WorldWideScience

Sample records for seven-dimensional inhomogeneous sasaki-einstein

  1. Construction of Einstein-Sasaki metrics in D≥7

    International Nuclear Information System (INIS)

    Lue, H.; Pope, C. N.; Vazquez-Poritz, J. F.

    2007-01-01

    We construct explicit Einstein-Kaehler metrics in all even dimensions D=2n+4≥6, in terms of a 2n-dimensional Einstein-Kaehler base metric. These are cohomogeneity 2 metrics which have the new feature of including a NUT-type parameter, or gravomagnetic charge, in addition to..' in addition to mass and rotation parameters. Using a canonical construction, these metrics all yield Einstein-Sasaki metrics in dimensions D=2n+5≥7. As is commonly the case in this type of construction, for suitable choices of the free parameters the Einstein-Sasaki metrics can extend smoothly onto complete and nonsingular manifolds, even though the underlying Einstein-Kaehler metric has conical singularities. We discuss some explicit examples in the case of seven-dimensional Einstein-Sasaki spaces. These new spaces can provide supersymmetric backgrounds in M theory, which play a role in the AdS 4 /CFT 3 correspondence

  2. A note on Einstein-Sasaki metrics in D ≥ 7

    International Nuclear Information System (INIS)

    Chen, W; Lue, H; Pope, C N; Vazquez-Poritz, J F

    2005-01-01

    In this paper, we obtain new non-singular Einstein-Sasaki spaces in dimensions D ≥ 7. The local construction involves taking a circle bundle over a (D - 1)-dimensional Einstein-Kaehler metric that is itself constructed as a complex line bundle over a product of Einstein-Kaehler spaces. In general, the resulting Einstein-Sasaki spaces are singular, but if parameters in the local solutions satisfy appropriate rationality conditions, the metrics extend smoothly onto complete and non-singular compact manifolds. The seven-dimensional space, whose base is a complex line bundle over S 2 x S 2 , is discussed in detail since it has relevance in terms of the AdS/CFT correspondence

  3. Sasaki-Einstein Manifolds and Volume Minimisation

    CERN Document Server

    Martelli, D; Yau, S T; Martelli, Dario; Sparks, James; Yau, Shing-Tung

    2006-01-01

    We study a variational problem whose critical point determines the Reeb vector field for a Sasaki-Einstein manifold. This extends our previous work on Sasakian geometry by lifting the condition that the manifolds are toric. We show that the Einstein-Hilbert action, restricted to a space of Sasakian metrics on a link L in a Calabi-Yau cone M, is the volume functional, which in fact is a function on the space of Reeb vector fields. We relate this function both to the Duistermaat-Heckman formula and also to a limit of a certain equivariant index on M that counts holomorphic functions. Both formulae may be evaluated by localisation. This leads to a general formula for the volume function in terms of topological fixed point data. As a result we prove that the volume of any Sasaki-Einstein manifold, relative to that of the round sphere, is always an algebraic number. In complex dimension n=3 these results provide, via AdS/CFT, the geometric counterpart of a-maximisation in four dimensional superconformal field theo...

  4. New Einstein-Sasaki and Einstein spaces from Kerr-de Sitter

    International Nuclear Information System (INIS)

    Cvetic, M.; Lue, H.; Pope, C.N.; Page, Don N.

    2009-01-01

    In this paper, which is an elaboration of our results in Phys. Rev. Lett. 95:071101, 2005 (hep-th/0504225), we construct new Einstein-Sasaki spaces L p,q,r 1 ,...,r n-1 in all odd dimensions D = 2n+1 ≥ 5. They arise by taking certain BPS limits of the Euclideanised Kerr-de Sitter metrics. This yields local Einstein-Sasaki metrics of cohomogeneity n, with toric U(1) n+1 principal orbits, and n real non-trivial parameters. By studying the structure of the degenerate orbits we show that for appropriate choices of the parameters, characterised by the (n+1) coprime integers (p,q,r 1 ,...,r n-1 ), the local metrics extend smoothly onto complete and non-singular compact Einstein-Sasaki manifolds L p,q,r 1 ,...,r n-1 . We also construct new complete and non-singular compact Einstein spaces Λ p,q,r 1 ,...,r n in D = 2n+1 that are not Sasakian, by choosing parameters appropriately in the Euclideanised Kerr-de Sitter metrics when no BPS limit is taken.

  5. Dual giant gravitons in Sasaki-Einstein backgrounds

    International Nuclear Information System (INIS)

    Martelli, Dario; Sparks, James

    2006-01-01

    We study the dynamics of a BPS D3-brane wrapped on a three-sphere in AdS 5 xL, a so-called dual giant graviton, where L is a Sasakian five-manifold. The phase space of these configurations is the symplectic cone X over L, and geometric quantisation naturally produces a Hilbert space of L 2 -normalisable holomorphic functions on X, whose states are dual to scalar chiral BPS operators in the dual superconformal field theory. We define classical and quantum partition functions and relate them to earlier mathematical constructions by the authors and S.-T. Yau, [D. Martelli, J. Sparks, S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, hep-th/0603021]. In particular, a Sasaki-Einstein metric then minimises an entropy function associated with the D3-brane. Finally, we introduce a grand canonical partition function that counts multiple dual giant gravitons. This is related simply to the index-character of the above reference, and provides a method for counting multi-trace scalar BPS operators in the dual superconformal field theory

  6. Integrability of geodesics and action-angle variables in Sasaki-Einstein space T{sup 1,1}

    Energy Technology Data Exchange (ETDEWEB)

    Visinescu, Mihai [National Institute of Physics and Nuclear Engineering, Department Theoretical Physics, Magurele, Bucharest (Romania)

    2016-09-15

    We briefly describe the construction of Staekel-Killing and Killing-Yano tensors on toric Sasaki-Einstein manifolds without working out intricate generalized Killing equations. The integrals of geodesic motions are expressed in terms of Killing vectors and Killing-Yano tensors of the homogeneous Sasaki-Einstein space T{sup 1,1}. We discuss the integrability of geodesics and construct explicitly the action-angle variables. Two pairs of frequencies of the geodesic motions are resonant giving way to chaotic behavior when the system is perturbed. (orig.)

  7. Toric Geometry, Sasaki-Einstein Manifolds and a New Infinite Class of AdS/CFT Duals

    CERN Document Server

    Martelli, D; Martelli, Dario; Sparks, James

    2006-01-01

    Recently an infinite family of explicit Sasaki-Einstein metrics Y^{p,q} on S^2 x S^3 has been discovered, where p and q are two coprime positive integers, with qSasaki-Einstein metric on the horizon of the complex cone over the first del Pezz...

  8. Semiclassical strings in Sasaki-Einstein manifolds and long operators in N = 1 gauge theories

    International Nuclear Information System (INIS)

    Benvenuti, Sergio; Kruczenski, Martin

    2006-01-01

    We study the AdS/CFT relation between an infinite class of 5-d Y p,q Sasaki-Einstein metrics and the corresponding quiver theories. The long BPS operators of the field theories are matched to massless geodesics in the geometries, providing a test of AdS/CFT for these cases. Certain small fluctuations (in the BMN sense) can also be successfully compared. We then go further and find, using an appropriate limit, a reduced action, first order in time derivatives, which describes strings with large R-charge. In the field theory we consider holomorphic operators with large winding numbers around the quiver and find, interestingly, that, after certain simplifying assumptions, they can be described effectively as strings moving in a particular metric. Although not equal, the metric is similar to the one in the bulk. We find it encouraging that a string picture emerges directly from the field theory and discuss possible ways to improve the agreement

  9. Exact solutions of Einstein and Einstein-Maxwell equations in higher-dimensional spacetime

    International Nuclear Information System (INIS)

    Xu Dianyan; Beijing Univ., BJ

    1988-01-01

    The D-dimensional Schwarzschild-de Sitter metric and Reissner-Nordstrom-de-Sitter metric are derived directly by solving the Einstein and Einstein-Maxwell equations. The D-dimensional Kerr metric is rederived by using the complex coordinate transformation method and the D-dimensional Kerr-de Sitter metric is also given. The conjecture about the D-dimensional metric of a rotating charged mass is given at the end of this paper. (author)

  10. Inhomogeneous inflation: The initial-value problem

    International Nuclear Information System (INIS)

    Laguna, P.; Kurki-Suonio, H.; Matzner, R.A.

    1991-01-01

    We present a spatially three-dimensional study for solving the initial-value problem in general relativity for inhomogeneous cosmologies. We use York's conformal approach to solve the constraint equations of Einstein's field equations for scalar field sources and find the initial data which will be used in the evolution. This work constitutes the first stage in the development of a code to analyze the effects of matter and spacetime inhomogeneities on inflation

  11. Gauged supergravities from M-theory reductions

    Science.gov (United States)

    Katmadas, Stefanos; Tomasiello, Alessandro

    2018-04-01

    In supergravity compactifications, there is in general no clear prescription on how to select a finite-dimensional family of metrics on the internal space, and a family of forms on which to expand the various potentials, such that the lower-dimensional effective theory is supersymmetric. We propose a finite-dimensional family of deformations for regular Sasaki-Einstein seven-manifolds M 7, relevant for M-theory compactifications down to four dimensions. It consists of integrable Cauchy-Riemann structures, corresponding to complex deformations of the Calabi-Yau cone M 8 over M 7. The non-harmonic forms we propose are the ones contained in one of the Kohn-Rossi cohomology groups, which is finite-dimensional and naturally controls the deformations of Cauchy-Riemann structures. The same family of deformations can be also described in terms of twisted cohomology of the base M 6, or in terms of Milnor cycles arising in deformations of M 8. Using existing results on SU(3) structure compactifications, we briefly discuss the reduction of M-theory on our class of deformed Sasaki-Einstein manifolds to four-dimensional gauged supergravity.

  12. Bose-Einstein condensates with spatially inhomogeneous interaction and bright solitons

    International Nuclear Information System (INIS)

    Shin, H.J.; Radha, R.; Kumar, V. Ramesh

    2011-01-01

    In this Letter, we investigate the dynamics of Bose-Einstein Condensates (BECs) with spatially inhomogeneous interaction and generate bright solitons for the condensates by solving the associated mean field description governed by the Gross-Pitaevskii (GP) equation. We then investigate the properties of BECs in an optical lattice and periodic potential. We show that the GP equation in an optical lattice potential is integrable provided the interaction strength between the atoms varies periodically in space. The model discussed in the Letter offers the luxury of choosing the form of the lattice without destroying the integrability. Besides, we have also brought out the possible ramifications of the integrable model in the condensates of quasi-particles. -- Highlights: → We generate bright solitons for the collisionally inhomogeneous BECs. → We then study their properties in an optical lattice and periodic potential. → The model may have wider ramifications in the BECs of quasi-particles.

  13. Schroedinger invariant solutions of type IIB with enhanced supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Donos, Aristomenis [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gauntlett, Jerome P. [Imperial College, London (United Kingdom). Theoretical Physics Group; Imperial College, London (United Kingdom). Inst. for Mathematical Sciences

    2009-07-15

    We construct the Killing spinors for a class of supersymmetric solutions of type IIB supergravity that are invariant under the non-relativistic Schroedinger algebra. The solutions depend on a five-dimensional Sasaki- Einstein space and it has been shown that they admit two Killing spinors. Here we will show that, for generic Sasaki-Einstein space, there are special subclasses of solutions which admit six Killing spinors and we determine the corresponding superisometry algebra. We also show that for the special case that the Sasaki-Einstein space is the round five-sphere, the number of Killing spinors can be increased to twelve. (orig.)

  14. A study of low-dimensional inhomogeneous systems

    International Nuclear Information System (INIS)

    Arredondo Leon, Yesenia

    2009-01-01

    While the properties of homogeneous one-dimensional systems, even with disorder, are relatively well-understood, very little is known about the properties of strongly interacting inhomogeneous systems. Their high-energy physics is determined by the underlying chemistry which, in the atomic scale, introduces Coulomb correlations and local potentials. On the other hand, at large length scales, the physics has to be described by the Tomonaga-Luttinger liquid (TLL) model. In order to establish a connection between the low-energy TLL and the quasi-one-dimensional systems synthesized in the laboratory, we investigate the density-density correlation function in inhomogeneous one-dimensional systems in the asymptotic region. To investigate homogeneous as well as inhomogeneous systems, we use the density-matrix renormalization group (DMRG) method. We present results for ground state properties, such as the density-density correlation function and the parameter K c , which characterizes its decay at large distances. (orig.)

  15. A study of low-dimensional inhomogeneous systems

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo Leon, Yesenia

    2009-01-15

    While the properties of homogeneous one-dimensional systems, even with disorder, are relatively well-understood, very little is known about the properties of strongly interacting inhomogeneous systems. Their high-energy physics is determined by the underlying chemistry which, in the atomic scale, introduces Coulomb correlations and local potentials. On the other hand, at large length scales, the physics has to be described by the Tomonaga-Luttinger liquid (TLL) model. In order to establish a connection between the low-energy TLL and the quasi-one-dimensional systems synthesized in the laboratory, we investigate the density-density correlation function in inhomogeneous one-dimensional systems in the asymptotic region. To investigate homogeneous as well as inhomogeneous systems, we use the density-matrix renormalization group (DMRG) method. We present results for ground state properties, such as the density-density correlation function and the parameter K{sub c}, which characterizes its decay at large distances. (orig.)

  16. Supersymmetric solutions for non-relativistic holography

    International Nuclear Information System (INIS)

    Donos, Aristomenis; Gauntlett, Jerome P.

    2009-01-01

    We construct families of supersymmetric solutions of type IIB and D=11 supergravity that are invariant under the non-relativistic conformal algebra for various values of dynamical exponent z≥4 and z≥3, respectively. The solutions are based on five- and seven-dimensional Sasaki-Einstein manifolds and generalise the known solutions with dynamical exponent z=4 for the type IIB case and z=3 for the D=11 case, respectively. (orig.)

  17. Collapse arresting in an inhomogeneous two-dimensional nonlinear Schrodinger model

    DEFF Research Database (Denmark)

    Schjødt-Eriksen, Jens; Gaididei, Yuri Borisovich; Christiansen, Peter Leth

    2001-01-01

    Collapse of (2 + 1)-dimensional beams in the inhomogeneous two-dimensional cubic nonlinear Schrodinger equation is analyzed numerically and analytically. It is shown that in the vicinity of a narrow attractive inhomogeneity, the collapse of beams that in a homogeneous medium would collapse may...

  18. Inhomogeneous dusty Universes and their deceleration

    CERN Document Server

    Giovannini, Massimo

    2006-01-01

    Exact results stemming directly from Einstein equations imply that inhomogeneous Universes endowed with vanishing pressure density can only decelerate, unless the energy density of the Universe becomes negative. Recent proposals seem to argue that inhomogeneous (but isotropic) space-times, filled only with incoherent matter,may turn into accelerated Universes for sufficiently late times. To scrutinize these scenarios, fully inhomogeneous Einstein equations are discussed in the synchronous system. In a dust-dominated Universe, the inhomogeneous generalization of the deceleration parameter is always positive semi-definite implying that no acceleration takes place.

  19. Rotational inhomogeneities from pre-big bang?

    International Nuclear Information System (INIS)

    Giovannini, Massimo

    2005-01-01

    The evolution of the rotational inhomogeneities is investigated in the specific framework of four-dimensional pre-big bang models. While minimal (dilaton-driven) scenarios do not lead to rotational fluctuations, in the case of non-minimal (string-driven) models, fluid sources are present in the pre-big bang phase. The rotational modes of the geometry, coupled to the divergenceless part of the velocity field, can then be amplified depending upon the value of the barotropic index of the perfect fluids. In the light of a possible production of rotational inhomogeneities, solutions describing the coupled evolution of the dilaton field and of the fluid sources are scrutinized in both the string and Einstein frames. In semi-realistic scenarios, where the curvature divergences are regularized by means of a non-local dilaton potential, the rotational inhomogeneities are amplified during the pre-big bang phase but they decay later on. Similar analyses can also be performed when a contraction occurs directly in the string frame metric

  20. Rotational inhomogeneities from pre-big bang?

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, Massimo [Department of Physics, Theory Division, CERN, 1211 Geneva 23 (Switzerland)

    2005-01-21

    The evolution of the rotational inhomogeneities is investigated in the specific framework of four-dimensional pre-big bang models. While minimal (dilaton-driven) scenarios do not lead to rotational fluctuations, in the case of non-minimal (string-driven) models, fluid sources are present in the pre-big bang phase. The rotational modes of the geometry, coupled to the divergenceless part of the velocity field, can then be amplified depending upon the value of the barotropic index of the perfect fluids. In the light of a possible production of rotational inhomogeneities, solutions describing the coupled evolution of the dilaton field and of the fluid sources are scrutinized in both the string and Einstein frames. In semi-realistic scenarios, where the curvature divergences are regularized by means of a non-local dilaton potential, the rotational inhomogeneities are amplified during the pre-big bang phase but they decay later on. Similar analyses can also be performed when a contraction occurs directly in the string frame metric.

