten is widely used in industrial and military applications, tungsten's potential environmental and health impacts have not been thoroughly addressed. This necessitates the research and development of remedial technologies to contain and/or remove tungsten from soils that may serve as a source for water contamination. The current work investigates the feasibility of using electrokinetics for the remediation of tungsten-contaminated soils in the presence of other heavy metals of concern such as Cu and Pb with aim to removing W from the soil while stabilizing in situ, Pb and Cu

  2. Low temperature processing of tungsten-fibre high-strength composite

    International Nuclear Information System (INIS)

    Semrau, W.M.

    2001-01-01

    A tungsten nickel/iron compound with a high tungsten content up to over 90 percent by volume of tungsten and an ideal distribution of the nickel-iron multilayer-matrix avoiding tungsten - tungsten interfaces, has been processed without the use of any sintering process and thus resulted in avoiding temperatures of above 700 o C during the entire manufacturing process. An electrochemical coating of coarse tungsten powder with alternating layers of nickel and iron and a forging process at temperatures not exceeding 650 o C resulted in a high strength compound, which easily could be altered into a tungsten fiber compound with a fiber-length to fiber-diameter ratio of more than 10 3 . From the viewpoint of the metallurgist, easier handling systems are obtained when both a liquid phase and high temperatures with their risks for grain structures and grain boundaries are lacking. (author)

  3. Structure of tungsten electrodeposited from oxide chloride-fluoride molten salts

    International Nuclear Information System (INIS)

    Pavlovskij, V.A.; Reznichenko, V.A.

    1998-01-01

    Investigation results on the influence of electrolysis parameters and electrolyte composition on tungsten cathode deposit structure are presented. The electrolysis was performed in NaCl-NaF-WO 3 molten salts using tungsten and tungsten coated molybdenum cathodes. Morphological and metallographic studies of tungsten crystals were carrier out. Tungsten deposits were obtained in the form of crystalline conglomerates, sponge and high dispersity powder

  4. Porous mandrels provide uniform deformation in hydrostatic powder metallurgy

    Science.gov (United States)

    Gripshover, P. J.; Hanes, H. D.

    1967-01-01

    Porous copper mandrels prevent uneven deformation of beryllium machining blanks. The beryllium powder is arranged around these mandrels and hot isostatically pressed to form the blanks. The mandrels are then removed by leaching.

  5. Hot flow behavior of boron microalloyed steels

    International Nuclear Information System (INIS)

    Lopez-Chipres, E.; Mejia, I.; Maldonado, C.; Bedolla-Jacuinde, A.; El-Wahabi, M.; Cabrera, J.M.

    2008-01-01

    This research work studies the effect of boron contents on the hot flow behavior of boron microalloyed steels. For this purpose, uniaxial hot-compression tests were carried out in a low carbon steel microalloyed with four different amounts of boron over a wide range of temperatures (950, 1000, 1050 and 1100 deg. C) and constant true strain rates (10 -3 , 10 -2 and 10 -1 s -1 ). Experimental results revealed that both peak stress and peak strain tend to decrease as boron content increases, which indicates that boron additions have a solid solution softening effect. Likewise, the flow curves show a delaying effect on the kinetics of dynamic recrystallization (DRX) when increasing boron content. Deformed microstructures show a finer austenitic grain size in the steel with higher boron content (grain refinement effect). Results are discussed in terms of boron segregation towards austenitic grain boundaries during plastic deformation, which increases the movement of dislocations, enhances the grain boundary cohesion and modificates the grain boundary structure

  6. (N,2N) cross-sections of tungsten and its isotopes

    International Nuclear Information System (INIS)

    Garg, S.B.

    1995-01-01

    We have been utilizing various nuclear model schemes and based on several analyses, we are of the opinion that the multistep Hauser-Feshbach scheme with a provision for the pre-equilibrium decay process reproduces the measured data rather well and it qualifies for adoption as a data prediction tool. To provide a further test of this hypothesis and to generate the desired data for technological applications in the energy range extending up to 30 MeV we have computed multiparticle reaction cross-sections of Tungsten isotopes by accounting for neutron, proton, alpha-particle and gamma-rays in the outgoing channels. (N,2N) cross-sections of natural tungsten have been inferred and are given. 10 refs, 2 figs

  7. Numerical simulation of hot-pressed veneer products: Forming - Spring back – Distortion

    DEFF Research Database (Denmark)

    Ormarsson, Sigurdur; Sandberg, Dick

    2007-01-01

    Customers demand very high quality of veneered furniture products with regard to surface appearance, shape stability and stiffness. To meet these requirements, it is important to improve the manufacturing process by a better understanding of the thermo-hygro-mechanical behaviour of the individual...... veneers. During the manufacture of strongly curved products, the veneers are exposed to large membrane and bending deformations and to high pressure in the radial fibre direction. When hot-press forming is used, the veneers are also exposed to a high surface temperature during the pressing time (curing...... time). These severe conditions can result in plastic deformation perpendicular to the veneer surface as well as mechano-sorptive strains in the curved regions, since the heating can have a significant influence on the moisture distribution. How strong an influence these factors have on the distortion...

  8. In-situ imaging of tungsten surface modification under ITER-like transient heat loads

    Directory of Open Access Journals (Sweden)

    A.A. Vasilyev

    2017-08-01

    Full Text Available Experimental research on behavior of rolled tungsten plates under intense transient heat loads generated by a powerful (a total power of up to 7 MW long-pulse (0.1–0.3ms electron beam with full irradiation area of 2 cm2 was carried out. Imaging of the sample by the fast CCD cameras in the NIR range and with illumination by the 532nm continuous-wave laser was applied for in-situ surface diagnostics during exposure. In these experiments tungsten plates were exposed to heat loads 0.5–1MJ/m2 with a heat flux factor (Fhf close to and above the melting threshold of tungsten at initial room temperature. Crack formation and crack propagation under the surface layer were observed during multiple exposures. Overheated areas with excessive temperature over surrounding surface of about 500K were found on severely damaged samples more than 5ms after beam ending. The application of laser illumination enables to detect areas of intense tungsten melting near crack edges and crack intersections.

  9. Detection and reduction of tungsten contamination in ion implantation processes

    International Nuclear Information System (INIS)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D.

    2016-01-01

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10 10 cm -2 ). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Detection and reduction of tungsten contamination in ion implantation processes

    Energy Technology Data Exchange (ETDEWEB)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D. [STMicroelectronics, Agrate Brianza (Italy)

    2016-12-15

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10{sup 10} cm{sup -2}). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Tungsten oxide nanowires grown on amorphous-like tungsten films

    International Nuclear Information System (INIS)

    Dellasega, D; Pezzoli, A; Russo, V; Passoni, M; Pietralunga, S M; Nasi, L; Conti, C; Vahid, M J; Tagliaferri, A

    2015-01-01

    Tungsten oxide nanowires have been synthesized by vacuum annealing in the range 500–710 °C from amorphous-like tungsten films, deposited on a Si(100) substrate by pulsed laser deposition (PLD) in the presence of a He background pressure. The oxygen required for the nanowires formation is already adsorbed in the W matrix before annealing, its amount depending on deposition parameters. Nanowire crystalline phase and stoichiometry depend on annealing temperature, ranging from W_1_8O_4_9-Magneli phase to monoclinic WO_3. Sufficiently long annealing induces the formation of micrometer-long nanowires, up to 3.6 μm with an aspect ratio up to 90. Oxide nanowire growth appears to be triggered by the crystallization of the underlying amorphous W film, promoting their synthesis at low temperatures. (paper)

