WorldWideScience

Sample records for severe convective storm

  1. Remote sensing of severe convective storms over Qinghai-Xizang Plateau

    Science.gov (United States)

    Hung, R. J.; Liu, J. M.; Tsao, D. Y.; Smith, R. E.

    1984-01-01

    The American satellite, GOES-1 was moved to the Indian Ocean at 58 deg E during the First GARP Global Experiment (FGGE). The Qinghai-Xizang Plateau significantly affects the initiation and development of heavy rainfall and severe storms in China, just as the Rocky Mountains influence the local storms in the United States. Satelite remote sensing of short-lived, meso-scale convective storms is particularly important for covering a huge area of a high elevation with a low population density, such as the Qinghai-Xizang Plateau. Results of this study show that a high growth rate of the convective clouds, followed by a rapid collapse of the cloud top, is associated with heavy rainfall in the area. The tops of the convective clouds developed over the Plateau lie between the altitudes of the two tropopauses, while the tops of convective clouds associated with severe storms in the United States usually extend much above the tropopause.

  2. Analyis of the role of the planetary boundary layer schemes during a severe convective storm

    NARCIS (Netherlands)

    Wisse, J.S.P.; Vilà-Guerau de Arellano, J.

    2004-01-01

    The role played by planetary boundary layer (PBL) in the development and evolution of a severe convective storm is studied by means of meso-scale modeling and surface and upper air observations. The severe convective precipitation event that occurred on 14 September 1999 in the northeast of the

  3. A-Train Observations of Deep Convective Storm Tops

    Science.gov (United States)

    Setvak, Martin; Bedka, Kristopher; Lindsey, Daniel T.; Sokol, Alois; Charvat, Zdenek; Stastka, Jindrich; Wang, Pao K.

    2013-01-01

    The paper highlights simultaneous observations of tops of deep convective clouds from several space-borne instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS) of the Aqua satellite, Cloud Profiling Radar (CPR) of the CloudSat satellite, and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) flown on the CALIPSO satellite. These satellites share very close orbits, thus together with several other satellites they are referred to as the "A-Train" constellation. Though the primary responsibility of these satellites and their instrumentation is much broader than observations of fine-scale processes atop convective storms, in this study we document how data from the A-Train can contribute to a better understanding and interpretation of various storm-top features, such as overshooting tops, cold-U/V and cold ring features with their coupled embedded warm areas, above anvil ice plumes and jumping cirrus. The relationships between MODIS multi-spectral brightness temperature difference (BTD) fields and cloud top signatures observed by the CPR and CALIOP are also examined in detail to highlight the variability in BTD signals across convective storm events.

  4. A climatology of potential severe convective environments across South Africa

    Science.gov (United States)

    Blamey, R. C.; Middleton, C.; Lennard, C.; Reason, C. J. C.

    2017-09-01

    Severe thunderstorms pose a considerable risk to society and the economy of South Africa during the austral summer months (October-March). Yet, the frequency and distribution of such severe storms is poorly understood, which partly stems out of an inadequate observation network. Given the lack of observations, alternative methods have focused on the relationship between severe storms and their associated environments. One such approach is to use a combination of covariant discriminants, derived from gridded datasets, as a probabilistic proxy for the development of severe storms. These covariates describe some key ingredient for severe convective storm development, such as the presence of instability. Using a combination of convective available potential energy and deep-layer vertical shear from Climate Forecast System Reanalysis, this study establishes a climatology of potential severe convective environments across South Africa for the period 1979-2010. Results indicate that early austral summer months are most likely associated with conditions that are conducive to the development of severe storms over the interior of South Africa. The east coast of the country is a hotspot for potential severe convective environments throughout the summer months. This is likely due to the close proximity of the Agulhas Current, which produces high latent heat fluxes and acts as a key moisture source. No obvious relationship is established between the frequency of potential severe convective environments and the main large-scale modes of variability in the Southern Hemisphere, such as ENSO. This implies that several factors, possibly more localised, may modulate the spatial and temporal frequency of severe thunderstorms across the region.

  5. Strong convective storm nowcasting using a hybrid approach of convolutional neural network and hidden Markov model

    Science.gov (United States)

    Zhang, Wei; Jiang, Ling; Han, Lei

    2018-04-01

    Convective storm nowcasting refers to the prediction of the convective weather initiation, development, and decay in a very short term (typically 0 2 h) .Despite marked progress over the past years, severe convective storm nowcasting still remains a challenge. With the boom of machine learning, it has been well applied in various fields, especially convolutional neural network (CNN). In this paper, we build a servere convective weather nowcasting system based on CNN and hidden Markov model (HMM) using reanalysis meteorological data. The goal of convective storm nowcasting is to predict if there is a convective storm in 30min. In this paper, we compress the VDRAS reanalysis data to low-dimensional data by CNN as the observation vector of HMM, then obtain the development trend of strong convective weather in the form of time series. It shows that, our method can extract robust features without any artificial selection of features, and can capture the development trend of strong convective storm.

  6. A two year (2008-2009) analysis of severe convective storms in the Mediterranean basin as observed by satellite imagery

    Science.gov (United States)

    Gozzini, B.; Melani, S.; Pasi, F.; Ortolani, A.

    2010-09-01

    The increasing damages caused by natural disasters, a great part of them being direct or indirect effects of severe convective storms (SCS), seem to suggest that extreme events occur with greater frequency, also as a consequence of climate changes. A better comprehension of the genesis and evolution of SCS is then necessary to clarify if and what is changing in these extreme events. The major reason to go through the mechanisms driving such events is given by the growing need to have timely and precise predictions of severe weather events, especially in areas that show to be more and more sensitive to their occurrence. When dealing with severe weather events, either from a researcher or an operational point of view, it is necessary to know precisely the conditions under which these events take place to upgrade conceptual models or theories, and consequently to improve the quality of forecasts as well as to establish effective warning decision procedures. The Mediterranean basin is, in general terms, a sea of small areal extent, characterised by the presence of several islands; thus, a severe convection phenomenon originating over the sea, that lasts several hours, is very likely to make landfall during its lifetime. On the other hand, these storms are quasi-stationary or very slow moving so that, when convection happens close to the shoreline, it is normally very dangerous and in many cases can cause very severe weather, with flash floods or tornadoes. An example of these extreme events is one of the case study analysed in this work, regarding the flash flood occurred in Giampileri (Sicily, Italy) the evening of 1st October 2009, where 18 people died, other 79 injured and the historical centre of the village seriously damaged. Severe weather systems and strong convection occurring in the Mediterranean basin have been investigated for two years (2008-2009) using geostationary (MSG) and polar orbiting (AVHRR) satellite data, supported by ECMWF analyses and severe

  7. Large Eddy Simulations of Severe Convection Induced Turbulence

    Science.gov (United States)

    Ahmad, Nash'at; Proctor, Fred

    2011-01-01

    Convective storms can pose a serious risk to aviation operations since they are often accompanied by turbulence, heavy rain, hail, icing, lightning, strong winds, and poor visibility. They can cause major delays in air traffic due to the re-routing of flights, and by disrupting operations at the airports in the vicinity of the storm system. In this study, the Terminal Area Simulation System is used to simulate five different convective events ranging from a mesoscale convective complex to isolated storms. The occurrence of convection induced turbulence is analyzed from these simulations. The validation of model results with the radar data and other observations is reported and an aircraft-centric turbulence hazard metric calculated for each case is discussed. The turbulence analysis showed that large pockets of significant turbulence hazard can be found in regions of low radar reflectivity. Moderate and severe turbulence was often found in building cumulus turrets and overshooting tops.

  8. The NASA Severe Thunderstorm Observations and Regional Modeling (NASA STORM) Project

    Science.gov (United States)

    Schultz, Christopher J.; Gatlin, Patrick N.; Lang, Timothy J.; Srikishen, Jayanthi; Case, Jonathan L.; Molthan, Andrew L.; Zavodsky, Bradley T.; Bailey, Jeffrey; Blakeslee, Richard J.; Jedlovec, Gary J.

    2016-01-01

    The NASA Severe Storm Thunderstorm Observations and Regional Modeling(NASA STORM) project enhanced NASA’s severe weather research capabilities, building upon existing Earth Science expertise at NASA Marshall Space Flight Center (MSFC). During this project, MSFC extended NASA’s ground-based lightning detection capacity to include a readily deployable lightning mapping array (LMA). NASA STORM also enabled NASA’s Short-term Prediction and Research Transition (SPoRT) to add convection allowing ensemble modeling to its portfolio of regional numerical weather prediction (NWP) capabilities. As a part of NASA STORM, MSFC developed new open-source capabilities for analyzing and displaying weather radar observations integrated from both research and operational networks. These accomplishments enabled by NASA STORM are a step towards enhancing NASA’s capabilities for studying severe weather and positions them for any future NASA related severe storm field campaigns.

  9. Convection index as a tool for trend analysis of intense summer storms in Switzerland

    Science.gov (United States)

    Gaal, Ladislav; Molnar, Peter; Szolgay, Jan

    2013-04-01

    Convective summer thunderstorms are generally responsible for the most devastating floods in urban and small natural catchments. In this study we focus on the identification of the nature and magnitude of changes in the properties of intense summer storms of convective character in Switzerland in the last three decades. The study is based on precipitation records from the SwissMetNet (MeteoSwiss) network at 63 stations that cover altitudes ranging from 200 up to 3300 m a.s.l. over the period 1981-2012 (32 years). Additionally, the same stations also measure the number of lightning strikes within a range of 30 km from each station. In an accompanying contribution we describe the method how intensive summer storms can be reliably selected out of all storms in long and high resolution precipitation time series. On the basis of the statistical distributions and dependence among key storm characteristics at the event scale (total rainfall depth R, storm duration D, and peak intensity I) and using high resolution lightning data as a surrogate we defined a threshold intensity I* that differentiates between the events accompanied with lightning with an acceptably small probability of misclassification. This allowed us to identify intense summer events with convective character as those where I > I* regardless of their duration or total rainfall depth. The current study makes use of the threshold intensity I* for the definition of a seasonal convection index at each station (Llasat, 2001). This index gives us a measure of 'convectiveness', i.e. the total precipitation depth coming from convective storms relative to the total precipitation depth of all summer storms. We computed the convection index at all 63 stations and analyzed the series for trends. We found that the seasonal convection index increases at most of the stations in Switzerland and in approximately 20% of the cases this increase is statistically significant. This is likely a consequence of the fact that the

  10. Increased rainfall volume from future convective storms in the US

    Science.gov (United States)

    Prein, Andreas F.; Liu, Changhai; Ikeda, Kyoko; Trier, Stanley B.; Rasmussen, Roy M.; Holland, Greg J.; Clark, Martyn P.

    2017-12-01

    Mesoscale convective system (MCS)-organized convective storms with a size of 100 km have increased in frequency and intensity in the USA over the past 35 years1, causing fatalities and economic losses2. However, their poor representation in traditional climate models hampers the understanding of their change in the future3. Here, a North American-scale convection-permitting model which is able to realistically simulate MSCs4 is used to investigate their change by the end-of-century under RCP8.5 (ref. 5). A storm-tracking algorithm6 indicates that intense summertime MCS frequency will more than triple in North America. Furthermore, the combined effect of a 15-40% increase in maximum precipitation rates and a significant spreading of regions impacted by heavy precipitation results in up to 80% increases in the total MCS precipitation volume, focussed in a 40 km radius around the storm centre. These typically neglected increases substantially raise future flood risk. Current investments in long-lived infrastructures, such as flood protection and water management systems, need to take these changes into account to improve climate-adaptation practices.

  11. Enhanced object-based tracking algorithm for convective rain storms and cells

    Science.gov (United States)

    Muñoz, Carlos; Wang, Li-Pen; Willems, Patrick

    2018-03-01

    This paper proposes a new object-based storm tracking algorithm, based upon TITAN (Thunderstorm Identification, Tracking, Analysis and Nowcasting). TITAN is a widely-used convective storm tracking algorithm but has limitations in handling small-scale yet high-intensity storm entities due to its single-threshold identification approach. It also has difficulties to effectively track fast-moving storms because of the employed matching approach that largely relies on the overlapping areas between successive storm entities. To address these deficiencies, a number of modifications are proposed and tested in this paper. These include a two-stage multi-threshold storm identification, a new formulation for characterizing storm's physical features, and an enhanced matching technique in synergy with an optical-flow storm field tracker, as well as, according to these modifications, a more complex merging and splitting scheme. High-resolution (5-min and 529-m) radar reflectivity data for 18 storm events over Belgium are used to calibrate and evaluate the algorithm. The performance of the proposed algorithm is compared with that of the original TITAN. The results suggest that the proposed algorithm can better isolate and match convective rainfall entities, as well as to provide more reliable and detailed motion estimates. Furthermore, the improvement is found to be more significant for higher rainfall intensities. The new algorithm has the potential to serve as a basis for further applications, such as storm nowcasting and long-term stochastic spatial and temporal rainfall generation.

  12. Enhanced antisunward convection and F region scintillations at mid-latitudes during storm onset

    International Nuclear Information System (INIS)

    Foster, J.C.; Aarons, J.

    1988-01-01

    Millstone Hill radar observations over a wide span of latitudes detail the onset of 300 m/s antisunward (westward) convection at mid and low latitudes in the morning sector as a region of storm-enhanced sunward convection retreats poleward. Ring current observations reported by Lui et al. (1987) suggest that the magnetospheric shielding layer was coincident with the observed reversal between sunward and antisunward convection. A strong southward component of the F region neutral wind is observed at latitudes equatorward of the convection reversal. These observations are in agreement with the model of Spiro et al. (1988), who find that storm-enhanced neutrral winds at latitudes equatorward of the shielding layer can generate a long-lived perturbation electric field in the inner magnetosphere. The observations show the growth of the subauroral electric field as the shielding boundary moves poleward. They observe 136-MHz scintillations in both the auroral sunwarrd convection region and the region of subauroral antisunward convection when the convection electric fields exceed 5 mV/m

  13. Evidence for Gravity Wave Seeding of Convective Ionosphere Storms Initiated by Deep Troposphere Convection

    Science.gov (United States)

    Kelley, M. C.; Pfaff, R. F., Jr.; Dao, E. V.; Holzworth, R. H., II

    2014-12-01

    With the increase in solar activity, the Communications/Outage Forecast System satellite (C/NOFS) now goes below the F peak. As such, we now can study the development of Convective Ionospheric Storms (CIS) and, most importantly, large-scale seeding of the low growth-rate Rayleigh-Taylor (R-T) instability. Two mechanisms have been suggested for such seeding: the Collisional Kelvin-Helmholtz Instability (CKHI) and internal atmospheric gravity waves. A number of observations have shown that the spectrum of fully developed topside structures peaks at 600 km and extends to over 1000 km. These structures are exceedingly difficult to explain by CKHI. Here we show that sinusoidal plasma oscillations on the bottomside during daytime develop classical R-T structures on the nightside with the background 600 km structure still apparent. In two case studies, thunderstorm activity was observed east of the sinusoidal features in the two hours preceding the C/NOFS passes. Thus, we argue that convective tropospheric storms are a likely source of these sinusoidal features.

  14. Sprite-producing Convective Storms within the Colorado Lightning Mapping Array

    Science.gov (United States)

    Lyons, W. A.; Cummer, S. A.; Rison, W.; Krehbiel, P. R.; Lang, T. J.; Rutledge, S. A.; Lu, G.; Stanley, M. A.; Ashcraft, T.; Nelson, T. E.

    2012-12-01

    The multi-year, multi-institution effort entitled Physical Origins of Coupling to the Upper Atmosphere from Lightning (PhOCAL), has among its goals to qualitatively understand the meteorology and lightning flash characteristics that produce the unusual and/or very energetic lightning responsible for phenomena such as sprites, halos, elves, blue jets and gigantic jets, collectively known as Transient Luminous Events (TLEs). A key task is to obtain simultaneous video, ideally with a high-speed imager (HSI), of both a TLE and its parent lightning discharge, within the domain of a 3-D Lightning Mapping Array (LMA). While conceptually simple, this task is logistically quite complicated. In 2012, a new 15-station Colorado LMA (COLMA) became operational, covering northeastern Colorado, with the Yucca Ridge Field Station (YRFS) near its western edge. The National Charge Moment Change Network (CMCN), which since 2007 has been documenting sprite-class +CGs (those with impulse change moment changes >100 C km), indicates that a strong gradient of energetic +CGs exists west-to-east through the COLMA, with the most likely region for sprite-producing storms being in the COLMA eastern fringes (western Kansas and Nebraska). Yet, on 8 and 25 June, 2012, intense convective systems formed in the COLMA along and just east of the Front Range, producing severe weather and intense lightning. On the 8th, four sprite parent +CGs were captured at 3000 fps from YRFS with the sprites confirmed by dual (conventional speed) cameras in New Mexico. In a second storm on the 25th, viewing conditions prevented +CG video acquisition, but sprites were logged over the COLMA and detailed reconstructions of the discharges are being made. The parent discharges often began as upward negative leaders propagating into a mid-level positive charge layer at 8-10 km. They often originated within or near the convective core before expanding outward into a stratiform region and involving several hundred square

  15. Assimilation of ZDR Columns for Improving the Spin-Up and Forecasts of Convective Storms

    Science.gov (United States)

    Carlin, J.; Gao, J.; Snyder, J.; Ryzhkov, A.

    2017-12-01

    A primary motivation for assimilating radar reflectivity data is the reduction of spin-up time for modeled convection. To accomplish this, cloud analysis techniques seek to induce and sustain convective updrafts in storm-scale models by inserting temperature and moisture increments and hydrometeor mixing ratios into the model analysis from simple relations with reflectivity. Polarimetric radar data provide additional insight into the microphysical and dynamic structure of convection. In particular, the radar meteorology community has known for decades that convective updrafts cause, and are typically co-located with, differential reflectivity (ZDR) columns - vertical protrusions of enhanced ZDR above the environmental 0˚C level. Despite these benefits, limited work has been done thus far to assimilate dual-polarization radar data into numerical weather prediction models. In this study, we explore the utility of assimilating ZDR columns to improve storm-scale model analyses and forecasts of convection. We modify the existing Advanced Regional Prediction System's (ARPS) cloud analysis routine to adjust model temperature and moisture state variables using detected ZDR columns as proxies for convective updrafts, and compare the resultant cycled analyses and forecasts with those from the original reflectivity-based cloud analysis formulation. Results indicate qualitative and quantitative improvements from assimilating ZDR columns, including more coherent analyzed updrafts, forecast updraft helicity swaths that better match radar-derived rotation tracks, more realistic forecast reflectivity fields, and larger equitable threat scores. These findings support the use of dual-polarization radar signatures to improve storm-scale model analyses and forecasts.

  16. Progress toward developing a practical societal response to severe convection (2005 EGU Sergei Soloviev Medal Lecture

    Directory of Open Access Journals (Sweden)

    C. A. Doswell III

    2005-01-01

    Full Text Available A review of severe convection in the context of geophysical hazards is given. Societal responses to geophysical hazards depend, in part, on the ability to forecast the events and the degree of certainty with which forecasts can be made. In particular, the spatio-temporal specificity and lead time of those forecasts are critical issues. However, societal responses to geophysical hazards are not only dependent on forecasting. Even perfect forecasts might not be sufficient for a meaningful societal response without the development of considerable infrastructure to allow a society to respond properly and in time to mitigate the hazard. Geophysical hazards of extreme magnitude are rare events, a fact that tends to make funding support for appropriate preparations difficult to obtain. Focusing on tornadoes as a prototypical hazard from severe convective storms, the infrastructure for dealing with them in the USA is reviewed. Worldwide implications of the experience with severe convective storms in the USA are discussed, with an emphasis on its relevance to the situation in Europe.

  17. On the Initiation of an Isolated Convective Storm Near the Central Urban Area of Beijing Metropolitan Region

    Science.gov (United States)

    LI, H.; Cui, X.; Zhang, D. L.

    2017-12-01

    An isolated heavy-rain-producing convective storm was unexpectedly initiated in the early afternoon of 9 August 2011 near the central urban area of Beijing metropolitan region (BMR), which occurred at some distance from BMR's northwestern mountains and two pre-existing mesoscale convective systems (MCSs) to the north and west, respectively. An observational analysis shows the presence of large-scale quasi-geostrophic conditions but a favorable regional environment for the convective initiation (CI) of storms, including conditional instability, a low-level southerly flow and high-θe (equivalent potential temperature) area. A nested-grid (4/1.333 km) cloud-resolving model simulation of the case is performed to examine the CI of the storm. Results reveal that the growth of the mixed boundary layer, enhanced by the urban heat island (UHI) effects, accounts for the formation of a thin layer of clouds at the boundary-layer top at the CI site. However, this storm may not take place without sustained low-level convergence of high-θe air between a southerly flow and a northerly flow ahead of a cold outflow boundary associated with the northern MCS. The latter is driven by the latent heating of the shallow layer of clouds during the earlier CI stage and then a cold mesohigh associated with the northern MCS. The results indicate the important roles of the urban effects, mountain morphology, and convectively generated pressure perturbations in determining the CI location and timing of isolated convective storms over the BMR during the summer months.

  18. Transport of Formaldehyde to the Upper Troposphere In Deep Convective Storms During the 2012 DC3 Study

    Science.gov (United States)

    Fried, A.; Weibring, P.; Richter, D.; Walega, J.; Olson, J. R.; Crawford, J. H.; Barth, M. C.; Apel, E. C.; Hornbrook, R. S.; Bela, M. M.; Toon, O. B.; Blake, D. R.; Blake, N. J.; Luo, Z. J.

    2014-12-01

    The Deep Convective Clouds and Chemistry (DC3) campaign in the summer of 2012 provided an opportunity to study the impacts of deep convection on reactive and soluble precursors of ozone and HOx radicals, including CH2O, in the upper troposphere and lower stratosphere (UTLS) over North America. Formaldehyde measurements were acquired in the inflow and outflow of numerous storms on the NASA DC-8 and NSF/NCAR GV-aircraft employing fast, sensitive, and accurate difference frequency generation infrared absorption spectrometers. Since our Fall 2013 AGU Meeting poster, we have developed an improved methodology based upon 3 independent approaches, to determine the amount of CH2O that is scavenged by deep convective storms. The first approach is based upon WRF-Chem model simulations, which provides greater confidence in the determination of CH2O scavenging efficiencies and allows the estimation of CH2O ice retention factors.The second approach is a modified mixing model employing 4 non-reactive passive tracers (n,i-butane, n,i-pentane) to estimate altitude-dependent lateral entrainment rates. This information is coupled with time-dependent measurements in the outflow of various storms, which when extrapolated to time zero in the storm core, results in estimates of CH2O scavenging efficiencies. This analysis includes estimates of photochemically produced CH2O in the storm core. A third approach is based upon CH2O/n-butane ratio comparisons in both the storm inflow and outflow. Results from various storms over Oklahoma, Colorado, and Alabama will be presented. However, the analysis will primarily focus on the May 29, 2012 supercell storm in Oklahoma. During this storm, the 4 passive tracers produced a very consistent lateral entrainment rate of 0.083 ± 0.008 km-1, a value that broadly agrees with entrainment rates determined previously from analyzing moist static energy profiles (Luo et al., Geophys. Res. Lett., 2010). For this storm, the 3-independent approaches give CH2O

  19. Case study: An isolated severe storm with giant hail hit Slovenian capital city Ljubljana on May 25th 2009

    Science.gov (United States)

    Korosec, M.

    2009-09-01

    Introduction A quite unusual weather pattern for month of May with first and early season heat wave of year 2009 resulted in several days of active severe storms across central Europe and Alpine region. Synoptic situation On May 25th 2009, an omega block pattern with strong upper-level subtropical ridge extending over Mediterranean and Balkan Peninsula brought stable and warm conditions into Southern Europe. Elsewhere, two large-scale troughs were located over Western and Eastern Europe with very unstable environment. On the nose of the Mediterranean ridge a jet streak with moderate shear was placed while over the Southern Alpine region only weak shear was placed over Slovenia. Rich boundary layer moisture and steep lapse rates within an elevated mixed layer favored extreme amounts of CAPE. After strong diurnal heating and surface wind convergence along the local topography a few convective cells were triggered in the mountainous terrain while deep moist convection over the rest of Slovenia was trapped by the strong capping inversion. In late afternoon several cells from the mountainous terrain interfered with each other and explosive convective cell was initiated along their outflow boundaries. Increasing near surface southeasterly wind flow supported enhanced low-level shear and storm relative helicity which caused this cell to very rapidly grown into an organized supercell storm on the flat terrain in northern Slovenia. This supercell then started racing southeastwards towards Ljubljana, a capital city of Slovenia. It caused extensive hail damage with very large to giant hailstones up to 7cm in diameter falling over parts of Ljubljana and areas north and southeast of the city. Presentation of research This case study will go through a research of this very damaging hailstorm, throughout a detailed analysis of the synoptic situation including analysis of satellite, radar and surface observations. At first, forecasting models did not suggest organized convection

  20. Generation of a severe convective ionospheric storm under stable Rayleigh–Taylor conditions: triggering by meteors?

    Directory of Open Access Journals (Sweden)

    M. C. Kelley

    2016-02-01

    Full Text Available Here we report on four events detected using the Jicamarca Radio Observatory (JRO over an 18-year period, in which huge convective ionospheric storms (CISs occur in a stable ionosphere. We argue that these rare events could be initiated by meteor-induced electric fields. The meteor-induced electric fields map to the bottomside of the F region, causing radar echoes and a localized CIS. If and when a localized disturbance reaches 500 km, we argue that it becomes two-dimensionally turbulent and cascades structure to both large and small scales. This leads to long-lasting structure and, almost certainly, to scintillations over a huge range of latitudes some ±15° wide and to 3 m irregularities, which backscatter the VHF radar waves. These structures located at high altitudes are supported by vortices shed by the upwelling bubble in a vortex street.

  1. Constraining storm-scale forecasts of deep convective initiation with surface weather observations

    Science.gov (United States)

    Madaus, Luke

    Successfully forecasting when and where individual convective storms will form remains an elusive goal for short-term numerical weather prediction. In this dissertation, the convective initiation (CI) challenge is considered as a problem of insufficiently resolved initial conditions and dense surface weather observations are explored as a possible solution. To better quantify convective-scale surface variability in numerical simulations of discrete convective initiation, idealized ensemble simulations of a variety of environments where CI occurs in response to boundary-layer processes are examined. Coherent features 1-2 hours prior to CI are found in all surface fields examined. While some features were broadly expected, such as positive temperature anomalies and convergent winds, negative temperature anomalies due to cloud shadowing are the largest surface anomaly seen prior to CI. Based on these simulations, several hypotheses about the required characteristics of a surface observing network to constrain CI forecasts are developed. Principally, these suggest that observation spacings of less than 4---5 km would be required, based on correlation length scales. Furthermore, it is anticipated that 2-m temperature and 10-m wind observations would likely be more relevant for effectively constraining variability than surface pressure or 2-m moisture observations based on the magnitudes of observed anomalies relative to observation error. These hypotheses are tested with a series of observing system simulation experiments (OSSEs) using a single CI-capable environment. The OSSE results largely confirm the hypotheses, and with 4-km and particularly 1-km surface observation spacing, skillful forecasts of CI are possible, but only within two hours of CI time. Several facets of convective-scale assimilation, including the need for properly-calibrated localization and problems from non-Gaussian ensemble estimates of the cloud field are discussed. Finally, the characteristics

  2. The role of ice particles in the microphysics and dynamics of deep convective storms in various latitudes

    Science.gov (United States)

    Huang, Y. C.; Wang, P. K.

    2017-12-01

    The role of ice particles in the microphysics and dynamics of deep convective storms in various latitudes Yi-Chih Huang and Pao K. Wang Ice particles contribute to the microphysics and dynamics of severe storms in various regions of the world to a degree that is not commonly recognized. This study is motivated by the need to understand the role of ice particles plays in the development of severe storms so that their impact on various aspects of the storm behavior can be properly assessed. In this study, we perform numerical simulations of thunderstorms using a cloud resolving model WISCDYMM that includes parameterized microphysical processes to understand the role played by ice processes. We simulate thunderstorms occurred over various regions of the world including tropics, substropics and midlatitudes. We then perform statistical analysis of the simulated results to show the formation of various categories of hydrometeors to reveal the importance of ice processes. We will show that ice hydrometeors (cloud ice, snow, graupel/hail) account for 80% of the total hydrometeor mass for the High Plains storms but 50% for the subtropical storms. In addition, the melting of large ice particles (graupel and hail) is the major production process of rain in tropical storms although the ratio of ice-phase mass is responsible for only 40% of the total hydrometeor mass. Furthermore, hydrometeors have their own special microphysical processes in development and depletion over various latitudes. Microphysical structures depend on atmospheric dynamical and thermodynamical conditions which determine the partitioning of hydrometeors. This knowledge would benefit the microphysics parameterization in cloud models and cumulus parameterization in global circulation models.

  3. Storm-time Convection Dynamics Viewed from Optical Auroras: from Streamer to Patchy Pulsating Aurora

    Science.gov (United States)

    Yang, B.; Donovan, E.; Liang, J.; Grono, E.

    2016-12-01

    In a series of statistical and event studies we have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to if not exactly convection. Thus, 2D maps of PPA motion provides us the opportunity to remote sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI aurora observations (streamers and patchy pulsating aurora) combined with SuperDARN convection measurements, Swarm ion drift velocity measurements, and RBSP electric field measurements to explore the convection dynamics in storm time. From 0500 UT to 0600 UT on March 19 2015, convection observations across 5 magnetic local time (MLT) inferred from the motion of PPA patches and SuperDARN measurements show that a westward SAPS (Subauroral Polarized Streams) enhancement occurs after an auroral streamer. This suggests that plasma sheet fast flows can affect the inner magnetospheric convection, and possibly trigger very fast flows in the inner magnetosphere.

  4. Numerical simulation of the effects of cooling tower complexes on clouds and severe storms. Final report, September 1976-June 1979

    International Nuclear Information System (INIS)

    Orville, H.D.; Eckhoff, P.A.; Peak, J.E.; Hirsch, J.H.; Kopp, F.J.

    1979-11-01

    A two-dimensional, time-dependent model was developed which gives realistic simulations of many severe storm processes - such as heavy rains, hail, and strong winds. The model is a set of partial differential equations describing time changes of momentum, energy, and mass (air and various water substances such as water vapor, cloud liquid, cloud ice, rainwater, and hail). In addition, appropriate boundary And initial conditions (taken from weather sounding data) are imposed on a domain approximately 20 km high by 20 km wide with 200 m grid intervals to complete the model. Modifications were made to the model which allow additional water vapor and heat to be added at several lower grid points, simulating effluents from a power park. Cases were run which depict realistic severe storm situations. One atmospheric sounding has a strong middle-level inversion which tends to inhibit the first convective clouds but gives rise later to a severe storm with hail and heavy rains. One other sounding is taken from a day in which a severe storm occurred in the Miami area. A third sounding depicts atmospheric conditions in which severe storms formed in the vicinity of Huron, South Dakota. The results indicate that a power park emitting 80% latent heat and 20% sensible heat has little effect on the simulated storm. A case with 100% sensible heat emission leads to a much different solution, with the simulated storm reduced in severity and the rain and hail redistributed. A case in which water vapor is accumulated in a region and released over a broad depth results in sightly more rain from a severe storm

  5. Revisiting the latent heat nudging scheme for the rainfall assimilation of a simulated convective storm

    Science.gov (United States)

    Leuenberger, D.; Rossa, A.

    2007-12-01

    Next-generation, operational, high-resolution numerical weather prediction models require economical assimilation schemes for radar data. In the present study we evaluate and characterise the latent heat nudging (LHN) rainfall assimilation scheme within a meso-γ scale NWP model in the framework of identical twin simulations of an idealised supercell storm. Consideration is given to the model’s dynamical response to the forcing as well as to the sensitivity of the LHN scheme to uncertainty in the observations and the environment. The results indicate that the LHN scheme is well able to capture the dynamical structure and the right rainfall amount of the storm in a perfect environment. This holds true even in degraded environments but a number of important issues arise. In particular, changes in the low-level humidity field are found to affect mainly the precipitation amplitude during the assimilation with a fast adaptation of the storm to the system dynamics determined by the environment during the free forecast. A constant bias in the environmental wind field, on the other hand, has the potential to render a successful assimilation with the LHN scheme difficult, as the velocity of the forcing is not consistent with the system propagation speed determined by the wind. If the rainfall forcing moves too fast, the system propagation is supported and the assimilated storm and forecasts initialised therefrom develop properly. A too slow forcing, on the other hand, can decelerate the system and eventually disturb the system dynamics by decoupling the low-level moisture inflow from the main updrafts during the assimilation. This distortion is sustained in the free forecast. It has further been found that a sufficient temporal resolution of the rainfall input is crucial for the successful assimilation of a fast moving, coherent convective storm and that the LHN scheme, when applied to a convective storm, appears to necessitate a careful tuning.

  6. Predicting severe winter coastal storm damage

    International Nuclear Information System (INIS)

    Hondula, David M; Dolan, Robert

    2010-01-01

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'-such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989-are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the losses along the North

  7. Predicting severe winter coastal storm damage

    Energy Technology Data Exchange (ETDEWEB)

    Hondula, David M; Dolan, Robert, E-mail: hondula@virginia.edu [Department of Environmental Sciences, University of Virginia, PO Box 400123, Charlottesville, VA 22903 (United States)

    2010-07-15

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'-such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989-are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the

  8. Predicting severe winter coastal storm damage

    Science.gov (United States)

    Hondula, David M.; Dolan, Robert

    2010-07-01

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'—such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989—are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the losses along the

  9. Using MSG to monitor the evolution of severe convective storms over East Mediterranean Sea and Israel, and its response to aerosol loading

    Directory of Open Access Journals (Sweden)

    I. M. Lensky

    2007-08-01

    Full Text Available Convective storms over East Mediterranean sea and Israel were tracked by METEOSAT Second Generation (MSG. The MSG data was used to retrieve time series of the precipitation formation processes in the clouds, the temperature of onset of precipitation, and an indication to aerosol loading over the sea. Strong correlation was found between the aerosol loading and the depth above cloud base required for the initialization of effective precipitation processes (indicated by the effective radius = 15 µm threshold. It seems from the data presented here that the clouds' response to the aerosol loading is very short.

  10. The exploitation of Meteosat Second Generation data for convective storms over the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Bližňák, Vojtěch; Sokol, Zbyněk

    2012-01-01

    Roč. 103, - (2012), s. 60-69 ISSN 0169-8095 R&D Projects: GA ČR GA205/07/0905 Institutional research plan: CEZ:AV0Z30420517 Keywords : Meteorological satellite * Weather radar * Convective storm * Satellite rainfall estimates Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.200, year: 2012 http://www.sciencedirect.com/science/article/pii/S0169809511001396

  11. Severe storm in Bavaria, the Czech Republic and Poland on 12–13 July 1984: A statistic- and model-based analysis

    Czech Academy of Sciences Publication Activity Database

    Kašpar, Marek; Müller, Miloslav; Kakos, Vilibald; Řezáčová, Daniela; Sokol, Zbyněk

    2009-01-01

    Roč. 93, 1-3 (2009), s. 99-110 ISSN 0169-8095. [European Conference on Severe Storms /4./. Miramare -Trieste, 10.09.2007-14.09.2007] R&D Projects: GA ČR GA205/07/0905; GA AV ČR KJB300420701; GA AV ČR KJB300420802 Institutional research plan: CEZ:AV0Z30420517 Keywords : convective storm * synoptic anomaly * mesoscale condition * forecast verification * gust front Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.811, year: 2009 http://www. elsevier.com/locate/atmos

  12. Spotter's Guide for Identifying and Reporting Severe Local Storms.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This guide is designed to assist personnel working in the National Weather Service's Severe Local Storm Spotter Networks in identifying and reporting severe local storms. Provided are pictures of cloud types for severe storms including tornadoes, hail, thunder, lightning, heavy rains, and waterspouts. Instructions for key indications to watch for…

  13. Polarimetric signatures indicative of severe storm development - the Pentecost event 2014

    Science.gov (United States)

    Troemel, Silke; Diederich, Malte; Evaristo, Raquel; Ryzhkov, Alexander; Simmer, Clemens

    2015-04-01

    The 2014 Pentecost weekend storms in Europe were a series of severe supercell storms which followed a heatwave in early June 2014, resulting from a Spanish plume synoptic weather pattern. Outbreaks of severe weather were reported from these storm developments with the worst damages occurring over the German state of North Rhine-Westphalia on 9 June, where the storm was described as one of the most violent in decades by the German weather service (DWD). During this event six fatalities, wind gusts up to 150km/h, hail and a flash flood in Düsseldorf has been reported. Monitoring and analysis of high-impact weather using weather radars of shorter wavelength (X- and C-bands) requires special methods, i.e. anomalous high attenuation and differential attenuation due to very large raindrops originating from melting large hail has to be investigated and corrected. During the Pentecost event a record breaking ZDR bias of up to -25dB has been observed. Different strategies for reliable attenuation correction and rainfall estimation for this extreme event are explored and will be presented. A national 3D composite of polarimetric moments covering Germany with 1km horizontal, 250m vertical, and 5 minutes temporal resolution has been generated. 10 C-band radars from the DWD radar network, recently upgraded to polarimetry, have been included. Meanie3D, a 3D scale space tracking algorithm, is applied to the composite to investigate the magnitudes and temporal development of the 3 fundamental steps of a storms lifecycle: 1) high values of differential reflectivity ZDR aloft first indicate a developing cell, 2) ZDR-columns (these are vertical columns of high differential reflectivity) then indicate the updraft zone of a cell in the mature state. The vertical extent of the ZDR-column is thus a measure of the strength of the updraft and for the ensuing rainfall enhancement. 3) The very first big drops reach the surface before the most intense rain begins. This is reflected by the

  14. Global lightning and severe storm monitoring from GPS orbit

    Energy Technology Data Exchange (ETDEWEB)

    Suszcynsky, D. M. (David M.); Jacobson, A. R.; Linford, J (Justin); Pongratz, M. B. (Morris B.); Light, T. (Tracy E.); Shao, X. (Xuan-Min)

    2004-01-01

    Over the last few decades, there has been a growing interest to develop and deploy an automated and continuously operating satellite-based global lightning mapper [e.g. Christian et al., 1989; Weber et al., 1998; Suszcynsky et al., 2000]. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. Satellite-based lightning mappers are designed to exploit this relationship by using lightning detection as a proxy for remotely identifying, locating and characterizing strong convective activity on a global basis. Global lightning and convection mapping promises to provide users with (1) an enhanced global severe weather monitoring and early warning capability [e.g. Weber et al., 1998] (2) improved ability to optimize aviation flight paths around convective cells, particularly over oceanic and remote regions that are not sufficiently serviced by existing weather radar [e.g. Weber et al., 1998], and (3) access to regional and global proxy data sets that can be used for scientific studies and as input into meteorological forecast and global climatology models. The physical foundation for satellite-based remote sensing of convection by way of lightning detection is provided by the basic interplay between the electrical and convective states of a thundercloud. It is widely believed that convection is a driving mechanism behind the hydrometeor charging and transport that produces charge separation and lightning discharges within thunderclouds [e.g. see chapter 3 in MacGorman and Rust, 1998]. Although cloud electrification and discharge processes are a complex function of the convective dynamics and microphysics of the cloud, the fundamental relationship between convection and electrification is easy to observe. For example, studies have shown that the strength of the convective process within a thundercell can be loosely parameterized (with large variance) by the intensity of the

  15. Influence of the Convection Electric Field Models on Predicted Plasmapause Positions During Magnetic Storms

    Science.gov (United States)

    Pierrard, V.; Khazanov, G.; Cabrera, J.; Lemaire, J.

    2007-01-01

    In the present work, we determine how three well documented models of the magnetospheric electric field, and two different mechanisms proposed for the formation of the plasmapause influence the radial distance, the shape and the evolution of the plasmapause during the geomagnetic storms of 28 October 2001 and of 17 April 2002. The convection electric field models considered are: Mcllwain's E51) electric field model, Volland-Stern's model and Weimer's statistical model compiled from low-Earth orbit satellite data. The mechanisms for the formation of the plasmapause to be tested are: (i) the MHD theory where the plasmapause should correspond to the last-closed- equipotential (LCE) or last-closed-streamline (LCS), if the E-field distribution is stationary or time-dependent respectively; (ii) the interchange mechanism where the plasmapause corresponds to streamlines tangent to a Zero-Parallel-Force surface where the field-aligned plasma distribution becomes convectively unstable during enhancements of the E-field intensity in the nightside local time sector. The results of the different time dependent simulations are compared with concomitant EUV observations when available. The plasmatails or plumes observed after both selected geomagnetic storms are predicted in all simulations and for all E-field models. However, their shapes are quite different depending on the E-field models and the mechanisms that are used. Despite the partial success of the simulations to reproduce plumes during magnetic storms and substorms, there remains a long way to go before the detailed structures observed in the EUV observations during periods of geomagnetic activity can be accounted for very precisely by the existing E-field models. Furthermore, it cannot be excluded that the mechanisms currently identified to explain the formation of "Carpenter's knee" during substorm events, will', have to be revised or complemented in the cases of geomagnetic storms.

  16. On the Land-Ocean Contrast of Tropical Convection and Microphysics Statistics Derived from TRMM Satellite Signals and Global Storm-Resolving Models

    Science.gov (United States)

    Matsui, Toshihisa; Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Satoh, Masaki; Hashino, Tempei; Kubota, Takuji

    2016-01-01

    A 14-year climatology of Tropical Rainfall Measuring Mission (TRMM) collocated multi-sensor signal statistics reveal a distinct land-ocean contrast as well as geographical variability of precipitation type, intensity, and microphysics. Microphysics information inferred from the TRMM precipitation radar and Microwave Imager (TMI) show a large land-ocean contrast for the deep category, suggesting continental convective vigor. Over land, TRMM shows higher echo-top heights and larger maximum echoes, suggesting taller storms and more intense precipitation, as well as larger microwave scattering, suggesting the presence of morelarger frozen convective hydrometeors. This strong land-ocean contrast in deep convection is invariant over seasonal and multi-year time-scales. Consequently, relatively short-term simulations from two global storm-resolving models can be evaluated in terms of their land-ocean statistics using the TRMM Triple-sensor Three-step Evaluation via a satellite simulator. The models evaluated are the NASA Multi-scale Modeling Framework (MMF) and the Non-hydrostatic Icosahedral Cloud Atmospheric Model (NICAM). While both simulations can represent convective land-ocean contrasts in warm precipitation to some extent, near-surface conditions over land are relatively moisture in NICAM than MMF, which appears to be the key driver in the divergent warm precipitation results between the two models. Both the MMF and NICAM produced similar frequencies of large CAPE between land and ocean. The dry MMF boundary layer enhanced microwave scattering signals over land, but only NICAM had an enhanced deep convection frequency over land. Neither model could reproduce a realistic land-ocean contrast in in deep convective precipitation microphysics. A realistic contrast between land and ocean remains an issue in global storm-resolving modeling.

  17. Simulation of a severe convective storm using a numerical model with explicitly incorporated aerosols

    Science.gov (United States)

    Lompar, Miloš; Ćurić, Mladjen; Romanic, Djordje

    2017-09-01

    Despite an important role the aerosols play in all stages of cloud lifecycle, their representation in numerical weather prediction models is often rather crude. This paper investigates the effects the explicit versus implicit inclusion of aerosols in a microphysics parameterization scheme in Weather Research and Forecasting (WRF) - Advanced Research WRF (WRF-ARW) model has on cloud dynamics and microphysics. The testbed selected for this study is a severe mesoscale convective system with supercells that struck west and central parts of Serbia in the afternoon of July 21, 2014. Numerical products of two model runs, i.e. one with aerosols explicitly (WRF-AE) included and another with aerosols implicitly (WRF-AI) assumed, are compared against precipitation measurements from surface network of rain gauges, as well as against radar and satellite observations. The WRF-AE model accurately captured the transportation of dust from the north Africa over the Mediterranean and to the Balkan region. On smaller scales, both models displaced the locations of clouds situated above west and central Serbia towards southeast and under-predicted the maximum values of composite radar reflectivity. Similar to satellite images, WRF-AE shows the mesoscale convective system as a merged cluster of cumulonimbus clouds. Both models over-predicted the precipitation amounts; WRF-AE over-predictions are particularly pronounced in the zones of light rain, while WRF-AI gave larger outliers. Unlike WRF-AI, the WRF-AE approach enables the modelling of time evolution and influx of aerosols into the cloud which could be of practical importance in weather forecasting and weather modification. Several likely causes for discrepancies between models and observations are discussed and prospects for further research in this field are outlined.

  18. CONVECTIVE BURSTS AND THE COUPLING OF SATURN'S EQUATORIAL STORMS AND INTERIOR ROTATION

    International Nuclear Information System (INIS)

    Heimpel, Moritz; Aurnou, Jonathan M.

    2012-01-01

    Temporal variations of Saturn's equatorial jet and magnetic field hint at rich dynamics coupling the atmosphere and the deep interior. However, it has been assumed that rotation of the interior dynamo must be steady over tens of years of modern observations. Here we use a numerical convection model and scaling estimates to show how equatorial convective bursts can transfer angular momentum to the deeper interior. The numerical model allows angular momentum transfer between a fluid outer spherical shell and a rigid inner sphere. Convection drives a prograde equatorial jet exhibiting quasiperiodic bursts that fill the equatorial volume outside the tangent cylinder. For each burst strong changes in the equatorial surface velocity are associated with retrograde torque on the inner sphere. Our results suggest that Saturn's Great White Spot, a giant storm that was observed to fill the equatorial region in 1990, could mobilize a volume of fluid carrying roughly 15% of Saturn's moment of inertia. Conservation of angular momentum then implies that a 20% change in the equatorial jet angular velocity could change the average interior rotation rate by about 0.1%—roughly an order of magnitude less than the apparent rotation rate changes associated with Saturn's kilometric radio (SKR) signal. However, if the SKR signal originates outside the liquid metal core in a 'planetary tachocline' that separates the layer of fast zonal flow from the magnetically controlled and slowly convecting deep interior, then convective bursts can provide a possible mechanism for the observed ∼1% SKR changes.

  19. Hydrogen escape from Mars enhanced by deep convection in dust storms

    Science.gov (United States)

    Heavens, Nicholas G.; Kleinböhl, Armin; Chaffin, Michael S.; Halekas, Jasper S.; Kass, David M.; Hayne, Paul O.; McCleese, Daniel J.; Piqueux, Sylvain; Shirley, James H.; Schofield, John T.

    2018-02-01

    Present-day water loss from Mars provides insight into Mars's past habitability1-3. Its main mechanism is thought to be Jeans escape of a steady hydrogen reservoir sourced from odd-oxygen reactions with near-surface water vapour2, 4,5. The observed escape rate, however, is strongly variable and correlates poorly with solar extreme-ultraviolet radiation flux6-8, which was predicted to modulate escape9. This variability has recently been attributed to hydrogen sourced from photolysed middle atmospheric water vapour10, whose vertical and seasonal distribution is only partly characterized and understood11-13. Here, we report multi-annual observational estimates of water content and dust and water transport to the middle atmosphere from Mars Climate Sounder data. We provide strong evidence that the transport of water vapour and ice to the middle atmosphere by deep convection in Martian dust storms can enhance hydrogen escape. Planet-encircling dust storms can raise the effective hygropause (where water content rapidly decreases to effectively zero) from 50 to 80 km above the areoid (the reference equipotential surface). Smaller dust storms contribute to an annual mode in water content at 40-50 km that may explain seasonal variability in escape. Our results imply that Martian atmospheric chemistry and evolution can be strongly affected by the meteorology of the lower and middle atmosphere of Mars.

  20. Convective behaviour in severe accidents

    International Nuclear Information System (INIS)

    Clement, C.F.

    1988-01-01

    The nature and magnitude of the hazard from radioactivity posed by a possible nuclear accident depend strongly on convective behaviour within and immediately adjacent to the plant in question. This behaviour depends upon the nature of the vapour-gas-aerosol mixture concerned, and can show unusual properties such as 'upside-down' convection in which hot mixtures fall and cold mixtures rise. Predictions and criteria as to the types of behaviour which could possibly occur are summarised. Possible applications to present reactors are considered, and ways in which presently expected convection could be drastically modified are described. In some circumstances these could be used to suppress the radioactive source term or to switch its effect between distant dilute contamination and severe local contamination. (author). 8 refs, 2 figs, 2 tabs

  1. Vulnerability of Amazon forests to storm-driven tree mortality

    Science.gov (United States)

    Negrón-Juárez, Robinson I.; Holm, Jennifer A.; Magnabosco Marra, Daniel; Rifai, Sami W.; Riley, William J.; Chambers, Jeffrey Q.; Koven, Charles D.; Knox, Ryan G.; McGroddy, Megan E.; Di Vittorio, Alan V.; Urquiza-Muñoz, Jose; Tello-Espinoza, Rodil; Alegria Muñoz, Waldemar; Ribeiro, Gabriel H. P. M.; Higuchi, Niro

    2018-05-01

    Tree mortality is a key driver of forest community composition and carbon dynamics. Strong winds associated with severe convective storms are dominant natural drivers of tree mortality in the Amazon. Why forests vary with respect to their vulnerability to wind events and how the predicted increase in storm events might affect forest ecosystems within the Amazon are not well understood. We found that windthrows are common in the Amazon region extending from northwest (Peru, Colombia, Venezuela, and west Brazil) to central Brazil, with the highest occurrence of windthrows in the northwest Amazon. More frequent winds, produced by more frequent severe convective systems, in combination with well-known processes that limit the anchoring of trees in the soil, help to explain the higher vulnerability of the northwest Amazon forests to winds. Projected increases in the frequency and intensity of convective storms in the Amazon have the potential to increase wind-related tree mortality. A forest demographic model calibrated for the northwestern and the central Amazon showed that northwestern forests are more resilient to increased wind-related tree mortality than forests in the central Amazon. Our study emphasizes the importance of including wind-related tree mortality in model simulations for reliable predictions of the future of tropical forests and their effects on the Earth’ system.

  2. New insights on geomagnetic storms from observations and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jordanova, Vania K [Los Alamos National Laboratory

    2009-01-01

    Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bzstorms representative of each interplanetary condition with our kinetic ring current atmosphere interactions model (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. We find that periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. During the HSS-driven storm the convection potential is highly variable and causes small sporadic injections into the ring current. The long period of enhanced convection during the CME-driven storm causes a continuous ring current injection penetrating to lower L shells and stronger ring current buildup.

  3. Plasmapause Dynamics Observed During the 17 March and 28 June 2013 Storms

    Science.gov (United States)

    Bishop, R. L.; Coster, A. J.; Turner, D. L.; Nikoukar, R.; Lemon, C.; Roeder, J. L.; Shumko, M.; Bhatt, R.; Payne, C.; Bust, G. S.

    2017-12-01

    Earth's plasmasphere is a region of cold (T ≤ 1 eV), dense (n 101 to 104 cm-3) plasma located in the inner magnetosphere and coincident with a portion of the ionosphere that co-rotates with the planet in the geomagnetic field. Plasmaspheric plasma originates in the ionosphere and fills the magnetic flux tubes on which the corotation electric field dominates over the convection electric field. The corotation electric field results from Earth's spinning magnetic field while the convection electric field results from the solar wind driving of global plasma convection within the magnetosphere. The outer boundary of the plasmasphere is the plasmapause, and it corresponds to the transition region between corotation-driven vs. convection-driven plasmas. When the convection electric field is enhanced during active solar wind periods, such as magnetic storms, the plasmasphere can rapidly erode to L 2.5 or less. During subsequent quiet periods of low solar wind speed and weak interplanetary magnetic field (IMF), ionospheric outflow from lower altitudes refills the plasmasphere over the course of several days or more, with the plasmapause expanding to higher L-shells. The combination of convection, corotation, and ionospheric plasma outflow during and after a storm leads to characteristic features such as plasmaspheric shoulders, notches, and plumes. In this presentation, we focus on the dynamics of the plasmapause during two storms in 2013: March 17 and June 28. The minimum Dst for the two storms were -139 and -98 nT, respectively. We examine plasmapause dynamics utilizing data from an extensive global network of ground-based scientific GPS receivers ( 4000) and line-of-sight observations from the GPS receivers on the COSMIC and C/NOFS satellites, along with data from THEMIS and van Allen Probes, and Millstone Hill Incoherent Scatter Radar. Using the various datasets, we will compare the pre-storm and storm-time plasmasphere. We will also examine the location, evolution

  4. Presentation on Tropical Mesoscale convective Systems and ...

    Indian Academy of Sciences (India)

    IAS Admin

    Shallow convection- 70% of the storm heights are below 6 km. ♢ Deep convection ... Decay convection, the convective top is found at a higher altitude than deep .... Stratospheric Fountain – Two step process. Warm tropopause- preferable for.

  5. 3-Dimensional simulations of storm dynamics on Saturn

    Science.gov (United States)

    Hueso, R.; Sanchez-Lavega, A.

    2000-10-01

    The formation and evolution of convective clouds in the atmosphere of Saturn is investigated using an anelastic three-dimensional time-dependent model with parameterized microphysics. The model is designed to study the development of moist convection on any of the four giant planets and has been previously used to investigate the formation of water convective storms in the jovian atmosphere. The role of water and ammonia in moist convection is investigated with varying deep concentrations. Results imply that most of the convective activity observed at Saturn may occur at the ammonia cloud deck while the formation of water moist convection may happen only when very strong constraints on the lower troposphere are met. Ammonia storms can ascend to the 300 mb level with vertical velocities around 30 ms-1. The seasonal effect on the thermal profile at the upper troposphere may have important effects on the development of ammonia storms. In the cases where water storms can develop they span many scale heights with peak vertical velocities around 160 ms-1 and cloud particles can be transported up to the 150 mb level. These predicted characteristics are similar to the Great White Spots observed in Saturn which, therefore, could be originated at the water cloud base level. This work has been supported by Gobierno Vasco PI 1997-34. R. Hueso acknowledges a PhD fellowship from Gobierno Vasco.

  6. Mining key elements for severe convection prediction based on CNN

    Science.gov (United States)

    Liu, Ming; Pan, Ning; Zhang, Changan; Sha, Hongzhou; Zhang, Bolei; Liu, Liang; Zhang, Meng

    2017-04-01

    Severe convective weather is a kind of weather disasters accompanied by heavy rainfall, gust wind, hail, etc. Along with recent developments on remote sensing and numerical modeling, there are high-volume and long-term observational and modeling data accumulated to capture massive severe convective events over particular areas and time periods. With those high-volume and high-variety weather data, most of the existing studies and methods carry out the dynamical laws, cause analysis, potential rule study, and prediction enhancement by utilizing the governing equations from fluid dynamics and thermodynamics. In this study, a key-element mining method is proposed for severe convection prediction based on convolution neural network (CNN). It aims to identify the key areas and key elements from huge amounts of historical weather data including conventional measurements, weather radar, satellite, so as numerical modeling and/or reanalysis data. Under this manner, the machine-learning based method could help the human forecasters on their decision-making on operational weather forecasts on severe convective weathers by extracting key information from the real-time and historical weather big data. In this paper, it first utilizes computer vision technology to complete the data preprocessing work of the meteorological variables. Then, it utilizes the information such as radar map and expert knowledge to annotate all images automatically. And finally, by using CNN model, it cloud analyze and evaluate each weather elements (e.g., particular variables, patterns, features, etc.), and identify key areas of those critical weather elements, then help forecasters quickly screen out the key elements from huge amounts of observation data by current weather conditions. Based on the rich weather measurement and model data (up to 10 years) over Fujian province in China, where the severe convective weathers are very active during the summer months, experimental tests are conducted with

  7. Convective Radio Occultations Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Biondi, R. [Atmospheric Radiation Measurement, Washington, DC (United States)

    2016-03-01

    Deep convective systems are destructive weather phenomena that annually cause many deaths and injuries as well as much damage, thereby accounting for major economic losses in several countries. The number and intensity of such phenomena have increased over the last decades in some areas of the globe. Damage is mostly caused by strong winds and heavy rain parameters that are strongly connected to the structure of the particular storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes that remain mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in situ measurements during extreme events are too sparse or unreliable and most ongoing satellite missions do not provide suitable time/space coverage.

  8. Numerical modeling of a downwind-developing mesoscale convective system over the Masurian Lake District

    Directory of Open Access Journals (Sweden)

    Wójcik Damian K.

    2017-01-01

    Full Text Available Meteorological data concerning the severe convective system from the 21 August 2007 are analyzed in this study. Compiled information allows to understand the reason for the storm development and to identify its fundamental convective mode. Next, the EULAG model is utilized to perform an idealized test that shows a downwind–developing storm growth in an environment comparable to the one that was observed on the 21 August 2007 in the Masurian Lake District. Finally, the COSMO numerical weather prediction model is applied to reconstruct the storm development. The experiment is carried out for various computational grids having the horizontal grid length between 7.0 and 0.55 km. It turns out that the COSMO model is capable in simulating storms of that type. Since the model is used for operational weather forecasting in Poland the evaluation of this skill contributes to the increase of public safety.

  9. Storm track response to climate change: Insights from simulations using an idealized dry GCM.

    Science.gov (United States)

    Mbengue, Cheikh; Schneider, Tapio

    2013-04-01

    The midlatitude storm tracks, where the most intense extratropical cyclones are found, are an important fixture in the general circulation. They are instrumental in balancing the Earth's heat, momentum, and moisture budgets and are responsible for the weather and climatic patterns over large regions of the Earth's surface. As a result, the midlatitude storm tracks are the subject of a considerable amount of scientific research to understand their response to global warming. This has produced the robust result showing that the storm tracks migrate poleward with global warming. However, the dynamical mechanisms responsible for this migration remain unclear. Our work seeks to broaden understanding of the dynamical mechanisms responsible for storm track migration. Competing mechanisms present in the comprehensive climate models often used to study storm track dynamics make it difficult to determine the primary mechanisms responsible for storm track migration. We are thus prompted to study storm track dynamics from a simplified and idealized framework, which enables the decoupling of mean temperature effects from the effects of static stability and of tropical from extratropical effects. Using a statistically zonally symmetric, dry general circulation model (GCM), we conduct a series of numerical simulations to help understand the storm track response to global mean temperatures and to the tropical convective static stability, which we can vary independently. We define storm tracks as regions of zonally and temporally averaged maxima of barotropic eddy kinetic energy (EKE). This storm track definition also allows us to use previously found scalings between the magnitude of bulk measures of mean available potential energy (MAPE) and EKE, to decompose MAPE, and to obtain some mechanistic understanding of the storm track response in our simulations. These simulations provide several insights, which enable us to extend upon existing theories on the mechanisms driving the

  10. Short-interval SMS wind vector determinations for a severe local storms area

    Science.gov (United States)

    Peslen, C. A.

    1980-01-01

    Short-interval SMS-2 visible digital image data are used to derive wind vectors from cloud tracking on time-lapsed sequences of geosynchronous satellite images. The cloud tracking areas are located in the Central Plains, where on May 6, 1975 hail-producing thunderstorms occurred ahead of a well defined dry line. Cloud tracking is performed on the Goddard Space Flight Center Atmospheric and Oceanographic Information Processing System. Lower tropospheric cumulus tracers are selected with the assistance of a cloud-top height algorithm. Divergence is derived from the cloud motions using a modified Cressman (1959) objective analysis technique which is designed to organize irregularly spaced wind vectors into uniformly gridded wind fields. The results demonstrate the feasibility of using satellite-derived wind vectors and their associated divergence fields in describing the conditions preceding severe local storm development. For this case, an area of convergence appeared ahead of the dry line and coincided with the developing area of severe weather. The magnitude of the maximum convergence varied between -10 to the -5th and -10 to the -14th per sec. The number of satellite-derived wind vectors which were required to describe conditions of the low-level atmosphere was adequate before numerous cumulonimbus cells formed. This technique is limited in areas of advanced convection.

  11. Evaluation of Deep Learning Representations of Spatial Storm Data

    Science.gov (United States)

    Gagne, D. J., II; Haupt, S. E.; Nychka, D. W.

    2017-12-01

    The spatial structure of a severe thunderstorm and its surrounding environment provide useful information about the potential for severe weather hazards, including tornadoes, hail, and high winds. Statistics computed over the area of a storm or from the pre-storm environment can provide descriptive information but fail to capture structural information. Because the storm environment is a complex, high-dimensional space, identifying methods to encode important spatial storm information in a low-dimensional form should aid analysis and prediction of storms by statistical and machine learning models. Principal component analysis (PCA), a more traditional approach, transforms high-dimensional data into a set of linearly uncorrelated, orthogonal components ordered by the amount of variance explained by each component. The burgeoning field of deep learning offers two potential approaches to this problem. Convolutional Neural Networks are a supervised learning method for transforming spatial data into a hierarchical set of feature maps that correspond with relevant combinations of spatial structures in the data. Generative Adversarial Networks (GANs) are an unsupervised deep learning model that uses two neural networks trained against each other to produce encoded representations of spatial data. These different spatial encoding methods were evaluated on the prediction of severe hail for a large set of storm patches extracted from the NCAR convection-allowing ensemble. Each storm patch contains information about storm structure and the near-storm environment. Logistic regression and random forest models were trained using the PCA and GAN encodings of the storm data and were compared against the predictions from a convolutional neural network. All methods showed skill over climatology at predicting the probability of severe hail. However, the verification scores among the methods were very similar and the predictions were highly correlated. Further evaluations are being

  12. Uncertainty in the area-related QPF for heavy convective precipitation

    Czech Academy of Sciences Publication Activity Database

    Řezáčová, Daniela; Zacharov, Petr, jr.; Sokol, Zbyněk

    2009-01-01

    Roč. 93, 1-3 (2009), s. 238-246 ISSN 0169-8095. [European Conference on Severe Storms /4./. Miramare -Trieste, 10.09.2007-14.09.2007] R&D Projects: GA ČR GA205/07/0905; GA MŠk OC 112 Institutional research plan: CEZ:AV0Z30420517 Keywords : Convective storm * Quantitative precipitation forecast * Uncertainty in precipitation forecasting * Ensemble forecasting * Numerical weather prediction model Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.811, year: 2009 http://www.sciencedirect.com/science/journal/01698095

  13. Vorticity imbalance and stability in relation to convection

    Science.gov (United States)

    Read, W. L.; Scoggins, J. R.

    1977-01-01

    A complete synoptic-scale vorticity budget was related to convection storm development in the eastern two-thirds of the United States. The 3-h sounding interval permitted a study of time changes of the vorticity budget in areas of convective storms. Results of analyses revealed significant changes in values of terms in the vorticity equation at different stages of squall line development. Average budgets for all areas of convection indicate systematic imbalance in the terms in the vorticity equation. This imbalance resulted primarily from sub-grid scale processes. Potential instability in the lower troposphere was analyzed in relation to the development of convective activity. Instability was related to areas of convection; however, instability alone was inadequate for forecast purposes. Combinations of stability and terms in the vorticity equation in the form of indices succeeded in depicting areas of convection better than any one item separately.

  14. Forecasting challenges during the severe weather outbreak in Central Europe on 25 June 2008

    Science.gov (United States)

    Púčik, Tomáš; Francová, Martina; Rýva, David; Kolář, Miroslav; Ronge, Lukáš

    2011-06-01

    On 25 June 2008, severe thunderstorms caused widespread damage and two fatalities in the Czech Republic. Significant features of the storms included numerous downbursts on a squall line that exhibited a bow echo reflectivity pattern, with sustained wind gusts over 32 m/s at several reporting stations. Moreover, a tornado and several downbursts of F2 intensity occurred within the convective system, collocated with the development of mesovortices within the larger scale bow echo. The extent of the event was sufficient to call it a derecho, as the windstorm had affected Eastern Germany, Southern Poland, Slovakia, Austria and Northern Hungary as well. Ahead of the squall line, several well-organized isolated cells occurred, exhibiting supercellular characteristics, both from a radar and visual perspective. These storms produced large hail and also isolated severe wind gusts. This paper deals mostly with the forecasting challenges that were experienced by the meteorologist on duty during the evolution of this convective scenario. The main challenge of the day was to identify the region that would be most affected by severe convection, especially as the numerical weather prediction failed to anticipate the extent and the progress of the derecho-producing mesoscale convective systems (MCSs). Convective storms developed in an environment conducive to severe thunderstorms, with strong wind shear confined mostly to the lower half of the troposphere. These developments also were strongly influenced by mesoscale factors, especially a mesolow centered over Austria and its trough stretching to Eastern Bohemia. The paper demonstrates how careful mesoscale analysis could prove useful in dealing with such convective situations. Remote-sensing methods are also shown to be useful in such situations, especially when they can offer sufficient lead time to issue a warning, which is not always the case.

  15. Sensitivity of simulated convection-driven stratosphere-troposphere exchange in WRF-Chem to the choice of physical and chemical parameterization

    Science.gov (United States)

    Phoenix, Daniel B.; Homeyer, Cameron R.; Barth, Mary C.

    2017-08-01

    Tropopause-penetrating convection is capable of rapidly transporting air from the lower troposphere to the upper troposphere and lower stratosphere (UTLS), where it can have important impacts on chemistry, the radiative budget, and climate. However, obtaining in situ measurements of convection and convective transport is difficult and such observations are historically rare. Modeling studies, on the other hand, offer the advantage of providing output related to the physical, dynamical, and chemical characteristics of storms and their environments at fine spatial and temporal scales. Since these characteristics of simulated convection depend on the chosen model design, we examine the sensitivity of simulated convective transport to the choice of physical (bulk microphysics or BMP and planetary boundary layer or PBL) and chemical parameterizations in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). In particular, we simulate multiple cases where in situ observations are available from the recent (2012) Deep Convective Clouds and Chemistry (DC3) experiment. Model output is evaluated using ground-based radar observations of each storm and in situ trace gas observations from two aircraft operated during the DC3 experiment. Model results show measurable sensitivity of the physical characteristics of a storm and the transport of water vapor and additional trace gases into the UTLS to the choice of BMP. The physical characteristics of the storm and transport of insoluble trace gases are largely insensitive to the choice of PBL scheme and chemical mechanism, though several soluble trace gases (e.g., SO2, CH2O, and HNO3) exhibit some measurable sensitivity.

  16. Meteorology, Macrophysics, Microphysics, Microwaves, and Mesoscale Modeling of Mediterranean Mountain Storms: The M8 Laboratory

    Science.gov (United States)

    Starr, David O. (Technical Monitor); Smith, Eric A.

    2002-01-01

    Comprehensive understanding of the microphysical nature of Mediterranean storms can be accomplished by a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, from synoptic scale down through the mesoscale, the cloud macrophysical scale, and ultimately the cloud microphysical scale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. This involves intense convective development, stratiform decay, orographic lifting, and sloped frontal lifting processes, as well as the associated vertical motions and thermodynamical instabilities governing physical processes that affect details of the size distributions and fall rates of the various types of hydrometeors found within the storm environment. Insofar as hazardous Mediterranean storms, highlighted in this study by three mountain storms producing damaging floods in northern Italy between 1992 and 2000, developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within a storm domain. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting processes. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size disi:ributions, and fall rates of the various modes of hydrometeors found within hazardous storm environments.

  17. The effect of severe storms on the ice cover of the northern Tatarskiy Strait

    Science.gov (United States)

    Martin, Seelye; Munoz, Esther; Drucker, Robert

    1992-01-01

    Passive microwave images from the Special Sensor Microwave Imager are used to study the volume of ice and sea-bottom water in the Japan Sea as affected by winds and severe storms. The data set comprises brightness temperatures gridded on a polar stereographic projection, and the processing is accomplished with a linear algorithm by Cavalieri et al. (1983) based on the vertically polarized 37-GHz channel. The expressions for calculating heat fluxes and downwelling radiation are given, and ice-cover fluctuations are correlated with severe storm events. The storms generate large transient polynya that occur simultaneously with the strongest heat fluxes, and severe storms are found to contribute about 25 percent of the annual introduction of 25 cu km of ice in the region. The ice production could lead to the renewal of enough sea-bottom water to account for the C-14 data provided, and the generation of Japan Sea bottom water is found to vary directly with storm activity.

  18. An overview of the Stratospheric-Tropospheric Experiment: Radiation, Aerosols, and Ozone (STERAO)-Deep Convection experiment with results for the July 10, 1996 storm

    Science.gov (United States)

    Dye, J. E.; Ridley, B. A.; Skamarock, W.; Barth, M.; Venticinque, M.; Defer, E.; Blanchet, P.; Thery, C.; Laroche, P.; Baumann, K.; Hubler, G.; Parrish, D. D.; Ryerson, T.; Trainer, M.; Frost, G.; Holloway, J. S.; Matejka, T.; Bartels, D.; Fehsenfeld, F. C.; Tuck, A.; Rutledge, S. A.; Lang, T.; Stith, J.; Zerr, R.

    2000-04-01

    The Stratospheric-Tropospheric Experiment: Radiation, Aerosols and Ozone (STERAO)-Deep Convection Field Project with closely coordinated chemical, dynamical, electrical, and microphysical observations was conducted in northeastern Colorado during June and July of 1996 to investigate the production of NOx by lightning, the transport and redistribution of chemical species in the troposphere by thunderstorms, and the temporal evolution of intracloud and cloud-to-ground lightning for evolving storms on the Colorado high plains. Major observations were airborne chemical measurements in the boundary layer, middle and upper troposphere, and thunderstorm anvils; airborne and ground-based Doppler radar measurements; measurement of both intracloud (IC) and cloud-to-ground (CG) lightning flash rates and locations; and multiparameter radar and in situ observations of microphysical structure. Cloud and mesoscale models are being used to synthesize and extend the observations. Herein we present an overview of the project and selected results for an isolated, severe storm that occurred on July 10. Time histories of reflectivity structure, IC and CG lightning flash rates, and chemical measurements in the boundary layer and in the anvil are presented showing large spatial and temporal variations. The observations for one period of time suggest that limited mixing of environmental air into the updraft core occurred during transport from cloud base to the anvil adjacent to the storm core. We deduce that the most likely contribution of lightning to the total NOx observed in the anvil is 60-90% with a minimum of 45%. For the July 10 storm the NOx produced by lightning was almost exclusively from IC flashes with a ratio of IC to total flashes >0.95 throughout most of the storm's lifetime. It is argued that in this storm and probably others, IC flashes can be major contributors to NOx production. Superposition of VHF lightning source locations on Doppler retrieved air motion fields for

  19. Overview of the Deep Convective Clouds and Chemistry Experiment

    Science.gov (United States)

    Barth, M. C.; Brune, W. H.; Cantrell, C. A.; Rutledge, S. A.; Crawford, J. H.; Flocke, F. M.; Huntrieser, H.