  1. Stability of trapped Bose—Einstein condensates in one-dimensional tilted optical lattice potential

    International Nuclear Information System (INIS)

    Fang Jian-Shu; Liao Xiang-Ping

    2011-01-01

    Using the direct perturbation technique, this paper obtains a general perturbed solution of the Bose—Einstein condensates trapped in one-dimensional tilted optical lattice potential. We also gave out two necessary and sufficient conditions for boundedness of the perturbed solution. Theoretical analytical results and the corresponding numerical results show that the perturbed solution of the Bose-Einstein condensate system is unbounded in general and indicate that the Bose—Einstein condensates are Lyapunov-unstable. However, when the conditions for boundedness of the perturbed solution are satisfied, then the Bose-Einstein condensates are Lyapunov-stable. (general)

  2. Spontaneous compactification in six-dimensional Einstein-Maxwell theory

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Salam, A.; Strathdee, J.

    1982-10-01

    A discrete set of solutions to the classical Einstein-Maxwell equations in six-dimensional spacetime is considered. These solutions have the form of a product of four-dimensional constant curvature spacetime with a 2-sphere. The Maxwell field has support on the 2-sphere where it represents a monopole of magnetic charge, n = +-1, +-2,... The spectrum of massless and massive states is obtained for the special case of the flat 4-space, and the solution is shown to be classically stable. The limiting case where the radius of the 2-sphere becomes small is considered and a dimensionally reduced effective Lagrangian for the long range modes is derived. This turns out to be an SU(2) x U(1) gauge theory with chiral couplings. (author)

  3. Multiple scattering of elliptically polarized light in two-dimensional medium with large inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Gorodnichev, E. E., E-mail: gorodn@theor.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    For elliptically polarized light incident on a two-dimensional medium with large inhomogeneities, the Stokes parameters of scattered waves are calculated. Multiple scattering is assumed to be sharply anisotropic. The degree of polarization of scattered radiation is shown to be a nonmonotonic function of depth when the incident wave is circularly polarized or its polarization vector is not parallel to the symmetry axis of the inhomogeneities.

  4. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material.

    Science.gov (United States)

    Gautier, G; Kelders, L; Groby, J P; Dazel, O; De Ryck, L; Leclaire, P

    2011-09-01

    Wave propagation in macroscopically inhomogeneous porous materials has received much attention in recent years. The wave equation, derived from the alternative formulation of Biot's theory of 1962, was reduced and solved recently in the case of rigid frame inhomogeneous porous materials. This paper focuses on the solution of the full wave equation in which the acoustic and the elastic properties of the poroelastic material vary in one-dimension. The reflection coefficient of a one-dimensional macroscopically inhomogeneous porous material on a rigid backing is obtained numerically using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then be used to straightforwardly calculate the scattered field. To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical transfer matrix method at both normal and oblique incidence and to experimental measurements at normal incidence for a known two-layers porous material, considered as a single inhomogeneous layer. Finally, discussion about the absorption coefficient for various inhomogeneity profiles gives further perspectives. © 2011 Acoustical Society of America

  5. Inhomogeneous Quantum Invariance Group of Multi-Dimensional Multi-parameter Deformed Boson Algebra

    International Nuclear Information System (INIS)

    Altintas Azmi Ali; Arik Metin; Arikan Ali Serdar; Dil Emre

    2012-01-01

    We investigate the inhomogeneous invariance quantum group of the d-dimensional d-parameter deformed boson algebra. It is found that the homogeneous part of this quantum group is given by the d-parameter deformed general linear group. We construct the R-matrix which collects all information about the non-commuting structure of the quantum group for the two-dimensional case. (general)

  6. Three-dimensional parallel vortex rings in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Crasovan, Lucian-Cornel; Perez-Garcia, Victor M.; Danaila, Ionut; Mihalache, Dumitru; Torner, Lluis

    2004-01-01

    We construct three-dimensional structures of topological defects hosted in trapped wave fields, in the form of vortex stars, vortex cages, parallel vortex lines, perpendicular vortex rings, and parallel vortex rings, and we show that the latter exist as robust stationary, collective states of nonrotating Bose-Einstein condensates. We discuss the stability properties of excited states containing several parallel vortex rings hosted by the condensate, including their dynamical and structural stability

  7. Design of three-dimensional nonimaging concentrators with inhomogeneous media

    Science.gov (United States)

    Minano, J. C.

    1986-09-01

    A three-dimensional nonimaging concentrator is an optical system that transforms a given four-parametric manifold of rays reaching a surface (entry aperture) into another four-parametric manifold of rays reaching the receiver. A procedure of design of such concentrators is developed. In general, the concentrators use mirrors and inhomogeneous media (i.e., gradient-index media). The concentrator has the maximum concentration allowed by the theorem of conservation of phase-space volume. This is the first known concentrator with such properties. The Welford-Winston edge-ray principle in three-dimensional geometry is proven under several assumptions. The linear compound parabolic concentrator is derived as a particular case of the procedure of design.

  8. Linearized analysis of (2+1)-dimensional Einstein-Maxwell theory

    International Nuclear Information System (INIS)

    Soda, Jiro.

    1989-08-01

    On the basis of previous result by Hosoya and Nakao that (2+1)-dimensional gravity reduces the geodesic motion in moduli space, we investigate the effects of matter fields on the geodesic motion using the linearized theory. It is shown that the transverse-traceless parts of energy-momentum tensor make the deviation from the geodesic motion. This result is important for the Einstein-Maxwell theory due to the existence of global modes of Maxwell fields on torus. (author)

  9. The dimensional reduction in a multi-dimensional cosmology

    International Nuclear Information System (INIS)

    Demianski, M.; Golda, Z.A.; Heller, M.; Szydlowski, M.

    1986-01-01

    Einstein's field equations are solved for the case of the eleven-dimensional vacuum spacetime which is the product R x Bianchi V x T 7 , where T 7 is a seven-dimensional torus. Among all possible solutions, the authors identify those in which the macroscopic space expands and the microscopic space contracts to a finite size. The solutions with this property are 'typical' within the considered class. They implement the idea of a purely dynamical dimensional reduction. (author)

  10. Dimensional reduction in Bose-Einstein-condensed alkali-metal vapors

    International Nuclear Information System (INIS)

    Salasnich, L.; Reatto, L.; Parola, A.

    2004-01-01

    We investigate the effects of dimensional reduction in atomic Bose-Einstein condensates (BECs) induced by a strong harmonic confinement in the cylindric radial direction or in the cylindric axial direction. The former case corresponds to a transition from three dimensions (3D) to 1D in cigar-shaped BECs, while the latter case corresponds to a transition from 3D to 2D in disk-shaped BECs. We analyze the first sound velocity in axially homogeneous cigar-shaped BECs and in radially homogeneous disk-shaped BECs. We consider also the dimensional reduction in a BEC confined by a harmonic potential both in the radial direction and in the axial direction. By using a variational approach, we calculate monopole and quadrupole collective oscillations of the BEC. We find that the frequencies of these collective oscillations are related to the dimensionality and to the repulsive or attractive interatomic interaction

  11. The (2+1)-dimensional axial universes—solutions to the Einstein equations, dimensional reduction points and Klein–Fock–Gordon waves

    International Nuclear Information System (INIS)

    Fiziev, P P; Shirkov, D V

    2012-01-01

    The paper presents a generalization and further development of our recent publications, where solutions of the Klein–Fock–Gordon equation defined on a few particular D = (2 + 1)-dimensional static spacetime manifolds were considered. The latter involve toy models of two-dimensional spaces with axial symmetry, including dimensional reduction to the one-dimensional space as a singular limiting case. Here, the non-static models of space geometry with axial symmetry are under consideration. To make these models closer to physical reality, we define a set of ‘admissible’ shape functions ρ(t, z) as the (2 + 1)-dimensional Einstein equation solutions in the vacuum spacetime, in the presence of the Λ-term and for the spacetime filled with the standard ‘dust’. It is curious that in the last case the Einstein equations reduce to the well-known Monge–Ampère equation, thus enabling one to obtain the general solution of the Cauchy problem, as well as a set of other specific solutions involving one arbitrary function. A few explicit solutions of the Klein–Fock–Gordon equation in this set are given. An interesting qualitative feature of these solutions relates to the dimensional reduction points, their classification and time behavior. In particular, these new entities could provide us with novel insight into the nature of P- and T-violations and of the Big Bang. A short comparison with other attempts to utilize the dimensional reduction of the spacetime is given. (paper)

  12. Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities

    Science.gov (United States)

    Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.

    A great deal of attention has been paid to the study of probability characteristics of electro-magnetic waves scattered by one-dimensional fluctuations of medium dielectric permittivity. However, the problem of a determination of a density of a probability and average intensity of the field inside the stochastically inhomogeneous medium with arbitrary extension of fluc-tuations has not been considered yet. It is the purpose of the present report to find and to analyze the indicated functions for the plane electromagnetic wave scattered by the layer with one-dimensional fluctuations of permittivity. We assumed that the length and the amplitude of individual fluctuations as well the interval between them are random quantities. All of indi-cated fluctuation parameters are supposed as independent random values possessing Gaussian distribution. We considered the stationary time cases both small-scale and large-scale rarefied inhomogeneities. Mathematically such problem can be reduced to the solution of integral Fred-holm equation of second kind for Hertz potential (U). Using the decomposition of the field into the series of multiply scattered waves we obtained the expression for a probability density of the field of the plane wave and determined the moments of the scattered field. We have shown that all odd moments of the centered field (U-¡U¿) are equal to zero and the even moments depend on the intensity. It was obtained that the probability density of the field possesses the Gaussian distribution. The average field is small compared with the standard fluctuation of scattered field for all considered cases of inhomogeneities. The value of average intensity of the field is an order of a standard of fluctuations of field intensity and drops with increases the inhomogeneities length in the case of small-scale inhomogeneities. The behavior of average intensity is more complicated in the case of large-scale medium inhomogeneities. The value of average intensity is the

  13. Electromagnetic wave propagation over an inhomogeneous flat earth (two-dimensional integral equation formulation)

    International Nuclear Information System (INIS)

    de Jong, G.

    1975-01-01

    With the aid of a two-dimensional integral equation formulation, the ground wave propagation of electromagnetic waves transmitted by a vertical electric dipole over an inhomogeneous flat earth is investigated. For the configuration in which a ground wave is propagating across an ''island'' on a flat earth, the modulus and argument of the attenuation function have been computed. The results for the two-dimensional treatment are significantly more accurate in detail than the calculations using a one-dimensional integral equation

  14. Scattering amplitudes in N=2 Maxwell-Einstein and Yang-Mills/Einstein supergravity

    CERN Document Server

    Chiodaroli, Marco; Johansson, Henrik; Roiban, Radu

    2015-01-01

    We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N=2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N=2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian and Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which th...

  15. On the use, by Einstein, of the principle of dimensional homogeneity, in three problems of the physics of solids

    Directory of Open Access Journals (Sweden)

    FERNANDO L. LOBO B. CARNEIRO

    2000-12-01

    Full Text Available Einstein, in 1911, published an article on the application of the principle of dimensional homogeneity to three problems of the physics of solids: the characteristic frequency of the atomic nets of crystalline solids as a function of their moduli of compressibility or of their melting points, and the thermal conductivity of crystalline insulators. Recognizing that the physical dimensions of temperature are not the same as those of energy and heat, Einstein had recourse to the artifice of replace that physical parameter by its product by the Boltzmann constant, so obtaining correct results. But nowadays, with the new basic quantities "Thermodynamic Temperature theta (unit- Kelvin'', "Electric Current I (unit Ampère'' and "Amount of Substance MOL (unit-mole'', incorporated to the SI International System of Units, in 1960 and 1971, the same results are obtained in a more direct and coherent way. At the time of Einstein's article only three basic physical quantities were considered - length L, mass M, and time T. He ignored the pi theorem of dimensional analysis diffused by Buckingham three years later, and obtained the "pi numbers'' by trial and error. In the present paper is presented a revisitation of the article of Einstein, conducted by the modern methodology of dimensional analysis and theory of physical similitude.

  16. All ASD complex and real 4-dimensional Einstein spaces with Λ≠0 admitting a nonnull Killing vector

    Science.gov (United States)

    Chudecki, Adam

    2016-12-01

    Anti-self-dual (ASD) 4-dimensional complex Einstein spaces with nonzero cosmological constant Λ equipped with a nonnull Killing vector are considered. It is shown that any conformally nonflat metric of such spaces can be always brought to a special form and the Einstein field equations can be reduced to the Boyer-Finley-Plebański equation (Toda field equation). Some alternative forms of the metric are discussed. All possible real slices (neutral, Euclidean and Lorentzian) of ASD complex Einstein spaces with Λ≠0 admitting a nonnull Killing vector are found.

  17. Analogue cosmological particle creation: Quantum correlations in expanding Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Prain, Angus; Liberati, Stefano; Fagnocchi, Serena

    2010-01-01

    We investigate the structure of quantum correlations in an expanding Bose-Einstein condensate (BEC) through the analogue gravity framework. We consider both a 3+1 isotropically expanding BEC as well as the experimentally relevant case of an elongated, effectively 1+1 dimensional, expanding condensate. In this case we include the effects of inhomogeneities in the condensate, a feature rarely included in the analogue gravity literature. In both cases we link the BEC expansion to a simple model for an expanding spacetime and then study the correlation structure numerically and analytically (in suitable approximations). We also discuss the expected strength of such correlation patterns and experimentally feasible BEC systems in which these effects might be detected in the near future.

  18. Three-dimensional Einstein-Klein-Gordon system in characteristic numerical relativity

    International Nuclear Information System (INIS)

    Barreto, W.; Silva, A. da; Lehner, L.; Gomez, R.; Rosales, L.; Winicour, J.

    2005-01-01

    We incorporate a massless scalar field into a three-dimensional code for the characteristic evolution of the gravitational field. The extended three-dimensional code for the Einstein-Klein-Gordon system is calibrated to be second-order convergent. It provides an accurate calculation of the gravitational and scalar radiation at infinity. As an application, we simulate the fully nonlinear evolution of an asymmetric scalar pulse of ingoing radiation propagating toward an interior Schwarzschild black hole and compute the backscattered scalar and gravitational outgoing radiation patterns. The amplitudes of the scalar and gravitational outgoing radiation modes exhibit the predicted power law scaling with respect to the amplitude of the initial data. For the scattering of an axisymmetric scalar field, the final ring down matches the complex frequency calculated perturbatively for the l=2 quasinormal mode

  19. Inhomogeneities in a Friedmann universe

    International Nuclear Information System (INIS)

    Tauber, G.E.

    1987-08-01

    One of the outstanding problems in cosmology is the growth of inhomogeneities, which are characterized by an anisotropic pressure and density distribution. Following a method developed by McVittie (1967, 1968) it has been possible to find time-dependent spherically symmetric solutions of Einstein's field equations containing an arbitrary pressure and density distribution which connect smoothly to a Friedmann universe for any desired equation of state. (author). 5 refs

  20. Integrability and soliton in a classical one dimensional site dependent biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity

    International Nuclear Information System (INIS)

    Kavitha, L.; Daniel, M.