  12. Deformation mechanisms in a fine-grained Udimet 720LI nickel-base superalloy with high volume fractions of γ′ phases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiayu, E-mail: chenjiayu975@126.com; Dong, Jianxin; Zhang, Maicang; Yao, Zhihao

    2016-09-15

    Hot-deformation behaviors and mechanisms below γ′ solvus of U720LI with fine-grained microstructure and high volume fractions of γ′ phases were studied. MTS hot-compressed samples under hot-deformation parameters (Temperatures of 1040 °C, 1070 °C, 1100 °C, 1130 °C, strain rates of 0.01 s{sup −1}, 0.1 s{sup −1}, 0.5 s{sup −1} and strains of 0.11, 0.36, 0.69 and 1.2) were investigated by using multiple microstructural analysis methods, such as transmission electron microscopy (TEM), electron channeling contrast image (ECCI), et al.. Rare recovery and recrystallization were observed indicating that other deformation mechanisms might be enhanced during the deformation process. Except for the pinning effect, deformation happened within γ′ phases and also γ′ phase promoted the deformation of the matrix. When the slipping was inhibited by γ′ phases, twinning acted as a deformation mechanism in fine-grained U720LI. Due to the retardation effect of γ′ phases in the early stage of the deformation process, local grain boundary migration took effect. Once grain boundaries crossed γ′ phases, it made recrystallization by strain induced boundary motion(SIBM) easier.

  13. Tungsten as First Wall Material in Fusion Devices

    International Nuclear Information System (INIS)

    Kaufmann, M.

    2006-01-01

    In the PLT tokamak with a tungsten limiter strong cooling of the central plasma was observed. Since then mostly graphite has been used as limiter or target plate material. Only a few tokamaks (limiter: FTU, TEXTOR; divertor: Alcator C-Mod, ASDEX Upgrade) gained experience with high-Z-materials. With the observed strong co- deposition of tritium together with carbon in JET and as a result of design studies of fusion reactors, it became clear that in the long run tungsten is the favourite for the first-wall material. Tungsten as a plasma facing material requires intensive research in all areas, i.e. in plasma physics, plasma wall-interaction and material development. Tungsten as an impurity in the confined plasma reveals considerable differences to carbon. Strong radiation at high temperatures, in connection with mostly a pronounced inward drift forms a particular challenge. Turbulent transport plays a beneficial role in this regard. The inward drift is an additional problem in the pedestal region of H-mode plasmas in ITER-like configurations. The erosion by low energy hydrogen atoms is in contrast to carbon small. However, erosion by fast particles from heating measures and impurity ions, accelerated in the sheath potential, play an important role in the case of tungsten. Radiation by carbon in the plasma boundary reduces the load to the target plates. Neon or Argon as substitutes will increase the erosion of tungsten. So far experiments have demonstrated that in most scenarios the tungsten content in the central plasma can be kept sufficiently small. The material development is directed to the specific needs of existing or future devices. In ASDEX Upgrade, which will soon be a divertor experiment with a complete tungsten first-wall, graphite tiles are coated with tungsten layers. In ITER, the solid tungsten armour of the target plates has to be castellated because of its difference in thermal expansion compared to the cooling structure. In a reactor the technical

  14. Resolving hot spot microstructure using x-ray penumbral imaging (invited)

    Science.gov (United States)

    Bachmann, B.; Hilsabeck, T.; Field, J.; Masters, N.; Reed, C.; Pardini, T.; Rygg, J. R.; Alexander, N.; Benedetti, L. R.; Döppner, T.; Forsman, A.; Izumi, N.; LePape, S.; Ma, T.; MacPhee, A. G.; Nagel, S.; Patel, P.; Spears, B.; Landen, O. L.

    2016-11-01

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  15. Resolving hot spot microstructure using x-ray penumbral imaging (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, B., E-mail: bachmann2@llnl.gov; Field, J.; Masters, N.; Pardini, T.; Rygg, J. R.; Benedetti, L. R.; Döppner, T.; Izumi, N.; LePape, S.; Ma, T.; MacPhee, A. G.; Nagel, S.; Patel, P.; Spears, B.; Landen, O. L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hilsabeck, T.; Reed, C.; Alexander, N.; Forsman, A. [General Atomics, San Diego, California 92186 (United States)

    2016-11-15

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  16. Resolving hot spot microstructure using x-ray penumbral imaging (invited).

    Science.gov (United States)

    Bachmann, B; Hilsabeck, T; Field, J; Masters, N; Reed, C; Pardini, T; Rygg, J R; Alexander, N; Benedetti, L R; Döppner, T; Forsman, A; Izumi, N; LePape, S; Ma, T; MacPhee, A G; Nagel, S; Patel, P; Spears, B; Landen, O L

    2016-11-01

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  17. Resolving hot spot microstructure using x-ray penumbral imaging (invited)

    International Nuclear Information System (INIS)

    Bachmann, B.; Field, J.; Masters, N.; Pardini, T.; Rygg, J. R.; Benedetti, L. R.; Döppner, T.; Izumi, N.; LePape, S.; Ma, T.; MacPhee, A. G.; Nagel, S.; Patel, P.; Spears, B.; Landen, O. L.; Hilsabeck, T.; Reed, C.; Alexander, N.; Forsman, A.

    2016-01-01

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  18. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Schwaighofer, Emanuel, E-mail: emanuel.schwaighofer@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Clemens, Helmut [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Lindemann, Janny [Chair of Physical Metallurgy and Materials Technology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 17, D-03046 Cottbus (Germany); GfE Fremat GmbH, Lessingstr. 41, D-09599 Freiberg (Germany); Stark, Andreas [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Mayer, Svea [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria)

    2014-09-22

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s{sup −1} up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti{sub 5}Si{sub 3} silicides and h-type carbides Ti{sub 2}AlC enhance the dynamic recrystallization behavior during

  19. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    International Nuclear Information System (INIS)

    Schwaighofer, Emanuel; Clemens, Helmut; Lindemann, Janny; Stark, Andreas; Mayer, Svea

    2014-01-01

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s −1 up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti 5 Si 3 silicides and h-type carbides Ti 2 AlC enhance the dynamic recrystallization behavior during deformation within

  20. Dynamic SEM wear studies of tungsten carbide cermets

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined. Etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the WC and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation. The wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  1. Radiative capture of slow electrons by tungsten surface

    International Nuclear Information System (INIS)

    Artamonov, O.M.; Belkina, G.M.; Samarin, S.N.; Yakovlev, I.I.

    1987-01-01

    Isochromatic spectra of radiation capture of slow electrons by the surface of mono- and polycrystal tungsten recorded on 322 and 405 nm wave lengths are presented. The effect of oxygen adsorption on isochromates of the (110) face of tungsten monocrystal is investigated. The obtained isochromatic spectra are compared with energy band structure of tungsten. Based on the analysis of the obtained experimental results it is assumed that optical transition to the final state at the energy of 7.3 eV relatively to Fermi level is conditioned by surface states of the tungsten face (110)

  2. Morphology of Si/tungsten-silicides/Si interlayers

    International Nuclear Information System (INIS)

    Theodore, N.; Secco d'Aragona, F.; Blackstone, S.