    2012-12-01

    The Deep Convective Clouds and Chemistry (DC3) project conducted a 7-week field campaign during May and June 2012 to study thunderstorm dynamical, physical, and electrical characteristics, as well as their effects on the atmosphere's composition, especially ozone and particles in the climate-sensitive upper troposphere near the thunderstorm tops. The NSF/NCAR Gulfstream V (GV) and the NASA DC-8 aircraft flew 17 coordinated flights to sample low-level inflow and upper troposphere outflow air near thunderstorms and to sample convective outflow air as it chemically aged during the next 24 hours. The DLR Falcon aircraft observed the fresh storm outflow and also obtained measurements of aged outflow. In total, 19 cases of active thunderstorms and over 6 cases of photochemical aging were flown. The DC3 aircraft, based in Salina, Kansas, were equipped with instruments to measure a variety of gases, aerosols, and cloud particle characteristics in situ as well as the NASA DC-8 measuring the ozone and aerosol distribution by lidar. The aircraft targeted storms predicted to occur within range of coverage by ground-based radar pairs, lightning mapping arrays (LMAs), and frequent launches of balloon-borne instruments that could measure the storm's physical, kinematic, and lightning characteristics. This coverage occurred in three regions: 1) northeastern Colorado, 2) central Oklahoma to western Texas, and 3) northern Alabama. DC3 demonstrated that it is possible to sample with two aircraft the inflow and outflow of storms, which were simultaneously sampled by the ground radars, LMAs, and soundings. The DC3 data set is extensive and rich. This presentation will summarize the overall statistics of the DC3 measurements giving a general idea of storm characteristics, transport of trace gases, and photochemical aging of species. Examples will be given of specific thunderstorm cases, including a Colorado case where a biomass-burning plume was ingested by a storm, and of sampling a

  20. Analysis of the Convective Storm using Meteosat Second Generation and SPOL Radar over a Megacity, on May 18, 2014

    Science.gov (United States)

    da Silva Júnior, Ivon Wilson; José Pereira Filho, Augusto; Alves Barbosa, Humberto

    2017-04-01

    The rapid populational growth in urban areas of Southeast and South Brazil has increased anthropic effects on severe weather caused by thunderstorms whose impacts require mitigation on a small space-time scale more susceptible to natural disasters such as flooding. The 18 May 2015 thunderstorms in The Metropolitan Area of São Paulo (MASP) caused many losses due to heavy rain, gusty winds and falling hail. The local press reported 310 tons of ice removed from the surface. Meteosat Second Generation (MSG) images, polarimetric weather radar measurements, radiosondes and surface weather variables data sets were used to analyze the event. The environmental thermodynamic analysis showed a dry layer at mid levels with wind shear at upper levels. Diabatic heating increased throughout the day and made the atmosphere very unstable at the end of the afternoon with greater potential energy induced by the local sea breeze. The 0 °C isotherm was at 3781 m. Initially, the rapid horizontal expansion of the storm caused by environmental wind shear was observed at 10.8 mm IR MSG channel brightness temperature (BT) was of -57 ° C. The brightness temperature differences (BTD) between WV and IR MSG channels evidenced vertical moisture transport from near the surface to the upper levels during convection. In the mature stage, radar reflectivity showed widespread multi cellular storm structures. Vertical cross-section indicated reflectivities between 45 dBZ to 55 dBZ with cloud tops with reflectivity greater than 30 dBZ at 14 km altitude when updrafts were more intense. Vertical profiles of differential reflectivity (ZDR) showed a deep column from to +2 to +4 dB between 6 km to 12 km altitude where intense vertical transport of large drops and a mixture of water and ice well above the 0 ° C isotherm level. This environment increased efficiency of the Wegener-Bergeron-Findeisen type microphysics with rapid ice crystal growth to hail with later precipitation at the surface that lasted

  1. Relationship between substorms and storms

    International Nuclear Information System (INIS)

    Kamide, Y.

    1980-01-01

    In an attempt to deduce a plausible working model of the relationship between magnetospheric substorms and storms, recent relevant studies of various processes occurring during disturbed periods are integrated along with some theoretical suggestions. It has been shown that the main phase of geomagnetic storms is associated with the successive occurrence of intense substorms and with the sustained southward component of the interplanetary magnetic field (IMF). However, these relations are only qualitatively understood, and thus basic questions remain unanswered involving the hypothesis whether a magnetic storm is a non-linear (or linear) superposition of intense substorms, each of which constitutes an elementary storm, or the main phase of magnetic storms occurs as a result of the intense southward IMF which enhances magnetospheric convection and increases occurrence probability of substorms. (Auth.)

  2. Revisiting the synoptic-scale predictability of severe European winter storms using ECMWF ensemble reforecasts

    Directory of Open Access Journals (Sweden)

    F. Pantillon

    2017-10-01

    Full Text Available New insights into the synoptic-scale predictability of 25 severe European winter storms of the 1995–2015 period are obtained using the homogeneous ensemble reforecast dataset from the European Centre for Medium-Range Weather Forecasts. The predictability of the storms is assessed with different metrics including (a the track and intensity to investigate the storms' dynamics and (b the Storm Severity Index to estimate the impact of the associated wind gusts. The storms are well predicted by the whole ensemble up to 2–4 days ahead. At longer lead times, the number of members predicting the observed storms decreases and the ensemble average is not clearly defined for the track and intensity. The Extreme Forecast Index and Shift of Tails are therefore computed from the deviation of the ensemble from the model climate. Based on these indices, the model has some skill in forecasting the area covered by extreme wind gusts up to 10 days, which indicates a clear potential for early warnings. However, large variability is found between the individual storms. The poor predictability of outliers appears related to their physical characteristics such as explosive intensification or small size. Longer datasets with more cases would be needed to further substantiate these points.

  3. Seamless Modeling for Research & Predictability of Severe Tropical Storms from Weather-to-Climate Timescales

    Science.gov (United States)

    Ramaswamy, V.; Chen, J. H.; Delworth, T. L.; Knutson, T. R.; Lin, S. J.; Murakami, H.; Vecchi, G. A.

    2017-12-01

    Damages from catastrophic tropical storms such as the 2017 destructive hurricanes compel an acceleration of scientific advancements to understand the genesis, underlying mechanisms, frequency, track, intensity, and landfall of these storms. The advances are crucial to provide improved early information for planners and responders. We discuss the development and utilization of a global modeling capability based on a novel atmospheric dynamical core ("Finite-Volume Cubed Sphere or FV3") which captures the realism of the recent tropical storms and is a part of the NOAA Next-Generation Global Prediction System. This capability is also part of an emerging seamless modeling system at NOAA/ Geophysical Fluid Dynamics Laboratory for simulating the frequency of storms on seasonal and longer timescales with high fidelity e.g., Atlantic hurricane frequency over the past decades. In addition, the same modeling system has also been employed to evaluate the nature of projected storms on the multi-decadal scales under the influence of anthropogenic factors such as greenhouse gases and aerosols. The seamless modeling system thus facilitates research into and the predictability of severe tropical storms across diverse timescales of practical interest to several societal sectors.

  4. Stirring up a storm: convective climate variability on tidally locked exoplanets

    Science.gov (United States)

    Koll, D. D. B.; Cronin, T.

    2017-12-01

    Earth-sized exoplanets are extremely common in the galaxy and many of them are likely tidally locked, such that they have permanent day- and nightsides. Astronomers have started to probe the atmospheres of such planets, which raises the question: can tidally locked planets support habitable climates and life?Several studies have explored this question using global circulation models (GCMs). Not only did these studies find that tidally locked Earth analogs can indeed sustain habitable climates, their large day-night contrast should also create a distinct cloud structure that could help astronomers identify such planets. These studies, however, relied on GCMs which do not explicitly resolve convection, raising the question of how robust their results are.Here we consider the dynamics of clouds and convection on a tidally locked planet using the System for Atmospheric Modeling (SAM) cloud-resolving model. We simulate a 3d `channel', representing an equatorial strip that covers both day- and nightside of a tidally locked planet. We use interactive radiation and an interactive slab ocean surface and investigate the response to changes in the stellar constant. We find mean climates that are broadly comparable to those produced by a GCM. However, when the slab ocean is shallow, we also find internal variability that is far bigger than in a GCM. Convection in a tidally locked domain can self-organize in a dramatic fashion, with large outbursts of convection followed by periods of relative calm. We show that one of the timescales for this behavior is set by the time it takes for a dry gravity wave to travel between day- and nightside. The quasi-periodic self-organization of clouds can vary the planetary albedo by up to 50%. Changes this large are potentially detectable with future space telescopes, which raises the prospect of using convectively driven variability to identify high priority targets in the search for life around other stars.

  5. Satellite remote sensing and cloud modeling of St. Anthony, Minnesota storm clouds and dew point depression

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.

    1988-01-01

    Rawinsonde data and geosynchronous satellite imagery were used to investigate the life cycles of St. Anthony, Minnesota's severe convective storms. It is found that the fully developed storm clouds, with overshooting cloud tops penetrating above the tropopause, collapsed about three minutes before the touchdown of the tornadoes. Results indicate that the probability of producing an outbreak of tornadoes causing greater damage increases when there are higher values of potential energy storage per unit area for overshooting cloud tops penetrating the tropopause. It is also found that there is less chance for clouds with a lower moisture content to be outgrown as a storm cloud than clouds with a higher moisture content.

  6. Responses of two genetically superior loblolly pine clonal ideotypes to a severe ice storm

    Science.gov (United States)

    Lauren S. Pile; Christopher A. Maier; G. Geoff Wang; Dapao Yu; Tim M. Shearman

    2016-01-01

    An increase in the frequency and magnitude of extreme weather events, such as major ice storms, can have severe impacts on southern forests. We investigated the damage inflicted by a severe ice storm that occurred in February 2014 on two loblolly pine (Pinus taeda L.) ideotypes in Cross, South Carolina located in the southeastern coastal plain. The ‘‘narrow crown”...

  7. HURRICANE AND SEVERE STORM SENTINEL (HS3) FLIGHT REPORTS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Flight Reports provide information about flights flown by the WB-57 and Global Hawk aircrafts during the Hurricane and...

  8. Martian dust storms as a possible sink of atmospheric methane

    Science.gov (United States)

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.

    2006-11-01

    Recent laboratory tests, analog studies and numerical simulations all suggest that Martian dust devils and larger dusty convective storms generate and maintain large-scale electric fields. Such expected E-fields will have the capability to create significant electron drift motion in the collisional gas and to form an extended high energy (u $\\gg$ kT) electron tail in the distribution. We demonstrate herein that these energetic electrons are capable of dissociating any trace CH4 in the ambient atmosphere thereby acting as an atmospheric sink of this important gas. We demonstrate that the methane destruction rate increases by a factor of 1012 as the dust storm E-fields, E, increase from 5 to 25 kV/m, resulting in an apparent decrease in methane stability from ~ 1010 sec to a value of ~1000 seconds. While destruction in dust storms is severe, the overall methane lifetime is expected to decrease only moderately due to recycling of products, heterogeneous effects from localized sinks, etc. We show further evidence that the electrical activity anticipated in Martian dust storms creates a new harsh electro-chemical environment.

  9. Statistics of Deep Convection in the Congo Basin Derived From High-Resolution Simulations.

    Science.gov (United States)

    White, B.; Stier, P.; Kipling, Z.; Gryspeerdt, E.; Taylor, S.

    2016-12-01

    Convection transports moisture, momentum, heat and aerosols through the troposphere, and so the temporal variability of convection is a major driver of global weather and climate. The Congo basin is home to some of the most intense convective activity on the planet and is under strong seasonal influence of biomass burning aerosol. However, deep convection in the Congo basin remains under studied compared to other regions of tropical storm systems, especially when compared to the neighbouring, relatively well-understood West African climate system. We use the WRF model to perform a high-resolution, cloud-system resolving simulation to investigate convective storm systems in the Congo. Our setup pushes the boundaries of current computational resources, using a 1 km grid length over a domain covering millions of square kilometres and for a time period of one month. This allows us to draw statistical conclusions on the nature of the simulated storm systems. Comparing data from satellite observations and the model enables us to quantify the diurnal variability of deep convection in the Congo basin. This approach allows us to evaluate our simulations despite the lack of in-situ observational data. This provides a more comprehensive analysis of the diurnal cycle than has previously been shown. Further, we show that high-resolution convection-permitting simulations performed over near-seasonal timescales can be used in conjunction with satellite observations as an effective tool to evaluate new convection parameterisations.

  10. The storm-time ring current: a statistical analysis at two widely separated low-latitude stations

    Directory of Open Access Journals (Sweden)

    P. Francia

    2004-11-01

    Full Text Available We conducted a statistical analysis of the geomagnetic field variations during the storm main phase at two low-latitude stations, separated by several hours in magnetic local time, in order to investigate the asymmetry and longitudinal extent of the storm-time ring current. The results show evidence for an asymmetric current which typically extends from evening to noon and, during moderate solar wind electric field conditions, up to the early morning, confirming the important role of the magnetospheric convection in the ring current energization. We also analyzed a possible relationship between the local current intensity during the storm main phase and the substorm activity observed at different time delays τ with respect to the storm onset. The results show a significant anticorrelation for τ =-1h, indicating that if the substorm activity is high just before the storm, a weaker ring current develops.

  11. Winter in the Ouachitas--a severe winter storm signature in Pinus echinata in the Ouachita Mountains of Oklahoma and Arkansas, USA

    Science.gov (United States)

    Douglas J. Stevenson; Thomas B. Lynch; Pradip Saud; Robert Heineman; Randal Holeman; Dennis Wilson; Keith Anderson; Chris Cerny; James M. Guldin

    2016-01-01

    Each year severe winter storms (≈ice storms) damage trees throughout the southern USA. Arkansas and Oklahoma have a history of severe winter storms. To extend that history back beyond the reach of written records, a distinctive tree ring pattern or signature is needed. Storm-caused breakage, branch loss and bending stress provide that signature. We found a severe storm...

  12. Characteristics of different convective parameterization schemes on the simulation of intensity and track of severe extratropical cyclones over North Atlantic

    Science.gov (United States)

    Pradhan, P. K.; Liberato, Margarida L. R.; Ferreira, Juan A.; Dasamsetti, S.; Vijaya Bhaskara Rao, S.

    2018-01-01

    The role of the convective parameterization schemes (CPSs) in the ARW-WRF (WRF) mesoscale model is examined for extratropical cyclones (ETCs) over the North Atlantic Ocean. The simulation of very severe winter storms such as Xynthia (2010) and Gong (2013) are considered in this study. Most popular CPSs within WRF model, along with Yonsei University (YSU) planetary boundary layer (PBL) and WSM6 microphysical parameterization schemes are incorporated for the model experiments. For each storm, four numerical experiments were carried out using New Kain Fritsch (NKF), Betts-Miller-Janjic (BMJ), Grell 3D Ensemble (Gr3D) and no convection scheme (NCS) respectively. The prime objectives of these experiments were to recognize the best CPS that can forecast the intensity, track, and landfall over the Iberian Peninsula in advance of two days. The WRF model results such as central sea level pressure (CSLP), wind field, moisture flux convergence, geopotential height, jet stream, track and precipitation have shown sensitivity CPSs. The 48-hour lead simulations with BMJ schemes produce the best simulations both regarding ETCs intensity and track than Gr3D and NKF schemes. The average MAE and RMSE of intensities are least that (6.5 hPa in CSLP and 3.4 ms- 1 in the 10-m wind) found in BMJ scheme. The MAE and RMSE for and intensity and track error have revealed that NCS produces large errors than other CPSs experiments. However, for track simulation of these ETCs, at 72-, 48- and 24-hour means track errors were 440, 390 and 158 km respectively. In brevity, BMJ and Gr3D schemes can be used for short and medium range predictions of the ETCs over North Atlantic. For the evaluation of precipitation distributions using Gr3D scheme are good agreement with TRMM satellite than other CPSs.

  13. Severe Autumn storms in future Western Europe with a warmer Atlantic Ocean

    Science.gov (United States)

    Baatsen, Michiel; Haarsma, Reindert J.; Van Delden, Aarnout J.; de Vries, Hylke

    2015-08-01

    Simulations with a very high resolution (~25 km) global climate model indicate that more severe Autumn storms will impact Europe in a warmer future climate. The observed increase is mainly attributed to storms with a tropical origin, especially in the later part of the twentyfirst century. As their genesis region expands, tropical cyclones become more intense and their chances of reaching Europe increase. This paper investigates the properties and evolution of such storms and clarifies the future changes. The studied tropical cyclones feature a typical evolution of tropical development, extratropical transition and a re-intensification. A reduction of the transit area between regions of tropical and extratropical cyclogenesis increases the probability of re-intensification. Many of the modelled storms exhibit hybrid properties in a considerable part of their life cycle during which they exhibit the hazards of both tropical and extratropical systems. In addition to tropical cyclones, other systems such as cold core extratropical storms mainly originating over the Gulf Stream region also increasingly impact Western Europe. Despite their different history, all of the studied storms have one striking similarity: they form a warm seclusion. The structure, intensity and frequency of storms in the present climate are compared to observations using the MERRA and IBTrACS datasets. Damaging winds associated with the occurrence of a sting jet are observed in a large fraction of the cyclones during their final stage. Baroclinic instability is of great importance for the (re-)intensification of the storms. Furthermore, so-called atmospheric rivers providing tropical air prove to be vital for the intensification through diabatic heating and will increase considerably in strength in the future, as will the associated flooding risks.

  14. Storms

    International Nuclear Information System (INIS)

    Kai, Keizo; Melrose, D.B.; Suzuki, S.

    1985-01-01

    At metre and decametre wavelengths long-lasting solar radio emission, consisting of thousands of short-lived spikes superimposed on a slowly varying continuum, is observed. This type of storm emission may continue for periods ranging from a few hours to several days; the long duration is one of the characteristics which distinguish storms from other types of solar radio emission. These events are called storms or noise storms by analogy with geomagnetic storms. (author)

  15. Models of bright storm clouds and related dark ovals in Saturn's Storm Alley as constrained by 2008 Cassini/VIMS spectra

    Science.gov (United States)

    Sromovsky, L. A.; Baines, K. H.; Fry, P. M.

    2018-03-01

    A 5° latitude band on Saturn centered near planetocentric latitude 36°S is known as "Storm Alley" because it has been for several extended periods a site of frequent lightning activity and associated thunderstorms, first identified by Porco et al. (2005). The thunderstorms appeared as bright clouds at short and long continuum wavelengths, and over a period of a week or so transformed into dark ovals (Dyudina et al., 2007). The ovals were found to be dark over a wide spectral range, which led Baines et al. (2009) to suggest the possibility that a broadband absorber such as soot produced by lightning could play a significant role in darkening the clouds relative to their surroundings. Here we show that an alternative explanation, which is that the clouds are less reflective because of reduced optical depth, provides an excellent fit to near infrared spectra of similar features obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) in 2008, and leads to a plausible scenario for cloud evolution. We find that the background clouds and the oval clouds are both dominated by the optical properties of a ubiquitous upper cloud layer, which has the same particle size in both regions, but about half the optical depth and physical thickness in the dark oval regions. The dark oval regions are also marked by enhanced emissions in the 5-μm window region, a result of lower optical depth of the deep cloud layer near 3.1-3.8 bar, presumably composed of ammonium hydrosulfide (NH4SH). The bright storm clouds completely block this deep thermal emission with a thick layer of ammonia (NH3) clouds extending from the middle of the main visible cloud layer probably as deep as the 1.7-bar NH3 condensation level. Other condensates might also be present at higher pressures, but are obscured by the NH3 cloud. The strong 3-μm spectral absorption that was displayed by Saturn's Great Storm of 2010-2011 (Sromovsky et al., 2013) is weaker in these storms because the contrast is

  16. Ring Current Response to Different Storm Drivers. Van Allen Probes and Cluster Observations.

    Science.gov (United States)

    Bingham, S.; Mouikis, C.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.

    2015-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), co-rotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure change the global magnetic field, which affects the transport of the radiation belts. In order to determine the field changes during a storm it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. The source population of the storm time ring current is the night side plasma sheet. However, it is not clear how these convecting particles affect the storm time ring current pressure development. We use Van Allen Probes and Cluster observations together with the Volland-Stern and dipole magnetic field models to determine the contribution in the ring current pressure of the plasma sheet particles convecting from the night side that are on open drift paths, during the storm evolution. We compare storms that are related to different interplanetary drivers, CME and CIR, as observed at different local times.

  17. Severe ionosphere disturbances caused by the sudden response of evening subequatorial ionospheres to geomagnetic storms

    International Nuclear Information System (INIS)

    Tanaka, T.

    1981-01-01

    By monitoring C band beacon signals from geostationary satellites in Japan, we have observed anomalously strong ionospheric scintillations several times during three years from 1978 to 1980. These severe scinitillations occur associated with geomagnetic storms and accompany sudden and intense ionospheric perturbations in the low-latiude region. Through the analysis of these phenomena we have identified a new type of ionospheric disturbances characterized by intensifications of equatorial anomalies and successive severe ionospheric scintillations that extend to the C band range. The events occur only during a limited local time interval after the sunset, when storm time decreases of midlatitude geomagnetic fields in the same meridan take place during the same time interval. From the viewpoint of ionospheric storms, these disturbances precede the occurrence of midlatitude negative phases and storm time depressions of equatorial anomalies to indicate that the cause of the events is different from distrubed thermospheric circulations. The timing and magnitude of substorms at high-latitudes not always correlate with the events. We have concluded that the phenomena are closely related with penetrations toward low-latitudes of electric fields owing to the partial closure of asymmetrical ring currents

  18. Lightning characteristics of derecho producing mesoscale convective systems

    Science.gov (United States)

    Bentley, Mace L.; Franks, John R.; Suranovic, Katelyn R.; Barbachem, Brent; Cannon, Declan; Cooper, Stonie R.

    2016-06-01

    Derechos, or widespread, convectively induced wind storms, are a common warm season phenomenon in the Central and Eastern United States. These damaging and severe weather events are known to sweep quickly across large spatial regions of more than 400 km and produce wind speeds exceeding 121 km h-1. Although extensive research concerning derechos and their parent mesoscale convective systems already exists, there have been few investigations of the spatial and temporal distribution of associated cloud-to-ground lightning with these events. This study analyzes twenty warm season (May through August) derecho events between 2003 and 2013 in an effort to discern their lightning characteristics. Data used in the study included cloud-to-ground flash data derived from the National Lightning Detection Network, WSR-88D imagery from the University Corporation for Atmospheric Research, and damaging wind report data obtained from the Storm Prediction Center. A spatial and temporal analysis was conducted by incorporating these data into a geographic information system to determine the distribution and lightning characteristics of the environments of derecho producing mesoscale convective systems. Primary foci of this research include: (1) finding the approximate size of the lightning activity region for individual and combined event(s); (2) determining the intensity of each event by examining the density and polarity of lightning flashes; (3) locating areas of highest lightning flash density; and (4) to provide a lightning spatial analysis that outlines the temporal and spatial distribution of flash activity for particularly strong derecho producing thunderstorm episodes.

  19. On the robustness of aerosol effects on an idealized supercell storm simulated with a cloud system-resolving model

    Directory of Open Access Journals (Sweden)

    H. Morrison

    2012-08-01

    Full Text Available A cloud system-resolving model (the Weather Research and Forecasting model with 1 km horizontal grid spacing is used to investigate the response of an idealized supercell storm to increased cloud droplet concentrations associated with polluted conditions. The primary focus is on exploring robustness of simulated aerosol effects in the face of complex process interactions and feedbacks between the cloud microphysics and dynamics. Simulations are run using sixteen different model configurations with various microphysical or thermodynamic processes modified or turned off. Robustness of the storm response to polluted conditions is also explored for each configuration by performing additional simulations with small perturbations to the initial conditions. Differences in the domain-mean accumulated surface precipitation and convective mass flux between polluted and pristine conditions are small for almost all model configurations, with relative differences in each quantity generally less than 15%. Configurations that produce a decrease (increase in cold pool strength in polluted conditions also tend to simulate a decrease (increase in surface precipitation and convective mass flux. Combined with an analysis of the dynamical and thermodynamic fields, these results indicate the importance of interactions between microphysics, cold pool evolution, and dynamics along outflow boundaries in explaining the system response. Several model configurations, including the baseline, produce an overall similar storm response (weakening in polluted conditions despite having different microphysical or thermodynamic processes turned off. With hail initiation turned off or the hail fallspeed-size relation set to that of snow, the model produces an invigoration instead of weakening of the storm in polluted conditions. These results highlight the difficulty of foreseeing impacts of changes to model parameterizations and isolating process interactions that drive the system

  20. Correlation Between Monthly Cumulative Auroral Electrojet Indices, DST Index and Interplanetary Electric Field During Magnetic Storms

    Directory of Open Access Journals (Sweden)

    Yoon-Kyung Park

    2005-12-01

    Full Text Available Magnetospheric substorms occur frequently during magnetic storms, suggesting that the two phenomena are closely associated. We can investigate the relation between magnetospheric substorms and magnetic storms by examining the correlation between AE and Dst indices. For this purpose, we calculated the monthly cumulative AU, |AL| and |Dst| indices. The correlation coefficient between the monthly cumulative |AL| and |Dst| index is found to be 0.60, while that between monthly cumulative AU and |Dst| index is 0.28. This result indicates that substorms seem to contribute to the development of magnetic storms. On the other hand, it has been reported that the interplanetary electric field associated with southward IMF intensifies the magnetospheric convection, which injects charged particles into the inner magnetosphere, thus developing the ring current. To evaluate the contribution of the interplanetary electric field to the development of the storm time ring current belt, we compared the monthly cumulative interplanetary electric field and the monthly cumulative Dst index. The correlation coefficient between the two cumulative indices is 0.83 for southward IMF and 0.39 for northward IMF. It indicates that magnetospheric convection induced by southward IMF is also important in developing magnetic storms. Therefore, both magnetospheric substorm and enhanced magnetospheric convection seem to contribute to the buildup of magnetic storm.

  1. The relationship between large-scale and convective states in the tropics - Towards an improved representation of convection in large-scale models

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, Christian [Monash Univ., Melbourne, VIC (Australia)

    2015-02-26

    This report summarises an investigation into the relationship of tropical thunderstorms to the atmospheric conditions they are embedded in. The study is based on the use of radar observations at the Atmospheric Radiation Measurement site in Darwin run under the auspices of the DOE Atmospheric Systems Research program. Linking the larger scales of the atmosphere with the smaller scales of thunderstorms is crucial for the development of the representation of thunderstorms in weather and climate models, which is carried out by a process termed parametrisation. Through the analysis of radar and wind profiler observations the project made several fundamental discoveries about tropical storms and quantified the relationship of the occurrence and intensity of these storms to the large-scale atmosphere. We were able to show that the rainfall averaged over an area the size of a typical climate model grid-box is largely controlled by the number of storms in the area, and less so by the storm intensity. This allows us to completely rethink the way we represent such storms in climate models. We also found that storms occur in three distinct categories based on their depth and that the transition between these categories is strongly related to the larger scale dynamical features of the atmosphere more so than its thermodynamic state. Finally, we used our observational findings to test and refine a new approach to cumulus parametrisation which relies on the stochastic modelling of the area covered by different convective cloud types.

  2. Aerosol transport and wet scavenging in deep convective clouds: a case study and model evaluation using a multiple passive tracer analysis approach

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qing; Easter, Richard C.; Campuzano-Jost, Pedro; Jimenez, Jose L.; Fast, Jerome D.; Ghan, Steven J.; Wang, Hailong; Berg, Larry K.; Barth, Mary; Liu, Ying; Shrivastava, ManishKumar B.; Singh, Balwinder; Morrison, H.; Fan, Jiwen; Ziegler, Conrad L.; Bela, Megan; Apel, Eric; Diskin, G. S.; Mikoviny, Tomas; Wisthaler, Armin

    2015-08-20

    The effect of wet scavenging on ambient aerosols in deep, continental convective clouds in the mid-latitudes is studied for a severe storm case in Oklahoma during the Deep Convective Clouds and Chemistry (DC3) field campaign. A new passive-tracer based transport analysis framework is developed to characterize the convective transport based on the vertical distribution of several slowly reacting and nearly insoluble trace gases. The passive gas concentration in the upper troposphere convective outflow results from a mixture of 47% from the lower level (0-3 km), 21% entrained from the upper troposphere, and 32% from mid-atmosphere based on observations. The transport analysis framework is applied to aerosols to estimate aerosol transport and wet-scavenging efficiency. Observations yield high overall scavenging efficiencies of 81% and 68% for aerosol mass (Dp < 1μm) and aerosol number (0.03< Dp < 2.5μm), respectively. Little chemical selectivity to wet scavenging is seen among observed submicron sulfate (84%), organic (82%), and ammonium (80%) aerosols, while nitrate has a much lower scavenging efficiency of 57% likely due to the uptake of nitric acid. Observed larger size particles (0.15 - 2.5μm) are scavenged more efficiently (84%) than smaller particles (64%; 0.03 - 0.15μm). The storm is simulated using the chemistry version of the WRF model. Compared to the observation based analysis, the standard model underestimates the wet scavenging efficiency for both mass and number concentrations with low biases of 31% and 40%, respectively. Adding a new treatment of secondary activation significantly improves simulation results, so that the bias in scavenging efficiency in mass and number concentrations is reduced to <10%. This supports the hypothesis that secondary activation is an important process for wet removal of aerosols in deep convective storms.

  3. Forecasting severe ice storms using numerical weather prediction: the March 2010 Newfoundland event

    OpenAIRE

    J. Hosek; P. Musilek; E. Lozowski; P. Pytlak

    2011-01-01

    The northeast coast of North America is frequently hit by severe ice storms. These freezing rain events can produce large ice accretions that damage structures, frequently power transmission and distribution infrastructure. For this reason, it is highly desirable to model and forecast such icing events, so that the consequent damages can be prevented or mitigated. The case study presented in this paper focuses on the March 2010 ice storm event that took place in eastern Newfoundland. We apply...

  4. Dynamics Of Saturn'S Mid-scale Storms In The Cassini Era.

    Science.gov (United States)

    Del Rio Gaztelurrutia, Teresa; Hueso, R.; Sánchez-Lavega, A.

    2010-10-01

    Convective storms, similar to those in Earth, but of much larger scale, develop often in Saturn's atmosphere. During the Voyagers’ flybys of Saturn in 1981 mid-scale storms, with an horizontal extension of the order of 1000-3000 km were observed to occur mainly in a narrow tropical-latitude band in the Northern hemisphere at latitudes 38-40 deg North. Contrasting with the Voyagers’ era, since the starting of the Cassini mission in 2004, a similar mid-scale convective activity has concentrated in the so-called "storm alley", a narrow band at a symmetric Southern latitude of 38 deg.. In this work, we characterize this storm activity using available visual information provided by Cassini ISS cameras and the continuous survey from the Earth by the International Outer Planets Watch (IOPW) and its online database PVOL (Hueso et al., Planetary and Space Science, 2010). We study the frequency of appearance of storms with sizes above 2000 km, their characteristic size and life-time, as well as their interaction with surrounding dynamical features. In particular we examine the possibility that storms might provide a mechanism of injection of energy into Saturn's jets, the influence of storms in the generation of atmospheric vortices, and the analogies and differences of Voyagers’ and present day jet structure at the relevant latitudes. Acknowledgments: This work has been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464

  5. Moisture convergence using satellite-derived wind fields - A severe local storm case study

    Science.gov (United States)

    Negri, A. J.; Vonder Haar, T. H.

    1980-01-01

    Five-minute interval 1-km resolution SMS visible channel data were used to derive low-level wind fields by tracking small cumulus clouds on NASA's Atmospheric and Oceanographic Information Processing System. The satellite-derived wind fields were combined with surface mixing ratios to derive horizontal moisture convergence in the prestorm environment of April 24, 1975. Storms began developing in an area extending from southwest Oklahoma to eastern Tennessee 2 h subsequent to the time of the derived fields. The maximum moisture convergence was computed to be 0.0022 g/kg per sec and areas of low-level convergence of moisture were in general indicative of regions of severe storm genesis. The resultant moisture convergence fields derived from two wind sets 20 min apart were spatially consistent and reflected the mesoscale forcing of ensuing storm development. Results are discussed with regard to possible limitations in quantifying the relationship between low-level flow and between low-level flow and satellite-derived cumulus motion in an antecedent storm environment.

  6. Detection of severe storm signatures in loblolly pine using seven-year periodic standardized averages and standard deviations

    Science.gov (United States)

    Stevenson Douglas; Thomas Hennessey; Thomas Lynch; Giulia Caterina; Rodolfo Mota; Robert Heineman; Randal Holeman; Dennis Wilson; Keith Anderson

    2016-01-01

    A loblolly pine plantation near Eagletown, Oklahoma was used to test standardized tree ring widths in detecting snow and ice storms. Widths of two rings immediately following suspected storms were standardized against widths of seven rings following the storm (Stan1 and Stan2). Values of Stan1 less than -0.900 predict a severe (usually ice) storm when Stan 2 is less...

  7. Cross-scale observations of the 2015 St. Patrick's day storm: THEMIS, Van Allen Probes, and TWINS

    International Nuclear Information System (INIS)

    Goldstein, J.

    2016-01-01

    In this paper, we present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick's Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0.7 R E . Van Allen Probes crossed the plasmapause 13 times; test particle simulations reproduce these encounters within 0.5 R E . Before the storm, Van Allen Probes measured quiet double-nose proton spectra in the region of corotating cold plasma. About 15 min after a 0605 UT dayside southward turning, Van Allen Probes captured the onset of inner magnetospheric convection, as a density decrease at the moving corotation-convection boundary (CCB) and a steep increase in ring current (RC) proton flux. During the first several hours of the storm, Van Allen Probes measured highly dynamic ion signatures (numerous injections and multiple spectral peaks). Sustained convection after ~1200 UT initiated a major buildup of the midnight-sector ring current (measured by RBSP A), with much weaker duskside fluxes (measured by RBSP B, THEMIS a and THEMIS d). A close conjunction of THEMIS d, RBSP A, and TWINS 1 at 1631 UT shows good three-way agreement in the shapes of two-peak spectra from the center of the partial RC. A midstorm injection, observed by Van Allen Probes and TWINS at 1740 UT, brought in fresh ions with lower average energies (leading to globally less energetic spectra in precipitating ions) but increased the total pressure. Finally, the cross-scale measurements of 17 March 2015 contain significant spatial, spectral, and temporal structure.

  8. Zonal wind observations during a geomagnetic storm

    Science.gov (United States)

    Miller, N. J.; Spencer, N. W.

    1986-01-01

    In situ measurements taken by the Wind and Temperature Spectrometer (WATS) onboard the Dynamics Explorer 2 spacecraft during a geomagnetic storm display zonal wind velocities that are reduced in the corotational direction as the storm intensifies. The data were taken within the altitudes 275 to 475 km in the dusk local time sector equatorward of the auroral region. Characteristic variations in the value of the Dst index of horizontal geomagnetic field strength are used to monitor the storm evolution. The detected global rise in atmospheric gas temperature indicates the development of thermospheric heating. Concurrent with that heating, reductions in corotational wind velocities were measured equatorward of the auroral region. Just after the sudden commencement, while thermospheric heating is intense in both hemispheres, eastward wind velocities in the northern hemisphere show reductions ranging from 500 m/s over high latitudes to 30 m/s over the geomagnetic equator. After 10 hours storm time, while northern thermospheric heating is diminishing, wind velocity reductions, distinct from those initially observed, begin to develop over southern latitudes. In the latter case, velocity reductions range from 300 m/s over the highest southern latitudes to 150 m/s over the geomagnetic equator and extend into the Northern Hemisphere. The observations highlight the interhemispheric asymmetry in the development of storm effects detected as enhanced gas temperatures and reduced eastward wind velocities. Zonal wind reductions over high latitudes can be attributed to the storm induced equatorward spread of westward polar cap plasma convection and the resulting plasma-neutral collisions. However, those collisions are less significant over low latitudes; so zonal wind reductions over low latitudes must be attributed to an equatorward extension of a thermospheric circulation pattern disrupted by high latitude collisions between neutrals transported via eastward winds and ions

  9. Natural Disasters under the Form of Severe Storms in Europe: the Cause-Effect Analysis

    Directory of Open Access Journals (Sweden)

    Virginia Câmpeanu

    2009-07-01

    Full Text Available For more than 100 years, from 1900 to 2008, there were almost 400 storms natural disasters in Europe, 40% of which occurred in the 1990s. The international prognoses for the world weather suggest a tendency toward increasing in frequency and intensity of the severe storms as the climate warms. In these circumstances, for a researcher in the field of Environmental Economics, a natural question occurs, on whether people can contribute to reducing the frequency and the magnitude of severe storms that produce disastreous social and economic effects, by acting on their causes. In researching an answer to support the public policies in the field, a cause-effect analysis applied to Europe might make a contribution to the literature in the field. This especially considering the fact that international literature regarding the factors influencing global warming contains certainties in regard to the natural factors of influence, but declared incertitudes or skepticism in regard to anthropogenic ones. Skepticism, and even tension arised during the international negotiations in Copenhagen (December 2009 in regard to the agreement for limiting global warming, with doubts being raised about the methods used by experts of the International Climate Experts Group (GIEC, and thus the results obtained, which served as a basis for the negotiations. The object of critics was in regard to the form, and at times in regard to the content. It was not about contesting the phenomenon of Global warming during the negotiations, but the methods of calculation. The methodology relies on qualitative (type top down and quantitative (type correlations bottom up cause-effect analysis of the storm disasters in Europe. Based on the instruments used, we proposed a dynamic model of association of the evolution of storm disasters in Europe with anthropogenic factors, with 3 variants. Results: The diagram cause-effect (Ishikawa or fishbone diagram and quantitative correlation of sub

  10. Banded ion morphology - main and recovery storm phases

    International Nuclear Information System (INIS)

    Frahm, R.A.; Reiff, P.H.; Winningham, J.D.; Burch, J.L.

    1986-01-01

    The occurrence of bands in ion spectra obtained with the high-altitude and low-altitude plasma instruments on DE-1 and DE-2, respectively, during main and recovery storm phases from the period September 1981 - January 1982 is analyzed statistically. Typical spectra are shown; diagrams and graphs of storm morphology are provided; and two theoretical models (one based on time-of-flight effects and another based on convective dispersion) are discussed. It is found that bands occur more often in the main phase than in the recovery phase, and more often and at higher latitudes in the evening than before noon. From the stability of the bands and the dependence of energy on latitude it is inferred that convective dispersion plays a more important role than time-of-flight effects in the motion of heavy ions in the magnetosphere. 14 references

  11. HURRICANE AND SEVERE STORM SENTINEL (HS3) HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Hurricane Imaging Radiometer (HIRAD) was collected by the Hurricane Imaging Radiometer (HIRAD), which was a multi-band...

  12. The storm time central plasma sheet

    Directory of Open Access Journals (Sweden)

    R. Schödel

    2002-11-01

    Full Text Available The plasma sheet plays a key role during magnetic storms because it is the bottleneck through which large amounts of magnetic flux that have been eroded from the dayside magnetopause have to be returned to the dayside magnetosphere. Using about five years of Geotail data we studied the average properties of the near- and midtail central plasma sheet (CPS in the 10–30 RE range during magnetic storms. The earthward flux transport rate is greatly enhanced during the storm main phase, but shows a significant earthward decrease. Hence, since the magnetic flux cannot be circulated at a sufficient rate, this leads to an average dipolarization of the central plasma sheet. An increase of the specific entropy of the CPS ion population by a factor of about two during the storm main phase provides evidence for nonadiabatic heating processes. The direction of flux transport during the main phase is consistent with the possible formation of a near-Earth neutral line beyond ~20 RE.Key words. Magnetospheric physics (plasma convection; plasma sheet; storms and substorms

  13. Conceptual design of an airborne laser Doppler velocimeter system for studying wind fields associated with severe local storms

    Science.gov (United States)

    Thomson, J. A. L.; Davies, A. R.; Sulzmann, K. G. P.

    1976-01-01

    An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably.

  14. Severe geomagnetic storms and Forbush decreases: interplanetary relationships reexamined

    Directory of Open Access Journals (Sweden)

    R. P. Kane

    2010-02-01

    Full Text Available Severe storms (Dst and Forbush decreases (FD during cycle 23 showed that maximum negative Dst magnitudes usually occurred almost simultaneously with the maximum negative values of the Bz component of interplanetary magnetic field B, but the maximum magnitudes of negative Dst and Bz were poorly correlated (+0.28. A parameter Bz(CP was calculated (cumulative partial Bz as sum of the hourly negative values of Bz from the time of start to the maximum negative value. The correlation of negative Dst maximum with Bz(CP was higher (+0.59 as compared to that of Dst with Bz alone (+0.28. When the product of Bz with the solar wind speed V (at the hour of negative Bz maximum was considered, the correlation of negative Dst maximum with VBz was +0.59 and with VBz(CP, 0.71. Thus, including V improved the correlations. However, ground-based Dst values have a considerable contribution from magnetopause currents (several tens of nT, even exceeding 100 nT in very severe storms. When their contribution is subtracted from Dst(nT, the residue Dst* representing true ring current effect is much better correlated with Bz and Bz(CP, but not with VBz or VBz(CP, indicating that these are unimportant parameters and the effect of V is seen only through the solar wind ram pressure causing magnetopause currents. Maximum negative Dst (or Dst* did not occur at the same hour as maximum FD. The time evolutions of Dst and FD were very different. The correlations were almost zero. Basically, negative Dst (or Dst* and FDs are uncorrelated, indicating altogether different mechanism.

  15. Rediscovery of the doldrums in storm-resolving simulations over the tropical Atlantic

    Science.gov (United States)

    Klocke, Daniel; Brueck, Matthias; Hohenegger, Cathy; Stevens, Bjorn

    2017-12-01

    The doldrums — a zone of calm and variable winds in the deep tropics between the trades — were of key importance to nineteenth century maritime travel. As a result, the region was a focus in atmospheric science at that time. However, as sailing ships were replaced by steamboats, scientific interest shifted to the heavy precipitating storms within the doldrums: the deep convective systems of the intertropical convergence zone. Now, in storm-system-resolving simulations over a period of two months that cover a large part of the tropical Atlantic, the doldrums are one of the most prominent features. The doldrums are substantially less pronounced in coarser-resolution simulations that use a parameterization for convection, despite their large-scale extent. We conclude that explicitly representing the storm scale dynamics and their coupling to the surface wind on the storm-system scales helps to maintain the systems of winds that define the doldrums. We suggest that the lack of these wind systems could explain the persistent tropical precipitation biases in climate models.

  16. An Evaluation of Lightning Flash Rate Parameterizations Based on Observations of Colorado Storms during DC3

    Science.gov (United States)

    Basarab, B.; Fuchs, B.; Rutledge, S. A.

    2013-12-01

    Predicting lightning activity in thunderstorms is important in order to accurately quantify the production of nitrogen oxides (NOx = NO + NO2) by lightning (LNOx). Lightning is an important global source of NOx, and since NOx is a chemical precursor to ozone, the climatological impacts of LNOx could be significant. Many cloud-resolving models rely on parameterizations to predict lightning and LNOx since the processes leading to charge separation and lightning discharge are not yet fully understood. This study evaluates predicted flash rates based on existing lightning parameterizations against flash rates observed for Colorado storms during the Deep Convective Clouds and Chemistry Experiment (DC3). Evaluating lightning parameterizations against storm observations is a useful way to possibly improve the prediction of flash rates and LNOx in models. Additionally, since convective storms that form in the eastern plains of Colorado can be different thermodynamically and electrically from storms in other regions, it is useful to test existing parameterizations against observations from these storms. We present an analysis of the dynamics, microphysics, and lightning characteristics of two case studies, severe storms that developed on 6 and 7 June 2012. This analysis includes dual-Doppler derived horizontal and vertical velocities, a hydrometeor identification based on polarimetric radar variables using the CSU-CHILL radar, and insight into the charge structure using observations from the northern Colorado Lightning Mapping Array (LMA). Flash rates were inferred from the LMA data using a flash counting algorithm. We have calculated various microphysical and dynamical parameters for these storms that have been used in empirical flash rate parameterizations. In particular, maximum vertical velocity has been used to predict flash rates in some cloud-resolving chemistry simulations. We diagnose flash rates for the 6 and 7 June storms using this parameterization and compare

  17. Energetic ion injection and formation of the storm-time symmetric ring current

    Directory of Open Access Journals (Sweden)

    L. Xie

    2006-12-01

    Full Text Available An extensive study of ring current injection and intensification of the storm-time ring current is conducted with three-dimensional (3-D test particle trajectory calculations (TPTCs. The TPTCs reveal more accurately the process of ring current injection, with the main results being the following: (1 an intense convection electric field can effectively energize and inject plasma sheet particles into the ring current region within 1–3 h. (2 Injected ions often follow chaotic trajectories in non-adiabatic regions, which may have implications in storm and ring current physics. (3 The shielding electric field, which arises as a consequence of enhanced convection and co-exists with the injection and convection electric field, may cause the original open trajectories of injected ions with higher energy to change into closed ones, thus playing a role in the formation of the symmetric ring current.

  18. Ionospheric and satellite observations for studying the dynamic behavior of typhoons and the detection of severe storms and tsunamis

    Science.gov (United States)

    Hung, R. J.; Smith, R. E.

    1978-01-01

    Atmospheric acoustic-gravity waves associated with severe thunderstorms, tornadoes, typhoons (hurricanes) and tsunamis can be studied through the coupling between the ionosphere and the troposphere. Reverse ray tracing computations of acoustic-gravity waves observed by an ionospheric Doppler sounder array show that wave sources are in the nearby storm systems and that the waves are excited prior to the storms. Results show that ionospheric observations, together with satellite observations, can contribute to the understanding of the dynamical behavior of typhoons, severe storms and tsunamis.

  19. An Update to the Warm-Season Convective Wind Climatology of KSC/CCAFS

    Science.gov (United States)

    Lupo, Kevin

    2012-01-01

    Total of 1100 convective events in the 17-year warm-season climatology at KSC/CCAFS. July and August typically are the peak of convective events, May being the minimum. Warning and non-warning level convective winds are more likely to occur in the late afternoon (1900-2000Z). Southwesterly flow regimes and wind directions produce the strongest winds. Storms moving from southwesterly direction tend to produce more warning level winds than those moving from the northerly and easterly directions.

  20. The Framework of a Coastal Hazards Model - A Tool for Predicting the Impact of Severe Storms

    Science.gov (United States)

    Barnard, Patrick L.; O'Reilly, Bill; van Ormondt, Maarten; Elias, Edwin; Ruggiero, Peter; Erikson, Li H.; Hapke, Cheryl; Collins, Brian D.; Guza, Robert T.; Adams, Peter N.; Thomas, Julie

    2009-01-01

    The U.S. Geological Survey (USGS) Multi-Hazards Demonstration Project in Southern California (Jones and others, 2007) is a five-year project (FY2007-FY2011) integrating multiple USGS research activities with the needs of external partners, such as emergency managers and land-use planners, to produce products and information that can be used to create more disaster-resilient communities. The hazards being evaluated include earthquakes, landslides, floods, tsunamis, wildfires, and coastal hazards. For the Coastal Hazards Task of the Multi-Hazards Demonstration Project in Southern California, the USGS is leading the development of a modeling system for forecasting the impact of winter storms threatening the entire Southern California shoreline from Pt. Conception to the Mexican border. The modeling system, run in real-time or with prescribed scenarios, will incorporate atmospheric information (that is, wind and pressure fields) with a suite of state-of-the-art physical process models (that is, tide, surge, and wave) to enable detailed prediction of currents, wave height, wave runup, and total water levels. Additional research-grade predictions of coastal flooding, inundation, erosion, and cliff failure will also be performed. Initial model testing, performance evaluation, and product development will be focused on a severe winter-storm scenario developed in collaboration with the Winter Storm Working Group of the USGS Multi-Hazards Demonstration Project in Southern California. Additional offline model runs and products will include coastal-hazard hindcasts of selected historical winter storms, as well as additional severe winter-storm simulations based on statistical analyses of historical wave and water-level data. The coastal-hazards model design will also be appropriate for simulating the impact of storms under various sea level rise and climate-change scenarios. The operational capabilities of this modeling system are designed to provide emergency planners with

  1. Original deep convection in the atmosphere of Mars driven by the radiative impact of dust and water-ice particles

    Science.gov (United States)

    Spiga, A.; Madeleine, J. B.; Hinson, D.; Millour, E.; Forget, F.; Navarro, T.; Määttänen, A.; Montmessin, F.

    2017-09-01

    We unveil two examples of deep convection on Mars - in dust storms and water-ice clouds - to demonstrate that the radiative effect of aerosols and clouds can lead to powerful convective motions just as much as the release of latent heat in moist convection

  2. Performance Evaluation of PBL Schemes of ARW Model in Simulating Thermo-Dynamical Structure of Pre-Monsoon Convective Episodes over Kharagpur Using STORM Data Sets

    Science.gov (United States)

    Madala, Srikanth; Satyanarayana, A. N. V.; Srinivas, C. V.; Tyagi, Bhishma

    2016-05-01

    In the present study, advanced research WRF (ARW) model is employed to simulate convective thunderstorm episodes over Kharagpur (22°30'N, 87°20'E) region of Gangetic West Bengal, India. High-resolution simulations are conducted using 1 × 1 degree NCEP final analysis meteorological fields for initial and boundary conditions for events. The performance of two non-local [Yonsei University (YSU), Asymmetric Convective Model version 2 (ACM2)] and two local turbulence kinetic energy closures [Mellor-Yamada-Janjic (MYJ), Bougeault-Lacarrere (BouLac)] are evaluated in simulating planetary boundary layer (PBL) parameters and thermodynamic structure of the atmosphere. The model-simulated parameters are validated with available in situ meteorological observations obtained from micro-meteorological tower as well has high-resolution DigiCORA radiosonde ascents during STORM-2007 field experiment at the study location and Doppler Weather Radar (DWR) imageries. It has been found that the PBL structure simulated with the TKE closures MYJ and BouLac are in better agreement with observations than the non-local closures. The model simulations with these schemes also captured the reflectivity, surface pressure patterns such as wake-low, meso-high, pre-squall low and the convective updrafts and downdrafts reasonably well. Qualitative and quantitative comparisons reveal that the MYJ followed by BouLac schemes better simulated various features of the thunderstorm events over Kharagpur region. The better performance of MYJ followed by BouLac is evident in the lesser mean bias, mean absolute error, root mean square error and good correlation coefficient for various surface meteorological variables as well as thermo-dynamical structure of the atmosphere relative to other PBL schemes. The better performance of the TKE closures may be attributed to their higher mixing efficiency, larger convective energy and better simulation of humidity promoting moist convection relative to non

  3. Dynamic stability analysis of caisson breakwater in lifetime considering the annual frequency of severe storm

    Science.gov (United States)

    Wang, Yu-chi; Wang, Yuan-zhan; Hong, Ning-ning

    2015-04-01

    In the dynamic stability analysis of a caisson breakwater, most of current studies pay attention to the motion characteristics of caisson breakwaters under a single periodical breaking wave excitation. And in the lifetime stability analysis of caisson breakwater, it is assumed that the caisson breakwater suffers storm wave excitation once annually in the design lifetime. However, the number of annual severe storm occurrence is a random variable. In this paper, a series of random waves are generated by the Wen Sheng-chang wave spectrum, and the histories of successive and long-term random wave forces are built up by using the improved Goda wave force model. It is assumed that the number of annual severe storm occurrence is in the Poisson distribution over the 50-year design lifetime, and the history of random wave excitation is generated for each storm by the wave spectrum. The response histories of the caisson breakwater to the random waves over 50-year design lifetime are calculated and taken as a set of samples. On the basis of the Monte Carlo simulation technique, a large number of samples can be obtained, and the probability assessment of the safety of the breakwater during the complete design lifetime is obtained by statistical analysis of a large number of samples. Finally, the procedure of probability assessment of the breakwater safety is illustrated by an example.

  4. Impact of Short Interval SMS Digital Data on Wind Vector Determination for a Severe Local Storms Area

    Science.gov (United States)

    Peslen, C. A.

    1979-01-01

    The impact of 5 minute interval SMS-2 visible digital image data in analyzing severe local storms is examined using wind vectors derived from cloud tracking on time lapsed sequence of geosynchronous satellite images. The cloud tracking areas are located in the Central Plains, where on 6 May 1975, hail-producing thunderstorms occurred ahead of a well defined dry line. The results demonstrate that satellite-derived wind vectors and their associated divergence fields complement conventional meteorological analyses in describing the conditions preceding severe local storm development.

  5. Marine boundary layer characteristics during a cyclonic storm over ...

    Indian Academy of Sciences (India)

    raise the water level due to the generation of huge waves and .... mum intensity of the system was T2.5 on Dvorak's scale from 15 .... movement of cyclonic storm over land, the low level ... 15 and 18 are classified as deep convective sound-.

  6. Severe Weather Field Experience: An Undergraduate Field Course on Career Enhancement and Severe Convective Storms

    Science.gov (United States)

    Godfrey, Christopher M.; Barrett, Bradford S.; Godfrey, Elaine S.

    2011-01-01

    Undergraduate students acquire a deeper understanding of scientific principles through first-hand experience. To enhance the learning environment for atmospheric science majors, the University of North Carolina at Asheville has developed the severe weather field experience. Participants travel to Tornado Alley in the Great Plains to forecast and…

  7. Current understanding of magnetic storms: Storm-substorm relationships

    International Nuclear Information System (INIS)

    Kamide, Y.; Gonzalez, W.D.; Baumjohann, W.; Daglis, I.A.; Grande, M.; Joselyn, J.A.; Singer, H.J.; McPherron, R.L.; Phillips, J.L.; Reeves, E.G.; Rostoker, G.; Sharma, A.S.; Tsurutani, B.T.

    1998-01-01

    storm-time ring current. An apparently new controversy regarding the relative importance of the two processes is thus created. It is important to identify the role of substorm occurrence in the large-scale enhancement of magnetospheric convection driven by solar wind electric fields. (3) Numerical schemes for predicting geomagnetic activity indices on the basis of solar/solar wind/interplanetary magnetic field parameters continue to be upgraded, ensuring reliable techniques for forecasting magnetic storms under real-time conditions. There is a need to evaluate the prediction capability of geomagnetic indices on the basis of physical processes that occur during storm time substorms. (4) It is crucial to differentiate between storms and nonstorm time substorms in terms of energy transfer/conversion processes, i.e., mechanical energy from the solar wind, electromagnetic energy in the magnetotail, and again, mechanical energy of particles in the plasma sheet, ring current, and aurora. To help answer the question of the role of substorms in energizing ring current particles, it is crucial to find efficient magnetospheric processes that heat ions up to some minimal energies so that they can have an effect on the strength of the storm time ring current. (5) The question of whether the Dst index is an accurate and effective measure of the storm time ring-current is also controversial. In particular, it is demonstrated that the dipolarization effect associated with substorm expansion

  8. Simulation and Interpretation of the Genesis of Tropical Storm Gert (2005) as Part of the NASA Tropical Cloud Systems and Processes Experiment

    Science.gov (United States)

    Braun, Scott A.; Montgomery, Michael T.; Mallen, Kevin

    2009-01-01

    Several hypotheses have been put forward for the how tropical cyclones (tropical storms and hurricanes in the Atlantic) first develop circulation at the surface, a key event that needs to occur before a storm can begin to draw energy from the warm ocean. One hypothesis suggests that the surface circulation forms from a "top-down" approach in which a storm s rotating circulation begins at middle levels of the atmosphere and builds down to the surface through processes related to light "stratiform" (horizontally extensive) precipitation. Another hypothesis suggests a bottom-up approach in which deep thunderstorm towers (convection) play the major role in spinning up the flow at the surface. These "hot towers" form in the area of the mid-level circulation and strongly concentrate this rotation at low levels within their updrafts. Merger of several of these hot towers then intensifies the surface circulation to the point in which a storm forms. This paper examines computer simulations of Tropical Storm Gert (2005), which formed in the Gulf of Mexico during the National Aeronautics and Space Administration s (NASA) Tropical Cloud Systems and Processes (TCSP) Experiment, to investigate the development of low-level circulation and, in particular, whether stratiform or hot tower processes were responsible for the storm s formation. Data from NASA satellites and from aircraft were used to show that the model did a good job of reproducing the formation and evolution of Gert. The simulation shows that a mix of both stratiform and convective rainfall occurred within Gert. While the stratiform rainfall clearly acted to increase rotation at middle levels, the diverging outflow beneath the stratiform rain worked against spinning up the low-level winds. The hot towers appeared to dominate the low-level flow, producing intense rotation within their cores and often being associated with significant pressure falls at the surface. Over time, many of these hot towers merged, with each

  9. Increasing frequency of extremely severe cyclonic storms over the Arabian Sea

    Science.gov (United States)

    Murakami, Hiroyuki; Vecchi, Gabriel A.; Underwood, Seth

    2017-12-01

    In 2014 and 2015, post-monsoon extremely severe cyclonic storms (ESCS)—defined by the WMO as tropical storms with lifetime maximum winds greater than 46 m s-1—were first observed over the Arabian Sea (ARB), causing widespread damage. However, it is unknown to what extent this abrupt increase in post-monsoon ESCSs can be linked to anthropogenic warming, natural variability, or stochastic behaviour. Here, using a suite of high-resolution global coupled model experiments that accurately simulate the climatological distribution of ESCSs, we show that anthropogenic forcing has likely increased the probability of late-season ECSCs occurring in the ARB since the preindustrial era. However, the specific timing of observed late-season ESCSs in 2014 and 2015 was likely due to stochastic processes. It is further shown that natural variability played a minimal role in the observed increase of ESCSs. Thus, continued anthropogenic forcing will further amplify the risk of cyclones in the ARB, with corresponding socio-economic implications.

  10. The Czech Hydrometeorological Institute's severe storm nowcasting system

    Science.gov (United States)

    Novak, Petr

    2007-02-01

    To satisfy requirements for operational severe weather monitoring and prediction, the Czech Hydrometeorological Institute (CHMI) has developed a severe storm nowcasting system which uses weather radar data as its primary data source. Previous CHMI studies identified two methods of radar echo prediction, which were then implemented during 2003 into the Czech weather radar network operational weather processor. The applications put into operations were the Continuity Tracking Radar Echoes by Correlation (COTREC) algorithm, and an application that predicts future radar fields using the wind field derived from the geopotential at 700 hPa calculated from a local numerical weather prediction model (ALADIN). To ensure timely delivery of the prediction products to the users, the forecasts are implemented into a web-based viewer (JSMeteoView) that has been developed by the CHMI Radar Department. At present, this viewer is used by all CHMI forecast offices for versatile visualization of radar and other meteorological data (Meteosat, lightning detection, NWP LAM output, SYNOP data) in the Internet/Intranet environment, and the viewer has detailed geographical navigation capabilities.

  11. DE 2 observations of disturbances in the upper atmosphere during a geomagnetic storm

    International Nuclear Information System (INIS)

    Miller, N.J.; Brace, L.H.; Spencer, N.W.; Carignan, G.R.

    1990-01-01

    Data taken in the dusk sector of the mid-latitude thermosphere at 275-450 km by instruments on board Dynamics Explorer 2 in polar orbit are used to examine the response of the ionosphere- thermosphere system during a geomagnetic storm. The results represent the first comparison of nearly simultaneous measurements of storm disturbances in dc electric fields, zonal ion convection, zonal winds, gas composition and temperature, and electron density and temperature, at different seasons in a common local time sector. The storm commenced on November 24, 1982, during the interaction of a solar wind disturbance with the geomagnetic field while the north-south component of the interplanetary magnetic field, B z , was northward. The storm main phase began while B z was turning southward. Storm-induced variations in meridional de electric fields, neutral composition, and N e were stronger and spread farther equatorward in the winter hemisphere. Westward ion convection was intense enough to produce westward winds of 600 m s - 1 via ion drag in the winter hemisphere. Frictional heating was sufficient to elevate ion temperatures above electron temperatures in both seasons and to produce large chemical losses of O + by increasing the rate of O + loss via ion-atom interchange. Part of the chemical loss of O + was compensated by upward flow of O + as the ion scale height adjusted to the increasing ion temperatures. In this storm, frictional heating was an important subauroral heat source equatorward to at least 53 degree invariant latitude

  12. Ionosphere dynamics over the Southern Hemisphere during the 31 March 2001 severe magnetic storm using multi-instrument measurement data

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2005-03-01

    Full Text Available The effects of the 31 March 2001 severe magnetic storm on the Southern Hemisphere ionosphere have been studied using ground-based and satellite measurements. The prime goal of this comprehensive study is to track the ionospheric response from high-to-low latitude to obtain a clear understanding of storm-time ionospheric change. The study uses a combination of ionospheric Total Electron Content (TEC obtained from GPS signal group delay and phase advance measurements, ionosonde data, and data from satellite in-situ measurements, such as the Defense Metrological Satellite Program (DMSP, TOPographic EXplorer (TOPEX, and solar wind data from the Advanced Composition Explorer (ACE. A chain of Global Positioning System (GPS stations near the 150° E meridian has been used to give comprehensive latitude coverage extending from the cusp to the equatorial region. A tomographic inversion algorithm has been applied to the GPS TEC measurements to obtain maps of the latitudinal structure of the ionospheric during this severe magnetic storm period, enabling both the spatial and temporal response of the ionosphere to be studied. Analysis of data from several of the instruments indicates that a strong density enhancement occurred at mid-latitudes at 11:00 UT on 31 March 2001 and was followed by equatorward propagating large-scale Travelling Ionospheric Disturbances (TIDs. The tomographic reconstruction revealed important features in ionospheric structure, such as quasi-wave formations extending finger-like to higher altitudes. The most pronounced ionospheric effects of the storm occurred at high- and mid-latitudes, where strong positive disturbances occurred during the storm main phase, followed by a long lasting negative storm effect during the recovery phase. Relatively minor storm effects occurred in the equatorial region.

  13. Perceptions and Expected Immediate Reactions to Severe Storm Displays.

    Science.gov (United States)

    Jon, Ihnji; Huang, Shih-Kai; Lindell, Michael K

    2017-11-09

    The National Weather Service has adopted warning polygons that more specifically indicate the risk area than its previous county-wide warnings. However, these polygons are not defined in terms of numerical strike probabilities (p s ). To better understand people's interpretations of warning polygons, 167 participants were shown 23 hypothetical scenarios in one of three information conditions-polygon-only (Condition A), polygon + tornadic storm cell (Condition B), and polygon + tornadic storm cell + flanking nontornadic storm cells (Condition C). Participants judged each polygon's p s and reported the likelihood of taking nine different response actions. The polygon-only condition replicated the results of previous studies; p s was highest at the polygon's centroid and declined in all directions from there. The two conditions displaying storm cells differed from the polygon-only condition only in having p s just as high at the polygon's edge nearest the storm cell as at its centroid. Overall, p s values were positively correlated with expectations of continuing normal activities, seeking information from social sources, seeking shelter, and evacuating by car. These results indicate that participants make more appropriate p s judgments when polygons are presented in their natural context of radar displays than when they are presented in isolation. However, the fact that p s judgments had moderately positive correlations with both sheltering (a generally appropriate response) and evacuation (a generally inappropriate response) suggests that experiment participants experience the same ambivalence about these two protective actions as people threatened by actual tornadoes. © 2017 Society for Risk Analysis.

  14. Thermal response of upper layers of Bay of Bengal to forcing of a severe cyclonic storm: A case study

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishna, V.V.; Murty, V.S.N.; Sarma, M.S.S.; Sastry, J.S.

    Upper ocean response to forcing of a severe cyclonic storm during May 1990 in the western Bay of Bengal was studied using the XBT data sets collected (4 d after passage of storm) under Indian TOGA programme. A maximum lowering in the sea surface...

  15. Thermospheric dynamics during the March 22, 1979, magnetic storm 1. Model simulations

    International Nuclear Information System (INIS)

    Roble, R.G.; Forbes, J.M.; Marcos, F.A.

    1987-01-01

    The physical processes involved in the transfer of energy from the solar wind to the magnetosphere and its release associated with substorms on March 22, 1979, have been studied in detail by the Coordinated Data Analysis Workshop 6 (CDAW 6). The information derived from the CDAW 6 study, as well as other information obtained from magnetospheric modeling, is used to prescribe the time-dependent variations of the parameterizations for the auroral and magnetospheric convection models that are incorporated within the National Center for Atmospheric Research thermospheric general circulation model (TGCM). The period preceding the magnetic storm (March 21) was geomagnetically quiet, and the TGCM was run until a diurnally reproducible pattern was obtained. The time variations of auroral particle precipitation and enhanced magnetospheric convection on March 22 caused a considerable disturbance in the high-latitude circulation, temperature, and composition during the storm period that began at about 1055 UT. Large- and medium-scale disturbances were launched during the event that propagated to equatorial latitudes. The thermospheric response in the northern hemisphere was larger than that generated in the southern hemisphere, because the auroral oval and magnetospheric convection pattenr in the northern hemisphere were in sunlight during the storm period whereas they were in darkness in the southern hemisphere. The storm response was also different in the upper and the lower thermosphere. In the upper thermosphere the winds generally followed the two-cell pattern of magnetospheric convecton with a lag of only 1/2 to 1 hour. In the lower thermosphere there was a pronounced asymmetry between the circulation cells on the dawnside and on the duskside of the polar cap

  16. Satellite-observed cold-ring-shaped features atop deep convective clouds

    Czech Academy of Sciences Publication Activity Database

    Setvák, M.; Lindsey, D. T.; Novák, P.; Wang, P. K.; Radová, Michaela; Kerkmann, J.; Grasso, L.; Su, S.-H.; Rabin, R. M.; Šťástka, J.; Charvát, Z.

    2010-01-01

    Roč. 97, 1-2 (2010), s. 80-96 ISSN 0169-8095 R&D Projects: GA ČR GA205/07/0905; GA MŠk ME09033 Institutional research plan: CEZ:AV0Z30420517 Keywords : convective storm * storm top * cloud top height * cold-ring shape * cold-U shape * enhanced-V feature * overshooting top * lower stratosphere * Meteosat second generation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.597, year: 2010 http://www.sciencedirect.com/science/article/pii/S016980951000058X

  17. Thromboembolic complications of thyroid storm.

    Science.gov (United States)

    Min, T; Benjamin, S; Cozma, L

    2014-01-01

    Thyroid storm is a rare but potentially life-threatening complication of hyperthyroidism. Early recognition and prompt treatment are essential. Atrial fibrillation can occur in up to 40% of patients with thyroid storm. Studies have shown that hyperthyroidism increases the risk of thromboembolic events. There is no consensus with regard to the initiation of anticoagulation for atrial fibrillation in severe thyrotoxicosis. Anticoagulation is not routinely initiated if the risk is low on a CHADS2 score; however, this should be considered in patients with thyroid storm or severe thyrotoxicosis with impending storm irrespective of the CHADS2 risk, as it appears to increase the risk of thromboembolic episodes. Herein, we describe a case of thyroid storm complicated by massive pulmonary embolism. Diagnosis of thyroid storm is based on clinical findings. Early recognition and prompt treatment could lead to a favourable outcome.Hypercoagulable state is a recognised complication of thyrotoxicosis.Atrial fibrillation is strongly associated with hyperthyroidism and thyroid storm.Anticoagulation should be considered for patients with severe thyrotoxicosis and atrial fibrillation irrespective of the CHADS2 score.Patients with severe thyrotoxicosis and clinical evidence of thrombosis should be immediately anticoagulated until hyperthyroidism is under control.

  18. Geomagnetic storm forecasting service StormFocus: 5 years online

    Science.gov (United States)

    Podladchikova, Tatiana; Petrukovich, Anatoly; Yermolaev, Yuri

    2018-04-01

    Forecasting geomagnetic storms is highly important for many space weather applications. In this study, we review performance of the geomagnetic storm forecasting service StormFocus during 2011-2016. The service was implemented in 2011 at SpaceWeather.Ru and predicts the expected strength of geomagnetic storms as measured by Dst index several hours ahead. The forecast is based on L1 solar wind and IMF measurements and is updated every hour. The solar maximum of cycle 24 is weak, so most of the statistics are on rather moderate storms. We verify quality of selection criteria, as well as reliability of real-time input data in comparison with the final values, available in archives. In real-time operation 87% of storms were correctly predicted while the reanalysis running on final OMNI data predicts successfully 97% of storms. Thus the main reasons for prediction errors are discrepancies between real-time and final data (Dst, solar wind and IMF) due to processing errors, specifics of datasets.

  19. Simultaneous Radar and Satellite Data Storm-Scale Assimilation Using an Ensemble Kalman Filter Approach for 24 May 2011

    Science.gov (United States)

    Jones, Thomas A.; Stensrud, David; Wicker, Louis; Minnis, Patrick; Palikonda, Rabindra

    2015-01-01

    Assimilating high-resolution radar reflectivity and radial velocity into convection-permitting numerical weather prediction models has proven to be an important tool for improving forecast skill of convection. The use of satellite data for the application is much less well understood, only recently receiving significant attention. Since both radar and satellite data provide independent information, combing these two sources of data in a robust manner potentially represents the future of high-resolution data assimilation. This research combines Geostationary Operational Environmental Satellite 13 (GOES-13) cloud water path (CWP) retrievals with Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity to examine the impacts of assimilating each for a severe weather event occurring in Oklahoma on 24 May 2011. Data are assimilated into a 3-km model using an ensemble adjustment Kalman filter approach with 36 members over a 2-h assimilation window between 1800 and 2000 UTC. Forecasts are then generated for 90 min at 5-min intervals starting at 1930 and 2000 UTC. Results show that both satellite and radar data are able to initiate convection, but that assimilating both spins up a storm much faster. Assimilating CWP also performs well at suppressing spurious precipitation and cloud cover in the model as well as capturing the anvil characteristics of developed storms. Radar data are most effective at resolving the 3D characteristics of the core convection. Assimilating both satellite and radar data generally resulted in the best model analysis and most skillful forecast for this event.

  20. Energization of the Ring Current through Convection of Substorm Enhancements of the Plasma Sheet Source.

    Science.gov (United States)

    Menz, A.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Henderson, M. G.; Matsui, H.

    2017-12-01

    It has been shown that electric field strength and night-side plasma sheet density are the two best predictors of the adiabatic energy gain of the ring current during geomagnetic storms (Liemohn and Khazanov, 2005). While H+ dominates the ring current during quiet times, O+ can contribute substantially during geomagnetic storms. Substorm activity provides a mechanism to enhance the energy density of O+ in the plasma sheet during geomagnetic storms, which is then convected adiabatically into the inner-magnetosphere. Using the Van Allen Probes data in the the plasma sheet source region (defined as L>5.5 during storms) and the inner magnetosphere, along with LANL-GEO data to identify substorm injection times, we show that adiabatic convection of O+ enhancements in the source region can explain the observed enhancements in the inner magnetosphere. We use the UNH-IMEF electric field model to calculate drift times from the source region to the inner magnetosphere to test whether enhancements in the inner-magnetosphere can be explained by dipolarization driven enhancements in the plasma sheet source hours before.