    2002-07-01

    The integrability of one dimensional classical continuum inhomogeneous biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity on the soliton of an underlying completely integrable spin model are studied. The dynamics of the spin system is expressed in terms of a higher order generalized nonlinear Schroedinger equation through a differential geometric approach which becomes integrable for a particular choice of the biquadratic exchange interaction and for linear inhomogeneity. The effect of nonlinear inhomogeneity on the spin soliton is studied by carrying out a multiple scale perturbation analysis. (author)

  1. Normal versus anomalous self-diffusion in two-dimensional fluids: Memory function approach and generalized asymptotic Einstein relation

    Science.gov (United States)

    Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun

    2014-12-01

    Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.

  2. Nonlinear localized modes in dipolar Bose–Einstein condensates in two-dimensional optical lattices

    International Nuclear Information System (INIS)

    Rojas-Rojas, Santiago; Naether, Uta; Delgado, Aldo; Vicencio, Rodrigo A.

    2016-01-01

    Highlights: • We study discrete two-dimensional breathers in dipolar Bose–Einstein Condensates. • Important differences in the properties of three fundamental modes are found. • Norm threshold for existence of 2D breathers varies with dipolar interaction. • The Effective Potential Method is implemented for stability analysis. • Uncommon mobility of 2D discrete solitons is observed. - Abstract: We analyze the existence and properties of discrete localized excitations in a Bose–Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.

  3. Nonlinear localized modes in dipolar Bose–Einstein condensates in two-dimensional optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Rojas, Santiago, E-mail: srojas@cefop.cl [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Naether, Uta [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Delgado, Aldo [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Vicencio, Rodrigo A. [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile)

    2016-09-16

    Highlights: • We study discrete two-dimensional breathers in dipolar Bose–Einstein Condensates. • Important differences in the properties of three fundamental modes are found. • Norm threshold for existence of 2D breathers varies with dipolar interaction. • The Effective Potential Method is implemented for stability analysis. • Uncommon mobility of 2D discrete solitons is observed. - Abstract: We analyze the existence and properties of discrete localized excitations in a Bose–Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.

  4. New supersymmetric AdS4 type II vacua

    International Nuclear Information System (INIS)

    Tsimpis, D.

    2010-01-01

    We review the supersymmetric AdS 4 x w M 6 backgrounds of type IIA/IIB supergravity constructed in[1]. In type IIA the supersymmetry is N=2, and the six-dimensional internal space is locally an S 2 bundle over a four-dimensional Kaehler-Einstein base; in IIB the internal space is the direct product of a circle and a five-dimensional squashed Sasaki-Einstein manifold. These backgrounds do not contain any sources, all fluxes (including the Romans mass in IIA) are generally non-zero, and the dilaton and warp factor are non-constant. The IIA solutions include the massive deformations of the IIA reduction of the eleven-dimensional AdS 4 x Y p,q solutions, and had been predicted to exist on the basis of the AdS 4 /CFT 3 correspondence. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. Conformal Einstein spaces

    International Nuclear Information System (INIS)

    Kozameh, C.N.; Newman, E.T.; Tod, K.P.

    1985-01-01

    Conformal transformations in four-dimensional. In particular, a new set of two necessary and sufficient conditions for a space to be conformal to an Einstein space is presented. The first condition defines the class of spaces conformal to C spaces, whereas the last one (the vanishing of the Bach tensor) gives the particular subclass of C spaces which are conformally related to Einstein spaces. (author)

  6. Inhomogeneous initial data and small-field inflation

    Science.gov (United States)

    Marsh, M. C. David; Barrow, John D.; Ganguly, Chandrima

    2018-05-01

    We consider the robustness of small-field inflation in the presence of scalar field inhomogeneities. Previous numerical work has shown that if the scalar potential is flat only over a narrow interval, such as in commonly considered inflection-point models, even small-amplitude inhomogeneities present at the would-be onset of inflation at τ = τi can disrupt the accelerated expansion. In this paper, we parametrise and evolve the inhomogeneities from an earlier time τIC at which the initial data were imprinted, and show that for a broad range of inflationary and pre-inflationary models, inflection-point inflation withstands initial inhomogeneities. We consider three classes of perturbative pre-inflationary solutions (corresponding to energetic domination by the scalar field kinetic term, a relativistic fluid, and isotropic negative curvature), and two classes of exact solutions to Einstein's equations with large inhomogeneities (corresponding to a stiff fluid with cylindrical symmetry, and anisotropic negative curvature). We derive a stability condition that depends on the Hubble scales H(τi) and H(τIC), and a few properties of the pre-inflationary cosmology. For initial data imprinted at the Planck scale, the absence of an inhomogeneous initial data problem for inflection-point inflation leads to a novel, lower limit on the tensor-to-scalar ratio.

  7. Einstein for Schools and the General Public

    Science.gov (United States)

    Johansson, K. E.; Kozma, C; Nilsson, Ch

    2006-01-01

    In April 2005 the World Year of Physics (Einstein Year in the UK and Ireland) was celebrated with an Einstein week in Stockholm House of Science. Seven experiments illustrated Einstein's remarkable work in 1905 on Brownian motion, the photoelectric effect and special relativity. Thirteen school classes with 260 pupils, 30 teachers and 25 members…

  8. Spatial Landau-Zener-Stueckelberg interference in spinor Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Zhang, J.-N.; Sun, C.-P.; Yi, S.; Nori, Franco

    2011-01-01

    We investigate the Stueckelberg oscillations of a spin-1 Bose-Einstein condensate subject to a spatially inhomogeneous transverse magnetic field and a periodic longitudinal field. We show that the time-domain Stueckelberg oscillations result in modulations in the density profiles of all spin components due to the spatial inhomogeneity of the transverse field. This phenomenon represents the Landau-Zener-Stueckelberg interference in the space domain. Since the magnetic dipole-dipole interaction between spin-1 atoms induces an inhomogeneous effective magnetic field, interference fringes also appear if a dipolar spinor condensate is driven periodically. We also point out some potential applications of this spatial Landau-Zener-Stuekelberg interference.

  9. The universe as a topological defect in a higher-dimensional Einstein-Yang-Mills theory

    International Nuclear Information System (INIS)

    Nakamura, A.; Shiraishi, K.

    1989-04-01

    An interpretation is suggested that a spontaneous compactification of space-time can be regarded as a topological defect in a higher-dimensional Einstein-Yang-Mills (EYM) theory. We start with D-dimensional EYM theory in our present analysis. A compactification leads to a D-2 dimensional effective action of Abelian gauge-Higgs theory. We find a 'vortex' solution in the effective theory. Our universe appears to be confined in a center of a 'vortex', which has D-4 large dimensions. In this paper we show an example with SU (2) symmetry in the original EYM theory, and the resulting solution is found to be equivalent to the 'instanton-induced compactification'. The cosmological implication is also mentioned. (author)

  10. Scattering amplitudes in N=2 Maxwell-Einstein and Yang-Mills/Einstein supergravity

    International Nuclear Information System (INIS)

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; Roiban, Radu

    2015-01-01

    We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N=2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N=2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian and Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which through the double copy are responsible for the non-abelian vector interactions in the supergravity theory. As a demonstration of the power of this structure, we present explicit computations at tree-level and one loop. The double-copy construction allows us to obtain compact expressions for the supergravity superamplitudes, which are naturally organized as polynomials in the gauge coupling constant.

  11. Solutions of Einstein's field equations

    Energy Technology Data Exchange (ETDEWEB)

    Tomonaga, Y [Utsunomiya Univ. (Japan). Faculty of Education

    1978-12-01

    In this paper the author investigates the Einstein's field equations of the non-vacuum case and generalizes the solution of Robertson-Walker by the three dimensional Einstein spaces. In Section 2 the author shortly generalizes the dynamic space-time of G. Lemetre and A. Friedmann by a simple transformation.

  12. Spinning higher dimensional Einstein-Yang-Mills black holes

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.; Papnoi, Uma

    2014-01-01

    We construct a Kerr-Newman-like spacetime starting from higher dimensional (HD) Einstein-Yang-Mills black holes via complex transformations suggested by Newman-Janis. The new metrics are a HD generalization of Kerr-Newman spacetimes which has a geometry that is precisely that of Kerr-Newman in 4D corresponding to a Yang-Mills (YM) gauge charge, but the sign of the charge term gets flipped in the HD spacetimes. It is interesting to note that the gravitational contribution of the YM gauge charge, in HD, is indeed opposite (attractive rather than repulsive) to that of the Maxwell charge. The effect of the YM gauge charge on the structure and location of static limit surface and apparent horizon is discussed. We find that static limit surfaces become less prolate with increase in dimensions and are also sensitive to the YM gauge charge, thereby affecting the shape of the ergosphere. We also analyze some thermodynamical properties of these BHs. (orig.)

  13. Spinning higher dimensional Einstein-Yang-Mills black holes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of Kwa-Zulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Private Bag 54001, Durban (South Africa); Papnoi, Uma [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India)

    2014-08-15

    We construct a Kerr-Newman-like spacetime starting from higher dimensional (HD) Einstein-Yang-Mills black holes via complex transformations suggested by Newman-Janis. The new metrics are a HD generalization of Kerr-Newman spacetimes which has a geometry that is precisely that of Kerr-Newman in 4D corresponding to a Yang-Mills (YM) gauge charge, but the sign of the charge term gets flipped in the HD spacetimes. It is interesting to note that the gravitational contribution of the YM gauge charge, in HD, is indeed opposite (attractive rather than repulsive) to that of the Maxwell charge. The effect of the YM gauge charge on the structure and location of static limit surface and apparent horizon is discussed. We find that static limit surfaces become less prolate with increase in dimensions and are also sensitive to the YM gauge charge, thereby affecting the shape of the ergosphere. We also analyze some thermodynamical properties of these BHs. (orig.)

  14. Stable three-dimensional solitons in attractive Bose-Einstein condensates loaded in an optical lattice

    International Nuclear Information System (INIS)

    Mihalache, D.; Mazilu, D.; Lederer, F.; Malomed, B.A.; Crasovan, L.-C.; Kartashov, Y.V.; Torner, L.

    2005-01-01

    The existence and stability of solitons in Bose-Einstein condensates with attractive interatomic interactions, described by the Gross-Pitaevskii equation with a three-dimensional (3D) periodic potential, are investigated in a systematic form. We find a one-parameter family of stable 3D solitons in a certain interval of values of their norm, provided that the strength of the potential exceeds a threshold value. The minimum number of 7 Li atoms in the stable solitons is 60, and the energy of the soliton at the stability threshold is ≅6 recoil energies in the lattice. The respective energy versus norm diagram features two cuspidal points, resulting in a typical swallowtail pattern, which is a generic feature of 3D solitons supported by quasi-two-dimensional or fully dimensional lattice potentials

  15. Collapse arresting in an inhomogeneous quintic nonlinear Schrodinger model

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Schjødt-Eriksen, Jens; Christiansen, Peter Leth

    1999-01-01

    Collapse of (1 + 1)-dimensional beams in the inhomogeneous one-dimensional quintic nonlinear Schrodinger equation is analyzed both numerically and analytically. It is shown that in the vicinity of a narrow attractive inhomogeneity, the collapse of beams in which the homogeneous medium would blow up...

  16. Stationary axisymmetric four dimensional space-time endowed with Einstein metric

    International Nuclear Information System (INIS)

    Hasanuddin; Azwar, A.; Gunara, B. E.

    2015-01-01

    In this paper, we construct Ernst equation from vacuum Einstein field equation for both zero and non-zero cosmological constant. In particular, we consider the case where the space-time admits axisymmetric using Boyer-Lindquist coordinates. This is called Kerr-Einstein solution describing a spinning black hole. Finally, we give a short discussion about the dynamics of photons on Kerr-Einstein space-time

  17. Two- and three-dimensional nonlocal density functional theory for inhomogeneous fluids. 1. Algorithms and parallelization

    International Nuclear Information System (INIS)

    Frink, L.J.D.; Salinger, A.G.

    2000-01-01

    Fluids adsorbed near surfaces, near macromolecules, and in porous materials are inhomogeneous, exhibiting spatially varying density distributions. This inhomogeneity in the fluid plays an important role in controlling a wide variety of complex physical phenomena including wetting, self-assembly, corrosion, and molecular recognition. One of the key methods for studying the properties of inhomogeneous fluids in simple geometries has been density functional theory (DFT). However, there has been a conspicuous lack of calculations in complex two- and three-dimensional geometries. The computational difficulty arises from the need to perform nested integrals that are due to nonlocal terms in the free energy functional. These integral equations are expensive both in evaluation time and in memory requirements; however, the expense can be mitigated by intelligent algorithms and the use of parallel computers. This paper details the efforts to develop efficient numerical algorithms so that nonlocal DFT calculations in complex geometries that require two or three dimensions can be performed. The success of this implementation will enable the study of solvation effects at heterogeneous surfaces, in zeolites, in solvated (bio)polymers, and in colloidal suspensions

  18. Control and synchronisation of a novel seven-dimensional hyperchaotic system with active control

    Science.gov (United States)

    Varan, Metin; Akgul, Akif

    2018-04-01

    In this work, active control method is proposed for controlling and synchronising seven-dimensional (7D) hyperchaotic systems. The seven-dimensional hyperchaotic system is considered for the implementation. Seven-dimensional hyperchaotic system is also investigated via time series, phase portraits and bifurcation diagrams. For understanding the impact of active controllers on global asymptotic stability of synchronisation and control errors, the Lyapunov function is used. Numerical analysis is done to reveal the effectiveness of applied active control method and the results are discussed.

  19. Stationary vs. singular points in an accelerating FRW cosmology derived from six-dimensional Einstein-Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Elizalde, E.; Makarenko, A.N.; Obukhov, V.V.; Osetrin, K.E.; Filippov, A.E.

    2007-01-01

    Six-dimensional Einstein-Gauss-Bonnet gravity (with a linear Gauss-Bonnet term) is investigated. This theory is inspired by basic features of results coming from string and M-theory. Dynamical compactification is carried out and it is seen that a four-dimensional accelerating FRW universe is recovered, when the two-dimensional internal space radius shrinks. A non-perturbative structure of the corresponding theory is identified which has either three or one stable fixed points, depending on the Gauss-Bonnet coupling being positive or negative. A much richer structure than in the case of the perturbative regime of the dynamical compactification recently studied by Andrew, Bolen, and Middleton is exhibited

  20. An infinite number of stationary soliton solutions to the five-dimensional vacuum Einstein equation

    International Nuclear Information System (INIS)

    Azuma, Takahiro; Koikawa, Takao

    2006-01-01

    We obtain an infinite number of soliton solutions to the five-dimensional stationary Einstein equation with axial symmetry by using the inverse scattering method. We start with the five-dimensional Minkowski space as a seed metric to obtain these solutions. The solutions are characterized by two soliton numbers and a constant appearing in the normalization factor which is related to a coordinate condition. We show that the (2, 0)-soliton solution is identical to the Myers-Perry solution with one angular momentum variable by imposing a condition on the relation between parameters. We also show that the (2, 2)-soliton solution is different from the black ring solution discovered by Emparan and Reall, although one component of the two metrics can be identical. (author)

  1. Inhomogeneous critical nonlinear Schroedinger equations with a harmonic potential

    International Nuclear Information System (INIS)

    Cao Daomin; Han Pigong

    2010-01-01

    In this paper, we study the Cauchy problem of the inhomogeneous nonlinear Schroedinger equation with a harmonic potential: i∂ t u=-div(f(x)∇u)+|x| 2 u-k(x)|u| 4/N u, x is an element of R N , N≥1, which models the remarkable Bose-Einstein condensation. We discuss the existence and nonexistence results and investigate the limiting profile of blow-up solutions with critical mass.

  2. Vortex sorter for Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Whyte, Graeme; Veitch, John; Courtial, Johannes; Oehberg, Patrik

    2004-01-01

    We have designed interferometers that sort Bose-Einstein condensates into their vortex components. The Bose-Einstein condensates in the two arms of the interferometer are rotated with respect to each other through fixed angles; different vortex components then exit the interferometer in different directions. The method we use to rotate the Bose-Einstein condensates involves asymmetric phase imprinting and is itself new. We have modeled rotation through fixed angles and sorting into vortex components with even and odd values of the topological charge of two-dimensional Bose-Einstein condensates in a number of states (pure or superposition vortex states for different values of the scattering length). Our scheme may have applications for quantum information processing

  3. Dynamics of an inhomogeneous anisotropic antiferromagnetic spin chain

    International Nuclear Information System (INIS)

    Daniel, M.; Amuda, R.