    1992-01-01

    Tungsten and tungsten-silicides are of interest for semiconductor technology because of their refractory nature, low electrical-resistivity and high electromigration-resistance. This paper presents the first formation of buried tungsten-silicide layers in silicon, by proximity adhesion. The interlayers, created by a combination of chemical vapor-deposition (CVD) and proximity-adhesion were studied using transmission electron-microscopy (TEM). The behavior of the layers in the presence and absence of an adjacent silicon-dioxide interlayer was also investigated. Buried silicide layers were successfully formed with or without the adjacent silicon-dioxide. The silicide formed continuous layers with single grains encompassing the width of the interlayer. Individual grains were globular, with cusps at grain boundaries. This caused interlayer-thicknesses to be non-uniform, with lower thickness values being present at the cusps. Occasional voids were observed at grain-boundary cusps. The voids were smaller and less frequent in the presence of an adjacent oxide-layer, due to flow of the oxide during proximity adhesion. Electron-diffraction revealed a predominance of tungsten-disilicide in the interlayers, with some free tungsten being present. Stresses in the silicide layers caused occasional glide dislocations to propagate into the silicon substrate beneath the interlayers. The dislocations propagate only ∼100 nm into the substrate and therefore should not be detrimental to use of the buried layers. Occasional precipitates were observed at the end of glide-loops. These possibly arise due to excess tungsten from the interlayer diffusion down the glide dislocation to finally precipitate out as tungsten-silicide

  3. Surface morphologies of He-implanted tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Bannister, M.E., E-mail: bannisterme@ornl.gov [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6371 (United States); Meyer, F.W.; Hijazi, H. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6371 (United States); Unocic, K.A.; Garrison, L.M.; Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2016-09-01

    Surface morphologies of tungsten surfaces, both polycrystalline and single-crystal [1 1 0], were investigated using SEM and FIB/SEM techniques after implantations at elevated surfaces temperatures (1200–1300 K) using well-characterized, mono-energetic He ion beams with a wide range of ion energies (218 eV–250 keV). Nanofuzz was observed on polycrystalline tungsten (PCW) following implantation of 100-keV He ions at a flux threshold of 0.9 × 10{sup 16} cm{sup −2} s{sup −1}, but not following 200-keV implantations with similar fluxes. No nanofuzz formation was observed on single-crystal [1 1 0] tungsten (SCW), despite fluxes exceeding those demonstrated previously to produce nanofuzz on polycrystalline tungsten. Pre-damaging the single-crystal tungsten with implanted C impurity interstitials did not significantly affect the surface morphologies resulting from the high-flux He ion implantations. The main factor leading to the different observed surface structures for the pristine and C-implanted single-crystal W samples appeared to be the peak He ion flux characterizing the different exposures. It was speculated that nanofuzz formation was not observed for any SCW target exposures because of increased incubation fluences required for such targets.

  4. Peculiarities of the effect of high temperature deformation on the kinetics of bainite transformation in steels of various compositions

    International Nuclear Information System (INIS)

    Khlestov, V.M.; Gotsulyak, A.A.; Ehntin, R.I.; Konopleva, E.V.; Kogan, L.I.

    1979-01-01

    By the methods of magnetometry and metallography studied is the effect of 25% deformation by rolling at 800 deg C on kinetics and parameters of bainite transformation in steels with different hydrogen contents and types of alloying. The hot deformation decelerates the bainite transformation at temperatures >=400 deg C; while the isoterm temperature increases the decelerating effect of deformation at first decreases and then changes into the accelerating one. The slowing down of the transformation is determined mainly by the decrease in the rate of the bainite crystal growth, whereas the acceleration - by the activation of grain initiation processes in the hot-deformed austenite. A hydrogen content increase and steel alloying with carbide-forming elements increase the stabilization effect of the deformation on kinetics of bainite transformation

  5. Gold nanoparticles physicochemically bonded onto tungsten disulfide nanosheet edges exhibit augmented plasmon damping

    Science.gov (United States)

    Forcherio, Gregory T.; Dunklin, Jeremy R.; Backes, Claudia; Vaynzof, Yana; Benamara, Mourad; Roper, D. Keith

    2017-07-01

    Augmented plasmonic damping of dipole-resonant gold (Au) nanoparticles (NP) physicochemically bonded onto edges of tungsten disulfide (WS2) nanosheets, ostensibly due to hot electron injection, is quantified using electron energy loss spectroscopy (EELS). EELS allows single-particle spatial resolution. A measured 0.23 eV bandwidth expansion of the localized surface plasmon resonance upon covalent bonding of 20 nm AuNP to WS2 edges was deemed significant by Welch's t-test. Approximately 0.19 eV of the measured 0.23 eV expansion went beyond conventional radiative and nonradiative damping mechanisms according to discrete dipole models, ostensibly indicating emergence of hot electron transport from AuNP into the WS2. A quantum efficiency of up to 11±5% spanning a 7 fs transfer process across the optimized AuNP-TMD ohmic junction is conservatively calculated. Putative hot electron transport for AuNP physicochemically bonded to TMD edges exceeded that for AuNP physically deposited onto the TMD basal plane. This arose from contributions due to (i) direct physicochemical bond between AuNP and WS2; (ii) AuNP deposition at TMD edge sites; and (iii) lower intrinsic Schottky barrier. This improves understanding of photo-induced doping of TMD by metal NP which could benefit emerging catalytic and optoelectronic applications.

  6. A solid tungsten divertor for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Herrmann, A; Greuner, H; Jaksic, N; Böswirth, B; Maier, H; Neu, R; Vorbrugg, S

    2011-01-01

    The conceptual design of a solid tungsten divertor for ASDEX Upgrade (AUG) is presented. The Div-III design is compatible with the existing divertor structure. It re-establishes the energy and heat receiving capability of a graphite divertor and overcomes the limitations of tungsten coatings. In addition, a solid tungsten divertor allows us to investigate erosion and bulk deuterium retention as well as test castellation and target tilting. The design criteria as well as calculations of forces due to halo and eddy currents are presented. The thermal properties of the proposed sandwich structure are calculated with finite element method models. After extensive testing of a target tile in the high heat flux test facility GLADIS, two solid tungsten tiles were installed in AUG for in-situ testing.

  7. Elastic–plastic adhesive impacts of tungsten dust with metal surfaces in plasma environments

    Energy Technology Data Exchange (ETDEWEB)

    Ratynskaia, S., E-mail: svetlana.ratynskaia@ee.kth.se [KTH Royal Institute of Technology, Association EUROfusion-VR, Stockholm (Sweden); Tolias, P. [KTH Royal Institute of Technology, Association EUROfusion-VR, Stockholm (Sweden); Shalpegin, A. [Université de Lorraine, Institut Jean Lamour, Vandoeuvre-lès-Nancy (France); Vignitchouk, L. [KTH Royal Institute of Technology, Association EUROfusion-VR, Stockholm (Sweden); De Angeli, M. [Istituto di Fisica del Plasma – Consiglio Nazionale delle Ricerche, Milan (Italy); Bykov, I. [KTH Royal Institute of Technology, Association EUROfusion-VR, Stockholm (Sweden); Bystrov, K.; Bardin, S. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Edisonbaan 14, 3439MN Nieuwegein (Netherlands); Brochard, F. [Université de Lorraine, Institut Jean Lamour, Vandoeuvre-lès-Nancy (France); Ripamonti, D. [Istituto per l’Energetica e le Interfasi – Consiglio Nazionale delle Ricerche, Milan (Italy); Harder, N. den; De Temmerman, G. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Edisonbaan 14, 3439MN Nieuwegein (Netherlands)

    2015-08-15

    Dust-surface collisions impose size selectivity on the ability of dust grains to migrate in scrape-off layer and divertor plasmas and to adhere to plasma-facing components. Here, we report first experimental evidence of dust impact phenomena in plasma environments concerning low-speed collisions of tungsten dust with tungsten surfaces: re-bouncing, adhesion, sliding and rolling. The results comply with the predictions of the model of elastic-perfectly plastic adhesive spheres employed in the dust dynamics code MIGRAINe for sub- to several meters per second impacts of micrometer-range metal dust.