  1. Organizational Modes of Severe Wind-producing Convective Systems over North China

    Science.gov (United States)

    Yang, Xinlin; Sun, Jianhua

    2018-05-01

    Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind (SCW) events and their organizational modes of radar reflectivity. The six organizational modes for SCW events (and their proportions) were cluster cells (35.4%), squall lines (18.4%), nonlinear-shaped systems (17.8%), broken lines (11.6%), individual cells (1.2%), and bow echoes (0.5%). The peak month for both squall lines and broken lines was June, whereas it was July for the other four modes. The highest numbers of SCW events were over the mountains, which were generally associated with disorganized systems of cluster cells. In contrast, SCW associated with linear systems occurred mainly over the plains, where stations recorded an average of less than one SCW event per year. Regions with a high frequency of SCW associated with nonlinear-shaped systems also experienced many SCW events associated with squall lines. Values of convective available potential energy, precipitable water, 0-3-km shear, and 0-6-km shear, were demonstrably larger over the plains than over the mountains, which had an evident effect on the organizational modes of SCW events. Therefore, topography may be an important factor in the organizational modes for SCW events over North China.

  2. Pilot Convective Weather Decision Making in En Route Airspace

    Science.gov (United States)

    Wu, Shu-Chieh; Gooding, Cary L.; Shelley, Alexandra E.; Duong, Constance G.; Johnson, Walter W.

    2012-01-01

    The present research investigates characteristics exhibited in pilot convective weather decision making in en route airspace. In a part-task study, pilots performed weather avoidance under various encounter scenarios. Results showed that the margins of safety that pilots maintain from storms are as fluid as deviation decisions themselves.

  3. Use of the European Severe Weather Database to verify satllite-based storm detection or nowcasting

    OpenAIRE

    Dotzek, Nikolai; Forster, Caroline

    2008-01-01

    Severe thunderstorms constitute a major weather hazard in Europe, with an estimated total damage of € 5-8 billion each year. Yet a pan-European database of severe weather reports in a homogeneous data format has become available only recently: the European Severe Weather Database (ESWD). We demonstrate the large potential of ESWD applications for storm detection and forecast or nowcasting/warning verification purposes. The study of five warm-season severe weather days in Europe from 2007 a...

  4. Temporal Evolution of Ion Spectral Structures During a Geomagnetic Storm: Observations and Modeling

    Science.gov (United States)

    Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2018-01-01

    Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1 to 50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet inner edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As convection is enhanced and large amounts of plasma are injected from the plasma sheet during the main phase of the storm, ion access occurs at a wide energy range, as no nose structures are observed. As the magnetosphere recovers from the storm, single noses and then multiple noses are observed once again. We use a model of ion drift and losses due to charge exchange to simulate the ion spectra and gain insight into the main observed features.

  5. Time dependent convection electric fields and plasma injection

    International Nuclear Information System (INIS)

    Kaye, S.M.; Kivelson, M.G.

    1979-01-01

    Large-scale electric fields associated with storms or substorms are responsible for inward convection and energization of plasma sheet plasma. Calculations based on steady state convection theory show that the response to such electric fields qualitatively accounts for many features of the injected particle distribution, but quantitative agreement with the theory has not yet been obtained. It is known that the predictions can be improved by introducing the concept of convection in response to a time dependent electric field. On the other hand, time dependent calculations are sensitive to the choice of initial conditions, and most models have failed to incorporate these conditions in a realistic and self-consistent manner. In this paper we present a more complete model consisting of realisic initial conditions and time dependent convection to explain a typical substorm-associated electron injection event. We find very good agreement between the observed electron flux changes and those predicted by our model

  6. Wind Shear and the Strength of Severe Convective Phenomena—Preliminary Results from Poland in 2011–2015

    Directory of Open Access Journals (Sweden)

    Wojciech Pilorz

    2016-10-01

    Full Text Available Severe convective phenomena cause significant loss in the economy and, primarily, casualties. Therefore, it is essential to forecast such extreme events to avoid or minimize the negative consequences. Wind shear provides an updraft-downdraft separation in the convective cell, which extends the cell lifetime. Wind shears between a few different air layers have been examined in all damaging convective cases in Poland, taken from the European Severe Weather Database between 2011 and 2015, in order to find their values and patterns according to the intensity of this phenomenon. Each severe weather report was assigned wind shear values from the nearest sounding station, and subsequently the presented summary was made. It was found that wind shear values differ between the given phenomena and their intensity. This regularity is particularly visible in shears containing 0 km wind. The highest shears occur within wind reports. Lower values are associated with hail reports. An important difference between weak and F1+ tornadoes was found in most of the wind shears. Severe phenomena probability within 0–6 km and 0–1 km shears show different patterns according to the phenomena and their intensity. This finding has its application in severe weather forecasting.

  7. Modeling of the outer electron belt during magnetic storms

    International Nuclear Information System (INIS)

    Desorgher, L.; Buehler, P.; Zehnder, A.; Daly, E.; Adams, L.

    1999-01-01

    The flux dropout of relativistic electrons in the earth's outer radiation belt, during the main phase of the 26 March 1995 magnetic storm is examined. Outer belt measurements by the Radiation Environment Monitor, REM aboard the STRV-1b satellite are presented to characterize this dropout. In order to simulate the dynamics of the electron belt during the storm main phase a particle tracing code was developed which allows to trace the trajectories of equatorially mirroring electrons in a dynamic magnetospheric electromagnetic field. Two simulations were performed in a non-stationary magnetic field, one taking only the induced electric field into account (fully adiabatic motion), and one with an additional non-stationary convection electric field. The simulations show, that adiabatic deceleration can produce the observed count rate decrease and also the observed inward motion of the count rate peak. The convection electric field causes diffusion, which can take particles from low L values out to the magnetopause and contribute to an additional loss of particles, which is suggested by the observations

  8. The Effect of Storm Driver and Intensity on Magnetospheric Ion Temperatures

    Science.gov (United States)

    Keesee, Amy M.; Katus, Roxanne M.; Scime, Earl E.

    2017-09-01

    Energy deposited in the magnetosphere during geomagnetic storms drives ion heating and convection. Ions are also heated and transported via internal processes throughout the magnetosphere. Injection of the plasma sheet ions to the inner magnetosphere drives the ring current and, thus, the storm intensity. Understanding the ion dynamics is important to improving our ability to predict storm evolution. In this study, we perform superposed epoch analyses of ion temperatures during storms, comparing ion temperature evolution by storm driver and storm intensity. The ion temperatures are calculated using energetic neutral atom measurements from the Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) mission. The global view of these measurements provide both spatial and temporal information. We find that storms driven by coronal mass ejections (CMEs) tend to have higher ion temperatures throughout the main phase than storms driven by corotating interaction regions (CIRs) but that the temperatures increase during the recovery phase of CIR-driven storms. Ion temperatures during intense CME-driven storms have brief intervals of higher ion temperatures than those during moderate CME-driven storms but have otherwise comparable ion temperatures. The highest temperatures during CIR-driven storms are centered at 18 magnetic local time and occur on the dayside for moderate CME-driven storms. During the second half of the main phase, ion temperatures tend to decrease in the postmidnight to dawn sector for CIR storms, but an increase is observed for CME storms. This increase begins with a sharp peak in ion temperatures for intense CME storms, likely a signature of substorm activity that drives the increased ring current.

  9. Perceptions of severe storms, climate change, ecological structures and resiliency three years post-hurricane Sandy in New Jersey.

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael

    2017-12-01

    Global warming is leading to increased frequency and severity of storms that are associated with flooding, increasing the risk to urban, coastal populations. This study examined perceptions of the relationship between severe storms, sea level rise, climate change and ecological barriers by a vulnerable environmental justice population in New Jersey. Patients using New Jersey's Federally Qualified Health Centers were interviewed after Hurricane [Superstorm] Sandy because it is essential to understand the perceptions of uninsured, underinsured, and economically challenged people to better develop a resiliency strategy for the most vulnerable people. Patients ( N = 355) using 6 centers were interviewed using a structured interview form. Patients were interviewed in the order they entered the reception area, in either English or Spanish. Respondents were asked to rate their agreement with environmental statements. Respondents 1) agreed with experts that "severe storms were due to climate change", "storms will come more often", and that "flooding was due to sea level rise", 2) did not agree as strongly that "climate change was due to human activity", 3) were neutral for statements that " Sandy damages were due to loss of dunes or salt marshes". 4) did not differ as a function of ethnic/racial categories, and 5) showed few gender differences. It is imperative that the public understand that climate change and sea level rise are occurring so that they support community programs (and funding) to prepare for increased frequency of storms and coastal flooding. The lack of high ratings for the role of dunes and marshes in preventing flooding indicates a lack of understanding that ecological structures protect coasts, and suggests a lack of support for management actions to restore dunes as part of a coastal preparedness strategy. Perceptions that do not support a public policy of coastal zone management to protect coastlines can lead to increased flooding, extensive property

  10. Effects of resolved boundary layer turbulence on near-ground rotation in simulated quasi-linear convective systems (QLCSs)

    Science.gov (United States)

    Nowotarski, C. J.

    2017-12-01

    Though most strong to violent tornadoes are associated with supercell thunderstorms, quasi-linear convective systems (QLCSs) pose a risk of tornadoes, often at times and locations where supercell tornadoes are less common. Because QLCS low-level mesocyclones and tornado signatures tend to be less coherent, forecasting such tornadoes remains particularly difficult. The majority of simulations of such storms rely on horizontally homogeneous base states lacking resolved boundary layer turbulence and surface fluxes. Previous work has suggested that heterogeneities associated with boundary layer turbulence in the form of horizontal convective rolls can influence the evolution and characteristics of low-level mesocyclones in supercell thunderstorms. This study extends methods for generating boundary layer convection to idealized simulations of QLCSs. QLCS simulations with resolved boundary layer turbulence will be compared against a control simulation with a laminar boundary layer. Effects of turbulence, the resultant heterogeneity in the near-storm environment, and surface friction on bulk storm characteristics and the intensity, morphology, and evolution of low-level rotation will be presented. Although maximum surface vertical vorticity values are similar, when boundary layer turbulence is included, a greater number of miso- and meso-scale vortices develop along the QLCS gust front. The source of this vorticity is analyzed using Eulerian decomposition of vorticity tendency terms and trajectory analysis to delineate the relative importance of surface friction and baroclinicity in generating QLCS vortices. The role of anvil shading in suppressing boundary layer turbulence in the near-storm environment and subsequent effects on QLCS vortices will also be presented. Finally, implications of the results regarding inclusion of more realistic boundary layers in future idealized simulations of deep convection will be discussed.

  11. Potential indirect effects of aerosol on tropical cyclone intensity: convective fluxes and cold-pool activity

    Science.gov (United States)

    Krall, G. M.; Cottom, W. R.

    2012-01-01

    Observational and model evidence suggest that a 2008 Western Pacific typhoon (NURI) ingested elevated concentrations of aerosol as it neared the Chinese coast. This study uses a regional model with two-moment bin-emulating microphysics to simulate the typhoon as it enters the field of elevated aerosol concentrations. A clean maritime field of cloud condensation nuclei (CCN) was prescribed as marine background CCN concentrations and then based on satellite and global aerosol model output, increased to pollution levels and further enhanced in sensitivity tests. The typhoon was simulated for 96 h beginning 17 August 2008. During the final 60 h CCN concentrations were enhanced as it neared the Philippines and coastal China. The model was initialized with both global reanalysis model data and irregularly spaced dropsonde data from the 2008 T-PARC observational campaign using an objective analysis routine. At 36 h, the internal nudging of the model was switched off and allowed to freely evolve on its own. As the typhoon encountered the elevated CCN in the sensitivity tests, a significant perturbation of windspeed, convective fluxes, and hydrometeor species behavior was simulated. Early during the ingestion of enhanced CCN, precipitation was reduced due to suppressed collision and coalescence, and storm winds increased in strength. Subsequently, owing to reduced fall speeds of the smaller drops, greater amounts of condensate were thrust into supercooled levels where the drops froze releasing greater amounts of latent heat of freezing. Convection thereby intensified which resulted in enhanced rainfall and more vigorous convectively-produced downdrafts. As the convection intensified in the outer rainbands the storm drifted over the developing cold-pools. The enhanced cold-pools blocked the inflow of warm, moist air into the core of the typhoon which led to a weakening of the typhoon with significantly reduced low level wind speeds. The very high amounts of pollution

  12. Origin of the pre-tropical storm Debby (2006) African easterly wave-mesoscale convective system

    Science.gov (United States)

    Lin, Yuh-Lang; Liu, Liping; Tang, Guoqing; Spinks, James; Jones, Wilson

    2013-05-01

    The origins of the pre-Debby (2006) mesoscale convective system (MCS) and African easterly wave (AEW) and their precursors were traced back to the southwest Arabian Peninsula, Asir Mountains (AS), and Ethiopian Highlands (EH) in the vicinity of the ITCZ using satellite imagery, GFS analysis data and ARW model. The sources of the convective cloud clusters and vorticity perturbations were attributed to the cyclonic convergence of northeasterly Shamal wind and the Somali jet, especially when the Mediterranean High shifted toward east and the Indian Ocean high strengthened and its associated Somali jet penetrated farther to the north. The cyclonic vorticity perturbations were strengthened by the vorticity stretching associated with convective cloud clusters in the genesis region—southwest Arabian Peninsula. A conceptual model was proposed to explain the genesis of convective cloud clusters and cyclonic vorticity perturbations preceding the pre-Debby (2006) AEW-MCS system.

  13. Sudden post-midnight decrease in equatorial F-region electron densities associated with severe magnetic storms

    Directory of Open Access Journals (Sweden)

    D. R. Lakshmi

    1997-03-01

    Full Text Available A detailed analysis of the responses of the equatorial ionosphere to a large number of severe magnetic storms shows the rapid and remarkable collapse of F-region ionisation during post-midnight hours; this is at variance with the presently accepted general behaviour of the low-latitude ionosphere during magnetic storms. This paper discusses such responses as seen in the ionosonde data at Kodaikanal (Geomagn. Lat. 0.6 N. It is also observed that during magnetic storm periods the usual increase seen in the h'F at Kodaikanal during sunset hours is considerably suppressed and these periods are also characterised by increased foF2 values. It is suggested that the primary process responsible for these dramatic pre- and post-midnight changes in foF2 during magnetic storms could be due to changes in the magnitude as well as in the direction of usual equatorial electric fields. During the post-midnight periods the change in electric-field direction from westward to eastward for a short period causes an upward E × B plasma drift resulting in increased h'F and decreased electron densities in the equatorial region. In addition, it is also suggested that the enhanced storm-induced meridional winds in the thermosphere, from the poles towards the equator, may also cause the decreases in electron density seen during post-midnight hours by spatially transporting the F-region ionisation southwards away from Kodaikanal. The paper also includes a discussion on the effects of such decreases in ionisation on low-latitude HF communications.

  14. HURRICANE AND SEVERE STORM SENTINEL (HS3) GLOBAL HAWK HIGH ALTITUDE MMIC SOUNDING RADIOMETER (HAMSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Global Hawk High Altitude MMIC Sounding Radiometer (HAMSR) datasets include measurements gathered by the HAMSR...

  15. Aerosol nucleation and growth in the TTL, due to tropical convection, during the ACTIVE campaign

    Science.gov (United States)

    Waddicor, D.; Vaughan, G.; Choularton, T.

    2009-04-01

    The Aerosol and Chemical Transport In tropical convection (ACTIVE) campaign took place between October 2005 and February 2006. This investigation involved the sampling of deep convective storms that occur in the Tropics; the campaign was based in Darwin, Northern Territory, Australia - the latter half of the campaign coincided with the monsoon season. A range of scientific equipment was used to sample the inflow and outflow air from these storms; of particular importance were the NERC Dornier (low-level) and ARA Egrett (high-level outflow) aircraft. The Dornier held a range of aerosol, particle and chemical detectors for the purpose of analysing the planetary boundary layer (PBL), in the vicinity of tropical convection. The Egrett contained detection instrumentation for a range of sizes of aerosol and cloud particles (2 Condensation Particle Counters (CPC), CAPS, CIP, CPI) in the storm outflow. This allowed a quantifiable measurement to be made of the effect of deep tropical convection on the aerosol population in the Tropical Tropopause Layer (TTL). The ACTIVE campaign found that there were large numbers of aerosol particles in the 10 - 100 nm (up to 25,000 /cm3 STP) and 100 - 1000 nm (up to 600 /cm3) size ranges. These values, in many instances, surpassed those found in the PBL. The higher levels of aerosol found in the TTL compared to the PBL could indicate that aerosol nucleation was occurring in the TTL as a direct result of convective activity. Furthermore, the Egrett aircraft found distinct boundaries between the high levels of aerosol, which were found in cloud free regions, and very low numbers of aerosol, which were found in the cloudy regions (storm anvil). The air masses were determined, from back trajectories, to have been through convective uplift and were formerly part of the anvil cloud. The cloudy regions would have contained high levels of entrapped precursor gases. Reduced nucleation and cloud particle scavenging of aerosol and gases would give a

  16. Positive and negative ionospheric storms occurring during the 15 May 2005 geomagnetic superstorm

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2015-09-01

    This study focuses on the 15 May 2005 geomagnetic superstorm and aims to investigate the global variation of positive and negative storm phases and their development. Observations are provided by a series of global total electron content maps and multi-instrument line plots. Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe) simulations are also employed. Results reveal some sunward streaming plumes of storm-enhanced density (SED) over Asia and a well-developed midlatitude trough over North America forming isolated positive and negative storms, respectively. The simultaneous development of positive and negative storms over North America is also shown. Then, some enhanced auroral ionizations maintained by strong equatorward neutral winds appeared in the depleted nighttime ionosphere. Meanwhile, the northern nighttime polar region became significantly depleted as the SED plume plasma could not progress further than the dayside cusp. Oppositely, a polar tongue of ionization (TOI) developed in the daytime southern polar region. According to CTIP simulations, solar heating locally maximized (minimized) over the southern (northern) magnetic pole. Furthermore, strong upward surges of molecular-rich air created O/N2 decreases both in the auroral zone and in the trough region, while some SED-related downward surges produced O/N2 increases. From these results we conclude for the time period studied that (1) composition changes contributed to the formation of positive and negative storms, (2) strengthening polar convection and increasing solar heating of the polar cap supported polar TOI development, and (3) a weaker polar convection and minimized solar heating of the polar cap aided the depletion of polar plasma.

  17. Numerical Simulations of Precipitation Processes, Microphysics, and Microwave Radiative Properties of flood Producing Storms in Mediterranean & Adriatic Basins

    Science.gov (United States)

    Smith, Eric A.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A comprehensive understanding of the meteorological and microphysical nature of Mediterranean storms requires a combination of in situ data analysis, radar data analysis, and satellite data analysis, effectively integrated with numerical modeling studies at various scales. An important aspect of understanding microphysical controls of severe storms, is first understanding the meteorological controls under which a storm has evolved, and then using that information to help characterize the dominant microphysical processes. For hazardous Mediterranean storms, highlighted by the October 5-6, 1998 Friuli flood event in northern Italy, a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution. This involves intense convective development, Sratiform decay, orographic lifting, and sloped frontal lifting processes, as well as the associated vertical motions and thermodynamical instabilities governing physical processes that effect details of the size distributions and fall rates of the various types of hydrometeors found within the storm environment. This talk overviews the microphysical elements of a severe Mediterranean storm in such a context, investigated with the aid of TRMM satellite and other remote sensing measurements, but guided by a nonhydrostatic mesoscale model simulation of the Friuli flood event. The data analysis for this paper was conducted by my research groups at the Global Hydrology and Climate Center in Huntsville, AL and Florida State University in Tallahassee, and in collaboration with Dr. Alberto Mugnai's research group at the Institute of Atmospheric Physics in Rome. The numerical modeling was conducted by Professor Oreg Tripoli and Ms. Giulia Panegrossi at the University of Wisconsin in Madison, using Professor Tripoli's nonhydrostatic modeling system (NMS). This is a scalable, fully nested mesoscale model capable of resolving nonhydrostatic circulations from regional scale down to cloud scale

  18. Simulation and analysis of synoptic scale dust storms over the Arabian Peninsula

    Science.gov (United States)

    Beegum, S. Naseema; Gherboudj, Imen; Chaouch, Naira; Temimi, Marouane; Ghedira, Hosni

    2018-01-01

    Dust storms are among the most severe environmental problems in arid and semi-arid regions of the world. The predictability of seven dust events, viz. D1: April 2-4, 2014; D2: February 23-24, 2015; D3: April 1-3, 2015; D4: March 26-28, 2016; D5: August 3-5, 2016; D6: March 13-14, 2017 and D7:March 19-21, 2017, are investigated over the Arabian Peninsula using a regionally adapted chemistry transport model CHIMERE coupled with the Weather Research and Forecast (WRF) model. The hourly forecast products of particulate matter concentrations (PM10) and aerosol optical depths (AOD) are compared against both satellite-based (MSG/SEVRI RGB dust, MODIS Deep Blue Aerosol Optical Depth: DB-AOD, Ozone Monitoring Instrument observed UV Aerosol Absorption Index: OMI-AI) and ground-based (AERONET AOD) remote sensing products. The spatial pattern and the time series of the simulations show good agreement with the observations in terms of the dust intensity as well as the spatiotemporal distribution. The causative mechanisms of these dust events are identified by the concurrent analyses of the meteorological data. From these seven storms, five are associated with synoptic scale meteorological processes, such as prefrontal storms (D1 and D7), postfrontal storms of short (D2), and long (D3) duration types, and a summer shamal storm (D6). However, the storms D4 and D6 are partly associated with mesoscale convective type dust episodes known as haboobs. The socio-economic impacts of the dust events have been assessed by estimating the horizontal visibility, air quality index (AQI), and the dust deposition flux (DDF) from the forecasted dust concentrations. During the extreme dust events, the horizontal visibility drops to near-zero values co-occurred withhazardous levels of AQI and extremely high dust deposition flux (250 μg cm- 2 day- 1).

  19. Measuring Convective Mass Fluxes Over Tropical Oceans

    Science.gov (United States)

    Raymond, David

    2017-04-01

    Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and

  20. Storm time electric field penetration observed at mid-latitude

    International Nuclear Information System (INIS)

    Yeh, H.C.; Foster, J.C.; Rich, F.J.; Swider, W.

    1991-01-01

    During the height of the February 8-9, 1986, magnetic storm the Millstone Hill radar was in the evening local time sector (1600-2200 MLT). Radar observations indicate that high speed (>1,000 m s -1 ) westward ion flow penetrated deeply below 50 degree invariant latitude (Λ) and persisted for 6 hours between 2100 UT on February 8 and 0300 UT on February 9. The double-peaked ion convection feature was pronounced throughout the period, and the separation in the dual maxima ranged from 4 degree to 10 degree. The latitude positions of the high-latitude ion drift peak and the convection reversal varied in unison. The low-latitude ion drift peak (∼49 degree Λ or L =2.3) did not show significant universal time/magnetic local time (UT/MLT) variation in its latitude location but showed a decrease in magnitude during the initial recovery phase of the storm. Using simultaneous particle (30 eV-30 keV) precipitation data from the DMSP F6 and F7 satellites, the authors find the high-latitude ion drift peak to coincide with the boundary plasma sheet/central plasma sheet transition in the high ionospheric conductivity (>15 mho) region. The low-latitude ion drift peak lay between the equatorward edges of the electron and soft ( + dominated ring current energy density in magnetic latitude. The low-latitude ion drift peak is the low-altitude signature of the electric field shielding effect associated with ring current penetration into the outer layer of the storm time plasmasphere

  1. Microphysical and Kinematic Characteristics of Regions of Flash Initiation in a Supercell Storm and a Multicell Storm Observed During the DC3 Field Program

    Science.gov (United States)

    DiGangi, E.; MacGorman, D. R.; Ziegler, C.; Betten, D.; Biggerstaff, M. I.

    2017-12-01

    Lightning initiation in thunderstorms requires that the local electric field magnitude exceed breakdown values somewhere, and this tends to occur between regions of positive and negative charge, where the largest electric field magnitudes tend to occur. Past studies have demonstrated that, near updrafts, storms with very strong updrafts tend to elevate regions of charge and of flash initiations higher, as well as to have more flashes initiated by small pockets of charge, than in storms with much weaker updrafts. In all thunderstorms, the source of these charge regions is generally thought to be microscopic charge separation via the relative growth rate noninductive mechanism, followed by macroscopic charge separation via sedimentation, although other charge generation mechanisms can contribute to charge in some regions. Charge generation and lightning initiation are therefore inherently dependent on the microphysical and kinematic characteristics of a given storm. This study compares the results of a hydrometeor classification algorithm applied to C-band mobile radar data with mixing ratios calculated by a diabatic Lagrangian analysis retrieval from the dual-Doppler wind fields for two storms, the 29-30 May 2012 supercell storm and the 21 June 2012 multicell storm, observed during the Deep Convective Clouds and Chemistry experiment. Using these data, we then compare the inferred microphysical and kinematic characteristics of regions in which the Oklahoma Lightning Mapping Array indicated that flashes were initiated in these two very different storms.

  2. Deep convective clouds at the tropopause

    Directory of Open Access Journals (Sweden)

    H. H. Aumann

    2011-02-01

    Full Text Available Data from the Atmospheric Infrared Sounder (AIRS on the EOS Aqua spacecraft each day show tens of thousands of Cold Clouds (CC in the tropical oceans with 10 μm window channel brightness temperatures colder than 225 K. These clouds represent a mix of cold anvil clouds and Deep Convective Clouds (DCC. This mix can be separated by computing the difference between two channels, a window channel and a channel with strong CO2 absorption: for some cold clouds this difference is negative, i.e. the spectra for some cold clouds are inverted. We refer to cold clouds with spectra which are more than 2 K inverted as DCCi2. Associated with DCCi2 is a very high rain rate and a local upward displacement of the tropopause, a cold "bulge", which can be seen directly in the brightness temperatures of AIRS and Advanced Microwave Sounding Unit (AMSU temperature sounding channels in the lower stratosphere. The very high rain rate and the local distortion of the tropopause indicate that DCCi2 objects are associated with severe storms. Significant long-term trends in the statistical properties of DCCi2 could be interesting indicators of climate change. While the analysis of the nature and physical conditions related to DCCi2 requires hyperspectral infrared and microwave data, the identification of DCCi2 requires only one good window channel and one strong CO2 sounding channel. This suggests that improved identification of severe storms with future advanced geostationary satellites could be accomplished with the addition of one or two narrow band channels.

  3. The Role of Ionospheric Outflow Preconditioning in Determining Storm Geoeffectiveness

    Science.gov (United States)

    Welling, D. T.; Liemohn, M. W.; Ridley, A. J.

    2012-12-01

    It is now well accepted that ionospheric outflow plays an important role in the development of the plasma sheet and ring current during geomagnetic storms. Furthermore, even during quiet times, ionospheric plasma populates the magnetospheric lobes, producing a reservoir of hydrogen and oxygen ions. When the Interplanetary Magnetic Field (IMF) turns southward, this reservoir is connected to the plasma sheet and ring current through magnetospheric convection. Hence, the conditions of the ionosphere and magnetospheric lobes leading up to magnetospheric storm onset have important implications for storm development. Despite this, there has been little research on this preconditioning; most global simulations begin just before storm onset, neglecting preconditioning altogether. This work explores the role of preconditioning in determining the geoeffectiveness of storms using a coupled global model system. A model of ionospheric outflow (the Polar Wind Outflow Model, PWOM) is two-way coupled to a global magnetohydrodynamic model (the Block-Adaptive Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), which in turn drives a ring current model (the Ring current Atmosphere interactions Model, RAM). This unique setup is used to simulate an idealized storm. The model is started at many different times, from 1 hour before storm onset to 12 hours before. The effects of storm preconditioning are examined by investigating the total ionospheric plasma content in the lobes just before onset, the total ionospheric contribution in the ring current just after onset, and the effects on Dst, magnetic elevation angle at geosynchronous, and total ring current energy density. This experiment is repeated for different solar activity levels as set by F10.7 flux. Finally, a synthetic double-dip storm is constructed to see how two closely spaced storms affect each other by changing the preconditioning environment. It is found that preconditioning of the magnetospheric lobes via ionospheric

  4. Spatial-temporal characteristics of lightning flash size in a supercell storm

    Science.gov (United States)

    Zhang, Zhixiao; Zheng, Dong; Zhang, Yijun; Lu, Gaopeng

    2017-11-01

    The flash sizes of a supercell storm, in New Mexico on October 5, 2004, are studied using the observations from the New Mexico Lightning Mapping Array and the Albuquerque, New Mexico, Doppler radar (KABX). First, during the temporal evolution of the supercell, the mean flash size is anti-correlated with the flash rate, following a unary power function, with a correlation coefficient of - 0.87. In addition, the mean flash size is linearly correlated with the area of reflectivity > 30 dBZ at 5 km normalized by the flash rate, with a correlation coefficient of 0.88. Second, in the horizontal, flash size increases along the direction from the region near the convection zone to the adjacent forward anvil. The region of minimum flash size usually corresponds to the region of maximum flash initiation and extent density. The horizontal correspondence between the mean flash size and the flash extent density can also be fitted by a unary power function, and the correlation coefficient is > 0.5 in 50% of the radar volume scans. Furthermore, the quality of fit is positively correlated to the convective intensity. Third, in the vertical direction, the height of the maximum flash initiation density is close to the height of maximum flash extent density, but corresponds to the height where the mean flash size is relatively small. In the discussion, the distribution of the small and dense charge regions when and where convection is vigorous in the storm, is deduced to be responsible for the relationship that flash size is temporally and spatially anti-correlated with flash rate and density, and the convective intensity.

  5. Analysis of a molten pool natural convection in the APR1400 RPV at a severe accident

    International Nuclear Information System (INIS)

    Kim, Jong Tae; Park, Rae Joon; Kim, Sang Baik

    2005-01-01

    During a hypothetical severe accident, reactor fuel rods and structures supporting them are melted and relocated in the lower head of the reactor vessel. These relocated molten materials could be separated by their density difference and construct metal/oxide stratified pools in the lower head. A decay heat generated from the fuel material is transferred to the vessel wall and upper structures remaining in the reactor vessel by natural convection. As shown in Fig. 1 two-layered stratified molten pool is developed in the reactor lower vessel. The oxidic pool usually constructed by the mixture of uranium oxide and zirconium oxide. The melting temperature of the oxidic material is very high compared to the steel vessel and metallic layer. And highly turbulent natural convection generated by the decay heat enhances heat transfer to the boundary of the oxidic pool. By this thermal mechanism, oxide curst is developed around the oxidic layer as shown in Fig. 1. The oxidic pool is bounded thermally and fluid-dynamically by the developed crust. By this boundedness, the heat transfer structure in the stratified oxidic/metallic pool can be solved separately. The thermal boundary condition of the oxidic pool is isothermal with constant melting temperature of the oxidic material. The decay heat is transfer to side wall and upper interface between oxidic and metallic layer. Turbulent natural convection is dominant heat transfer mechanism in the oxidic pool. The heat transferred from the bottom oxidic layer is imposed to the upper metallic layer. This transferred heat in the metallic pool is removed through side and upper surface, which is augmented also by natural convection developed in the pool. In this study, a molten pool natural convection in the APR1400 RPV during a severe accident is simulated using the Lilac code and the calculated heat flux distribution on the reactor vessel wall is compared with a lumped-parameter (LP) prediction

  6. HURRICANE AND SEVERE STORM SENTINEL (HS3) GLOBAL HAWK ADVANCED VERTICAL ATMOSPHERIC PROFILING SYSTEM (AVAPS) DROPSONDE SYSTEM V2

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Global Hawk Advanced Vertical Atmospheric Profiling System (AVAPS) Dropsonde System dataset was collected by the...

  7. Passive decay heat removal by natural air convection after severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Erbacher, F.J.; Neitzel, H.J. [Forschungszentrum Karlsruhe Institut fur Angewandte Thermo- und Fluiddynamik, Karlsruhe (Germany); Cheng, X. [Technische Universitaet Karlsruhe Institut fur Stroemungslehre und Stroemungsmaschinen, Karlsruhe (Germany)

    1995-09-01

    The composite containment proposed by the Research Center Karlsruhe and the Technical University Karlsruhe is to cope with severe accidents. It pursues the goal to restrict the consequences of core meltdown accidents to the reactor plant. One essential of this new containment concept is its potential to remove the decay heat by natural air convection and thermal radiation in a passive way. To investigate the coolability of such a passive cooling system and the physical phenomena involved, experimental investigations are carried out at the PASCO test facility. Additionally, numerical calculations are performed by using different codes. A satisfying agreement between experimental data and numerical results is obtained.

  8. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    Science.gov (United States)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  9. Effects of an assimilation of radar and satellite data on a very-short range forecast of heavy convective rainfalls

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk

    2009-01-01

    Roč. 93, 1-3 (2009), s. 188-206 ISSN 0169-8095. [European Conference on Severe Storms /4./. Miramare -Trieste, 10.09.2007-14.09.2007] R&D Projects: GA ČR GA205/07/0905; GA MŠk OC 112; GA MŠk 1P05ME748 Institutional research plan: CEZ:AV0Z30420517 Keywords : Precipitation forecast * NWP model * Assimilation of radar and satellite data * Local convective precipitation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.811, year: 2009 http://www.sciencedirect.com/science/journal/01698095

  10. Rapidly updated hyperspectral sounding and imaging data for severe storm prediction

    Science.gov (United States)

    Bingham, Gail; Jensen, Scott; Elwell, John; Cardon, Joel; Crain, David; Huang, Hung-Lung (Allen); Smith, William L.; Revercomb, Hank E.; Huppi, Ronald J.

    2013-09-01

    Several studies have shown that a geostationary hyperspectral imager/sounder can provide the most significant value increase in short term, regional numerical prediction weather models over a range of other options. In 1998, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) proposal was selected by NASA as the New Millennium Earth Observation 3 program over several other geostationary instrument development proposals. After the EO3 GIFTS flight demonstration program was changed to an Engineering Development Unit (EDU) due to funding limitations by one of the partners, the EDU was subjected to flight-like thermal vacuum calibration and testing and successfully validated the breakthrough technologies needed to make a successful observatory. After several government stops and starts, only EUMETSAT's Meteosat Third Generation (MTG-S) sounder is in operational development. Recently, a commercial partnership has been formed to fill the significant data gap. AsiaSat has partnered with GeoMetWatch (GMW)1 to fund the development and launch of the Sounding and Tracking Observatory for Regional Meteorology (STORMTM) sensor, a derivative of the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) EDU that was designed, built, and tested by Utah State University (USU). STORMTM combines advanced technologies to observe surface thermal properties, atmospheric weather, and chemistry variables in four dimensions to provide high vertical resolution temperature and moisture sounding information, with the fourth dimension (time) provided by the geosynchronous satellite platform ability to measure a location as often as desired. STORMTM will enhance the polar orbiting imaging and sounding measurements by providing: (1) a direct measure of moisture flux and altitude-resolved water vapor and cloud tracer winds throughout the troposphere, (2) an observation of the time varying atmospheric thermodynamics associated with storm system development, and (3) the

  11. Upper Troposphere Lower Stratosphere structure during convective systems using GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo

    The deep convective systems play a fundamental role in atmospheric circulation and climate. Thunderstorms and meso-scale convective systems produce fast vertical transport, redistributing water vapor and trace gases and influencing the thermal structure of the upper troposphere and lower...... stratosphere (UTLS) contributing to the troposphere-stratosphere transport and affecting the Earth global circulation and the climate changes. The Global Positioning System (GPS) Radio Occultation (RO) technique enables measurement of atmospheric density structure in any meteorological condition...... to the analysis of tropical storms for the future mission ACES will also be evaluated. Using data from the past and ongoing GPS RO missions we have defined an algorithm to detect the clouds top of the convective systems and their thermal structure. Other satellite and in-situ measurements co-located with GPS ROs...

  12. Evaluation of Lightning Jumps as a Predictor of Severe Weather in the Northeastern United States

    Science.gov (United States)

    Eck, Pamela

    Severe weather events in the northeastern United States can be challenging to forecast, given how the evolution of deep convection can be influenced by complex terrain and the lack of quality observations in complex terrain. To supplement existing observations, this study explores using lightning to forecast severe convection in areas of complex terrain in the northeastern United States. A sudden increase in lightning flash rate by two standard deviations (2sigma), also known as a lightning jump, may be indicative of a strengthening updraft and an increased probability of severe weather. This study assesses the value of using lightning jumps to forecast severe weather during July 2015 in the northeastern United States. Total lightning data from the National Lightning Detection Network (NLDN) is used to calculate lightning jumps using a 2sigma lightning jump algorithm with a minimum threshold of 5 flashes min-1. Lightning jumps are used to predict the occurrence of severe weather, as given by whether a Storm Prediction Center (SPC) severe weather report occurred 45 min after a lightning jump in the same cell. Results indicate a high probability of detection (POD; 85%) and a high false alarm rate (FAR; 89%), suggesting that lightning jumps occur in sub-severe storms. The interaction between convection and complex terrain results in a locally enhanced updraft and an increased probability of severe weather. Thus, it is hypothesized that conditioning on an upslope variable may reduce the FAR. A random forest is introduced to objectively combine upslope flow, calculated using data from the High Resolution Rapid Refresh (HRRR), flash rate (FR), and flash rate changes with time (DFRDT). The random forest, a machine-learning algorithm, uses pattern recognition to predict a severe or non-severe classification based on the predictors. In addition to upslope flow, FR, and DFRDT, Next-Generation Radar (NEXRAD) Level III radar data was also included as a predictor to compare its

  13. Radial transport of storm time ring current ions

    Science.gov (United States)

    Lui, A. T. Y.

    1993-01-01

    Radial transport of energetic ions for the development of the main phase of geomagnetic storms is investigated with data from the medium energy particle analyzer (MEPA) on the Charge Composition Explorer spacecraft, which monitored protons, helium ions, and the carbon-nitrogen-oxygen group, which is mostly dominated by oxygen ions. From a study of four geomagnetic storms, we show that the flux increase of these ions in the inner ring current region can be accounted for by an inward displacement of the ring current population by 0.5 to 3.5 R(E). There is a general trend that a larger inward displacement occurs at higher L shells than at lower ones. These results are in agreement with previous findings. The radially injected population consists of the prestorm population modified by substorm injections which occur on a much shorter time scale than that for a storm main phase. It is also found that the inward displacement is relatively independent of ion mass and energy, suggesting that the radial transport of these energetic ions is effected primarily by convective motion from a large electric field or by diffusion resulting from magnetic field fluctuations.

  14. The 2015 Summer Solstice Storm: One of the Major Geomagnetic Storms of Solar Cycle 24 Observed at Ground Level

    Science.gov (United States)

    Augusto, C. R. A.; Navia, C. E.; de Oliveira, M. N.; Nepomuceno, A. A.; Raulin, J. P.; Tueros, E.; de Mendonça, R. R. S.; Fauth, A. C.; Vieira de Souza, H.; Kopenkin, V.; Sinzi, T.

    2018-05-01

    We report on the 22 - 23 June 2015 geomagnetic storm that occurred at the summer solstice. There have been fewer intense geomagnetic storms during the current solar cycle, Solar Cycle 24, than in the previous cycle. This situation changed after mid-June 2015, when one of the largest solar active regions (AR 12371) of Solar Cycle 24 that was located close to the central meridian, produced several coronal mass ejections (CMEs) associated with M-class flares. The impact of these CMEs on the Earth's magnetosphere resulted in a moderate to severe G4-class geomagnetic storm on 22 - 23 June 2015 and a G2 (moderate) geomagnetic storm on 24 June. The G4 solstice storm was the second largest (so far) geomagnetic storm of Cycle 24. We highlight the ground-level observations made with the New-Tupi, Muonca, and the CARPET El Leoncito cosmic-ray detectors that are located within the South Atlantic Anomaly (SAA) region. These observations are studied in correlation with data obtained by space-borne detectors (ACE, GOES, SDO, and SOHO) and other ground-based experiments. The CME designations are taken from the Computer Aided CME Tracking (CACTus) automated catalog. As expected, Forbush decreases (FD) associated with the passing CMEs were recorded by these detectors. We note a peculiar feature linked to a severe geomagnetic storm event. The 21 June 2015 CME 0091 (CACTus CME catalog number) was likely associated with the 22 June summer solstice FD event. The angular width of CME 0091 was very narrow and measured {˜} 56° degrees seen from Earth. In most cases, only CME halos and partial halos lead to severe geomagnetic storms. We perform a cross-check analysis of the FD events detected during the rise phase of Solar Cycle 24, the geomagnetic parameters, and the CACTus CME catalog. Our study suggests that narrow angular-width CMEs that erupt in a westward direction from the Sun-Earth line can lead to moderate and severe geomagnetic storms. We also report on the strong solar proton

  15. The response of a simulated mesoscale convective system to increased aerosol pollution: Part I: Precipitation intensity, distribution, and efficiency

    Science.gov (United States)

    Clavner, Michal; Cotton, William R.; van den Heever, Susan C.; Saleeby, Stephen M.; Pierce, Jeffery R.

    2018-01-01

    Mesoscale Convective Systems (MCSs) are important contributors to rainfall in the High Plains of the United States and elsewhere in the world. It is therefore of interest to understand how different aerosols serving as cloud condensation nuclei (CCN) may impact the total amount, rates and spatial distribution of precipitation produced by MCSs. In this study, different aerosol concentrations and their effects on precipitation produced by an MCS are examined by simulating the 8 May 2009 "Super-Derecho" MCS using the Regional Atmospheric Modeling System (RAMS), a cloud-resolving model (CRM) with sophisticated aerosol and microphysical parameterizations. Three simulations were conducted that differed only in the initial concentration, spatial distribution, and chemical composition of aerosols. Aerosol fields were derived from the output of GEOS-Chem, a 3D chemical transport numerical model. Results from the RAMS simulations show that the total domain precipitation was not significantly affected by variations in aerosol concentrations, however, the pollution aerosols altered the precipitation characteristics. The more polluted simulations exhibited higher precipitation rates, higher bulk precipitation efficiency, a larger area with heavier precipitation, and a smaller area with lighter precipitation. These differences arose as a result of aerosols enhancing precipitation in the convective region of the MCS while suppressing precipitation from the MCS's stratiform-anvil. In the convective region, several processes likely contributed to an increase of precipitation. First, owing to the very humid environment of this storm, the enhanced amount of cloud water available to be collected overwhelmed the reduction in precipitation efficiency associated with the aerosol-induced production of smaller droplets which led to a net increase in the conversion of cloud droplets to precipitation. Second, higher aerosol concentrations led to invigoration of convective updrafts which

  16. On the scaling features of high-latitude geomagnetic field fluctuations during a large geomagnetic storm

    Science.gov (United States)

    De Michelis, Paola; Federica Marcucci, Maria; Consolini, Giuseppe

    2015-04-01

    Recently we have investigated the spatial distribution of the scaling features of short-time scale magnetic field fluctuations using measurements from several ground-based geomagnetic observatories distributed in the northern hemisphere. We have found that the scaling features of fluctuations of the horizontal magnetic field component at time scales below 100 minutes are correlated with the geomagnetic activity level and with changes in the currents flowing in the ionosphere. Here, we present a detailed analysis of the dynamical changes of the magnetic field scaling features as a function of the geomagnetic activity level during the well-known large geomagnetic storm occurred on July, 15, 2000 (the Bastille event). The observed dynamical changes are discussed in relationship with the changes of the overall ionospheric polar convection and potential structure as reconstructed using SuperDARN data. This work is supported by the Italian National Program for Antarctic Research (PNRA) - Research Project 2013/AC3.08 and by the European Community's Seventh Framework Programme ([FP7/2007-2013]) under Grant no. 313038/STORM and

  17. Oxidant enhancement in martian dust devils and storms: storm electric fields and electron dissociative attachment.

    Science.gov (United States)

    Delory, Gregory T; Farrell, William M; Atreya, Sushil K; Renno, Nilton O; Wong, Ah-San; Cummer, Steven A; Sentman, Davis D; Marshall, John R; Rafkin, Scot C R; Catling, David C

    2006-06-01

    Laboratory studies, numerical simulations, and desert field tests indicate that aeolian dust transport can generate atmospheric electricity via contact electrification or "triboelectricity." In convective structures such as dust devils and dust storms, grain stratification leads to macroscopic charge separations and gives rise to an overall electric dipole moment in the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous numerical simulations indicate that these storm electric fields on Mars can approach the ambient breakdown field strength of approximately 25 kV/m. In terrestrial dust phenomena, potentials ranging from approximately 20 to 160 kV/m have been directly measured. The large electrostatic fields predicted in martian dust devils and storms can energize electrons in the low pressure martian atmosphere to values exceeding the electron dissociative attachment energy of both CO2 and H2O, which results in the formation of the new chemical products CO/O- and OH/H-, respectively. Using a collisional plasma physics model, we present calculations of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with the ambient electric field, with substantial production of dissociative products when fields approach the breakdown value of approximately 25 kV/m. The dissociation of H2O into OH/H- provides a key ingredient for the generation of oxidants; thus electrically charged dust may significantly impact the habitability of Mars.

  18. Severe Weather Environments in Atmospheric Reanalyses

    Science.gov (United States)

    King, A. T.; Kennedy, A. D.

    2017-12-01

    Atmospheric reanalyses combine historical observation data using a fixed assimilation scheme to achieve a dynamically coherent representation of the atmosphere. How well these reanalyses represent severe weather environments via proxies is poorly defined. To quantify the performance of reanalyses, a database of proximity soundings near severe storms from the Rapid Update Cycle 2 (RUC-2) model will be compared to a suite of reanalyses including: North American Reanalysis (NARR), European Interim Reanalysis (ERA-Interim), 2nd Modern-Era Retrospective Reanalysis for Research and Applications (MERRA-2), Japanese 55-year Reanalysis (JRA-55), 20th Century Reanalysis (20CR), and Climate Forecast System Reanalysis (CFSR). A variety of severe weather parameters will be calculated from these soundings including: convective available potential energy (CAPE), storm relative helicity (SRH), supercell composite parameter (SCP), and significant tornado parameter (STP). These soundings will be generated using the SHARPpy python module, which is an open source tool used to calculate severe weather parameters. Preliminary results indicate that the NARR and JRA55 are significantly more skilled at producing accurate severe weather environments than the other reanalyses. The primary difference between these two reanalyses and the remaining reanalyses is a significant negative bias for thermodynamic parameters. To facilitate climatological studies, the scope of work will be expanded to compute these parameters for the entire domain and duration of select renalyses. Preliminary results from this effort will be presented and compared to observations at select locations. This dataset will be made pubically available to the larger scientific community, and details of this product will be provided.

  19. Parameterization of Rocket Dust Storms on Mars in the LMD Martian GCM: Modeling Details and Validation

    Science.gov (United States)

    Wang, Chao; Forget, François; Bertrand, Tanguy; Spiga, Aymeric; Millour, Ehouarn; Navarro, Thomas

    2018-04-01

    The origin of the detached dust layers observed by the Mars Climate Sounder aboard the Mars Reconnaissance Orbiter is still debated. Spiga et al. (2013, https://doi.org/10.1002/jgre.20046) revealed that deep mesoscale convective "rocket dust storms" are likely to play an important role in forming these dust layers. To investigate how the detached dust layers are generated by this mesoscale phenomenon and subsequently evolve at larger scales, a parameterization of rocket dust storms to represent the mesoscale dust convection is designed and included into the Laboratoire de Météorologie Dynamique (LMD) Martian Global Climate Model (GCM). The new parameterization allows dust particles in the GCM to be transported to higher altitudes than in traditional GCMs. Combined with the horizontal transport by large-scale winds, the dust particles spread out and form detached dust layers. During the Martian dusty seasons, the LMD GCM with the new parameterization is able to form detached dust layers. The formation, evolution, and decay of the simulated dust layers are largely in agreement with the Mars Climate Sounder observations. This suggests that mesoscale rocket dust storms are among the key factors to explain the observed detached dust layers on Mars. However, the detached dust layers remain absent in the GCM during the clear seasons, even with the new parameterization. This implies that other relevant atmospheric processes, operating when no dust storms are occurring, are needed to explain the Martian detached dust layers. More observations of local dust storms could improve the ad hoc aspects of this parameterization, such as the trigger and timing of dust injection.

  20. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.

    Directory of Open Access Journals (Sweden)

    Judit Lecina-Diaz

    Full Text Available Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1 determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together and (2 ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires. The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn

  1. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.

    Science.gov (United States)

    Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier

    2014-01-01

    Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme

  2. Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29, 1977

    International Nuclear Information System (INIS)

    Wolf, R.A.; Harel, M.; Spiro, R.W.; Voigt, G.; Reiff, P.H.; Chen, C.

    1982-01-01

    We present preliminary results of applying the Rice convection model to the early main phase of the magnetic storm of July 29, 1977. The computer model self-consistently computes electric fields and currents, as well as plasma distributions and velocities, in the inner-magnetosphere/ionosphere system. In the equatorial plane, the region modeled includes geocentric distances less than about the magnetopause standoff distance. Particle loss, parallel electric fields, and neutral winds are neglected. On the basis of solar wind parameters and the AL index as input, the model predicts the injection of plasma-sheet plasma to form a substantial storm time ring current. The total strength of the model-predicted ring current agrees accurately with the observed Dst index. Comparison of the model results with electric fields and Birkeland currents measured by S3-3 shows qualitative agreement but interesting quantitative discrepancies. During this event, region 1 currents, which in standard convection theory would connect to the outer magnetosphere, are observed as low as 60 0 invariant latitude at dawn and dusk. We examine the possibility that the magnetic field might be so highly inflated that 60 0 field lines extend to the outer magnetosphere. In the model, distortion of the inner edge of the plasma sheet by the magnetospheric compression associated with the sudden commencement temporarily disturbs the normal Birkeland-current pattern. The normal tendency for the plasma sheet's inner edge to shield low L alues from the convection electric field is also temporarily disrupted. Normal Birkeland currents and shielding reassert themselves after about an hour. Time-integrated Joule heating in the model ionosphere over the first 5.5 hours of the storm main phase is about half the increase in model ring-current energy

  3. Statistics of severe tornadoes and severe tornado outbreaks

    Directory of Open Access Journals (Sweden)

    B. D. Malamud

    2012-09-01

    Full Text Available The standard measures of the intensity of a tornado in the USA and many other countries are the Fujita and Enhanced Fujita scales. These scales are based on the damage that a tornado causes. Another measure of the strength of a tornado is its path length of touchdown, L. In this study we consider severe tornadoes, which we define as L≥10 km, in the continental USA (USA Storm Prediction Center Severe Weather Database. We find that for the period 1982–2011, for individual severe tornadoes (L≥10 km: (i There is a strong linear scaling between the number of severe tornadoes in a year and their total path length in that year. (ii The cumulative frequency path length data suggests that, not taking into account any changing trends over time, we would expect in a given year (on average one severe tornado with a path length L≥115 km and in a decade (on average one severe tornado with a path length L≥215 km. (iii The noncumulative frequency-length statistics of severe tornado touchdown path lengths, 20<L<200 km, is well approximated by an inverse power-law relationship with exponent near 3. We then take the total path length of severe tornadoes in a convective day (12:00–12:00 UTC, LD, as a measure of the strength of a 24-h USA tornado outbreak. We find that: (i For 1982–2011, the number of severe tornadoes in a USA convective day outbreak has a strong power-law relationship (exponent 0.80 on the convective day total path length, LD. (ii For 1952–2011, the cumulative frequency path length data for severe tornado outbreaks suggests that we would expect in a given year (on average one daily severe tornado outbreak with total path length LD≥480 km and in a decade (on average one daily severe tornado outbreak with a total path length LD≥1200 km. (iii For 1982–2011, the noncumulative frequency-length statistics of tornado

  4. A study of the 21 March 2012 tornadic quasi linear convective system in Catalonia

    Science.gov (United States)

    Bech, Joan; Arús, Joan; Castán, Salvador; Pineda, Nicolau; Rigo, Tomeu; Montanyà, Joan; van der Velde, Oscar

    2015-05-01

    This study presents a description of a quasi linear convective system that took place in Catalonia (NE Spain) on 21 March 2012 producing heavy rainfall, moderate lightning activity and a weak tornado in the village of Ivars d'Urgell around 19 UTC after local sunset. A post-event survey indicated EF0 and EF1 damage in houses of the village - roofs and ceilings, broken windows, fences and walls and trees knocked down - along a track approximately 4 km long and about 20 m wide. Doppler radar observations show that the parent thunderstorm that spawned the tornado was one of a series that developed along a convective line that moved from S to N, initiating convective activity in terms of precipitation and lightning in the Mediterranean Sea and moving inland in S Catalonia (Tarragona and Salou coastal areas, producing local flash floods). Convective activity remained several hours with series of thunderstorms developing along the same paths. The synoptic situation was dominated by a high pressure ridge extending from northern Africa to central Europe, with a closed maximum sea level pressure area around 1036 hPa over northern France, southern Germany and Austria. On the other hand a relative low pressure area seen on 850 hPa and upper levels was present over the Iberian Peninsula, favouring a southern maritime flow from the Mediterranean between the forward part of the low pressure area and the high pressure system which blocked the advance of the low to the east. In the study we examine both the synoptic environment and storm scale observations with Doppler radar and total lightning data (cloud to ground and intracloud flashes) that lead to this cool-season severe convective event which is remarkable given the fact that, unlike in this case, most reported tornadoes in the region occur during the warm season (with peaks in August and September) and during daylight hours (6 to 18 UTC).

  5. Vertical Transport by Coastal Mesoscale Convective Systems

    Science.gov (United States)

    Lombardo, K.; Kading, T.

    2016-12-01

    This work is part of an ongoing investigation of coastal mesoscale convective systems (MCSs), including changes in vertical transport of boundary layer air by storms moving from inland to offshore. The density of a storm's cold pool versus that of the offshore marine atmospheric boundary layer (MABL), in part, determines the ability of the storm to successfully cross the coast, the mechanism driving storm propagation, and the ability of the storm to lift air from the boundary layer aloft. The ability of an MCS to overturn boundary layer air can be especially important over the eastern US seaboard, where warm season coastal MCSs are relatively common and where large coastal population centers generate concentrated regions of pollution. Recent work numerically simulating idealized MCSs in a coastal environment has provided some insight into the physical mechanisms governing MCS coastal crossing success and the impact on vertical transport of boundary layer air. Storms are simulated using a cloud resolving model initialized with atmospheric conditions representative of a Mid-Atlantic environment. Simulations are run in 2-D at 250 m horizontal resolution with a vertical resolution stretched from 100 m in the boundary layer to 250 m aloft. The left half of the 800 km domain is configured to represent land, while the right half is assigned as water. Sensitivity experiments are conducted to quantify the influence of varying MABL structure on MCS coastal crossing success and air transport, with MABL values representative of those observed over the western Mid-Atlantic during warm season. Preliminary results indicate that when the density of the cold pool is much greater than the MABL, the storm successfully crosses the coastline, with lifting of surface parcels, which ascend through the troposphere. When the density of the cold pool is similar to that of the MABL, parcels within the MABL remain at low levels, though parcels above the MABL ascend through the troposphere.

  6. Numerical simulation of severe convective phenomena over Croatian and Hungarian territory

    Science.gov (United States)

    Mahović, Nataša Strelec; Horvath, Akos; Csirmaz, Kalman

    2007-02-01

    Squall lines and supercells cause severe weather and huge damages in the territory of Croatia and Hungary. These long living events can be recognised by radar very well, but the problem of early warning, especially successful numerical forecast of these phenomena, has not yet been solved in this region. Two case studies are presented here in which dynamical modelling approach gives promising results: a squall line preceding a cold front and a single supercell generated because of a prefrontal instability. The numerical simulation is performed using the PSU/NCAR meso-scale model MM5, with horizontal resolution of 3 km. Lateral boundary conditions are taken from the ECMWF model. The moist processes are resolved by Reisner mixed-phase explicit moisture scheme and for the radiation scheme a rapid radiative transfer model is applied. The analysis nudging technique is applied for the first two hours of the model run. The results of the simulation are very promising. The MM5 model reconstructed the appearance of the convective phenomena and showed the development of thunderstorm into the supercell phase. The model results give very detailed insight into wind changes showing the rotation of supercells, clearly distinguish warm core of the cell and give rather good precipitation estimate. The successful simulation of convective phenomena by a high-resolution MM5 model showed that even smaller scale conditions are contained in synoptic scale patterns, represented in this case by the ECMWF model.

  7. The Southern Hemisphere and equatorial region ionization response for a 22 September 1999 severe magnetic storm

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2004-09-01

    Full Text Available The ionospheric storm evolution process was monitored during the 22 September 1999 magnetic storm over the Australian eastern region, through measurements of the ionospheric Total Electron Content (TEC from seven Global Positioning Systems (GPS stations. The spatial and temporal variations of the ionosphere were analysed as a time series of TEC maps. Results of our analysis show that the main ionospheric effect of the storm under consideration are: the long lasting negative storm effect during a magnetic storm at mid-latitude regions; the strong, positive disturbances during the storm's main phase at auroral latitude regions; the effects of storm-induced equatorward directed wind causing a positive disturbance at high and mid-latitude stations with appropriate time shift between higher and lower latitudes; daytime poleward movement of depleted plasma that causes temporary suppression of the equatorial anomaly during the start of the storm recovery phase; and prompt penetration of eastward electric fields to ionospheric altitudes and the production of nearly simultaneous TEC enhancement at all latitudes. In general, we found dominant negative disturbance over mid and high latitudes and positive disturbance at low latitudes. A comparison of storm-time behaviour of TEC determined from GPS satellites, and foF2 derived from ionosondes at a range of latitudes, showed reasonable agreement between the two independent measurements.

  8. Ionospheric behaviour during storm recovery phase

    Science.gov (United States)

    Buresova, D.; Lastovicka, J.; Boska, J.; Sindelarova, T.; Chum, J.

    2012-04-01

    Intensive ionospheric research, numerous multi-instrumental observations and large-scale numerical simulations of ionospheric F region response to magnetic storm-induced disturbances during the last several decades were primarily focused on the storm main phase, in most cases covering only a few hours of the recovery phase following after storm culmination. Ionospheric behaviour during entire recovery phase still belongs to not sufficiently explored and hardly predictable features. In general, the recovery phase is characterized by an abatement of perturbations and a gradual return to the "ground state" of ionosphere. However, observations of stormy ionosphere show significant departures from the climatology also within this phase. This paper deals with the quantitative and qualitative analysis of the ionospheric behaviour during the entire recovery phase of strong-to-severe magnetic storms at middle latitudes for nowadays and future modelling and forecasting purposes.

  9. Assessing Intraseasonal Variability Produced by Several Deep Convection Schemes in the NCAR CCM3.6

    Science.gov (United States)

    Maloney, E. D.

    2001-05-01

    The Hack, Zhang/McFarlane, and McRAS convection schemes produce very different simulations of intraseasonal variability in the NCAR CCM3.6. A robust analysis of simulation performance requires an expanded set of diagnostics. The use of only one criterion to analyze model Madden-Julian oscillation (MJO) variability, such as equatorial zonal wind variability, may give a misleading impression of model performance. Schemes that produce strong variability in zonal winds may sometimes lack a corresponding coherent signal in precipitation, suggesting that model convection and the large-scale circulation are not as strongly coupled as observed. The McRAS scheme, which includes a parametrization of unsaturated convective downdrafts, produces the best simulation of intraseasonal variability of the three schemes used. Downdrafts in McRAS create a moister equatorial troposphere, which increases equatorial convection. Composite analysis indicates a strong dependence of model intraseasonal variability on the frictional convergence mechanism, which may also be important in nature. The McRAS simulation has limitations, however. Indian Ocean variability is weak, and anomalous convection extends too far east across the Pacific. The dependence of convection on surface friction is too strong, and causes enhanced MJO convection to be associated with low-level easterly wind perturbations, unlike observed MJO convection. Anomalous vertical advection associated with surface convergence influences model convection by moistening the lower troposphere. Based on the work of Hendon (2000), coupling to an interactive ocean is unlikely to change the performance of the CCM3 with McRAS, due to the phase relationship between anomalous convection and zonal winds. Use of the analysis tools presented here indicates areas for improvement in the parametrization of deep convection by atmospheric GCMs.

  10. Upper tropospheric ozone production from lightning NOx-impacted convection: Smoke ingestion case study from the DC3 campaign

    Science.gov (United States)

    Apel, E. C.; Hornbrook, R. S.; Hills, A. J.; Blake, N. J.; Barth, M. C.; Weinheimer, A.; Cantrell, C.; Rutledge, S. A.; Basarab, B.; Crawford, J.; Diskin, G.; Homeyer, C. R.; Campos, T.; Flocke, F.; Fried, A.; Blake, D. R.; Brune, W.; Pollack, I.; Peischl, J.; Ryerson, T.; Wennberg, P. O.; Crounse, J. D.; Wisthaler, A.; Mikoviny, T.; Huey, G.; Heikes, B.; O'Sullivan, D.; Riemer, D. D.

    2015-03-01

    As part of the Deep Convective Cloud and Chemistry (DC3) experiment, the National Science Foundation/National Center for Atmospheric Research (NCAR) Gulfstream-V (GV) and NASA DC-8 research aircraft probed the chemical composition of the inflow and outflow of two convective storms (north storm, NS, south storm, SS) originating in the Colorado region on 22 June 2012, a time when the High Park wildfire was active in the area. A wide range of trace species were measured on board both aircraft including biomass burning (BB) tracers hydrogen cyanide (HCN) and acetonitrile (ACN). Acrolein, a much shorter lived tracer for BB, was also quantified on the GV. The data demonstrated that the NS had ingested fresh smoke from the High Park fire and as a consequence had a higher VOC OH reactivity than the SS. The SS lofted aged fire tracers along with other boundary layer ozone precursors and was more impacted by lightning NOx (LNOx) than the NS. The NCAR master mechanism box model was initialized with measurements made in the outflow of the two storms. The NS and SS were predicted to produce 11 and 14 ppbv of O3, respectively, downwind of the storm over 2 days. Sensitivity tests revealed that the ozone production potential of the SS was highly dependent on LNOx. Normalized excess mixing ratios, ΔX/ΔCO, for HCN and ACN were determined in both the fire plume and the storm outflow and found to be 7.0 ± 0.5 and 2.3 ± 0.5 pptv ppbv-1, respectively, and 1.4 ± 0.3 pptv ppbv-1 for acrolein in the outflow only.

  11. Behaviour of the interplanetary and magnetospheric electric fields during very intense storms

    International Nuclear Information System (INIS)

    Wu, Lei; Gendrin, R.; Higel, B.

    1982-01-01

    A study is made of the role which a positive (northward) component of the interplanetary magnetic field (IMF) Bsub(z) may play in triggering large magnetic storms. The study is made over a 15 year period (1964-1978) by selecting storms with Ksub(p) >= 7 0 and which are preceded by a Sudden Commencement (Ssc). The correlation between the geomagnetic index Ksub(m) and the three-hourly averaged Bsub(z) is established both on a statistical basis and on a case-by-case study. Storms associated with Bsub(z) > 0 are found to be less intense than those associated with Bsub(z) < 0, but major storms can be also triggered by solar wind events associated with a northward IMF. The relation-ship between interplanetary electric field Esub(γ) and Ksub(m) is also given. By using this relation together with the one between Esub(M) and Ksub(m) which has been established in previous studies (where Esub(M) is the magnetospheric convection electric field), it is possible to study the transfer efficiency of the magnetosphere. It is found that the transfer coefficient ΔEsub(M)/ΔEsub(γ) is much smaller for intense storms than for moderate ones, the latter having been studied in a previous paper (Wu Lei et al., 1981)

  12. Latent cooling and microphysics effects in deep convection

    Science.gov (United States)

    Fernández-González, S.; Wang, P. K.; Gascón, E.; Valero, F.; Sánchez, J. L.

    2016-11-01

    Water phase changes within a storm are responsible for the enhancement of convection and therefore the elongation of its lifespan. Specifically, latent cooling absorbed during evaporation, melting and sublimation is considered the main cause of the intensification of downdrafts. In order to know more accurately the consequences of latent cooling caused by each of these processes (together with microphysical effects that they induce), four simulations were developed with the Wisconsin Dynamical and Microphysical Model (WISCDYMM): one with all the microphysical processes; other without sublimation; melting was suppressed in the third simulation; and evaporation was disabled in the fourth. The results show that sublimation cooling is not essential to maintain the vertical currents of the storm. This is demonstrated by the fact that in the simulation without sublimation, maximum updrafts are in the same range as in the control simulation, and the storm lifespan is similar or even longer. However, melting was of vital importance. The storm in the simulation without melting dissipated prematurely, demonstrating that melting is indispensable to the enhancement of downdrafts below the freezing level and for avoiding the collapse of low level updrafts. Perhaps the most important finding is the crucial influence of evaporative cooling above the freezing level that maintains and enhances mid-level downdrafts in the storm. It is believed that this latent cooling comes from the evaporation of supercooled liquid water connected with the Bergeron-Findeisen process. Therefore, besides its influence at low levels (which was already well known), this evaporative cooling is essential to strengthen mid-level downdrafts and ultimately achieve a quasi-steady state.

  13. Combined Global MHD and Test-Particle Simulation of a Radiation Belt Storm: Comparing Depletion, Recovery and Enhancement with in Situ Measurements

    Science.gov (United States)

    Sorathia, K.; Ukhorskiy, A. Y.; Merkin, V. G.; Wiltberger, M. J.; Lyon, J.; Claudepierre, S. G.; Fennell, J. F.

    2017-12-01

    During geomagnetic storms the intensities of radiation belt electrons exhibit dramatic variability. In the main phase electron intensities exhibit deep depletion over a broad region of the outer belt. The intensities then increase during the recovery phase, often to levels that significantly exceed their pre-storm values. In this study we analyze the depletion, recovery and enhancement of radiation belt intensities during the 2013 St. Patrick's geomagnetic storm. We simulate the dynamics of high-energy electrons using our newly-developed test-particle radiation belt model (CHIMP) based on a hybrid guiding-center/Lorentz integrator and electromagnetic fields derived from high-resolution global MHD (LFM) simulations. Our approach differs from previous work in that we use MHD flow information to identify and seed test-particles into regions of strong convection in the magnetotail. We address two science questions: 1) what are the relative roles of magnetopause losses, transport-driven atmospheric precipitation, and adiabatic cooling in the radiation belt depletion during the storm main phase? and 2) to what extent can enhanced convection/mesoscale injections account for the radiation belt buildup during the recovery phase? Our analysis is based on long-term model simulation and the comparison of our model results with electron intensity measurements from the MAGEIS experiment of the Van Allen Probes mission.

  14. The Southern Hemisphere and equatorial region ionization response for a 22 September 1999 severe magnetic storm

    OpenAIRE

    Yizengaw, Endawoke

    2004-01-01

    The ionospheric storm evolution process was monitored during the 22 September 1999 magnetic storm over the Australian eastern region, through measurements of the ionospheric Total Electron Content (TEC) from seven Global Positioning Systems (GPS) stations. The spatial and temporal variations of the ionosphere were analysed as a time series of TEC maps. Results of our analysis show that the main ionospheric effect of the storm under consideration are: the long lasting negative storm effect dur...

  15. LASE measurements of water vapor and aerosol profiles during the Plains Elevated Convection at Night (PECAN) field experiment

    Science.gov (United States)

    Nehrir, A. R.; Ferrare, R. A.; Kooi, S. A.; Butler, C. F.; Notari, A.; Hair, J. W.; Collins, J. E., Jr.; Ismail, S.

    2015-12-01

    The Lidar Atmospheric Sensing Experiment (LASE) system was deployed on the NASA DC-8 aircraft during the Plains Elevated Convection At Night (PECAN) field experiment, which was conducted during June-July 2015 over the central and southern plains. LASE is an active remote sensor that employs the differential absorption lidar (DIAL) technique to measure range resolved profiles of water vapor and aerosols above and below the aircraft. The DC-8 conducted nine local science flights from June 30- July 14 where LASE sampled water vapor and aerosol fields in support of the PECAN primary science objectives relating to better understanding nocturnal Mesoscale Convective Systems (MCSs), Convective Initiation (CI), the Low Level Jet (LLJ), bores, and to compare different airborne and ground based measurements. LASE observed large spatial and temporal variability in water vapor and aerosol distributions in advance of nocturnal MCSs, across bores resulting from MCS outflow boundaries, and across the LLJ associated with the development of MCSs and CI. An overview of the LASE data collected during the PECAN field experiment will be presented where emphasis will be placed on variability of water vapor profiles in the vicinity of severe storms and intense convection in the central and southern plains. Preliminary comparisons show good agreement between coincident LASE and radiosonde water vapor profiles. In addition, an advanced water vapor DIAL system being developed at NASA Langley will be discussed.

  16. Convective Systems Over the Japan Sea: Cloud-Resolving Model Simulations

    Science.gov (United States)

    Tao, Wei-Kuo; Yoshizaki, Masanori; Shie, Chung-Lin; Kato, Teryuki

    2002-01-01

    Wintertime observations of MCSs (Mesoscale Convective Systems) over the Sea of Japan - 2001 (WMO-01) were collected from January 12 to February 1, 2001. One of the major objectives is to better understand and forecast snow systems and accompanying disturbances and the associated key physical processes involved in the formation and development of these disturbances. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, wind profilers, radiometers, etc.) during WMO-01 provided a first attempt at investigating the detailed characteristics of convective storms and air pattern changes associated with winter storms over the Sea of Japan region. WMO-01 also provided estimates of the apparent heat source (Q1) and apparent moisture sink (Q2). The vertical integrals of Q1 and Q2 are equal to the surface precipitation rates. The horizontal and vertical adjective components of Q1 and Q2 can be used as large-scale forcing for the Cloud Resolving Models (CRMs). The Goddard Cumulus Ensemble (GCE) model is a CRM (typically run with a 1-km grid size). The GCE model has sophisticated microphysics and allows explicit interactions between clouds, radiation, and surface processes. It will be used to understand and quantify precipitation processes associated with wintertime convective systems over the Sea of Japan (using data collected during the WMO-01). This is the first cloud-resolving model used to simulate precipitation processes in this particular region. The GCE model-simulated WMO-01 results will also be compared to other GCE model-simulated weather systems that developed during other field campaigns (i.e., South China Sea, west Pacific warm pool region, eastern Atlantic region and central USA).

  17. Storm Identification, Tracking and Forecasting Using High-Resolution Images of Short-Range X-Band Radar

    Directory of Open Access Journals (Sweden)

    Sajid Shah

    2015-05-01

    Full Text Available Rain nowcasting is an essential part of weather monitoring. It plays a vital role in human life, ranging from advanced warning systems to scheduling open air events and tourism. A nowcasting system can be divided into three fundamental steps, i.e., storm identification, tracking and nowcasting. The main contribution of this work is to propose procedures for each step of the rain nowcasting tool and to objectively evaluate the performances of every step, focusing on two-dimension data collected from short-range X-band radars installed in different parts of Italy. This work presents the solution of previously unsolved problems in storm identification: first, the selection of suitable thresholds for storm identification; second, the isolation of false merger (loosely-connected storms; and third, the identification of a high reflectivity sub-storm within a large storm. The storm tracking step of the existing tools, such as TITANand SCIT, use only up to two storm attributes, i.e., center of mass and area. It is possible to use more attributes for tracking. Furthermore, the contribution of each attribute in storm tracking is yet to be investigated. This paper presents a novel procedure called SALdEdA (structure, amplitude, location, eccentricity difference and areal difference for storm tracking. This work also presents the contribution of each component of SALdEdA in storm tracking. The second order exponential smoothing strategy is used for storm nowcasting, where the growth and decay of each variable of interest is considered to be linear. We evaluated the major steps of our method. The adopted techniques for automatic threshold calculation are assessed with a 97% goodness. False merger and sub-storms within a cluster of storms are successfully handled. Furthermore, the storm tracking procedure produced good results with an accuracy of 99.34% for convective events and 100% for stratiform events.