    1994-11-01

    We investigate the nonlinear spin excitations in the two sublattice model of a one dimensional classical continuum Heisenberg inhomogeneous antiferromagnetic spin chain. The dynamics of the inhomogeneous chain reduces to that of its homogeneous counterpart when the inhomogeneity assumes a particular form. Apart from the usual twists and pulses, we obtain some planar configurations representing the nonlinear dynamics of spins. (author). 12 refs

  4. Thermodynamics of (2 +1 )-dimensional black holes in Einstein-Maxwell-dilaton gravity

    Science.gov (United States)

    Dehghani, M.

    2017-08-01

    In this paper, the linearly charged three-dimensional Einstein's theory coupled to a dilatonic field has been considered. It has been shown that the dilatonic potential must be considered in a form of generalized Liouville-type potential. Two new classes of charged dilatonic black hole solutions, as the exact solutions to the Einstein-Maxwell-dilaton (EMd) gravity, have been obtained and their properties have been studied. The conserved charge and mass related to both of the new EMd black holes have been calculated. Through comparison of the thermodynamical extensive quantities (i.e., temperature and entropy) obtained from both, the geometrical and the thermodynamical methods, the validity of first law of black hole thermodynamics has been investigated for both of the new black holes we just obtained. At the final stage, making use of the canonical ensemble method and regarding the black hole heat capacity, the thermal stability or phase transition of the new black hole solutions have been analyzed. It has been shown that there is a specific range for the horizon radius in such a way that the black holes with the horizon radius in that range are locally stable. Otherwise, they are unstable and may undergo type one or type two phase transitions to be stabilized.

  5. Thermodynamics of rotating black branes in (n+1)-dimensional Einstein-Born-Infeld gravity

    International Nuclear Information System (INIS)

    Dehghani, M. H.; Sedehi, H. R. Rastegar

    2006-01-01

    We construct a new class of charged rotating solutions of (n+1)-dimensional Einstein-Born-Infeld gravity with cylindrical or toroidal horizons in the presence of cosmological constant and investigate their properties. These solutions are asymptotically (anti)-de Sitter and reduce to the solutions of Einstein-Maxwell gravity as the Born-Infeld parameters goes to infinity. We find that these solutions can represent black branes, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We compute temperature, mass, angular momentum, entropy, charge and electric potential of the black brane solutions. We obtain a Smarr-type formula and show that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass of the system with infinite boundary with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable in the whole phase space. Also, we find that there exists an unstable phase when the finite size effect is taken into account

  6. Superfluid transition of homogeneous and trapped two-dimensional Bose gases.

    Science.gov (United States)

    Holzmann, Markus; Baym, Gordon; Blaizot, Jean-Paul; Laloë, Franck

    2007-01-30

    Current experiments on atomic gases in highly anisotropic traps present the opportunity to study in detail the low temperature phases of two-dimensional inhomogeneous systems. Although, in an ideal gas, the trapping potential favors Bose-Einstein condensation at finite temperature, interactions tend to destabilize the condensate, leading to a superfluid Kosterlitz-Thouless-Berezinskii phase with a finite superfluid mass density but no long-range order, as in homogeneous fluids. The transition in homogeneous systems is conveniently described in terms of dissociation of topological defects (vortex-antivortex pairs). However, trapped two-dimensional gases are more directly approached by generalizing the microscopic theory of the homogeneous gas. In this paper, we first derive, via a diagrammatic expansion, the scaling structure near the phase transition in a homogeneous system, and then study the effects of a trapping potential in the local density approximation. We find that a weakly interacting trapped gas undergoes a Kosterlitz-Thouless-Berezinskii transition from the normal state at a temperature slightly below the Bose-Einstein transition temperature of the ideal gas. The characteristic finite superfluid mass density of a homogeneous system just below the transition becomes strongly suppressed in a trapped gas.

  7. Vortex stability in nearly-two-dimensional Bose-Einstein condensates with attraction

    International Nuclear Information System (INIS)

    Mihalache, Dumitru; Mazilu, Dumitru; Malomed, Boris A.; Lederer, Falk

    2006-01-01

    We perform accurate investigation of stability of localized vortices in an effectively two-dimensional ('pancake-shaped') trapped Bose-Einstein condensate with negative scattering length. The analysis combines computation of the stability eigenvalues and direct simulations. The states with vorticity S=1 are stable in a third of their existence region, 0 max (S=1) , where N is the number of atoms, and N max (S=1) is the corresponding collapse threshold. Stable vortices easily self-trap from arbitrary initial configurations with embedded vorticity. In an adjacent interval, (1/3)N max (S=1) max (S=1) , the unstable vortex periodically splits in two fragments and recombines. At N>0.43N max (S=1) , the fragments do not recombine, as each one collapses by itself. The results are compared with those in the full three-dimensional (3D) Gross-Pitaevskii equation. In a moderately anisotropic 3D configuration, with the aspect ratio √(10), the stability interval of the S=1 vortices occupies ≅40% of their existence region, hence the two-dimensional (2D) limit provides for a reasonable approximation in this case. For the isotropic 3D configuration, the stability interval expands to 65% of the existence domain. Overall, the vorticity heightens the actual collapse threshold by a factor of up to 2. All vortices with S≥2 are unstable

  8. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  9. Inverse dualization and non-local dualities between Einstein gravity and supergravities

    International Nuclear Information System (INIS)

    Chen Chiangmei; Gal'tsov, Dmitri V; Sharakin, Sergei A

    2002-01-01

    We investigate non-local dualities between suitably compactified higher dimensional Einstein gravity and supergravities which can be revealed if one reinterprets the dualized Kaluza-Klein 2-forms in D>4 as antisymmetric forms belonging to supergravities. We find several examples of such a correspondence including one between the six-dimensional Einstein gravity and the four-dimensional Einstein-Maxwell-dilaton-axion theory (truncated N=4 supergravity), and others between the compactified eleven- and ten-dimensional supergravities and the eight- or ten-dimensional pure gravity. The Killing spinor equation of the D=11 supergravity is shown to be equivalent to the geometric Killing spinor equation in the dual gravity. We give several examples of using new dualities for solution generation and demonstrate how p-branes can be interpreted as non-local duals of pure gravity solutions. New supersymmetric solutions are presented including M2 subset of 5-brane with two rotation parameters

  10. A connection between the Einstein and Yang-Mills equations

    International Nuclear Information System (INIS)

    Mason, L.J.; Newman, E.T.

    1989-01-01

    It is our purpose here to show an unusual relationship between the Einstein equations and the Yang-Mills equations. We give a correspondence between solutions of the self-dual Einstein vacuum equations and the self-dual Yang-Mills equations with a special choice of gauge group. The extension of the argument to the full Yang-Mills equations yields Einstein's unified equations. We try to incorporate the full Einstein vacuum equations, but the approach is incomplete. We first consider Yang-Mills theory for an arbitrary Lie-algebra with the condition that the connection 1-form and curvature are constant on Minkowski space. This leads to a set of algebraic equations on the connection components. We then specialize the Lie-algebra to be the (infinite dimensional) Lie algebra of a group of diffeomorphisms of some manifold. The algebraic equations then become differential equations for four vector fields on the manifold on which the diffeomorphisms act. In the self-dual case, if we choose the connection components from the Lie-algebra of the volume preserving 4-dimensional diffeomorphism group, the resulting equations are the same as those obtained by Ashtekar, Jacobsen and Smolin, in their remarkable simplification of the self-dual Einstein vacuum equations. (An alternative derivation of the same equations begins with the self-dual Yang-Mills connection now depending only on the time, then choosing the Lie-algebra as that of the volume preserving 3-dimensional diffeomorphisms). When the reduced full Yang-Mills equations are used in the same context, we get Einstein's equations for his unified theory based on absolute parallelism. To incorporate the full Einstein vacuum equations we use as the Lie group the semi-direct product of the diffeomorphism group of a 4-dimensional manifold with the group of frame rotations of an SO(1, 3) bundle over the 4-manifold. This last approach, however, yields equations more general than the vacuum equations. (orig.)

  11. Quasilinear diffusion in inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Hooley, D.L.

    1975-05-01

    The problem of inhomogeneous diffusion in a plasma is considered with emphasis on its possible application to relativistic electron beams. A one-dimensional model with a background electrostatic field is used to illustrate the basic approach, which is then extended to a two-dimensional plasma with a background magnetic field. Only preliminary results are available. (U.S.)

  12. Dynamics of inhomogeneous chiral condensates

    Science.gov (United States)

    Carlomagno, Juan Pablo; Krein, Gastão; Kroff, Daniel; Peixoto, Thiago

    2018-01-01

    We study the dynamics of the formation of inhomogeneous chirally broken phases in the final stages of a heavy-ion collision, with particular interest on the time scales involved in the formation process. The study is conducted within the framework of a Ginzburg-Landau time evolution, driven by a free energy functional motivated by the Nambu-Jona-Lasinio model. Expansion of the medium is modeled by one-dimensional Bjorken flow and its effect on the formation of inhomogeneous condensates is investigated. We also use a free energy functional from a nonlocal Nambu-Jona-Lasinio model which predicts metastable phases that lead to long-lived inhomogeneous condensates before reaching an equilibrium phase with homogeneous condensates.

  13. Dynamic response of interacting one-dimensional fermions in the harmonic atom trap: Phase response and the inhomogeneous mobility

    International Nuclear Information System (INIS)

    Wonneberger, W.

    2006-01-01

    The problem of the Kohn mode in bosonized theories of one-dimensional interacting fermions in the harmonic trap is investigated and a suitable modification of the interaction is proposed which preserves the Kohn mode. The modified theory is used to calculate exactly the inhomogeneous linear mobility μ(z,z 0 ;ω) at position z in response to a spatial force pulse at position z 0 . It is found that the inhomogeneous particle mobility exhibits resonances not only at the trap frequency ω - bar but also at multiples mε-bar , m=2,3,... of a new renormalized collective mode frequency which depends on the strength of the interaction. In contrast, the homogeneous response obtained by an average over z 0 remains that of the non-interacting system

  14. Glauber theory and the quantum coherence of curvature inhomogeneities

    CERN Document Server

    Giovannini, Massimo

    2017-01-12

    The curvature inhomogeneities are systematically scrutinized in the framework of the Glauber approach. The amplified quantum fluctuations of the scalar and tensor modes of the geometry are shown to be first-order coherent while the interference of the corresponding intensities is larger than in the case of Bose-Einstein correlations. After showing that the degree of second-order coherence does not suffice to characterize unambiguously the curvature inhomogeneities, we argue that direct analyses of the degrees of third and fourth-order coherence are necessary to discriminate between different correlated states and to infer more reliably the statistical properties of the large-scale fluctuations. We speculate that the moments of the multiplicity distributions of the relic phonons might be observationally accessible thanks to new generations of instruments able to count the single photons of the Cosmic Microwave Background in the THz region.

  15. Effects of Nonlinear Inhomogeneity on the Cosmic Expansion with Numerical Relativity.

    Science.gov (United States)

    Bentivegna, Eloisa; Bruni, Marco

    2016-06-24

    We construct a three-dimensional, fully relativistic numerical model of a universe filled with an inhomogeneous pressureless fluid, starting from initial data that represent a perturbation of the Einstein-de Sitter model. We then measure the departure of the average expansion rate with respect to this homogeneous and isotropic reference model, comparing local quantities to the predictions of linear perturbation theory. We find that collapsing perturbations reach the turnaround point much earlier than expected from the reference spherical top-hat collapse model and that the local deviation of the expansion rate from the homogeneous one can be as high as 28% at an underdensity, for an initial density contrast of 10^{-2}. We then study, for the first time, the exact behavior of the backreaction term Q_{D}. We find that, for small values of the initial perturbations, this term exhibits a 1/a scaling, and that it is negative with a linearly growing absolute value for larger perturbation amplitudes, thereby contributing to an overall deceleration of the expansion. Its magnitude, on the other hand, remains very small even for relatively large perturbations.

  16. On the stability of the Einstein universe

    International Nuclear Information System (INIS)

    Soares, I.D.

    1983-01-01

    It is shown sthat the Einstein Universe is stable by a large class of exact perturbations, which are made starting from a detailed exam of the topology of the model, and which include perturbations of the type considered by Lemaitre. The problem is reduced to the one-dimensional motion of a particle, in a potential well whose minimum corresponds to the configuration of the Einstein Universe. (Author) [pt

  17. Stability of Einstein static state universe in the spatially flat branemodels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kaituo [Department of Physics, Anhui Normal University, Wuhu, Anhui 241000 (China); Wu, Puxun [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Center for High Energy Physics, Peking University, Beijing 100080 (China); Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn [Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Luo, Ling-Wei [Institute of Physics, Chiao Tung University, Hsinchu 300, Taiwan (China)

    2016-07-10

    With the assumption that a perfect fluid with a constant equation of state is the only energy component on the brane, we study the stability of Einstein static state solution under homogeneous and inhomogeneous scalar perturbations in both spatially flat Randall–Sundrum (RS) and Shtanov–Sahni (SS) braneworlds. We find that if the perfect fluid has a phantom-like property and the “Weyl fluid” originating from the projection of the bulk Weyl tensor onto the brane behaves like a radiation with positive energy density, the Einstein static state solution is stable in the SS braneworld, but unstable in the RS one. Furthermore, we demonstrate that the static state solution is also stable in the bulk with a timelike extra dimension. Thus, in the model where the extra dimension is timelike, our universe can stay at the Einstein static state past-eternally, which means that the big bang singularity might be resolved successfully by an emergent scenario.

  18. Einstein solvmanifolds and the pre-Einstein derivation

    OpenAIRE

    Nikolayevsky, Y.

    2008-01-01

    An Einstein nilradical is a nilpotent Lie algebra, which can be the nilradical of a metric Einstein solvable Lie algebra. The classification of Riemannian Einstein solvmanifolds (possibly, of all noncompact homogeneous Einstein spaces) can be reduced to determining, which nilpotent Lie algebras are Einstein nilradicals and to finding, for every Einstein nilradical, its Einstein metric solvable extension. For every nilpotent Lie algebra, we construct an (essentially unique) derivation, the pre...

  19. Dimensional transition of the universe

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1989-08-01

    In the extended n-dimensional Einstein theory of gravitation, where the spacetime dimension can be taken as a 'dynamical variable' which is determined by the 'Hamilton principle' of minimizing the extended Einstein-Hilbert action, it is suggested that our Universe of four-dimensional spacetime may encounter an astonishing dimensional transition into a new universe of three-dimensional or higher-than-four-dimensional spacetime. (author)

  20. Two-dimensional discrete solitons in dipolar Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Gligoric, Goran; Stepic, Milutin; Hadzievski, Ljupco; Maluckov, Aleksandra; Malomed, Boris A.

    2010-01-01

    We analyze the formation and dynamics of bright unstaggered solitons in the disk-shaped dipolar Bose-Einstein condensate, which features the interplay of contact (collisional) and long-range dipole-dipole (DD) interactions between atoms. The condensate is assumed to be trapped in a strong optical-lattice potential in the disk's plane, hence it may be approximated by a two-dimensional (2D) discrete model, which includes the on-site nonlinearity and cubic long-range (DD) interactions between sites of the lattice. We consider two such models, which differ by the form of the on-site nonlinearity, represented by the usual cubic term, or more accurate nonpolynomial one, derived from the underlying three-dimensional Gross-Pitaevskii equation. Similar results are obtained for both models. The analysis is focused on the effects of the DD interaction on fundamental localized modes in the lattice (2D discrete solitons). The repulsive isotropic DD nonlinearity extends the existence and stability regions of the fundamental solitons. New families of on-site, inter-site, and hybrid solitons, built on top of a finite background, are found as a result of the interplay of the isotropic repulsive DD interaction and attractive contact nonlinearity. By themselves, these solutions are unstable, but they evolve into robust breathers which exist on an oscillating background. In the presence of the repulsive contact interactions, fundamental localized modes exist if the DD interaction (attractive isotropic or anisotropic) is strong enough. They are stable in narrow regions close to the anticontinuum limit, while unstable solitons evolve into breathers. In the latter case, the presence of the background is immaterial.