  8. Micromechanical modeling of tungsten-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Li Hao [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Li Ke [Department of Mechanical Engineering, Texas A and M University, TAMU 3123, College Station, TX 77843 (United States)]. E-mail: keli@tamu.edu; Subhash, Ghatu [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Kecskes, Laszlo J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Dowding, Robert J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2006-08-15

    Micromechanics models are developed for tungsten (W)-based bulk metallic glass (BMG) matrix composites employing the Voronoi tessellation technique and the finite element (FE) method. The simulation results indicate that the computed elastic moduli are close to those measured in the experiments. The predicted stress-strain curves agree well with their experimentally obtained counterparts in the early stage of the plastic deformation. An increase in the W volume fraction leads to a decrease in the yield stress and an increase in the Young's modulus of the composite. In addition, contours of equivalent plastic strain for increasing applied strains provide an explanation why shear bands were observed in the glassy phase, along the W/BMG interface, and in the W phase of failed W/BMG composite specimens.

  9. Corrosion of high-density sintered tungsten alloys. Part 2

    International Nuclear Information System (INIS)

    Batten, J.J.; Moore, B.T.

    1988-12-01

    The behaviour of four high-density sintered tungsten alloys has been evluated and compared with that of pure tungsten. Rates of corrosion during the cyclic humidity and the salt mist tests were ascertained from weight loss measurements. Insight into the corrosion mechanism was gained from the nature of the corrosion products and an examination of the corroded surfaces. In the tests, the alloy 95% W, 2.5% Ni, 1.5% Fe was the most corrosion resistant. The data showed that copper as an alloying element accelerates corrosion of tungsten alloys. Both attack on the tungsten particles and the binder phase were observed together with tungsten grain loss. 6 refs., 3 tabs.,

  10. Substructure and electrical resistivity analyses of pure tungsten sheet

    International Nuclear Information System (INIS)

    Trybus, C.L.; Sellers, C.H.; Anderl, R.A.

    1991-01-01

    The substructure of pure tungsten sheet (0.025 mm thick) is examined and quantified by transmission electron microscopy (TEM). Dislocation populations and arrangements are evaluated for as-worked and various annealed conditions of the tungsten sheet. The worked (rolled) tungsten substructure was nonhomogeneous, consisting of areas of very high and low dislocation densities. These results are correlated to resistivity measurements of the tungsten sheet following thermal cycling to 1200 degrees C to determine the substructural changes as a function of temperature. The comparison between the two characterization techniques is used to examine the relationship between structural and electronic properties in tungsten. 15 refs., 6 figs., 2 tabs

  11. Microstructure and micro-texture evolution during large strain deformation of Inconel alloy IN718

    Energy Technology Data Exchange (ETDEWEB)

    Nayan, Niraj [Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Trivandrum 695 022 (India); Gurao, N.P. [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208 016 (India); Narayana Murty, S.V.S., E-mail: susarla.murty@gmail.com [Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Trivandrum 695 022 (India); Jha, Abhay K.; Pant, Bhanu; George, Koshy M. [Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Trivandrum 695 022 (India)

    2015-12-15

    The hot deformation behaviour of Inconel alloy IN718 was studied in the temperature range of 950–1100 °C and at strain rates of 0.01 and 1 s{sup −1} with a view to understand the microstructural evolution as a function of strain rate and temperature. For this purpose, a single hit, hot isothermal plane strain compression (PSC) technique was used. The flow curves obtained during PSC exhibited weak flow softening at higher temperatures. Electron backscattered diffraction analysis (EBSD) of the PSC tested samples at the location of maximum strain revealed dynamic recrystallisation occurring at higher temperatures. Based on detailed microstructure and microtexture analyses, it was concluded that single step, large strain deformation has a distinct advantage in the thermo-mechanical processing of Inconel alloy IN718. - Highlights: • Plane strain compression (PSC) on IN718 was conducted. • Evolution of microstructure during large strain deformation was studied. • Flow curves exhibited weak softening at higher temperatures and dipping of the flow curve at a strain rate of 1 s{sup −1}. • Optimization of microstructure and process parameter for hot rolling possible by plane strain compression testing • Dynamic recrystallisation occurs in specimens deformed at higher temperatures and lower strain rates.

  12. Synthesis of high purity tungsten nanoparticles from tungsten heavy alloy scrap by selective precipitation and reduction route

    International Nuclear Information System (INIS)

    Kamal, S.S. Kalyan; Sahoo, P.K.; Vimala, J.; Shanker, B.; Ghosal, P.; Durai, L.

    2016-01-01

    In this paper we report synthesis of tungsten nanoparticles of high purity >99.7 wt% from heavy alloy scrap using a novel chemical route of selective precipitation and reduction. The effect of Poly(vinylpyrrolidone) polymer on controlling the particle size is established through FTIR spectra and corroborated with TEM images, wherein the average size decreased form 210 to 45 nm with increasing PVP content from zero to 2 g under different experimental conditions. This process is economical as raw material is a scrap and the efficiency of the reaction is >95%. - Highlights: • Tungsten nanoparticles were synthesized from tungsten heavy alloy scrap. • A novel chemical route of precipitation and reduction with Poly(vinylpyrrolidone) polymer as stabilizer is reported. • The average size decreased form 210 to 45 nm with increasing PVP content from zero to 2 g. • High pure tungsten nanoparticles of >99.7% purity could be synthesized using this route. • Efficiency of the reaction is >95%.

  13. Densification and Grain Growth in Polycrystalline Olivine Rocks Synthesized By Evacuated Hot-Pressing

    Science.gov (United States)

    Meyers, C. D.; Kohlstedt, D. L.; Zimmerman, M. E.

    2017-12-01

    Experiments on laboratory-synthesized olivine-rich rocks form the starting material for many investigations of physical processes in the Earth's upper mantle (e.g., creep behavior, ionic diffusion, and grain growth). Typically, a fit of a constitutive law to experimental data provides a description of the kinetics of a process needed to extrapolate across several orders of magnitude from laboratory to geological timescales. Although grain-size is a critical parameter in determining physical properties such as viscosity, broad disagreement persists amongst the results of various studies of grain growth kinetics in olivine-rich rocks. Small amounts of impurities or porosity dramatically affect the kinetics of grain growth. In this study, we developed an improved method for densifying olivine-rich rocks fabricated from powdered, gem-quality single crystals that involves evacuating the pore space, with the aim of refining measurements of the kinetics of mantle materials. In previous studies, olivine powders were sealed in a metal can and hydrostatically annealed at roughly 300 MPa and 1250 °C. These samples, which appear opaque and milky-green, typically retain a small amount of porosity. Consequently, when annealed at 1 atm, extensive pore growth occurs, inhibiting grain growth. In addition, Fourier-transform infrared and confocal Raman spectroscopy reveal absorption peaks characteristic of CO2 in the pores of conventionally hot-pressed material. To avoid trapping of adsorbed contaminants, we developed an evacuated hot-pressing method, wherein the pore space of powder compacts is vented to vacuum during heating and pressurization. This method produces a highly dense, green-tinted, transparent material. No CO2 absorptions peaks exist in evacuated hot-pressed material. When reheated to annealing temperatures at 1 atm, the evacuated hot-pressed material undergoes limited pore growth and dramatically enhanced grain-growth rates. High-strain deformation experiments on

  14. Interlayer electron-hole pair multiplication by hot carriers in atomic layer semiconductor heterostructures

    Science.gov (United States)

    Barati, Fatemeh; Grossnickle, Max; Su, Shanshan; Lake, Roger; Aji, Vivek; Gabor, Nathaniel

    Two-dimensional heterostructures composed of atomically thin transition metal dichalcogenides provide the opportunity to design novel devices for the study of electron-hole pair multiplication. We report on highly efficient multiplication of interlayer electron-hole pairs at the interface of a tungsten diselenide / molybdenum diselenide heterostructure. Electronic transport measurements of the interlayer current-voltage characteristics indicate that layer-indirect electron-hole pairs are generated by hot electron impact excitation. Our findings, which demonstrate an efficient energy relaxation pathway that competes with electron thermalization losses, make 2D semiconductor heterostructures viable for a new class of hot-carrier energy harvesting devices that exploit layer-indirect electron-hole excitations. SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Air Force Office of Scientific Research.