  18. The structure of the big magnetic storms

    International Nuclear Information System (INIS)

    Mihajlivich, J. Spomenko; Chop, Rudi; Palangio, Paolo

    2010-01-01

    The records of geomagnetic activity during Solar Cycles 22 and 23 (which occurred from 1986 to 2006) indicate several extremely intensive A-class geomagnetic storms. These were storms classified in the category of the Big Magnetic Storms. In a year of maximum solar activity during Solar Cycle 23, or more precisely, during a phase designated as a post-maximum phase in solar activity (PPM - Phase Post maximum), near the autumn equinox, on 29, October 2003, an extremely strong and intensive magnetic storm was recorded. In the first half of November 2004 (7, November 2004) an intensive magnetic storm was recorded (the Class Big Magnetic Storm). The level of geomagnetic field variations which were recorded for the selected Big Magnetic Storms, was ΔD st=350 nT. For the Big Magnetic Storms the indicated three-hour interval indices geomagnetic activity was Kp = 9. This study presents the spectral composition of the Di - variations which were recorded during magnetic storms in October 2003 and November 2004. (Author)

  19. Magnetospheric convection electric field dynamics andstormtime particle energization: case study of the magneticstorm of 4 May 1998

    Directory of Open Access Journals (Sweden)

    G. V. Khazanov

    2004-01-01

    Full Text Available It is shown that narrow channels of high electric field are an effective mechanism for injecting plasma into the inner magnetosphere. Analytical expressions for the electric field cannot produce these channels of intense plasma flow, and thus, result in less entry and adiabatic energization of the plasma sheet into near-Earth space. For the ions, omission of these channels leads to an underprediction of the strength of the stormtime ring current and therefore, an underestimation of the geoeffectiveness of the storm event. For the electrons, omission of these channels leads to the inability to create a seed population of 10-100 keV electrons deep in the inner magnetosphere. These electrons can eventually be accelerated into MeV radiation belt particles. To examine this, the 1-7 May 1998 magnetic storm is studied with a plasma transport model by using three different convection electric field models: Volland-Stern, Weimer, and AMIE. It is found that the AMIE model can produce particle fluxes that are several orders of magnitude higher in the L = 2 – 4 range of the inner magnetosphere, even for a similar total cross-tail potential difference. Key words. Space plasma physics (charged particle motion and acceleration – Magnetospheric physics (electric fields, storms and substorms

  20. The response of a simulated Mesoscale Convective System to increased aerosol pollution

    Science.gov (United States)

    Clavner, Michal

    This work focuses on the impacts of aerosols on the total precipitation amount, rates and spatial distribution of precipitation produced by a Mesoscale Convective System (MCS), as well as the characteristics of a derecho event. Past studies have shown that the impacts on MCS-produced precipitation to changes in aerosol concentration are strongly dependent on environmental conditions, primarily humidity and environmental wind shear. Changes in aerosol concentrations were found to alter MCS-precipitation production directly by modifying precipitation processes and indirectly by affecting the efficiency of the storm's self-propagation. Observational and numerical studies have been conducted that have examined the dynamics responsible for the generation of widespread convectively-induced windstorms, primarily focusing on environmental conditions and the MCS features that generate a derecho event. While the sensitivity of the formation of bow-echoes, the radar signature associated with derecho events, to changes in microphysics has been examined, a study on a derecho-producing MCS characteristics to aerosol concentrations has not. In this study different aerosol concentrations and their effects on precipitation and a derecho produced by an MCS are examined by simulating the 8 May 2009 "Super-Derecho" MCS. The MCS was simulated using the Regional Atmospheric Modeling System (RAMS), a cloud-resolving model (CRM) with sophisticated aerosol and microphysical parameterizations. Three simulations were conducted that varied in their initial aerosol concentration, distribution and hygroscopicity as determined by their emission sources. The first simulation contained aerosols from only natural sources and the second with aerosols sourced from both natural and anthropogenic emissions The third simulation contained the same aerosol distribution as in the second simulation, however multiplied by a factor of 5 in order to represent a highly polluted scenario. In all three of the

  1. Storm water permitting for oil and gas facilities

    International Nuclear Information System (INIS)

    de Blanc, P.C.

    1991-01-01

    After several false starts, the US Environmental Protection Agency (EPA) published new federal storm water regulations in the November 16, 1990 Federal Register. These regulations identify facilities which must apply for a storm water permit and detail permit application requirements. The regulations appear at 40 CFR 122 Subpart B and became effective December 17, 1990. An outline of these regulations and their applicability to oil and gas facilities is presented. They are: facilities which require a storm water permit; types of storm water permits; permit application deadlines; permit application forms; facilities with existing storm water permits; storm water permit application data requirements; storm water sampling and analysis requirements; and EPA contacts for additional information

  2. Extreme Geomagnetic Storms – 1868–2010

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Lefèvre, L.; Dumbović, M.

    2016-01-01

    presents our investigation of the corresponding solar eventsand their characteristics. The storms were selected based on their intensity in the aa index,which constitutes the longest existing continuous series of geomagnetic activity. They areanalyzed statistically in the context of more well...... occurring in May 1921 and the Quebec storm from March 1989. We identifykey characteristics of the storms by combining several different available data sources, listsof storm sudden commencements (SSCs) signifying occurrence of interplanetary shocks,solar wind in-situ measurements, neutron monitor data...... %), Forbushdecreases (100 %), and energetic solar proton events (70 %). A quantitative comparison ofthese associations relative to less intense storms is also presented. Most notably, we findthat most often the extreme storms are characterized by a complexity that is associated with multiple, often interacting, solar...

  3. Convective Mode and Mesoscale Heavy Rainfall Forecast Challenges during a High-Impact Weather Period along the Gulf Coast and Florida from 17-20 May 2016

    Science.gov (United States)

    Bosart, L. F.; Wallace, B. C.

    2017-12-01

    Two high-impact convective storm forecast challenges occurred between 17-20 May 2016 during NOAA's Hazardous Weather Testbed Spring Forecast Experiment (SFE) at the Storm Prediction Center. The first forecast challenge was 286 mm of unexpected record-breaking rain that fell on Vero Beach (VRB), Florida, between 1500 UTC 17 May and 0600 UTC 18 May, more than doubling the previous May daily rainfall record. The record rains in VRB occurred subsequent to the formation of a massive MCS over the central Gulf of Mexico between 0900-1000 UTC 17 May. This MCS, linked to the earlier convection associated with an anomalously strong subtropical jet (STJ) over the Gulf of Mexico, moved east-northeastward toward Florida. The second forecast challenge was a large MCS that formed over the Mexican mountains near the Texas-Mexican border, moved eastward and grew upscale prior to 1200 UTC 19 May. This MCS further strengthened offshore after 1800 UTC 19 May beneath the STJ. SPC SFE participants expected this MCS to move east-northeastward and bring heavy rain due to training echoes along the Gulf coast as far eastward as the Florida panhandle. Instead, this MCS transitioned into a bowing MCS that resembled a low-end derecho and produced a 4-6 hPa cold pool with widespread surface wind gusts between 35-50 kt. Both MCS events occurred in a large-scale baroclinic environment along the northern Gulf coast. Both MCS events responded to antecedent convection within this favorable large-scale environment. Rainfall amounts with the first heavy rain-producing MCS were severely underestimated by models and forecasters alike. The second MCS produced the greatest forecaster angst because rainfall totals were forecast too high (MCS propagated too fast) and severe wind reports were much more widespread than anticipated (because of cold pool formation). This presentation will attempt to untangle what happened and why it happened.

  4. Lightning Evolution In Two North Central Florida Summer Multicell Storms and Three Winter/Spring Frontal Storms

    Science.gov (United States)

    Caicedo, J. A.; Uman, M. A.; Pilkey, J. T.

    2018-01-01

    We present the first lightning evolution studies, via the Lightning Mapping Array (LMA) and radar, performed in North Central Florida. Parts of three winter/spring frontal storms (cold season) and two complete summer (warm season) multicell storms are studied. Storm parameters measured are as follows: total number of flashes, flash-type classification, first flashes, flash initiation altitude, flash initiation power, flash rate (flashes per minute), charge structure, altitude and temperature ranges of the inferred charge regions, atmospheric isotherm altitude, radar base reflectivity (dBZ), and radar echo tops (EET). Several differences were found between summer multicell and winter/spring frontal storms in North Central Florida: (1) in winter/spring storms, the range of altitudes that all charge regions occupy is up to 1 km lower in altitude than in summer storms, as are the 0°C, -10°C, and -20°C isotherms; (2) lightning activity in summer storms is highly correlated with changes in radar signatures, in particular, echo tops; and (3) the LMA average initiation power of all flash types in winter/frontal storms is about an order of magnitude larger than that for summer storms. In relation to storms in other geographical locations, North Central Florida seasonal storms were found to have similarities in most parameters studied with a few differences, examples in Florida being (1) colder initiation altitudes for intracloud flashes, (2) charge regions occupying larger ranges of atmospheric temperatures, and (3) winter/spring frontal storms not having much lightning activity in the stratiform region.

  5. Wavelet Scale Analysis of Mesoscale Convective Systems for Detecting Deep Convection From Infrared Imagery

    Science.gov (United States)

    Klein, Cornelia; Belušić, Danijel; Taylor, Christopher M.

    2018-03-01

    Mesoscale convective systems (MCSs) are frequently associated with rainfall extremes and are expected to further intensify under global warming. However, despite the significant impact of such extreme events, the dominant processes favoring their occurrence are still under debate. Meteosat geostationary satellites provide unique long-term subhourly records of cloud top temperatures, allowing to track changes in MCS structures that could be linked to rainfall intensification. Focusing on West Africa, we show that Meteosat cloud top temperatures are a useful proxy for rainfall intensities, as derived from snapshots from the Tropical Rainfall Measuring Mission 2A25 product: MCSs larger than 15,000 km2 at a temperature threshold of -40°C are found to produce 91% of all extreme rainfall occurrences in the study region, with 80% of the storms producing extreme rain when their minimum temperature drops below -80°C. Furthermore, we present a new method based on 2-D continuous wavelet transform to explore the relationship between cloud top temperature and rainfall intensity for subcloud features at different length scales. The method shows great potential for separating convective and stratiform cloud parts when combining information on temperature and scale, improving the common approach of using a temperature threshold only. We find that below -80°C, every fifth pixel is associated with deep convection. This frequency is doubled when looking at subcloud features smaller than 35 km. Scale analysis of subcloud features can thus help to better exploit cloud top temperature data sets, which provide much more spatiotemporal detail of MCS characteristics than available rainfall data sets alone.

  6. Radar observations of a tornado-spawning storm complex in Southeast Brazil and Meso-Eta forecasts of this extreme event

    Science.gov (United States)

    Held, Gerhard; Gomes, Jorge Luis; Gomes, Ana Maria

    2014-05-01

    During the early afternoon of 22 September 2013, severe storms, accompanied by large hail, damaging winds, heavy precipitation and intense lightning activity, devastated a region in the southeast State of São Paulo. Several extremely intense storm cells moved at up to 80 km/h east-southeastwards, ahead of a strong cold front approaching through Paraná, which created extremely unstable conditions that led to deep convection and overshooting towers up to 18 km. At least one of theses cells spawned a tornado when it reached the town of Taquarituba. The tornado traversed the town from south-southwest to north-northeast and was responsible for 63 people injured and two fatalities. Based on the damage reported, it was at least an F3 according to the Fujita scale. The objective of the present study is to characterize this severe thunderstorm event, using different types of data, and to evaluate the forecasts provided by the Meso-Eta model centered over Bauru. The pre-frontal and frontal convective cells were tracked throughout their life-time by IPMet's Doppler radars, which cover the western and central regions of the State São Paulo, as well as northern Paraná State. Radar volume scans, generated every 7,5 min, were processed with the TITAN (Thunderstorm Identification, Tracking, Analysis and Nowcasting) Software, yielding the following preliminary results: as the storm complex traversed the Paranapanema River, which forms the border between the two states, the cells intensified drastically and shortly before reaching the town of Taquarituba, that particular cell displayed extremely strong radial shear just above the cloud base (about -20 to +35 m/s), which led to the formation of a deep meso-cyclone, from which the tornado spawned and touched down at around 14:30 LT (LT=UT-3h). Cell properties calculated by TITAN showed a drastic increase of VIL (Vertically Integrated Liquid water content) from 13:52 LT (7,9 kg/m2) to a maximum of 61,8 kg/m2 at 14:15 LT. From 14

  7. Doppler Radar and Lightning Network Observations of a Severe Outbreak of Tropical Cyclone Tornadoes

    Science.gov (United States)

    Mccaul, Eugene W., Jr.; Buechler, Dennis E.; Goodman, Steven J.; Cammarata, Michael

    2004-01-01

    Data from a single Weather Surveillance Radar-1988 Doppler (WSR-88D) and the National Lightning Detection Network are used to examine the characteristics of the convective storms that produced a severe tornado outbreak, including three tornadoes that reached F3 intensity, within Tropical Storm Beryl s remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 13 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 h. spawning tornadoes over a time period spanning approximately 6.5 h. Several other tornadic cells also exhibited great longevity, with cell lifetimes longer than ever previously documented in a landfalling tropical cyclone (TC) tornado event. This event is easily the most intense TC tornado outbreak yet documented with WSR-88Ds. Time-height analyses of the three strongest tornadic supercells are presented in order to document storm kinematic structure and to show how these storms appear at different ranges from a WSR-88D. In addition, cloud-to-ground (CG) lightning data are examined in Beryl s remnants. Although the tornadic cells were responsible for most of Beryl's CG lightning, their flash rates were only weak to moderate, and in all the tornadic storms the lightning flashes were almost entirely negative in polarity. A few of the single-tornado storms produced no detectable CG lightning at all. There is evidence that CG lightning rates decreased during the tornadoes, compared to 30-min periods before the tornadoes. A number of the storms spawned tornadoes just after producing their final CG lightning flashes. Contrary to the findings for flash rates, both peak currents and positive flash percentages were larger in Beryl's nontornadic storms than in the tornadic ones.

  8. High-resolution refinement of a storm loss model and estimation of return periods of loss-intensive storms over Germany

    Directory of Open Access Journals (Sweden)

    M. G. Donat

    2011-10-01

    Full Text Available A refined model for the calculation of storm losses is presented, making use of high-resolution insurance loss records for Germany and allowing loss estimates on a spatial level of administrative districts and for single storm events. Storm losses are calculated on the basis of wind speeds from both ERA-Interim and NCEP reanalyses. The loss model reproduces the spatial distribution of observed losses well by taking specific regional loss characteristics into account. This also permits high-accuracy estimates of total cumulated losses, though slightly underestimating the country-wide loss sums for storm "Kyrill", the most severe event in the insurance loss records from 1997 to 2007. A larger deviation, which is assigned to the relatively coarse resolution of the NCEP reanalysis, is only found for one specific rather small-scale event, not adequately captured by this dataset.

    The loss model is subsequently applied to the complete reanalysis period to extend the storm event catalogue to cover years when no systematic insurance records are available. This allows the consideration of loss-intensive storm events back to 1948, enlarging the event catalogue to cover the recent 60+ years, and to investigate the statistical characteristics of severe storm loss events in Germany based on a larger sample than provided by the insurance records only. Extreme value analysis is applied to the loss data to estimate the return periods of loss-intensive storms, yielding a return period for storm "Kyrill", for example, of approximately 15 to 21 years.

  9. Living with storm damage to forests

    NARCIS (Netherlands)

    Gardiner, B.; Schuck, A.; Schelhaas, M.J.; Orazio, C.; Blennow, K.; Nicoll, B.

    2013-01-01

    Windstorms are a major disturbance factor for European forests. In the past six decades wind storms have damaged standing forest volume, which on a yearly average equals about the size of Poland's annual fellings. The evedence also indicates that the actual severity of storms in the wake of climatic

  10. Substorms during different storm phases

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2011-11-01

    Full Text Available After the deep solar minimum at the end of the solar cycle 23, a small magnetic storm occurred on 20–26 January 2010. The Dst (disturbance storm time index reached the minimum of −38 nT on 20 January and the prolonged recovery that followed the main phase that lasted for about 6 days. In this study, we concentrate on three substorms that took place (1 just prior to the storm, (2 during the main phase of the storm, and (3 at the end of the recovery of the storm. We analyse the solar wind conditions from the solar wind monitoring spacecraft, the duration and intensity of the substorm events as well as the behaviour of the electrojet currents from the ground magnetometer measurements. We compare the precipitation characteristics of the three substorms. The results show that the F-region electron density enhancements and dominant green and red auroral emission of the substorm activity during the storm recovery resembles average isolated substorm precipitation. However, the energy dissipated, even at the very end of a prolonged storm recovery, is very large compared to the typical energy content of isolated substorms. In the case studied here, the dissipation of the excess energy is observed over a 3-h long period of several consecutive substorm intensifications. Our findings suggest that the substorm energy dissipation varies between the storm phases.

  11. Doppler Radar and Cloud-to-Ground Lightning Observations of a Severe Outbreak of Tropical Cyclone Tornadoes

    Science.gov (United States)

    McCaul, Eugene W., Jr.; Buechler, Dennis; Cammarata, Michael; Arnold, James E. (Technical Monitor)

    2002-01-01

    Data from a single WSR-88D Doppler radar and the National Lightning Detection Network are used to examine the characteristics of the convective storms that produced a severe tornado outbreak within Tropical Storm Beryl's remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 12 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 hours, spawning tornadoes over a time period spanning approximately 6.5 hours. Time-height analyses of the three strongest supercells are presented in order to document storm kinematic structure and evolution. These Beryl mini-supercells were comparable in radar-observed intensity but much more persistent than other tropical cyclone-spawned tornadic cells documented thus far with Doppler radars. Cloud-to-ground lightning data are also examined for all the tornadic cells in this severe swarm-type tornado outbreak. These data show many of the characteristics of previously reported heavy-precipitation supercells. Lightning rates were weak to moderate, even in the more intense supercells, and in all the storms the lightning flashes were almost entirely negative in polarity. No lightning at all was detected in some of the single-tornado storms. In the stronger cells, there is some evidence that lightning rates can decrease during tornadogenesis, as has been documented before in some midlatitude tornadic storms. A number of the storms spawned tornadoes just after producing their final cloud-to-ground lightning flashes. These findings suggest possible benefits from implementation of observing systems capable of monitoring intracloud as well as cloud-to-ground lightning activity.

  12. A New Model Hierarchy to Understand the Impact of Radiation and Convection on the Extratropical Circulation Response to Climate Change

    Science.gov (United States)

    Tan, Z.; Shaw, T.

    2017-12-01

    State-of-the-art climate models exhibit a large spread in the magnitude of projected poleward jet shift and Hadley cell expansion in response to warming. Interestingly, some idealized gray radiation models with simplified convective schemes produce an equatorward jet shift in response to warming. In order to understand the impact of radiation and convection on the circulation response and resolve the discrepancies across the model hierarchy, we introduce a new model radiation-convection hierarchy. The hierarchy spans idealized (gray) through sophisticated (RRTMG) radiation, and idealized (Betts-Miller) through sophisticated (eddy-diffusivity mass-flux scheme) convection schemes in the same general circulation model. It is used to systematically explore the impact of radiation and convection on the extratropical circulation response to climate change independent of mean surface temperature and meridional temperature gradient responses. With a gray radiation scheme, the jet stream shift depends on the prescribed stratospheric optical depth, which controls the climatological jet regime. A large optical depth leads to a split jet and an equatorward shift. A small optical depth leads to a poleward shift. The different shifts are connected to the vertical extent of tropical long wave cooling that impacts the subtropical jet and Hadley circulation. In spite of these sensitivities, the storm track position, defined by the meridonal eddy heat flux and moist static energy flux maxima, shifts robustly poleward. In contrast to gray radiation, with a comprehensive radiation scheme, the jet and storm track shift robustly poleward irrespective of radiative assumptions (clear sky versus cloudy sky, ozone versus no ozone). This response is reproduced by adding more spectral bands and including the water vapor feedback in the gray scheme. Dynamical sensitivities to convective assumption are also explored. Overall the new hierarchy highlights the importance of radiative and

  13. Thyroid Storm Precipitated by Duodenal Ulcer Perforation

    Directory of Open Access Journals (Sweden)

    Shoko Natsuda

    2015-01-01

    Full Text Available Thyroid storm is a rare and life-threatening complication of thyrotoxicosis that requires prompt treatment. Thyroid storm is also known to be associated with precipitating events. The simultaneous treatment of thyroid storm and its precipitant, when they are recognized, in a patient is recommended; otherwise such disorders, including thyroid storm, can exacerbate each other. Here we report the case of a thyroid storm patient (a 55-year-old Japanese male complicated with a perforated duodenal ulcer. The patient was successfully treated with intensive treatment for thyroid storm and a prompt operation. Although it is believed that peptic ulcer rarely coexists with hyperthyroidism, among patients with thyroid storm, perforation of a peptic ulcer has been reported as one of the causes of fatal outcome. We determined that surgical intervention was required in this patient, reported despite ongoing severe thyrotoxicosis, and reported herein a successful outcome.

  14. Thyroid storm precipitated by duodenal ulcer perforation.

    Science.gov (United States)

    Natsuda, Shoko; Nakashima, Yomi; Horie, Ichiro; Ando, Takao; Kawakami, Atsushi

    2015-01-01

    Thyroid storm is a rare and life-threatening complication of thyrotoxicosis that requires prompt treatment. Thyroid storm is also known to be associated with precipitating events. The simultaneous treatment of thyroid storm and its precipitant, when they are recognized, in a patient is recommended; otherwise such disorders, including thyroid storm, can exacerbate each other. Here we report the case of a thyroid storm patient (a 55-year-old Japanese male) complicated with a perforated duodenal ulcer. The patient was successfully treated with intensive treatment for thyroid storm and a prompt operation. Although it is believed that peptic ulcer rarely coexists with hyperthyroidism, among patients with thyroid storm, perforation of a peptic ulcer has been reported as one of the causes of fatal outcome. We determined that surgical intervention was required in this patient, reported despite ongoing severe thyrotoxicosis, and reported herein a successful outcome.

  15. Patterns of Storm Injury and Tree Response

    Science.gov (United States)

    Kevin Smith; Walter Shortle; Kenneth Dudzik

    2001-01-01

    The ice storm of January 1998 in the northeastern United States and adjacent Canada was an extreme example of severe weather that injures trees every year. Broken branches, split branch forks, and snapped stems are all examples of storm injury.

  16. Storm and cloud dynamics

    CERN Document Server

    Cotton, William R

    1992-01-01

    This book focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models.Key Features* Key Highlight

  17. Storm surge climatology report

    OpenAIRE

    Horsburgh, Kevin; Williams, Joanne; Cussack, Caroline

    2017-01-01

    Any increase in flood frequency or severity due to sea level rise or changes in storminess would adversely impact society. It is crucial to understand the physical drivers of extreme storm surges to have confidence in the datasets used for extreme sea level statistics. We will refine and improve methods to the estimation of extreme sea levels around Europe and more widely. We will do so by developing a comprehensive world picture of storm surge distribution (including extremes) for both tropi...

  18. Forecasting severe ice storms using numerical weather prediction: the March 2010 Newfoundland event

    Directory of Open Access Journals (Sweden)

    J. Hosek

    2011-02-01

    Full Text Available The northeast coast of North America is frequently hit by severe ice storms. These freezing rain events can produce large ice accretions that damage structures, frequently power transmission and distribution infrastructure. For this reason, it is highly desirable to model and forecast such icing events, so that the consequent damages can be prevented or mitigated. The case study presented in this paper focuses on the March 2010 ice storm event that took place in eastern Newfoundland. We apply a combination of a numerical weather prediction model and an ice accretion algorithm to simulate a forecast of this event.

    The main goals of this study are to compare the simulated meteorological variables to observations, and to assess the ability of the model to accurately predict the ice accretion load for different forecast horizons. The duration and timing of the freezing rain event that occurred between the night of 4 March and the morning of 6 March was simulated well in all model runs. The total precipitation amounts in the model, however, differed by up to a factor of two from the observations. The accuracy of the model air temperature strongly depended on the forecast horizon, but it was acceptable for all simulation runs. The simulated accretion loads were also compared to the design values for power delivery structures in the region. The results indicated that the simulated values exceeded design criteria in the areas of reported damage and power outages.

  19. Ionosonde observations of the effects of the major magnetic storm of September 22-26, 1999 at equatorial station in west Africa

    Science.gov (United States)

    Coulibaly, I. S.; Adohi, B. J.-P.; Tanoh, K. S.

    2018-05-01

    A new approach to study the mechanisms of storm-time variations in the F-layer height and critical frequency at dip-equator is proposed. The latitudinal variations in the magnetic disturbance index DP were combined with h'F and foF2 data from an IPS 42-type ionosonde at Korkogo (9.2° N, 5° W; 2.4° S dip lat), Ivory Coast, to investigate the nighttime ionospheric effects of the geomagnetic storm of September 22-26, 1999 in the West-African sector. A clear equatorward penetration of magnetic disturbances from high latitudes regions was observed. At dip-equator, the DP magnetic disturbance pattern showed up to four distinct regimes of disturbance electric fields, each associated with a specific phase of the storm. A regime of westward transient electric fields followed by a regime of eastward transient electric fields occurred during the main phase of the storm. This was preceded by a period of quasi-absence of disturbance during the compression phase, the whole followed by a regime of westward persistent disturbance electric fields during the recovery phase. From the latitudinal variations and the shapes of these perturbations, we could associate the regime of westward (resp. eastward) disturbance electric fields with prompt penetration (resp. overshielding) occasioned by magnetospheric convections and the persistent one with a cumulative effect of storm-time winds and magnetospheric convections from high latitudes regions. The h'F variations were found to be strongly correlated with the DP ones, clearly providing evidence for the prevalence of these electric fields on the observed F-layer motions. Additionally, the foF2 variations showed two periods of depleted electron density, one in the evening during the compression phase of the storm and the other near midnight. We discussed the mechanisms of these ionospheric negative storms in the light of earlier investigations of storm-time ionospheric disturbances and validated our method by comparison of the above

  20. Development of a Severe Sand-dust Storm Model and its Application to Northwest China

    International Nuclear Information System (INIS)

    Zhang Xiaoling; Cheng, Linsheng; Chung, Yong-Seung

    2003-01-01

    A very strong sand-dust storm occurred on 5 May, 1993 in Northwest China. In order to give a detailed description of the evolution of a mesoscale system along with the heavy sand-dust storm, a complex model including improved physical processes and a radiation parameterization scheme was developed based on a simulation model. The improved model introduced a sand-dust transport equation as well as a lifting transport model, sand-dust aerosols and radiation parameterization scheme.Using this model, the super sand-dust storm case on 5 May was simulated. Results indicated that the coupled mesoscale model successfully simulated the mesoscale vortex, its strong upward movement and the warm core structure of PBL. The generation and development of these structures were consistent with that of the sand-dust storm and dry squall-line (which was different with normal squall-line). Simulated sand-dust concentration and its radiative effect corresponded with observation data. The radiative effect of sand-dust aerosols caused the air to heat on the top of aerosol layer with a heating rate amounting to 2 K hr -1 . As a result, solar radiation flux that reached the surface, net radiation flux and surface temperature all suddenly went down. The temperature gradient across the cold front became obviously larger. Therefore, enhancing the development of the mesoscale system. The simulation generally reflected features during the squall-line passage of this strong sand-dust storm

  1. Coupled storm-time magnetosphere-ionosphere-thermosphere simulations including microscopic ionospheric turbulence

    Science.gov (United States)

    Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.

    2017-12-01

    During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the

  2. Basin-Wide Amazon Forest Tree Mortality From a Large 2005 Storm

    Science.gov (United States)

    Negron Juarez, R. I.; Chambers, J. Q.; Guimaraes, G.; Zeng, H.; Raupp, C.; Marra, D. M.; Ribeiro, G.; Saatchi, S. S.; Higuchi, N.

    2010-12-01

    Blowdowns are a recurrent characteristic of Amazon forests and are produced, among others, by squall lines. Squall lines are aligned clusters (typical length of 1000 km, width of 200 km) of deep convective cells that produce heavy rainfall during the dry season and significant rainfall during the wet season. These squall lines (accompanied by intense downbursts from convective cells) have been associated with large blowdowns characterized by uprooted, snapped trees, and trees being dragged down by other falling trees. Most squall lines in Amazonia form along the northeastern coast of South America as sea breeze-induced instability lines and propagate inside the continent. They occur frequently (~4 times per month), and can reach the central and even extreme western parts of Amazonia. Squall lines can also be generated inside the Amazon and propagate toward the equator. In January 2005 a squall line propagated from south to north across the entire Amazon basin producing widespread forest tree mortality and contributed to the elevated mortality observed that year. Over the Manaus region (3.4 x104 km2), disturbed forest patches generated by the squall produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. The elevated mortality observed in the Central Amazon in 2005 is unlikely to be related to the 2005 Amazon drought since drought did not affect Central or Eastern Amazonia. Assuming a similar rate of forest mortality across the basin, the squall line could have potentially produced tree mortality estimated at 542 ± 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. This vulnerability is likely to increase in a warming climate with models projecting an increase in storm intensity.

  3. On the Representation of an Early Modern Dutch Storm in Two Poems

    Directory of Open Access Journals (Sweden)

    Katrin Pfeifer

    2015-10-01

    Full Text Available On 19th December 1660, a severe storm raged over the Dutch isle of Texel, causing severe damage. It proceeded to destroy parts of the city of Amsterdam. Both the sailor and merchant Gerrit Jansz Kooch and the priest Joannes Vollenhove wrote a poem about this natural disaster, presumably independently of each other. The poets perceived the storm differently: Kooch, an eyewitness of the storm, matter-of-factly portrays the calamity and details a feud between his son-in-law and a colleague to commemorate the day of the disaster. In contrast, Vollenhove personifies the winter storm and struggles to understand it. Their poems are valuable sources for a cultural historical analysis. After a brief review of historical severe storm research, I will analyse these poems from a cultural historical point of view. I will shed light on how this severe storm was represented poetically in the Early Modern Period.

  4. The Impact of Microphysics and Planetary Boundary Layer Physics on Model Simulation of U.S. Deep South Summer Convection

    Science.gov (United States)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Medlin, Jeffrey M.; Wood, Lance

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics pararneterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRn Center to select NOAAlNWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boWldary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage oflightuing activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the

  5. Radioiodine-induced thyroid storm. Case report and literature review

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, M.T.; Kidd, G.S.; Dodson, L.E. Jr.; Hofeldt, F.D.

    1983-08-01

    Thyroid storm developed following radioiodine therapy in a 43-year-old man with Graves' disease, weight loss, myopathy, severe thyrotoxic hypercalcemia, and a pituitary adenoma. The hypercalcemia may have been a significant, and previously unreported, predisposing factor for the radioiodine-associated thyroid storm. This case and 15 other well-documented cases of radioiodine-associated storm found in the literature are reviewed, as are several other cases of less severe exacerbations of thyrotoxicosis associated with radioiodine therapy. Although not often seen, these complications are often fatal. High-risk patients, such as the elderly, those with severe thyrotoxicosis, and those with significant underlying diseases, may benefit from preventive measures such as the judicious use of thyrostatic medications during the periods before and after isotope administration.

  6. Radioiodine-induced thyroid storm. Case report and literature review

    International Nuclear Information System (INIS)

    McDermott, M.T.; Kidd, G.S.; Dodson, L.E. Jr.; Hofeldt, F.D.

    1983-01-01

    Thyroid storm developed following radioiodine therapy in a 43-year-old man with Graves' disease, weight loss, myopathy, severe thyrotoxic hypercalcemia, and a pituitary adenoma. The hypercalcemia may have been a significant, and previously unreported, predisposing factor for the radioiodine-associated thyroid storm. This case and 15 other well-documented cases of radioiodine-associated storm found in the literature are reviewed, as are several other cases of less severe exacerbations of thyrotoxicosis associated with radioiodine therapy. Although not often seen, these complications are often fatal. High-risk patients, such as the elderly, those with severe thyrotoxicosis, and those with significant underlying diseases, may benefit from preventive measures such as the judicious use of thyrostatic medications during the periods before and after isotope administration

  7. [Thyroid Storm and Myxedema Coma].

    Science.gov (United States)

    Milkau, Malte; Sayk, Friedhelm

    2018-03-01

    Thyroid storm and myxedema coma are the most severe clinical forms of thyroid dysfunction. While both hyper- and hypothyroidsm are common diseases, thyroid storm and myxedema coma are rare. Due to their unspecific signs and symptoms they are often difficult to diagnose. Both disorders are medical emergencies, which still show a significant mortality. The following article summarizes diagnostic tools and treatment options for these disorders. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Reconnaissance level study Mississippi storm surge barrier

    NARCIS (Netherlands)

    Van Ledden, M.; Lansen, A.J.; De Ridder, H.A.J.; Edge, B.

    2012-01-01

    This paper reports a reconnaissance level study of a storm surge barrier in the Mississippi River. Historical hurricanes have shown storm surge of several meters along the Mississippi River levees up to and upstream of New Orleans. Future changes due to sea level rise and subsidence will further

  9. Radio Emissions from Electrical Activity in Martian Dust Storms

    Science.gov (United States)

    Majid, W.; Arabshahi, S.; Kocz, J.; Schulter, T.; White, L.

    2017-12-01

    Dust storms on Mars are predicted to be capable of producing electrostatic fields and discharges, even larger than those in dust storms on Earth. There are three key elements in the characterization of Martian electrostatic discharges: dependence on Martian environmental conditions, event rate, and the strength of the generated electric fields. The detection and characterization of electric activity in Martian dust storms has important implications for habitability, and preparations for human exploration of the red planet. Furthermore, electrostatic discharges may be linked to local chemistry and plays an important role in the predicted global electrical circuit. Because of the continuous Mars telecommunication needs of NASA's Mars-based assets, the Deep Space Network (DSN) is the only facility in the world that combines long term, high cadence, observing opportunities with large sensitive telescopes, making it a unique asset worldwide in searching for and characterizing electrostatic activity from large scale convective dust storms at Mars. We will describe a newly inaugurated program at NASA's Madrid Deep Space Communication Complex to carry out a long-term monitoring campaign to search for and characterize the entire Mars hemisphere for powerful discharges during routine tracking of spacecraft at Mars on an entirely non-interfering basis. The ground-based detections will also have important implications for the design of a future instrument that could make similar in-situ measurements from orbit or from the surface of Mars, with far greater sensitivity and duty cycle, opening up a new window in our understanding of the Martian environment.

  10. Plasma confinement modification and convective transport suppression in the scrape-off layer using additional gas puffing in the STOR-M tokamak

    International Nuclear Information System (INIS)

    Dreval, M; Hubeny, M; Ding, Y; Onchi, T; Liu, Y; Hthu, K; Elgriw, S; Xiao, C; Hirose, A

    2013-01-01

    The influence of short gas puffing (GP) pulses on the scrape-off layer (SOL) transport is studied. Similar responses of ion saturation current and floating potential measured near the GP injection valve and in the 90° toroidally separated cross-section suggest that the GP influence on the SOL region should be global. A drop in plasma temperature and a decrease in the rotational velocity of the plasma are observed in the SOL region immediately after the GP pulse; however, an unexpected increase in electron and ion temperatures is observed in the second stage of the plasma response. The decrease in floating potential fluctuations indicates that the turbulent transport is dumped immediately after the GP pulse. The GP-induced modification of turbulence properties in the SOL points to a convective transport suppression in the STOR-M tokamak. A substantial decrease in the skewness and kurtosis of ion saturation current fluctuations is observed in the SOL region resulting in the probability distribution function (PDF) getting closer to the Gaussian distribution. The plasma potential reduction, the change in plasma rotation and the suppression of turbulent transport in the SOL region indicate that the plasma confinement is modified after the GP injection. Some features of the H-mode-like confinement in the plasma bulk also accompany the SOL observations after application of the additional sharp GP pulse. (paper)

  11. Next-generation storm tracking for minimizing service interruption

    Energy Technology Data Exchange (ETDEWEB)

    Sznaider, R. [Meteorlogix, Minneapolis, MN (United States)

    2002-08-01

    Several technological changes have taken place in the field of weather radar since its discovery during World War II. A wide variety of industries have benefited over the years from conventional weather radar displays, providing assistance in forecasting and estimating the potential severity of storms. The characteristics of individual storm cells can now be derived from the next-generation of weather radar systems (NEXRAD). The determination of which storm cells possess distinct features such as large hail or developing tornadoes was made possible through the fusing of various pieces of information with radar pictures. To exactly determine when and where a storm will hit, this data can be combined and overlaid into a display that includes the geographical physical landmarks of a specific region. Combining Geographic Information Systems (GIS) and storm tracking provides a more complete, timely and accurate forecast, which clearly benefits the electric utilities industries. The generation and production of energy are dependent on how hot or cold it will be today and tomorrow. The author described each major feature of this next-generation weather radar system. 9 figs.

  12. Acute and long term outcomes of catheter ablation using remote magnetic navigation for the treatment of electrical storm in patients with severe ischemic heart failure

    DEFF Research Database (Denmark)

    Jin, Qi; Jacobsen, Peter Karl; Pehrson, Steen

    2015-01-01

    BACKGROUND: Catheter ablation with remote magnetic navigation (RMN) can offer some advantages compared to manual techniques. However, the relevant clinical evidence for how RMN-guided ablation affects electrical storm (ES) due to ventricular tachycardia (VT) in patients with severe ischemic heart......-guided catheter ablation can prevent VT recurrence and significantly reduce ICD shocks, suggesting that this strategy can be used as an alternative therapy for VT storm in SIHF patients with ICDs....

  13. What does the magnetic storm development depend on?

    International Nuclear Information System (INIS)

    Wodnicka, E.B.

    1991-01-01

    Adiabatic drift model applied to the magnetic storm development simulation reveals the significance of initial energy, initial pitch angle and the site of ions injection for the intensity, growth time and growth rate of a storm produced by two ion species - H + and O + . The most severe storms are caused by the ring current intensified by low initial pitch angle ions injected at low radial distance in the postmidnight local time region. (author)

  14. Distribution of auroral precipitation at midnight during a magnetic storm

    International Nuclear Information System (INIS)

    Sandahl, I.; Eliasson, L.; Pellinen-Wannberg, A.; Rostoker, G.; Block, L.P.; Erlandson, R.E.; Friis-Christensen, E.; Jacobsen, B.; Luehr, H.; Murphree, J.S.

    1990-01-01

    On the night of November 4, 1986, a very complex precipitation pattern was observed by Viking in the magnetic midnight sector over Scandinavia and Svalbard. The pass took place during a magnetic storm, and during substorm recovery phase. Going from north to south, the satellite first encountered a plasma region of BPS-type (name derived from boundary plasma sheet) and then a region of CPS type (derived from central plasma sheet). Then, however, a new region of BPS-type was traversed. The quite intense, most equatorward aurora corresponded to a plasma region which was not of ordinary CPS type but contained sharp quasi-monoenergetic peaks. The high-latitude midnight sector was totally dominated by eastward convection. The Harang discontinuity had passed northern Scandinavia the first time as early as 17 to 20 MLT, more than three house before the Viking pass. It is suggested that the particle precipitation pattern and the general shape of the aurora as observed by the Viking imager can be explained in a natural way by the convection pattern. The northernmost BPS- and CPS-type regions originated in the morningside convection cell, while the more equatorward population of BPS type had drifted in from the eveningside. The interpretation is supported by ground-based measurements by EISCAT and magnetometers

  15. A 10-year Ground-Based Radar Climatology of Convective Penetration of Stratospheric Intrusions and Associated Large-Scale Transport over the CONUS

    Science.gov (United States)

    Homeyer, C. R.

    2017-12-01

    Deep convection reaching the upper troposphere and lower stratosphere (UTLS) and its impact on atmospheric composition through rapid vertical transport of lower troposphere air and stratosphere-troposphere exchange has received increasing attention in the past 5-10 years. Most efforts focused on convection have been directed toward storms that reach and/or penetrate the coincident environmental lapse-rate tropopause. However, convection has also been shown to reach into large-scale stratospheric intrusions (depressions of stratospheric air lying well below the lapse-rate tropopause on the cyclonic side of upper troposphere jet streams). Such convective penetration of stratospheric intrusions is not captured by studies of lapse-rate tropopause-penetrating convection. In this presentation, it will be shown using hourly, high-quality mergers of ground-based radar observations from 2004 to 2013 in the contiguous United States (CONUS) and forward large-scale trajectory analysis that convective penetration of stratospheric intrusions: 1) is more frequent than lapse-rate tropopause-penetrating convection, 2) occurs over a broader area of the CONUS than lapse-rate tropopause-penetrating convection, and 3) can influence the composition of the lower stratosphere through large-scale advection of convectively influenced air to altitudes above the lapse-rate tropopause, which we find to occur for about 8.5% of the intrusion volumes reached by convection.

  16. Thermospheric response observed over Fritz peak, Colorado, during two large geomagnetic storms near solar cycle maximum

    International Nuclear Information System (INIS)

    Hernandez, G.; Roble, R.G.; Ridley, E.C.; Allen, J.H.

    1982-01-01

    Nightime thermospheric winds and temperatures have been measured over Fritz Peak Observatory, Colorado (39.9 0 N, 105.5 0 W), with a high resolution Fabry-Perot spectrometer. The winds and temperatures are obtained from the Doppler shifts and line profiles of the (O 1) 15,867K (630 nm) line emission. Measurements made during two large geomagnetic storm periods near solar cycle maximum reveal a thermospheric response to the heat and momentum sources associated with these storms that is more complex than the ones measured near solar cycle minimum. In the earlier measurements made during solar cycle minimum, the winds to the north of Fritz Peak Observatory had an enhanced equatorward component and the winds to the south were also equatorward, usually with smaller velocities. The winds measured to the east and west of the observatory both had an enhanced westward wind component. For the two large storms near the present solar cycle maximum period converging winds are observed in each of the cardinal directions from Fritz Peak Observatory. These converging winds with speeds of hundreds of meters per second last for several hours. The measured neutral gas temperature in each of the directions also increases several hundred degrees Kelvin. Numerical experiments done with the NCAR thermospheric general circulation model (TGCM) suggest that the winds to the east and north of the station are driven by high-latitude heating and enhanced westward ion drag associated with magnetospheric convection. The cause of the enhanced poleward and eastward winds measured to the south and west of Fritz Peak Observatory, respectively, is not known. During geomagnetic quiet conditions the circulation is typically from the soutwest toward the northeast in the evening hours

  17. Large enhancements in low latitude total electron content during 15 May 2005 geomagnetic storm in Indian zone

    Directory of Open Access Journals (Sweden)

    N. Dashora

    2009-05-01

    Full Text Available Results pertaining to the response of the equatorial and low latitude ionosphere to a major geomagnetic storm that occurred on 15 May 2005 are presented. These results are also the first from the Indian zone in terms of (i GPS derived total electron content (TEC variations following the storm (ii Local low latitude electrodynamics response to penetration of high latitude convection electric field (iii effect of storm induced traveling atmospheric disturbances (TAD's on GPS-TEC in equatorial ionization anomaly (EIA zone. Data set comprising of ionospheric TEC obtained from GPS measurements, ionograms from an EIA zone station, New Delhi (Geog. Lat. 28.42° N, Geog. Long. 77.21° E, ground based magnetometers in equatorial and low latitude stations and solar wind data obtained from Advanced Composition Explorer (ACE has been used in the present study. GPS receivers located at Udaipur (Geog. Lat. 24.73° N, Geog. Long. 73.73° E and Hyderabad (Geog. Lat. 17.33° N, Geog. Long. 78.47° E have been used for wider spatial coverage in the Indian zone. Storm induced features in vertical TEC (VTEC have been obtained comparing them with the mean VTEC of quiet days. Variations in solar wind parameters, as obtained from ACE and in the SYM-H index, indicate that the storm commenced on 15 May 2005 at 02:39 UT. The main phase of the storm commenced at 06:00 UT on 15 May with a sudden southward turning of the Z-component of interplanetary magnetic field (IMF-Bz and subsequent decrease in SYM-H index. The dawn-to-dusk convection electric field of high latitude origin penetrated to low and equatorial latitudes simultaneously as corroborated by the magnetometer data from the Indian zone. Subsequent northward turning of the IMF-Bz, and the penetration of the dusk-to-dawn electric field over the dip equator is also discernible. Response of the low latitude ionosphere to this storm may be characterized in terms of (i enhanced background level of VTEC as compared to

  18. Large enhancements in low latitude total electron content during 15 May 2005 geomagnetic storm in Indian zone

    Directory of Open Access Journals (Sweden)

    N. Dashora

    2009-05-01

    Full Text Available Results pertaining to the response of the equatorial and low latitude ionosphere to a major geomagnetic storm that occurred on 15 May 2005 are presented. These results are also the first from the Indian zone in terms of (i GPS derived total electron content (TEC variations following the storm (ii Local low latitude electrodynamics response to penetration of high latitude convection electric field (iii effect of storm induced traveling atmospheric disturbances (TAD's on GPS-TEC in equatorial ionization anomaly (EIA zone.

    Data set comprising of ionospheric TEC obtained from GPS measurements, ionograms from an EIA zone station, New Delhi (Geog. Lat. 28.42° N, Geog. Long. 77.21° E, ground based magnetometers in equatorial and low latitude stations and solar wind data obtained from Advanced Composition Explorer (ACE has been used in the present study. GPS receivers located at Udaipur (Geog. Lat. 24.73° N, Geog. Long. 73.73° E and Hyderabad (Geog. Lat. 17.33° N, Geog. Long. 78.47° E have been used for wider spatial coverage in the Indian zone. Storm induced features in vertical TEC (VTEC have been obtained comparing them with the mean VTEC of quiet days. Variations in solar wind parameters, as obtained from ACE and in the SYM-H index, indicate that the storm commenced on 15 May 2005 at 02:39 UT. The main phase of the storm commenced at 06:00 UT on 15 May with a sudden southward turning of the Z-component of interplanetary magnetic field (IMF-Bz and subsequent decrease in SYM-H index. The dawn-to-dusk convection electric field of high latitude origin penetrated to low and equatorial latitudes simultaneously as corroborated by the magnetometer data from the Indian zone. Subsequent northward turning of the IMF-Bz, and the penetration of the dusk-to-dawn electric field over the dip equator is also discernible. Response of the low latitude ionosphere to this storm may be characterized in terms of (i

  19. Simulating deep convection with a shallow convection scheme

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2011-10-01

    Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.

    Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.

  20. The Role of Ionospheric O+ in Forming the Storm-time Ring Current

    Science.gov (United States)

    Kistler, L. M.; Mouikis, C.; Menz, A.; Bingham, S.

    2017-12-01

    During storm times, the particle pressure that creates the storm-time ring current in the inner magnetosphere can be dominated by O+. This is surprising, as the immediate source for the ring current is the nightside plasma sheet, and O+ is usually not the dominant species in the plasma sheet. In this talk we examine the many factors that lead to this result. The O+ outflow is enhanced during geomagnetically active times. The transport paths of O+ and H+ are different, such that the O+ that reaches the near-earth plasma sheet is more energetic than H+. The source spectrum in the near-earth plasma sheet can be harder for O+ than for H+, perhaps due to substorm injections, so that the more energetic plasma has a higher O+/H+ ratio. And finally the plasma sheet O+ can be more abundant towards the beginning of the storm, when the convection is largest, so the enhanced O+ is brought the deepest into the inner magnetosphere. We will discuss the interrelationships between these different effects as well as the ways in which O+ itself may influence the system.

  1. The plasmasheet H+ and O+ contribution on the storm time ring current

    Science.gov (United States)

    Mouikis, C.; Bingham, S.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.

    2015-12-01

    The source population of the storm time ring current is the night side plasma sheet. We use Van Allen Probes and Cluster observations to determine the contribution of the convecting plasma sheet H+ and O+ particles in the storm time development of the ring current. Using the Volland-Stern model with a dipole magnetic field together with the identification of the observed energy cutoffs in the particle spectra, we specify the pressure contributed by H+ and O+ populations that are on open drift paths vs. the pressure contributed by the trapped populations, for different local times. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L~2 and their pressure compares to the local magnetic field pressure as deep as L~3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current.

  2. A Novel Observation-Guided Approach for Evaluating Mesoscale Convective Systems Simulated by the DOE ACME Model

    Science.gov (United States)

    Feng, Z.; Ma, P. L.; Hardin, J. C.; Houze, R.

    2017-12-01

    Mesoscale convective systems (MCSs) are the largest type of convective storms that develop when convection aggregates and induces mesoscale circulation features. Over North America, MCSs contribute over 60% of the total warm-season precipitation and over half of the extreme daily precipitation in the central U.S. Our recent study (Feng et al. 2016) found that the observed increases in springtime total and extreme rainfall in this region are dominated by increased frequency and intensity of long-lived MCSs*. To date, global climate models typically do not run at a resolution high enough to explicitly simulate individual convective elements and may not have adequate process representations for MCSs, resulting in a large deficiency in projecting changes of the frequency of extreme precipitation events in future climate. In this study, we developed a novel observation-guided approach specifically designed to evaluate simulated MCSs in the Department of Energy's climate model, Accelerated Climate Modeling for Energy (ACME). The ACME model has advanced treatments for convection and subgrid variability and for this study is run at 25 km and 100 km grid spacings. We constructed a robust MCS database consisting of over 500 MCSs from 3 warm-season observations by applying a feature-tracking algorithm to 4-km resolution merged geostationary satellite and 3-D NEXRAD radar network data over the Continental US. This high-resolution MCS database is then down-sampled to the 25 and 100 km ACME grids to re-characterize key MCS properties. The feature-tracking algorithm is adapted with the adjusted characteristics to identify MCSs from ACME model simulations. We demonstrate that this new analysis framework is useful for evaluating ACME's warm-season precipitation statistics associated with MCSs, and provides insights into the model process representations related to extreme precipitation events for future improvement. *Feng, Z., L. R. Leung, S. Hagos, R. A. Houze, C. D. Burleyson

  3. Comparing Sources of Storm-Time Ring Current O+

    Science.gov (United States)

    Kistler, L. M.

    2015-12-01

    The first observations of the storm-time ring current composition using AMPTE/CCE data showed that the O+ contribution to the ring current increases significantly during storms. The ring current is predominantly formed from inward transport of the near-earth plasma sheet. Thus the increase of O+ in the ring current implies that the ionospheric contribution to the plasma sheet has increased. The ionospheric plasma that reaches the plasma sheet can come from both the cusp and the nightside aurora. The cusp outflow moves through the lobe and enters the plasma sheet through reconnection at the near-earth neutral line. The nightside auroral outflow has direct access to nightside plasma sheet. Using data from Cluster and the Van Allen Probes spacecraft, we compare the development of storms in cases where there is a clear input of nightside auroral outflow, and in cases where there is a significant cusp input. We find that the cusp input, which enters the tail at ~15-20 Re becomes isotropized when it crosses the neutral sheet, and becomes part of the hot (>1 keV) plasma sheet population as it convects inward. The auroral outflow, which enters the plasma sheet closer to the earth, where the radius of curvature of the field line is larger, does not isotropize or become significantly energized, but remains a predominantly field aligned low energy population in the inner magnetosphere. It is the hot plasma sheet population that gets accelerated to high enough energies in the inner magnetosphere to contribute strongly to the ring current pressure. Thus it appears that O+ that enters the plasma sheet further down the tail has a greater impact on the storm-time ring current than ions that enter closer to the earth.

  4. Solar wind-magnetosphere coupling during intense magnetic storms (1978-1979)

    Science.gov (United States)

    Gonzalez, Walter D.; Gonzalez, Alicia L. C.; Tsurutani, Bruce T.; Smith, Edward J.; Tang, Frances

    1989-01-01

    The solar wind-magnetosphere coupling problem during intense magnetic storms was investigated for ten intense magnetic storm events occurring between August 16, 1978 to December 28, 1979. Particular attention was given to the dependence of the ring current energization on the ISEE-measured solar-wind parameters and the evolution of the ring current during the main phase of the intense storms. Several coupling functions were tested as energy input, and several sets of the ring current decay time-constant were searched for the best correlation with the Dst response. Results indicate that a large-scale magnetopause reconnection operates during an intense storm event and that the solar wind ram pressure plays an important role in the energization of the ring current.

  5. Solar noise storms

    CERN Document Server

    Elgaroy, E O

    2013-01-01

    Solar Noise Storms examines the properties and features of solar noise storm phenomenon. The book also presents some theories that can be used to gain a better understanding of the phenomenon. The coverage of the text includes topics that cover the features and behavior of noise storms, such as the observable features of noise storms; the relationship between noise storms and the observable features on the sun; and ordered behavior of storm bursts in the time-frequency plane. The book also covers the spectrum, polarization, and directivity of noise storms. The text will be of great use to astr

  6. Solar sources of interplanetary southward B/sub z/ events responsible for major magnetic storms (1978--1979)

    International Nuclear Information System (INIS)

    Tang, F.; Tsurutani, B.T.; Gonzalez, W.D.; Akasofu, S.I.; Smith, E.J.

    1989-01-01

    Tsurutani et al. [1988] analyzed the 10 intense interplanetary southward B/sub z/ events that led to major magnetic storms (Dst 3.0) are associated with prominence eruptions. For three of the five southward B/sub z/ events in which the driver gases are the causes of the intense southward field leading to magnetic storms, the photospheric fields of the solar sources have no dominant southward component, indicating the driver gas fields do not always result from a simple outward convection of solar magnetic fields. Finally we compare the solar events and their resulting interplanetary shocks and find that the standard solar parameters do not correlate with the strengths of the resulting shocks at 1 AU. The implications are discussed. copyright American Geophysical Union 1989

  7. ARM Support for the Plains Elevated Convection at Night (AS-PECAN) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D. D. [National Oceanic and Atmospheric Administration (NOAA), Silver Spring, MD (United States); Geerts, B. [Univ. of Wyoming, Laramie, WY (United States)

    2016-04-01

    The Plains Elevated Convection at Night (PECAN) field campaign was a large multi-agency/multi-institutional experiment that targeted nighttime convection events in the central plains of the United States in order to better understand a range of processes that lead to the initiation and upscale growth of deep convection. Both weather and climate models struggle to properly represent the timing and intensity of precipitation in the central United States in their simulations. These models must be able to represent the interactions between the nocturnal stable boundary layer (SBL), the nocturnal low-level jet (LLJ), and a reservoir of convectively available potential energy (CAPE) that frequently exists above the SBL. Furthermore, a large fraction of the nocturnal precipitation is due to the organization of mesoscale convective systems (MCSs). In particular, there were four research foci for the PECAN campaign: •The initiation of elevated nocturnal convection focus seeks to elucidate the mesoscaleenvironmental characteristics and processes that lead to convection initiation (CI) and provide baseline data on the early evolution of mesoscale convective clusters. •The dynamics and internal structure and microphysics of nocturnal MCSs focus will investigatethe transition from surface-based to elevated storm structure, the interaction of cold pools generated by MCSs with the nocturnal stable boundary layer, and how the organization and evolution of elevated convection is influenced by the SBL and the vertical profile of wind and stability above the LLJ. •The bores and wave-like disturbances focus seeks to advance knowledge of the initiation of boredisturbances by convection, how the vertical profile of stability and winds modulate bore structure, the role of these disturbances in the initiation, maintenance, and organization of deep convection, and their impact on the LLJ and SBL. •The LLJ focus seeks to understand the processes that influence the spatial and

  8. Empirical STORM-E Model. [I. Theoretical and Observational Basis

    Science.gov (United States)

    Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M., III

    2013-01-01

    Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented

  9. Sensitivity of tropical cyclone simulations to microphysics parameterizations in WRF

    International Nuclear Information System (INIS)

    Reshmi Mohan, P.; Srinivas, C.V.; Bhaskaran, R.; Venkatraman, B.; Yesubabu, V.

    2018-01-01

    Tropical cyclones (TC) cause storm surge along coastal areas where these storms cross the coast. As major nuclear facilities are usually installed in coastal region, the surge predictions are highly important for DAE. The critical TC parameters needed in estimating storm surge are intensity (winds, central pressure and radius of maximum winds) and storm tracks. The predictions with numerical models are generally made by representing the clouds and precipitation processes using convective and microphysics parameterization. At high spatial resolutions (1-3Km) microphysics can act as cloud resolving NWP model to explicitly resolve the convective precipitation without using convection schemes. Recent simulation studies using WRF on severe weather phenomena such as thunderstorms and hurricanes indicated large sensitivity of predicted rainfall and hurricane tracks to microphysics due to variation in temperature and pressure gradients which generate winds that determine the storm track. In the present study the sensitivity of tropical cyclone tracks and intensity to different microphysics schemes has been conducted

  10. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States

    Science.gov (United States)

    Rasmussen, K. L.; Prein, A. F.; Rasmussen, R. M.; Ikeda, K.; Liu, C.

    2017-11-01

    Novel high-resolution convection-permitting regional climate simulations over the US employing the pseudo-global warming approach are used to investigate changes in the convective population and thermodynamic environments in a future climate. Two continuous 13-year simulations were conducted using (1) ERA-Interim reanalysis and (2) ERA-Interim reanalysis plus a climate perturbation for the RCP8.5 scenario. The simulations adequately reproduce the observed precipitation diurnal cycle, indicating that they capture organized and propagating convection that most climate models cannot adequately represent. This study shows that weak to moderate convection will decrease and strong convection will increase in frequency in a future climate. Analysis of the thermodynamic environments supporting convection shows that both convective available potential energy (CAPE) and convective inhibition (CIN) increase downstream of the Rockies in a future climate. Previous studies suggest that CAPE will increase in a warming climate, however a corresponding increase in CIN acts as a balancing force to shift the convective population by suppressing weak to moderate convection and provides an environment where CAPE can build to extreme levels that may result in more frequent severe convection. An idealized investigation of fundamental changes in the thermodynamic environment was conducted by shifting a standard atmospheric profile by ± 5 °C. When temperature is increased, both CAPE and CIN increase in magnitude, while the opposite is true for decreased temperatures. Thus, even in the absence of synoptic and mesoscale variations, a warmer climate will provide more CAPE and CIN that will shift the convective population, likely impacting water and energy budgets on Earth.

  11. The response of a simulated mesoscale convective system to increased aerosol pollution: Part II: Derecho characteristics and intensity in response to increased pollution

    Science.gov (United States)

    Clavner, Michal; Grasso, Lewis D.; Cotton, William R.; van den Heever, Susan C.

    2018-01-01

    Mesoscale Convective Systems (MCS) are important contributors to rainfall as well as producers of severe weather such as hail, tornados, and straight-line wind events known as derechos. In this study, different aerosol concentrations and their effects on a derecho event are examined by simulating a case study, the 8 May 2009 "Super-Derecho", using the Regional Atmospheric Modeling System (RAMS), a cloud-resolving model with sophisticated aerosol and cloud microphysics. Three simulations were conducted that differed in the initial aerosol concentrations, spatial distribution and chemical composition as derived from output of GEOS-Chem, a 3D chemical transport model. In order to understand the impact of changes in aerosol concentrations on the derecho characteristics, the dynamical processes that produced the strong surface wind were determined by performing back-trajectory analysis during two periods of the simulated storm: the development and the onset of dissipation. A time dependent and non-monotonic trend was found between the intensity of the derecho and the increased aerosol concentrations that served as cloud condensation nuclei. During the formation period of the MCS, the non-monotonic trend was attributed to the microphysical impact of aerosol loading on the intensity of the cold pool; that is, the impact of aerosols on both the melting and evaporation rates of hydrometeors. The subsequent intensity changes within the cold pool modified the balance between the horizontal vorticity generated by the cold pool and that of the environment, thereby impacting the orientation of the convective updraft at the leading line. This, in turn, altered the primary flow that contributed to the formation of the derecho-strength surface winds. The simulation with no anthropogenic aerosols exhibited the strongest cold pool and the primary flow was associated with a descending rear inflow jet that produced the derecho winds over a larger region. The simulation with the highest

  12. CONVECTION IN CONDENSIBLE-RICH ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Ding, F. [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Pierrehumbert, R. T., E-mail: fding@uchicago.edu [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom)

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO{sub 2} is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  13. The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change

    Directory of Open Access Journals (Sweden)

    A. H. Fink

    2009-03-01

    Full Text Available The synoptic evolution and some meteorological impacts of the European winter storm Kyrill that swept across Western, Central, and Eastern Europe between 17 and 19 January 2007 are investigated. The intensity and large storm damage associated with Kyrill is explained based on synoptic and mesoscale environmental storm features, as well as on comparisons to previous storms. Kyrill appeared on weather maps over the US state of Arkansas about four days before it hit Europe. It underwent an explosive intensification over the Western North Atlantic Ocean while crossing a very intense zonal polar jet stream. A superposition of several favourable meteorological conditions west of the British Isles caused a further deepening of the storm when it started to affect Western Europe. Evidence is provided that a favourable alignment of three polar jet streaks and a dry air intrusion over the occlusion and cold fronts were causal factors in maintaining Kyrill's low pressure very far into Eastern Europe.

    Kyrill, like many other strong European winter storms, was embedded in a pre-existing, anomalously wide, north-south mean sea-level pressure (MSLP gradient field. In addition to the range of gusts that might be expected from the synoptic-scale pressure field, mesoscale features associated with convective overturning at the cold front are suggested as the likely causes for the extremely damaging peak gusts observed at many lowland stations during the passage of Kyrill's cold front. Compared to other storms, Kyrill was by far not the most intense system in terms of core pressure and circulation anomaly. However, the system moved into a pre-existing strong MSLP gradient located over Central Europe which extended into Eastern Europe. This fact is considered determinant for the anomalously large area affected by Kyrill.

    Additionally, considerations of windiness in climate change simulations using two state-of-the-art regional climate

  14. The effects of neutral inertia on ionospheric currents in the high-latitude thermosphere following a geomagnetic storm

    International Nuclear Information System (INIS)

    Deng, W.; Killeen, T.L.; Burns, A.G.; Roble, R.G.; Slavin, J.A.; Wharton, L.E.

    1993-01-01

    The authors extend previous work with a National Center for Atmospheric Research (NCAR) thermosphere/ionosphere general circulation model (TIGCM), to study dynamo effects in the high latitude thermosphere. Ionospheric convection can drive neutral currents in much the same pattern by means of ion drag reactions. It has been observed that ion currents established during magnetic storms can induce neutral currents which persist for hours after the end of the storm. Model results have shown that such currents can account for up to 80 percent of the Hall currents in the period immediately following storms. Here this previous work is extended and compared with experimental observations. The authors simulate time dependent Hall currents, field-aligned currents, and electrical power fluxes coupling the magnetosphere and ionosphere. They discuss their results in terms of a loaded magnetosphere, which accounts for the fact that the neutral currents can also induce currents and electric fields in the ionosphere

  15. Changes to Saturn's zonal-mean tropospheric thermal structure after the 2010-2011 northern hemisphere storm

    Energy Technology Data Exchange (ETDEWEB)

    Achterberg, R. K.; Hesman, B. E. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Gierasch, P. J.; Conrath, B. J. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Fletcher, L. N. [Atmospheric Oceanic and Planetary Physics, University of Oxford, Clarenden Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); Bjoraker, G. L.; Flasar, F. M., E-mail: Richard.K.Achterberg@nasa.gov [Planetary Systems Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States)

    2014-05-10

    We use far-infrared (20-200 μm) data from the Composite Infrared Spectrometer on the Cassini spacecraft to determine the zonal-mean temperature and hydrogen para-fraction in Saturn's upper troposphere from observations taken before and after the large northern hemisphere storm in 2010-2011. During the storm, zonal mean temperatures in the latitude band between approximately 25°N and 45°N (planetographic latitude) increased by about 3 K, while the zonal mean hydrogen para-fraction decreased by about 0.04 over the same latitudes, at pressures greater than about 300 mbar. These changes occurred over the same latitude range as the disturbed cloud band seen in visible images. The observations are consistent with low para-fraction gas being brought up from the level of the water cloud by the strong convective plume associated with the storm, while being heated by condensation of water vapor, and then advected zonally by the winds near the plume tops in the upper troposphere.

  16. Storms in the tropics of Titan.

    Science.gov (United States)

    Schaller, E L; Roe, H G; Schneider, T; Brown, M E

    2009-08-13

    Methane clouds, lakes and most fluvial features on Saturn's moon Titan have been observed in the moist high latitudes, while the tropics have been nearly devoid of convective clouds and have shown an abundance of wind-carved surface features like dunes. The presence of small-scale channels and dry riverbeds near the equator observed by the Huygens probe at latitudes thought incapable of supporting convection (and thus strong rain) has been suggested to be due to geological seepage or other mechanisms not related to precipitation. Here we report the presence of bright, transient, tropospheric clouds in tropical latitudes. We find that the initial pulse of cloud activity generated planetary waves that instigated cloud activity at other latitudes across Titan that had been cloud-free for at least several years. These observations show that convective pulses at one latitude can trigger short-term convection at other latitudes, even those not generally considered capable of supporting convection, and may also explain the presence of methane-carved rivers and channels near the Huygens landing site.

  17. Convective aggregation in realistic convective-scale simulations

    OpenAIRE

    Holloway, Christopher E.

    2017-01-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15-day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibriu...

  18. A case study of storm commencement and recovery plasmaspheric electric fields near L=2.5 at equinox

    Directory of Open Access Journals (Sweden)

    H. F. Balmforth (*

    Full Text Available Data from the VLF Doppler experiment at Faraday, Antarctica (65° S, 64° W are used to study the penetration of the high-latitude convection electric field to lower latitudes during severely disturbed conditions. Alterations of the electric field at L-values within the range 2.0 - 2.7 are studied for two cases at equinox (10 - 12 September 1986 and 1 - 3 May 1986. The recovery of the electric field is found to be approximately an exponential function of time. Values for the equatorial meridional E×B drift velocity, inferred from the data, are used as inputs to a model of the plasmasphere and ionosphere. The model and experimental results are used to investigate the post-storm alteration of ionospheric coupling processes. The magnitude of the effect of ionosphere-plasmasphere coupling fluxes on NmF2 values and the O+-H+ transition height is dependent on the local time of storm commencement, and on the orientation of the electric field. The coupling fluxes appear to have a maximum influence on ionospheric content during the main phase of geomagnetic activity that produces outward motion of plasmaspheric whistler ducts.

  19. Ionospheric storms at geophysically-equivalent sites – Part 1: Storm-time patterns for sub-auroral ionospheres

    Directory of Open Access Journals (Sweden)

    M. Mendillo

    2009-04-01

    Full Text Available The systematic study of ionospheric storms has been conducted primarily with groundbased data from the Northern Hemisphere. Significant progress has been made in defining typical morphology patterns at all latitudes; mechanisms have been identified and tested via modeling. At higher mid-latitudes (sites that are typically sub-auroral during non-storm conditions, the processes that change significantly during storms can be of comparable magnitudes, but with different time constants. These include ionospheric plasma dynamics from the penetration of magnetospheric electric fields, enhancements to thermospheric winds due to auroral and Joule heating inputs, disturbance dynamo electrodynamics driven by such winds, and thermospheric composition changes due to the changed circulation patterns. The ~12° tilt of the geomagnetic field axis causes significant longitude effects in all of these processes in the Northern Hemisphere. A complementary series of longitude effects would be expected to occur in the Southern Hemisphere. In this paper we begin a series of studies to investigate the longitudinal-hemispheric similarities and differences in the response of the ionosphere's peak electron density to geomagnetic storms. The ionosonde stations at Wallops Island (VA and Hobart (Tasmania have comparable geographic and geomagnetic latitudes for sub-auroral locations, are situated at longitudes close to that of the dipole tilt, and thus serve as our candidate station-pair choice for studies of ionospheric storms at geophysically-comparable locations. They have an excellent record of observations of the ionospheric penetration frequency (foF2 spanning several solar cycles, and thus are suitable for long-term studies. During solar cycle #20 (1964–1976, 206 geomagnetic storms occurred that had Ap≥30 or Kp≥5 for at least one day of the storm. Our analysis of average storm-time perturbations (percent deviations from the monthly means showed a remarkable

  20. Nowcasting of deep convective clouds and heavy precipitation: Comparison study between NWP model simulation and extrapolation

    Czech Academy of Sciences Publication Activity Database

    Bližňák, Vojtěch; Sokol, Zbyněk; Zacharov, Petr, jr.

    2017-01-01

    Roč. 184, February (2017), s. 24-34 ISSN 0169-8095 R&D Projects: GA ČR(CZ) GPP209/12/P701; GA ČR GA13-34856S Institutional support: RVO:68378289 Keywords : meteorological satellite * convective storm * NWP model * verification * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.778, year: 2016 http://www.sciencedirect.com/science/article/pii/S0169809516304288

  1. Seasat microwave wind and rain observations in severe tropical and midlatitude marine storms

    Science.gov (United States)

    Black, P. G.; Hawkins, J. D.; Gentry, R. C.; Cardone, V. J.

    1985-01-01

    Initial results of studies concerning Seasat measurements in and around tropical and severe midlatitude cyclones over the open ocean are presented, together with an assessment of their accuracy and usefulness. Complementary measurements of surface wind speed and direction, rainfall rate, and the sea surface temperature obtained with the Seasat-A Satellite Scatterometer (SASS), the Scanning Multichannel Microwave Radiometer (SMMR), and the Seasat SAR are analyzed. The Seasat data for the Hurrricanes Fico, Ella, and Greta and the QE II storm are compared with data obtained from aircraft, buoys, and ships. It is shown that the SASS-derived wind speeds are accurate to within 10 percent, and the directions are accurate to within 20 percent. In general, the SASS estimates tend to measure light winds too high and intense winds too low. The errors of the SMMR-derived measurements of the winds in hurricanes tend to be higher than those of the SASS-derived measurements.