  1. Observable relations in an inhomogeneous self-similar cosmology

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1979-01-01

    An exact self-similar solution is taken in general relativity as a model for an inhomogeneous cosmology. The self-similarity property means (conceptually) that the model is scale-free and (mathematically) that its essential parameters are functions of only one dimensionless variable zeta (equivalentct/R, where R and t are distance and time coordinates and c is the velocity of light). It begins inhomogeneous (zeta=0 or t=0), and tends to a homogeneous Einstein--de Sitter type state as zeta (or t) →infinity. Such a model can be used (a) for evaluating the observational effects of a clumpy universe; (b) for studying astrophysical processes such as galaxy formation and the growth and decay of inhomogeneities in initially clumpy cosmologies; and (c) as a relativistic basis for cosmological models with extended clustering of the de Vaucouleurs and Peebles types. The model has two adjustable parameters, namely, the observer's coordinate zeta 0 and a constant α/sub s/ that fixes the effect of the inhomogeneity. Expressions are obtained for the redshift, Hubble parameter, deceleration parameter, magnitude-redshift relation, and (number density of objects) --redshift relation. Expected anisotropies in the 3 K microwave background are also examined. There is no conflict with observation if zeta 0 /α/sub s/> or approx. =10, and four tests of the model are suggested that can be used to further determine the acceptability of inhomogeneous cosmologies of this type. The ratio α/sub s//zeta 0 on presently available data is α/sub s//zeta 0 < or approx. =10% and this, loosely speaking, means that the universe at the present epoch is globally homogeneous to within about 10%

  2. The use of exterior forms in Einstein's gravitation theory

    International Nuclear Information System (INIS)

    Thirring, W.; Wallner, R.

    1978-01-01

    Cartan's calculus is used to reformulate the general variational principle and conservation laws in terms of exterior forms. In applying this method to Einstein's gravitation theory, we do not only benefit from the great economy of Cartan's formalism but also gain a deeper understanding of fundamental results already known. So the existence of superpotential-forms may be deduced from d o d identical to 0 and as a consequence the vanishing of total energy and momentum in a closed universe is affirmed in a more general way. Simple expressions for the sundry superpotential are obtained quite naturally. As a byproduct, Einstein's equations are rewritten in a form where the coderivative of a 2-form (the superpotential-form) is a current, and therefore resembles the inhomogeneous Maxwell equations. In passing from the Lagrangian to the Hamiltonian 4-form, the ADM formalism is immediately entered without lengthy calculations [pt

  3. Full-wave solution of short impulses in inhomogeneous plasma

    International Nuclear Information System (INIS)

    Ferencz, Orsolya E.

    2005-01-01

    In this paper the problem of real impulse propagation in arbitrarily inhomogeneous media will be presented on a fundamentally new, general, theoretical way. The general problem of wave propagation of monochromatic signals in inhomogeneous media was enlightened. The earlier theoretical models for spatial inhomogeneities have some errors regarding the structure of the resultant signal originated from backward and forward propagating parts. The application of the method of inhomogeneous basic modes (MIBM) and the complete full-wave solution of arbitrarily shaped non-monochromatic plane waves in plasmas made it possible to obtain a better description of the problem, on a fully analytical way, directly from Maxwell's equations. The model investigated in this paper is inhomogeneous of arbitrary order (while the wave pattern can exist), anisotropic (magnetized), linear, cold plasma, in which the gradient of the one-dimensional spatial inhomogeneity is parallel to the direction of propagation. (author)

  4. Self-dual monopoles in a seven-dimensional gauge theory

    International Nuclear Information System (INIS)

    Yang Yisong

    1990-01-01

    The existence of self-dual or anti-self-dual monopoles of a seven-dimensional generalized Yang-Mills-Higgs theory is proved using the second-order equations of motion. The behavior of solutions can be used to recognize self- or anti-self-duality. Moreover, it is shwon that, in the class of the field configurations under discussion, the solutions are, in fact, unique. (orig.)

  5. Einstein's Cosmos (German Title: Einsteins Kosmos)

    Science.gov (United States)

    Duerbeck, Hilmar W.; Dick, Wolfgang R.

    The different contributions of the present volume illuminate the interaction between Einstein and his colleagues when the foundations of modern cosmology were laid: First, the relativistic effects in the solar system, the gravitational redshift in the solar spectrum, and Einstein's relations with Freundlich and Eddington. Second, the cosmological models of Einstein, de Sitter, Friedmann, and Lemaître, which were discussed controversely till the end of the 1920s. Other scientists have also widened or critically questioned Einstein's insight and knowledge: Schwarzschild, Selety, Silberstein, and Mandl, whose life and work is discussed in separate articles. In those days, politics more than ever in history had influenced the lifes of scientists. Therefore, some comments on the ``political cosmos'' that has influenced decisively Einstein's life are also given. A special role in popularizing Einstein's world view was played by Archenhold Observatory in Berlin. A list of Einstein memorial places and a bibliographic list conclude the present book. All papers are written in German, and have English abstracts.

  6. Effective permittivity of finite inhomogeneous objects

    NARCIS (Netherlands)

    Raghunathan, S.B.; Budko, N.V.

    2010-01-01

    A generalization of the S-parameter retrieval method for finite three-dimensional inhomogeneous objects under arbitrary illumination and observation conditions is presented. The effective permittivity of such objects may be rigorously defined as a solution of a nonlinear inverse scattering problem.

  7. Cosmological dynamics of spatially flat Einstein-Gauss-Bonnet models in various dimensions: high-dimensional Λ-term case

    Energy Technology Data Exchange (ETDEWEB)

    Pavluchenko, Sergey A. [Universidade Federal do Maranhao (UFMA), Programa de Pos-Graduacao em Fisica, Sao Luis, Maranhao (Brazil)

    2017-08-15

    In this paper we perform a systematic study of spatially flat [(3+D)+1]-dimensional Einstein-Gauss-Bonnet cosmological models with Λ-term. We consider models that topologically are the product of two flat isotropic subspaces with different scale factors. One of these subspaces is three-dimensional and represents our space and the other is D-dimensional and represents extra dimensions. We consider no ansatz of the scale factors, which makes our results quite general. With both Einstein-Hilbert and Gauss-Bonnet contributions in play, D = 3 and the general D ≥ 4 cases have slightly different dynamics due to the different structure of the equations of motion. We analytically study the equations of motion in both cases and describe all possible regimes with special interest on the realistic regimes. Our analysis suggests that the only realistic regime is the transition from high-energy (Gauss-Bonnet) Kasner regime, which is the standard cosmological singularity in that case, to the anisotropic exponential regime with expanding three and contracting extra dimensions. Availability of this regime allows us to put a constraint on the value of Gauss-Bonnet coupling α and the Λ-term - this regime appears in two regions on the (α, Λ) plane: α < 0, Λ > 0, αΛ ≤ -3/2 and α > 0, αΛ ≤ (3D{sup 2} - 7D + 6)/(4D(D-1)), including the entire Λ < 0 region. The obtained bounds are confronted with the restrictions on α and Λ from other considerations, like causality, entropy-to-viscosity ratio in AdS/CFT and others. Joint analysis constrains (α, Λ) even further: α > 0, D ≥ 2 with (3D{sup 2} - 7D + 6)/(4D(D-1)) ≥ αΛ ≥ -(D+2)(D+3)(D{sup 2} + 5D + 12)/(8(D{sup 2} + 3D + 6){sup 2}). (orig.)

  8. Self Completeness of Einstein Gravity

    CERN Document Server

    Dvali, Gia

    2010-01-01

    We argue, that in Einsteinian gravity the Planck length is the shortest length of nature, and any attempt of resolving trans-Planckian physics bounces back to macroscopic distances due to black hole formation. In Einstein gravity trans-Planckian propagating quantum degrees of freedom cannot exist, instead they are equivalent to the classical black holes that are fully described by lighter infra-red degrees of freedom and give exponentially-soft contribution into the virtual processes. Based on this property we argue that pure-Einstein (super)gravity and its high-dimensional generalizations are self-complete in deep-UV, but not in standard Wilsonian sense. We suggest that certain strong-coupling limit of string theory is built-in in pure Einstein gravity, whereas the role of weakly-coupled string theory limit is to consistently couple gravity to other particle species, with their number being set by the inverse string coupling. We also discuss some speculative ideas generalizing the notion of non-Wilsonian sel...

  9. Cosmological string solutions by dimensional reduction

    International Nuclear Information System (INIS)

    Behrndt, K.; Foerste, S.

    1993-12-01

    We obtain cosmological four dimensional solutions of the low energy effective string theory by reducing a five dimensional black hole, and black hole-de Sitter solution of the Einstein gravity down to four dimensions. The appearance of a cosmological constant in the five dimensional Einstein-Hilbert produces a special dilaton potential in the four dimensional effective string action. Cosmological scenarios implement by our solutions are discussed

  10. Ultrahigh-Resolution Magnetic Resonance in Inhomogeneous Magnetic Fields: Two-Dimensional Long-Lived-Coherence Correlation Spectroscopy

    Science.gov (United States)

    Chinthalapalli, Srinivas; Bornet, Aurélien; Segawa, Takuya F.; Sarkar, Riddhiman; Jannin, Sami; Bodenhausen, Geoffrey

    2012-07-01

    A half-century quest for improving resolution in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) has enabled the study of molecular structures, biological interactions, and fine details of anatomy. This progress largely relied on the advent of sophisticated superconducting magnets that can provide stable and homogeneous fields with temporal and spatial variations below ΔB0/B0LLC-COSY) opens the way to overcome both inhomogeneous and homogeneous broadening, which arise from local variations in static fields and fluctuating dipole-dipole interactions, respectively. LLC-COSY makes it possible to obtain ultrahigh resolution two-dimensional spectra, with linewidths on the order of Δν=0.1 to 1 Hz, even in very inhomogeneous fields (ΔB0/B0>10ppm or 5000 Hz at 9.7 T), and can improve resolution by a factor up to 9 when the homogeneous linewidths are determined by dipole-dipole interactions. The resulting LLC-COSY spectra display chemical shift differences and scalar couplings in two orthogonal dimensions, like in “J spectroscopy.” LLC-COSY does not require any sophisticated gradient switching or frequency-modulated pulses. Applications to in-cell NMR and to magnetic resonance spectroscopy (MRS) of selected volume elements in MRI appear promising, particularly when susceptibility variations tend to preclude high resolution.

  11. New class of inhomogeneous cosmological perfect-fluid solutions without big-bang singularity

    Energy Technology Data Exchange (ETDEWEB)

    Senovilla, J.M.M. (Grupo de Fisica Teorica, Departamento de Fisica, Ingenieria y Radiologia Medica, Facultad de Ciencias, Universidad de Salamanca, 37008 Salmanaca (Spain))

    1990-05-07

    A new class of exact solutions to Einstein's field equations with a perfect-fluid source is presented. The solutions describe spatially inhomogeneous cosmological models and have a realistic equation of state {ital p}={rho}/3. The properties of the solutions are discussed. The most remarkable feature is the absence of an initial singularity, the curvature and matter invariants being regular and smooth everywhere. We also present an alternative interpretation of the solution as a globally regular cylindrically symmetric space-time.

  12. Three-dimensional distribution of random velocity inhomogeneities at the Nankai trough seismogenic zone

    Science.gov (United States)

    Takahashi, T.; Obana, K.; Yamamoto, Y.; Nakanishi, A.; Kaiho, Y.; Kodaira, S.; Kaneda, Y.

    2012-12-01

    The Nankai trough in southwestern Japan is a convergent margin where the Philippine sea plate is subducted beneath the Eurasian plate. There are major faults segments of huge earthquakes that are called Tokai, Tonankai and Nankai earthquakes. According to the earthquake occurrence history over the past hundreds years, we must expect various rupture patters such as simultaneous or nearly continuous ruptures of plural fault segments. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) conducted seismic surveys at Nankai trough in order to clarify mutual relations between seismic structures and fault segments, as a part of "Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes" funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. This study evaluated the spatial distribution of random velocity inhomogeneities from Hyuga-nada to Kii-channel by using velocity seismograms of small and moderate sized earthquakes. Random velocity inhomogeneities are estimated by the peak delay time analysis of S-wave envelopes (e.g., Takahashi et al. 2009). Peak delay time is defined as the time lag from the S-wave onset to its maximal amplitude arrival. This quantity mainly reflects the accumulated multiple forward scattering effect due to random inhomogeneities, and is quite insensitive to the inelastic attenuation. Peak delay times are measured from the rms envelopes of horizontal components at 4-8Hz, 8-16Hz and 16-32Hz. This study used the velocity seismograms that are recorded by 495 ocean bottom seismographs and 378 onshore seismic stations. Onshore stations are composed of the F-net and Hi-net stations that are maintained by National Research Institute for Earth Science and Disaster Prevention (NIED) of Japan. It is assumed that the random inhomogeneities are represented by the von Karman type PSDF. Preliminary result of inversion analysis shows that spectral gradient of PSDF (i.e., scale dependence of

  13. A sparsity-regularized Born iterative method for reconstruction of two-dimensional piecewise continuous inhomogeneous domains

    KAUST Repository

    Sandhu, Ali Imran; Desmal, Abdulla; Bagci, Hakan

    2016-01-01

    A sparsity-regularized Born iterative method (BIM) is proposed for efficiently reconstructing two-dimensional piecewise-continuous inhomogeneous dielectric profiles. Such profiles are typically not spatially sparse, which reduces the efficiency of the sparsity-promoting regularization. To overcome this problem, scattered fields are represented in terms of the spatial derivative of the dielectric profile and reconstruction is carried out over samples of the dielectric profile's derivative. Then, like the conventional BIM, the nonlinear problem is iteratively converted into a sequence of linear problems (in derivative samples) and sparsity constraint is enforced on each linear problem using the thresholded Landweber iterations. Numerical results, which demonstrate the efficiency and accuracy of the proposed method in reconstructing piecewise-continuous dielectric profiles, are presented.

  14. Periodic, complexiton solutions and stability for a (2+1)-dimensional variable-coefficient Gross-Pitaevskii equation in the Bose-Einstein condensation

    Science.gov (United States)

    Yin, Hui-Min; Tian, Bo; Zhao, Xin-Chao

    2018-06-01

    This paper presents an investigation of a (2 + 1)-dimensional variable-coefficient Gross-Pitaevskii equation in the Bose-Einstein condensation. Periodic and complexiton solutions are obtained. Solitons solutions are also gotten through the periodic solutions. Numerical solutions via the split step method are stable. Effects of the weak and strong modulation instability on the solitons are shown: the weak modulation instability permits an observable soliton, and the strong one overwhelms its development.

  15. Lie Symmetry Analysis of the Inhomogeneous Toda Lattice Equation via Semi-Discrete Exterior Calculus

    International Nuclear Information System (INIS)

    Liu Jiang; Wang Deng-Shan; Yin Yan-Bin

    2017-01-01

    In this work, the Lie point symmetries of the inhomogeneous Toda lattice equation are obtained by semi-discrete exterior calculus, which is a semi-discrete version of Harrison and Estabrook’s geometric approach. A four-dimensional Lie algebra and its one-, two- and three-dimensional subalgebras are given. Two similarity reductions of the inhomogeneous Toda lattice equation are obtained by using the symmetry vectors. (paper)

  16. Einstein-Weyl spaces and third-order differential equations

    Science.gov (United States)

    Tod, K. P.

    2000-08-01

    The three-dimensional null-surface formalism of Tanimoto [M. Tanimoto, "On the null surface formalism," Report No. gr-qc/9703003 (1997)] and Forni et al. [Forni et al., "Null surfaces formation in 3D," J. Math Phys. (submitted)] are extended to describe Einstein-Weyl spaces, following Cartan [E. Cartan, "Les espaces généralisées et l'integration de certaines classes d'equations différentielles," C. R. Acad. Sci. 206, 1425-1429 (1938); "La geometria de las ecuaciones diferenciales de tercer order," Rev. Mat. Hispano-Am. 4, 1-31 (1941)]. In the resulting formalism, Einstein-Weyl spaces are obtained from a particular class of third-order differential equations. Some examples of the construction which include some new Einstein-Weyl spaces are given.