  15. Characterization of porous tungsten by microhardness

    International Nuclear Information System (INIS)

    Selcuk, C.; Wood, J.V.; Morley, N.; Bentham, R.

    2001-01-01

    One of the applications of tungsten is as high current density dispenser cathode in the form of porous tungsten. It is used as a cathode after being impregnated with an electron emissive material so pore distribution in the part is the most important parameter for its function as a uniform and controlled porosity will lead to a better performance. In this study, application of microhardness as a characterization method for uniformity of the pore distribution and homogeneity of the structure is introduced. Optical microscopy and SEM is used to relate the results and porous tungsten structure for a better understanding of the method applied. (author)

  16. Constitutive behavior and microstructure evolution of the as-extruded AE21 magnesium alloy during hot compression testing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.-X. [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Fang, G., E-mail: fangg@tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Leeflang, M.A.; Duszczyk, J.; Zhou, J. [Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands)

    2015-02-15

    Highlights: • Constitutive equation of magnesium alloy AE21 for hot deformation is established. • Material processing history affects the activation energy for deformation. • Zener-Hollomon parameter is used to distinguish the shapes of flow stress curves. • Kink band plays an important role in causing a concave shape of the flow curve of AE21. - Abstract: Magnesium alloys containing rare earth elements possess improved corrosion resistance and mechanical properties and therefore have great potential for a wide range of applications including biomedical applications. Hot forming is meant not only for shaping but also for microstructure modification and performance enhancement. It is of great importance to define optimum forming conditions on the basis of a fundamental understanding of the response of magnesium alloys to deformation. The present study aimed at characterizing the hot deformation behavior of the as-extruded AE21 magnesium alloy by performing isothermal compression tests over a temperature range of 350-480 °C and a strain rate range of 0.001-10 s{sup -1}. Flow stress data obtained were intended for establishing a constitutive equation, which would be indispensable for the prediction of the response of the material to hot deformation, for example, by means of numerical simulation. The true stress-strain curves obtained from the experiments were analyzed, considering different mechanisms of microstructure evolution operating during compression testing at different stages. The Sellar and Tegart model was used to establish the constitutive equation of the alloy during the steady-state deformation. The differences in activation energy value between the present as-extruded magnesium alloy and other wrought magnesium alloys were found and attributed to materials processing history. The Zener-Hollomon parameter was used to correlate the deformation condition with the response of the material to deformation, reflected in the shape of the true stress

  17. Quenching and recovery experiments on tungsten

    International Nuclear Information System (INIS)

    Rasch, K.D.; Siegel, R.W.; Schultz, H.

    1976-01-01

    A short summary is given of new results concerning transmission electron microscopy and resistivity measurements on quenched tungsten. These results give evidence for the first time that the quenching and annealing of high purity tungsten leads to vacancy--defect clustering resulting in small voids observable in the electron microscope. 21 references

  18. 3-D thermal stress analysis of hot spots in reactor piping using BEM

    International Nuclear Information System (INIS)

    Bains, R.S.; Sugimoto, Jun

    1994-08-01

    A three-dimensional steady state thermoelastic analysis has been conducted on the hot leg of a pressurized water reactor(PWR) containing localized hot spots resulting from fission product aerosol deposition occurring during a hypothetical severe accident. The boundary element method (BEM) of numerical solution was successfully employed to investigate the structural response of the hot leg. Convergence of solution can be realized provided sufficiently large number of elements are employed and correct modelling of the temperature transition region (TTR) adjacent to the hot spot on the inner surface is conducted. The only correct temperature field across the TTR is that which can be represented by the interpolation functions employed in the BEM code. Further, incorrect solutions can also be generated if the TTR is too thin. The nature of the deformation at the hot spot location depends on whether the thermal boundary condition on the outer surface of the hot leg is one of constant temperature or adiabatic. The analysis shows that at the location of the hot spot on the inner surface large compressive stresses can be established. On the outer surface at the same location, large tensile stresses can be established. The presence of these large stress elevations in the vicinity of the hot spot could be detrimental to the integrity of the hot leg. The tensile stresses are extremely important since they can act as sites of crack initiation and subsequent propagation. Once a crack propagates through the thickness, leak worthiness of the hot leg comes into question. Consequently, additional analysis incorporating the effects of plasticity and temperature dependence of the material properties must be conducted to ascertain the integrity of the hot leg. (J.P.N.)

  19. Process for separation of tungsten and molybdenum by extraction

    International Nuclear Information System (INIS)

    Zelikman, A.N.; Voldman, G.M.; Rumyantsev, V.K.; Ziberov, G.N.; Kagermanian, V.S.

    1976-01-01

    A process for the separation of tungsten and molybdenum by extraction involves the addition of HCl or HNO 3 to an aqueous solution containing tungsten and molybdenum to obtain a pH from 0.5 to 4.3, and introduction of a stabilizer comprising water-soluble phosphorus salts and a complexing agent, hydrogen peroxide, in an amount from 1.5 to 2 mole per 1 g-atom of the total content of tungsten and molybdenum. Then molybdenum is selectively extracted from the resulting aqueous solution with tri-n-butylphosphate with equal volumetric proportioning of the aqueous and organic solutions. Re-extraction of molybdenum and partially tungsten is carried out from the organic extracting agent with an alkali or soda solution. The process makes possible the preparation of tungsten solution containing no more than 0.001 g/l of molybdenum, and an increase in the degree of extraction of tungsten and molybdenum

  20. Severe plastic deformation of melt-spun shape memory Ti2NiCu and Ni2MnGa alloys

    International Nuclear Information System (INIS)

    Pushin, Vladimir G.; Korolev, Alexander V.; Kourov, Nikolai I.; Kuntsevich, Tatiana E.; Valiev, Eduard Z.; Yurchenko, Lyudmila I.; Valiev, Ruslan Z.; Gunderov, Dmitrii V.; Zhu, Yuntian T.