  2. Experimental study of natural convective heat transfer in a vertical hexagonal sub channel

    International Nuclear Information System (INIS)

    Tandian, Nathanael P.; Umar, Efrizon; Hardianto, Toto; Febriyanto, Catur

    2012-01-01

    The development of new practices in nuclear reactor safety aspects and optimization of recent nuclear reactors, including the APWR and the PHWR reactors, needs a knowledge on natural convective heat transfer within sub-channels formed among several nuclear fuel rods or heat exchanger tubes. Unfortunately, the currently available empirical correlation equations for such heat transfer modes are limited and researches on convective heat transfer within a bundle of vertical cylinders (especially within the natural convection modes) are scarcely done. Although boundary layers around the heat exchanger cylinders or fuel rods may be dominated by their entry regions, most of available convection correlation equations are for fully developed boundary layers. Recently, an experimental study on natural convective heat transfer in a subchannel formed by several heated parallel cylinders that arranged in a hexagonal configuration has been being done. The study seeks for a new convection correlation for the natural convective heat transfer in the sub-channel formed among the hexagonal vertical cylinders. A new convective heat transfer correlation equation has been obtained from the study and compared to several similar equations in literatures.

  3. Multispacecraft Observations and Modeling of the 22/23 June 2015 Geomagnetic Storm

    Science.gov (United States)

    Reiff, P. H.; Daou, A. G.; Sazykin, S. Y.; Nakamura, R.; Hairston, M. R.; Coffey, V.; Chandler, M. O.; Anderson, B. J.; Russell, C. T.; Welling, D.; hide

    2016-01-01

    The magnetic storm of 22-23 June 2015 was one of the largest in the current solar cycle. We present in situ observations from the Magnetospheric Multiscale Mission (MMS) and the Van Allen Probes (VAP) in the magnetotail, field-aligned currents from AMPERE (Active Magnetosphere and Planetary Electrodynamics Response), and ionospheric flow data from Defense Meteorological Satellite Program (DMSP). Our real-time space weather alert system sent out a "red alert," correctly predicting Kp indices greater than 8. We show strong outflow of ionospheric oxygen, dipolarizations in the MMS magnetometer data, and dropouts in the particle fluxes seen by the MMS Fast Plasma Instrument suite. At ionospheric altitudes, the AMPERE data show highly variable currents exceeding 20 MA. We present numerical simulations with the Block Adaptive Tree-Solarwind - Roe - Upwind Scheme (BATS-R-US) global magnetohydrodynamic model linked with the Rice Convection Model. The model predicted the magnitude of the dipolarizations, and varying polar cap convection patterns, which were confirmed by DMSP measurements.

  4. The Impact of Microphysics on Intensity and Structure of Hurricanes and Mesoscale Convective Systems

    Science.gov (United States)

    Tao, Wei-Kuo; Shi, Jainn J.; Jou, Ben Jong-Dao; Lee, Wen-Chau; Lin, Pay-Liam; Chang, Mei-Yu

    2007-01-01

    During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WRF is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Purdue Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WRF to examine the impact of six different cloud microphysical schemes on precipitation processes associated hurricanes and mesoscale convective systems developed at different geographic locations [Oklahoma (IHOP), Louisiana (Hurricane Katrina), Canada (C3VP - snow events), Washington (fire storm), India (Monsoon), Taiwan (TiMREX - terrain)]. We will determine the microphysical schemes for good simulated convective systems in these geographic locations. We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.

  5. A novel ice storm manipulation experiment in a northern hardwood forest

    Science.gov (United States)

    Lindsey E. Rustad; John L. Campbell

    2012-01-01

    Ice storms are an important natural disturbance within forest ecosystems of the northeastern United States. Current models suggest that the frequency and severity of ice storms may increase in the coming decades in response to changes in climate. Because of the stochastic nature of ice storms and difficulties in predicting their occurrence, most past investigations of...

  6. Clustering of European winter storms: A multi-model perspective

    Science.gov (United States)

    Renggli, Dominik; Buettner, Annemarie; Scherb, Anke; Straub, Daniel; Zimmerli, Peter

    2016-04-01

    The storm series over Europe in 1990 (Daria, Vivian, Wiebke, Herta) and 1999 (Anatol, Lothar, Martin) are very well known. Such clusters of severe events strongly affect the seasonally accumulated damage statistics. The (re)insurance industry has quantified clustering by using distribution assumptions deduced from the historical storm activity of the last 30 to 40 years. The use of storm series simulated by climate models has only started recently. Climate model runs can potentially represent 100s to 1000s of years, allowing a more detailed quantification of clustering than the history of the last few decades. However, it is unknown how sensitive the representation of clustering is to systematic biases. Using a multi-model ensemble allows quantifying that uncertainty. This work uses CMIP5 decadal ensemble hindcasts to study clustering of European winter storms from a multi-model perspective. An objective identification algorithm extracts winter storms (September to April) in the gridded 6-hourly wind data. Since the skill of European storm predictions is very limited on the decadal scale, the different hindcast runs are interpreted as independent realizations. As a consequence, the available hindcast ensemble represents several 1000 simulated storm seasons. The seasonal clustering of winter storms is quantified using the dispersion coefficient. The benchmark for the decadal prediction models is the 20th Century Reanalysis. The decadal prediction models are able to reproduce typical features of the clustering characteristics observed in the reanalysis data. Clustering occurs in all analyzed models over the North Atlantic and European region, in particular over Great Britain and Scandinavia as well as over Iberia (i.e. the exit regions of the North Atlantic storm track). Clustering is generally weaker in the models compared to reanalysis, although the differences between different models are substantial. In contrast to existing studies, clustering is driven by weak

  7. Environments of Long-Lived Mesoscale Convective Systems Over the Central United States in Convection Permitting Climate Simulations: Long-Lived Mesoscale Convective Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qing [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Houze, Robert A. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Department of Atmospheric Sciences, University of Washington, Seattle WA USA; Leung, L. Ruby [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Feng, Zhe [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2017-12-27

    Continental-scale convection-permitting simulations of the warm seasons of 2011 and 2012 reproduce realistic structure and frequency distribution of lifetime and event mean precipitation of mesoscale convective systems (MCSs) over the central United States. Analysis is performed to determine the environmental conditions conducive to generating the longest-lived MCSs and their subsequent interactions. The simulations show that MCSs systematically form over the Great Plains ahead of a trough in the westerlies in combination with an enhanced low-level jet from the Gulf of Mexico. These environmental properties at the time of storm initiation are most prominent for the MCSs that persist for the longest times. Systems reaching 9 h or more in lifetime exhibit feedback to the environment conditions through diabatic heating in the MCS stratiform regions. As a result, the parent synoptic-scale wave is strengthened as a divergent perturbation develops over the MCS at high levels, while a cyclonic circulation perturbation develops in the midlevels of the trough, where the vertical gradient of heating in the MCS region is maximized. The quasi-balanced mesoscale vortex helps to maintain the MCS over a long period of time by feeding dry, cool air into the environment at the rear of the MCS region, so that the MCS can draw in air that increases the evaporative cooling that helps maintain the MCS. At lower levels the south-southeasterly jet of warm moist air from the Gulf is enhanced in the presence of the synoptic-scale wave. That moisture supply is essential to the continued redevelopment of the MCS.

  8. Radar Observations of Convective Systems from a High-Altitude Aircraft

    Science.gov (United States)

    Heymsfield, G.; Geerts, B.; Tian, L.

    1999-01-01

    . Both TEFLUN-A and B were amply supported by surface data, in particular a dense raingauge network, a polarization radar, wind profilers, a mobile radiosonde system, a cloud physics aircraft penetrating the overflown storms, and a network of 10 cm Doppler radars(WSR-88D). This presentation will show some preliminary comparisons between TRMM, EDOP, and WSR-88D reflectivity fields in the case of an MCS, a hurricane, and less organized convection in central Florida. A validation of TRMM reflectivity is important, because TRMM's primary objective is to estimate the rainfall climatology with 35 degrees of the equator. Rainfall is estimated from the radar reflectivity, as well from TRMM's Microwave Imager, which measures at 10.7, 19.4, 21.3, 37, and 85.5 GHz over a broader swath (78 km). While the experiments lasted about three months the cumulative period of near simultaneous observations of storms by ground-based, airborne and space borne radars is only about an hour long. Therefore the comparison is case-study-based, not climatological. We will highlight fundamental differences in the typical reflectivity profiles in stratiform regions of MCS's, Florida convection and hurricanes and will explain why Z-R relationships based on ground-based radar data for convective systems over land should be different from those for hurricanes. These catastrophically intense rainfall from hurricane Georges in Hispaniola and from Mitch in Honduras highlights the importance of accurate Z-R relationships, It will be shown that a Z-R relationship that uses the entire reflectivity profile (rather than just a 1 level) works much better in a variety of cases, making an adjustment of the constants for different precipitation system categories redundant.

  9. Comparison of two recent storm surge events based on results of field surveys

    Science.gov (United States)

    Nakamura, Ryota; Shibayama, Tomoya; Mikami, Takahito; Esteban, Miguel; Takagi, Hiroshi; Maell, Martin; Iwamoto, Takumu

    2017-10-01

    This paper compares two different types of storm surge disaster based on field surveys. Two cases: a severe storm surge flood with its height of over 5 m due to Typhoon Haiyan (2013) in Philippine, and inundation of storm surge around Nemuro city in Hokkaido of Japan with its maximum surge height of 2.8 m caused by extra-tropical cyclone are taken as examples. For the case of the Typhoon Haiyan, buildings located in coastal region were severely affected due to a rapidly increase in ocean surface. The non-engineering buildings were partially or completely destroyed due to their debris transported to an inner bay region. In fact, several previous reports indicated two unique features, bore-like wave and remarkably high speed currents. These characteristics of the storm surge may contribute to a wide-spread corruption for the buildings around the affected region. Furthermore, in the region where the surge height was nearly 3 m, the wooden houses were completely or partially destroyed. On the other hand, in Nemuro city, a degree of suffering in human and facility caused by the storm surge is minor. There was almost no partially destroyed residential houses even though the height of storm surge reached nearly 2.8 m. An observation in the tide station in Nemuro indicated that this was a usual type of storm surge, which showed a gradual increase of sea level height in several hours without possessing the unique characteristics like Typhoon Haiyan. As a result, not only the height of storm surge but also the robustness of the buildings and characteristics of storm surge, such as bore like wave and strong currents, determined the existent of devastation in coastal regions.

  10. Physical and Dynamical Linkages Between Lightning Jumps and Storm Conceptual Models

    Science.gov (United States)

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.

    2014-01-01

    The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric

  11. Learning Storm

    CERN Document Server

    Jain, Ankit

    2014-01-01

    If you are a Java developer who wants to enter into the world of real-time stream processing applications using Apache Storm, then this book is for you. No previous experience in Storm is required as this book starts from the basics. After finishing this book, you will be able to develop not-so-complex Storm applications.

  12. Convective Propagation Characteristics Using a Simple Representation of Convective Organization

    Science.gov (United States)

    Neale, R. B.; Mapes, B. E.

    2016-12-01

    Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.

  13. The severe thunderstorm of 4 October 2007 in Mallorca: an observational study

    Directory of Open Access Journals (Sweden)

    C. Ramis

    2009-07-01

    Full Text Available During the afternoon of 4 October 2007, a thunderstorm swept across the Island of Mallorca from southwest to northeast. Strong straight-line winds (up to 30 m/s and heavy rain (rates up to 100 mm/h were registered accompanying the storm. Tornadoes with an estimated intensity of F2–F3 developed nearby the city of Palma, severely affecting industrial installations. One person was killed by the impact of heavy debris while more than 10 million € in damages were attributed to the event in the industrial area only. The observed evolution of temperature, humidity, wind and pressure, as well as the sequence of radar images, reveal that a squall line was initially organized over the sea and then moved north-eastwards at an estimated speed of around 80 km/h. This paper presents an analysis of the event from an observational point of view. The aim of the study is to contribute to the characterization of these rare events in the Western Mediterranean by analyzing the observational information available for this particular extreme event. The diagnosis is aimed at helping forecasters to identify this kind of organized deep convective events and being able to issue timely warnings. The synoptic scenario shows warm and moist advection at low levels over Balearics and an upper-level trough over mainland Spain. This situation is known to be prone to deep convection in Mediterranean Spain in autumn. Radiosonde ascents from Murcia and Palma show convective instability at mid levels that can conduce to develop convection if appropriate ascents occur. A plausible lifting mechanism to trigger convection is attributed to large amplitude gravity waves, registered as short-period pressure oscillations by surface barographs.

  14. Extreme changes in the dayside ionosphere during a Carrington-type magnetic storm

    Directory of Open Access Journals (Sweden)

    Mannucci Anthony J.

    2012-06-01

    Full Text Available It is shown that during the 30 October 2003 superstorm, dayside O+ ions were uplifted to DMSP altitudes (~850 km. Peak densities were ~9 × 105 cm−3 during the magnetic storm main phase (peak Dst = −390 nT. By comparison the 1–2 September 1859 Carrington magnetic storm (peak Dst estimated at −1760 nT was considerably stronger. We investigate the impact of this storm on the low- to mid-latitude ionosphere using a modified version of the NRL SAMI2 ionospheric code. It is found that the equatorial region (LAT = 0° ± 15° is swept free of plasma within 15 min (or less of storm onset. The plasma is swept to higher altitudes and higher latitudes due to E × B convection associated with the prompt penetration electric field. Equatorial Ionization Anomaly (EIA O+ density enhancements are found to be located within the broad range of latitudes ~ ± (25°–40° at ~500–900 km altitudes. Densities within these peaks are ~6 × 106 oxygen ions-cm−3 at ~700 km altitude, approximately +600% quiet time values. The oxygen ions at the top portions (850–1000 km of uplifted EIAs will cause strong low-altitude satellite drag. Calculations are currently being performed on possible uplift of oxygen neutrals by ion-neutral coupling to understand if there might be further significant satellite drag forces present.

  15. Photochemical ozone production in tropical squall line convection during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A

    Science.gov (United States)

    Pickering, Kenneth E.; Thompson, Anne M.; Tao, Wei-Kuo; Simpson, Joanne; Scala, John R.

    1991-01-01

    The role of convection was examined in trace gas transport and ozone production in a tropical dry season squall line sampled on August 3, 1985, during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A (NASA GTE/ABLE 2A) in Amazonia, Brazil. Two types of analyses were performed. Transient effects within the cloud are examined with a combination of two-dimensional cloud and one-dimensional photochemical modeling. Tracer analyses using the cloud model wind fields yield a series of cross sections of NO(x), CO, and O3 distribution during the lifetime of the cloud; these fields are used in the photochemical model to compute the net rate of O3 production. At noon, when the cloud was mature, the instantaneous ozone production potential in the cloud is between 50 and 60 percent less than in no-cloud conditions due to reduced photolysis and cloud scavenging of radicals. Analysis of cloud inflows and outflows is used to differentiate between air that is undisturbed and air that has been modified by the storm. These profiles are used in the photochemical model to examine the aftereffects of convective redistribution in the 24-hour period following the storm. Total tropospheric column O3 production changed little due to convection because so little NO(x) was available in the lower troposphere. However, the integrated O3 production potential in the 5- to 13-km layer changed from net destruction to net production as a result of the convection. The conditions of the August 3, 1985, event may be typical of the early part of the dry season in Amazonia, when only minimal amounts of pollution from biomass burning have been transported into the region.

  16. The extreme solar storm of May 1921: observations and a complex topological model

    Directory of Open Access Journals (Sweden)

    H. Lundstedt

    2015-01-01

    Full Text Available A complex solid torus model was developed in order to be able to study an extreme solar storm, the so-called "Great Storm" or "New York Railroad Storm" of May 1921, when neither high spatial and time resolution magnetic field measurements, solar flare nor coronal mass ejection observations were available. We suggest that a topological change happened in connection with the occurrence of the extreme solar storm. The solar storm caused one of the most severe space weather effects ever.

  17. Use of Dual-Polarization Radar Variables to Assess Low-Level Wind Shear in Severe Thunderstorm Near-storm Environments in the Tennessee Valley

    Science.gov (United States)

    Crowe, Christina C.; Schultz, Christopher J.; Kumjian, Matthew; Carey, Lawerence D.; Petersen, Walter A.

    2011-01-01

    The upgrade of the National Weather Service (NWS) network of S ]band dual-polarization radars is currently underway, and the incorporation of polarimetric information into the real ]time forecasting process will enhance the forecaster fs ability to assess thunderstorms and their near ]storm environments. Recent research has suggested that the combination of polarimetric variables differential reflectivity (ZDR) and specific differential phase (KDP) can be useful in the assessment of low level wind shear within a thunderstorm. In an environment with strong low ]level veering of the wind, ZDR values will be largest along the right inflow edge of the thunderstorm near a large gradient in horizontal reflectivity (indicative of large raindrops falling with a relative lack of smaller drops), and take the shape of an arc. Meanwhile, KDP values, which are proportional to liquid water content and indicative of a large number of smaller drops, are maximized deeper into the forward flank precipitation shield than the ZDR arc as the smaller drops are being advected further from the updraft core by the low level winds than the larger raindrops. Using findings from previous work, three severe weather events that occurred in North Alabama were examined in order to assess the utility of these signatures in determining the potential for tornadic activity. The first case is from October 26, 2010, where a large number of storms indicated tornadic potential from a standard reflectivity and velocity analysis but very few storms actually produced tornadoes. The second event is from February 28, 2011, where tornadic storms were present early on in the event, but as the day progressed, the tornado threat transitioned to a high wind threat. The third case is from April 27, 2011, where multiple rounds of tornadic storms ransacked the Tennessee Valley. This event provides a dataset including multiple modes of tornadic development, including QLCS and supercell structures. The overarching goal

  18. Coastal Storm Surge Analysis: Storm Forcing. Report 3. Intermediate Submission No. 1.3

    Science.gov (United States)

    2013-07-01

    The storm surge study considers both tropical storms and extratropical cyclones for determination of return period storm surge elevations. The...Appendix B: Extratropical Cyclone Selection in Support of FEMA Region III Storm Surge Modeling...stations applied in the storm selection process. ............................................. 56  Table B2. Extratropical cyclones selected from the

  19. What favors convective aggregation and why?

    Science.gov (United States)

    Muller, Caroline; Bony, Sandrine

    2015-07-01

    The organization of convection is ubiquitous, but its physical understanding remains limited. One particular type of organization is the spatial self-aggregation of convection, taking the form of cloud clusters, or tropical cyclones in the presence of rotation. We show that several physical processes can give rise to self-aggregation and highlight the key features responsible for it, using idealized simulations. Longwave radiative feedbacks yield a "radiative aggregation." In that case, sufficient spatial variability of radiative cooling rates yields a low-level circulation, which induces the upgradient energy transport and radiative-convective instability. Not only do vertically integrated radiative budgets matter but the vertical profile of cooling is also crucial. Convective aggregation is facilitated when downdrafts below clouds are weak ("moisture-memory aggregation"), and this is sufficient to trigger aggregation in the absence of longwave radiative feedbacks. These results shed some light on the sensitivity of self-aggregation to various parameters, including resolution or domain size.

  20. Pronostico inmediato de tormentas convectivas por radar: una actualizacion Nowcasting of convective storms by radar: an actualization

    Directory of Open Access Journals (Sweden)

    Sadiel Novo

    2008-03-01

    Full Text Available Una de las principales aplicaciones del radar meteorológico es el pronóstico inmediato (decenas de minutos a unas pocas horas de antelación de los eventos de precipitación convectiva. Esto reviste gran importancia pues es precisamente en este lapso de tiempo donde son menos efectivos los pronósticos numéricos. Se repasan brevemente algunas de las técnicas de pronóstico inmediato reportadas en los últimos años, haciendo énfasis en aquellas que emplean solamente información de un radar convencional. Se distingue entre las que pronostican el movimiento de las tormentas como un todo y aquellas que permiten distinguir su movimiento interno, señalando sus ventajas y desventajas en situaciones meteorológicas concretas. Como ejemplo se presentan, para un caso de estudio escogido, aplicaciones simples de dos de estas técnicas. Por último se discute la utilidad de la técnica del sistema de referencia móvil para obtener las componentes del viento no observadas a partir de un solo radar Doppler o incluso un radar convencional, y sus implicaciones para la obtención de magnitudes termodinámicas.One of the main applications of the meteorological radar is the nowcasting (some tens of minutes to some hours forward of convective precipitation events. It has a great importance since this is the space of time in which the numerical forecasting is less effective. Some of the nowcasting techniques reported in the last years are reviewed shortly, making emphasis in those that use only information from a conventional radar. A distinction is made among those that predict the total movement of the storms and those that allow distinguishing their internal movement, pointing out their advantages and disadvantages in concrete meteorological situations. It is presented, for a chosen case of study, simple applications of two of these techniques. Finally, the utility of the moving frame of reference technique for obtaining the not observed wind components

  1. Modeling of plasma-sheet convection: implications for substorms

    International Nuclear Information System (INIS)

    Erickson, G.M.

    1985-01-01

    An answer is suggested to the question of why plasma and magnetic energy accumulate in the Earth's magnetotail to be released in sporadic events, namely substorms. It is shown that the idea of steady convection is inconsistent with the idea of slow, approximately lossless, plasma convection in a long, closed-field-line region that extends into a long magnetotail, such as occurs during Earthward convection in the Earth's plasma sheet. This inconsistency is argued generally and demonstrated specifically using several quantitative models of the Earth's magnetospheric magnetic field. These results suggest that plasma-sheet convection is necessarily time dependent. If flux tubes are to convect adiabatically earthward, the confining magnetic pressure in the tail lobes must increase with time, and the magnetotail must evolve into a more stretched configuration. Eventually, the magnetosphere must find some way to release plasma from inner-plasma-sheet flux tubes. This suggests an obvious role for the magnetospheric substorm in the convection process. To probe this process further, a two-dimensional, self-consistent, quasi-static convection model was developed. This model self consistently includes a dipole field and can reasonably account for the effects of inner-magnetospheric shielding

  2. Multiple Convective Cell Identification and Tracking Algorithm for documenting time-height evolution of measured polarimetric radar and lightning properties

    Science.gov (United States)

    Rosenfeld, D.; Hu, J.; Zhang, P.; Snyder, J.; Orville, R. E.; Ryzhkov, A.; Zrnic, D.; Williams, E.; Zhang, R.

    2017-12-01

    A methodology to track the evolution of the hydrometeors and electrification of convective cells is presented and applied to various convective clouds from warm showers to super-cells. The input radar data are obtained from the polarimetric NEXRAD weather radars, The information on cloud electrification is obtained from Lightning Mapping Arrays (LMA). The development time and height of the hydrometeors and electrification requires tracking the evolution and lifecycle of convective cells. A new methodology for Multi-Cell Identification and Tracking (MCIT) is presented in this study. This new algorithm is applied to time series of radar volume scans. A cell is defined as a local maximum in the Vertical Integrated Liquid (VIL), and the echo area is divided between cells using a watershed algorithm. The tracking of the cells between radar volume scans is done by identifying the two cells in consecutive radar scans that have maximum common VIL. The vertical profile of the polarimetric radar properties are used for constructing the time-height cross section of the cell properties around the peak reflectivity as a function of height. The LMA sources that occur within the cell area are integrated as a function of height as well for each time step, as determined by the radar volume scans. The result of the tracking can provide insights to the evolution of storms, hydrometer types, precipitation initiation and cloud electrification under different thermodynamic, aerosol and geographic conditions. The details of the MCIT algorithm, its products and their performance for different types of storm are described in this poster.

  3. Lightning Mapping Observations During DC3 in Northern Colorado

    Science.gov (United States)

    Krehbiel, P. R.; Rison, W.; Thomas, R. J.

    2012-12-01

    The Deep Convective Clouds and Chemistry Experiment (DC3) was conducted in three regions covered by Lightning Mapping Arrays (LMAs): Oklahoma and west Texas, northern Alabama, and northern Colorado. In this and a companion presentation, we discuss results obtained from the newly-deployed North Colorado LMA. The CO LMA revealed a surprising variety of lightning-inferred electrical structures, ranging from classic tripolar, normal polarity storms to several variations of anomalously electrified systems. Storms were often characterized by a pronounced lack or deficit of cloud-to-ground discharges (negative or positive), both in relative and absolute terms compared to the large amount of intracloud activity revealed by the LMA. Anomalous electrification was observed in small, localized storms as well as in large, deeply convective and severe storms. Another surprising observation was the frequent occurrence of embedded convection in the downwind anvil/outflow region of large storm systems. Observations of discharges in low flash rate situations over or near the network are sufficiently detailed to enable branching algorithms to estimate total channel lengths for modeling NOx production. However, this will not be possible in large or distant storm systems where the lightning was essentially continuous and structurally complex, or spatially noisy. Rather, a simple empirical metric for characterizing the lightning activity can be developed based on the number of located VHF radiation sources, weighted for example by the peak source power, source altitude, and temporal duration.

  4. Convective Self-Aggregation in Numerical Simulations: A Review

    Science.gov (United States)

    Wing, Allison A.; Emanuel, Kerry; Holloway, Christopher E.; Muller, Caroline

    Organized convection in the tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is ``self-aggregation,'' in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative-convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change.

  5. Thyrotoxicosis and Choledocholithiasis Masquerading as Thyroid Storm

    Directory of Open Access Journals (Sweden)

    Christian L. Horn

    2017-01-01

    Full Text Available A 26-year-old female, thirteen months postpartum, presented to the emergency department for four weeks of epigastric abdominal pain, pruritus, new onset jaundice, and 11.3 kgs (25 lbs unintentional weight loss. On examination, she was afebrile, tachycardic, alert, and oriented and had jaundice with scleral icterus. Labs were significant for undetectable TSH, FT4 that was too high to measure, and elevated total bilirubin, direct bilirubin, alkaline phosphatase, and transaminases. Abdominal ultrasound revealed cholelithiasis without biliary ductal dilation. Treatment for presumed thyroid storm was initiated. Further work-up with magnetic resonance cholangiopancreatography (MRCP revealed an obstructing cholelith within the distal common bile duct. With the presence of choledocholithiasis explaining the jaundice and abdominal pain, plus the absence of CNS alterations, the diagnosis of thyroid storm was revised to thyrotoxicosis complicated by choledocholithiasis. Endoscopic retrograde cholangiopancreatogram (ERCP with sphincterotomy was performed to alleviate the biliary obstruction, with prompt symptomatic improvement. Thyroid storm is a rare manifestation of hyperthyroidism with a high rate of morbidity and mortality. The diagnosis of thyroid storm is based on clinical examination, and abnormal thyroid function tests do not correlate with disease severity. Knowledge of the many manifestations of thyroid storm will facilitate a quick and accurate diagnosis and treatment.

  6. Short-Range prediction of a Mediterranean Severe weather event using EnKF: Configuration tests

    Science.gov (United States)

    Carrio Carrio, Diego Saul; Homar Santaner, Víctor

    2014-05-01

    The afternoon of 4th October 2007, severe damaging winds and torrential rainfall affected the Island of Mallorca. This storm produced F2-F3 tornadoes in the vicinity of Palma, with one person killed and estimated damages to property exceeding 10 M€. Several studies have analysed the meteorological context in which this episode unfolded, describing the formation of a train of multiple thunderstorms along a warm front and the evolution of a squall line organized from convective activity initiated offshore Murcia during that morning. Couhet et al. (2011) attributed the correct simulation of the convective system and particularly its organization as a squall line to the correct representation of a convergence line at low-levels over the Alboran Sea during the first hours of the day. The numerical prediction of mesoscale phenomena which initiates, organizes and evolves over the sea is an extremely demanding challenge of great importance for coastal regions. In this study, we investigate the skill of a mesoscale ensemble data assimilation system to predict the severe phenomena occurred on 4th October 2007. We use an Ensemble Kalman Filter which assimilates conventional (surface, radiosonde and AMDAR) data using the DART implementation from (NCAR). On the one hand, we analyse the potential of the assimilation cycle to advect critical observational data towards decisive data-void areas over the sea. Furthermore, we assess the sensitivity of the ensemble products to the ensemble size, grid resolution, assimilation period and physics diversity in the mesoscale model. In particular, we focus on the effect of these numerical configurations on the representation of the convective activity and the precipitation field, as valuable predictands of high impact weather. Results show that the 6-h EnKF assimilation period produces initial fields that successfully represent the environment in which initiation occurred and thus the derived numerical predictions render improved

  7. Tornadic storm avoidance behavior in breeding songbirds

    Science.gov (United States)

    Streby, Henry M.; Kramer, Gunnar R.; Peterson, Sean M.; Lehman, Justin A.; Buehler, David A.; Andersen, David E.

    2015-01-01

    Migration is a common behavior used by animals of many taxa to occupy different habitats during different periods. Migrant birds are categorized as either facultative (i.e., those that are forced to migrate by some proximal cue, often weather) or obligate (i.e., those that migrate on a regular cycle). During migration, obligate migrants can curtail or delay flights in response to inclement weather or until favorable winds prevail, and they can temporarily reorient or reverse direction when ecological or meteorological obstacles are encountered. However, it is not known whether obligate migrants undertake facultative migrations and make large-scale movements in response to proximal cues outside of their regular migration periods. Here, we present the first documentation of obligate long-distance migrant birds undertaking a facultative migration, wherein breeding golden-winged warblers (Vermivora chrysoptera) carrying light-level geolocators performed a >1,500 km 5-day circumvention of a severe tornadic storm. The birds evacuated their breeding territories >24 hr before the arrival of the storm and atmospheric variation associated with it. The probable cue, radiating >1,000 km from tornadic storms, perceived by birds and influencing bird behavior and movements, is infrasound (i.e., sound below the range of human hearing). With the predicted increase in severity and frequency of similar storms as anthropogenic climate change progresses, understanding large-scale behavioral responses of animals to such events will be an important objective of future research.

  8. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems

    Science.gov (United States)

    Astafyeva, E.; Yasyukevich, Yu.; Maksikov, A.; Zhivetiev, I.

    2014-07-01

    Using data of GPS receivers located worldwide, we analyze the quality of GPS performance during four geomagnetic storms of different intensity: two super-storms and two intense storms. We show that during super-storms the density of GPS Losses-of-Lock (LoL) increases up to 0.25% at L1 frequency and up to 3% at L2 frequency, and up to 0.15% (at L1) and 1% (at L2) during less intense storms. Also, depending on the intensity of the storm time ionospheric disturbances, the total number of total electron content (TEC) slips can exceed from 4 to 40 times the quiet time level. Both GPS LoL and TEC slips occur during abrupt changes of SYM-H index of geomagnetic activity, i.e., during the main phase of geomagnetic storms and during development of ionospheric storms. The main contribution in the total number of GPS LoL was found to be done by GPS sites located at low and high latitudes, whereas the area of numerous TEC slips seemed to mostly correspond to the boundary of the auroral oval, i.e., region with intensive ionospheric irregularities. Our global maps of TEC slips show where the regions with intense irregularities of electron density occur during geomagnetic storms and will let us in future predict appearance of GPS errors for geomagnetically disturbed conditions.

  9. Boundary Layer Control of Rotating Convection Systems

    Science.gov (United States)

    King, E. M.; Stellmach, S.; Noir, J.; Hansen, U.; Aurnou, J. M.

    2008-12-01

    Rotating convection is ubiquitous in the natural universe, and is likely responsible for planetary processes such magnetic field generation. Rapidly rotating convection is typically organized by the Coriolis force into tall, thin, coherent convection columns which are aligned with the axis of rotation. This organizational effect of rotation is thought to be responsible for the strength and structure of magnetic fields generated by convecting planetary interiors. As thermal forcing is increased, the relative influence of rotation weakens, and fully three-dimensional convection can exist. It has long been assumed that rotational effects will dominate convection dynamics when the ratio of buoyancy to the Coriolis force, the convective Rossby number, Roc, is less than unity. We investigate the influence of rotation on turbulent Rayleigh-Benard convection via a suite of coupled laboratory and numerical experiments over a broad parameter range: Rayleigh number, 10310; Ekman number, 10-6≤ E ≤ ∞; and Prandtl number, 1≤ Pr ≤ 100. In particular, we measure heat transfer (as characterized by the Nusselt number, Nu) as a function of the Rayleigh number for several different Ekman and Prandtl numbers. Two distinct heat transfer scaling regimes are identified: non-rotating style heat transfer, Nu ~ Ra2/7, and quasigeostrophic style heat transfer, Nu~ Ra6/5. The transition between the non-rotating regime and the rotationally dominant regime is described as a function of the Ekman number, E. We show that the regime transition depends not on the global force balance Roc, but on the relative thicknesses of the thermal and Ekman boundary layers. The transition scaling provides a predictive criterion for the applicability of convection models to natural systems such as Earth's core.

  10. Comprehensive Condition Survey and Storm Waves, Circulation, and Sediment Study, Dana Point Harbor, California

    Science.gov (United States)

    2014-12-01

    waters; 3) west to northwest local sea; 4) prefrontal local sea; 5) tropical storm swell; and 6) extratropical cyclone in the southern hemisphere...14-13 58 Prefrontal local sea The coastal zone within the south Orange County area is vulnerable under extratropical winter storm conditions (a...wave characteristics for severe extratropical storms during the 39 yr time period (1970–2008) are comparable to peak storm wave heights that were

  11. "Storms of crustal stress" and AE earthquake precursors

    Directory of Open Access Journals (Sweden)

    G. P. Gregori

    2010-02-01

    Full Text Available Acoustic emission (AE displays violent paroxysms preceding strong earthquakes, observed within some large area (several hundred kilometres wide around the epicentre. We call them "storms of crustal stress" or, briefly "crustal storms". A few case histories are discussed, all dealing with the Italian peninsula, and with the different behaviour shown by the AE records in the Cephalonia island (Greece, which is characterized by a different tectonic setting.

    AE is an effective tool for diagnosing the state of some wide slab of the Earth's crust, and for monitoring its evolution, by means of AE of different frequencies. The same effect ought to be detected being time-delayed, when referring to progressively lower frequencies. This results to be an effective check for validating the physical interpretation.

    Unlike a seismic event, which involves a much limited focal volume and therefore affects a restricted area on the Earth's surface, a "crustal storm" typically involves some large slab of lithosphere and crust. In general, it cannot be easily reckoned to any specific seismic event. An earthquake responds to strictly local rheological features of the crust, which are eventually activated, and become crucial, on the occasion of a "crustal storm". A "crustal storm" lasts typically few years, eventually involving several destructive earthquakes that hit at different times, at different sites, within that given lithospheric slab.

    Concerning the case histories that are here discussed, the lithospheric slab is identified with the Italian peninsula. During 1996–1997 a "crustal storm" was on, maybe elapsing until 2002 (we lack information for the period 1998–2001. Then, a quiet period occurred from 2002 until 26 May 2008, when a new "crustal storm" started, and by the end of 2009 it is still on. During the 1996–1997 "storm" two strong earthquakes occurred (Potenza and

  12. Proxy records of Holocene storm events in coastal barrier systems: Storm-wave induced markers

    Science.gov (United States)

    Goslin, Jérôme; Clemmensen, Lars B.

    2017-10-01

    Extreme storm events in the coastal zone are one of the main forcing agents of short-term coastal system behavior. As such, storms represent a major threat to human activities concentrated along the coasts worldwide. In order to better understand the frequency of extreme events like storms, climate science must rely on longer-time records than the century-scale records of instrumental weather data. Proxy records of storm-wave or storm-wind induced activity in coastal barrier systems deposits have been widely used worldwide in recent years to document past storm events during the last millennia. This review provides a detailed state-of-the-art compilation of the proxies available from coastal barrier systems to reconstruct Holocene storm chronologies (paleotempestology). The present paper aims (I) to describe the erosional and depositional processes caused by storm-wave action in barrier and back-barrier systems (i.e. beach ridges, storm scarps and washover deposits), (ii) to understand how storm records can be extracted from barrier and back-barrier sedimentary bodies using stratigraphical, sedimentological, micro-paleontological and geochemical proxies and (iii) to show how to obtain chronological control on past storm events recorded in the sedimentary successions. The challenges that paleotempestology studies still face in the reconstruction of representative and reliable storm-chronologies using these various proxies are discussed, and future research prospects are outlined.

  13. VHF/UHF radar observations of tropical mesoscale convective systems over southern India

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar

    2005-07-01

    Full Text Available Several campaigns have been carried out to study the convective systems over Gadanki (13.5° N, 79.2° E, a tropical station in India, using VHF and UHF radars. The height-time sections of several convective systems are investigated in detail to study reflectivity, turbulence and vertical velocity structure. Structure and dynamics of the convective systems are the main objectives of these campaigns. The observed systems are classified into single- and multi-cell systems. It has been observed that most of the convective systems at this latitude are multi-cellular in nature. Simultaneous VHF and UHF radar observations are used to classify the observed precipitating systems as convective, intermediary and stratiform regions. Composite height profiles of vertical velocities in these regions were obtained and the same were compared with the profiles obtained at other geographical locations. These composite profiles of vertical velocity in the convective regions have shown their peaks in the mid troposphere, indicating that the maximum latent heat is being released at those heights. These profiles are very important for numerical simulations of the convective systems, which vary significantly from one geographical location to the other.

    Keywords. Meteorology and atmospheric dynamics (Mesoscale meteorology; Convective processes – Radio science (Remote sensing

  14. VHF/UHF radar observations of tropical mesoscale convective systems over southern India

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar

    2005-07-01

    Full Text Available Several campaigns have been carried out to study the convective systems over Gadanki (13.5° N, 79.2° E, a tropical station in India, using VHF and UHF radars. The height-time sections of several convective systems are investigated in detail to study reflectivity, turbulence and vertical velocity structure. Structure and dynamics of the convective systems are the main objectives of these campaigns. The observed systems are classified into single- and multi-cell systems. It has been observed that most of the convective systems at this latitude are multi-cellular in nature. Simultaneous VHF and UHF radar observations are used to classify the observed precipitating systems as convective, intermediary and stratiform regions. Composite height profiles of vertical velocities in these regions were obtained and the same were compared with the profiles obtained at other geographical locations. These composite profiles of vertical velocity in the convective regions have shown their peaks in the mid troposphere, indicating that the maximum latent heat is being released at those heights. These profiles are very important for numerical simulations of the convective systems, which vary significantly from one geographical location to the other. Keywords. Meteorology and atmospheric dynamics (Mesoscale meteorology; Convective processes – Radio science (Remote sensing

  15. Climatological properties of summertime extra-tropical storm tracks in the Northern Hemisphere

    OpenAIRE

    Dos Santos Mesquita, Michel; Kvamstø, Nils Gunnar; Sorteberg, Asgeir; Atkinson, David E.

    2008-01-01

    This paper presents climatological properties of Northern Hemisphere summer extratropical storm tracks using data extracted from an existing, relative-vorticity-based storm database. This database was constructed using the NCEPNCAR ‘Reanalysis I’ data set from 1948 to 2002. Results contrasting summer and winter patterns for several storm parameters indicated general similarity at the largest scales, including the prominent track corridors of the middle latitude ocean regions and the mid-conti...

  16. Thyroid Echography-induced Thyroid Storm and Exacerbation of Acute Heart Failure.

    Science.gov (United States)

    Nakabayashi, Keisuke; Nakazawa, Naomi; Suzuki, Toshiaki; Asano, Ryotaro; Saito, Hideki; Nomura, Hidekimi; Isomura, Daichi; Okada, Hisayuki; Sugiura, Ryo; Oka, Toshiaki

    2016-01-01

    Hyperthyroidism and thyroid storm affect cardiac circulation in some conditions. Several factors including trauma can induce thyroid storms. We herein describe the case of a 57-year-old woman who experienced a thyroid storm and exacerbation of acute heart failure on thyroid echography. She initially demonstrated a good clinical course after medical rate control for atrial fibrillation; however, thyroid echography for evaluating hyperthyroidism led to a thyroid storm and she collapsed. A multidisciplinary approach stabilized her thyroid hormone levels and hemodynamics. Thus, the medical staff should be prepared for a deterioration in the patient's condition during thyroid echography in heart failure patients with hyperthyroidism.

  17. Thyroid storm complicated by fulminant hepatic failure: case report and literature review.

    Science.gov (United States)

    Hambleton, Catherine; Buell, Joseph; Saggi, Bob; Balart, Luis; Shores, Nathan J; Kandil, Emad

    2013-11-01

    Thyroid storm is a presentation of severe thyrotoxicosis that has a mortality rate of up to 20% to 30%. Fulminant hepatic failure (FHF) entails encephalopathy with severe coagulopathy in the setting of liver disease. It carries a high mortality rate, with an approximately 60% rate of overall survival for patients who undergo orthotopic liver transplantation (OLT). Fulminant hepatic failure is a rare but serious complication of thyroid storm. There have been only 6 previously reported cases of FHF with thyroid storm. We present a patient from our institution with thyroid storm and FHF. A literature review was performed to analyze the outcomes of the 6 additional cases of concomitant thyroid storm and FHF. Our patient underwent thyroidectomy followed by OLT. Her serum levels of thyroid-stimulating hormone, triiodothyronine, thyroxine, and transaminase normalized, and she was ready for discharge within 10 days of surgery. She has survived without complication. There is a 40% mortality rate for the reported patients treated medically with these conditions. Of the 7 total cases of reported FHF and thyroid storm, 2 patients died. Only 2 of the 7 patients underwent thyroidectomy and OLT--both at our institution. Both patients survived without complications. Thyroid storm and FHF each independently carry high mortality rates, and managing patients with both conditions simultaneously is an extraordinary challenge. These cases should compel clinicians to investigate liver function in hyperthyroid patients and to be wary of its rapid decline in patients who present in thyroid storm with symptoms of liver dysfunction. Patients with rapidly progressing thyroid storm and FHF should be considered for total thyroidectomy and OLT.

  18. Curcumin suppression of cytokine release and cytokine storm. A potential therapy for patients with Ebola and other severe viral infections.

    Science.gov (United States)

    Sordillo, Peter P; Helson, Lawrence

    2015-01-01

    The terminal stage of Ebola and other viral diseases is often the onset of a cytokine storm, the massive overproduction of cytokines by the body's immune system. The actions of curcumin in suppressing cytokine release and cytokine storm are discussed. Curcumin blocks cytokine release, most importantly the key pro-inflammatory cytokines, interleukin-1, interleukin-6 and tumor necrosis factor-α. The suppression of cytokine release by curcumin correlates with clinical improvement in experimental models of disease conditions where a cytokine storm plays a significant role in mortality. The use of curcumin should be investigated in patients with Ebola and cytokine storm. Intravenous formulations may allow achievement of therapeutic blood levels of curcumin. Copyright © 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. On the improvement of wave and storm surge hindcasts by downscaled atmospheric forcing: application to historical storms

    Science.gov (United States)

    Bresson, Émilie; Arbogast, Philippe; Aouf, Lotfi; Paradis, Denis; Kortcheva, Anna; Bogatchev, Andrey; Galabov, Vasko; Dimitrova, Marieta; Morvan, Guillaume; Ohl, Patrick; Tsenova, Boryana; Rabier, Florence

    2018-04-01

    Winds, waves and storm surges can inflict severe damage in coastal areas. In order to improve preparedness for such events, a better understanding of storm-induced coastal flooding episodes is necessary. To this end, this paper highlights the use of atmospheric downscaling techniques in order to improve wave and storm surge hindcasts. The downscaling techniques used here are based on existing European Centre for Medium-Range Weather Forecasts reanalyses (ERA-20C, ERA-40 and ERA-Interim). The results show that the 10 km resolution data forcing provided by a downscaled atmospheric model gives a better wave and surge hindcast compared to using data directly from the reanalysis. Furthermore, the analysis of the most extreme mid-latitude cyclones indicates that a four-dimensional blending approach improves the whole process, as it assimilates more small-scale processes in the initial conditions. Our approach has been successfully applied to ERA-20C (the 20th century reanalysis).

  20. Morphology of geomagnetic storms, recorded at Hurbanovo, and its relation to solar activity

    International Nuclear Information System (INIS)

    Ochabova, P.; Psenakova, M.

    1977-01-01

    The morphological structure of geomagnetic storms was investigated using the data on 414 storms, recorded in the years 1949 to 1968 at the Geomagnetic Observatory of Hurbanovo (phi=47.9 deg N, lambda=18.2 deg E). These data also formed a suitable basis for investigating the effect of the solar activity on the characteristic features of storms. The storm-time variation of the geomagnetic field was considered after the Sq-variation had been eliminated. The sets of storms, i.e. 263 storms recorded at a time of high sunspot activity and 151 storms recorded at a time of low activity, were divided into 7 groups, depending on the duration of their initial phase. In 92% of the investigated storms the increase in the horizontal component lasted from 0 to 15 hrs. The effect of the solar activity was markedly reflected in the occurrence of very severe storms, as well as in the maximum decrease in the H-component in the main phase. This can also be seen in the rate at which the storms recover. (author)

  1. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges.

    Science.gov (United States)

    Prein, Andreas F; Langhans, Wolfgang; Fosser, Giorgia; Ferrone, Andrew; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tölle, Merja; Gutjahr, Oliver; Feser, Frauke; Brisson, Erwan; Kollet, Stefan; Schmidli, Juerg; van Lipzig, Nicole P M; Leung, Ruby

    2015-06-01

    Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing 10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. In this study, we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.

  2. An Experimental Study on Rayleigh-Benard Natural Convection

    International Nuclear Information System (INIS)

    Moon, Je Young; Chung, Bum Jin

    2012-01-01

    Core melt in a severe accident condition, forms a molten pool in the reactor vessel lower head. The molten pool is divided by a metallic pool (top) and an oxide pool (bottom) by the density difference. Due to the decay heat generated in oxide pool, Rayleigh- Benard natural convection heated from below and cooled from above occurs in the metallic pool. Experiments were performed to investigate Rayleigh- Benard natural convection as a preparatory study before an in-depth severe accident study. The natural convection heat transfers were measured varying the plate separation distance and the area of plate with and without the side wall. Using the analogy concept, heat transfer experiments were replaced by mass transfer experiments. A cupric acid.copper sulfate (H 2 SO 4 -CuSO 4 ) electroplating system was adopted as the mass transfer system and the electric currents were measured rather than the heat

  3. Development of a parameterization scheme of mesoscale convective systems

    International Nuclear Information System (INIS)

    Cotton, W.R.

    1994-01-01

    The goal of this research is to develop a parameterization scheme of mesoscale convective systems (MCS) including diabatic heating, moisture and momentum transports, cloud formation, and precipitation. The approach is to: Perform explicit cloud-resolving simulation of MCSs; Perform statistical analyses of simulated MCSs to assist in fabricating a parameterization, calibrating coefficients, etc.; Test the parameterization scheme against independent field data measurements and in numerical weather prediction (NWP) models emulating general circulation model (GCM) grid resolution. Thus far we have formulated, calibrated, implemented and tested a deep convective engine against explicit Florida sea breeze convection and in coarse-grid regional simulations of mid-latitude and tropical MCSs. Several explicit simulations of MCSs have been completed, and several other are in progress. Analysis code is being written and run on the explicitly simulated data

  4. Analysis of synoptic situation for dust storms in Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jumaily, Kais J.; Ibrahim, Morwa K. [Department of Atmospheric Sciences, College of Science, Al-Mustansiriyah University, Baghdad (Iraq)

    2013-07-01

    Dust storms are considered major natural disasters that cause many damages to society and environment in Iraq and surrounded deserted regions. The aim of this research is to analyze and study the synoptic patterns leading to the formation of dust storms in Iraq. Analysis are based on satellite images, aerosols index and synoptic weather maps. Two severe dust storms occurred over Iraq on February 22, 2010, and on December 10, 2011 were analyzed. The results showed that dust storms form when a low-pressure system forms over Iran causing Shamal winds blow; they carry cool air from that region towards warmer regions like eastern Syria and Iraq. In some cases, this low-pressure system is followed by a high-pressure system brining more cold air to the region and pushing dust toward south. Dust storms are initiated from source regions near Iraq-Syria borders by the existence of negative vertical velocity, which causes dust particles to be lifted upwards, and the strong westerly wind drives dust to travel eastward.

  5. Solar radio continuum storms and a breathing magnetic field model. Final report

    International Nuclear Information System (INIS)

    1975-01-01

    Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms

  6. Toward an integrated storm surge application: ESA Storm Surge project

    Science.gov (United States)

    Lee, Boram; Donlon, Craig; Arino, Olivier

    2010-05-01

    Storm surges and their associated coastal inundation are major coastal marine hazards, both in tropical and extra-tropical areas. As sea level rises due to climate change, the impact of storm surges and associated extreme flooding may increase in low-lying countries and harbour cities. Of the 33 world cities predicted to have at least 8 million people by 2015, at least 21 of them are coastal including 8 of the 10 largest. They are highly vulnerable to coastal hazards including storm surges. Coastal inundation forecasting and warning systems depend on the crosscutting cooperation of different scientific disciplines and user communities. An integrated approach to storm surge, wave, sea-level and flood forecasting offers an optimal strategy for building improved operational forecasts and warnings capability for coastal inundation. The Earth Observation (EO) information from satellites has demonstrated high potential to enhanced coastal hazard monitoring, analysis, and forecasting; the GOCE geoid data can help calculating accurate positions of tide gauge stations within the GLOSS network. ASAR images has demonstrated usefulness in analysing hydrological situation in coastal zones with timely manner, when hazardous events occur. Wind speed and direction, which is the key parameters for storm surge forecasting and hindcasting, can be derived by using scatterometer data. The current issue is, although great deal of useful EO information and application tools exist, that sufficient user information on EO data availability is missing and that easy access supported by user applications and documentation is highly required. Clear documentation on the user requirements in support of improved storm surge forecasting and risk assessment is also needed at the present. The paper primarily addresses the requirements for data, models/technologies, and operational skills, based on the results from the recent Scientific and Technical Symposium on Storm Surges (www

  7. Explicit simulation of a midlatitude Mesoscale Convective System

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G.D.; Cotton, W.R. [Colorado State Univ., Fort Collins, CO (United States)

    1996-04-01

    We have explicitly simulated the mesoscale convective system (MCS) observed on 23-24 June 1985 during PRE-STORM, the Preliminary Regional Experiment for the Stormscale Operational and Research and Meterology Program. Stensrud and Maddox (1988), Johnson and Bartels (1992), and Bernstein and Johnson (1994) are among the researchers who have investigated various aspects of this MCS event. We have performed this MCS simulation (and a similar one of a tropical MCS; Alexander and Cotton 1994) in the spirit of the Global Energy and Water Cycle Experiment Cloud Systems Study (GCSS), in which cloud-resolving models are used to assist in the formulation and testing of cloud parameterization schemes for larger-scale models. In this paper, we describe (1) the nature of our 23-24 June MCS dimulation and (2) our efforts to date in using our explicit MCS simulations to assist in the development of a GCM parameterization for mesoscale flow branches. The paper is organized as follows. First, we discuss the synoptic situation surrounding the 23-24 June PRE-STORM MCS followed by a discussion of the model setup and results of our simulation. We then discuss the use of our MCS simulation. We then discuss the use of our MCS simulations in developing a GCM parameterization for mesoscale flow branches and summarize our results.

  8. Space weather effects on radio propagation: study of the CEDAR, GEM and ISTP storm events

    Directory of Open Access Journals (Sweden)

    D. V. Blagoveshchensky

    2008-06-01

    Full Text Available The impact of 14 geomagnetic storms from a list of CEDAR, GEM and ISTP storms, that occurred during 1997–1999, on radio propagation conditions has been investigated. The propagation conditions were estimated through variations of the MOF and LOF (the maximum and lowest operation frequencies on three high-latitude HF radio paths in north-west Russia. Geophysical data of Dst, Bz, AE as well as some riometer data from Sodankyla observatory, Finland, were used for the analysis. It was shown that the storm impact on the ionosphere and radio propagation for each storm has an individual character. Nevertheless, there are common patterns in variation of the propagation parameters for all storms. Thus, the frequency range Δ=MOF−LOF increases several hours before a storm, then it narrows sharply during the storm, and expands again several hours after the end of the storm. This regular behaviour should be useful for the HF radio propagation predictions and frequency management at high latitudes. On the trans-auroral radio path, the time interval when the signal is lost through a storm (tdes depends on the local time. For the day-time storms an average value tdes is 6 h, but for night storms tdes is only 2 h. The ionization increase in the F2 layer before storm onset is 3.5 h during the day-time and 2.4 h at night. Mechanisms to explain the observed variations are discussed including some novel possibilities involving energy input through the cusp.

  9. Impacts on coralligenous outcrop biodiversity of a dramatic coastal storm.

    Directory of Open Access Journals (Sweden)

    Núria Teixidó

    Full Text Available Extreme events are rare, stochastic perturbations that can cause abrupt and dramatic ecological change within a short period of time relative to the lifespan of organisms. Studies over time provide exceptional opportunities to detect the effects of extreme climatic events and to measure their impacts by quantifying rates of change at population and community levels. In this study, we show how an extreme storm event affected the dynamics of benthic coralligenous outcrops in the NW Mediterranean Sea using data acquired before (2006-2008 and after the impact (2009-2010 at four different sites. Storms of comparable severity have been documented to occur occasionally within periods of 50 years in the Mediterranean Sea. We assessed the effects derived from the storm comparing changes in benthic community composition at sites exposed to and sheltered from this extreme event. The sites analyzed showed different damage from severe to negligible. The most exposed and impacted site experienced a major shift immediately after the storm, represented by changes in the species richness and beta diversity of benthic species. This site also showed higher compositional variability immediately after the storm and over the following year. The loss of cover of benthic species resulted between 22% and 58%. The damage across these species (e.g. calcareous algae, sponges, anthozoans, bryozoans, tunicates was uneven, and those with fragile forms were the most impacted, showing cover losses up to 50 to 100%. Interestingly, small patches survived after the storm and began to grow slightly during the following year. In contrast, sheltered sites showed no significant changes in all the studied parameters, indicating no variations due to the storm. This study provides new insights into the responses to large and rare extreme events of Mediterranean communities with low dynamics and long-lived species, which are among the most threatened by the effects of global change.

  10. Storm Surge and Tide Interaction: A Complete Paradigm

    Science.gov (United States)

    Horsburgh, K.

    2014-12-01

    Estimates show that in 2005, in the largest 136 coastal cities, there were 40 million people and 3,000 billion of assets exposed to 1 in 100 year coastal flood events. Mean sea level rise will increase this exposure to 150 million people and 35,000 billion of assets by 2070. Any further change in the statistics of flood frequency or severity would impact severely on economic and social systems. It is therefore crucial to understand the physical drivers of extreme storm surges, and to have confidence in datasets used for extreme sea level statistics. Much previous research has focussed on the process of tide-surge interaction, and it is now widely accepted that the physical basis of tide-surge interaction is that a phase shift of the tidal signal represents the effect of the surge on the tide. The second aspect of interaction is that shallow water momentum considerations imply that differing tidal states should modulate surge generation: wind stress should have greater surge-generating potential on lower tides. We present results from a storm surge model of the European shelf that demonstrate that tidal range does have an effect on the surges generated. The cycle-integrated effects of wind stress (i.e. the skew surge) are greater when tidal range is low. Our results contradict the absence of any such correlation in tide gauge records. This suggests that whilst the modulating effect of the tide on the skew surge (the time-independent difference between peak prediction and observations) is significant, the difference between individual storms is dominant. This implies that forecasting systems must predict salient detail of the most intense storms. A further implication is that flood forecasting models need to simulate tides with acceptable accuracy at all coastal locations. We extend our model analysis to show that the same modulation of storm surges (by tidal conditions) applies to tropical cyclones. We conduct simulations using a mature operational storm surge model

  11. Healthcare4VideoStorm: Making Smart Decisions Based on Storm Metrics.

    Science.gov (United States)

    Zhang, Weishan; Duan, Pengcheng; Chen, Xiufeng; Lu, Qinghua

    2016-04-23

    Storm-based stream processing is widely used for real-time large-scale distributed processing. Knowing the run-time status and ensuring performance is critical to providing expected dependability for some applications, e.g., continuous video processing for security surveillance. The existing scheduling strategies' granularity is too coarse to have good performance, and mainly considers network resources without computing resources while scheduling. In this paper, we propose Healthcare4Storm, a framework that finds Storm insights based on Storm metrics to gain knowledge from the health status of an application, finally ending up with smart scheduling decisions. It takes into account both network and computing resources and conducts scheduling at a fine-grained level using tuples instead of topologies. The comprehensive evaluation shows that the proposed framework has good performance and can improve the dependability of the Storm-based applications.

  12. Development of VLF noise storm and its relation to dynamics of magnetosphere during geomagnetic storms

    International Nuclear Information System (INIS)

    Fedyakina, N.I.; Khorosheva, O.V.

    1989-01-01

    Dependence between the development of geomagnetic storm and VLF noise storm is studied. Two conditions should be met for the development of noise storm in VLF-hiss (f ≅ 0.5-10 kHz): a) threshold intensity of electron fluxes with E e > 40 keV in plasma layers; b) the presence of substorms resulting to widening of electron belt and its collision with cold plasma of plasmasphere. The noise storm at the fixed longitude begins about midnight independently of the phase of magnetic storm; Noise storm duration is connected with geomagnetic storm intensity by direct linear relationship

  13. Dynamic interactions between coastal storms and salt marshes: A review

    Science.gov (United States)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil K.; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    detrimental effect for marsh boundaries even during calm weather. On the other hand, when a violent storm causes substantial erosion but sediments are redistributed across nearby areas, the long term impact might not be as severe as if sediments were permanently lost from the system, and the salt marsh could easily recover to the initial state.

  14. Dynamic interactions between coastal storms and salt marshes: A review

    Science.gov (United States)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil Kamal; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    effect for marsh boundaries even during calm weather. On the other hand, when a violent storm causes substantial erosion but sediments are redistributed across nearby areas, the long term impact might not be as severe as if sediments were permanently lost from the system, and the salt marsh could easily recover to the initial state.

  15. Geomagnetic Storm Sudden Commencements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Storm Sudden Commencements (ssc) 1868 to present: STORM1 and STORM2 Lists: (Some text here is taken from the International Association of Geomagnetism and Aeronomy...

  16. Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity

    Science.gov (United States)

    Kiladis, G. N.; Biello, J. A.; Straub, K. H.

    2012-12-01

    It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG

  17. Overview and first results of the Wind and Storms Experiment (WASTEX): a field campaign to observe the formation of gusts using a Doppler lidar

    Science.gov (United States)

    Pantillon, Florian; Wieser, Andreas; Adler, Bianca; Corsmeier, Ulrich; Knippertz, Peter

    2018-05-01

    Wind gusts are responsible for most damages in winter storms over central Europe, but capturing their small scale and short duration is a challenge for both models and observations. This motivated the Wind and Storms Experiment (WASTEX) dedicated to investigate the formation of gusts during the passage of extratropical cyclones. The field campaign took place during the winter 2016-2017 on a former waste deposit located close to Karlsruhe in the Upper Rhine Valley in southwest Germany. Twelve extratropical cyclones were sampled during WASTEX with a Doppler lidar system performing vertical scans in the mean wind direction and complemented with a Doppler C-band radar and a 200 m instrumented tower. First results are provided here for the three most intense storms and include a potential sting jet, a unique direct observation of a convective gust and coherent boundary-layer structures of strong winds.

  18. What is the Relationship between the Solar Wind and Storms/Substorms?

    Science.gov (United States)

    Fairfield, D. H.; Burlaga, L. F.

    1999-01-01

    The interplanetary magnetic field (IMF) carried past the Earth by the solar wind has long been known to be the principal quantity that controls geomagnetic storms and substorms. Intervals of strong southward IMF with durations of at least a significant fraction of a day produce storms, while more typical, shorter intervals of less-intense southward fields produce substorms. The strong, long-duration southward fields are generally associated with coronal mass ejections and magnetic clouds or else they are produced by interplanetary dynamics initiated by fast solar wind flows that compress preexisting southward fields. Smaller, short-duration southward fields that occur on most days are related to long period waves, turbulence, or random variations in the IMF. Southward IMF enhances dayside reconnection between the IMF and the Earth's dipole with the reconnected field lines supplementing open field lines of the geomagnetic tail and producing an expanded polar cap and increased tail energy. Although the frequent storage of solar wind energy and its release during substorms is the most common mode of solar wind/magnetosphere interaction, under certain circumstances, steady southward IMF seems to produce intervals of relatively steady magnetosphere convection without substorms. During these latter times, the inner magnetosphere remains in a stressed tail-like state while the more distant magnetotail has larger northward field and more dipolar-like field lines. Recent evidence suggests that enhanced magnetosphere particle densities associated with enhanced solar wind densities allow more particles to be accelerated for the ring current, thus creating larger storms.

  19. Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach

    NARCIS (Netherlands)

    Angnuureng, Donatus Bapentire; Almar, Rafael; Senechal, Nadia; Castelle, Bruno; Addo, Kwasi Appeaning; Marieu, Vincent; Ranasinghe, Roshanka

    2017-01-01

    This study investigates the impact of individual storms and storm clusters on shoreline recovery for the meso-to macrotidal, barred Biscarrosse beach in SW France, using 6 years of daily video observations. While the study area experienced 60 storms during the 6-year study period, only 36 storms

  20. A deep belief network approach using VDRAS data for nowcasting

    Science.gov (United States)

    Han, Lei; Dai, Jie; Zhang, Wei; Zhang, Changjiang; Feng, Hanlei

    2018-04-01

    Nowcasting or very short-term forecasting convective storms is still a challenging problem due to the high nonlinearity and insufficient observation of convective weather. As the understanding of the physical mechanism of convective weather is also insufficient, the numerical weather model cannot predict convective storms well. Machine learning approaches provide a potential way to nowcast convective storms using various meteorological data. In this study, a deep belief network (DBN) is proposed to nowcast convective storms using the real-time re-analysis meteorological data. The nowcasting problem is formulated as a classification problem. The 3D meteorological variables are fed directly to the DBN with dimension of input layer 6*6*80. Three hidden layers are used in the DBN and the dimension of output layer is two. A box-moving method is presented to provide the input features containing the temporal and spatial information. The results show that the DNB can generate reasonable prediction results of the movement and growth of convective storms.

  1. The effects of storms and storm-generated currents on sand beaches in Southern Maine, USA

    Science.gov (United States)

    Hill, H.W.; Kelley, J.T.; Belknap, D.F.; Dickson, S.M.

    2004-01-01

    Storms are one of the most important controls on the cycle of erosion and accretion on beaches. Current meters placed in shoreface locations of Saco Bay and Wells Embayment, ME, recorded bottom currents during the winter months of 2000 and 2001, while teams of volunteers profiled the topography of nearby beaches. Coupling offshore meteorological and beach profile data made it possible to determine the response of nine beaches in southern Maine to various oceanographic and meteorological conditions. The beaches selected for profiling ranged from pristine to completely developed and permitted further examination of the role of seawalls on the response of beaches to storms. Current meters documented three unique types of storms: frontal passages, southwest storms, and northeast storms. In general, the current meter results indicate that frontal passages and southwest storms were responsible for bringing sediment towards the shore, while northeast storms resulted in a net movement of sediment away from the beach. During the 1999-2000 winter, there were a greater percentage of frontal passages and southwest storms, while during the 2000-2001 winter, there were more northeast storms. The sediment that was transported landward during the 1999-2000 winter was reworked into the berm along moderately and highly developed beaches during the next summer. A northeast storm on March 5-6, 2001, resulted in currents in excess of 1 m s-1 and wave heights that reached six meters. The storm persisted over 10 high tides and caused coastal flooding and property damage. Topographic profiles made before and after the storm demonstrate that developed beaches experienced a loss of sediment volume during the storm, while sediment was redistributed along the profile on moderately developed and undeveloped beaches. Two months after the storm, the profiles along the developed beaches had not reached their pre-storm elevation. In comparison, the moderately developed and undeveloped beaches

  2. Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent

    Science.gov (United States)

    Dong, Wenhao; Lin, Yanluan; Wright, Jonathon S.; Ming, Yi; Xie, Yuanyu; Wang, Bin; Luo, Yong; Huang, Wenyu; Huang, Jianbin; Wang, Lei; Tian, Lide; Peng, Yiran; Xu, Fanghua

    2016-01-01

    Despite the importance of precipitation and moisture transport over the Tibetan Plateau for glacier mass balance, river runoff and local ecology, changes in these quantities remain highly uncertain and poorly understood. Here we use observational data and model simulations to explore the close relationship between summer rainfall variability over the southwestern Tibetan Plateau (SWTP) and that over central-eastern India (CEI), which exists despite the separation of these two regions by the Himalayas. We show that this relationship is maintained primarily by ‘up-and-over' moisture transport, in which hydrometeors and moisture are lifted by convective storms over CEI and the Himalayan foothills and then swept over the SWTP by the mid-tropospheric circulation, rather than by upslope flow over the Himalayas. Sensitivity simulations confirm the importance of up-and-over transport at event scales, and an objective storm classification indicates that this pathway accounts for approximately half of total summer rainfall over the SWTP. PMID:26948491

  3. Electrical storm after CRT implantation treated by AV delay optimization.

    Science.gov (United States)

    Combes, Nicolas; Marijon, Eloi; Boveda, Serge; Albenque, Jean-Paul

    2010-02-01

    We present a case of symptomatic ischemic heart failure with an indication for cardiac resynchronization and implantable cardiac defibrillator therapy in primary prevention. After implantation, the patient developed a severe electrical storm with multiple shocks. Hemodynamic improvement based only on AV delay, guided by echocardiography and ECG, brought about a dramatic improvement in the situation. We discuss the pathophysiology of electrical storm occurring immediately after LV pacing.

  4. A comparative study of night-time enhancement of TEC at a low latitude station on storm and quiet nights including the local time, seasonal and solar activity dependence

    Directory of Open Access Journals (Sweden)

    K. Unnikrishnan

    Full Text Available The main characteristics of night-time enhancements in TEC during magnetic storms are compared with those during quiet nights for different seasons and solar activity conditions at Palehua, a low latitude station during the period 1980–1989. We find that the mean amplitude has both a seasonal and solar activity dependence: in winter, the values are higher for weak storms as compared to those during quiet nights and increase with an increase in solar activity. In summer, the mean amplitude values during weak storms and quiet nights are almost equal. But during equinox, the mean amplitude values for quiet nights are greater than those during weak storms. The mean half-amplitude duration is higher during weak storms as compared to that during quiet nights in summer. However, during winter and equinox, the durations are almost equal for both quiet and weak storm nights. For the mean half-amplitude duration, the quiet night values for all the seasons and equinoctial weak storm values increase with an increase in solar activity. The occurrence frequency (in percent of TEC enhancement during weak storms is greater than during quiet nights for all seasons. The mean amplitude, the mean half-amplitude duration and the occurrence frequency (in percent of TEC enhancement values are higher during major storms as compared to those during quiet nights. The above parameters have their highest values during pre-midnight hours. From the data analysed, this behaviour is true in the case of major storms also.

    Key words. Ionosphere (ionospheric disturbances; plasma convection Magnetospheric physics (storms and substorms

  5. Understanding the Relationships Between Lightning, Cloud Microphysics, and Airborne Radar-derived Storm Structure During Hurricane Karl (2010)

    Science.gov (United States)

    Reinhart, Brad; Fuelberg, Henry; Blakeslee, Richard; Mach, Douglas; Heymsfield, Andrew; Bansemer, Aaron; Durden, Stephen L.; Tanelli, Simone; Heymsfield, Gerald; Lambrigtsen, Bjorn

    2013-01-01

    This study explores relationships between lightning, cloud microphysics, and tropical cyclone (TC) storm structure in Hurricane Karl (16 September 2010) using data collected by the NASA DC-8 and Global Hawk (GH) aircraft during NASA's Genesis and Rapid Intensification Processes (GRIP) experiment. The research capitalizes on the unique opportunity provided by GRIP to synthesize multiple datasets from two aircraft and analyze the microphysical and kinematic properties of an electrified TC. Five coordinated flight legs through Karl by the DC-8 and GH are investigated, focusing on the inner-core region (within 50km of the storm center) where the lightning was concentrated and the aircraft were well coordinated. GRIP datasets are used to compare properties of electrified and nonelectrified inner-core regions that are related to the noninductive charging mechanism, which is widely accepted to explain the observed electric fields within thunderstorms. Three common characteristics of Karl's electrified regions are identified: 1) strong updrafts of 10-20ms21, 2) deep mixed-phase layers indicated by reflectivities.30 dBZ extending several kilometers above the freezing level, and 3) microphysical environments consisting of graupel, very small ice particles, and the inferred presence of supercooled water. These characteristics describe an environment favorable for in situ noninductive charging and, hence, TC electrification. The electrified regions in Karl's inner core are attributable to a microphysical environment that was conducive to electrification because of occasional, strong convective updrafts in the eyewall.

  6. Space weather effects on radio propagation: study of the CEDAR, GEM and ISTP storm events

    Directory of Open Access Journals (Sweden)

    D. V. Blagoveshchensky

    2008-06-01

    Full Text Available The impact of 14 geomagnetic storms from a list of CEDAR, GEM and ISTP storms, that occurred during 1997–1999, on radio propagation conditions has been investigated. The propagation conditions were estimated through variations of the MOF and LOF (the maximum and lowest operation frequencies on three high-latitude HF radio paths in north-west Russia. Geophysical data of Dst, Bz, AE as well as some riometer data from Sodankyla observatory, Finland, were used for the analysis. It was shown that the storm impact on the ionosphere and radio propagation for each storm has an individual character. Nevertheless, there are common patterns in variation of the propagation parameters for all storms. Thus, the frequency range Δ=MOF−LOF increases several hours before a storm, then it narrows sharply during the storm, and expands again several hours after the end of the storm. This regular behaviour should be useful for the HF radio propagation predictions and frequency management at high latitudes. On the trans-auroral radio path, the time interval when the signal is lost through a storm (tdes depends on the local time. For the day-time storms an average value tdes is 6 h, but for night storms tdes is only 2 h. The ionization increase in the F2 layer before storm onset is 3.5 h during the day-time and 2.4 h at night. Mechanisms to explain the observed variations are discussed including some novel possibilities involving energy input through the cusp.

  7. Aerosol Effects on Microphysical Processes, Storm Structure, and Cold Pool Strength in Simulated Supercell Thunderstorms from VORTEX-2 and VORTEX-SE

    Science.gov (United States)

    Guo, M.; Dawson, D. T., II; Baldwin, M. E.; Mansell, E. R.