  17. The Cardy limit of the topologically twisted index and black strings in AdS{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Seyed Morteza; Nedelin, Anton; Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,I-20126 Milano (Italy); INFN, Sezione di Milano-Bicocca,I-20126 Milano (Italy)

    2017-04-04

    We evaluate the topologically twisted index of a general four-dimensional N=1 gauge theory in the “high-temperature' limit. The index is the partition function for N=1 theories on S{sup 2}×T{sup 2}, with a partial topological twist along S{sup 2}, in the presence of background magnetic fluxes and fugacities for the global symmetries. We show that the logarithm of the index is proportional to the conformal anomaly coefficient of the two-dimensional N=(0,2) SCFTs obtained from the compactification on S{sup 2}. We also present a universal formula for extracting the index from the four-dimensional conformal anomaly coefficient and its derivatives. We give examples based on theories whose holographic duals are black strings in type IIB backgrounds AdS{sub 5}×SE{sub 5}, where SE{sub 5} are five-dimensional Sasaki-Einstein spaces.

  18. Dynamics of the Bose-Einstein condensate: quasi-one-dimension and beyond

    International Nuclear Information System (INIS)

    Carr, Lincoln D.; Leung, Mary Ann; Mills College, Oakland, CA 94613-1301; Reinhardt, William P.; Department of Chemistry, University of Washington, Seattle, WA 98195-1700

    2000-01-01

    It is shown that the quasi-one-dimensional Bose-Einstein condensate is experimentally accessible and rich in intriguing phenomena. We demonstrate numerically and analytically the existence, stability and perturbation-induced dynamics of all types of stationary states of the quasi-one-dimensional nonlinear Schroedinger equation for both repulsive and attractive cases. Among our results are: the connection between stationary states and solitons; creation of vortices from such states; manipulation of such states with simple phase profiles; demonstration of the fragility of the condensate phase in response to shock; and a robust stabilization of the attractive Bose-Einstein condensate. (author)

  19. Einstein today; Einstein aujourd'hui

    Energy Technology Data Exchange (ETDEWEB)

    Aspect, A.; Grangier, Ph. [Centre National de la Recherche Scientifique (CNRS), Lab. Charles Fabry de l' Institut d' Optique a Orsay, 91 - Orsay (France); Bouchet, F.R. [Institut d' Astrophysique de Paris, CNRS, 75 - Paris (France); Brunet, E.; Derrida, B. [Universite Pierre et Marie Curie, Ecole Normale Superieure, 75 - Paris (France); Cohen-Tannoudji, C. [Academie des Sciences, 75 - Paris (France); Dalibard, J.; Laloe, F. [Laboratoire Kastler Brossel. UMR 8552 (ENS, UPMC, CNRS), 75 - Paris (France); Damour, Th. [Institut des Hautes Etudes Scientifiques, 91 - Bures sur Yvette (France); Darrigol, O. [Centre National de la Recherche Scientifique (CNRS), Groupe Histoire des Sciences Rehseis, 75 - Paris (France); Pocholle, J.P. [Thales Research et Technology France, 91 - Palaiseau (France)

    2005-07-01

    The most important contributions of Einstein involve 5 fields of physics : the existence of quanta (light quanta, stimulated radiation emission and Bose-Einstein condensation), relativity, fluctuations (Brownian motion and thermodynamical fluctuations), the basis of quantum physics and cosmology (cosmological constant and the expansion of the universe). Diverse and renowned physicists have appreciated the development of modern physics from Einstein's ideas to the knowledge of today. This book is a collective book that gathers their work under 7 chapters: 1) 1905, a new beginning; 2) from the Einstein, Podolsky and Rosen's article to quantum information (cryptography and quantum computers); 3) the Bose-Einstein condensation in gases; 4) from stimulated emission to the today's lasers; 5) Brownian motion and the fluctuation-dissipation theory; 6) general relativity; and 7) cosmology. (A.C.)

  20. N=2 supersymmetric gauge theory on connected sums of S{sup 2}×S{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Festuccia, Guido [Department of Physics and Astronomy, Uppsala University,Box 516, SE-75120 Uppsala (Sweden); Qiu, Jian [Department of Physics and Astronomy, Uppsala University,Box 516, SE-75120 Uppsala (Sweden); Mathematics Institute, Uppsala University,Box 480, SE-75106 Uppsala (Sweden); Winding, Jacob; Zabzine, Maxim [Department of Physics and Astronomy, Uppsala University,Box 516, SE-75120 Uppsala (Sweden)

    2017-03-06

    We construct 4D N=2 theories on an infinite family of 4D toric manifolds with the topology of connected sums of S{sup 2}×S{sup 2}. These theories are constructed through the dimensional reduction along a non-trivial U(1)-fiber of 5D theories on toric Sasaki-Einstein manifolds. We discuss the conditions under which such reductions can be carried out and give a partial classification result of the resulting 4D manifolds. We calculate the partition functions of these 4D theories and they involve both instanton and anti-instanton contributions, thus generalizing Pestun’s famous result on S{sup 4}.

  1. A hybrid two-component Bose–Einstein condensate interferometer for measuring magnetic field gradients

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fei [Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China); Huang, Jiahao, E-mail: hjiahao@mail2.sysu.edu.cn [TianQin Research Center & School of Physics and Astronomy, Sun Yat-Sen University, SYSU Zhuhai Campus, Zhuhai 519082 (China); Liu, Quan [Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China)

    2017-03-03

    Highlights: • A scheme for detecting magnetic field gradients via a double-well two-component Bose–Einstein condensate interferometer. • The magnetic field gradient can be extracted by either the spin population or the external state. • Our proposal is potentially sensitive to weak magnetic field inhomogeneity due to its small sensor size. - Abstract: We have proposed a scheme to detect magnetic field gradients via an interferometer based on a double-well two-component Bose–Einstein condensate (BEC). Utilizing a sequence of quantum control operations on both external and internal degree of the BEC, one can extract the magnetic field gradients by measuring either the population in one component or the fidelity between the final external state and the initial ground state. Our scheme can be implemented by current experimental techniques of manipulating ultracold atoms.

  2. A sparsity-regularized Born iterative method for reconstruction of two-dimensional piecewise continuous inhomogeneous domains

    KAUST Repository

    Sandhu, Ali Imran

    2016-04-10

    A sparsity-regularized Born iterative method (BIM) is proposed for efficiently reconstructing two-dimensional piecewise-continuous inhomogeneous dielectric profiles. Such profiles are typically not spatially sparse, which reduces the efficiency of the sparsity-promoting regularization. To overcome this problem, scattered fields are represented in terms of the spatial derivative of the dielectric profile and reconstruction is carried out over samples of the dielectric profile\\'s derivative. Then, like the conventional BIM, the nonlinear problem is iteratively converted into a sequence of linear problems (in derivative samples) and sparsity constraint is enforced on each linear problem using the thresholded Landweber iterations. Numerical results, which demonstrate the efficiency and accuracy of the proposed method in reconstructing piecewise-continuous dielectric profiles, are presented.

  3. Einstein and Austria

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    This text was written by Engelbert Broda in 1979 and is about Albert Einstein and his relation to Austria. This text is split in different sections which are amongst others: Einstein und Mach; Einstein und Boltzmann; Positivism, Atoms and Relativity; Einstein as an Austrian professor; Einstein’s visits to Austria; Einstein and Viennese friends; Einstein and Friedrich Adler; Einstein and the Austrian mentality; (nowak)

  4. The quantum cosmology of Einstein-Yang-Mills theory in Eight-dimensions

    International Nuclear Information System (INIS)

    Su Bing; Li Xinzhou

    1991-01-01

    The quantum cosmology of Einstein-Yang-Mills has been studied. The Hartle-Hawking's proposal for the boundary conditions of the universe is extended to Eight-dimensional Einstein-Yong-Mills theory. A miniuperspace wave function is calculated in the classical limit corresponding to a superposition of classical solutions in which four of the dimensions remain small while the other four behave like an inflationary universe

  5. Physical states in Quantum Einstein-Cartan Gravity

    OpenAIRE

    Cianfrani, Francesco

    2016-01-01

    The definition of physical states is the main technical issue of canonical approaches towards Quantum Gravity. In this work, we outline how those states can be found in Einstein-Cartan theory via a continuum limit and they are given by finite dimensional representations of the Lorentz group.

  6. Merging and splitting of Bose-Einstein condensates into two translating traps

    International Nuclear Information System (INIS)

    Sun, B; Pindzola, M S

    2009-01-01

    We investigate the process of merging and splitting Bose-Einstein condensates into two slowly translating traps, analogous to a dual input atomic beam splitter. With the help of direct three-dimensional numerical simulations, we explore the dependence of population distributions on the initial relative phase and the trap moving speed. For non-interacting Bose-Einstein condensates, we find that our numerical results are in good agreement with a simple theoretical prediction. However, for interacting Bose-Einstein condensates, our results show striking differences with the non-interacting case: the Bose-Einstein condensates are always split towards 50:50 in the slow translation regime. This bosonic anti-bunching effect is interpreted as a consequence of complicated flow patterns due to atomic interactions.

  7. Robustness of inflation to inhomogeneous initial conditions

    Energy Technology Data Exchange (ETDEWEB)

    Clough, Katy; Lim, Eugene A. [Theoretical Particle Physics and Cosmology Group, Physics Department, Kings College London, Strand, London WC2R 2LS (United Kingdom); DiNunno, Brandon S.; Fischler, Willy; Flauger, Raphael; Paban, Sonia, E-mail: katy.clough@kcl.ac.uk, E-mail: eugene.a.lim@gmail.com, E-mail: bsd86@physics.utexas.edu, E-mail: fischler@physics.utexas.edu, E-mail: flauger@physics.utexas.edu, E-mail: paban@physics.utexas.edu [Department of Physics, The University of Texas at Austin, Austin, TX, 78712 (United States)

    2017-09-01

    We consider the effects of inhomogeneous initial conditions in both the scalar field profile and the extrinsic curvature on different inflationary models. In particular, we compare the robustness of small field inflation to that of large field inflation, using numerical simulations with Einstein gravity in 3+1 dimensions. We find that small field inflation can fail in the presence of subdominant gradient energies, suggesting that it is much less robust to inhomogeneities than large field inflation, which withstands dominant gradient energies. However, we also show that small field inflation can be successful even if some regions of spacetime start out in the region of the potential that does not support inflation. In the large field case, we confirm previous results that inflation is robust if the inflaton occupies the inflationary part of the potential. Furthermore, we show that increasing initial scalar gradients will not form sufficiently massive inflation-ending black holes if the initial hypersurface is approximately flat. Finally, we consider the large field case with a varying extrinsic curvature K , such that some regions are initially collapsing. We find that this may again lead to local black holes, but overall the spacetime remains inflationary if the spacetime is open, which confirms previous theoretical studies.

  8. Dynamics of bright-bright solitons in Bose-Einstein condensate with Raman-induced one-dimensional spin-orbit coupling

    Science.gov (United States)

    Wen, Lin; Zhang, Xiao-Fei; Hu, Ai-Yuan; Zhou, Jing; Yu, Peng; Xia, Lei; Sun, Qing; Ji, An-Chun

    2018-03-01

    We investigate the dynamics of bright-bright solitons in one-dimensional two-component Bose-Einstein condensates with Raman-induced spin-orbit coupling, via the variational approximation and the numerical simulation of Gross-Pitaevskii equations. For the uniform system without trapping potential, we obtain two population balanced stationary solitons. By performing the linear stability analysis, we find a Goldstone eigenmode and an oscillation eigenmode around these stationary solitons. Moreover, we derive a general dynamical solution to describe the center-of-mass motion and spin evolution of the solitons under the action of spin-orbit coupling. The effects of a harmonic trap have also been discussed.

  9. [Albert Einstein and his abdominal aortic aneurysm].

    Science.gov (United States)

    Cervantes Castro, Jorge

    2011-01-01

    The interesting case of Albert Einstein's abdominal aortic aneurysm is presented. He was operated on at age 69 and, finding that the large aneurysm could not be removed, the surgeon elected to wrap it with cellophane to prevent its growth. However, seven years later the aneurysm ruptured and caused the death of the famous scientist.

  10. Einstein-Weyl spaces and dispersionless Kadomtsev-Petviashvili equation from Painleve I and II

    International Nuclear Information System (INIS)

    Dunajski, Maciej; Tod, Paul

    2002-01-01

    We present two constructions of new solutions to the dispersionless KP (dKP) equation arising from the first two Painleve transcendents. The first construction is a hodograph transformation based on Einstein-Weyl geometry, the generalized Nahm's equation and the isomonodromy problem. The second construction, motivated by the first, is a direct characterization of solutions to dKP which are constant on a central quadric. We show how the solutions to the dKP equations can be used to construct some three-dimensional Einstein-Weyl structures, and four-dimensional anti-self-dual null-Kaehler metrics

  11. Thermodynamics of Einstein-Born-Infeld black holes in three dimensions

    International Nuclear Information System (INIS)

    Myung, Yun Soo; Kim, Yong-Wan; Park, Young-Jai

    2008-01-01

    We show that all thermodynamic quantities of the Einstein-Born-Infeld black holes in three dimensions can be obtained from the dilaton and its potential of two-dimensional dilaton gravity through dimensional reduction. These are all between nonrotating uncharged BTZ (Banados-Teitelboim-Zanelli) black hole (NBTZ) and charged BTZ black hole (CBTZ).

  12. A perturbative analysis of modulated amplitude waves in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Porter, Mason A.; Cvitanovic, Predrag

    2004-01-01

    We apply Lindstedt's method and multiple scale perturbation theory to analyze spatio-temporal structures in nonlinear Schroedinger equations and thereby study the dynamics of quasi-one-dimensional Bose-Einstein condensates with mean-field interactions. We determine the dependence of the amplitude of modulated amplitude waves on their wave number. We also explore the band structure of Bose-Einstein condensates in detail using Hamiltonian perturbation theory and supporting numerical simulations

  13. Bose-Einstein condensate in an optical lattice with Raman-assisted two-dimensional spin-orbit coupling

    Science.gov (United States)

    Pan, Jian-Song; Zhang, Wei; Yi, Wei; Guo, Guang-Can

    2016-10-01

    In a recent experiment (Z. Wu, L. Zhang, W. Sun, X.-T. Xu, B.-Z. Wang, S.-C. Ji, Y. Deng, S. Chen, X.-J. Liu, and J.-W. Pan, arXiv:1511.08170 [cond-mat.quant-gas]), a Raman-assisted two-dimensional spin-orbit coupling has been realized for a Bose-Einstein condensate in an optical lattice potential. In light of this exciting progress, we study in detail key properties of the system. As the Raman lasers inevitably couple atoms to high-lying bands, the behaviors of the system in both the single- and many-particle sectors are significantly affected. In particular, the high-band effects enhance the plane-wave phase and lead to the emergence of "roton" gaps at low Zeeman fields. Furthermore, we identify high-band-induced topological phase boundaries in both the single-particle and the quasiparticle spectra. We then derive an effective two-band model, which captures the high-band physics in the experimentally relevant regime. Our results not only offer valuable insights into the two-dimensional lattice spin-orbit coupling, but also provide a systematic formalism to model high-band effects in lattice systems with Raman-assisted spin-orbit couplings.

  14. Bose-Einstein condensation of paraxial light

    Science.gov (United States)

    Klaers, J.; Schmitt, J.; Damm, T.; Vewinger, F.; Weitz, M.

    2011-10-01

    Photons, due to the virtually vanishing photon-photon interaction, constitute to very good approximation an ideal Bose gas, but owing to the vanishing chemical potential a (free) photon gas does not show Bose-Einstein condensation. However, this is not necessarily true for a lower-dimensional photon gas. By means of a fluorescence induced thermalization process in an optical microcavity one can achieve a thermal photon gas with freely adjustable chemical potential. Experimentally, we have observed thermalization and subsequently Bose-Einstein condensation of the photon gas at room temperature. In this paper, we give a detailed description of the experiment, which is based on a dye-filled optical microcavity, acting as a white-wall box for photons. Thermalization is achieved in a photon number-conserving way by photon scattering off the dye molecules, and the cavity mirrors both provide an effective photon mass and a confining potential-key prerequisites for the Bose-Einstein condensation of photons. The experimental results are in good agreement with both a statistical and a simple rate equation model, describing the properties of the thermalized photon gas.