    2006-01-01

    This paper describes the influence of severe plastic deformation (SPD) on the structure, phase transformations, and physical properties of melt-spun Ti 2 NiCu-based and Ni 2 MnGa-based shape memory intermetallic alloys. It was found that the SPD by high pressure torsion (HPT) at room temperature can be effectively used for the synthesis of bulk nanostructured states in these initially submicro-grained or amorphized alloys obtained by melt-spinning method in the form of a ribbon. The subsequent low-temperature annealing of HPT-processed alloys leads to formation of homogeneous ultrafine nano-grained structure. This is connected with a very high degree and high homogeneity of deformation at SPD in the whole volume of deformed samples. (author)

  1. Effect of carbide particles on the ablation properties of tungsten composites

    International Nuclear Information System (INIS)

    Song Guiming; Zhou Yu; Wang Yujin

    2003-01-01

    The high temperature ablation behavior of tungsten composites containing carbides produced by vacuum hot pressing is studied as a function of reinforcement chemistry (ZrC and TiC) and content using a self-made oxyacetylene ablation equipment. A dynamic responding multiwavelength pyrometer was employed to measure the temperature of the ablation surface, and a thermocouple was employed to measure the temperature of the back surface during the time that a specimen was being ablated. The mass and linear ablation rates are lower in composites containing ZrC, decreasing with increasing particle content in both composites system. The values of the mass and linear ablation rates were in the order from high to low: W>30TiC/W>40TiC/W>30ZrC/W>40ZrC/W (30TiC/W stands for 30 vol.% TiC particle content in the W matrix, the same below). The important temperature curves of the ablation surfaces of specimens were successfully detected online. Ablated surfaces and vertical sections of the specimens were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Thermochemical oxidation of tungsten, TiC, and ZrC was the main ablation mechanism of ZrC/W and TiC/W composites. These ablation behaviors are discussed based on the thermophysical and chemical properties of both the composite systems

  2. Microstructure and property evolution of isotropic and anisotropic NdFeB magnets fabricated from nanocrystalline ribbons by spark plasma sintering and hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z W; Huang, H Y; Yu, H Y; Zhong, X C; Zeng, D C [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Gao, X X; Zhu, J, E-mail: zwliu@scut.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2011-01-19

    Isotropic and anisotropic NdFeB magnets were synthesized by spark plasma sintering (SPS) and SPS+HD (hot deformation), respectively, using melt-spun ribbons as the starting materials. Spark plasma sintered magnets sintered at low temperatures (<700 {sup 0}C) almost maintained the uniform fine grain structure inherited from rapid quenching. At higher temperatures, due to the local high-temperature field caused by the spark plasma discharge, the grain growth occurred at the initial particle surfaces and the coarse grain zones formed in the vicinity of the particle boundaries. Since the interior of the particles maintained the fine grain structure, a distinct two-zone structure was formed in the spark plasma sintered magnets. The SPS temperature and pressure have important effects on the widths of coarse and fine grain zones, as well as the grain sizes in two zones. The changes in grain structure led to variations in the magnetic properties. By employing low SPS temperature and high pressure, high-density magnets with negligible coarse grain zone and an excellent combination of magnetic properties can be obtained. An anisotropic magnet with a maximum energy product of {approx}30 MG Oe was produced by the SPS+HD process. HD at 750 {sup 0}C did not lead to obvious grain growth and the two-zone structure still existed in the hot deformed magnets. Intergranular exchange coupling was demonstrated in the spark plasma sintered magnets and was enhanced by the HD process, which reduced the coercivity. Good temperature stability was manifested by low temperature coefficients of remanence and coercivity. The results indicated that nanocrystalline NdFeB magnets without significant grain growth and with excellent properties could be obtained by SPS and HD processes.

  3. Surface studies of tungsten erosion and deposition in JT-60U

    International Nuclear Information System (INIS)

    Ueda, Y.; Fukumoto, M.; Nishikawa, M.; Tanabe, T.; Miya, N.; Arai, T.; Masaki, K.; Ishimoto, Y.; Tsuzuki, K.; Asakura, N.

    2007-01-01

    In order to study tungsten erosion and migration in JT-60U, 13 W tiles have been installed in the outer divertor region and tungsten deposition on graphite tiles was measured. Dense local tungsten deposition was observed on a CFC tile toroidally adjacent to the W tiles, which resulted from prompt ionization and short range migration of tungsten along field lines. Tungsten deposition with relatively high surface density was found on an inner divertor tile around standard inner strike positions and on an outer wing tile of a dome. On the outer wing tile, tungsten deposition was relatively high compared with carbon deposition. In addition, roughly uniform tungsten depth distribution near the upper edge of the inner divertor tile was observed. This could be due to lift-up of strike point positions in selected 25 shots and tungsten flow in the SOL plasma

  4. Deformation behaviour of {gamma}+{alpha}{sub 2} Ti aluminide processed through reaction synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.K., E-mail: rohitkumar_gupta@vssc.gov.in [Vikram Sarabhai Space Centre, ISRO, Trivandrum, Kerala 695 022 (India); Pant, Bhanu [Vikram Sarabhai Space Centre, ISRO, Trivandrum, Kerala 695 022 (India); Kumar, Vinod [SAIL-RDCIS, Ranchi (India); Agarwala, Vijaya [Indian Institute of Technology, Roorkee 247 667 (India); Sinha, P.P. [Vikram Sarabhai Space Centre, ISRO, Trivandrum, Kerala 695 022 (India)

    2013-01-01

    {gamma}+{alpha}{sub 2} titanium aluminide alloys made through reaction synthesis have been used for deformation study. Hot isothermal compression test is carried out to study the deformation characteristics of the alloys using Gleeble thermomechanical simulator. Three alloys based on Ti48Al2Cr2Nb0.1B (at%) are tested at different temperatures and at different strain rates. True stress-true strain plots are analyzed along with analysis of tested specimens. Tested specimens are observed under optical and electron microscopes. Presence of various deformation morphologies and phases were confirmed. Microhardness evaluation and transmission electron microscopic examination are used to confirm the presence of different phases. It is found that dynamic recrystallization is mainly playing role in deformation of these alloys. Presence of dynamically recrystallized (DRX) grains and lamellar microstructures is confirmed at the intergranular area and inside the grains, respectively. A nucleation model is suggested for DRX and lamellar grain nucleation during deformation. Attempt has been made to quantify the presence of various phases through optical microscopy. Hot workability map is also suggested on the basis of microstructural and visual observation of compression tested specimens.

  5. Fine grained 304 ASS processed by a severe plastic deformation and subsequent annealing; microstructure and mechanical properties evaluation

    Science.gov (United States)

    Salout, Shima Ahmadzadeh; Shirazi, Hasan; Nili-Ahmadabadi, Mahmoud

    2018-01-01

    The current research is an attempt to study the effect of a novel severe plastic deformation technique so called "repetitive corrugation and straightening by rolling" (RCSR) and subsequent annealing on the microstructure and mechanical properties of AISI type 304 austenitic stainless steel. In this study, RCSR process was carried out at 200 °C on the 304 austenitic stainless steel (above Md30 temperature that is about 50 °C for this stainless steel) in order to avoid the formation of martensite phase when a high density of dislocations was introduced into the austenite phase and also high density of mechanical twins was induced in the deformed 304 austenitic stainless steel. Because of relationship between deformation temperature, stacking fault energy (SFE) and mechanisms of deformation. Thereafter subsequently, annealing treatment was applied into deformed structure in order to refine the microstructure of 304 stainless s teel. The specimens were examined by means of optical microscopy (OM), scanning electron microscopy (SEM), tensile and micro-hardness tests. The results indicate that by increasing the cycles of RCSR process (increasing applied strain), further mechanical twins are induced, the hardness and in particular, the yield stress of specimens have been increased.