    2017-12-01

    The cloud condensation nuclei (CCN) concentration has been found to strongly affect microphysical, dynamical and thermodynamical processes in supercells and other deep convective storms. Moreover, recent simulation studies have shown aerosols effects differ between higher- and lower-CAPE environments. Owing to the known sensitivity of severe storms to microphysical differences, studying the impact of aerosols supercell storms different environments is of clear societal importance. Tornadic environments in the southwastern U.S. are generally characterized by lower magnitudes CAPE and deeper tropospheric moisture than those in the Great Plains. These two regions were the focus of Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX)-2 and VORTEX-Southeast (SE) field campaigns, respectively. In our study, we simulate several cases from VORTEX-2 and -SE with the Advanced Regional Prediction System (ARPS) Model at 6 different CCN concentrations (100-3000 cm-3). We use NSSL 3-moment microphysics parameterization schemeto explicitly predict precipitation particle size distributions and microphysirocess rates. Overall, storms under the higher-CAPE VORTEX-2 environments are more sensitiveto the change of CCN than those under the lower-CAPE VORTEX-SE environments. Updraft volume decreases as CCN increases for the VORTEX-2 cases, whereas the opposite is true but with a much weaker trend for the VORTEX-SE cases. Moreover, the cold pool strength drops dramatically as CCN surpasses 1000 cm-3n the VORTEX-2 cases but barely changes for the VORTEX-SE cases. Through a microphysics budget analysis, we show the change of the importance of ice processes is key to the differing sensitivities. in the VORTEX-2 cases, deposition to ice nuclei, cloud drop freezing and rain drop freezing in the upper levels (5-11km) contribute more to latent heating since more rain and cloud drops are lifted above the freezing level due to stronger updrafts. For CCN concentration over 1000

  8. Thyroid Storm Triggered by Strangulation in a Patient with Undiagnosed Graves’ Disease

    Directory of Open Access Journals (Sweden)

    Jorge I. Conte

    2018-01-01

    Full Text Available Thyroid storm is the life-threatening end-organ manifestation of severe thyrotoxicosis. If left untreated, thyroid storm may cause acute heart failure, multiorgan dysfunction, and death. A high degree of suspicion is necessary to make the diagnosis and start antithyroid medications to decrease mortality. Thyroid storm is generally seen in patients with Graves’ disease but should also be suspected in patients with fever, tachycardia, altered mental status, and risk factors including local trauma to the neck, such as strangulation. Based on our review, we report the first case of thyroid storm after strangulation as the presentation of previously undiagnosed Graves’ disease.

  9. [Electrical storm].

    Science.gov (United States)

    Barnay, C; Taieb, J; Morice, R

    2007-11-01

    Electrical storm is defined as repeated occurrence of severe ventricular arrhythmias requiring multiple cardioversions, two or more or three or more following different studies. The clinical aspect can sometimes be made of multiple, self aggravating, life threatening accesses. There are three main clinical circumstances of occurrence: in patients equipped with intracardiac defibrillators, during the acute phase of myocardial infarction and in Brugada syndrome. 10 to 15% of patients with cardiac defibrillators are subject to electrical storms in a period of two years. The causative arrhythmia is most often ventricular tachycardia than ventricular fibrillation, especially in secondary prevention and if the initial arrhythmias justifying the device was a ventricular tachycardia. Precipitaing factors are present in one third of cases, mainly acute heart failure, ionic disorders and arrhythmogenic drugs. Predictive factors are age, left ventricular ejection fractionelectrical shock in 50% of cases, antitachycardi stimulation in 30% and in 20% by association of the two. Treatment, after elimination of inappropriate shocks, is mainly based on beta-blockers and amiodarone, class I antiarrhythmics, lidocaïne or bretylium in some cases, and sedation pushed to general anesthesia in some cases. Radio-frequency ablation and even heart transplantation have been proposed in extreme cases. Quinidine has been proved efficient in cases of Brugada syndrome.

  10. In the Eye of the Storm: A Participatory Course on Coastal Storms

    Science.gov (United States)

    Curtis, Scott

    2013-01-01

    Storm disasters are amplified in the coastal environment due to population pressures and the power of the sea. The upper-division/graduate university course "Coastal Storms" was designed to equip future practitioners with the skills necessary to understand, respond to, and mitigate for these natural disasters. To accomplish this, "Coastal Storms"…

  11. Measuring and building resilience after big storms: Lessons learned from Super-Storm Sandy for the Harvey, Irma, Jose, and Maria coasts

    Science.gov (United States)

    Murdoch, P. S.; Penn, K. M.; Taylor, S. M.; Subramanian, B.; Bennett, R.

    2017-12-01

    As we recover from recent large storms, we need information to support increased environmental and socio-economic resilience of the Nation's coasts. Defining baseline conditions, tracking effects of mitigation actions, and measuring the uncertainty of resilience to future disturbance are essential so that the best management practices can be determined. The US Dept. of the Interior invested over $787 million dollars in 2013 to understand and mitigate coastal storm vulnerabilities and enhance resilience of the Northeast coast following Super-Storm Sandy. Several lessons-learned from that investment have direct application to mitigation and restoration needs following Hurricanes Harvey, Irma, Jose and Maria. New models of inundation, overwash, and erosion, developed during the Sandy projects have already been applied to coastlines before and after these recent storms. Results from wetland, beach, back-bay, estuary, and built-environment projects improved models of inundation and erosion from surge and waves. Tests of nature-based infrastructure for mitigating coastal disturbance yielded new concepts for best-practices. Ecological and socio-economic measurements established for detecting disturbance and tracking recovery provide baseline data critical to early detection of vulnerabilities. The Sandy lessons and preliminary applications on the recent storms could help define best-resilience practices before more costly mitigation or restoration efforts are required.

  12. Impacts of storm chronology on the morphological changes of the Formby beach and dune system, UK

    Science.gov (United States)

    Dissanayake, P.; Brown, J.; Karunarathna, H.

    2015-07-01

    Impacts of storm chronology within a storm cluster on beach/dune erosion are investigated by applying the state-of-the-art numerical model XBeach to the Sefton coast, northwest England. Six temporal storm clusters of different storm chronologies were formulated using three storms observed during the 2013/2014 winter. The storm power values of these three events nearly halve from the first to second event and from the second to third event. Cross-shore profile evolution was simulated in response to the tide, surge and wave forcing during these storms. The model was first calibrated against the available post-storm survey profiles. Cumulative impacts of beach/dune erosion during each storm cluster were simulated by using the post-storm profile of an event as the pre-storm profile for each subsequent event. For the largest event the water levels caused noticeable retreat of the dune toe due to the high water elevation. For the other events the greatest evolution occurs over the bar formations (erosion) and within the corresponding troughs (deposition) of the upper-beach profile. The sequence of events impacting the size of this ridge-runnel feature is important as it consequently changes the resilience of the system to the most extreme event that causes dune retreat. The highest erosion during each single storm event was always observed when that storm initialised the storm cluster. The most severe storm always resulted in the most erosion during each cluster, no matter when it occurred within the chronology, although the erosion volume due to this storm was reduced when it was not the primary event. The greatest cumulative cluster erosion occurred with increasing storm severity; however, the variability in cumulative cluster impact over a beach/dune cross section due to storm chronology is minimal. Initial storm impact can act to enhance or reduce the system resilience to subsequent impact, but overall the cumulative impact is controlled by the magnitude and number

  13. Validation of Storm Water Management Model Storm Control Measures Modules

    Science.gov (United States)

    Simon, M. A.; Platz, M. C.

    2017-12-01

    EPA's Storm Water Management Model (SWMM) is a computational code heavily relied upon by industry for the simulation of wastewater and stormwater infrastructure performance. Many municipalities are relying on SWMM results to design multi-billion-dollar, multi-decade infrastructure upgrades. Since the 1970's, EPA and others have developed five major releases, the most recent ones containing storm control measures modules for green infrastructure. The main objective of this study was to quantify the accuracy with which SWMM v5.1.10 simulates the hydrologic activity of previously monitored low impact developments. Model performance was evaluated with a mathematical comparison of outflow hydrographs and total outflow volumes, using empirical data and a multi-event, multi-objective calibration method. The calibration methodology utilized PEST++ Version 3, a parameter estimation tool, which aided in the selection of unmeasured hydrologic parameters. From the validation study and sensitivity analysis, several model improvements were identified to advance SWMM LID Module performance for permeable pavements, infiltration units and green roofs, and these were performed and reported herein. Overall, it was determined that SWMM can successfully simulate low impact development controls given accurate model confirmation, parameter measurement, and model calibration.

  14. Nippon Storm Study design

    Directory of Open Access Journals (Sweden)

    Takashi Kurita

    2012-10-01

    Full Text Available An understanding of the clinical aspects of electrical storm (E-storms in patients with implantable cardiac shock devices (ICSDs: ICDs or cardiac resynchronization therapy with defibrillator [CRT-D] may provide important information for clinical management of patients with ICSDs. The Nippon Storm Study was organized by the Japanese Heart Rhythm Society (JHRS and Japanese Society of Electrocardiology and was designed to prospectively collect a variety of data from patients with ICSDs, with a focus on the incidence of E-storms and clinical conditions for the occurrence of an E-storm. Forty main ICSD centers in Japan are participating in the present study. From 2002, the JHRS began to collect ICSD patient data using website registration (termed Japanese cardiac defibrillator therapy registration, or JCDTR. This investigation aims to collect data on and investigate the general parameters of patients with ICSDs, such as clinical backgrounds of the patients, purposes of implantation, complications during the implantation procedure, and incidence of appropriate and inappropriate therapies from the ICSD. The Nippon Storm Study was planned as a sub-study of the JCDTR with focus on E-storms. We aim to achieve registration of more than 1000 ICSD patients and complete follow-up data collection, with the assumption of a 5–10% incidence of E-storms during the 2-year follow-up.

  15. Convective aggregation in idealised models and realistic equatorial cases

    Science.gov (United States)

    Holloway, Chris

    2015-04-01

    Idealised explicit convection simulations of the Met Office Unified Model are shown to exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen previously in other models in several recent studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapour (CWV) field. To investigate the relevance of this behaviour to the real world, these idealized simulations are compared with five 15-day cases of real organized convection in the tropics, including multiple simulations of each case testing sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. Despite similar large-scale forcing via lateral boundary conditions, systematic differences in mean CWV, CWV distribution shape, and the length scale of CWV features are found between the different sensitivity runs, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations.

  16. [Thyrotoxic storm and myxedema coma].

    Science.gov (United States)

    Takasu, N

    1999-08-01

    Thyrotoxic or hyperthyroid storm is a grave, life-threatening, but relatively infrequent medical emergency. Immediate causes of death in this emergency are severe hyperpyrexia and pulmonary edema associated with arrhythmias, shock, and coma. This emergency is found in Graves' patients most frequently. Myxedema coma is an emergency clinical state caused by severe deficiency of thyroid hormones. This crisis represents the extreme expression of hypothyroidism. While it is quite useful to elicit a history of previous hypothyroidism, thyroid surgery, or radioactive iodine treatment, it is not obtainable.

  17. Navigating the storm: report and recommendations from the Atlantic Storm exercise.

    Science.gov (United States)

    Smith, Bradley T; Inglesby, Thomas V; Brimmer, Esther; Borio, Luciana; Franco, Crystal; Gronvall, Gigi Kwik; Kramer, Bradley; Maldin, Beth; Nuzzo, Jennifer B; Schuler, Ari; Stern, Scott; Henderson, Donald A; Larsen, Randall J; Hamilton, Daniel S; O'Toole, Tara

    2005-01-01

    Atlantic Storm was a tabletop exercise simulating a series of bioterrorism attacks on the transatlantic community. The exercise occurred on January 14, 2005, in Washington, DC, and was organized and convened by the Center for Biosecurity of UPMC, the Center for Transatlantic Relations of Johns Hopkins University, and the Transatlantic Biosecurity Network. Atlantic Storm portrayed a summit meeting of presidents, prime ministers, and other international leaders from both sides of the Atlantic Ocean in which they responded to a campaign of bioterrorist attacks in several countries. The summit principals, who were all current or former senior government leaders, were challenged to address issues such as attaining situational awareness in the wake of a bioattack, coping with scarcity of critical medical resources such as vaccine, deciding how to manage the movement of people across borders, and communicating with their publics. Atlantic Storm illustrated that much might be done in advance to minimize the illness and death, as well as the social, economic, and political disruption, that could be caused by an international epidemic, be it natural or the result of a bioterrorist attack. These lessons are especially timely given the growing concerns over the possibility of an avian influenza pandemic that would require an international response. However, international leaders cannot create the necessary response systems in the midst of a crisis. Medical, public health, and diplomatic response systems and critical medical resources (e.g., medicines and vaccines) must be in place before a bioattack occurs or a pandemic emerges.

  18. Deep depletions of total electron content associated with severe mid-latitude gigahertz scintillations during geomagnetic storms

    International Nuclear Information System (INIS)

    Ogawa, T.; Kumagai, H.

    1985-01-01

    Using 136-MHz Faraday rotation data obtained at three closely spaced stations, we present evidence that severe nightime gigahertz scintillations, which appear rarely at mid-latitudes around Japan only during geomagnetic storm conditions, are closely associated with deep depletions of total electron content (TEC). The TEC depletions amount to 2--8 x 10 16 el/m 2 (10--30% of the background TEC), and their durations range from 10 min to 1 hour. These depletions move northeastward or eastward with velocities between 60 and 260 m/s. The depletions are probably not counterparts of the equatorial bubbles but seem to be formed in localized regions around Japan under complicated and peculiar ionospheric conditions. There is an indication that the oscillation of the F region caused by large-scale TID's propagating from north to south (approx.600 m/s) may initiate the generation of the depletion

  19. Storm-surge flooding on the Yukon-Kuskokwim Delta, Alaska

    Science.gov (United States)

    Terenzi, John; Ely, Craig R.; Jorgenson, M. Torre

    2014-01-01

    Coastal regions of Alaska are regularly affected by intense storms of ocean origin, the frequency and intensity of which are expected to increase as a result of global climate change. The Yukon-Kuskokwim Delta (YKD), situated in western Alaska on the eastern edge of the Bering Sea, is one of the largest deltaic systems in North America. Its low relief makes it especially susceptible to storm-driven flood tides and increases in sea level. Little information exists on the extent of flooding caused by storm surges in western Alaska and its effects on salinization, shoreline erosion, permafrost thaw, vegetation, wildlife, and the subsistence-based economy. In this paper, we summarize storm flooding events in the Bering Sea region of western Alaska during 1913 – 2011 and map both the extent of inland flooding caused by autumn storms on the central YKD, using Radarsat-1 and MODIS satellite imagery, and the drift lines, using high-resolution IKONOS satellite imagery and field surveys. The largest storm surges occurred in autumn and were associated with high tides and strong (> 65 km hr-1) southwest winds. Maximum inland extent of flooding from storm surges was 30.3 km in 2005, 27.4 km in 2006, and 32.3 km in 2011, with total flood area covering 47.1%, 32.5%, and 39.4% of the 6730 km2 study area, respectively. Peak stages for the 2005 and 2011 storms were 3.1 m and 3.3 m above mean sea level, respectively—almost as high as the 3.5 m amsl elevation estimated for the largest storm observed (in November 1974). Several historically abandoned village sites lie within the area of inundation of the largest flood events. With projected sea level rise, large storms are expected to become more frequent and cover larger areas, with deleterious effects on freshwater ponds, non-saline habitats, permafrost, and landscapes used by nesting birds and local people.

  20. The application of Rapid Scan data to the Convective Rainfall Rate algorithm from SAF NWC for the area of the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Bližňák, Vojtěch; Sokol, Zbyněk; Pešice, Petr

    2014-01-01

    Roč. 144, July 2014 (2014), s. 82-94 ISSN 0169-8095 R&D Projects: GA MŠk LD11044; GA MŠk ME09033; GA ČR GA205/07/0905 Institutional support: RVO:68378289 Keywords : meteorological satellite * weather radar * convective storm * satellite precipitation estimates * CRR algorithm * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.844, year: 2014 http://www.sciencedirect.com/science/article/pii/S0169809512002724

  1. Winter storm intensity, hazards, and property losses in the New York tristate area.

    Science.gov (United States)

    Shimkus, Cari E; Ting, Mingfang; Booth, James F; Adamo, Susana B; Madajewicz, Malgosia; Kushnir, Yochanan; Rieder, Harald E

    2017-07-01

    Winter storms pose numerous hazards to the Northeast United States, including rain, snow, strong wind, and flooding. These hazards can cause millions of dollars in damages from one storm alone. This study investigates meteorological intensity and impacts of winter storms from 2001 to 2014 on coastal counties in Connecticut, New Jersey, and New York and underscores the consequences of winter storms. The study selected 70 winter storms on the basis of station observations of surface wind strength, heavy precipitation, high storm tide, and snow extremes. Storm rankings differed between measures, suggesting that intensity is not easily defined with a single metric. Several storms fell into two or more categories (multiple-category storms). Following storm selection, property damages were examined to determine which types lead to high losses. The analysis of hazards (or events) and associated damages using the Storm Events Database of the National Centers for Environmental Information indicates that multiple-category storms were responsible for a greater portion of the damage. Flooding was responsible for the highest losses, but no discernible connection exists between the number of storms that afflict a county and the damage it faces. These results imply that losses may rely more on the incidence of specific hazards, infrastructure types, and property values, which vary throughout the region. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  2. Impact of different parameterization schemes on simulation of mesoscale convective system over south-east India

    Science.gov (United States)

    Madhulatha, A.; Rajeevan, M.

    2018-02-01

    Main objective of the present paper is to examine the role of various parameterization schemes in simulating the evolution of mesoscale convective system (MCS) occurred over south-east India. Using the Weather Research and Forecasting (WRF) model, numerical experiments are conducted by considering various planetary boundary layer, microphysics, and cumulus parameterization schemes. Performances of different schemes are evaluated by examining boundary layer, reflectivity, and precipitation features of MCS using ground-based and satellite observations. Among various physical parameterization schemes, Mellor-Yamada-Janjic (MYJ) boundary layer scheme is able to produce deep boundary layer height by simulating warm temperatures necessary for storm initiation; Thompson (THM) microphysics scheme is capable to simulate the reflectivity by reasonable distribution of different hydrometeors during various stages of system; Betts-Miller-Janjic (BMJ) cumulus scheme is able to capture the precipitation by proper representation of convective instability associated with MCS. Present analysis suggests that MYJ, a local turbulent kinetic energy boundary layer scheme, which accounts strong vertical mixing; THM, a six-class hybrid moment microphysics scheme, which considers number concentration along with mixing ratio of rain hydrometeors; and BMJ, a closure cumulus scheme, which adjusts thermodynamic profiles based on climatological profiles might have contributed for better performance of respective model simulations. Numerical simulation carried out using the above combination of schemes is able to capture storm initiation, propagation, surface variations, thermodynamic structure, and precipitation features reasonably well. This study clearly demonstrates that the simulation of MCS characteristics is highly sensitive to the choice of parameterization schemes.

  3. Biological effects of geomagnetic storms

    International Nuclear Information System (INIS)

    Chibisov, S.M.; Breus, T.K.; Levitin, A.E.; Drogova, G.M.; AN SSSR, Moscow; AN SSSR, Moscow

    1995-01-01

    Six physiological parameters of cardio-vascular system of rabbits and ultrastructure of cardiomyocytes were investigated during two planetary geomagnetic storms. At the initial and main phase of the storm the normal circadian structure in each cardiovascular parameter was lost. The disynchronozis was growing together with the storm and abrupt drop of cardia activity was observed during the main phase of storm. The main phase of storm followed by the destruction and degradation of cardiomyocytes. Parameters of cardia activity became substantially synchronized and characterized by circadian rhythm structure while the amplitude of deviations was still significant at the recovery stage of geomagnetic storm. 3 refs.; 7 figs

  4. Solar wind-magnetosphere coupling during intense magnetic storms (1978--1979)

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Tsurutani, B.T.; Gonzalez, A.L.C.; Smith, E.J.; Tang, F.; Akasofu, S.

    1989-01-01

    The solar wind-magnetosphere coupling problem is investigated for the ten intense magnetic storms (Dst <-100 nT) that occurred during the 500 days (August 16, 1978 to December 28, 1979) studied by Gonzalez and Tsurutani [1987]. This investigation concentrates on the ring current energization in terms of solar wind parameters, in order to explain the | -Dst | growth observed during these storms. Thus several coupling functions are tested as energy input and several sets of the ring current decay time-constant τ are searched to find best correlations with the Dst response. From the fairly large correlation coefficients found in this study, there is strong evidence that large scale magnetopause reconnection operates during such intense storm events and that the solar wind ram pressure plays an important role in the ring current energization. Thus a ram pressure correction factor is suggested for expressions concerning the reconnection power during time intervals with large ram pressure variations

  5. Coping with EPA's new petroleum industry storm water permits

    International Nuclear Information System (INIS)

    Veal, S.C.; Whitescarver, J.P.

    1994-01-01

    The United States Environmental Protection Agency has just released for public comment its so-called multi-sector industry specific storm water permit. This permit -- developed in response to the 730 group storm water permit applications submitted in 1992 to EPA -- proposes the establishment of specific runoff sampling and facility design requirements for at least two petroleum industry sectors. This proposed permit establishes specific conditions for the oil and gas extraction section (SIC group 13) and for lubricant manufacturers (SIC 2992). Permit conditions are also established for allied industrial sectors such as the chemical, transportation and asphalt materials industries. By most standards, the proposed permit is much tougher than EPA's baseline general permit for storm water discharges which was released in September of 1992. For example, under the proposal, most industries are required to perform periodic storm water sampling. EPA has also established storm water effluent and performance standards for several industrial categories. This paper will discuss the petroleum industry specific conditions of the new permit. The paper will also discuss the results of the industry-wide storm water sampling efforts undertaken by more than 300 oil patch facilities across the country. In particular, sampling results will be discussed in the context to the permit conditions proposed by EPA. The paper will also discuss strategies for dealing with the new permits

  6. Multivariate Hybrid Modelling of Future Wave-Storms at the Northwestern Black Sea

    Directory of Open Access Journals (Sweden)

    Jue Lin-Ye

    2018-02-01

    Full Text Available The characterization of future wave-storms and their relationship to large-scale climate can provide useful information for environmental or urban planning at coastal areas. A hybrid methodology (process-based and statistical was used to characterize the extreme wave-climate at the northwestern Black Sea. The Simulating WAve Nearshore spectral wave-model was employed to produce wave-climate projections, forced with wind-fields projections for two climate change scenarios: Representative Concentration Pathways (RCPs 4.5 and 8.5. A non-stationary multivariate statistical model was built, considering significant wave-height and peak-wave-period at the peak of the wave-storm, as well as storm total energy and storm-duration. The climate indices of the North Atlantic Oscillation, East Atlantic Pattern, and Scandinavian Pattern have been used as covariates to link to storminess, wave-storm threshold, and wave-storm components in the statistical model. The results show that, first, under both RCP scenarios, the mean values of significant wave-height and peak-wave-period at the peak of the wave-storm remain fairly constant over the 21st century. Second, the mean value of storm total energy is more markedly increasing in the RCP4.5 scenario than in the RCP8.5 scenario. Third, the mean value of storm-duration is increasing in the RCP4.5 scenario, as opposed to the constant trend in the RCP8.5 scenario. The variance of each wave-storm component increases when the corresponding mean value increases under both RCP scenarios. During the 21st century, the East Atlantic Pattern and changes in its pattern have a special influence on wave-storm conditions. Apart from the individual characteristics of each wave-storm component, wave-storms with both extreme energy and duration can be expected in the 21st century. The dependence between all the wave-storm components is moderate, but grows with time and, in general, the severe emission scenario of RCP8.5 presents

  7. High Resolution Hurricane Storm Surge and Inundation Modeling (Invited)

    Science.gov (United States)

    Luettich, R.; Westerink, J. J.

    2010-12-01

    Coastal counties are home to nearly 60% of the U.S. population and industry that accounts for over 16 million jobs and 10% of the U.S. annual gross domestic product. However, these areas are susceptible to some of the most destructive forces in nature, including tsunamis, floods, and severe storm-related hazards. Since 1900, tropical cyclones making landfall on the US Gulf of Mexico Coast have caused more than 9,000 deaths; nearly 2,000 deaths have occurred during the past half century. Tropical cyclone-related adjusted, annualized losses in the US have risen from 1.3 billion from 1949-1989, to 10.1 billion from 1990-1995, and $35.8 billion per year for the period 2001-2005. The risk associated with living and doing business in the coastal areas that are most susceptible to tropical cyclones is exacerbated by rising sea level and changes in the characteristics of severe storms associated with global climate change. In the five years since hurricane Katrina devastated the northern Gulf of Mexico Coast, considerable progress has been made in the development and utilization of high resolution coupled storm surge and wave models. Recent progress will be presented with the ADCIRC + SWAN storm surge and wave models. These tightly coupled models use a common unstructured grid in the horizontal that is capable of covering large areas while also providing high resolution (i.e., base resolution down to 20m plus smaller subgrid scale features such as sea walls and levees) in areas that are subject to surge and inundation. Hydrodynamic friction and overland winds are adjusted to account for local land cover. The models scale extremely well on modern high performance computers allowing rapid turnaround on large numbers of compute cores. The models have been adopted for FEMA National Flood Insurance Program studies, hurricane protection system design and risk analysis, and quasi-operational forecast systems for several regions of the country. They are also being evaluated as

  8. Thyroid storm and warm autoimmune hemolytic anemia.

    Science.gov (United States)

    Moore, Joseph A; Gliga, Louise; Nagalla, Srikanth

    2017-08-01

    Graves' disease is often associated with other autoimmune disorders, including rare associations with autoimmune hemolytic anemia (AIHA). We describe a unique presentation of thyroid storm and warm AIHA diagnosed concurrently in a young female with hyperthyroidism. The patient presented with nausea, vomiting, diarrhea and altered mental status. Laboratory studies revealed hemoglobin 3.9g/dL, platelets 171×10 9 L -1 , haptoglobin storm and warm AIHA. She was started on glucocorticoids to treat both warm AIHA and thyroid storm, as well as antithyroid medications, propranolol and folic acid. Due to profound anemia and hemodynamic instability, the patient was transfused two units of uncrossmatched packed red blood cells slowly and tolerated this well. She was discharged on methimazole as well as a prolonged prednisone taper, and achieved complete resolution of the thyrotoxicosis and anemia at one month. Hyperthyroidism can affect all three blood cell lineages of the hematopoietic system. Anemia can be seen in 10-20% of patients with thyrotoxicosis. Several autoimmune processes can lead to anemia in Graves' disease, including pernicious anemia, celiac disease, and warm AIHA. This case illustrates a rarely described presentation of a patient with Graves' disease presenting with concurrent thyroid storm and warm AIHA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Predictions of laminar natural convection in heated cavities

    International Nuclear Information System (INIS)

    Winters, K.H.

    1982-06-01

    Several examples of laminar, natural convection in heated cavities are discussed with illustrative calculations. These include convection in a square cavity at high Rayleigh number; in a narrow cavity at moderate aspect ratio; in a rectangular cavity heated from below; in a trapezoidal cavity, and in a rectangular cavity containing a conducting obstruction. The steady equations for the velocity, pressure and temperature are solved in the Boussinesq approximation, using a standard Galerkin formulation of the finite-element method. (author)

  10. Observations by the CUTLASS radar, HF Doppler, oblique ionospheric sounding, and TEC from GPS during a magnetic storm

    Directory of Open Access Journals (Sweden)

    D. V. Blagoveshchensky

    2005-07-01

    Full Text Available Multi-diagnostic observations, covering a significant area of northwest Europe, were made during the magnetic storm interval (28–29 April 2001 that occurred during the High Rate SolarMax IGS/GPS-campaign. HF radio observations were made with vertical sounders (St. Petersburg and Sodankyla, oblique incidence sounders (OIS, on paths from Murmansk to St. Petersburg, 1050 km, and Inskip to Leicester, 170 km, Doppler sounders, on paths from Cyprus to St. Petersburg, 2800 km, and Murmansk to St. Petersburg, and a coherent scatter radar (CUTLASS, Hankasalmi, Finland. These, together with total electron content (TEC measurements made at GPS stations from the Euref network in northwest Europe, are presented in this paper. A broad comparison of radio propagation data with ionospheric data at high and mid latitudes, under quiet and disturbed conditions, was undertaken. This analysis, together with a geophysical interpretation, allow us to better understand the nature of the ionospheric processes which occur during geomagnetic storms. The peculiarity of the storm was that it comprised of three individual substorms, the first of which appears to have been triggered by a compression of the magnetosphere. Besides the storm effects, we have also studied substorm effects in the observations separately, providing an improved understanding of the storm/substorm relationship. The main results of the investigations are the following. A narrow trough is formed some 10h after the storm onset in the TEC which is most likely a result of enhanced ionospheric convection. An enhancement in TEC some 2–3 h after the storm onset is most likely a result of heating and upwelling of the auroral ionosphere caused by enhanced currents. The so-called main effect on ionospheric propagation was observed at mid-latitudes during the first two substorms, but only during the first substorm at high latitudes. Ionospheric irregularities observed by CUTLASS were clearly related to the

  11. Ice storm '98: The electricity industry's great challenge

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The biggest and most costly natural disaster to hit Canada in over a century, the ice storms of 1998, that transformed Eastern Canada into a virtual glacier, was discussed. Trees, wires, poles, transmission towers, transformers succumbed to the immense weight of the ice, countless transmission and distribution lines were destroyed, leaving millions in the dark and cold, many for several weeks. The unprecedented show of solidarity within the electricity industry, as hundreds of crews from utilities across Canada and the U.S., the many thousands of private individuals and some 16,000 members of the Canadian Forces that came to the assistance of those in the affected areas, working 16-hour days, braving falling trees and sub-zero temperatures, was truly astonishing, and clearly the stuff of which legends are made. The storm has humbled Canadian public authorities and especially the Canadian electricity industry. Besides honoring those that weathered the storm, and paying tribute to the utilities and private companies that reached out to assist in the relief efforts, this review also discusses the need for government agencies and utility companies to review their emergency preparedness plans. The objective is to improve them by incorporating the most important lessons learned from this experience, in an effort to forestall their future recurrence. It is generally accepted that the Ice Storm of '98 was a unique natural disaster that no amount of planning could have foreseen, much less prevented. Nevertheless, by examining the lessons learned, it might be possible to reduce the severity should a similar disaster occur again

  12. [Thyroid emergencies : Thyroid storm and myxedema coma].

    Science.gov (United States)

    Spitzweg, C; Reincke, M; Gärtner, R

    2017-10-01

    Thyroid emergencies are rare life-threatening endocrine conditions resulting from either decompensated thyrotoxicosis (thyroid storm) or severe thyroid hormone deficiency (myxedema coma). Both conditions develop out of a long-standing undiagnosed or untreated hyper- or hypothyroidism, respectively, precipitated by an acute stress-associated event, such as infection, trauma, or surgery. Cardinal features of thyroid storm are myasthenia, cardiovascular symptoms, in particular tachycardia, as well as hyperthermia and central nervous system dysfunction. The diagnosis is made based on clinical criteria only as thyroid hormone measurements do not differentiate between thyroid storm and uncomplicated hyperthyroidism. In addition to critical care measures therapy focusses on inhibition of thyroid hormone synthesis and secretion (antithyroid drugs, perchlorate, Lugol's solution, cholestyramine, thyroidectomy) as well as inhibition of thyroid hormone effects in the periphery (β-blocker, glucocorticoids).Cardinal symptoms of myxedema coma are hypothermia, decreased mental status, and hypoventilation with risk of pneumonia and hyponatremia. The diagnosis is also purely based on clinical criteria as measurements of thyroid hormone levels do not differ between uncomplicated severe hypothyroidism and myxedema coma. In addition to substitution of thyroid hormones and glucocorticoids, therapy focusses on critical care measures to treat hypoventilation and hypercapnia, correction of hyponatremia and hypothermia.Survival of both thyroid emergencies can only be optimized by early diagnosis based on clinical criteria and prompt initiation of multimodal therapy including supportive measures and treatment of the precipitating event.

  13. Van Allen Probe Observations of Chorus Wave Activity, Source and Seed electrons, and the Radiation Belt Response During ICME and CIR Storms

    Science.gov (United States)

    Bingham, S.; Mouikis, C.; Kistler, L. M.; Farrugia, C. J.; Paulson, K. W.; Huang, C. L.; Boyd, A. J.; Spence, H. E.; Kletzing, C.

    2017-12-01

    Whistler mode chorus waves are electromagnetic waves that have been shown to be a major contributor to enhancements in the outer radiation belt during geomagnetic storms. The temperature anisotropy of source electrons (10s of keV) provides the free energy for chorus waves, which can accelerate sub-relativistic seed electrons (100s of keV) to relativistic energies. This study uses Van Allen Probe observations to examine the excitation and plasma conditions associated with chorus wave observations, the development of the seed population, and the outer radiation belt response in the inner magnetosphere, for 25 ICME and 35 CIR storms. Plasma data from the Helium Oxygen Proton Electron (HOPE) instrument and magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) are used to identify chorus wave activity and to model a linear theory based proxy for chorus wave growth. A superposed epoch analysis shows a peak of chorus wave power on the dawnside during the storm main phase that spreads towards noon during the storm recovery phase. According to the linear theory results, this wave activity is driven by the enhanced convection driving plasma sheet electrons across the dayside. Both ICME and CIR storms show comparable levels of wave growth. Plasma data from the Magnetic Electron Ion Spectrometer (MagEIS) and the Relativistic Electron Proton Telescope (REPT) are used to observe the seed and relativistic electrons. A superposed epoch analysis of seed and relativistic electrons vs. L shows radiation belt enhancements with much greater frequency in the ICME storms, coinciding with a much stronger and earlier seed electron enhancement in the ICME storms.

  14. Shifting Pacific storm tracks as stressors to ecosystems of western North America.

    Science.gov (United States)

    Dannenberg, Matthew P; Wise, Erika K

    2017-11-01

    Much of the precipitation delivered to western North America arrives during the cool season via midlatitude Pacific storm tracks, which may experience future shifts in response to climate change. Here, we assess the sensitivity of the hydroclimate and ecosystems of western North America to the latitudinal position of cool-season Pacific storm tracks. We calculated correlations between storm track variability and three hydroclimatic variables: gridded cool-season standardized precipitation-evapotranspiration index, April snow water equivalent, and water year streamflow from a network of USGS stream gauges. To assess how historical storm track variability affected ecosystem processes, we derived forest growth estimates from a large network of tree-ring widths and land surface phenology and wildfire estimates from remote sensing. From 1980 to 2014, cool-season storm tracks entered western North America between approximately 41°N and 53°N. Cool-season moisture supply and snowpack responded strongly to storm track position, with positive correlations to storm track latitude in eastern Alaska and northwestern Canada but negative correlations in the northwestern U.S. Ecosystems of the western United States were greener and more productive following winters with south-shifted storm tracks, while Canadian ecosystems were greener in years when the cool-season storm track was shifted to the north. On average, larger areas of the northwestern United States were burned by moderate to high severity wildfires when storm tracks were displaced north, and the average burn area per fire also tended to be higher in years with north-shifted storm tracks. These results suggest that projected shifts of Pacific storm tracks over the 21st century would likely alter hydroclimatic and ecological regimes in western North America, particularly in the northwestern United States, where moisture supply and ecosystem processes are highly sensitive to the position of cool-season storm tracks.

  15. IRI STORM validation over Europe

    Science.gov (United States)

    Haralambous, Haris; Vryonides, Photos; Demetrescu, Crişan; Dobrică, Venera; Maris, Georgeta; Ionescu, Diana

    2014-05-01

    The International Reference Ionosphere (IRI) model includes an empirical Storm-Time Ionospheric Correction Model (STORM) extension to account for storm-time changes of the F layer peak electron density (NmF2) during increased geomagnetic activity. This model extension is driven by past history values of the geomagnetic index ap (The magnetic index applied is the integral of ap over the previous 33 hours with a weighting function deduced from physically based modeling) and it adjusts the quiet-time F layer peak electron density (NmF2) to account for storm-time changes in the ionosphere. In this investigation manually scaled hourly values of NmF2 measured during the main and recovery phases of selected storms for the maximum solar activity period of the current solar cycle are compared with the predicted IRI-2012 NmF2 over European ionospheric stations using the STORM model option. Based on the comparison a subsequent performance evaluation of the STORM option during this period is quantified.

  16. Dynamics of a longitudinal current during a magnetic storm

    International Nuclear Information System (INIS)

    Dolginov, S.Sh.; Zhuzgov, L.N.; Kosacheva, V.P.; Strunnikova, L.N.; Tyurmina, L.O.; Sharova, V.A.; Shkol'nikova, S.I.

    1984-01-01

    Results, investigating a spatial distribution and the structure of longitudinal currents during a magnetic storm at 18-19.09.81, are presented. It is shown that during the main phase of the storm the large-scale current system expands to the equator, and current density increases. Inside the current layer and to the pole of it there appears intensive small scale longitudinal l currents. During magnetic storm restopation phase the current system segregates into several pairs of opposite directed currents. During further decreasing of geomagnetic activity the large-scale current system is restored+ and its center is shifted to the pole, longitudinal current density being decreased. The invariant width of longitudinal currents is decreased, while the magnitude, Dsub(st), being increased, that is connected to the displacement of an auroral oval to the equator

  17. Simulation of Flash-Flood-Producing Storm Events in Saudi Arabia Using the Weather Research and Forecasting Model

    KAUST Repository

    Deng, Liping

    2015-05-01

    The challenges of monitoring and forecasting flash-flood-producing storm events in data-sparse and arid regions are explored using the Weather Research and Forecasting (WRF) Model (version 3.5) in conjunction with a range of available satellite, in situ, and reanalysis data. Here, we focus on characterizing the initial synoptic features and examining the impact of model parameterization and resolution on the reproduction of a number of flood-producing rainfall events that occurred over the western Saudi Arabian city of Jeddah. Analysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data suggests that mesoscale convective systems associated with strong moisture convergence ahead of a trough were the major initial features for the occurrence of these intense rain events. The WRF Model was able to simulate the heavy rainfall, with driving convective processes well characterized by a high-resolution cloud-resolving model. The use of higher (1 km vs 5 km) resolution along the Jeddah coastline favors the simulation of local convective systems and adds value to the simulation of heavy rainfall, especially for deep-convection-related extreme values. At the 5-km resolution, corresponding to an intermediate study domain, simulation without a cumulus scheme led to the formation of deeper convective systems and enhanced rainfall around Jeddah, illustrating the need for careful model scheme selection in this transition resolution. In analysis of multiple nested WRF simulations (25, 5, and 1 km), localized volume and intensity of heavy rainfall together with the duration of rainstorms within the Jeddah catchment area were captured reasonably well, although there was evidence of some displacements of rainstorm events.

  18. International benchmark on the natural convection test in Phenix reactor

    International Nuclear Information System (INIS)

    Tenchine, D.; Pialla, D.; Fanning, T.H.; Thomas, J.W.; Chellapandi, P.; Shvetsov, Y.; Maas, L.; Jeong, H.-Y.; Mikityuk, K.; Chenu, A.; Mochizuki, H.; Monti, S.

    2013-01-01

    Highlights: ► Phenix main characteristics, instrumentation and natural convection test are described. ► “Blind” calculations and post-test calculations from all the participants to the benchmark are compared to reactor data. ► Lessons learned from the natural convection test and the associated calculations are discussed. -- Abstract: The French Phenix sodium cooled fast reactor (SFR) started operation in 1973 and was stopped in 2009. Before the reactor was definitively shutdown, several final tests were planned and performed, including a natural convection test in the primary circuit. During this natural convection test, the heat rejection provided by the steam generators was disabled, followed several minutes later by reactor scram and coast-down of the primary pumps. The International Atomic Energy Agency (IAEA) launched a Coordinated Research Project (CRP) named “control rod withdrawal and sodium natural circulation tests performed during the Phenix end-of-life experiments”. The overall purpose of the CRP was to improve the Member States’ analytical capabilities in the field of SFR safety. An international benchmark on the natural convection test was organized with “blind” calculations in a first step, then “post-test” calculations and sensitivity studies compared with reactor measurements. Eight organizations from seven Member States took part in the benchmark: ANL (USA), CEA (France), IGCAR (India), IPPE (Russian Federation), IRSN (France), KAERI (Korea), PSI (Switzerland) and University of Fukui (Japan). Each organization performed computations and contributed to the analysis and global recommendations. This paper summarizes the findings of the CRP benchmark exercise associated with the Phenix natural convection test, including blind calculations, post-test calculations and comparisons with measured data. General comments and recommendations are pointed out to improve future simulations of natural convection in SFRs

  19. A study of the effect of geomagnetic storms on low latitude whistlers

    International Nuclear Information System (INIS)

    Rao, Manoranjan; Somayajulu, V.V.; Dikshit, S.K.

    1974-01-01

    This paper presents the results of a detailed study of the influence of geomagnetic storms on low latitude whistlers recorded on ground. Studied in detail is the effect of the geomagnetic storm of March 6-10, 1970 on whistlers recorded at Gulmarg (Geomagnetic coordinates: 24 0 10'N; 147 0 24'E); results of analysis for the earlier storm of January 13-15, 1967 are included for comparison. Some of the important results of the present study are: (i) Both the whistler occurrence rate and dispersion increase simultaneously with Kp, (ii) During the decaying phase of the storm, changes in occurrence rate and in dispersion lag behind those in Kp, (iii) There is an indication of the existence of a cross-over latitude where tube contents may not change appreciably during storm periods, (iv) Multipath whistlers are observed only during disturbed conditions, (v) Duct life ranges between several hours to few days and (vi) Maximum number of ducts is observed during the main and recovery phases of the storm. (auth.)

  20. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  1. A review on regional convection permitting climate modeling

    Science.gov (United States)

    van Lipzig, Nicole; Prein, Andreas; Brisson, Erwan; Van Weverberg, Kwinten; Demuzere, Matthias; Saeed, Sajjad; Stengel, Martin

    2016-04-01

    With the increase of computational resources, it has recently become possible to perform climate model integrations where at least part the of convection is resolved. Since convection-permitting models (CPMs) are performing better than models where convection is parameterized, especially for high-impact weather like extreme precipitation, there is currently strong scientific progress in this research domain (Prein et al., 2015). Another advantage of CPMs, that have a horizontal grid spacing climate model COSMO-CLM is frequently applied for CPM simulations, due to its non-hydrostatic dynamics and open international network of scientists. This presentation consists of an overview of the recent progress in CPM, with a focus on COSMO-CLM. It consists of three parts, namely the discussion of i) critical components of CPM, ii) the added value of CPM in the present-day climate and iii) the difference in climate sensitivity in CPM compared to coarser scale models. In terms of added value, the CPMs especially improve the representation of precipitation's, diurnal cycle, intensity and spatial distribution. However, an in depth-evaluation of cloud properties with CCLM over Belgium indicates a strong underestimation of the cloud fraction, causing an overestimation of high temperature extremes (Brisson et al., 2016). In terms of climate sensitivity, the CPMs indicate a stronger increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains compared to coarser scale models. In conclusion, CPMs are a very promising tool for future climate research. However, additional efforts are necessary to overcome remaining deficiencies, like improving the cloud characteristics. This will be a challenging task due to compensating deficiencies that currently exist in `state-of-the-art' models, yielding a good representation of average climate conditions. In the light of using CPMs to study climate change it is necessary that these deficiencies

  2. A hybrid convection scheme for use in non-hydrostatic numerical weather prediction models

    Directory of Open Access Journals (Sweden)

    Volker Kuell

    2008-12-01

    Full Text Available The correct representation of convection in numerical weather prediction (NWP models is essential for quantitative precipitation forecasts. Due to its small horizontal scale convection usually has to be parameterized, e.g. by mass flux convection schemes. Classical schemes originally developed for use in coarse grid NWP models assume zero net convective mass flux, because the whole circulation of a convective cell is confined to the local grid column and all convective mass fluxes cancel out. However, in contemporary NWP models with grid sizes of a few kilometers this assumption becomes questionable, because here convection is partially resolved on the grid. To overcome this conceptual problem we propose a hybrid mass flux convection scheme (HYMACS in which only the convective updrafts and downdrafts are parameterized. The generation of the larger scale environmental subsidence, which may cover several grid columns, is transferred to the grid scale equations. This means that the convection scheme now has to generate a net convective mass flux exerting a direct dynamical forcing to the grid scale model via pressure gradient forces. The hybrid convection scheme implemented into the COSMO model of Deutscher Wetterdienst (DWD is tested in an idealized simulation of a sea breeze circulation initiating convection in a realistic manner. The results are compared with analogous simulations with the classical Tiedtke and Kain-Fritsch convection schemes.

  3. On the determination of the neutral drag coefficient in the convective boundary layer

    DEFF Research Database (Denmark)

    Grachev, A.A.; Fairall, C.W.; Larsen, Søren Ejling

    1998-01-01

    Based on the idea that free convection can be considered as a particular case of forced convection, where the gusts driven by the large-scale eddies are scaled with the Deardorff convective velocity scale, a new formulation for the neutral drag coefficient, C-Dn, in the convective boundary layer...... for mean wind speed less than about 2 m s(-1). The new approach also clarifies several contradictory results from earlier works. Some aspects related to an alternate definition of the neutral drag coefficient and the wind speed and the stress averaging procedure are considered....

  4. [Diagnosis and treatment of thyroid storm].

    Science.gov (United States)

    Akamizu, Takashi

    2012-11-01

    Thyrotoxic storm is a life-threatening condition requiring emergency treatment. Neither its epidemiological data nor diagnostic criteria have been fully established. We clarified the clinical and epidemiological characteristics of thyroid storm using nationwide surveys and then formulate diagnostic criteria for thyroid storm. To perform the nationwide survey on thyroid storm, we first developed tentative diagnostic criteria for thyroid storm, mainly based upon the literature (the first edition). We analyzed the relationship of the major features of thyroid storm to mortality and to certain other features. Finally, based upon the findings of these surveys, we revised the diagnostic criteria. Thyrotoxic storm is still a life-threatening disorder with over 10% mortality in Japan.

  5. Exceptional winter storms affecting Western Iberia and extremes: diagnosis, modelling and multi-model ensemble projection

    Science.gov (United States)

    Liberato, M. L. R.; Pinto, J. G.; Gil, V.; Ramos, A. M.; Trigo, R. M.

    2017-12-01

    Extratropical cyclones dominate autumn and winter weather over Western Europe and particularly over the Iberian Peninsula. Intense, high-impact storms are one of the major weather risks in the region, mostly due to the simultaneous occurrence of high winds and extreme precipitation events. These intense extratropical cyclones may result in windstorm damage, flooding and coastal storm surges, with large societal impacts. In Portugal, due to the extensive human use of coastal areas, the natural and built coastal environments have been amongst the most affected. In this work several historical winter storms that adversely affected the Western Iberian Peninsula are studied in detail in order to contribute to an improved assessment of the characteristics of these events. The diagnosis has been performed based on instrumental daily precipitation and wind records, on satellite images, on reanalysis data and through model simulations. For several examples the synoptic evolution and upper-level dynamics analysis of physical processes controlling the life cycle of extratropical storms associated with the triggering of the considered extreme events has also been accomplished. Furthermore, the space-time variability of the exceptionally severe storms affecting Western Iberia over the last century and under three climate scenarios (the historical simulation, the RCP4.5 and RCP8.5 scenarios) is presented. These studies contribute to improving the knowledge of atmospheric dynamics controlling the life cycle of midlatitude storms associated to severe weather (precipitation and wind) in the Iberian Peninsula. AcknowledgementsThis work is supported by the Portuguese Foundation for Science and Technology (FCT), Portugal, through project UID/GEO/50019/2013 - Instituto Dom Luiz. A. M. Ramos is also supported by a FCT postdoctoral grant (FCT/DFRH/SFRH/BPD/84328/2012).

  6. Observations and global numerical modelling of the St. Patrick's Day 2015 geomagnetic storm event

    Science.gov (United States)

    Foerster, M.; Prokhorov, B. E.; Doornbos, E.; Astafieva, E.; Zakharenkova, I.

    2017-12-01

    With a sudden storm commencement (SSC) at 04:45 UT on St. Patrick's day 2015 started the most severe geomagnetic storm in solar cycle 24. It appeared as a two-stage geomagnetic storm with a minimum SYM-H value of -233 nT. In the response to the storm commencement in the first activation, a short-term positive effect in the ionospheric vertical electron content (VTEC) occurred at low- and mid-latitudes on the dayside. The second phase commencing around 12:30 UT lasted longer and caused significant and complex storm-time changes around the globe with hemispherical different ionospheric storm reactions in different longitudinal ranges. Swarm-C observations of the neutral mass density variation along the orbital path as well as Langmuir probe plasma and magnetometer measurements of all three Swarm satellites and global TEC records are used for physical interpretations and modelling of the positive/negative storm scenario. These observations pose a challenge for the global numerical modelling of thermosphere-ionosphere storm processes as the storm, which occurred around spring equinox, obviously signify the existence of other impact factors than seasonal dependence for hemispheric asymmetries to occur. Numerical simulation trials using the Potsdam version of the Upper Atmosphere Model (UAM-P) are presented to explain these peculiar M-I-T storm processes.

  7. Environment, behavior and physiology: do birds use barometric pressure to predict storms?

    Science.gov (United States)

    Breuner, Creagh W; Sprague, Rachel S; Patterson, Stephen H; Woods, H Arthur

    2013-06-01

    Severe storms can pose a grave challenge to the temperature and energy homeostasis of small endothermic vertebrates. Storms are accompanied by lower temperatures and wind, increasing metabolic expenditure, and can inhibit foraging, thereby limiting energy intake. To avoid these potential problems, most endotherms have mechanisms for offsetting the energetic risks posed by storms. One possibility is to use cues to predict oncoming storms and to alter physiology and behavior in ways that make survival more likely. Barometric pressure declines predictably before inclement weather, and several lines of evidence indicate that animals alter behavior based on changes in ambient pressure. Here we examined the effects of declining barometric pressure on physiology and behavior in the white-crowned sparrow, Zonotrichia leucophrys. Using field data from a long-term study, we first evaluated the relationship between barometric pressure, storms and stress physiology in free-living white-crowned sparrows. We then manipulated barometric pressure experimentally in the laboratory and determined how it affects activity, food intake, metabolic rates and stress physiology. The field data showed declining barometric pressure in the 12-24 h preceding snowstorms, but we found no relationship between barometric pressure and stress physiology. The laboratory study showed that declining barometric pressure stimulated food intake, but had no effect on metabolic rate or stress physiology. These data suggest that white-crowned sparrows can sense and respond to declining barometric pressure, and we propose that such an ability may be common in wild vertebrates, especially small ones for whom individual storms can be life-threatening events.

  8. Terminal project heat convection in thin cylinders

    International Nuclear Information System (INIS)

    Morales Corona, J.

    1992-01-01

    Heat convection in thin cylinders and analysis about natural convection for straight vertical plates, and straight vertical cylinders submersed in a fluid are presented some works carry out by different authors in the field of heat transfer. In the part of conduction, deduction of the equation of heat conduction in cylindrical coordinates by means of energy balance in a control volume is presented. Enthalpy and internal energy are used for the outlining of the equation and finally the equation in its vectorial form is obtained. In the convection part development to calculate the Nusselt number for a straight vertical plate by a forces analysis, an energy balance and mass conservation over a control volume is outlined. Several empiric correlations to calculate the Nusselt number and its relations with other dimensionless numbers are presented. In the experimental part the way in which a prototype rode is assembled is presented measurements of temperatures attained in steady state and in free convection for working fluids as air and water are showed in tables. Also graphs of Nusselt numbers obtained in the experimental way through some empiric correlations are showed (Author)

  9. Vulnerability assessment of storm surges in the coastal area of Guangdong Province

    Directory of Open Access Journals (Sweden)

    K. Li

    2011-07-01

    Full Text Available Being bordered by the South China Sea and with long coastline, the coastal zone of Guangdong Province is often under severe risk of storm surges, as one of a few regions in China which is seriously threatened by storm surges. This article systematically analyzes the vulnerability factors of storm surges in the coastal area of Guangdong (from Yangjing to Shanwei. Five vulnerability assessment indicators of hazard-bearing bodies are proposed, which are social economic index, land use index, eco-environmental index, coastal construction index, and disaster-bearing capability index. Then storm surge vulnerability assessment index system in the coastal area of Guangdong is established. Additionally, the international general mode about coastal vulnerability assessment is improved, and the vulnerability evolution model of storm surges in the coastal area of Guangdong is constructed. Using ArcGIS, the vulnerability zoning map of storm surges in the study region is drawn. Results show that there is the highest degree of storm surge vulnerability in Zhuhai, Panyu, and Taishan; second in Zhongshan, Dongguan, Huiyang, and Haifeng; third in Jiangmen, Shanwei, Yangjiang, and Yangdong; fourth in Baoan, Kaiping, and Enping; and lowest in Guangzhou, Shunde, Shenzhen, and Longgang. This study on the risk of storm surges in these coastal cities can guide the land use of coastal cities in the future, and provide scientific advice for the government to prevent and mitigate the storm surge disasters. It has important theoretical and practical significance.

  10. Influence of storm characteristics on soil erosion and storm runoff

    Science.gov (United States)

    Johnny M. III Grace

    2008-01-01

    Unpaved forest roads can be major sources of sediment from forested watersheds. Storm runoff from forest roads are a concern due to their potential delivery of sediments and nutrients to stream systems resulting in degraded water quality. The volume and sediment concentrations of stormwater runoff emanating from forest roads can be greatly influenced by storm...

  11. Convection Weather Detection by General Aviation Pilots with Convectional and Data-Linked Graphical Weather Information Sources

    Science.gov (United States)

    Chamberlain, James P.; Latorella, Kara A.

    2001-01-01

    This study compares how well general aviation (GA) pilots detect convective weather in flight with different weather information sources. A flight test was conducted in which GA pilot test subjects were given different in-flight weather information cues and flown toward convective weather of moderate or greater intensity. The test subjects were not actually flying the aircraft, but were given pilot tasks representative of the workload and position awareness requirements of the en route portion of a cross country GA flight. On each flight, one test subject received weather cues typical of a flight in visual meteorological conditions (VMC), another received cues typical of flight in instrument meteorological conditions (IMC), and a third received cues typical of flight in IMC but augmented with a graphical weather information system (GWIS). The GWIS provided the subject with near real time data-linked weather products, including a weather radar mosaic superimposed on a moving map with a symbol depicting the aircraft's present position and direction of track. At several points during each flight, the test subjects completed short questionnaires which included items addressing their weather situation awareness and flight decisions. In particular, test subjects were asked to identify the location of the nearest convective cells. After the point of nearest approach to convective weather, the test subjects were asked to draw the location of convective weather on an aeronautical chart, along with the aircraft's present position. This paper reports preliminary results on how accurately test subjects provided with these different weather sources could identify the nearest cell of moderate or greater intensity along their route of flight. Additional flight tests are currently being conducted to complete the data set.

  12. Thermospheric storms and related ionospheric effects

    International Nuclear Information System (INIS)

    Chandra, S.; Spencer, N.W.

    1976-01-01

    A comparative study of thermospheric storms for the equinox and winter conditions is presented based on the neutral composition measurements from the Aeros-A Nate (Neutral Atmosphere Temperature Experiment) experiment. The main features of the two storms as inferred from the changes in N 2 , Ar, He, and O are described, and their implications to current theories of thermospheric storms are discussed. On the basis of the study of the F region critical frequency measured from a chain of ground-based ionospheric stations during the two storm periods, the general characteristics of the ionospheric storms and the traveling ionospheric disturbances are described. It is suggested that the positive and negative phases of ionospheric storms are the various manifestations of thermospheric storms

  13. Overview of the ARkStorm scenario

    Science.gov (United States)

    Porter, Keith; Wein, Anne; Alpers, Charles N.; Baez, Allan; Barnard, Patrick L.; Carter, James; Corsi, Alessandra; Costner, James; Cox, Dale; Das, Tapash; Dettinger, Mike; Done, James; Eadie, Charles; Eymann, Marcia; Ferris, Justin; Gunturi, Prasad; Hughes, Mimi; Jarrett, Robert; Johnson, Laurie; Le-Griffin, Hanh Dam; Mitchell, David; Morman, Suzette; Neiman, Paul; Olsen, Anna; Perry, Suzanne; Plumlee, Geoffrey; Ralph, Martin; Reynolds, David; Rose, Adam; Schaefer, Kathleen; Serakos, Julie; Siembieda, William; Stock, Jonathan; Strong, David; Wing, Ian Sue; Tang, Alex; Thomas, Pete; Topping, Ken; Wills, Chris; Jones, Lucile

    2011-01-01

    coastal communities. Windspeeds in some places reach 125 miles per hour, hurricane-force winds. Across wider areas of the state, winds reach 60 miles per hour. Hundreds of landslides damage roads, highways, and homes. Property damage exceeds $300 billion, most from flooding. Demand surge (an increase in labor rates and other repair costs after major natural disasters) could increase property losses by 20 percent. Agricultural losses and other costs to repair lifelines, dewater (drain) flooded islands, and repair damage from landslides, brings the total direct property loss to nearly $400 billion, of which $20 to $30 billion would be recoverable through public and commercial insurance. Power, water, sewer, and other lifelines experience damage that takes weeks or months to restore. Flooding evacuation could involve 1.5 million residents in the inland region and delta counties. Business interruption costs reach $325 billion in addition to the $400 property repair costs, meaning that an ARkStorm could cost on the order of $725 billion, which is nearly 3 times the loss deemed to be realistic by the ShakeOut authors for a severe southern California earthquake, an event with roughly the same annual occurrence probability. The ARkStorm has several public policy implications: (1) An ARkStorm raises serious questions about the ability of existing federal, state, and local disaster planning to handle a disaster of this magnitude. (2) A core policy issue raised is whether to pay now to mitigate, or pay a lot more later for recovery. (3) Innovative financing solutions are likely to be needed to avoid fiscal crisis and adequately fund response and recovery costs from a similar, real, disaster. (4) Responders and government managers at all levels could be encouraged to conduct risk assessments, and devise the full spectrum of exercises, to exercise ability of their plans to address a similar event. (5) ARkStorm can be a reference point for application of Federal Emergency Ma

  14. VT Ice Damage Assessment from the 1998 Ice Storm

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This dataset (ICEDAMAG98) depicts the extent and severity of tree damage caused by the 1998 ice storm, which resulted in extensive tree damage in...

  15. Case study: A severe hailstorm and strong downbursts over northeastern Slovenia on June 16th 2009

    Science.gov (United States)

    Korosec, M.

    2009-09-01

    a bow echo and also satellite imagery showed signs of extremely severe storm as overshooting tops, "cold ring" and "U-shape" features were observed. References - Skywarn Austria forum: (http://www.skywarn.at/forum/) - EARS radar and SFC observations archive (http://www.arso.gov.si) - EARS article: Porocilo o neurjih 16. junija 2009 - OSMER FVG (http://www.meteo.fvg.it) - ESSL/ESWD database (www.essl.org) - ESTOFEX convective maps (www.estofex.org) - EUMETSAT satellite imagery (www.eumetsat.int) - 24ur.com/RTVSLO web portal (www.24ur.com, www.rtvslo.si) - Sobota Info web portal (www.sobotainfo.com) - Pomurje web portal (www.pomurje.si) - Administration of the Republic of Slovenia for Civil Protection and Disaster Relief, www.sos112.si - Worldwide Skew-t diagrams (http://weather.uwyo.edu/upperair/europe.html)

  16. Solar cycle effect on geomagnetic storms caused by interplanetary magnetic clouds

    Directory of Open Access Journals (Sweden)

    C.-C. Wu

    2006-12-01

    Full Text Available We investigated geomagnetic activity which was induced by interplanetary magnetic clouds during the past four solar cycles, 1965–1998. We have found that the intensity of such geomagnetic storms is more severe in solar maximum than in solar minimum. In addition, we affirm that the average solar wind speed of magnetic clouds is faster in solar maximum than in solar minimum. In this study, we find that solar activity level plays a major role on the intensity of geomagnetic storms. In particular, some new statistical results are found and listed as follows. (1 The intensity of a geomagnetic storm in a solar active period is stronger than in a solar quiet period. (2 The magnitude of negative Bzmin is larger in a solar active period than in a quiet period. (3 Solar wind speed in an active period is faster than in a quiet period. (4 VBsmax in an active period is much larger than in a quiet period. (5 Solar wind parameters, Bzmin, Vmax and VBsmax are correlated well with geomagnetic storm intensity, Dstmin during a solar active period. (6 Solar wind parameters, Bzmin, and VBsmax are not correlated well (very poorly for Vmax with geomagnetic storm intensity during a solar quiet period. (7 The speed of the solar wind plays a key role in the correlation of solar wind parameters vs. the intensity of a geomagnetic storm. (8 More severe storms with Dstmin≤−100 nT caused by MCs occurred in the solar active period than in the solar quiet period.

  17. Vulnerability Assessment of Dust Storms in the United States under a Changing Climate Scenario

    Science.gov (United States)

    Severe weather events, such as flooding, drought, forest fires, and dust storms can have a serious impact on human health. Dust storm events are not well predicted in the United States, however they are expected to become more frequent as global climate warms through the 21st cen...

  18. Convection in Slab and Spheroidal Geometries

    Science.gov (United States)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  19. Impacts of Storm Surge Mitigation Strategies on Aboveground Storage Tank Chemical Spill Transport

    Science.gov (United States)

    Do, C.; Bass, B. J.; Bernier, C.; Samii, A.; Dawson, C.; Bedient, P. B.

    2017-12-01

    The Houston Ship Channel (HSC), located in the hurricane-prone Houston-Galveston region of the upper Texas Coast, is one of the busiest waterways in the United States and is home to one of the largest petrochemical complexes in the world. Due to the proximity of the HSC to Galveston Bay and the Gulf of Mexico, chemical spills resulting from storm surge damage to aboveground storage tanks (ASTs) pose serious threats to the environment, residential communities, and national/international markets whose activities in the HSC generate billions of dollars annually. In an effort to develop a comprehensive storm surge mitigation strategy for Galveston Bay and its constituents, Rice University's Severe Storm Prediction, Education, and Evacuation from Disasters Center proposed two structural storm surge mitigation concepts, the Mid Bay Structure (MBS) and the Lower Bay Structure (LBS) as components of the Houston-Galveston Area Protection System (H-GAPS) project. The MBS consists of levees along the HSC and a navigational gate across the channel, and the LBS consists of a navigation gate and environmental gates across Bolivar Road. The impacts of these two barrier systems on the fate of AST chemical spills in the HSC have previously been unknown. This study applies the coupled 2D SWAN+ADCIRC model to simulate hurricane storm surge circulation within the Gulf of Mexico and Galveston Bay due to a synthetic storm which results in approximately 250-year surge levels in Galveston Bay. The SWAN+ADCIRC model is run using high-resolution computational meshes that incorporate the MBS and LBS scenarios, separately. The resulting wind and water velocities are then fed into a Lagrangian particle transport model to simulate the spill trajectories of the ASTs most likely to fail during the 250-year proxy storm. Results from this study illustrate how each storm surge mitigation strategy impacts the transport of chemical spills (modeled as Lagrangian particles) during storm surge as

  20. The dual effect of vegetation green-up date and strong wind on the return period of spring dust storms.

    Science.gov (United States)

    Feng, Jieling; Li, Ning; Zhang, Zhengtao; Chen, Xi

    2017-08-15

    Vegetation phenology changes have been widely applied in the disaster risk assessments of the spring dust storms, and vegetation green-up date shifts have a strong influence on dust storms. However, the effect of earlier vegetation green-up dates due to climate warming on the evaluation of dust storms return periods remains an important, but poorly understood issue. In this study, we evaluate the spring dust storm return period (February to June) in Inner Mongolia, Northern China, using 165 observations of severe spring dust storm events from 16 weather stations, and regional vegetation green-up dates as an integrated factor from NDVI (Normalized Difference Vegetation Index), covering a period from 1982 to 2007, by building the bivariate Copula model. We found that the joint return period showed better fitting results than without considering the integrated factor when the actual dust storm return period is longer than 2years. Also, for extremely severe dust storm events, the gap between simulation result and actual return period can be narrowed up to 0.4888years by using integrated factor. Furthermore, the risk map based on the return period results shows that the Mandula, Zhurihe, Sunitezuoqi, Narenbaolige stations are identified as high risk areas. In this study area, land surface is extensively covered by grasses and shrubs, vegetation green-up date can play a significant role in restraining spring dust storm outbreaks. Therefore, we suggest that Copula method can become a useful tool for joint return period evaluation and risk analysis of severe dust storms. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Perfect storm: Therapeutic plasma exchange for a patient with thyroid storm.

    Science.gov (United States)

    McGonigle, Andrea M; Tobian, Aaron A R; Zink, Jennifer L; King, Karen E

    2018-02-01

    Thyroid storm is a potentially lethal complication of hyperthyroidism with increased thyroid hormones and exaggerated symptoms of thyrotoxicosis. First-line therapy includes methimazole (MMI) or propylthiouracil (PTU) to block production of thyroid hormones as a bridge toward definitive surgical treatment. Untreated thyroid storm has a mortality rate of up to 30%; this is particularly alarming when patients cannot tolerate or fail pharmacotherapy, especially if they cannot undergo thyroidectomy. Therapeutic plasma exchange (TPE) is an ASFA category III indication for thyroid storm, meaning the optimum role of this therapy is not established, and there are a limited number of cases in the literature. Yet TPE can remove T3 and T4 bound to albumin, autoantibodies, catecholamines and cytokines and is likely beneficial for these patients. We report a patient with thyroid storm who could not tolerate PTU, subsequently failed therapy with MMI, and was not appropriate for thyroidectomy. TPE was therefore performed daily for 4 days (1.0 plasma volume with 5% albumin replacement and 2 U of plasma). Over the treatment course, the patient's thyroid hormones normalized and symptoms of thyroid storm largely resolved; his T3 decreased from 2.27 to 0.81 ng/mL (normal 0.8-2.0), T4 decreased from 4.8 to 1.7 ng/mL (0.8-1.8), heart rate normalized, altered mental status improved, and he converted to normal sinus rhythm. He was ultimately discharged in euthyroid state. He experienced no side effects from his TPE procedures. TPE is a safe and effective treatment for thyroid storm when conventional treatments are not successful or appropriate. © 2017 Wiley Periodicals, Inc.

  2. The effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere: A case study

    Science.gov (United States)

    Yin, Yan; Chen, Qian; Jin, Lianji; Chen, Baojun; Zhu, Shichao; Zhang, Xiaopei

    2012-11-01

    A cloud resolving model coupled with a spectral bin microphysical scheme was used to investigate the effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere. A deep convective storm that occurred on 1 December, 2005 in Darwin, Australia was simulated, and was compared with available radar observations. The results showed that the radar echo of the storm in the developing stage was well reproduced by the model. Sensitivity tests for aerosol layers at different altitudes were conducted in order to understand how the concentration and size distribution of aerosol particles within the upper troposphere can be influenced by the vertical transport of aerosols as a result of deep convection. The results indicated that aerosols originating from the boundary layer can be more efficiently transported upward, as compared to those from the mid-troposphere, due to significantly increased vertical velocity through the reinforced homogeneous freezing of droplets. Precipitation increased when aerosol layers were lofted at different altitudes, except for the case where an aerosol layer appeared at 5.4-8.0 km, in which relatively more efficient heterogeneous ice nucleation and subsequent Wegener-Bergeron-Findeisen process resulted in more pronounced production of ice crystals, and prohibited the formation of graupel particles via accretion. Sensitivity tests revealed, at least for the cases considered, that the concentration of aerosol particles within the upper troposphere increased by a factor of 7.71, 5.36, and 5.16, respectively, when enhanced aerosol layers existed at 0-2.2 km, 2.2-5.4 km, and 5.4-8.0 km, with Aitken mode and a portion of accumulation mode (0.1-0.2μm) particles being the most susceptible to upward transport.

  3. Magnetic Storms at Mars and Earth

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Falkenberg, Thea Vilstrup

    In analogy with magnetic storms at the Earth, periods of significantly enhanced global magnetic activity also exist at Mars. The extensive database of magnetic measurements from Mars Global Surveyor (MGS), covering almost an entire solar cycle, is used in combination with geomagnetic activity...... indices at Earth to compare the occurrence of magnetic storms at Mars and Earth. Based on superposed epochs analysis the time-development of typical magnetic storms at Mars and Earth is described. In contradiction to storms at Earth, most magnetic storms at Mars are found to be associated...... with heliospheric current sheet crossings, where the IMF changes polarity. While most storms at the Earth occur due to significant southward excursions of the IMF associated with CMEs, at Mars most storms seem to be associated with the density enhancement of the heliospheric current sheet. Density enhancements...

  4. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  5. Multidecadal Scale Detection Time for Potentially Increasing Atlantic Storm Surges in a Warming Climate

    Science.gov (United States)

    Lee, Benjamin Seiyon; Haran, Murali; Keller, Klaus

    2017-10-01

    Storm surges are key drivers of coastal flooding, which generate considerable risks. Strategies to manage these risks can hinge on the ability to (i) project the return periods of extreme storm surges and (ii) detect potential changes in their statistical properties. There are several lines of evidence linking rising global average temperatures and increasingly frequent extreme storm surges. This conclusion is, however, subject to considerable structural uncertainty. This leads to two main questions: What are projections under various plausible statistical models? How long would it take to distinguish among these plausible statistical models? We address these questions by analyzing observed and simulated storm surge data. We find that (1) there is a positive correlation between global mean temperature rise and increasing frequencies of extreme storm surges; (2) there is considerable uncertainty underlying the strength of this relationship; and (3) if the frequency of storm surges is increasing, this increase can be detected within a multidecadal timescale (≈20 years from now).

  6. The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models

    Directory of Open Access Journals (Sweden)

    M. Keller

    2018-04-01

    Full Text Available Climate models project an increase in heavy precipitation events in response to greenhouse gas forcing. Important elements of such events are rain showers and thunderstorms, which are poorly represented in models with parameterized convection. In this study, simulations with 12 km horizontal grid spacing (convection-parameterizing model, CPM and 2 km grid spacing (convection-resolving model, CRM are employed to investigate the change in the diurnal cycle of convection with warmer climate. For this purpose, simulations of 11 days in June 2007 with a pronounced diurnal cycle of convection are compared with surrogate simulations from the same period. The surrogate climate simulations mimic a future climate with increased temperatures but unchanged relative humidity and similar synoptic-scale circulation. Two temperature scenarios are compared: one with homogeneous warming (HW using a vertically uniform warming and the other with vertically dependent warming (VW that enables changes in lapse rate.The two sets of simulations with parameterized and explicit convection exhibit substantial differences, some of which are well known from the literature. These include differences in the timing and amplitude of the diurnal cycle of convection, and the frequency of precipitation with low intensities. The response to climate change is much less studied. We can show that stratification changes have a strong influence on the changes in convection. Precipitation is strongly increasing for HW but decreasing for the VW simulations. For cloud type frequencies, virtually no changes are found for HW, but a substantial reduction in high clouds is found for VW. Further, we can show that the climate change signal strongly depends upon the horizontal resolution. In particular, significant differences between CPM and CRM are found in terms of the radiative feedbacks, with CRM exhibiting a stronger negative feedback in the top-of-the-atmosphere energy budget.