  15. Coupled Maxwell-pseudoscalar field from the Einstein-Mayer theory

    International Nuclear Information System (INIS)

    Mahanta, M.N.; Gupta, Y.K.

    1987-01-01

    A coupled system of field equations representing interacting gravitational, electromagnetic and pseudoscalar fields is obtained using the five-dimensional formalism of Einstein and Mayer (1931-1932). Solutions of the system for concrete cases are under investigation. (author)

  16. New compactifications in seven and eleven dimensional supergravity theories

    International Nuclear Information System (INIS)

    Pernici, M.; Sezgin, E.

    1984-08-01

    It is found that the N=4 gauged supergravity in d=7 spontaneously compactifies on direct product of anti-deSitter space (AdS) with a 3-sphere (non-supersymmetric: N=0), or with 3-hyperboloid (N=2). Similarly the N=2 gauged supergravity in d=7 compactifies on AdSxH 3 (N=1). The possibility of σ-model induced compactification of ungauged d=7 N=2 supergravity coupled to one vector multiplet on (Minkowski) 4 x Tear Drop x S 1 is discussed. The case of d=11 supergravity is also studied, and two new compactifications are found: AdS x non-Einstein squashed S 7 (n=0) and AdS x non-Einstein SU(2) bundle over CP 2 (N=0). (author)

  17. Exact solutions of the vacuum Einstein's equations allowing for two noncommuting Killing vectors

    International Nuclear Information System (INIS)

    Aliev, V.N.; Leznov, A.N.

    1990-01-01

    Einstein's equations are written in the form of covariant gauge theory in two-dimensional space with binomial solvable gauge group, with respect to two noncommutative of Killing vectors. The theory is exact integrable in one-dimensional case and series of partial exact solutions are constructed in two-dimensional. 5 refs

  18. Contravariant gravity on Poisson manifolds and Einstein gravity

    International Nuclear Information System (INIS)

    Kaneko, Yukio; Watamura, Satoshi; Muraki, Hisayoshi

    2017-01-01

    A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys . 63 683–704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein–Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner. (paper)

  19. The collected papers of Albert Einstein. Volume 2. The Swiss years: Writings, 1900-1909

    International Nuclear Information System (INIS)

    Stachel, J.; Cassidy, D.C.; Renn, J.; Schulmann, R.

    1989-01-01

    This second volume of the papers of Albert Einstein chronologically presents published articles, unpublished papers, research and lecture notes, reviews, and patent applications for the period 1900-1909 during which time Einstein had a two-year period of short-term employment and a permanent position at the Swiss Patent Office in Bern. There are 62 published documents reproduced. The writings of this period deal with seven general themes: molecular forces, the foundation of statistical physics, the quantum hypothesis, determining molecular dimensions, Brownian movement, the theory of relativity, and the electrodynamics of moving media. The book also presents all available letters written by Einstein along with all significant letters sent to him and many important third-party letters written about him. The editors have added substantial introduction and a set of eight editorial notes that place Einstein's writings within their immediate scientific context. Footnotes to Einstein texts designed to illuminate the sources of scientific problems that Einstein confronted and the ideas and techniques with which he addressed them have been added by the editors. A comprehensive index to Einstein's early writings is provided

  20. Attosecond extreme ultraviolet generation in cluster by using spatially inhomogeneous field

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Liqiang, E-mail: lqfeng-lngy@126.com [College of Science, Liaoning University of Technology, Jinzhou, 121000 (China); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics Chinese Academy of Sciences, Dalian 116023 (China); Liu, Hang [School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121000 (China)

    2015-01-15

    A promising method to generate the attosecond extreme ultraviolet (XUV) sources has been theoretically investigated emerging from the two-dimensional Ar{sup +} cluster driven by the spatially inhomogeneous field. The results show that with the introduction of the Ar{sup +} cluster model, not only the harmonic cutoffs are enhanced, but also the harmonic yields are reinforced. Furthermore, by properly moderating the inhomogeneity as well as the laser parameters of the inhomogeneous field, the harmonic cutoff can be further extended. As a result, three almost linearly polarized XUV pulses with durations of 40 as, 42 as, and 45 as can be obtained.

  1. BOOK REVIEW: A Student's Guide to Einstein's Major Papers A Student's Guide to Einstein's Major Papers

    Science.gov (United States)

    Janssen, Michel

    2013-12-01

    just 26 pages (not counting six pages of notes and references) covers everything from Copernicus, Galileo, Kepler and Newton to Maxwell and Lorentz to Einstein's early biography to a cardboard version of Popper versus Kuhn, is too superficial to be useful for such a course. To a lesser extent, this is also true for chapter 6, which compresses the development of quantum theory after Einstein's 1905 paper into 20 pages (plus seven pages of notes and references) and for chapter 7, a brief epilogue. However, this is not my main worry. One could easily supplement or even replace the bookends of the volume with other richer sources and use this volume mainly for its excellent detailed commentaries on some Einstein classics in the four chapters in between. My more serious reservation about the use of the volume as a whole in a history of physics course, ironically, comes from the exact same feature that made me whole-heartedly recommend its core chapters for physics courses. This is especially true for the chapters on special and general relativity. How useful is it for a student to go through, in as much detail as this volume provides, the Lorentz transformation of Maxwell's equations in vector form? I can see how a student in an E&M class (with a section on special relativity) might benefit from this exercise. The clumsiness of the calculations in vector form by Lorentz and Einstein could help a student encountering Maxwell's equations in tensor form for the first time appreciate the advantages of the latter formalism. Similarly, it would be useful for a student in a GR class to go through the basics of tensor calculus in the old-fashioned but not inelegant mathematical introduction of Einstein's 1916 review article on general relativity. This could reinforce mastery of material that a student in a GR class will have to learn anyway (though Einstein's presentation of the mathematics of both special and general relativity in The Meaning of Relativity would seem to be more

  2. Gravitational catalysis of merons in Einstein-Yang-Mills theory

    Science.gov (United States)

    Canfora, Fabrizio; Oh, Seung Hun; Salgado-Rebolledo, Patricio

    2017-10-01

    We construct regular configurations of the Einstein-Yang-Mills theory in various dimensions. The gauge field is of meron-type: it is proportional to a pure gauge (with a suitable parameter λ determined by the field equations). The corresponding smooth gauge transformation cannot be deformed continuously to the identity. In the three-dimensional case we consider the inclusion of a Chern-Simons term into the analysis, allowing λ to be different from its usual value of 1 /2 . In four dimensions, the gravitating meron is a smooth Euclidean wormhole interpolating between different vacua of the theory. In five and higher dimensions smooth meron-like configurations can also be constructed by considering warped products of the three-sphere and lower-dimensional Einstein manifolds. In all cases merons (which on flat spaces would be singular) become regular due to the coupling with general relativity. This effect is named "gravitational catalysis of merons".

  3. The Einstein dossiers science and politics - Einstein's Berlin period with an appendix on Einstein's FBI file

    CERN Document Server

    Grundmann, Siegfried

    2004-01-01

    In 1919 the Prussian Ministry of Science, Arts and Culture opened a dossier on "Einstein's Theory of Relativity." It was rediscovered by the author in 1961 and is used in conjunction with numerous other subsequently identified 'Einstein' files as the basis of this fascinating book. In particular, the author carefully scrutinizes Einstein's FBI file from 1950-55 against mostly unpublished material from European including Soviet sources and presents hitherto unknown documentation on Einstein's alleged contacts with the German Communist Party and the Comintern. Siegfried Grundmann's thorough study of Einstein's participation on a committee of the League of Nations, based on archival research in Geneva, is also new. This book outlines Einstein's image in politics and German science policy. It covers the period from his appointment as a researcher in Berlin to his fight abroad against the "boycott of German science" after World War I and his struggle at home against attacks on "Jewish physics" of which he was made...

  4. Einstein-Gauss-Bonnet metrics: black holes, black strings and a staticity theorem

    International Nuclear Information System (INIS)

    Bogdanos, C.; Charmousis, C.; Gouteraux, B.; Zegers, R.

    2009-01-01

    We find the general solution of the 6-dimensional Einstein-Gauss-Bonnet equations in a large class of space and time-dependent warped geometries. Several distinct families of solutions are found, some of which include black string metrics, space and time-dependent solutions and black holes with exotic horizons. Among these, some are shown to verify a Birkhoff type staticity theorem, although here, the usual assumption of maximal symmetry on the horizon is relaxed, allowing exotic horizon geometries. We provide explicit examples of such static exotic black holes, including ones whose horizon geometry is that of a Bergman space. We find that the situation is very different from higher-dimensional general relativity, where Einstein spaces are admissible black hole horizons and the associated black hole potential is not even affected. In Einstein-Gauss-Bonnet theory, on the contrary, the non-trivial Weyl tensor of such exotic horizons is exposed to the bulk dynamics through the higher order Gauss-Bonnet term, severely constraining the allowed horizon geometries and adding a novel charge-like parameter to the black hole potential. The latter is related to the Euler characteristic of the four-dimensional horizon and provides, in some cases, additional black hole horizons.

  5. Einstein today

    International Nuclear Information System (INIS)

    Aspect, A.; Grangier, Ph.; Bouchet, F.R.; Brunet, E.; Derrida, B.; Cohen-Tannoudji, C.; Dalibard, J.; Laloe, F.; Damour, Th.; Darrigol, O.; Pocholle, J.P.

    2005-01-01

    The most important contributions of Einstein involve 5 fields of physics : the existence of quanta (light quanta, stimulated radiation emission and Bose-Einstein condensation), relativity, fluctuations (Brownian motion and thermodynamical fluctuations), the basis of quantum physics and cosmology (cosmological constant and the expansion of the universe). Diverse and renowned physicists have appreciated the development of modern physics from Einstein's ideas to the knowledge of today. This book is a collective book that gathers their work under 7 chapters: 1) 1905, a new beginning; 2) from the Einstein, Podolsky and Rosen's article to quantum information (cryptography and quantum computers); 3) the Bose-Einstein condensation in gases; 4) from stimulated emission to the today's lasers; 5) Brownian motion and the fluctuation-dissipation theory; 6) general relativity; and 7) cosmology. (A.C.)

  6. Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: A simulation study of the two-dimensional Ising case

    Science.gov (United States)

    Trobo, Marta L.; Albano, Ezequiel V.; Binder, Kurt

    2018-03-01

    Heterogeneous nucleation is studied by Monte Carlo simulations and phenomenological theory, using the two-dimensional lattice gas model with suitable boundary fields. A chemical inhomogeneity of length b at one boundary favors the liquid phase, while elsewhere the vapor is favored. Switching on the bulk field Hb favoring the liquid, nucleation and growth of the liquid phase starting from the region of the chemical inhomogeneity are analyzed. Three regimes occur: for small fields, Hbbaseline length of the circle-cut sphere droplet would exceed b. For Hbc r i tbaseline has grown to the length b. Assuming that these pinned droplets have a circle cut shape and effective contact angles θeff in the regime θc energy barrier for the "depinning" of the droplet (i.e., growth of θeff to π - θc) vanishes when θeff approaches π/2, in practice only angles θeff up to about θef f m a x≃70 ° were observed. For larger fields (Hb>Hb*), the droplets nucleated at the chemical inhomogeneity grow to the full system size. While the relaxation time for the growth scales as τG∝Hb-1, the nucleation time τN scales as ln τN∝Hb-1. However, the prefactor in the latter relation, as evaluated for our simulations results, is not in accord with an extension of the Volmer-Turnbull theory to two-dimensions, when the theoretical contact angle θc is used.

  7. Thin-shell wormhole solutions in Einstein-Hoffmann-Born-Infeld theory

    Energy Technology Data Exchange (ETDEWEB)

    Mazharimousavi, S. Habib, E-mail: habib.mazhari@emu.edu.tr [Department of Physics, Eastern Mediterranean University, G. Magusa, North Cyprus, Mersin 10 (Turkey); Halilsoy, M., E-mail: mustafa.halilsoy@emu.edu.tr [Department of Physics, Eastern Mediterranean University, G. Magusa, North Cyprus, Mersin 10 (Turkey); Amirabi, Z., E-mail: zahra.amirabi@emu.edu.tr [Department of Physics, Eastern Mediterranean University, G. Magusa, North Cyprus, Mersin 10 (Turkey)

    2011-10-03

    We adopt the Hoffmann-Born-Infeld's (HBI) double Lagrangian approach in general relativity to find black holes and investigate the possibility of viable thin-shell wormholes. By virtue of the non-linear electromagnetic parameter, the matching hypersurfaces of the two regions with two Lagrangians provide a natural, lower-bound radius for the thin-shell wormholes which provides the main motivation to the present study. In particular, the stability of thin-shell wormholes supported by normal matter in higher-dimensional Einstein-HBI-Gauss-Bonnet (EHBIGB) gravity is highlighted. -- Highlights: → We extend the Hoffmann-Born-Infeld Lagrangian to higher dimensions. → We found higher-dimensional black hole solutions for Einstein-Hoffmann-Born-Infeld-Gauss-Bonnet (EHBIGB) gravity. → We obtained thin-shell wormholes in the EHBIGB gravity which are supported by ordinary matter and stable.

  8. Einstein was right!

    CERN Document Server

    Hess, Karl

    2014-01-01

    All modern books on Einstein emphasize the genius of his relativity theory and the corresponding corrections and extensions of the ancient space-time concept. However, Einstein's opposition to the use of probability in the laws of nature and particularly in the laws of quantum mechanics is criticized and often portrayed as outdated. The author of Einstein Was Right! takes a unique view and shows that Einstein created a ""Trojan horse"" ready to unleash forces against the use of probability as a basis for the laws of nature. Einstein warned that the use of probability would, in the final analys

  9. Maja Winteler-Einstein

    Indian Academy of Sciences (India)

    Einstein. Articles written in Resonance – Journal of Science Education. Volume 5 Issue 4 April 2000 pp 111-120 Reflections. Albert Einstein: A Biographical Sketch · Maja Winteler-Einstein · More Details Fulltext PDF ...

  10. Inhomogeneous vortex tangles in counterflow superfluid turbulence: flow in convergent channels

    Directory of Open Access Journals (Sweden)

    Saluto Lidia

    2016-06-01

    Full Text Available We investigate the evolution equation for the average vortex length per unit volume L of superfluid turbulence in inhomogeneous flows. Inhomogeneities in line density L andincounterflowvelocity V may contribute to vortex diffusion, vortex formation and vortex destruction. We explore two different families of contributions: those arising from asecondorder expansionofthe Vinenequationitself, andthose whichare notrelated to the original Vinen equation but must be stated by adding to it second-order terms obtained from dimensional analysis or other physical arguments.

  11. Horizons of radiating black holes in Einstein-Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Ghosh, S. G.; Deshkar, D. W.

    2008-01-01

    A Vaidya-based model of a radiating black hole is studied in a 5-dimensional Einstein gravity with Gauss-Bonnet contribution of quadratic curvature terms. The structure and locations of the apparent and event horizons of the radiating black hole are determined

  12. Bose-Einstein condensation of paraxial light

    OpenAIRE

    Klaers, J.; Schmitt, J.; Damm, T.; Vewinger, F.; Weitz, M.

    2011-01-01

    Photons, due to the virtually vanishing photon-photon interaction, constitute to very good approximation an ideal Bose gas, but owing to the vanishing chemical potential a (free) photon gas does not show Bose-Einstein condensation. However, this is not necessarily true for a lower-dimensional photon gas. By means of a fluorescence induced thermalization process in an optical microcavity one can achieve a thermal photon gas with freely adjustable chemical potential. Experimentally, we have obs...

  13. Stable dissipative optical vortex clusters by inhomogeneous effective diffusion.

    Science.gov (United States)

    Li, Huishan; Lai, Shiquan; Qui, Yunli; Zhu, Xing; Xie, Jianing; Mihalache, Dumitru; He, Yingji

    2017-10-30

    We numerically show the generation of robust vortex clusters embedded in a two-dimensional beam propagating in a dissipative medium described by the generic cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion term, which is asymmetrical in the two transverse directions and periodically modulated in the longitudinal direction. We show the generation of stable optical vortex clusters for different values of the winding number (topological charge) of the input optical beam. We have found that the number of individual vortex solitons that form the robust vortex cluster is equal to the winding number of the input beam. We have obtained the relationships between the amplitudes and oscillation periods of the inhomogeneous effective diffusion and the cubic gain and diffusion (viscosity) parameters, which depict the regions of existence and stability of vortex clusters. The obtained results offer a method to form robust vortex clusters embedded in two-dimensional optical beams, and we envisage potential applications in the area of structured light.