  6. A novel design and analysis of a MEMS ceramic hot-wire anemometer for high temperature applications

    International Nuclear Information System (INIS)

    Nagaiah, N R; Sleiti, A K; Rodriguez, S; Kapat, J S; An, L; Chow, L

    2006-01-01

    This paper attempts to prove the feasibility of high temperature MEMS hot-wire anemometer for gas turbine environment. No such sensor exists at present. Based on the latest improvement in a new type of Polymer-Derived Ceramic (PDC) material, the authors present a Novel design, structural and thermal analysis of MEMS hot-wire anemometer (HWA) based on PDC material, and show that such a sensor is indeed feasible. This MEMS Sensor is microfabricated by using three types of PDC materials such as SiAlCN, SiCN (lightly doped) and SiCN (heavily doped) for sensing element (hot-wire), support prongs and connecting leads respectively. This novel hot wire anemometer can perform better than a conventional HWA in which the hot wire is made of tungsten or platinum-iridium. This type of PDC-HWA can be used in harsh environment due to its high temperature resistance, tensile strength and resistance to oxidation. This HWA is fabricated using microstereolithography as a novel microfabrication technique to manufacture the proposed MEMS Sensor

  7. Tritium Decay Helium-3 Effects in Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  8. Tungsten metallizing alumina--yttria ceramics

    International Nuclear Information System (INIS)

    Cowan, R.E.; Stoddard, S.D.

    1977-03-01

    The ease with which high-alumina bodies may be metallized with tungsten is improved by additions of yttria to the alumina. Mechanisms of this bonding process were studied by use of optical and electron microscopy, electron microprobe, and tensile tests. Variables studied included yttria content of the body and the firing temperature during metallizing. The study showed that a reaction between the tungsten and the yttrogarnet grain boundary phase markedly improved adherence

  9. Depressurization test on hot gas duct

    International Nuclear Information System (INIS)

    Tanihira, Masanori; Kunitomi; Kazuhiko; Inagaki, Yoshiyuki; Miyamoto, Yoshiaki; Sato, Yutaka.

    1989-05-01

    To study the integrity of internal structures and the characteristics in a hot gas duct under the rapid depressurization accident, depressurization tests have been carried out using a test apparatus installed the hot gas duct with the same size and the same structures as that of the High Temperature Engineering Test Reactor (HTTR). The tests have been performed with three parameters: depressurization rate (0.14-3.08 MPa/s) determined by orifice diameter, area of the open space at the slide joint (11.9-2036 mm 2 ), and initial pressure (1.0-4.0 MPa) filled up in a pressure vessel, by using nitrogen gas and helium gas. The maximum pressure difference applied on the internal structures of the hot gas duct was 2.69 MPa on the liner tube and 0.45 MPa on the separating plate. After all tests were completed, the hot gas duct which was used in the tests was disassembled. Inspection revealed that there were no failure and no deformation on the internal structures such as separating plates, insulation layers, a liner tube and a pressure tube. (author)

  10. Microstructure, mechanical properties and texture of an AA6061/AA5754 composite fabricated by cross accumulative roll bonding

    Energy Technology Data Exchange (ETDEWEB)

    Verstraete, K., E-mail: kevin.verstraete@u-psud.fr [Université Paris-Sud, SP2M, ICMMO, UMR CNRS 8182, 91405 Orsay Cedex (France); Helbert, A.L. [Université Paris-Sud, SP2M, ICMMO, UMR CNRS 8182, 91405 Orsay Cedex (France); Brisset, F. [Université Paris-Sud, ICMMO, UMR CNRS 8182, 91405 Orsay Cedex (France); Benoit, A.; Paillard, P. [Institut des Matériaux Jean Rouxel (IMN), UMR 6502, Polytech’Nantes, Nantes Cedex (France); Baudin, T. [Université Paris-Sud, SP2M, ICMMO, UMR CNRS 8182, 91405 Orsay Cedex (France)

    2015-07-29

    AA6061 alloy is a widely used material in the automotive and aerospace industries, but is prone to hot cracking, which limits its weldability. To prevent this phenomenon, the AA6061/AA5754 composite was formed using a severe plastic deformation technique, Cross Accumulative Roll Bonding (CARB), at an elevated temperature (350 °C) to ensure good bonding between layers. This technique was efficient to maintain a small grain size, even under the process temperature conditions, and consequently, preserve good mechanical properties. The composite had better mechanical properties than the initial aluminium alloys. Microstructure and texture remained stable after two cycles and yield stress tended towards an equal value in the rolling and the transverse directions. After two cycles, the main component was the {001}〈110〉 rotated Cube, which was maintained for up to 10 cycles. Diffusion was more effective as the strain increased. Finally, a tungsten inert gas (TIG) welding process was performed on the composite and confirmed resistance to hot cracking.

  11. Physical metallurgy of tungsten. Metallovedenie vol'frama

    Energy Technology Data Exchange (ETDEWEB)

    Savitskii, E M; Povarova, K B; Makarov, P V

    1978-01-01

    The physico-chemical principles of the interaction between tungsten and the elements of the periodic chart are systematized and summarized, and a description is given of the physical and mechanical properties of tungsten and its alloys. An examination is made of the nature of cold brittleness and methods of increasing the plasticity of alloys, means of producing tungsten, methods of purification, alloying, thermal and mechanical processing, and a survey is made of the contemporary use of tungsten and its alloys in advanced sectors of modern technology. The book is designed for personnel at scientific-research institutes, design bureaus and plants, engaged in the development, technology, and use of alloys of refractory metals as well as for instructors, graduate students and senior students taking metal studies and machine building courses, and aeronautical institutions of higher learning. 431 references, 11 tables.

  12. Selective CVD tungsten on silicon implanted SiO/sub 2/

    International Nuclear Information System (INIS)

    Hennessy, W.A.; Ghezzo, M.; Wilson, R.H.; Bakhru, H.

    1988-01-01

    The application range of selective CVD tungsten is extended by its coupling to the ion implantation of insulating materials. This article documents the results of selective CVD tungsten using silicon implanted into SiO/sub 2/ to nucleate the tungsten growth. The role of implant does, energy, and surface preparation in achieving nucleation are described. SEM micrographs are presented to demonstrate the selectivity of this process. Measurements of the tungsten film thickness and sheet resistance are provided for each of the experimental variants corresponding to successful deposition. RBS and XPS analysis are discussed in terms of characterizing the tungsten/oxide interface and to evaluate the role of the silicon implant in the CVD tungsten mechanism. Utilizing this method a desired metallization pattern can be readily defined with lithography and ion implantation, and accurately replicated with a layer of CVD tungsten. This approach avoids problems usually associated with blanket deposition and pattern transfer, which are particularly troublesome for submicron VLSI technology

  13. Damage process of high purity tungsten coatings by hydrogen beam heat loads

    International Nuclear Information System (INIS)

    Tamura, S.; Tokunaga, K.; Yoshida, N.; Taniguchi, M.; Ezato, K.; Sato, K.; Suzuki, S.; Akiba, M.; Tsunekawa, Y.; Okumiya, M.