  7. The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models

    Science.gov (United States)

    Keller, Michael; Kröner, Nico; Fuhrer, Oliver; Lüthi, Daniel; Schmidli, Juerg; Stengel, Martin; Stöckli, Reto; Schär, Christoph

    2018-04-01

    Climate models project an increase in heavy precipitation events in response to greenhouse gas forcing. Important elements of such events are rain showers and thunderstorms, which are poorly represented in models with parameterized convection. In this study, simulations with 12 km horizontal grid spacing (convection-parameterizing model, CPM) and 2 km grid spacing (convection-resolving model, CRM) are employed to investigate the change in the diurnal cycle of convection with warmer climate. For this purpose, simulations of 11 days in June 2007 with a pronounced diurnal cycle of convection are compared with surrogate simulations from the same period. The surrogate climate simulations mimic a future climate with increased temperatures but unchanged relative humidity and similar synoptic-scale circulation. Two temperature scenarios are compared: one with homogeneous warming (HW) using a vertically uniform warming and the other with vertically dependent warming (VW) that enables changes in lapse rate. The two sets of simulations with parameterized and explicit convection exhibit substantial differences, some of which are well known from the literature. These include differences in the timing and amplitude of the diurnal cycle of convection, and the frequency of precipitation with low intensities. The response to climate change is much less studied. We can show that stratification changes have a strong influence on the changes in convection. Precipitation is strongly increasing for HW but decreasing for the VW simulations. For cloud type frequencies, virtually no changes are found for HW, but a substantial reduction in high clouds is found for VW. Further, we can show that the climate change signal strongly depends upon the horizontal resolution. In particular, significant differences between CPM and CRM are found in terms of the radiative feedbacks, with CRM exhibiting a stronger negative feedback in the top-of-the-atmosphere energy budget.

  8. Constraints on the properties of Pluto's nitrogen-ice rich layer from convection simulations

    Science.gov (United States)

    Wong, T.; McKinnon, W. B.; Schenk, P.

    2016-12-01

    Pluto's Sputnik Planum basin (informally named) displays regular cellular patterns strongly suggesting that solid-state convection is occurring in a several-kilometers-deep nitrogen-ice rich layer (McKinnon et al., Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour, Nature 534, 82-85, 2016). We investigate the behavior of thermal convection in 2-D that covers a range of parameters applicable to the nitrogen ice layer to constrain its properties such that these long-wavelength surface features can be explained. We perform a suite of numerical simulations of convection with basal heating and temperature-dependent viscosity in either exponential form or Arrhenius form. For a plausible range of Rayleigh numbers and viscosity contrasts for solid nitrogen, convection can occur in all possible regimes: sluggish lid, transitional, or stagnant lid, or the layer could be purely conducting. We suggest the range of depth and temperature difference across the layer for convection to occur. We observe that the plume dynamics can be widely different in terms of the aspect ratio of convecting cells, or the width and spacing of plumes, and also in the lateral movement of plumes. These differences depend on the regime of convection determined by the Rayleigh number and the actual viscosity contrast across the layer, but is not sensitive to whether the viscosity is in Arrhenius or exponential form. The variations in plume dynamics result in different types of dynamic topography, which can be compared with the observed horizontal and vertical scales of the cells in Sputnik Planum. Based on these simulations we suggest several different possibilities for the formation and evolution of Sputnik Planum, which may be a consequence of the time-dependent behavior of thermal convection.

  9. European extra-tropical storm damage risk from a multi-model ensemble of dynamically-downscaled global climate models

    Science.gov (United States)

    Haylock, M. R.

    2011-10-01

    Uncertainty in the return levels of insured loss from European wind storms was quantified using storms derived from twenty-two 25 km regional climate model runs driven by either the ERA40 reanalyses or one of four coupled atmosphere-ocean global climate models. Storms were identified using a model-dependent storm severity index based on daily maximum 10 m wind speed. The wind speed from each model was calibrated to a set of 7 km historical storm wind fields using the 70 storms with the highest severity index in the period 1961-2000, employing a two stage calibration methodology. First, the 25 km daily maximum wind speed was downscaled to the 7 km historical model grid using the 7 km surface roughness length and orography, also adopting an empirical gust parameterisation. Secondly, downscaled wind gusts were statistically scaled to the historical storms to match the geographically-dependent cumulative distribution function of wind gust speed. The calibrated wind fields were run through an operational catastrophe reinsurance risk model to determine the return level of loss to a European population density-derived property portfolio. The risk model produced a 50-yr return level of loss of between 0.025% and 0.056% of the total insured value of the portfolio.

  10. European extra-tropical storm damage risk from a multi-model ensemble of dynamically-downscaled global climate models

    Directory of Open Access Journals (Sweden)

    M. R. Haylock

    2011-10-01

    Full Text Available Uncertainty in the return levels of insured loss from European wind storms was quantified using storms derived from twenty-two 25 km regional climate model runs driven by either the ERA40 reanalyses or one of four coupled atmosphere-ocean global climate models. Storms were identified using a model-dependent storm severity index based on daily maximum 10 m wind speed. The wind speed from each model was calibrated to a set of 7 km historical storm wind fields using the 70 storms with the highest severity index in the period 1961–2000, employing a two stage calibration methodology. First, the 25 km daily maximum wind speed was downscaled to the 7 km historical model grid using the 7 km surface roughness length and orography, also adopting an empirical gust parameterisation. Secondly, downscaled wind gusts were statistically scaled to the historical storms to match the geographically-dependent cumulative distribution function of wind gust speed.

    The calibrated wind fields were run through an operational catastrophe reinsurance risk model to determine the return level of loss to a European population density-derived property portfolio. The risk model produced a 50-yr return level of loss of between 0.025% and 0.056% of the total insured value of the portfolio.

  11. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Science.gov (United States)

    Fita, L.; Romero, R.; Luque, A.; Ramis, C.

    2009-08-01

    The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA). An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity on temporal and

  12. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Directory of Open Access Journals (Sweden)

    L. Fita

    2009-08-01

    Full Text Available The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA. An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity

  13. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Energy Technology Data Exchange (ETDEWEB)

    Fita, L.; Romero, R.; Luque, A.; Ramis, C. [Univ. de les Illes Balears, Palma de Mallorca (Spain). Grup de Meteorologia

    2009-07-01

    The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA). An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity on temporal and

  14. Influences of Gravity Waves on Convectively Induced Turbulence (CIT): A Review

    Science.gov (United States)

    Sharman, Robert D.; Trier, S. B.

    2018-03-01

    Thunderstorms are known to produce turbulence. Such turbulence is commonly referred to as convectively induced turbulence or CIT, and can be hazardous to aviation. Although this turbulence can occur both within and outside the convection, out-of-cloud CIT is particularly hazardous, since it occurs in clear air and cannot be seen by eye or onboard radar. Furthermore, due to its small scale and its ties to the underlying convection, it is very difficult to forecast. Guidelines for out-of-cloud CIT avoidance are available, but they are oversimplified and can be misleading. In the search for more appropriate and physically based avoidance guidelines, considerable research has been conducted in recent years on the nature of the phenomenon, and in particular, its connection to gravity waves generated by the convection. This paper reviews the advances in our understanding of out-of-cloud CIT and its relation to convective gravity waves, and provides several detailed examples of observed cases to elucidate some of the underlying dynamics.

  15. Violent storms within the sea: Dense water formation episodes in the Mediterranean.

    Science.gov (United States)

    Salat, J.

    2009-09-01

    The Mediterranean is a semi enclosed basin which receives surface water from the Atlantic Ocean. Most of this water is returned into the Ocean with higher density, spreading at more than 1000 m depth (the rest is transported by the atmosphere and the rivers to the Ocean surface). In terms of water budget, the Mediterranean is considered an evaporation basin, but the loss of water is neither the only process that increases the water density nor it is a steady or uniform process. The factors affecting the water density, temperature and salinity, are driven by mass and heat exchanges with the atmosphere. Those exchanges may be by direct contact or mediated by the land. Therefore, changes in water density depend on the water circulation and local weather conditions, both with seasonal and geographical constraints. As the compressibility of water is very low, stratification is expected and horizontal motion is the predominant in the sea interior. Among the few processes that may introduce a vertical component in the water motion are surface heat loss or evaporation that increase the surface water density triggering convective cells. Such processes will be enhanced by surface cooling or by dry continental winds, and counterbalanced by rain, river runoff, solar heating and condensation. Therefore dense water formation are more likely to occur when sea surface temperature is higher than the surface air temperature. There are several scales of convective motions in the ocean, starting from the formation of the surface mixed layer during summer, by night cooling, breezes, and occasional wind storms. During autumn and winter, the vertical scale of the mixing is increasing by steps, through wind storms and progressive cooling, to easily reach the bottom over the continental shelves, typically not deeper than 150 m. However, as the Gibraltar sill is relatively shallow (~350 m) in relation to the average Mediterranean basin (2000-3000 m), the stratification of the deeper layers

  16. Lightning mapping and dual-polarization radar observations of electrified storms at Langmuir Laboratory

    Science.gov (United States)

    Krehbiel, P. R.; Hyland, P. T.; Edens, H. E.; Rison, W.

    2013-12-01

    Observations being made at Langmuir Laboratory with the NM Tech Lightning Mapping Array (LMA) and the University of Oklahoma ARRC PX-1000 dual polarization X-band radar strongly confirm and expand upon the normal polarity tripolar electrical structure of central New Mexico storms. This is in sharp contrast with the anomalously electrified storm structures observed in northern Colorado during and subsequent to the 2012 DC3 field campaign, as seen with North Colorado LMA and CSU CHILL dual-polarization radar observations. In this presentation we focus on the New Mexico observations, and several modes in which the tripolar structure appears initially to develop and evolve with time. Central New Mexico storms are often prolific producers of negative cloud-to-ground (CG) flashes, but rarely produce positive CGs. By contrast, many or most north Colorado storms are CG-deficient, with the relatively few CG discharges being of predominantly positive polarity. In addition, NM storms commonly produce bolt-from-the-blue (BFB) negative CGs, whereas anomalously electrified Colorado storms produce none. The occurrence of BFBs is indicative of a relatively weak lower positive charge region, while the occurrence of normal downward -CGs is indicative of a somewhat stronger lower positive charge. The lack of -CGs in Colorado storms results from lower positive charge being a dominant storm charge that is elevated in altitude. These and other basic features of the electrically activity of storms, coupled with dual polarization and Doppler radar observations of hydrometeor types and motions, are leading to a better understanding of the storm electrification processes.

  17. Radial profile of pressure in a storm ring current as a function of D st

    Science.gov (United States)

    Kovtyukh, A. S.

    2010-06-01

    Using satellite data obtained near the equatorial plane during 12 magnetic storms with amplitudes from -61 down to -422 nT, the dependences of maximum in L-profile of pressure ( L m) of the ring current (RC) on the current value of D st are constructed, and their analytical approximations are derived. It is established that function L m( D st ) is steeper on the phase of recovery than during the storm’s main phase. The form of the outer edge of experimental radial profiles of RC pressure is studied, and it is demonstrated to correspond to exponential growth of the total energy of RC particles on a given L shell with decreasing L. It is shown that during the storms’ main phase the ratio of plasma and magnetic field pressures at the RC maximum does not practically depend on the storm strength and L m value. This fact reflects resistance of the Earth’s magnetic field to RC expansion, and testifies that during storms the possibilities of injection to small L are limited for RC particles. During the storms’ recovery phase this ratio quickly increases with increasing L m, which reflects an increased fraction of plasma in the total pressure balance. It is demonstrated that function L m( D st ) is derived for the main phase of storms from the equations of drift motion of RC ions in electrical and magnetic fields, reflecting the dipole character of magnetic field and scale invariance of the pattern of particle convection near the RC maximum. For the recovery phase it is obtained from the Dessler-Parker-Sckopke relationship. The obtained regularities allow one to judge about the radial profile of RC pressure from ground-based magnetic measurements (data on the D st variation).

  18. Probabilistic storm surge inundation maps for Metro Manila based on Philippine public storm warning signals

    Science.gov (United States)

    Tablazon, J.; Caro, C. V.; Lagmay, A. M. F.; Briones, J. B. L.; Dasallas, L.; Lapidez, J. P.; Santiago, J.; Suarez, J. K.; Ladiero, C.; Gonzalo, L. A.; Mungcal, M. T. F.; Malano, V.

    2015-03-01

    A storm surge is the sudden rise of sea water over the astronomical tides, generated by an approaching storm. This event poses a major threat to the Philippine coastal areas, as manifested by Typhoon Haiyan on 8 November 2013. This hydro-meteorological hazard is one of the main reasons for the high number of casualties due to the typhoon, with 6300 deaths. It became evident that the need to develop a storm surge inundation map is of utmost importance. To develop these maps, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. The Japan Meteorological Agency storm surge model was used to simulate storm surge heights. The frequency distribution of the maximum storm surge heights was calculated using simulation results of tropical cyclones under a specific public storm warning signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of inundation for a specific PSWS using the probability of exceedance derived from the frequency distribution. Buildings and other structures were assigned a probability of exceedance depending on their occupancy category, i.e., 1% probability of exceedance for critical facilities, 10% probability of exceedance for special occupancy structures, and 25% for standard occupancy and miscellaneous structures. The maps produced show the storm-surge-vulnerable areas in Metro Manila, illustrated by the flood depth of up to 4 m and extent of up to 6.5 km from the coastline. This information can help local government units in developing early warning systems, disaster preparedness and mitigation plans, vulnerability assessments, risk-sensitive land use plans, shoreline

  19. Project "Convective Wind Gusts" (ConWinG)

    Science.gov (United States)

    Mohr, Susanna; Richter, Alexandra; Kunz, Michael; Ruck, Bodo

    2017-04-01

    Convectively-driven strong winds usually associated with thunderstorms frequently cause substantial damage to buildings and other structures in many parts of the world. Decisive for the high damage potential are the short-term wind speed maxima with duration of a few seconds, termed as gusts. Several studies have shown that convectively-driven gusts can reach even higher wind speeds compared to turbulent gusts associated with synoptic-scale weather systems. Due to the small-scale and non-stationary nature of convective wind gusts, there is a considerable lack of knowledge regarding their characteristics and statistics. Furthermore, their interaction with urban structures and their influence on buildings is not yet fully understood. For these two reasons, convective wind events are not included in the present wind load standards of buildings and structures, which so far have been based solely on the characteristics of synoptically-driven wind gusts in the near-surface boundary layer (e. g., DIN EN 1991-1-4:2010-12; ASCE7). However, convective and turbulent gusts differ considerably, e.g. concerning vertical wind-speed profiles, gust factors (i.e., maximum to mean wind speed), or exceedance probability curves. In an effort to remedy this situation, the overarching objective of the DFG-project "Convective Wind Gusts" (ConWinG) is to investigate the characteristics and statistics of convective gusts as well as their interaction with urban structures. Based on a set of 110 climate stations of the German Weather Service (DWD) between 1992 and 2014, we analyzed the temporal and spatial distribution, intensity, and occurrence probability of convective gusts. Similar to thunderstorm activity, the frequency of convective gusts decreases gradually from South to North Germany. A relation between gust intensity/probability to orography or climate conditions cannot be identified. Rather, high wind speeds, e.g., above 30 m/s, can be expected everywhere in Germany with almost

  20. NCDC Storm Events Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Storm Data is provided by the National Weather Service (NWS) and contain statistics on personal injuries and damage estimates. Storm Data covers the United States of...

  1. Wind field measurement in the nonprecipitous regions surrounding storms by an airborne pulsed Doppler lidar system, appendix A

    Science.gov (United States)

    Bilbro, J. W.; Vaughan, W. W.

    1980-01-01

    Coherent Doppler lidar appears to hold great promise in contributing to the basic store of knowledge concerning flow field characteristics in the nonprecipitous regions surrounding severe storms. The Doppler lidar, through its ability to measure clear air returns, augments the conventional Doppler radar system, which is most useful in the precipitous regions of the storm. A brief description of the Doppler lidar severe storm measurement system is provided along with the technique to be used in performing the flow field measurements. The application of the lidar is addressed, and the planned measurement program is outlined.

  2. Responses of Hail and Storm Days to Climate Change in the Tibetan Plateau

    Science.gov (United States)

    Zou, Tian; Zhang, Qinghong; Li, Wenhong; Li, Jihong

    2018-05-01

    There is increasing concern that local severe storm occurrence may be changing as a result of climate change. The Tibetan Plateau (TP), one of the world's most sensitive areas to climate change, became significantly warmer during recent decades. Since 1960 (1980), storm (hail) days have been decreasing by 6.2%/decade (18.3%/decade) in the region. However, what caused the frequency changes of storm and hail in the TP is largely unknown. Based on 53-year continuous weather records at 48 TP stations and reanalysis data, we show here for the first time that the consistent decline of storm days is strongly related to a drier midtroposphere since 1960. Further analysis demonstrated that fewer hail days are driven by an elevation of the melting level (thermodynamically) and a weaker wind shear (dynamically) in a warming climate. These results imply that less storm and hail may occur over TP when climate warms.

  3. Predicting the occurrence of super-storms

    Directory of Open Access Journals (Sweden)

    N. Srivastava

    2005-11-01

    Full Text Available A comparative study of five super-storms (Dst<-300 nT of the current solar cycle after the launch of SoHO, to identify solar and interplanetary variables that influence the magnitude of resulting geomagnetic storms, is described. Amongst solar variables, the initial speed of a CME is considered the most reliable predictor of the strength of the associated geomagnetic storm because fast mass ejections are responsible for building up the ram pressure at the Earth's magnetosphere. However, although most of the super-storms studied were associated with high speed CMEs, the Dst index of the resulting geomagnetic storms varied between -300 to -472 nT. The most intense storm of 20 November 2003, (Dst ~ -472 nT had its source in a comparatively smaller active region and was associated with a relatively weaker, M-class flare while all other super-storms had their origins in large active regions and were associated with strong X-class flares. However, this superstorm did not show any associated extraordinary solar and interplanetary characteristics. The study also reveals the challenge in the reliable prediction of the magnitude of a geomagnetic storm from solar and interplanetary variables.

  4. A Synoptic Climatology of Combined Severe/Weather/Flash Flood Events

    Science.gov (United States)

    Pallozzi, Kyle J.

    Classical forms of severe weather such as tornadoes, damaging convective wind gusts, and large hail, as well as flash flooding events, all have potentially large societal impacts. This impact is further magnified when these hazards occur simultaneously in time and space. A major challenge for operational forecasters is how to accurately predict the occurrence of combined storm hazards, and how to communicate the associated multiple threat hazards to the public. A seven-year climatology (2009-2015) of combined severe weather/flash flooding (SVR/FF) events across the contiguous United States was developed in attempt to study the combined SVR/FF event hazards further. A total of 211 total cases were identified and sub-divided into seven subcategories based on their convective morphology and meteorological characteristics. Heatmaps of event report frequency were created to extract spatial, seasonal and interannual patterns in SVR/FF event activity. Diurnal trends were examined from time series plots of tornado, hail, wind and flash flood/flood reports. Event-centered composites of environmental variables were created for each subcategory from 13 km RUC/RAP analyses. Representative cases studies were conducted for each subcategory. A "ring of fire" with the highest levels of SVR/FF event activity was noted across the central United States. SVR/FF events were least common in the Southeast, High Plains, and Northern Plains. Enhanced SVR/FF activity reflected contributions from synoptic events during the cool and shoulder seasons over the Lower Mississippi, Arkansas and Tennessee Valleys, and MCS activity during the warm season over the lower Great Plains, and the Upper Mississippi, Missouri and Ohio River Valleys. Results from the composite analyses indicated that relatively high values of CAPE, surface-500 hPa shear and precipitable water were observed for all subcategories. Case studies show that many high-end SVR/FF events featured slow-moving, or quasi

  5. Evaluation of the STORM model storm-time corrections for middle latitude

    Czech Academy of Sciences Publication Activity Database

    Burešová, Dalia; McKinnell, L.- A.; Šindelářová, Tereza; de la Morena, B. A.

    2010-01-01

    Roč. 46, č. 8 (2010), s. 1039-1046 ISSN 0273-1177 R&D Projects: GA ČR GA205/08/1356; GA AV ČR 1QS300120506 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ionosphere * Geomagnetic storms * STORM model * International Reference Ionosphere (IRI) Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.076, year: 2010

  6. Impact of storms on coastlines: preparing for the future without forgetting the past? Examples from European coastlines using a Storm Impact Database

    Science.gov (United States)

    Ciavola, Paolo; Garnier, Emmanuel; Ferreira, Oscar; Spencer, Thomas; Armaroli, Clara

    2017-04-01

    Severe storms have historically affected many European coastlines but the impact of each storm has been evaluated in different ways in different countries, often using local socio-economic impact criteria (e.g. loss of lives and damage to properties). Although the Xynthia (2010) storm, Atlantic coast of France, was the largest coastal disaster of the last 50 years, similar events have previously impacted Europe. The 1953 storm surge in the southern North Sea, resulted in over 2000 deaths and extensive flooding and was the catalyst for post WWII improvements in flood defences and storm early warning systems. On a longer timescale, the very extreme storm of 1634 AD re-configured Wadden Sea coastlines, accompanied by thousands of deaths. Establishing patterns of coastal risk and vulnerability is greatly helped by the use of historical sources, as these allow the development of more complete time series of storm events and their impacts. The work to be presented was supported by the EU RISC-KIT (Resilience-Increasing Strategies for Coasts - toolKIT) Project. RISC-KIT (http://www.risckit.eu/np4/home.html) is a EU FP7 Collaborative project that has developed methods, tools and management approaches to reduce risk and increase resilience to low frequency, high-impact hydro-meteorological events in the coastal zone. These products will enhance forecasting, prediction and early warning capabilities, improve the assessment of long-term coastal risk and optimize the mix of prevention, mitigation and preparedness measures. We analyse historical large-scale events occurred from The Middle Ages to the 1960s at the case study sites of North Norfolk Coast (UK), the Charente-Maritime and Vendée coast (France), the Cinque Terre-Liguria (Italy), the Emilia-Romagna coast (Italy), and the Ria Formosa coast (Portugal). The work presented here uses a database of events built by the project, examining records for the last 300 years, including the characteristics of the storms as well as

  7. Assessing storm events for energy meteorology: using media and scientific reports to track a North Sea autumn storm.

    Science.gov (United States)

    Kettle, Anthony

    2016-04-01

    issuing authority, these reports include wind speed and atmospheric pressure for a number of stations. However, there is also important ancillary information that includes satellite images, weather radar pictures, sea state recordings, tide gauge records, and coastal surveys. When collated together, the literature survey gives good view of events related to the autumn storm. The key information from media reports is backed up by quantitative numbers from the scientific literature. For energy meteorology in the offshore environment, there is an outline of extreme wave events that may be important to help define the ultimate limit state of engineering structures and the return periods of extreme waves. While this contribution focusses on events from an old storm in the autumn of 2006, more severe regional storms have occurred since then, and the scientific literature indicates that these may be linked with climate warming. Literature surveys may help to fully define extreme meteorological conditions offshore and benefit different branches of the energy industry in Europe.

  8. Geomagnetic storms in the Antarctic F-region

    International Nuclear Information System (INIS)

    Wrenn, G.L.; Rodger, A.S.; Rishbeth, H.

    1987-01-01

    New analysis procedures are used to show that the main phase mid-latitude storm effects conform to consistent patterns in local time when suitable selection rules are applied, with averaging over several years. Changes in the maximum plasma frequency, foF2, with respect to estimated quiet-time values, are analysed in terms of asub(p)(t), a new geomagnetic index derived to take account of integrated disturbance. Reduction of foF2 is greatest during the early morning hours, in summer, at higher geomagnetic latitudes, near solar minimum and through the more active periods. The various dependencies are quantitatively determined for the first time by creating an average 'steady state' disturbance, rather than following specific storm events. This approach permits tests of competing theories using available modelling programs. (author)

  9. Geomagnetic storms

    International Nuclear Information System (INIS)

    McNamara, A.G.

    1980-01-01

    Disturbances due to geomagnetic storms can affect the functioning of communications satellites and of power lines and other long conductors. Two general classes of geomagnetic activity can be distinguished: ionospheric current flow (the auroral electrojet), and magnetospheric compression. Super magnetic storms, such as the one of August 1972, can occur at any time and average about 17 occurrences per century. Electrical transmission systems can be made more tolerant of such events at a price, but the most effective way to minimize damage is by better operator training coupled with effective early warning systems. (LL)

  10. Measuring storm tide and high-water marks caused by Hurricane Sandy in New York: Chapter 2

    Science.gov (United States)

    Simonson, Amy E.; Behrens, Riley

    2015-01-01

    In response to Hurricane Sandy, personnel from the U.S. Geological Survey (USGS) deployed a temporary network of storm-tide sensors from Virginia to Maine. During the storm, real-time water levels were available from tide gages and rapid-deployment gages (RDGs). After the storm, USGS scientists retrieved the storm-tide sensors and RDGs and surveyed high-water marks. These data demonstrate that the timing of peak storm surge relative to astronomical tide was extremely important in southeastern New York. For example, along the south shores of New York City and western Suffolk County, the peak storm surge of 6–9 ft generally coincided with the astronomical high tide, which resulted in substantial coastal flooding. In the Peconic Estuary and northern Nassau County, however, the peak storm surge of 9 ft and nearly 12 ft, respectively, nearly coincided with normal low tide, which helped spare these communities from more severe coastal flooding.

  11. Analysis of mesoscale factors at the onset of deep convection on hailstorm days in Southern France and their relation to the synoptic patterns

    Science.gov (United States)

    Sanchez, Jose Luis; Wu, Xueke; Gascón, Estibaliz; López, Laura; Melcón, Pablo; García-Ortega, Eduardo; Berthet, Claude; Dessens, Jean; Merino, Andrés

    2013-04-01

    Storms and the weather phenomena associated to intense precipitation, lightning, strong winds or hail, are among the most common and dangerous weather risks in many European countries. To get a reliable forecast of their occurrence is remaining an open problem. The question is: how is possible to improve the reliability of forecast? Southwestern France is frequently affected by hailstorms, producing severe damages on crops and properties. Considerable efforts were made to improve the forecast of hailfall in this area. First of all, if we want to improve this type of forecast, it is necessary to have a good "ground truth" of the hail days and zones affected by hailfall. Fortunately, ANELFA has deployed thousands of hailpad stations in Southern France. The ANELFA processed the point hailfall data recorded during each hail season at these stations. The focus of this paper presents a methodology to improve the forecast of the occurrence of hailfall according to the synoptic environment and mesoscale factors in the study area. One hundred of hail days were selected, following spatial and severity criteria, occurred in the period 2000-2010. The mesoscale model WRF was applied for all cases to study the synoptic environment of mean geopotential and temperature fields at 500 hPa. Three nested domains have been defined following a two-way nesting strategy, with a horizontal spatial resolution of 36, 12 and 4 km, and 30 vertical terrains— following σ-levels. Then, using the Principal Component Analysis in T-Mode, 4 mesoscale configurations were defined for the fields of convective instability (CI), water vapor flux divergence and wind flow and humidity at low layer (850hPa), and several clusters were classified followed by using the K-means Clustering. Finally, we calculated several characteristic values of four hail forecast parameters: Convective Available Potential Energy (CAPE), Storm Relative Helicity between 0 and 3 km (SRH0-3), Energy-Helicity Index (EHI) and

  12. ARkStorm@Tahoe: Stakeholder perspectives on vulnerabilities and preparedness for an extreme storm event in the greater Lake Tahoe, Reno, and Carson City region

    Science.gov (United States)

    Albano, Christine M.; Cox, Dale A.; Dettinger, Michael; Shaller, Kevin; Welborn, Toby L.; McCarthy, Maureen

    2014-01-01

    coordination, credentialing, flood management, and coordination of health and human services during such an event. Mitigation options were identified for each of the key issues. Several science needs were identified, particularly the need for improved flood inundation maps. Finally, key lessons learned were identified and may help to increase preparedness, response and recovery from extreme storms in the future.

  13. Predicting the occurrence of super-storms

    Directory of Open Access Journals (Sweden)

    N. Srivastava

    2005-11-01

    Full Text Available A comparative study of five super-storms (Dst<-300 nT of the current solar cycle after the launch of SoHO, to identify solar and interplanetary variables that influence the magnitude of resulting geomagnetic storms, is described. Amongst solar variables, the initial speed of a CME is considered the most reliable predictor of the strength of the associated geomagnetic storm because fast mass ejections are responsible for building up the ram pressure at the Earth's magnetosphere. However, although most of the super-storms studied were associated with high speed CMEs, the Dst index of the resulting geomagnetic storms varied between -300 to -472 nT. The most intense storm of 20 November 2003, (Dst ~ -472 nT had its source in a comparatively smaller active region and was associated with a relatively weaker, M-class flare while all other super-storms had their origins in large active regions and were associated with strong X-class flares. However, this superstorm did not show any associated extraordinary solar and interplanetary characteristics. The study also reveals the challenge in the reliable prediction of the magnitude of a geomagnetic storm from solar and interplanetary variables.

  14. Thyroid storm: an updated review.

    Science.gov (United States)

    Chiha, Maguy; Samarasinghe, Shanika; Kabaker, Adam S

    2015-03-01

    Thyroid storm, an endocrine emergency first described in 1926, remains a diagnostic and therapeutic challenge. No laboratory abnormalities are specific to thyroid storm, and the available scoring system is based on the clinical criteria. The exact mechanisms underlying the development of thyroid storm from uncomplicated hyperthyroidism are not well understood. A heightened response to thyroid hormone is often incriminated along with increased or abrupt availability of free hormones. Patients exhibit exaggerated signs and symptoms of hyperthyroidism and varying degrees of organ decompensation. Treatment should be initiated promptly targeting all steps of thyroid hormone formation, release, and action. Patients who fail medical therapy should be treated with therapeutic plasma exchange or thyroidectomy. The mortality of thyroid storm is currently reported at 10%. Patients who have survived thyroid storm should receive definite therapy for their underlying hyperthyroidism to avoid any recurrence of this potentially fatal condition. © The Author(s) 2013.

  15. The electric storm of November 1882

    Science.gov (United States)

    Love, Jeffrey J.

    2018-01-01

    In November 1882, an intense magnetic storm related to a large sunspot group caused widespread interference to telegraph and telephone systems and provided spectacular and unusual auroral displays. The (ring current) storm time disturbance index for this storm reached maximum −Dst ≈ 386 nT, comparable to Halloween storm of 29–31 October 2003, but from 17 to 20 November the aa midlatitude geomagnetic disturbance index averaged 214.25 nT, the highest 4 day level of disturbance since the beginning of aa index in 1868. This storm contributed to scientists' understanding of the reality of solar‐terrestrial interaction. Past occurrences of magnetic storms, like that of November 1882, can inform modern evaluations of the deleterious effects that a magnetic superstorm might have on technological systems of importance to society.

  16. The analysis of dependence between extreme rainfall and storm surge in the coastal zone

    Science.gov (United States)

    Zheng, F.; Westra, S.

    2012-12-01

    Flooding in coastal catchments can be caused by runoff generated by an extreme rainfall event, elevated sea levels due to an extreme storm surge event, or the combination of both processes occurring simultaneously or in close succession. Dependence in extreme rainfall and storm surge arises because common meteorological forcings often drive both variables; for example, cyclonic systems may produce extreme rainfall, strong onshore winds and an inverse barometric effect simultaneously, which the former factor influencing catchment discharge and the latter two factors influencing storm surge. Nevertheless there is also the possibility that only one of the variables is extreme at any given time, so that the dependence between rainfall and storm surge is not perfect. Quantification of the strength of dependence between these processes is critical in evaluating the magnitude of flood risk in the coastal zone. This may become more important in the future as the majority of the coastal areas are threatened by the sea level rise due to the climate change. This research uses the most comprehensive record of rainfall and storm surge along the coastline of Australia collected to-date to investigate the strength of dependence between the extreme rainfall and storm surge along the Australia coastline. A bivariate logistic threshold-excess model was employed to this end to carry out the dependence analysis. The strength of the estimated dependence is then evaluated as a function of several factors including: the distance between the tidal gauge and the rain gauge; the lag between the extreme precipitation event and extreme surge event; and the duration of the maximum storm burst. The results show that the dependence between the extreme rainfall and storm surge along the Australia coastline is statistically significant, although some locations clearly exhibit stronger dependence than others. We hypothesize that this is due to a combination of large-scale meteorological effects as

  17. Is it safe to treat hyperthyroid patients with I-131 without fear of thyroid storm?

    International Nuclear Information System (INIS)

    Vijayakumar, V.; Nusynowitz, M.L.; Ali, S.

    2006-01-01

    Thyroid storm is extremely rare. However, hyperthyroid patients with severe thyrotoxicosis are frequently not treated immediately with I-131 for fear of thyroid storm but are placed on thiouracil drugs for varying periods of time. We demonstrate herein that it is safe to treat these patients with I-131, without pretreatment with thiouracil drugs, provided they do not have complicating intercurrent disease. Our definition of severe hyperthyroidism includes marked signs and symptoms of thyrotoxicosis, suppressed thyroid stimulating hormone (TSH), markedly elevated free T4 and/or free T3 and elevated radioactive iodine uptake (RAIU) (>30%) at 4 or 24 hours. Our diagnostic criteria for thyroid storm include two or more findings of fever (>38 deg C, 100 deg F), severe tachycardia, high pulse pressure, agitation with tremors, flushing, sweating, heart failure, nausea, vomiting, diarrhea, jaundice associated with high free T4 and/or free T3. Patients were selected retrospectively for the period between August 2003 and December 2004. One hundred and twenty-two patient visits were identified. These patients were treated with 370-740 MBq (10-20 mCi) of I-131 and were evaluated for any evidence of thyroid storm. Most of the patients were placed on beta blocker drugs at the time of initial I-131 therapy; these were continued for at least two months, when the first follow-up visit occurred. At the time of I-131 therapy, it is our policy to educate the patients to seek immediate medical attention for exacerbation of symptoms of thyrotoxicosis. Not one of these patients developed thyroid storm. A subset of 25% of these cases with higher potential for thyroid storm (RAIU more than 65%, very marked signs and symptoms, and very markedly elevated free T4 and/or free T3) also tolerated the I-131 therapy well with marked clinical improvement and no exacerbation of the thyrotoxic state. It is safe to administer I-131 to patients who are severely hyperthyroid without fear of thyroid

  18. Criteria for analysis and optimization of longitudinal fins with convective tip

    International Nuclear Information System (INIS)

    Gomes, E.S.

    1983-01-01

    The problem of heat transfer in longitudinal fins with the main geometries used in equipaments of heat transfer by convection is analyzed. The equation of energy is solved analytically of several geometries fins, with unidimensional formulation, through the use of the convective heat transfer coefficient. The problem of fin optimization is approached analytically yielding the parameters which allow the maximum heat transfer for each particular material waste in the fin. The use of the insulated tip model suggests the use of fins and its optimization for any Biot number of the fin. The use of the convective tip model allows us to determine when is vantageous or disadvantageous to use fins and when fin optimization is possible according to the value of the Biot number and to a convection parameter on the fin tip. (Author) [pt

  19. Significantly Increased Extreme Precipitation Expected in Europe and North America from Extratropical Storms

    Science.gov (United States)

    Hawcroft, M.; Hodges, K.; Walsh, E.; Zappa, G.

    2017-12-01

    For the Northern Hemisphere extratropics, changes in circulation are key to determining the impacts of climate warming. The mechanisms governing these circulation changes are complex, leading to the well documented uncertainty in projections of the future location of the mid-latitude storm tracks simulated by climate models. These storms are the primary source of precipitation for North America and Europe and generate many of the large-scale precipitation extremes associated with flooding and severe economic loss. Here, we show that in spite of the uncertainty in circulation changes, by analysing the behaviour of the storms themselves, we find entirely consistent and robust projections across an ensemble of climate models. In particular, we find that projections of change in the most intensely precipitating storms (above the present day 99th percentile) in the Northern Hemisphere are substantial and consistent across models, with large increases in the frequency of both summer (June-August, +226±68%) and winter (December-February, +186±34%) extreme storms by the end of the century. Regionally, both North America (summer +202±129%, winter +232±135%) and Europe (summer +390±148%, winter +318±114%) are projected to experience large increases in the frequency of intensely precipitating storms. These changes are thermodynamic and driven by surface warming, rather than by changes in the dynamical behaviour of the storms. Such changes in storm behaviour have the potential to have major impacts on society given intensely precipitating storms are responsible for many large-scale flooding events.

  20. Weekly Cycle of Lightning: Evidence of Storm Invigoration by Pollution

    Science.gov (United States)

    Bell, Thomas L.; Rosenfeld, Daniel; Kim, Kyu-Myong

    2009-01-01

    We have examined summertime 1998 2009 U.S. lightning data from the National Lightning Detection Network (NLDN) to look for weekly cycles in lightning activity. As was found by Bell et al. (2008) for rain over the southeast U.S., there is a significant weekly cycle in afternoon lightning activity that peaks in the middle of the week there. The weekly cycle appears to be reduced over population centers. Lightning activity peaks on weekends over waters near the SE U.S. The statistical significance of weekly cycles over the western half of the country is generally small. We found no evidence of a weekly cycle of synoptic-scale forcing that might explain these patterns. The lightning behavior is entirely consistent with the explanation suggested by Bell et al. (2008) for the cycles in rainfall and other atmospheric data from the SE U.S., that aerosols can cause storms to intensify in humid, convectively unstable environments.

  1. On the nature of rainfall in dry climate: Space-time patterns of convective rain cells over the Dead Sea region and their relations with synoptic state and flash flood generation

    Science.gov (United States)

    Belachsen, Idit; Marra, Francesco; Peleg, Nadav; Morin, Efrat

    2017-04-01

    Space-time patterns of rainfall are important climatic characteristics that influence runoff generation and flash flood magnitude. Their derivation requires high-resolution measurements to adequately represent the rainfall distribution, and is best provided by remote sensing tools. This need is further emphasized in dry climate regions, where rainfall is scarce and, often, local and highly variable. Our research is focused on understanding the nature of rainfall events in the dry Dead Sea region (Eastern Mediterranean) by identifying and characterizing the spatial structure and the dynamics of convective storm cores (known as rain cells). To do so, we take advantage of 25 years of corrected and gauge-adjusted weather radar data. A statistical analysis of convective rain-cells spatial and temporal characteristics was performed with respect to synoptic pattern, geographical location, and flash flood generation. Rain cells were extracted from radar data using a cell segmentation method and a tracking algorithm and were divided into rain events. A total of 10,500 rain cells, 2650 cell tracks and 424 rain events were elicited. Rain cell properties, such as mean areal and maximal rain intensity, area, life span, direction and speed, were derived. Rain events were clustered, according to several ERA-Interim atmospheric parameters, and associated with three main synoptic patterns: Cyprus Low, Low to the East of the study region and Active Red Sea Trough. The first two originate from the Mediterranean Sea, while the third is an extension of the African monsoon. On average, the convective rain cells in the region are 90 km2 in size, moving from West to East in 13 ms-1 and living 18 minutes. Several significant differences between rain cells of the various synoptic types were observed. In particular, Active Red Sea Trough rain cells are characterized by higher rain intensities and lower speeds, suggesting a higher flooding potential for small catchments. The north

  2. Klaus, an exceptional winter storm over Northern Iberia and Southern France - a comparison between storm diagnostics

    Science.gov (United States)

    Liberato, M. L. R.; Pinto, J. G.; Trigo, I. F.; Trigo, R. M.

    2010-05-01

    The synoptic evolution and dynamical characteristics of storm "Klaus" (23 and 24 January 2009) are analysed. "Klaus" was an extratropical cyclone which developed over the subtropical North Atlantic Ocean on the 21st January 2009, then moved eastward embedded in the strong westerly flow and experienced a notorious strengthening on the 23rd January. The storm moved into the Bay of Biscay and deepened further before hitting Northern Spain and Southwestern France with gusts of up to 198 km/h. Afterwards, it steered southeastwards across Southern France into Northern Italy and the Adriatic. "Klaus" was the most intense and damaging wind storm in the region in a decade, provoked more than 20 casualties and insured losses of several billion Euros. The evolution of "Klaus" is analysed using two standard cyclone detecting and tracking schemes: a) the vorticity maxima based algorithm originally developed by Murray and Simmonds [1991], adapted for Northern Hemisphere cyclone characteristics [Pinto et al. 2005]; and b) the pressure minima based algorithm first developed for the Mediterranean region [Trigo et al. 1999; 2002] and later extended to a larger Euro-Atlantic region [Trigo 2006]. Additionally, the synoptic and mesoscale features of the storm are analysed. The vorticity based method detects the storm earlier than the pressure minima one. Results show that both tracks exhibited similar features and positions throughout almost all of their lifecycles, with minor discrepancies being probably related to different ways of both methods handling the spatio-temporal evolution of multiple candidates for cyclonic centres. In its strengthening phase, "Klaus" presents deepening rates above 37 hPa/24h, a value that after geostrophically adjusted to the reference latitude of 60°N increases to 44 hPa/24h, implying an exceptional event with bomb characteristics. During maximum intensity change within 24 hours was 1.165hPa/(deglat)2. References: Murray RJ, Simmonds I (1991) Aust

  3. Proximity sounding analysis for derechos and supercells: an assessment of similarities and differences

    Science.gov (United States)

    Doswell, Charles A.; Evans, Jeffry S.

    Proximity soundings (within 2 h and 167 km) of derechos (long-lived, widespread damaging convective windstorms) and supercells have been obtained. More than 65 derechos, accompanied by 115 proximity soundings, are identified during the years 1983 to 1993. The derechos have been divided into categories according to the synoptic situation: strong forcing (SF), weak forcing (WF), and "hybrid" cases (which are neither weakly nor strongly forced). Nearly 100 supercell proximity soundings have been found for the period 1998 to 2001, subdivided into nontornadic and tornadic supercells; tornadic supercells were further subdivided into those producing significant (>F1 rating) tornadoes and weak tornadoes (F0-F1 rating). WF derecho situations typically are characterized by warm, moist soundings with large convective available potential instability (CAPE) and relatively weak vertical wind shear. SF derechos usually have stronger wind shears, and cooler and less moist soundings with lower CAPE than the weakly forced cases. Most derechos exhibit strong storm-relative inflow at low levels. In WF derechos, this is usually the result of rapid convective system movement, whereas in SF derechos, storm-relative inflow at low levels is heavily influenced by relatively strong low-level windspeeds. "Hybrid" cases collectively are similar to an average of the SF and WF cases. Supercells occur in environments that are not all that dissimilar from those that produce SF derechos. It appears that some parameter combining instability and deep layer shear, such as the Energy-Helicity Index (EHI), can help discriminate between tornadic and nontornadic supercell situations. Soundings with significant tornadoes (F2 and greater) typically show high 0-1 km relative humidities, and strong 0-1 km shear. Results suggest it may not be easy to forecast the mode of severe thunderstorm activity (i.e., derecho versus supercell) on any particular day, given conditions that favor severe thunderstorm activity

  4. Parameterizing convective organization

    Directory of Open Access Journals (Sweden)

    Brian Earle Mapes

    2011-06-01

    Full Text Available Lateral mixing parameters in buoyancy-driven deep convection schemes are among the most sensitive and important unknowns in atmosphere models. Unfortunately, there is not a true optimum value for plume mixing rate, but rather a dilemma or tradeoff: Excessive dilution of updrafts leads to unstable stratification bias in the mean state, while inadequate dilution allows deep convection to occur too easily, causing poor space and time distributions and variability. In this too-small parameter space, compromises are made based on competing metrics of model performance. We attempt to escape this “entrainment dilemma” by making bulk plume parameters (chiefly entrainment rate depend on a new prognostic variable (“organization,” org meant to reflect the rectified effects of subgrid-scale structure in meteorological fields. We test an org scheme in the Community Atmosphere Model (CAM5 with a new unified shallow-deep convection scheme (UW-ens, a 2-plume version of the University of Washington scheme. Since buoyant ascent involves natural selection, subgrid structure makes convection systematically deeper and stronger than the pure unorganized case: plumes of average (or randomly sampled air rising in the average environment. To reflect this, org is nonnegative, but we leave it dimensionless. A time scale characterizes its behavior (here ∼3 h for a 2o model. Currently its source is rain evaporation, but other sources can be added easily. We also let org be horizontally transported by advection, as a mass-weighted mean over the convecting layer. Linear coefficients link org to a plume ensemble, which it assists via: 1 plume base warmth above the mean temperature 2 plume radius enhancement (reduced mixing, and 3 increased probability of overlap in a multi-plume scheme, where interactions benefit later generations (this part has only been implemented in an offline toy column model. Since rain evaporation is a source for org, it functions as a time

  5. Uncertainty from the choice of microphysics scheme in convection-permitting models significantly exceeds aerosol effects

    Directory of Open Access Journals (Sweden)

    B. White

    2017-10-01

    Full Text Available This study investigates the hydrometeor development and response to cloud droplet number concentration (CDNC perturbations in convection-permitting model configurations. We present results from a real-data simulation of deep convection in the Congo basin, an idealised supercell case, and a warm-rain large-eddy simulation (LES. In each case we compare two frequently used double-moment bulk microphysics schemes and investigate the response to CDNC perturbations. We find that the variability among the two schemes, including the response to aerosol, differs widely between these cases. In all cases, differences in the simulated cloud morphology and precipitation are found to be significantly greater between the microphysics schemes than due to CDNC perturbations within each scheme. Further, we show that the response of the hydrometeors to CDNC perturbations differs strongly not only between microphysics schemes, but the inter-scheme variability also differs between cases of convection. Sensitivity tests show that the representation of autoconversion is the dominant factor that drives differences in rain production between the microphysics schemes in the idealised precipitating shallow cumulus case and in a subregion of the Congo basin simulations dominated by liquid-phase processes. In this region, rain mass is also shown to be relatively insensitive to the radiative effects of an overlying layer of ice-phase cloud. The conversion of cloud ice to snow is the process responsible for differences in cold cloud bias between the schemes in the Congo. In the idealised supercell case, thermodynamic impacts on the storm system using different microphysics parameterisations can equal those due to aerosol effects. These results highlight the large uncertainty in cloud and precipitation responses to aerosol in convection-permitting simulations and have important implications not only for process studies of aerosol–convection interaction, but also for

  6. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  7. STORM WATER MANAGEMENT MODEL USER'S MANUAL VERSION 5.0

    Science.gov (United States)

    The EPA Storm Water Management Model (SWMM) is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. SWMM was first developed in 1971 and has undergone several major upgrade...

  8. Intraseasonal variability of organized convective systems in the Central Andes: Relationship to Regional Dynamical Features

    Science.gov (United States)

    Mohr, K. I.; Slayback, D. A.; Nicholls, S.; Yager, K.

    2013-12-01

    The Andes extend from the west coast of Colombia (10N) to the southern tip of Chile (53S). In southern Peru and Bolivia, the Central Andes is split into separate eastern and western cordilleras, with a high plateau (≥ 3000 m), the Altiplano, between them. Because 90% of the Earth's tropical mountain glaciers are located in the Central Andes, our study focuses on this region, defining its zonal extent as 7S-21S and the meridional extent as the terrain 1000 m and greater. Although intense convection occurs during the wet season in the Altiplano, it is not included in the lists of regions with frequent or the most intense convection. The scarcity of in-situ observations with sufficient density and temporal resolution to resolve individual storms or even mesoscale-organized cloud systems and documented biases in microwave-based rainfall products in poorly gauged mountainous regions have impeded the development of an extensive literature on convection and convective systems in this region. With the tropical glaciers receding at unprecedented rates, leaving seasonal precipitation as an increasingly important input to the water balance in alpine valley ecosystems and streams, understanding the nature and characteristics of the seasonal precipitation becomes increasingly important for the rural economies in this region. Previous work in analyzing precipitation in the Central Andes has emphasized interannual variability with respect to ENSO, this is the first study to focus on shorter scale variability with respect to organized convection. The present study took advantage of the University of Utah's Precipitation Features database compiled from 14 years of TRMM observations (1998-2012), supplemented by field observations of rainfall and streamflow, historical gauge data, and long-term WRF-simulations, to analyze the intraseasonal variability of precipitating systems and their relationship regional dynamical features such as the Bolivian High. Through time series and

  9. A Case of Thyroid Storm Associated with Cardiomyopathy and Poststreptococcal Glomerulonephritis

    Directory of Open Access Journals (Sweden)

    Lisa J. Underland

    2016-01-01

    Full Text Available Thyroid storm has a high mortality rate and is often associated with a precipitating factor such as intercurrent illness or infection. It is rare in pediatric patients. Cardiac disease in hyperthyroidism mostly manifests itself as tachycardia but more serious cardiac findings have also been described. A 5-year-old male with recent strep throat infection presented with dilated cardiomyopathy, hematuria, and symptoms and lab findings consistent with severe hyperthyroidism. He was diagnosed with thyroid storm secondary to concurrent Graves’ disease and poststreptococcal glomerulonephritis (PSGN. After starting the treatment with methimazole and a beta-blocker, his cardiac disease gradually improved and the PSGN resolved over time. There are no specific pediatric criteria for thyroid storm. Adult criteria can be difficult to apply to pediatric cases. Criteria for diagnosis of thyroid storm are less clear for pediatric patients. Dilated cardiomyopathy is a rare cardiac manifestation of hyperthyroidism. PSGN is due to glomerular immune complexes and can complicate group A strep infection. Providers should be aware of cardiac disease as a complication of hyperthyroidism. PSGN should not mechanistically be related to hyperthyroidism but can precipitate the signs of thyroid storm such as hypertension. This association has not been previously reported in the literature.

  10. Analysis of a severe weather event over Mecca, Kingdom of Saudi Arabia, using observations and high-resolution modelling

    KAUST Repository

    Dasari, Hari Prasad; Attada, Raju; Knio, Omar; Hoteit, Ibrahim

    2017-01-01

    The dynamic and thermodynamic characteristics of a severe weather event that caused heavy wind and rainfall over Mecca, Kingdom of Saudi Arabia, on 11 September 2015 were investigated using available observations and the Weather Research and Forecasting model configured at 1 km resolution. Analysis of surface, upper air observations and model outputs reveals that the event was initiated by synoptic scale conditions that intensified by interaction with the local topography, triggering strong winds and high convective rainfall. The model predicted the observed characteristics of both rainfall and winds well, accurately predicting the maximum wind speed of 20–25 m s−1 that was sustained for about 2 h. A time series analysis of various atmospheric variables suggests a sudden fall in pressure, temperature and outgoing long wave radiation before the development of the storm, followed by a significant increase in wind speed, latent and moisture fluxes and change in wind direction during the mature stage of the storm. The model outputs suggest that the heavy rainfall was induced by a low-level moisture supply from the Red Sea combined with orographic lifting. Latent heat release from microphysical processes increased the vertical velocities in the mid-troposphere, further increasing the low-level convergence that strengthened the event.

  11. Analysis of a severe weather event over Mecca, Kingdom of Saudi Arabia, using observations and high-resolution modelling

    KAUST Repository

    Dasari, Hari Prasad

    2017-08-10

    The dynamic and thermodynamic characteristics of a severe weather event that caused heavy wind and rainfall over Mecca, Kingdom of Saudi Arabia, on 11 September 2015 were investigated using available observations and the Weather Research and Forecasting model configured at 1 km resolution. Analysis of surface, upper air observations and model outputs reveals that the event was initiated by synoptic scale conditions that intensified by interaction with the local topography, triggering strong winds and high convective rainfall. The model predicted the observed characteristics of both rainfall and winds well, accurately predicting the maximum wind speed of 20–25 m s−1 that was sustained for about 2 h. A time series analysis of various atmospheric variables suggests a sudden fall in pressure, temperature and outgoing long wave radiation before the development of the storm, followed by a significant increase in wind speed, latent and moisture fluxes and change in wind direction during the mature stage of the storm. The model outputs suggest that the heavy rainfall was induced by a low-level moisture supply from the Red Sea combined with orographic lifting. Latent heat release from microphysical processes increased the vertical velocities in the mid-troposphere, further increasing the low-level convergence that strengthened the event.

  12. Thyroid storm with multiple organ failure, disseminated intravascular coagulation, and stroke with a normal serum FT3 level.

    Science.gov (United States)

    Harada, Yuko; Akiyama, Hisanao; Yoshimoto, Tatsuji; Urao, Yasuko; Ryuzaki, Munekazu; Handa, Michiko

    2012-01-01

    Thyroid storm is a rare disorder with a sudden onset, rapid progression and high mortality. We experienced a case of thyroid storm which had a devastating course, including multiple organ failure (MOF), severe hypoglycemia, disseminated intravascular coagulation (DIC), and stroke. It was difficult to make a diagnosis of thyroid storm in the present patient, because she did not have a history of thyroid disease and her serum FT3 level was normal. Clinicians should be aware that thyroid storm can occur even when there is an almost normal level of thyroid hormones, and that intensive anticoagulation is required for patients with atrial fibrillation to prevent stroke after thyroid storm.

  13. Convection in complex shaped vessel; Convection dans des enceintes de forme complexe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The 8 november 2000, the SFT (Societe Francaise de Thermique) organized a technical day on the convection in complex shaped vessels. Nine papers have been presented in the domains of the heat transfers, the natural convection, the fluid distribution, the thermosyphon effect, the steam flow in a sterilization cycle and the transformers cooling. Eight papers are analyzed in ETDE and one paper dealing with the natural convection in spent fuels depository is analyzed in INIS. (A.L.B.)

  14. Coastal Storm Surge Analysis: Storm Surge Results. Report 5: Intermediate Submission No. 3

    Science.gov (United States)

    2013-11-01

    Vickery, P., D. Wadhera, A. Cox, V. Cardone , J. Hanson, and B. Blanton. 2012. Coastal storm surge analysis: Storm forcing (Intermediate Submission No...CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jeffrey L. Hanson, Michael F. Forte, Brian Blanton

  15. Factors controlling storm impacts on coastal barriers and beaches - A preliminary basis for near real-time forecasting

    Science.gov (United States)

    Morton, R.A.

    2002-01-01

    Analysis of ground conditions and meteorological and oceanographic parameters for some of the most severe Atlantic and Gulf Coast storms in the U.S. reveals the primary factors affecting morphological storm responses of beaches and barrier islands. The principal controlling factors are storm characteristics, geographic position relative to storm path, timing of storm events, duration of wave exposure, wind stress, degree of flow confinement, antecedent topography and geologic framework, sediment textures, vegetative cover, and type and density of coastal development. A classification of commonly observed storm responses demonstrates the sequential interrelations among (1) land elevations, (2) water elevations in the ocean and adjacent lagoon (if present), and (3) stages of rising water during the storm. The predictable coastal responses, in relative order from high frequency beach erosion to low frequency barrier inundation, include: beach erosion, berm migration, dune erosion, washover terrace construction, perched fan deposition, sheetwash, washover channel incision, washout formation, and forced and unforced ebb flow. Near real-time forecasting of expected storm impacts is possible if the following information is available for the coast: a detailed morphological and topographic characterization, accurate storm-surge and wave-runup models, the real-time reporting of storm parameters, accurate forecasts of the storm position relative to a particular coastal segment, and a conceptual model of geological processes that encompasses observed morphological changes caused by extreme storms.

  16. Great magnetic storms

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Yen Te Lee; Tang, F.; Gonzalez, W.D.

    1992-01-01

    The five largest magnetic storms that occurred between 1971 and 1986 are studied to determine their solar and interplanetary causes. All of the events are found to be associated with high speed solar wind streams led by collisionless shocks. The high speed streams are clearly related to identifiable solar flares. It is found that (1) it is the extreme values of the southward interplanetary magnetic fields rather than solar wind speeds that are the primary causes of great magnetic storms, (2) shocked and draped sheath fields preceding the driver gas (magnetic cloud) are at least as effective in causing the onset of great magnetic storms (3 of 5 events ) as the strong fields within the driver gas itself, and (3) precursor southward fields ahead of the high speed streams allow the shock compression mechanism (item 2) to be particularly geoeffective

  17. Assessing storm erosion hazards

    NARCIS (Netherlands)

    Ranasinghe, Ranasinghe W M R J B; Callaghan, D.; Ciavola, Paolo; Coco, Giovanni

    2017-01-01

    The storm erosion hazard on coasts is usually expressed as an erosion volume and/or associated episodic coastline retreat. The accurate assessment of present-day and future storm erosion volumes is a key task for coastal zone managers, planners and engineers. There are four main approaches that can

  18. Impacts of ionospheric electric fields on the GPS tropospheric delays during geomagnetic storms in Antarctica

    International Nuclear Information System (INIS)

    Suparta, W

    2017-01-01

    This paper aimed to overview the interaction of the thunderstorm with the ionospheric electric fields during major geomagnetic storms in Antarctica through the GPS tropospheric delays. For the purpose of study, geomagnetic activity and electric fields data for the period from 13 to 21 March 2015 representing the St. Patrick’s Day storm is analyzed. To strengthen the analysis, data for the period of 27 October to 1 st November 2003 representing for the Halloween storm is also compared. Our analysis showed that both geomagnetic storms were severe ( Ap ≥ 100 nT), where the intensity of Halloween storm is double compared to St. Patrick’s Day storm. For the ionospheric electric field, the peaks were dropped to -1.63 mV/m and -2.564 mV/m for St. Patrick and Halloween storms, respectively. At this time, the interplanetary magnetic field Bz component was significantly dropped to -17.31 nT with Ap > 150 nT (17 March 2015 at 19:20 UT) and -26.51 nT with Ap = 300 nT (29 October 2003 at 19:40 UT). For both geomagnetic storms, the electric field was correlated well with the ionospheric activity where tropospheric delays show a different characteristic. (paper)

  19. Hindcasting of storm waves using neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, S.; Mandal, S.

    Department NN neural network net i weighted sum of the inputs of neuron i o k network output at kth output node P total number of training pattern s i output of neuron i t k target output at kth output node 1. Introduction Severe storms occur in Bay of Bengal...), forecasting of runoff (Crespo and Mora, 1993), concrete strength (Kasperkiewicz et al., 1995). The uses of neural network in the coastal the wave conditions will change from year to year, thus a proper statistical and climatological treatment requires several...

  20. 46 CFR 169.329 - Storm rails.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must be...

  1. 46 CFR 72.40-10 - Storm rails.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Storm rails. 72.40-10 Section 72.40-10 Shipping COAST... and Guards § 72.40-10 Storm rails. (a) Suitable storm rails shall be installed in all passageways and at the deckhouse sides where passengers or crew might have normal access. Storm rails shall be...

  2. 46 CFR 116.920 - Storm rails.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storm rails. 116.920 Section 116.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... and Guards § 116.920 Storm rails. Suitable storm rails or hand grabs must be installed where necessary...

  3. 46 CFR 177.920 - Storm rails.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Storm rails. 177.920 Section 177.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.920 Storm rails. Suitable storm rails or hand grabs must be...

  4. 46 CFR 127.320 - Storm rails.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storm rails. 127.320 Section 127.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND ARRANGEMENTS Rails and Guards § 127.320 Storm rails. Suitable storm rails must be installed in each passageway and at...

  5. Examine Precipitation Extremes in Terms of Storm Properties

    Science.gov (United States)

    Jiang, P.; Yu, Z.; Chen, L.; Gautam, M. R.; Acharya, K.

    2017-12-01

    The increasing potential of the extreme precipitation is of significant societal concern. Changes in precipitation extremes have been mostly examined using extreme precipitation indices or Intensity-Duration-Frequency (IDF) analyses, which often fail to reveal the characteristics of an integrated precipitation event. In this study, we will examine the precipitation extremes in terms of storm properties including storm duration, storm intensity, total storm precipitation, and within storm pattern. Single storm event will be identified and storm properties will be determined based on the hourly precipitation time series in the selected locations in southwest United States. Three types of extreme precipitation event will be recognized using the criteria as (1) longest storm duration; (2) Highest storm intensity; and (3) largest total precipitation over a storm. The trend and variation of extreme precipitation events will be discussed for each criterion. Based on the comparisons of the characteristics of extreme precipitation events identified using different criteria, we will provide guidelines for choosing proper criteria for extreme precipitation analysis in specific location.

  6. Southern Ocean Convection and tropical telleconnections

    Science.gov (United States)

    Marinov, I.; Cabre, A.; Gnanadesikan, A.

    2014-12-01

    We show that Southern Ocean (SO) temperatures in the latest generation of Earth System Models exhibit two major modes of variation, one driven by deep convection, the other by tropical variability. We perform a CMIP5 model intercomparison to understand why different climate models represent SO variability so differently in long, control simulations. We show that multiyear variability in Southern Ocean sea surface temperatures (SSTs) can in turn influence oceanic and atmospheric conditions in the tropics on short (atmospheric) time-scales. We argue that the strength and pattern of SO-tropical teleconnections depends on the intensity of SO deep convection. Periodic convection in the SO is a feature of most CMIP5 models under preindustrial forcing (deLavergne et al., 2014). Models show a wide distribution in the spatial extent, periodicity and intensity of their SO convection, with some models convecting most of the time, and some showing very little convection. In a highly convective coupled model, we find that multidecadal variability in SO and global SSTs, as well as SO heat storage are driven by Weddell Sea convective variability, with convective decades relatively warm due to the heat released from the deep southern ocean and non-convective decades cold due to the subsurface storage of heat. Furthermore, pulses of SO convection drive SST and sea ice variations, influencing absorbed shortwave and emitted longwave radiation, wind, cloud and precipitation patterns, with climatic implications for the low latitudes via fast atmospheric teleconnections. We suggest that these high-low latitude teleconnection mechanisms are relevant for understanding hiatus decades. Additionally, Southern Ocean deep convection varied significantly during past, natural climate changes such as during the last deglaciation. Weddell Sea open convection was recently weakened, likely as a consequence of anthropogenic forcing and the resulting surface freshening. Our study opens up the

  7. Thyroid storm masked by hemodialysis and glucocorticoid therapy in a patient with rheumatoid arthritis.

    Science.gov (United States)

    Sasaki, Yohei; Shimizu, Yoshio; Nakata, Junichiro; Kameda, Toshiaki; Muto, Masahiro; Ohsawa, Isao; Io, Hiroaki; Hamada, Chieko; Horikoshi, Satoshi; Tomino, Yasuhiko

    2012-01-01

    Thyroid function test values are generally at low levels in patients with end-stage kidney disease. Life-threatening thyrotoxicosis or thyroid storm is rare, especially in hemodialysis (HD) patients, and is characterized by multisystem involvement and a high mortality rate if not immediately recognized and treated. Here, we report a female patient with severe symptomatic thyroid storm, receiving long-term HD and glucocorticoid therapy. Methimazole at a dose of 15 mg per day, β-adrenergic blockade and HD succeeded in controlling the patient's condition by gradually adjusting the target dry weight for hyperthyroidism-induced weight loss. When she was discharged from the hospital, her dry weight was reduced from 47.2 to 39.2 kg. The management of patients with severe symptomatic thyroid storm on HD represents a rare scenario. It is essential to initiate the available treatments as early as possible to reduce its mortality.

  8. Local time and cutoff rigidity dependences of storm time increase associated with geomagnetic storms

    International Nuclear Information System (INIS)

    Kudo, S.; Wada, M.; Tanskanen, P.; Kodama, M.

    1987-01-01

    The cosmic ray increases due to considerable depressions of cosmic ray cutoff rigidity during large geomagnetic storms are investigated. Data from a worldwide network of cosmic ray neutron monitors are analyzed for 17 geomagnetic storms which occurred in the quiet phase of the solar activity cycle during 1966-1978. As expected from the longitudinal asymmetry of the low-altitude geomagnetic field during large geomagnetic storms, a significant local time dependence of the increment in the cosmic ray during large geomagnetic storms, a significant local time dependence of the increment in the cosmic ray intensity is obtained. It is shown that the maximum phases of the local time dependence occur at around 1800 LT and that the amplitudes of the local time dependence are consistent with presently available theoretical estimates. The dependence of the increment on the cutoff rigidity is obtained for both the local time dependent part and the local time independent part of the storm time increase. The local time independent part, excluding the randomizing local time dependent part, shows a clear-cut dependence on cutoff rigidity which is consistent with theoretical estimates

  9. Direct simulation of turbulent Rayleigh-Benard convection in liquid sodium

    International Nuclear Information System (INIS)

    Woerner, M.

    1994-11-01

    The numerical results are analysed to investigate both the structures and mechanisms of convection and the statistical features of turbulence in natural convection of liquid metals. The simulations are performed with the finite volume code TURBIT which is extended by a semi-implicit time integration scheme for the energy equation. Due to the implicit treatment of thermal diffusion the computational time for simulation of natural convection in liquid metals is reduced by about one order of magnitude, as compared to the original fully explicit code version. Results for Rayleigh-Benard convection in liquid sodium with Prandtl number Pr=0.006 are given for four different Rayleigh numbers: Ra=3 000, Ra=6 000, Ra=12 000, and Ra=24 000. At the Rayleigh number Ra=3 000 the inertial convection is identified. It is characterized by large two-dimensional vortices, which rotate like a solid body. These vortices are also observed in the simulations for Ra=6 000, Ra=12 000 and Ra=24 000, but, they only exist in certain regions and for short time intervals. The appearance of these two-dimensional structures in three-dimensional, time-dependent and turbulent convection is explained by the relative importance of the non-linear terms in the momentum and energy equation, which is totally different in both equations, and by the coupling of these equations by the buoyancy and the convective term. In order to improve and validate statistical turbulence model for application to natural convection in liquid metals, budgets of turbulence kinetic energy, turbulent heat flux and temperature variance are calculated from the numerical results. For several unknown correlations closure assumptions used in standard turbulence models are analyzed and model coefficients are determined. (orig./HP) [de

  10. Comparing convective heat fluxes derived from thermodynamics to a radiative-convective model and GCMs

    Science.gov (United States)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2015-04-01

    The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.

  11. 46 CFR 108.221 - Storm rails.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the following...

  12. Er Storm P. en hardcore vagabond?

    DEFF Research Database (Denmark)

    Sortkær, Allan

    2002-01-01

    Den vagabond, som vi kender som Storm P.s, er ikke en figur, der kom fra en guddommelig inspiration eller deslige. Den var en allerede velkendt figur, før Storm P. tog den til sig, og figuren gennemgik radikale forandringer gennem Storm P.s liv: Krads social satire, hypervoldelig eller hyggelig...

  13. Modeling Flood Inundation Induced by River Flow and Storm Surges over a River Basin

    Directory of Open Access Journals (Sweden)

    Wei-Bo Chen

    2014-10-01

    Full Text Available Low-lying coastal regions and their populations are at risk during storm surge events and high freshwater discharges from upriver. An integrated storm surge and flood inundation modeling system was used to simulate storm surge and inundation in the Tsengwen River basin and the adjacent coastal area in southern Taiwan. A three-dimensional hydrodynamic model with an unstructured grid was used, which was driven by the tidal elevation at the open boundaries and freshwater discharge at the upriver boundary. The model was validated against the observed water levels for three typhoon events. The simulation results for the model were in reasonable agreement with the observational data. The model was then applied to investigate the effects of a storm surge, freshwater discharge, and a storm surge combined with freshwater discharge during an extreme typhoon event. The super Typhoon Haiyan (2013 was artificially shifted to hit Taiwan: the modeling results showed that the inundation area and depth would cause severe overbank flow and coastal flooding for a 200 year return period flow. A high-resolution grid model is essential for the accurate simulation of storm surges and inundation.

  14. Adriatic storm surges and related cross-basin sea-level slope

    Science.gov (United States)

    Međugorac, Iva; Orlić, Mirko; Janeković, Ivica; Pasarić, Zoran; Pasarić, Miroslava

    2018-05-01

    Storm surges pose a severe threat to the northernmost cities of the Adriatic coast, with Venice being most prone to flooding. It has been noted that some flooding episodes cause significantly different effects along the eastern and western Adriatic coasts, with indications that the difference is related to cross-basin sea-level slope. The present study aims to determine specific atmospheric conditions under which the slope develops and to explore connection with increased sea level along the two coastlines. The analysis is based on sea-level time series recorded at Venice and Bakar over the 1984-2014 interval, from which 38 most intensive storm-surge episodes were selected, and their meteorological backgrounds (ERA-Interim) were studied. The obtained sea-level extremes were grouped into three categories according to their cross-basin sea-level slope: storm surges that slope strongly westward (W type), those that slope eastward (E type) and ordinary storm surges (O type). Results show that the slope is controlled by wind action only, specifically, by the wind component towards a particular coast and by the cross-basin shear of along-basin wind. Meteorological fields were used to force an oceanographic numerical model in order to confirm the empirically established connection between the atmospheric forcing and the slope. Finally, it has been found that the intensity of storm surges along a particular Adriatic coast is determined by an interplay of sea-level slopes in the along and cross-basin directions.

  15. Electrical storm: clinical manifestations and management.

    Science.gov (United States)

    Littmann, L; Rennyson, S L

    2007-10-01

    Electrical storm is the clustering of hemodynamically destabilizing ventricular tachycardia or ventricular fibrillation that typically requires multiple electrical cardioversions or defibrillations within a 24-hour period. Electrical storm is frequently seen in the acute phase of myocardial infarction, in patients with the genetic arrhythmia syndromes, and in patients with implanted cardioverters-defibrillators. The evaluation and management should focus on the immediate suppression of the arrhythmia, a search for possible reversible causes, and attempts to prevent recurrences. In this review we present the most common conditions associated with electrical storm, therapeutic options for suppression of electrical storm, and new investigational techniques emerging for the treatment of electrical storm in refractory cases. The management of this life threatening arrhythmia typically requires the coordinated efforts of emergency medicine, critical care, cardiology, cardiac electrophysiology, and pacemaker experts.

  16. Warm-season severe wind events in Germany

    Science.gov (United States)

    Gatzen, Christoph

    2013-04-01

    A 15-year data set of wind measurements was analyzed with regard to warm season severe wind gusts in Germany. For April to September of the years 1997 to 2011, 1035 wind measurements of 26 m/s or greater were found. These wind reports were associated with 268 wind events. In total, 252 convective wind events contributed to 837 (81%) of the wind reports, 16 non-convective synoptic-scale wind events contributed to 198 reports (19%). Severe wind events were found with synoptic situations characterized by rather strong mid-level flow and advancing mid-level troughs. Severe convective wind events were analyzed using radar images and classified with respect to the observed radar structure. The most important convective mode was squall lines that were associated with one third of all severe wind gusts, followed by groups, bow echo complexes, and bow echoes. Supercells and cells were not associated with many wind reports. The low contribution of isolated cells indicates that rather large-scale forcing by synoptic-scale features like fronts is important for German severe wind events. Bow echoes were found to be present for 58% of all wind reports. The movement speed of bow echoes indicated a large variation with a maximum speed of 33 m/s. Extreme wind events as well as events with more than 15 wind reports were found to be related to higher movement speeds. Concentrating on the most intense events, derechos seem to be very important to the warm season wind threat in Germany. Convective events with a path length of more than 400 km contributed to 36% of all warm-season wind gusts in this data set. Furthermore, eight of nine extreme gusts exceeding 40 m/s were recorded with derecho events.

  17. Heat convection in a set of three vertical cylinders

    International Nuclear Information System (INIS)

    Serrano Ramirez, M.L. de.

    1993-01-01

    Experimental results on temperature and heat flow in a set of three vertical cylinders with internal generation of heat, water submerged and in free convection are presented in this work . Temperature distribution, Nusselt number and convective coefficient (h) for each rod, developed for the distance between the axis of cylinders in vertical position, as a consequence of the application of power in its outside, are analyzed. Experimental information about heat transfer by free convection in vertical cylinders and surfaces is analyzed. Information of the several author who have carried out studies about the heat transfer on vertical cylinders was compiled, and the proposed equations with the experimental data obtained in the thermo fluids laboratory of National Institute of Nuclear Research (ININ) were tested. The way in which separation distance, s, distribution temperature array, Nusselt number, and convective coefficient calculated for the proposed channel with the Keyhani, Dutton and experimental equations are tabulated and they are plotted for each power value and for each separation between rods. The scheme of the used equipment and the experimentation description as well as the observations of tests and graphical results are included. (Author)

  18. Progress in the Study of Coastal Storm Deposits

    Science.gov (United States)

    Xiong, Haixian; Huang, Guangqing; Fu, Shuqing; Qian, Peng

    2018-05-01

    Numerous studies have been carried out to identify storm deposits and decipher storm-induced sedimentary processes in coastal and shallow-marine areas. This study aims to provide an in-depth review on the study of coastal storm deposits from the following five aspects. 1) The formation of storm deposits is a function of hydrodynamic and sedimentary processes under the constraints of local geological and ecological factors. Many questions remain to demonstrate the genetic links between storm-related processes and a variety of resulting deposits such as overwash deposits, underwater deposits and hummocky cross-stratification (HCS). Future research into the formation of storm deposits should combine flume experiments, field observations and numerical simulations, and make full use of sediment source tracing methods. 2) Recently there has been rapid growth in the number of studies utilizing sediment provenance analysis to investigate the source of storm deposits. The development of source tracing techniques, such as mineral composition, magnetic susceptibility, microfossil and geochemical property, has allowed for better understanding of the depositional processes and environmental changes associated with coastal storms. 3) The role of extreme storms in the sedimentation of low-lying coastal wetlands with diverse ecosystem services has also drawn a great deal of attention. Many investigations have attempted to quantify widespread land loss, vertical marsh sediment accumulation and wetland elevation change induced by major hurricanes. 4) Paleostorm reconstructions based on storm sedimentary proxies have shown many advantages over the instrumental records and historic documents as they allow for the reconstruction of storm activities on millennial or longer time scales. Storm deposits having been used to establish proxies mainly include beach ridges and shelly cheniers, coral reefs, estuary-deltaic storm sequences and overwash deposits. Particularly over the past few

  19. Role of upper-level wind shear on the structure and maintenance of derecho-producing convective systems

    Science.gov (United States)

    Coniglio, Michael Charles

    Common large-scale environments associated with the development of derecho-producing convective systems from a large number of events are identified using statistical clustering of the 500-mb geopotential heights as guidance. The majority of the events (72%) fall into three main patterns that include a well-defined upstream trough (40%), a ridge (20%), and a zonal, low-amplitude flow (12%), which is defined as an additional warm-season pattern that is not identified in past studies of derecho environments. Through an analysis of proximity soundings, discrepancies are found in both low-level and deep-tropospheric shear parameters between observations and the shear profiles considered favorable for strong, long-lived convective systems in idealized simulations. To explore the role of upper-level shear in derecho environments, a set of two-dimensional simulations of density currents within a dry, neutrally stable environment are used to examine the ability of a cold pool to lift environmental air within a vertically sheared flow. The results confirm that the addition of upper-level shear to a wind profile with weak to moderate low-level shear increases the vertical displacement of low-level parcels despite a decrease in the vertical velocity along the cold pool interface, as suggested by previous studies. Parcels that are elevated above the surface (1-2 km) overturn and are responsible for the deep lifting in the deep-shear environments. This deep overturning caused by the upper-level shear helps to maintain the tilt of the convective systems in more complex two-dimensional and three dimensional simulations. The overturning also is shown to greatly increase the size of the convective systems in the three-dimensional simulations by facilitating the initiation and maintenance of convective cells along the cold pool. When combined with estimates of the cold pool motion and the storm-relative hodograph, these results may best be used for the prediction of the demise of

  20. Moisture Vertical Structure, Deep Convective Organization, and Convective Transition in the Amazon

    Science.gov (United States)

    Schiro, K. A.; Neelin, J. D.

    2017-12-01

    Constraining precipitation processes in climate models with observations is crucial to accurately simulating current climate and reducing uncertainties in future projections. Results from the Green Ocean Amazon (GOAmazon) field campaign (2014-2015) provide evidence that deep convection is strongly controlled by the availability of moisture in the free troposphere over the Amazon, much like over tropical oceans. Entraining plume buoyancy calculations confirm that CWV is a good proxy for the conditional instability of the environment, yet differences in convective onset as a function of CWV exist over land and ocean, as well as seasonally and diurnally over land. This is largely due to variability in the contribution of lower tropospheric humidity to the total column moisture. Boundary layer moisture shows a strong relationship to the onset during the day, which largely disappears during nighttime. Using S-Band radar, these transition statistics are examined separately for unorganized and mesoscale-organized convection, which exhibit sharp increases in probability of occurrence with increasing moisture throughout the column, particularly in the lower free troposphere. Retrievals of vertical velocity from a radar wind profiler indicate updraft velocity and mass flux increasing with height through the lower troposphere. A deep-inflow mixing scheme motivated by this — corresponding to deep inflow of environmental air into a plume that grows with height — provides a weighting of boundary layer and free tropospheric air that yields buoyancies consistent with the observed onset of deep convection across seasons and times of day, across land and ocean sites, and for all convection types. This provides a substantial improvement relative to more traditional constant mixing assumptions, and a dramatic improvement relative to no mixing. Furthermore, it provides relationships that are as strong or stronger for mesoscale-organized convection as for unorganized convection.

  1. The intense magnetic storm of December 19, 1980: Observations at L = 4

    International Nuclear Information System (INIS)

    Bering, E.A. III; Benbrook, J.R.; Haacke, R.; Dudeney, J.R.; Lanzerotti, L.J.; MacLennan, C.G.; Rosenberg, T.J.

    1991-01-01

    The intense magnetic storm of December 19, 1980 occurred during a major rocket and balloon geophysical research campaign at Siple Station, Antarctica. A balloon flight measuring the electric field and bremsstrahlung X ray flux was conducted during the main phase of the storm. The balloon data and associated ground-based data from around the world contain several lines of evidence which indicate that the dayside auroral oval expanded to an invariant latitude ≤ 59 degree during the storm. Evidence for this conclusion includes (1) the pattern of ground-based magnetic field and ionospheric electric field perturbations; (2) a substantial departure from the normal diurnal curve of the vertical component of the electric field in the stratosphere; and, (3) identical, relatively rapid equatorward motion of regions of electron precipitation, observed or inferred to occur, simultaneously at three L∼4 stations: Siple, Halley Bay and SANAE, separated by several hours in local time across the dayside. The absence of electron precipitation at Siple after this equatorward motion is an indication that the polar cap had expanded to include Siple during this interval. The power spectra of the magnetic field fluctuations at ULF observed at Siple and in a conjugate latitude chain of magnetometers were consistent with the presence of the dayside auroral oval in the near vicinity of Siple and with the presence of a major magnetospheric boundary slightly equatorward of ∼ 59 degree. The stratospheric electric field measured during the recovery phase was very large for this latitude for a period of several hours. This observation suggests that a subauroral latitude ion drift event of unusual intensity and duration accompanied this storm

  2. Thyroid Storm Provoked by Interleukin-2 Therapy for Metastatic Melanoma

    Directory of Open Access Journals (Sweden)

    Yao-Chung Liu

    2014-06-01

    Full Text Available With the growing use of immunotherapy in the treatment of cancer and autoimmune disease, severe autoimmune thyroid dysfunction may be provoked at an increasing rate. We herein report a 49-year-old male patient experiencing a life- threatening thyroid storm provoked by interleukin-2 (IL-2. This was a case of pulmonary metastasis of melanoma without a previous history of thyroid dysfunction. For the metastatic melanoma, he underwent combined immunochemotherapy including dacarbazine and IL-2. The 3rd course of immunochemotherapy was complicated with a thyroid storm manifested by high fever, tachycardia and even transient cardiac arrest. Fortunately, he recovered eventually from this crisis by immediate resuscitation followed by antithyroid dugs. Our case highlights the rare complication of a thyroid storm provoked by IL-2 treatment. Precaution against autoimmune thyroid dysfunction is required during treatment with IL-2 and probably also other kinds of newly-developed immunotherapy to avoid life-threatening complications.

  3. Solute Response To Arid-Climate Managed-River Flow During Storm Events

    Science.gov (United States)

    McLean, B.; Shock, E.

    2006-12-01

    Storm pulses are widely used in unmanaged, temperate and subtropical river systems to resolve in-stream surface and subsurface flow components. Resulting catchment-scale hydrochemical mixing models yield insight into mechanisms of solute transport. Managed systems are far more complicated due to the human need for high quality water resources, which drives processes that are superimposed on most, if not all, of the unmanaged components. As an example, an increasingly large portion of the water supply for the Phoenix metropolitan area is derived from multiple surface water sources that are impounded, diverted and otherwise managed upstream from the urban core that consumes the water and produces anthropogenic impacts. During large storm events this managed system is perturbed towards natural behavior as it receives inputs from natural hydrologic pathways in addition to impervious surfaces and storm water drainage channels. Our goals in studying managed river systems during this critical transition state are to determine how the well- characterized behavior of natural systems break down as the system responds then returns to its managed state. Using storm events as perturbations we can contrast an arid managed system with the unmanaged system it approaches during the storm event. In the process, we can extract geochemical consequences specifically related to unknown urban components in the form of chemical fingerprints. The effects of river management on solute behavior were assessed by taking advantage of several anomalously heavy winter storm events in late 2004 and early 2005 using a rigorous sampling routine. Several hundred samples collected between January and October 2005 were analyzed for major ion, isotopic, and trace metal concentrations with 78 individual measurements for each sample. The data are used to resolve managed watershed processes, mechanisms of solute transport and river mixing from anthropogenic inputs. Our results show that concentrations of

  4. A superposed epoch analysis of geomagnetic storms

    Directory of Open Access Journals (Sweden)

    J. R. Taylor

    1994-06-01

    Full Text Available A superposed epoch analysis of geomagnetic storms has been undertaken. The storms are categorised via their intensity (as defined by the Dst index. Storms have also been classified here as either storm sudden commencements (SSCs or storm gradual commencements (SGCs, that is all storms which did not begin with a sudden commencement. The prevailing solar wind conditions defined by the parameters solar wind speed (vsw, density (ρsw and pressure (Psw and the total field and the components of the interplanetary magnetic field (IMF during the storms in each category have been investigated by a superposed epoch analysis. The southward component of the IMF, appears to be the controlling parameter for the generation of small SGCs (-100 nT< minimum Dst ≤ -50 nT for ≥ 4 h, but for SSCs of the same intensity solar wind pressure is dominant. However, for large SSCs (minimum Dst ≤ -100 nT for ≥ 4 h the solar wind speed is the controlling parameter. It is also demonstrated that for larger storms magnetic activity is not solely driven by the accumulation of substorm activity, but substantial energy is directly input via the dayside. Furthermore, there is evidence that SSCs are caused by the passage of a coronal mass ejection, whereas SGCs result from the passage of a high speed/ slow speed coronal stream interface. Storms are also grouped by the sign of Bz during the first hour epoch after the onset. The sign of Bz at t = +1 h is the dominant sign of the Bz for ~24 h before the onset. The total energy released during storms for which Bz was initially positive is, however, of the same order as for storms where Bz was initially negative.

  5. Design and quantification of an extreme winter storm scenario for emergency preparedness and planning exercises in California

    Science.gov (United States)

    Dettinger, M.D.; Martin, Ralph F.; Hughes, M.; Das, T.; Neiman, P.; Cox, D.; Estes, G.; Reynolds, D.; Hartman, R.; Cayan, D.; Jones, L.

    2012-01-01

    The USGS Multihazards Project is working with numerous agencies to evaluate and plan for hazards and damages that could be caused by extreme winter storms impacting California. Atmospheric and hydrological aspects of a hypothetical storm scenario have been quantified as a basis for estimation of human, infrastructure, economic, and environmental impacts for emergency-preparedness and flood-planning exercises. In order to ensure scientific defensibility and necessary levels of detail in the scenario description, selected historical storm episodes were concatentated to describe a rapid arrival of several major storms over the state, yielding precipitation totals and runoff rates beyond those occurring during the individual historical storms. This concatenation allowed the scenario designers to avoid arbitrary scalings and is based on historical occasions from the 19th and 20th Centuries when storms have stalled over the state and when extreme storms have arrived in rapid succession. Dynamically consistent, hourly precipitation, temperatures, barometric pressures (for consideration of storm surges and coastal erosion), and winds over California were developed for the so-called ARkStorm scenario by downscaling the concatenated global records of the historical storm sequences onto 6- and 2-km grids using a regional weather model of January 1969 and February 1986 storm conditions. The weather model outputs were then used to force a hydrologic model to simulate ARkStorm runoff, to better understand resulting flooding risks. Methods used to build this scenario can be applied to other emergency, nonemergency and non-California applications. ?? 2011 The Author(s).

  6. Swashed away? Storm impacts on sandy beach macrofaunal communities

    Science.gov (United States)

    Harris, Linda; Nel, Ronel; Smale, Malcolm; Schoeman, David

    2011-09-01

    because of their direct effects on beach morphodynamics. Our results also support those of other studies suggesting that developed shores are more impacted by storms than are undeveloped shores. Whilst recognising we cannot generalise too far beyond our limited study, our results contribute to the growing body of evidence that interactions between sea-level rise, increasing storminess and the expansion of anthropogenic modifications to the shoreline will place functional beach ecosystems under severe pressure over the forthcoming decades and we therefore encourage further, formal testing of these concepts.

  7. Vertical natural convection: application of the unifying theory of thermal convection

    NARCIS (Netherlands)

    Ng, C.S.; Ooi, A.; Lohse, Detlef; Chung, D.

    2015-01-01

    Results from direct numerical simulations of vertical natural convection at Rayleigh numbers 1.0×10 5 –1.0×10 9 and Prandtl number 0.709 support a generalised applicability of the Grossmann–Lohse (GL) theory, which was originally developed for horizontal natural (Rayleigh–Bénard) convection. In

  8. Numerical simulation of "an American haboob"

    OpenAIRE

    Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M. R.; Djurdjevic, V.; Dacic, M.; Prasad, A. K.; El-Askary, H. M.; Paris, B. C.; Petkovic, S.; Nickovic, S.; Sprigg, W. A.

    2014-01-01

    A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land–atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High-resolution numerical models are required for accurate simulation of the small scales of the haboob process, with high velocity surface winds produced by strong convection and severe...

  9. Derecho-like event in Bulgaria on 20 July 2011

    Science.gov (United States)

    Gospodinov, Ilian; Dimitrova, Tsvetelina; Bocheva, Lilia; Simeonov, Petio; Dimitrov, Rumen

    2015-05-01

    In this work we analyze the development of a severe-convective-storm system in northwestern Bulgaria on 20 July 2011 which exhibited derecho-like characteristics. Prior to this event, a derecho had never been documented in Bulgaria. The convective system was associated with a cold front. We present a synoptic-scale analysis of the evolution of the cold front and an overview of the wind and the damage that has occurred in the region with the strongest impact. The convective system consisted of two multi-cell thunderstorms that are analyzed in some detail, based on radar data. The two storms merged and the convective system evolved into a bow-shape reflectivity structure with two rear inflow notches. The analysis of the radar data revealed cloud top heights of 17 km, with the formation of а bounded weak echo region, a maximum radar reflectivity factor of 63 dBZ, and wind speeds above 30 m/s. The field investigation revealed patterns in the damaged crops typical of strong wind gusts.

  10. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Science.gov (United States)

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  11. Extensional basin evolution in the presence of small-scale convection

    DEFF Research Database (Denmark)

    Petersen, Kenni Dinesen; Nielsen, S.B.; Clausen, O.R.

    2011-01-01

    -steady-state. Extension of the convecting equilibrium model causes the formation of rifts or continental margins which, posterior to extension, cools and subsides as predicted by the plate model. However, in contrast to the plate model, the ascended asthenosphere is not instantaneously decoupled from the convecting upper...... mantle below, and cooling is thus not entirely conductive above the former base of the lithosphere. This causes significantly protracted cooling and subsidence.We show that our model features improved consistency with subsidence data from several rifted margins and intracontinental basins. Furthermore...

  12. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Directory of Open Access Journals (Sweden)

    Giovanni Maria Carlomagno

    2014-11-01

    Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  13. Enhanced Natural Convection in a Metal Layer Cooled by Boiling Water

    International Nuclear Information System (INIS)

    Cho, Jae-Seon; Suh, Kune Y.; Chung, Chang-Hyun; Park, Rae-Joon; Kim, Sang-Baik

    2004-01-01

    An experimental study is performed to investigate the natural convection heat transfer characteristics and the solidification of the molten metal pool concurrently with forced convective boiling of the overlying coolant to simulate a severe accident in a nuclear power plant. The relationship between the Nusselt number (Nu) and the Rayleigh number (Ra) in the molten metal pool region is determined and compared with the correlations in the literature and experimental data with subcooled water. Given the same Ra condition, the present experimental results for Nu of the liquid metal pool with coolant boiling are found to be higher than those predicted by the existing correlations or measured from the experiment with subcooled boiling. To quantify the observed effect of the external cooling on the natural convection heat transfer rate from the molten pool, it is proposed to include an additional dimensionless group characterizing the temperature gradients in the molten pool and in the external coolant region. Starting from the Globe and Dropkin correlation, engineering correlations are developed for the enhancement of heat transfer in the molten metal pool when cooled by an overlying coolant. The new correlations for predicting natural convection heat transfer are applicable to low-Prandtl-number (Pr) materials that are heated from below and solidified by the external coolant above. Results from this study may be used to modify the current model in severe accident analysis codes

  14. No Calm After the Storm: A Systematic Review of Human Health Following Flood and Storm Disasters.

    Science.gov (United States)

    Saulnier, Dell D; Brolin Ribacke, Kim; von Schreeb, Johan

    2017-10-01

    Introduction How the burden of disease varies during different phases after floods and after storms is essential in order to guide a medical response, but it has not been well-described. The objective of this review was to elucidate the health problems following flood and storm disasters. A literature search of the databases Medline (US National Library of Medicine, National Institutes of Health; Bethesda, Maryland USA); Cinahl (EBSCO Information Services; Ipswich, Massachusetts USA); Global Health (EBSCO Information Services; Ipswich, Massachusetts USA); Web of Science Core Collection (Thomson Reuters; New York, New York USA); Embase (Elsevier; Amsterdam, Netherlands); and PubMed (National Center for Biotechnology Information, National Institutes of Health; Bethesda, Maryland USA) was conducted in June 2015 for English-language research articles on morbidity or mortality and flood or storm disasters. Articles on mental health, interventions, and rescue or health care workers were excluded. Data were extracted from articles that met the eligibility criteria and analyzed by narrative synthesis. The review included 113 studies. Poisonings, wounds, gastrointestinal infections, and skin or soft tissue infections all increased after storms. Gastrointestinal infections were more frequent after floods. Leptospirosis and diabetes-related complications increased after both. The majority of changes occurred within four weeks of floods or storms. Health changes differently after floods and after storms. There is a lack of data on the health effects of floods alone, long-term changes in health, and the strength of the association between disasters and health problems. This review highlights areas of consideration for medical response and the need for high-quality, systematic research in this area. Saulnier DD , Brolin Ribacke K , von Schreeb J . No calm after the storm: a systematic review of human health following flood and storm disasters. Prehosp Disaster Med. 2017;32(5):568-579.

  15. Impacts of initial convective structure on subsequent squall line evolution

    Science.gov (United States)

    Varble, A.; Morrison, H.; Zipser, E. J.

    2017-12-01

    A Weather Research and Forecasting simulation of the 20 May 2011 MC3E squall line using 750-m horizontal grid spacing produces wide convective regions with strongly upshear tilted convective updrafts and mesoscale bowing segments that are not produced in radar observations. Similar features occur across several different bulk microphysics schemes, despite surface observations exhibiting cold pool equivalent potential temperature drops that are similar to and pressure rises that are greater than those in the simulation. Observed rear inflow remains more elevated than simulated, partly counteracting the cold pool circulation, whereas the simulated rear inflow descends to low levels, maintaining its strength and reinforcing the cold pool circulation that overpowers the pre-squall line low level vertical wind shear. The descent and strength of the simulated rear inflow is fueled by strong latent cooling caused by large ice water contents detrained from upshear tilted convective cores that accumulate at the rear of the stratiform region. This simulated squall evolution is sensitive to model resolution, which is too coarse to resolve individual convective drafts. Nesting a 250-m horizontal grid spacing domain into the 750-m domain substantially alters the initial convective cells with reduced latent cooling, weaker convective downdrafts, and a weaker initial cold pool. As the initial convective cells develop into a squall line, the rear inflow remains more elevated in the 250-m domain with a cold pool that eventually develops to be just as strong and deeper than the one in the 750-m run. Despite this, the convective cores remain more upright in the 250-m run with the rear inflow partly counteracting the cold pool circulation, whereas the 750-m rear inflow near the surface reinforces the shallower cold pool and causes bowing in the squall line. The different structure in the 750-m run produces excessive mid-level front-to-rear detrainment that widens the convective region

  16. Modeling mantle convection in the spherical annulus

    Science.gov (United States)

    Hernlund, John W.; Tackley, Paul J.

    2008-12-01

    Most methods for modeling mantle convection in a two-dimensional (2D) circular annular domain suffer from innate shortcomings in their ability to capture several characteristics of the spherical shell geometry of planetary mantles. While methods such as rescaling the inner and outer radius to reduce anomalous effects in a 2D polar cylindrical coordinate system have been introduced and widely implemented, such fixes may have other drawbacks that adversely affect the outcome of some kinds of mantle convection studies. Here we propose a new approach that we term the "spherical annulus," which is a 2D slice that bisects the spherical shell and is quantitatively formulated at the equator of a spherical polar coordinate system after neglecting terms in the governing equations related to variations in latitude. Spherical scaling is retained in this approximation since the Jacobian function remains proportional to the square of the radius. We present example calculations to show that the behavior of convection in the spherical annulus compares favorably against calculations performed in other 2D annular domains when measured relative to those in a fully three-dimensional (3D) spherical shell.

  17. National Convective Weather Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...

  18. Statistical Relationship between Sawtooth Oscillations and Geomagnetic Storms

    Directory of Open Access Journals (Sweden)

    Jae-Hun Kim

    2008-06-01

    Full Text Available We have investigated a statistical relationship between sawtooth oscillations and geomagnetic storms during 2000-2004. First of all we selected a total of 154 geomagnetic storms based on the Dst index, and distinguished between different drivers such as Coronal Mass Ejection (CME and Co-rotating Interaction Region (CIR. Also, we identified a total of 48 sawtooth oscillation events based on geosynchronous energetic particle data for the same 2000-2004 period. We found that out of the 154 storms identified, 47 storms indicated the presence of sawtooth oscillations. Also, all but one sawtooth event identified occurred during a geomagnetic storm interval. It was also found that sawtooth oscillation events occur more frequently for storms driven by CME (˜62% than for storms driven by CIR (˜30%. In addition, sawtooth oscillations occurred mainly (˜82% in the main phase of storms for CME-driven storms while they occurred mostly (˜78% during the storm recovery phase for CIR-driven storms. Next we have examined the average characteristics of the Bz component of IMF, and solar wind speed, which were the main components for driving geomagnetic storm. We found that for most of the sawtooth events, the IMF Bz corresponds to --15 to 0 nT and the solar wind speed was in the range of 400˜700 km/s. We found that there was a weak tendency that the number of teeth for a given sawtooth event interval was proportional to the southward IMF Bz magnitude.

  19. Convection and crystal settling in sills

    Science.gov (United States)

    Gibb, Fergus G. F.; Henderson, C. Michael B.

    1992-02-01

    It has been advocated that convective and crystal settling processes play significant, and perhaps crucial, roles in magmatic differentiation. The fluid dynamics of magma chambers have been extensively studied in recent years, both theoretically and experimentally, but there is disagreement over the nature and scale of the convection, over its bearing on fractionation and possibly over whether it occurs at all. The differential distribution of modal olivine with height in differentiated alkaline basic sills provides critical evidence to resolve this controversy, at least for small to medium-large magma chambers. Our own and others' published data for such sills show that, irrespective of overall olivine content, modal olivine contents tend to increase in a roughly symmetrical manner inwards from the upper and lower margins of the sill, i.e. the distribution patterns are more often approximately D-shaped rather than the classic S-shape generally ascribed to gravity settling. We concur with the majority of other authors that this is an original feature of the filling process which has survived more or less unchanged since emplacement. We therefore conclude that the magmas have not undergone turbulent convection and that gravity settling has usually played only a minor modifying role since the intrusion of these sills. We offer a possible explanation for the apparent contradiction between fluid dynamical theory and the petrological evidence by suggesting that such sills rarely fill by the rapid injection of a single pulse of magma. Rather, they form from a series of pulses or a continuous pulsed influx over a protracted interval during which marginal cooling severely limits the potential for thermal convection.

  20. Mapping high-latitude plasma convection with coherent HF radars

    International Nuclear Information System (INIS)

    Ruohoniemi, J.M.; Greenwald, R.A.; Baker, K.B.; Villain, J.-P.; Hanuise, C.; Kelly, J.

    1989-01-01

    In this decade, a new technique for the study of ionosphere electrodynamics has been implemented in an evolving generation of high-latitude HF radars. Coherent backscatter from electron density irregularities at F region altitudes is utilized to observe convective plasma motion. The electronic beam forming and scanning capabilities of the radars afford an excellent combination of spatial (∼50 km) and temporal (∼1 min) resolution of the large-scale (∼10 6 km 2 ) convection pattern. In this paper, we outline the methods developed to synthesize the HF radar data into two-dimensional maps of convection velocity. Although any single radar can directly measure only the line-of-sight, or radial, component of the plasma motion, the convection pattern is sometimes so uniform and stable that scanning in azimuth serves to determine the transverse component as well. Under more variable conditions, data from a second radar are necessary to unambiguously resolve velocity vectors. In either case, a limited region of vector solution can be expanded into contiguous areas of single-radar radial velocity data by noting that the convection must everywhere be divergence-free, i.e., ∇·v=0. It is thus often possible to map velocity vectors without extensive second-radar coverage. We present several examples of two-dimensional velocity maps. These show instances of L shell-aligned flow in the dusk sector, the reversal of convection near magnetic midnight, and counterstreaming in the dayside cleft. We include a study of merged coherent and incoherent radar data that illustrates the applicability of these methods to other ionospheric radar systems. copyright American Geophysical Union 1989

  1. The StoRM Certification Process

    International Nuclear Information System (INIS)

    Ronchieri, Elisabetta; Dibenedetto, Michele; Zappi, Riccardo; Dal Pra, Stefano; Aiftimiei, Cristina; Traldi, Sergio

    2011-01-01

    StoRM is an implementation of the SRM interface version 2.2 used by all Large Hadron Collider (LHC) experiments and non-LHC experiments as SRM endpoint at different Tiers of Worldwide LHC Computing Grid. The complexity of its services and the demand of experiments and users are increasing day by day. The growing needs in terms of service level by the StoRM users communities make it necessary to design and implement a more effective testing procedure to quickly and reliably validate new StoRM candidate releases both in code side (for example via test units, and schema valuator) and in final product software (for example via functionality tests, and stress tests). Testing software service is a very critical quality activity performed in a very ad-hoc informal manner by developers, testers and users of StoRM up to now. In this paper, we describe the certification mechanism used by StoRM team to increase the robustness and reliability of the StoRM services. Various typologies of tests, such as quality, installation, configuration, functionality, stress and performance, defined on the base of a set of use cases gathered as consequence of the collaboration among the StoRM team, experiments and users, are illustrated. Each typology of test is either increased or decreased easily from time to time. The proposed mechanism is based on a new configurable testsuite. This is executed by the certification team, who is responsible for validating the release candidate package as well as bug fix (or patch) package, given a certain testbed that considers all possible use cases. In correspondence of each failure, the package is given back to developers waiting for validating a new package.

  2. Geomagnetically Induced Currents Around the World During the 17 March 2015 Storm

    Science.gov (United States)

    Carter, B. A.; Yizengaw, E.; Pradipta, R.; Weygand, J. M.; Piersanti, M.; Pulkkinen, Antti Aleksi; Moldwin, M. B.; Norman, R.; Zhang, K.

    2016-01-01

    Geomagnetically induced currents (GICs) represent a significant space weather issue for power grid and pipeline infrastructure, particularly during severe geomagnetic storms. In this study, magnetometer data collected from around the world are analyzed to investigate the GICs caused by the 2015 St. Patricks Day storm. While significant GIC activity in the high-latitude regions due to storm time substorm activity is shown for this event, enhanced GIC activity was also measured at two equatorial stations in the American and Southeast Asian sectors. This equatorial GIC activity is closely examined, and it is shown that it is present both during the arrival of the interplanetary shock at the storm sudden commencement (SSC) in Southeast Asia and during the main phase of the storm approximately 10 h later in South America. The SSC caused magnetic field variations at the equator in Southeast Asia that were twice the magnitude of those observed only a few degrees to the north, strongly indicating that the equatorial electrojet (EEJ) played a significant role. The large equatorial magnetic field variations measured in South America are also examined, and the coincident solar wind data are used to investigate the causes of the sudden changes in the EEJ approximately 10 h into the storm. From this analysis it is concluded that sudden magnetopause current increases due to increases in the solarwind dynamic pressure, and the sudden changes in the resultant magnetospheric and ionospheric current systems, are the primary drivers of equatorial GICs.

  3. Ionospheric Responses to the July 15 - 16, 2000 Magnetic Storm around Geographic Longitude 121E

    Directory of Open Access Journals (Sweden)

    Yu-Jung Chuo

    2008-01-01

    Full Text Available This study presents observed behavior of ionospheric responses using vertical total electron contents (VTEC and NmF2. The data were collected from global positioning system (GPS networks and ionosondes around the geographic longitude of 121°E from mid- to low-latitudes for the severe magnetic storm on 15 July 2000. The results show that the severe magnetic storm caused significant density depletion and a G-condition occurrence in the western Pacific region on 15 - 16 July 2000. The G-condition is observed on the ionograms at Chung-Li station around 2330 UT on July 15. Furthermore, the variation of the F-peak height (HmF2 at Cebu indicates that a zonal electric field produced an upward drift and enhanced the fountain effect from 1000 UT on July 15. The observation of a G-condition indicates that a storm-induced neutral-wind circulation was the main cause of compositional change; i.e., an increase in the N2/O ratio and its associated loss coefficients that produced a negative storm phase along the chain of geographic longitude 121°E.

  4. Are inundation limit and maximum extent of sand useful for differentiating tsunamis and storms? An example from sediment transport simulations on the Sendai Plain, Japan

    Science.gov (United States)

    Watanabe, Masashi; Goto, Kazuhisa; Bricker, Jeremy D.; Imamura, Fumihiko

    2018-02-01

    We examined the quantitative difference in the distribution of tsunami and storm deposits based on numerical simulations of inundation and sediment transport due to tsunami and storm events on the Sendai Plain, Japan. The calculated distance from the shoreline inundated by the 2011 Tohoku-oki tsunami was smaller than that inundated by storm surges from hypothetical typhoon events. Previous studies have assumed that deposits observed farther inland than the possible inundation limit of storm waves and storm surge were tsunami deposits. However, confirming only the extent of inundation is insufficient to distinguish tsunami and storm deposits, because the inundation limit of storm surges may be farther inland than that of tsunamis in the case of gently sloping coastal topography such as on the Sendai Plain. In other locations, where coastal topography is steep, the maximum inland inundation extent of storm surges may be only several hundred meters, so marine-sourced deposits that are distributed several km inland can be identified as tsunami deposits by default. Over both gentle and steep slopes, another difference between tsunami and storm deposits is the total volume deposited, as flow speed over land during a tsunami is faster than during a storm surge. Therefore, the total deposit volume could also be a useful proxy to differentiate tsunami and storm deposits.

  5. Mapping Hurricane Rita inland storm tide

    Science.gov (United States)

    Berenbrock, Charles; Mason, Jr., Robert R.; Blanchard, Stephen F.; Simonovic, Slobodan P.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of effected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems (GIS) provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-hour intervals from midnight (0000 hour) through noon (1200 hour) on September 24, 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared to the extent of flood-inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks.

  6. Modelling the economic losses of historic and present-day high-impact winter storms in Switzerland

    Science.gov (United States)

    Welker, Christoph; Stucki, Peter; Bresch, David; Dierer, Silke; Martius, Olivia; Brönnimann, Stefan

    2014-05-01

    Severe winter storms such as "Vivian" in February 1990 and "Lothar" in December 1999 are among the most destructive meteorological hazards in Switzerland. Disaster severity resulting from such windstorms is attributable, on the one hand, to hazardous weather conditions such as high wind gust speeds; and on the other hand to socio-economic factors such as population density, distribution of values at risk, and damage susceptibility. For present-day winter storms, the data basis is generally good to describe the meteorological development and wind forces as well as the associated socio-economic impacts. In contrast, the information on historic windstorms is overall sparse and the available historic weather and loss reports mostly do not provide quantitative information. This study illustrates a promising technique to simulate the economic impacts of both historic and present winter storms in Switzerland since end of the 19th century. Our approach makes use of the novel Twentieth Century Reanalysis (20CR) spanning 1871-present. The 2-degree spatial resolution of the global 20CR dataset is relatively coarse. Thus, the complex orography of Switzerland is not realistically represented, which has considerable ramifications for the representation of wind systems that are strongly influenced by the local orography, such as Föhn winds. Therefore, a dynamical downscaling of the 20CR to 3 km resolution using the Weather Research and Forecasting (WRF) model was performed, for in total 40 high-impact winter storms in Switzerland since 1871. Based on the downscaled wind gust speeds and the climada loss model, the estimated economic losses were calculated at municipality level for current economic and social conditions. With this approach, we find an answer to the question what would be the economic losses of e.g. a hazardous Föhn storm - which occurred in northern Switzerland in February 1925 - today, i.e. under current socio-economic conditions. Encouragingly, the pattern of

  7. A Novel Ice Storm Experiment for Evaluating the Ecological Impacts of These Extreme Weather Events

    Science.gov (United States)

    Driscoll, C. T.; Campbell, J. L.; Rustad, L.; Fahey, T.; Fahey, R. T.; Garlick, S.; Groffman, P.; Hawley, G. J.; Schaberg, P. G.

    2017-12-01

    Ice storms are among the most destructive natural disturbances in some regions of the world, and are an example of an extreme weather event that can profoundly disrupt ecosystem function. Despite potential dire consequences of ice storms on ecosystems and society, we are poorly positioned to predict responses because severe ice storms are infrequent and understudied. Since it is difficult to determine when and where ice storms will occur, most previous research has consisted of ad hoc attempts to characterize impacts in the wake of major icing events. To evaluate ice storm effects in a more controlled manner, we conducted a novel ice storm manipulation experiment at the Hubbard Brook Experimental Forest in New Hampshire. Water was sprayed above the forest canopy in sub-freezing conditions to simulate a glaze ice event. Treatments included replicate plots that received three levels of radial ice thickness (6, 13, and 19 mm) and reference plots that were not sprayed. Additionally, two of the mid-level treatment plots received ice applications in back-to-back years to evaluate effects associated with ice storm frequency. Measures of the forest canopy, including hemispherical photography, photosynthetically active radiation, and ground-based LiDAR, indicated that the ice loads clearly damaged vegetation and opened up the canopy, allowing more light to penetrate. These changes in the canopy were reflected in measurements of fine and coarse woody debris that were commensurate with the level of icing. Soil respiration declined in the most heavily damaged plots, which we attribute to changes in root activity. Although soil solution nitrogen showed clear seasonal patterns, there was no treatment response. These results differ from the severe regional natural ice storm of 1998, which caused large leaching losses of nitrate in soil solutions and stream water during the growing season after the event, due to lack of uptake by damaged vegetation. It is not yet clear why there

  8. Ionospheric convection response to changes of interplanetary magnetic field B-z component during strong B-y component

    DEFF Research Database (Denmark)

    Huang, C.S.; Murr, D.; Sofko, G.J.

    2000-01-01

    response to IMF Bz changes during strong IMF BZ. On March 23, 1995, B-x was small, B-y was strongly positive (7-11 nT), and the B-z polarity changed several times after 1300 UT. The dayside ionospheric convection is dominated by a large clockwise convection cell. The cell focus (the "eye" of the convection...... cell, or the largest change in the convection pattern, is limited roughly to the region between the previous cell focus and the new cell focus. Outside this region, the ionospheric flows could be greatly enhanced or weakened, while the convection pattern shape changes very little. When B-y is strong...... the dawn-dusk meridian plane, which is interpreted as propagation or expansion of newly generated convection cells in the cusp region. Other studies showed that the change in convection pattern in response to IMF reorientations is spatially fixed. In this paper, we investigate the ionospheric convection...

  9. Behavior of the ionosphere total electronic content in Sao Jose dos Campos during magnetic storms in 1980

    International Nuclear Information System (INIS)

    Paula, E.R. de; Abdu, M.A.; Kantor, I.J.

    1983-07-01

    Faraday rotation data from 1980, obtained with a polarimeter at Sao Jose dos Campos (23 0 S, 46 0 W), were analyzed during periods occurring magnetic storms. In order to select these periods, the magnetic index Dst was used. It was observed that during magnetic storms preceeded by a few calm days, an increase in the Total Electron Content (TEC) is observed during the storm main phase, relative to the mean of the magnetic calm days (positive phase). Afterwards, during the storms recovery phase, a decrease was registered relative to the average (negative phase). This TEC behaviour, observed at low latitudes storms, is typical of the behaviour over medium latitudes. But, when several storms occur with few intervening days between them, the positive phase seems to prevail. This indicates an inibition of the source of the negative phase. This work discusses the possible origins of the positive and negative phases. (Author) [pt

  10. ENSO-based probabilistic forecasts of March-May U.S. tornado and hail activity

    Science.gov (United States)

    Lepore, Chiara; Tippett, Michael K.; Allen, John T.

    2017-09-01

    Extended logistic regression is used to predict March-May severe convective storm (SCS) activity based on the preceding December-February (DJF) El Niño-Southern Oscillation (ENSO) state. The spatially resolved probabilistic forecasts are verified against U.S. tornado counts, hail events, and two environmental indices for severe convection. The cross-validated skill is positive for roughly a quarter of the U.S. Overall, indices are predicted with more skill than are storm reports, and hail events are predicted with more skill than tornado counts. Skill is higher in the cool phase of ENSO (La Niña like) when overall SCS activity is higher. SCS forecasts based on the predicted DJF ENSO state from coupled dynamical models initialized in October of the previous year extend the lead time with only a modest reduction in skill compared to forecasts based on the observed DJF ENSO state.

  11. Identification of dust storm source areas in West Asia using multiple environmental datasets.

    Science.gov (United States)

    Cao, Hui; Amiraslani, Farshad; Liu, Jian; Zhou, Na

    2015-01-01

    Sand and Dust storms are common phenomena in arid and semi-arid areas. West Asia Region, especially Tigris-Euphrates alluvial plain, has been recognized as one of the most important dust source areas in the world. In this paper, a method is applied to extract SDS (Sand and Dust Storms) sources in West Asia region using thematic maps, climate and geography, HYSPLIT model and satellite images. Out of 50 dust storms happened during 2000-2013 and collected in form of MODIS images, 27 events were incorporated as demonstrations of the simulated trajectories by HYSPLIT model. Besides, a dataset of the newly released Landsat images was used as base-map for the interpretation of SDS source regions. As a result, six main clusters were recognized as dust source areas. Of which, 3 clusters situated in Tigris-Euphrates plain were identified as severe SDS sources (including 70% dust storms in this research). Another cluster in Sistan plain is also a potential source area. This approach also confirmed six main paths causing dust storms. These paths are driven by the climate system including Siberian and Polar anticyclones, monsoon from Indian Subcontinent and depression from north of Africa. The identification of SDS source areas and paths will improve our understandings on the mechanisms and impacts of dust storms on socio-economy and environment of the region. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Discovery of energetic molecular ions (NO+ and O2+) in the storm time ring current

    International Nuclear Information System (INIS)

    Klecker, B.; Moebius, E.; Hovestadt, D.; Scholer, M.; Gloeckler, G.; Ipavich, F.M.

    1986-01-01

    A few hours after the onset of a large geomagnetic storm on September 4, 1984, energetic molecular ions in the mass range 28--32, predminantly NO + and O 2 + , have been discovered in the outer ring current at L--7. The data have been obtained with the time-of-flight spectrometer SULEICA on the AMPTE/IRM spacecraft. We find at 160 keV/e a mean abundance ratio of the molecular ions relative to O + ions of 0.031 +- 0.004. During quiet times no molecular ions are observed, the 1 sigma upper limit of the ratio derived by averaging over several quiet periods is 0.003. The observations demonstrate the injection of ionospheric plasma into the storm time ring current and the subsequent acceleration to energies of several hundred keV on a time scale of a few hours after the onset of the magnetic storm

  13. A transilient matrix for moist convection

    Energy Technology Data Exchange (ETDEWEB)

    Romps, D.; Kuang, Z.

    2011-08-15

    A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

  14. Midlatitude Continental Convective Clouds Experiment (MC3E)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-01

    , combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that have never before been available. Several different components of convective cloud and precipitation processes tangible to both the convective parameterization and precipitation retrieval algorithm problem are targeted, such as preconvective environment and convective initiation, updraft/downdraft dynamics, condensate transport and detrainment, precipitation and cloud microphysics, spatial and temporal variability of precipitation, influence on the environment and radiation, and a detailed description of the large-scale forcing.

  15. Concentration-Discharge Responses to Storm Events in Coastal California Watersheds

    Science.gov (United States)

    Aguilera, Rosana; Melack, John M.

    2018-01-01

    Storm events in montane catchments are the main cause of mobilization of solutes and particulates into and within stream channels in coastal California. Nonlinear behavior of nutrients and suspended sediments during storms is evident in the hysteresis that arises in concentration-discharge (C-Q) relationships. We examined patterns in the C-Q hysteresis of nutrients (NO3-, NH4+, DON, and PO43-) and total suspended solids (TSS) during storms across 10 sites and water years 2002-2015 by quantifying the slope of the C-Q relationship and the rotational pattern of the hysteresis loop. We observed several hysteresis types in the ˜400 storms included in our study. Concentrations of constituents associated with sediment transport (PO43- and TSS) peaked during high flows. Conversely, nitrogen species had hysteretic responses such as dilution with clockwise rotation in urban sites and enrichment with anticlockwise rotation in undeveloped sites. The wide range of C-Q responses that occurred among sites and seasons reflected the variable hydrological and biogeochemical characteristics of catchments and storms. Responses for nitrate in nested catchments differed in slope and rotation of C-Q hysteresis. Upland undeveloped and lowland urban sites had anticlockwise rotation at the onset of the rainy season following a dry year, which implied a delay in the transport of this solute to the streams. Slopes by the middle of the rainy season showed that the urban site switched from dilution to enrichment, and then again to dilution with clockwise rotation at the end of the season, which implied high initial concentrations and proximal sources.

  16. Convective aggregation in realistic convective-scale simulations

    Science.gov (United States)

    Holloway, Christopher E.

    2017-06-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.Plain Language SummaryUnderstanding the processes that lead to the organization of tropical rainstorms is an important challenge for weather

  17. Annual Storm Water Report for the Y-12 National Security Complex Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Environment Compliance Department

    2012-01-01

    The storm water pollution prevention program at the Y-12 National Security Complex (Y-12 Complex) intends to protect the quality of storm water runoff through: (1) reducing the exposure of metal accumulation areas to precipitation, (2) implementation of Best Management Practices, (3) sampling during rain events and subsequent analysis, and (4) routine surveillances. When prescribed, the analytical data is compared to a set of cut-off concentration values to determine how the Y-12 Complex relates to other metal fabrication industries in the state of Tennessee. The quality of the storm water exiting the Y-12 Complex via East Fork Poplar Creek indicated some improvement in 2011. This improvement is attributable to the completion of several construction, demolition and remediation projects which occurred in 2010 and 2011. Emphasis will continue to be placed on site inspections and the timely implementation of improved storm water control measures as deemed necessary.

  18. Annual Storm Water Report for the Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Clean Water Compliance Section of the Environment Compliance Department

    2012-01-01

    The storm water pollution prevention program at the Y-12 National Security Complex (Y-12 Complex) intends to protect the quality of storm water runoff through: (1) reducing the exposure of metal accumulation areas to precipitation, (2) implementation of Best Management Practices, (3) sampling during rain events and subsequent analysis, and (4) routine surveillances. When prescribed, the analytical data is compared to a set of cut-off concentration values to determine how the Y-12 Complex relates to other metal fabrication industries in the state of Tennessee. The quality of the storm water exiting the Y-12 Complex via East Fork Poplar Creek indicated some improvement in 2011. This improvement is attributable to the completion of several construction, demolition and remediation projects which occurred in 2010 and 2011. Emphasis will continue to be placed on site inspections and the timely implementation of improved storm water control measures as deemed necessary.

  19. Storm-driven sediment transport in Massachusetts Bay

    Science.gov (United States)

    Warner, J.C.; Butman, B.; Dalyander, P.S.

    2008-01-01

    Massachusetts Bay is a semi-enclosed embayment in the western Gulf of Maine about 50 km wide and 100 km long. Bottom sediment resuspension is controlled predominately by storm-induced surface waves and transport by the tidal- and wind-driven circulation. Because the Bay is open to the northeast, winds from the northeast ('Northeasters') generate the largest surface waves and are thus the most effective in resuspending sediments. The three-dimensional oceanographic circulation model Regional Ocean Modeling System (ROMS) is used to explore the resuspension, transport, and deposition of sediment caused by Northeasters. The model transports multiple sediment classes and tracks the evolution of a multilevel sediment bed. The surficial sediment characteristics of the bed are coupled to one of several bottom-boundary layer modules that calculate enhanced bottom roughness due to wave-current interaction. The wave field is calculated from the model Simulating WAves Nearshore (SWAN). Two idealized simulations were carried out to explore the effects of Northeasters on the transport and fate of sediments. In one simulation, an initially spatially uniform bed of mixed sediments exposed to a series of Northeasters evolved to a pattern similar to the existing surficial sediment distribution. A second set of simulations explored sediment-transport pathways caused by storms with winds from the northeast quadrant by simulating release of sediment at selected locations. Storms with winds from the north cause transport southward along the western shore of Massachusetts Bay, while storms with winds from the east and southeast drive northerly nearshore flow. The simulations show that Northeasters can effectively transport sediments from Boston Harbor and the area offshore of the harbor to the southeast into Cape Cod Bay and offshore into Stellwagen Basin. This transport pattern is consistent with Boston Harbor as the source of silver found in the surficial sediments of Cape Cod Bay and

  20. The evaluation and management of electrical storm.

    Science.gov (United States)

    Eifling, Michael; Razavi, Mehdi; Massumi, Ali

    2011-01-01

    Electrical storm is an increasingly common and life-threatening syndrome that is defined by 3 or more sustained episodes of ventricular tachycardia, ventricular fibrillation, or appropriate shocks from an implantable cardioverter-defibrillator within 24 hours. The clinical presentation can be dramatic. Electrical storm can manifest itself during acute myocardial infarction and in patients who have structural heart disease, an implantable cardioverter-defibrillator, or an inherited arrhythmic syndrome. The presence or absence of structural heart disease and the electrocardiographic morphology of the presenting arrhythmia can provide important diagnostic clues into the mechanism of electrical storm. Electrical storm typically has a poor outcome.The effective management of electrical storm requires an understanding of arrhythmia mechanisms, therapeutic options, device programming, and indications for radiofrequency catheter ablation. Initial management involves determining and correcting the underlying ischemia, electrolyte imbalances, or other causative factors. Amiodarone and β-blockers, especially propranolol, effectively resolve arrhythmias in most patients. Nonpharmacologic treatment, including radiofrequency ablation, can control electrical storm in drug-refractory patients. Patients who have implantable cardioverter-defibrillators can present with multiple shocks and may require drug therapy and device reprogramming. After the acute phase of electrical storm, the treatment focus should shift toward maximizing heart-failure therapy, performing revascularization, and preventing subsequent ventricular arrhythmias. Herein, we present an organized approach for effectively evaluating and managing electrical storm.

  1. Heat Convection

    Science.gov (United States)

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  2. Deep convective cloud characterizations from both broadband imager and hyperspectral infrared sounder measurements

    Science.gov (United States)

    Ai, Yufei; Li, Jun; Shi, Wenjing; Schmit, Timothy J.; Cao, Changyong; Li, Wanbiao

    2017-02-01

    Deep convective storms have contributed to airplane accidents, making them a threat to aviation safety. The most common method to identify deep convective clouds (DCCs) is using the brightness temperature difference (BTD) between the atmospheric infrared (IR) window band and the water vapor (WV) absorption band. The effectiveness of the BTD method for DCC detection is highly related to the spectral resolution and signal-to-noise ratio (SNR) of the WV band. In order to understand the sensitivity of BTD to spectral resolution and SNR for DCC detection, a BTD to noise ratio method using the difference between the WV and IR window radiances is developed to assess the uncertainty of DCC identification for different instruments. We examined the case of AirAsia Flight QZ8501. The brightness temperatures (Tbs) over DCCs from this case are simulated for BTD sensitivity studies by a fast forward radiative transfer model with an opaque cloud assumption for both broadband imager (e.g., Multifunction Transport Satellite imager, MTSAT-2 imager) and hyperspectral IR sounder (e.g., Atmospheric Infrared Sounder) instruments; we also examined the relationship between the simulated Tb and the cloud top height. Results show that despite the coarser spatial resolution, BTDs measured by a hyperspectral IR sounder are much more sensitive to high cloud tops than broadband BTDs. As demonstrated in this study, a hyperspectral IR sounder can identify DCCs with better accuracy.

  3. Evolution of the ring current during two geomagnetic storms

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; McEntire, R.W.; Krimigis, S.M.

    1987-01-01

    The progressive developments in the radial profiles of the particle pressure, plasma beta, and electric currents of the storm time ring current are investigated with data from the medium energy particle analyzer on the AMPTE Charged Particle Explorer spacecraft. Measurements of ions from 25 keV to 1 MeV, which carry 70--85% of the energy density of the entire ring current population, are used in this work. Two geomagnetic storms in September of 1984 are selected and four traversals of the equatorial ring current region during the course of each storm are studied. It is shown that enhancements in the particle pressure occur initially in the outer region and reach the inner region in the late phase of the storm. Structures suggestive of multiple particle injections are seen in the pressure profile. The leading and trailing edges of the particle injection structures are associated, respectively, with the depressions and enhancements of the westward current densities of the ring current. Plasma beta occasionally increases to values of the order of 1 in some regions of the ring current from prestorm values of the order of 0.1 or less. It is also found that the location of the maximum ring current particle pressure can be several earth radii from where the most intense westward ring current flows. This is a consequence of the dominance of pressure gradient current over the current associated with the magnetic field line curvature and particle anisotropy. copyright American Geophysical Union 1987

  4. Modeling the dynamics of a storm-time acceleration event: combining MHD effects with wave-particle interactions

    Science.gov (United States)

    Elkington, S. R.; Alam, S. S.; Chan, A. A.; Albert, J.; Jaynes, A. N.; Baker, D. N.; Wiltberger, M. J.

    2017-12-01

    Global simulations of radiation belt dynamics are often undertaken using either a transport formalism (e.g. Fokker-Plank), or via test particle simulations in model electric and magnetic fields. While transport formalisms offer computational efficiency and the ability to deal with a wide range of wave-particle interactions, they typically rely on simplified background fields, and often are limited to empirically-specified stochastic (diffusive) wave-particle interactions. On the other hand, test particle simulations may be carried out in global MHD simulations that include realistic physical effects such as magnetopause shadowing, convection, and substorm injections, but lack the ability to handle physics outside the MHD approximation in the realm of higher frequency (kHz) wave populations.In this work we introduce a comprehensive simulation framework combining global MHD/test particle techniques to provide realistic background fields and radial transport processes, with a Stochastic Differential Equation (SDE) method for addressing high frequency wave-particle interactions. We examine the March 17, 2013 storm-time acceleration period, an NSF-GEM focus challenge event, and use the framework to examine the relative importance of physical effects such as magnetopause shadowing, diffusive and advective transport processes, and wave-particle interactions through the various phases of the storm.

  5. Development of Rotary-Wing UAS for Use in Atmospheric Sensing of Near-Storm Environments

    Science.gov (United States)

    Greene, B. R.; Chilson, P. B.; Salazar-Cerreno, J.; Duthoit, S.; Doyle, B.; Wolf, B.; Segales, A.; Fiebrich, C. A.; Waugh, S.; Fredrickson, S.; Oncley, S.; Tudor, L.; Semmer, S.

    2017-12-01

    The capabilities of small unmanned aircraft systems (sUAS) to make atmospheric observations is rapidly being realized as a means to collect previously unobtainable observations in the lowest part of Earth's atmosphere. However, in order for these systems to provide meaningful kinematic and thermodynamic data, it is imperative to establish an understanding of the strengths and limitations of the sensors and retrieval algorithms implemented in both controlled and realistic conditions. This initial objective is comprised of two experimental stages, the first of which is calibration of thermodynamic sensors against references from the Oklahoma Mesonet and the National Center for Atmospheric Research in order to understand their quasi-ideal response characteristics. Furthermore, efforts have been made to calculate horizontal wind fields using Euler angles derived from the sUAS's autopilot. The second stage is validation of these sensor performances once mounted onto a rotary-wing sUAS by comparing measurements with instrumented towers, radiosondes, and other sUAS. It appears that these measurements are robust provided that instrument packages are mounted such that they receive adequate air flow and proper solar shielding. Moreover, experiments to locate this optimal location have been performed, and involved systematically displacing the sensors and wind probe underneath the rotor wash in an isolated chamber using a linear actuator. Once a platform's atmospheric sensing capabilities are optimized, its utility has been proven in applications from turbulence to providing forecasters with quasi-real time profiles in convective environments deemed by the Storm Prediction Center to be of highest risk for severe thunderstorms. After addressing the development of platforms operated by the University of Oklahoma, results from recent field campaigns, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUD-MAP) and Environmental Profiling

  6. Case studies of the storm time variation of the polar cusp

    International Nuclear Information System (INIS)

    Meng, C.

    1983-01-01

    The latitudinal variations of the polar cusp region were examined during three intense geomagnetic storms. The variations were compared with the intensity of storm time ring current inferred from the Dst index, with the magnitude of the north-south component B/sub z/ of the interplanetary magnetic field and with substorm activity. The common feature is that the rapid equatorward shift occurred during the increase of the ring current growth and during the southward turning of the interplanetary magnetic field orientation. The equatorwardmost latitude of the cusp was reached before the peak of the ring current intensity, by a few to several hours, coinciding with the occurrence of the largest magnitude of the southward interplanetary magnetic field component. However, details of the polar cusp latitudinal movement differ from storm to storm. During the three storms studied, the poleward recovery commenced at the peak magnitude of the negative IMF B/sub z/ component, but the recovery proceeded without a clear relation to variations of the interplanetary B/sub z/ component, to the ring current intensity, or to the substorm activity. The lowest cusp latitude observed was at approx.61.7 0 , and the magnitude of this shift seems to be related to the magnitudes of -B/sub z/. It is further observed that the approximate rates of the cusp macroscopic equatorward and poleward movements are about 3 0 and 1.5 0 per hour, respectively

  7. IDF relationships using bivariate copula for storm events in Peninsular Malaysia

    Science.gov (United States)

    Ariff, N. M.; Jemain, A. A.; Ibrahim, K.; Wan Zin, W. Z.

    2012-11-01

    SummaryIntensity-duration-frequency (IDF) curves are used in many hydrologic designs for the purpose of water managements and flood preventions. The IDF curves available in Malaysia are those obtained from univariate analysis approach which only considers the intensity of rainfalls at fixed time intervals. As several rainfall variables are correlated with each other such as intensity and duration, this paper aims to derive IDF points for storm events in Peninsular Malaysia by means of bivariate frequency analysis. This is achieved through utilizing the relationship between storm intensities and durations using the copula method. Four types of copulas; namely the Ali-Mikhail-Haq (AMH), Frank, Gaussian and Farlie-Gumbel-Morgenstern (FGM) copulas are considered because the correlation between storm intensity, I, and duration, D, are negative and these copulas are appropriate when the relationship between the variables are negative. The correlations are attained by means of Kendall's τ estimation. The analysis was performed on twenty rainfall stations with hourly data across Peninsular Malaysia. Using Akaike's Information Criteria (AIC) for testing goodness-of-fit, both Frank and Gaussian copulas are found to be suitable to represent the relationship between I and D. The IDF points found by the copula method are compared to the IDF curves yielded based on the typical IDF empirical formula of the univariate approach. This study indicates that storm intensities obtained from both methods are in agreement with each other for any given storm duration and for various return periods.

  8. Quantification of storm-induced bathymetric change in a back-barrier estuary

    Science.gov (United States)

    Ganju, Neil K.; Suttles, Steven E.; Beudin, Alexis; Nowacki, Daniel J.; Miselis, Jennifer L.; Andrews, Brian D.

    2017-01-01

    Geomorphology is a fundamental control on ecological and economic function of estuaries. However, relative to open coasts, there has been little quantification of storm-induced bathymetric change in back-barrier estuaries. Vessel-based and airborne bathymetric mapping can cover large areas quickly, but change detection is difficult because measurement errors can be larger than the actual changes over the storm timescale. We quantified storm-induced bathymetric changes at several locations in Chincoteague Bay, Maryland/Virginia, over the August 2014 to July 2015 period using fixed, downward-looking altimeters and numerical modeling. At sand-dominated shoal sites, measurements showed storm-induced changes on the order of 5 cm, with variability related to stress magnitude and wind direction. Numerical modeling indicates that the predominantly northeasterly wind direction in the fall and winter promotes southwest-directed sediment transport, causing erosion of the northern face of sandy shoals; southwesterly winds in the spring and summer lead to the opposite trend. Our results suggest that storm-induced estuarine bathymetric change magnitudes are often smaller than those detectable with methods such as LiDAR. More precise fixed-sensor methods have the ability to elucidate the geomorphic processes responsible for modulating estuarine bathymetry on the event and seasonal timescale, but are limited spatially. Numerical modeling enables interpretation of broad-scale geomorphic processes and can be used to infer the long-term trajectory of estuarine bathymetric change due to episodic events, when informed by fixed-sensor methods.

  9. Enhanced outage prediction modeling for strong extratropical storms and hurricanes in the Northeastern United States

    Science.gov (United States)

    Cerrai, D.; Anagnostou, E. N.; Wanik, D. W.; Bhuiyan, M. A. E.; Zhang, X.; Yang, J.; Astitha, M.; Frediani, M. E.; Schwartz, C. S.; Pardakhti, M.

    2016-12-01

    The overwhelming majority of human activities need reliable electric power. Severe weather events can cause power outages, resulting in substantial economic losses and a temporary worsening of living conditions. Accurate prediction of these events and the communication of forecasted impacts to the affected utilities is necessary for efficient emergency preparedness and mitigation. The University of Connecticut Outage Prediction Model (OPM) uses regression tree models, high-resolution weather reanalysis and real-time weather forecasts (WRF and NCAR ensemble), airport station data, vegetation and electric grid characteristics and historical outage data to forecast the number and spatial distribution of outages in the power distribution grid located within dense vegetation. Recent OPM improvements consist of improved storm classification and addition of new predictive weather-related variables and are demonstrated using a leave-one-storm-out cross-validation based on 130 severe extratropical storms and two hurricanes (Sandy and Irene) in the Northeast US. We show that it is possible to predict the number of trouble spots causing outages in the electric grid with a median absolute percentage error as low as 27% for some storm types, and at most around 40%, in a scale that varies between four orders of magnitude, from few outages to tens of thousands. This outage information can be communicated to the electric utility to manage allocation of crews and equipment and minimize the recovery time for an upcoming storm hazard.

  10. CSU-CHILL Polarimetric Radar Measurements from a Severe Hail Storm in Eastern Colorado.

    Science.gov (United States)

    Hubbert, J.; Bringi, V. N.; Carey, L. D.; Bolen, S.

    1998-08-01

    Polarimetric radar measurements made by the recently upgraded CSU-CHILL radar system in a severe hailstorm are analyzed permitting for the first time the combined use of Zh, ZDR, linear depolarization ratio (LDR), KDP, and h to infer hydrometeor types. A chase van equipped for manual collection of hail, and instrumented with a rain gauge, intercepted the storm core for 50 min. The period of golfball-sized hail is easily distinguished by high LDR (greater than or equal to 18 dB), negative ZDR (less than or equal to 0.5 dB), and low h (less than or equal to 0.93) values near the surface. Rainfall accumulation over the entire event (about 40 mm) estimated using KDP is in excellent agreement with the rain gauge measurement. Limited dual-Doppler synthesis using the CSU-CHILL and Denver WSR-88D radars permit estimates of the horizontal convergence at altitudes less than 3 km above ground level (AGL) at 1747 and 1812 mountain daylight time (MDT). Locations of peak horizontal convergence at these times are centered on well-defined positive ZDR columns. Vertical sections of multiparameter radar data at 1812 MDT are interpreted in terms of hydrometeor type. In particular, an enhanced LDR `cap' area on top of the the positive ZDR column is interpreted as a region of mixed phase with large drops mixed with partially frozen and frozen hydrometeors. A positive KDP column on the the western fringe of the main updraft is inferred to be the result of drops (1-2 mm) shed by wet hailstones. Swaths of large hail at the surface (inferred from LDR signatures) and positive ZDR at 3.5 km AGL suggest that potential frozen drop embryos are favorably located for growth into large hailstones. Thin section analysis of a sample of the large hailstones shows that 30%-40% have frozen drop embryos.

  11. Sounding-derived parameters associated with large hail and tornadoes in the Netherlands

    NARCIS (Netherlands)

    Groenemeijer, P.H.; van Delden, A.J.|info:eu-repo/dai/nl/072670703

    2007-01-01

    A study is presented focusing on the potential value of parameters derived from radiosonde data or data from numerical atmospheric models for the forecasting of severe weather associated with convective storms. Parameters have been derived from soundings in the proximity of large hail, tornadoes

  12. Storm real-time processing cookbook

    CERN Document Server

    Anderson, Quinton

    2013-01-01

    A Cookbook with plenty of practical recipes for different uses of Storm.If you are a Java developer with basic knowledge of real-time processing and would like to learn Storm to process unbounded streams of data in real time, then this book is for you.

  13. Use of historical information in extreme storm surges frequency analysis

    Science.gov (United States)

    Hamdi, Yasser; Duluc, Claire-Marie; Deville, Yves; Bardet, Lise; Rebour, Vincent

    2013-04-01

    The prevention of storm surge flood risks is critical for protection and design of coastal facilities to very low probabilities of failure. The effective protection requires the use of a statistical analysis approach having a solid theoretical motivation. Relating extreme storm surges to their frequency of occurrence using probability distributions has been a common issue since 1950s. The engineer needs to determine the storm surge of a given return period, i.e., the storm surge quantile or design storm surge. Traditional methods for determining such a quantile have been generally based on data from the systematic record alone. However, the statistical extrapolation, to estimate storm surges corresponding to high return periods, is seriously contaminated by sampling and model uncertainty if data are available for a relatively limited period. This has motivated the development of approaches to enlarge the sample extreme values beyond the systematic period. The nonsystematic data occurred before the systematic period is called historical information. During the last three decades, the value of using historical information as a nonsystematic data in frequency analysis has been recognized by several authors. The basic hypothesis in statistical modeling of historical information is that a perception threshold exists and that during a giving historical period preceding the period of tide gauging, all exceedances of this threshold have been recorded. Historical information prior to the systematic records may arise from high-sea water marks left by extreme surges on the coastal areas. It can also be retrieved from archives, old books, earliest newspapers, damage reports, unpublished written records and interviews with local residents. A plotting position formula, to compute empirical probabilities based on systematic and historical data, is used in this communication paper. The objective of the present work is to examine the potential gain in estimation accuracy with the

  14. Biomass Smoke Influences on Deep Convection during the 2011 Midlatitude Continental Convective Clouds Experiment (MC3E)

    Science.gov (United States)

    Dong, X.; Logan, T.; Xi, B.

    2015-12-01

    Three deep convective cloud cases were selected during the 2011 Mid-Latitude Continental Convective Clouds Experiment (MC3E). Although biomass burning smoke advected from Mexico and Central America was the dominant source of cloud condensation nuclei (CCN) for deep convective cloud formation, the 11 May, 20 May, and 23 May cases exhibited different convective characteristics. The convection in the 11 May and 23 May cases formed in smoke laden environments in the presence of convective available potential energy (CAPE) values exceeding 1000 m2 s-2 and 3000 m2 s-2 along with low-level (0-1 km) shear of 10.3 m s-1 and 5.1 m s-1, respectively. The 11 May case had linear convection while the 23 May case featured discrete supercells. The 20 May case featured elevated linear convection that formed in a more moist environment with cleaner aerosol conditions, weak CAPE (9 km) suggesting a warm rain suppression mechanism caused by a combination of strong aerosol loading, large CAPE, and weak low-level wind shear. The observed results for the 20 May and 23 May cases agree well with recent modeling studies that simulated the convection and precipitation in these cases. Furthermore, the modeling of the 11 May case is suggested since the abundant amount of smoke CCN did not greatly enhance the overall precipitation amount and could be a possible aerosol-induced precipitation suppression case.

  15. Stochastic Optical Reconstruction Microscopy (STORM).

    Science.gov (United States)

    Xu, Jianquan; Ma, Hongqiang; Liu, Yang

    2017-07-05

    Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  16. Stellar convection and dynamo theory

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R L

    1989-10-01

    In considering the large scale stellar convection problem the outer layers of a star are modelled as two co-rotating plane layers coupled at a fluid/fluid interface. Heating from below causes only the upper fluid to convect, although this convection can penetrate into the lower fluid. Stability analysis is then used to find the most unstable mode of convection. With parameters appropriate to the Sun the most unstable mode is steady convection in thin cells (aspect ratio {approx equal} 0.2) filling the convection zone. There is negligible vertical motion in the lower fluid, but considerable thermal penetration, and a large jump in helicity at the interface, which has implications for dynamo theory. An {alpha}{omega} dynamo is investigated in isolation from the convection problem. Complexity is included by allowing both latitudinal and time dependence in the magnetic fields. The nonlinear dynamics of the resulting partial differential equations are analysed in considerable detail. On varying the main control parameter D (the dynamo number), many transitions of behaviour are found involving many forms of time dependence, but not chaos. Further, solutions which break equatorial symmetry are common and provide a theoretical explanation of solar observations which have this symmetry. Overall the behaviour was more complicated than expected. In particular, there were multiple stable solutions at fixed D, meaning that similar stars can have very different magnetic patterns, depending upon their history. (author).

  17. Using Satellite Remote Sensing to Assist the National Weather Service (NWS) in Storm Damage Surveys

    Science.gov (United States)

    Schultz, Lori A.; Molthan, Andrew; McGrath, Kevin; Bell, Jordan; Cole, Tony; Burks, Jason

    2016-01-01

    In the United States, the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) is charged with performing damage assessments when storm or tornado damage is suspected after a severe weather event. This has led to the development of the Damage Assessment Toolkit (DAT), an application for smartphones, tablets and web browsers that allows for the collection, geolocation, and aggregation of various damage indicators collected during storm surveys.

  18. Examples of storm impacts on barrier islands: Chapter 4

    Science.gov (United States)

    Plant, Nathaniel G.; Doran, Kara; Stockdon, Hilary F.

    2017-01-01

    This chapter focuses on the morphologic variability of barrier islands and on the differences in storm response. It describes different types of barrier island response to individual storms, as well as the integrated response of barrier islands to many storms. The chapter considers case study on the Chandeleur Island chain, where a decadal time series of island elevation measurements have documented a wide range of barrier island responses to storms and long-term processes that are representative of barrier island behaviour at many other locations. These islands are low elevation, extremely vulnerable to storms and exhibit a diversity of storm responses. Additionally, this location experiences a moderately high rate of relative sea-level rise, increasing its vulnerability to the combined impacts of storms and long-term erosional processes. Understanding how natural processes, including storm impacts and intervening recovery periods interact with man-made restoration processes is also broadly relevant to understand the natural and human response to future storms.

  19. Rapid wave and storm surge warning system for tropical cyclones in Mexico

    Science.gov (United States)

    Appendini, C. M.; Rosengaus, M.; Meza, R.; Camacho, V.

    2015-12-01

    The National Hurricane Center (NHC) in Miami, is responsible for the forecast of tropical cyclones in the North Atlantic and Eastern North Pacific basins. As such, Mexico, Central America and Caribbean countries depend on the information issued by the NHC related to the characteristics of a particular tropical cyclone and associated watch and warning areas. Despite waves and storm surge are important hazards for marine operations and coastal dwellings, their forecast is not part of the NHC responsibilities. This work presents a rapid wave and storm surge warning system based on 3100 synthetic tropical cyclones doing landfall in Mexico. Hydrodynamic and wave models were driven by the synthetic events to create a robust database composed of maximum envelops of wind speed, significant wave height and storm surge for each event. The results were incorporated into a forecast system that uses the NHC advisory to locate the synthetic events passing inside specified radiuses for the present and forecast position of the real event. Using limited computer resources, the system displays the information meeting the search criteria, and the forecaster can select specific events to generate the desired hazard map (i.e. wind, waves, and storm surge) based on the maximum envelop maps. This system was developed in a limited time frame to be operational in 2015 by the National Hurricane and Severe Storms Unit of the Mexican National Weather Service, and represents a pilot project for other countries in the region not covered by detailed storm surge and waves forecasts.

  20. Ice storm 1998 : lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    McCready, J. [Eastern Ontario Model Forest, Kemptville, ON (Canada)

    2006-07-01

    This paper presented details of a partnership formed in response to the ice storm of 1998, which caused extensive damage to trees in woodlots and urban settings in eastern Ontario and western Quebec. The aim of the Ice Storm Forest Recovery Group was to assist in the recovery of eastern forests, collect information on the extent of the damage to trees as well as contribute to the development of assistance programs for woodlot owners and municipalities. In response to the group's request, an initial aerial survey was conducted by the Ontario Ministry of Natural Resources to map the extent of the damage in eastern Ontario, which was followed by a more scientific survey with the Canadian Forest Service through the development of a flying grid pattern to observe the status of trees, followed by extensive ground checks. Damage was variable, depending on tree species, stand age and composition, management practices, wind direction, topography and ice deposition patterns. A summary of the severity of damage indicated that conifers suffered less than hardwoods. Consultants were hired to prepare news releases and extension notes to the public in order to provide information for the caring of trees. Various educational workshops were held which attracted large numbers of landowners and homeowners. A literature review was undertaken to produce a summary of current published knowledge covering the effects of storms and ice damage to trees and forests. Science efforts were published in a series of papers, and financial assistance programs were then organized by governmental agencies. It was concluded that cooperation between all agencies, groups and levels of government is needed in order to coordinate effective emergency strategies. 7 refs., 1 tab., 1 fig.