    2005-01-01

    To investigate the synergistic effects of heat load and hydrogen irradiation, cyclic heat load tests with a hydrogen beam and a comparable electron beam were performed for high purity CVD-tungsten coatings. Surface modification was examined as a function of the peak temperature by changing the heat flux. Scanning Electron Microscopy analysis showed that the surface damage caused by the hydrogen beam was more severe than that by the electron beam. In the hydrogen beam case, cracking at the surface occurred at all peak temperatures examined from 300 deg. C to 1600 deg. C. These results indicate that the injected hydrogen induces embrittlement for the CVD-tungsten coating

  14. He-cooled divertor for DEMO. Fabrication technology for tungsten cooling fingers

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, J.; Norajitra, P.; Widak, V.; Krauss, W. [Forschungszentrum Karlsruhe GmbH (Germany)

    2008-07-01

    A modular helium-cooled divertor design based on the multi-jet impingement concept (HEMJ) has been developed for the ''post-ITER'' demonstration reactor (DEMO) at the Forschungszentrum Karlsruhe [1, 2]. The main function of the divertor is to keep the plasma free from impurities by catching particles, such as fusion ash and eroded particles from the first wall. From the divertor surface, a maximum heat load of 10 MW/m{sup 2} at least has to be removed. The whole divertor is split up into a number of cassettes (48 according to the latest design studies [3]). Each cassette is cooled separately. The target plates are provided with several cooling fingers to keep the thermal stresses low. Each cooling finger consists of a tungsten tile which is brazed to a thimble-like cap made of a tungsten alloy W-1%La2O3 (WL10) underneath. The thimble has to be connected to the ODS EUROFER steel structure, which is accomplished by brazing again. The tungsten/tungsten brazing is exposed to 1200 C operation temperature while the tungsten/steel brazing joint must withstand 700 C operating temperature. Cooling of the finger is achieved by multi-jet impingement with helium. The inlet temperature of helium is 600 C and rises up to 700 C at the outlet. With this kind of cooling, a mean heat transfer coefficient of 35.000 W/(m{sup 2*}K) can be reached. This compact report will focus on the manufacturing of such a cooling finger unit at FZK. It will cover the machining of the tungsten tile as well as of the thimble and, the brazing of the parts. The major aim of this activity is, on the one hand, to obtain functioning mock-ups with high quality and high reliability, in particular in terms of minimising the surface roughness, cracks, and micro-cracks. On the other hand, effort should also be laid on realising the mass production from economic point of view. (orig.)

  15. Combustion of powdery tungsten in pyrotechnic mixtures

    International Nuclear Information System (INIS)

    Ivanov, G.V.; Reshetov, A.A.; Viktorenko, A.M.; Surkov, V.G.; Karmadonov, L.N.

    1982-01-01

    The basic regularities of tungsten burning (powder 2-5 μm) with oxidizers most typical for pyrotechnics: nitrates, lead and barium peroxides (powder, 2-8 μm) and potassium perchlorate (powder, 2-8 μm) are studied. Dependences of burning rate as a function of pressure and ratio of components are established. It is supposed that tungsten burning in mixtures with the mentioned nitrates is a complex and multistage process the rate of which is determined by tungsten dissolution in nitrate melts. Analysis of burning products using available methods is complex

  16. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    International Nuclear Information System (INIS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Tanemura, Masaki

    2016-01-01

    The synthesis of large-area monolayer tungsten disulphide (WS 2 ) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS 2 crystals using tungsten hexachloride (WCl 6 ) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl 6 in ethanol was drop-casted on SiO 2 /Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS 2 crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS 2 single crystalline monolayer can be grown using the WCl 6 precursor. Our finding shows an easier and effective approach to grow WS 2 monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction

  17. NUMERICAL MODELING OF CONJUGATE HEAT TRANSFER IN AN INSULATED GLASS UNIT (IGU WITH ACCOUNT FOR ITS DEFORMATION

    Directory of Open Access Journals (Sweden)

    Golubev Stanislav Sergeevich

    2012-12-01

    The effects of different climatic impacts lead to the deformation of glasses within an IGU (and its vertical cavity, respectively. Deformation of glasses and vertical cavities reduces the thermal resistance of an IGU. A numerical simulation of conjugate heat transfer within an IGU was implemented as part of the research into this phenomenon. Calculations were performed in ANSYS FLUENT CFD package. Basic equations describing the conservation of mass, conservation of momentum (in the Boussinesq approximation, conservation of energy were solved. Also, the radiation of the cavity wall was taken into account. Vertical walls were considered as non-isothermal, while horizontal walls were adiabatic. Calculations were made for several patterns of glass deformations. Calculation results demonstrate that the heat flow over vertical walls intensifies as the distance between centres of IGU glasses is reduced. The temperature in the central area of the hot glass drops.

  18. High Purity Tungsten Spherical Particle Preparation From WC-Co Spent Hard Scrap

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available Tungsten carbide-cobalt hard metal scrap was recycled to obtain high purity spherical tungsten powder by a combined hydrometallurgy and physical metallurgy pathway. Selective leaching of tungsten element from hard metal scrap occurs at solid / liquid interface and therefore enlargement of effective surface area is advantageous. Linear oxidation behavior of Tungsten carbide-cobalt and the oxidized scrap is friable to be pulverized by milling process. In this regard, isothermally oxidized Tungsten carbide-cobalt hard metal scrap was mechanically broken into particles and then tungsten trioxide particle was recovered by hydrometallurgical method. Recovered tungsten trioxide was reduced to tungsten particle in a hydrogen environment. After that, tungsten particle was melted and solidified to make a spherical one by RF (Ratio Frequency thermal plasma process. Well spherical tungsten micro-particle was successfully obtained from spent scrap. In addition to the morphological change, thermal plasma process showed an advantage for the purification of feedstock particle.

  19. Tungsten-based composite materials for fusion reactor shields

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.

    1985-01-01

    Composite tungsten-based materials were recently proposed for the heavy constituent of compact fusion reactor shields. These composite materials will enable the incorporation of tungsten - the most efficient nonfissionable inelastic scattering (as well as good neutron absorbing and very good photon attenuating) material - in the shield in a relatively cheap way and without introducing voids (so as to enable minimizing the shield thickness). It is proposed that these goals be achieved by bonding tungsten powder, which is significantly cheaper than high-density tungsten, with a material having the following properties: good shielding ability and relatively low cost and ease of fabrication. The purpose of this work is to study the effectiveness of the composite materials as a function of their composition, and to estimate the economic benefit that might be gained by the use of these materials. Two materials are being considered for the binder: copper, second to tungsten in its shielding ability, and iron (or stainless steel), the common fusion reactor shield heavy constituent

  20. Design, R&D and commissioning of EAST tungsten divertor

    Science.gov (United States)

    Yao, D. M.; Luo, G. N.; Zhou, Z. B.; Cao, L.; Li, Q.; Wang, W. J.; Li, L.; Qin, S. G.; Shi, Y. L.; Liu, G. H.; Li, J. G.

    2016-02-01

    After commissioning in 2005, the EAST superconducting tokamak had been operated with its water cooled divertors for eight campaigns up to 2012, employing graphite as plasma facing material. With increase in heating power over 20 MW in recent years, the heat flux going to the divertors rises rapidly over 10 MW m-2 for steady state operation. To accommodate the rapid increasing heat load in EAST, the bolting graphite tile divertor must be upgraded. An ITER-like tungsten (W) divertor has been designed and developed; and firstly used for the upper divertor of EAST. The EAST upper W divertor is modular structure with 80 modules in total. Eighty sets of W/Cu plasma-facing components (PFC) with each set consisting of an outer vertical target (OVT), an inner vertical target (IVT) and a DOME, are attached to 80 stainless steel cassette bodies (CB) by pins. The monoblock W/Cu-PFCs have been developed for the strike points of both OVT and IVT, and the flat type W/Cu-PFCs for the DOME and the baffle parts of both OVT and IVT, employing so-called hot isostatic pressing (HIP) technology for tungsten to CuCrZr heat sink bonding, and electron beam welding for CuCrZr to CuCrZr and CuCrZr to other material bonding. Both monoblock and flat type PFC mockups passed high heat flux (HHF) testing by means of electron beam facilities. The 80 divertor modules were installed in EAST in 2014 and results of the first commissioning are presented in this paper.