  14. Two and Three-Dimensional Nonlocal DFT for Inhomogeneous Fluids I: Algorithms and Parallelization

    Energy Technology Data Exchange (ETDEWEB)

    Frink, Laura J. Douglas; Salinger, Andrew

    1999-08-09

    Fluids adsorbed near surfaces, macromolecules, and in porous materials are inhomogeneous, inhibiting spatially varying density distributions. This inhomogeneity in the fluid plays an important role in controlling a wide variety of complex physical phenomena including wetting, self-assembly, corrosion, and molecular recognition. One of the key methods for studying the properties of inhomogeneous fluids in simple geometries has been density functional theory (DFT). However, there has been a conspicuous lack of calculations in complex 2D and 3D geometries. The computational difficulty arises from the need to perform nested integrals that are due to nonlocal terms in the free energy functional These integral equations are expensive both in evaluation time and in memory requirements; however, the expense can be mitigated by intelligent algorithms and the use of parallel computers. This paper details our efforts to develop efficient numerical algorithms so that no local DFT calculations in complex geometries that require two or three dimensions can be performed. The success of this implementation will enable the study of solvation effects at heterogeneous surfaces, in zeolites, in solvated (bio)polymers, and in colloidal suspensions.

  15. Theory of a Nearly Two-Dimensional Dipolar Bose Gas

    Science.gov (United States)

    2016-05-11

    order to be published, he sent the paper to Einstein to translate it. The other contributing scientist is world famous physicist Albert Einstein , maybe...mechanical state, a Bose- Einstein condensate (BEC), where the atoms cease to behave like distinguishable entities, and instead form a single macroscopic...model in both three- and two-dimensional geometries. 15. SUBJECT TERMS Bose Einstein condensation, ultracold physics, condensed matter, dipoles 16

  16. Propagation of three-dimensional bipolar ultrashort electromagnetic pulses in an inhomogeneous array of carbon nanotubes

    Science.gov (United States)

    Fedorov, Eduard G.; Zhukov, Alexander V.; Bouffanais, Roland; Timashkov, Alexander P.; Malomed, Boris A.; Leblond, Hervé; Mihalache, Dumitru; Rosanov, Nikolay N.; Belonenko, Mikhail B.

    2018-04-01

    We study the propagation of three-dimensional (3D) bipolar ultrashort electromagnetic pulses in an inhomogeneous array of semiconductor carbon nanotubes. The heterogeneity is represented by a planar region with an increased concentration of conduction electrons. The evolution of the electromagnetic field and electron concentration in the sample are governed by the Maxwell's equations and continuity equation. In particular, nonuniformity of the electromagnetic field along the axis of the nanotubes is taken into account. We demonstrate that depending on values of the parameters of the electromagnetic pulse approaching the region with the higher electron concentration, the pulse is either reflected from the region or passes it. Specifically, our simulations demonstrate that after interacting with the higher-concentration area, the pulse can propagate steadily, without significant spreading. The possibility of such ultrashort electromagnetic pulses propagating in arrays of carbon nanotubes over distances significantly exceeding characteristic dimensions of the pulses makes it possible to consider them as 3D solitons.

  17. Sensing electric and magnetic fields with Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Wildermuth, Stefan; Hofferberth, S.; Lesanovsky, Igor

    2006-01-01

    We experimentally demonstrate that one-dimensional Bose-Einstein condensates brought close to microfabricated wires on an atom chip are a very sensitive sensor for magnetic and electric fields reaching a sensitivity to potential variations of ∼ 10-14 eV at 3 μm spatial resolution. We measure a two...

  18. c-Extremization from toric geometry

    Science.gov (United States)

    Amariti, Antonio; Cassia, Luca; Penati, Silvia

    2018-04-01

    We derive a geometric formulation of the 2d central charge cr from infinite families of 4d N = 1 superconformal field theories topologically twisted on constant curvature Riemann surfaces. They correspond to toric quiver gauge theories and are associated to D3 branes probing five dimensional Sasaki-Einstein geometries in the AdS/CFT correspondence. We show that cr can be expressed in terms of the areas of the toric diagram describing the moduli space of the 4d theory, both for toric geometries with smooth and singular horizons. We also study the relation between a-maximization in 4d and c-extremization in 2d, giving further evidences of the mixing of the baryonic symmetries with the exact R-current in two dimensions.

  19. How Forest Inhomogeneities Affect the Edge Flow

    DEFF Research Database (Denmark)

    Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas

    2016-01-01

    Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (>1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark...... is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between...... the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge...

  20. Spherically symmetric inhomogeneous bianisotropic media: Wave propagation and light scattering

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Shalin, Alexander S.; Lavrinenko, Andrei

    2017-01-01

    We develop a technique for finding closed-form expressions for electromagnetic fields in radially inhomogeneous bianisotropic media, both the solutions of the Maxwell equations and material tensors being defined by the set of auxiliary two-dimensional matrices. The approach is applied to determine...

  1. Faraday waves in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Nicolin, Alexandru I.; Carretero-Gonzalez, R.; Kevrekidis, P. G.

    2007-01-01

    Motivated by recent experiments on Faraday waves in Bose-Einstein condensates we investigate both analytically and numerically the dynamics of cigar-shaped Bose-condensed gases subject to periodic modulation of the strength of the transverse confinement. We offer a fully analytical explanation of the observed parametric resonance, based on a Mathieu-type analysis of the non-polynomial Schroedinger equation. The theoretical prediction for the pattern periodicity versus the driving frequency is directly compared to the experimental data, yielding good qualitative and quantitative agreement between the two. These results are corroborated by direct numerical simulations of both the one-dimensional non-polynomial Schroedinger equation and of the fully three-dimensional Gross-Pitaevskii equation

  2. Lie Symmetry Analysis of the Inhomogeneous Toda Lattice Equation via Semi-Discrete Exterior Calculus

    Science.gov (United States)

    Liu, Jiang; Wang, Deng-Shan; Yin, Yan-Bin

    2017-06-01

    In this work, the Lie point symmetries of the inhomogeneous Toda lattice equation are obtained by semi-discrete exterior calculus, which is a semi-discrete version of Harrison and Estabrook’s geometric approach. A four-dimensional Lie algebra and its one-, two- and three-dimensional subalgebras are given. Two similarity reductions of the inhomogeneous Toda lattice equation are obtained by using the symmetry vectors. Supported by National Natural Science Foundation of China under Grant Nos. 11375030, 11472315, and Department of Science and Technology of Henan Province under Grant No. 162300410223 and Beijing Finance Funds of Natural Science Program for Excellent Talents under Grant No. 2014000026833ZK19

  3. Vanishing quantum vacuum energy in eleven-dimensional supergravity on the round seven-sphere

    International Nuclear Information System (INIS)

    Inami, T.; Yamagishi, K.

    1984-01-01

    Quantum corrections to the vacuum energy are evaluated at one-loop order in eleven-dimensional supergravity on the round seven-sphere S 7 and are shown to vanish. The cancellation is also shown for all ultraviolet poles at z = 11/2, 10/2,..., corresponding to divergences of eleventh and lower powers of momentum cut-off Λ. (orig.)

  4. Analysis of the generalized (2+1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients in an inhomogeneous medium

    Science.gov (United States)

    Chai, Han-Peng; Tian, Bo; Zhen, Hui-Ling; Chai, Jun; Guan, Yue-Yang

    2017-08-01

    Korteweg-de Vries (KdV)-type equations are seen to describe the shallow-water waves, lattice structures and ion-acoustic waves in plasmas. Hereby, we consider an extension of the KdV-type equations called the generalized (2+1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients in an inhomogeneous medium. Via the Hirota bilinear method and symbolic computation, we derive the bilinear forms, N-soliton solutions and Bäcklund transformation. Effects of the first- and higher-order dispersion terms are investigated. Soliton evolution and interaction are graphically presented and analyzed: Both the propagation velocity and direction of the soliton change when the dispersion terms are time-dependent; The interactions between/among the solitons are elastic, independent of the forms of the coefficients in the equations.

  5. A Student's Guide to Einstein's Major Papers

    International Nuclear Information System (INIS)

    Janssen, Michel

    2013-01-01

    in just 26 pages (not counting six pages of notes and references) covers everything from Copernicus, Galileo, Kepler and Newton to Maxwell and Lorentz to Einstein's early biography to a cardboard version of Popper versus Kuhn, is too superficial to be useful for such a course. To a lesser extent, this is also true for chapter 6, which compresses the development of quantum theory after Einstein's 1905 paper into 20 pages (plus seven pages of notes and references) and for chapter 7, a brief epilogue. However, this is not my main worry. One could easily supplement or even replace the bookends of the volume with other richer sources and use this volume mainly for its excellent detailed commentaries on some Einstein classics in the four chapters in between. My more serious reservation about the use of the volume as a whole in a history of physics course, ironically, comes from the exact same feature that made me whole-heartedly recommend its core chapters for physics courses. This is especially true for the chapters on special and general relativity. How useful is it for a student to go through, in as much detail as this volume provides, the Lorentz transformation of Maxwell's equations in vector form? I can see how a student in an E and M class (with a section on special relativity) might benefit from this exercise. The clumsiness of the calculations in vector form by Lorentz and Einstein could help a student encountering Maxwell's equations in tensor form for the first time appreciate the advantages of the latter formalism. Similarly, it would be useful for a student in a GR class to go through the basics of tensor calculus in the old-fashioned but not inelegant mathematical introduction of Einstein's 1916 review article on general relativity. This could reinforce mastery of material that a student in a GR class will have to learn anyway (though Einstein's presentation of the mathematics of both special and general relativity in The Meaning of Relativity would seem to

  6. Einstein and Prague

    International Nuclear Information System (INIS)

    Bicak, J.

    1979-01-01

    A commemorative publication is submitted issued on the occasion of Albert Einstein's centenary remembering Einstein's sojourn and work in Prague. In addition to the article Ueber den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes the publications contains the author's preface to the Czech edition of his Theory, the list of studies written by Einstein while in Prague, an assay on the great physicist's life and work, and extracts from the memoires of Philipp Frank published under the title Einstein, His Life and Times. (L.O.)

  7. Generalized Second Law of Thermodynamics in Parabolic LTB Inhomogeneous Cosmology

    International Nuclear Information System (INIS)

    Sheykhi, A.; Moradpour, H.; Sarab, K. Rezazadeh; Wang, B.

    2015-01-01

    We study thermodynamics of the parabolic Lemaitre–Tolman–Bondi (LTB) cosmology supported by a perfect fluid source. This model is the natural generalization of the flat Friedmann–Robertson–Walker (FRW) universe, and describes an inhomogeneous universe with spherical symmetry. After reviewing some basic equations in the parabolic LTB cosmology, we obtain a relation for the deceleration parameter in this model. We also obtain a condition for which the universe undergoes an accelerating phase at the present time. We use the first law of thermodynamics on the apparent horizon together with the Einstein field equations to get a relation for the apparent horizon entropy in LTB cosmology. We find out that in LTB model of cosmology, the apparent horizon's entropy could be feeded by a term, which incorporates the effects of the inhomogeneity. We consider this result and get a relation for the total entropy evolution, which is used to examine the generalized second law of thermodynamics for an accelerating universe. We also verify the validity of the second law and the generalized second law of thermodynamics for a universe filled with some kinds of matters bounded by the event horizon in the framework of the parabolic LTB model. (paper)

  8. Interference of an array of independent Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Hadzibabic, Zoran; Stock, Sabine; Battelier, Baptiste; Bretin, Vincent; Dalibard, Jean

    2004-01-01

    We have observed high-contrast matter wave interference between 30 Bose-Einstein condensates with uncorrelated phases. Interferences were observed after the independent condensates were released from a one-dimensional optical lattice and allowed to overlap. This phenomenon is explained with a simple theoretical model, which generalizes the analysis of the interference of two condensates

  9. Einstein and Planck

    Science.gov (United States)

    Heilbron, John

    2005-03-01

    As an editor of the Annalen der Physik, Max Planck published Einstein's early papers on thermodynamics and on special relativity, which Planck probably was the first major physicist to appreciate. They respected one another not only as physicists but also, for their inspired creation of world pictures, as artists. Planck helped to establish Einstein in a sinecure at the center of German physics, Berlin. Despite their differences in scientific style, social life, politics, and religion, they became fast friends. Their mutual admiration survived World War I, during which Einstein advocated pacifism and Planck signed the infamous Manifesto of the 93 Intellectuals supporting the German invasion of Belgium. It also survived the Weimar Republic, which Einstein favored and Planck disliked. Physics drew them together, as both opposed the Copenhagen Interpretation; so did common decency, as Planck helped to protect Einstein from anti-semitic attacks. Their friendship did not survive the Nazis. As a standing secretary of the Berlin Academy, Planck had to advise Einstein to resign from it before his colleagues, outraged at his criticism of the new Germany from the safety of California, expelled him. Einstein never forgave his old friend and former fellow artist for not protesting publicly against his expulsion and denigration, and other enormities of National Socialism. .

  10. Einsteins dream

    International Nuclear Information System (INIS)

    Parker, B.

    1986-01-01

    This book discusses the following topics: the search for meaning; Einstein's dream; curved space; Einstein and warped space-time and extreme wraping; early unified field theories; star death; beyond the white dwarf; the early universe; the hadron, Lepton, and Radiation eras; the redshift controversy; other universes; the final fate of the universe; the missing mass; bounce; fate of the open universe; the world of particles and fields; Dirac's equation; Yukawa; gauge theory; quantum chromodynamics; supergravity and superstrings; twistors and heaven; and the new Einstein

  11. Generation of exact solutions to the Einstein field equations for homogeneous space--time

    International Nuclear Information System (INIS)

    Hiromoto, R.E.

    1978-01-01

    A formalism is presented capable of finding all homogeneous solutions of the Einstein field equations with an arbitrary energy-stress tensor. Briefly the method involves the classification of the four-dimensional Lie algebra over the reals into nine different broad classes, using only the Lorentz group. Normally the classification of Lie algebras means that one finds all essentially different solutions of the Jacobi identities, i.e., there exists no nonsingular linear transformation which transforms two sets of structure constants into the other. This approach is to utilize the geometrical considerations of the homogeneous spacetime and field equations to be solved. Since the set of orthonormal basis vectors is not only endowed with a Minkowskian metric, but also constitutes the vector space of our four-dimensional Lie algebras, the Lie algebras are classified against the Lorentz group restricts the linear group of transformations, denoting the essentially different Lie algebras, into nine different broad classes. The classification of the four-dimensional Lie algebras represents the unification of various methods previously introduced by others. Where their methods found only specific solutions to the Einstein field equations, systematic application of the nine different classes of Lie algebras guarantees the extraction of all solutions. Therefore, the methods of others were extended, and their foundations of formalism which goes beyond the present literature of exact homogeneous solutions to the Einstein field equations is built upon

  12. Stability of the graviton Bose–Einstein condensate in the brane-world

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, Roberto, E-mail: casadio@bo.infn.it [Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna, viale B. Pichat 6, 40127 Bologna (Italy); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [CMCC, Universidade Federal do ABC, 09210-580, Santo André, SP (Brazil)

    2016-12-10

    We consider a solution of the effective four-dimensional Einstein equations, obtained from the general relativistic Schwarzschild metric through the principle of Minimal Geometric Deformation (MGD). Since the brane tension can, in general, introduce new singularities on a relativistic Eötvös brane model in the MGD framework, we require the absence of observed singularities, in order to constrain the brane tension. We then study the corresponding Bose–Einstein condensate (BEC) gravitational system and determine the critical stability region of BEC MGD stellar configurations. Finally, the critical stellar densities are shown to be related with critical points of the information entropy.

  13. Electron dynamics in inhomogeneous magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Nogaret, Alain, E-mail: A.R.Nogaret@bath.ac.u [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2010-06-30

    This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation. (topical review)

  14. Inhomogeneous compact extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bronnikov, K.A. [Center of Gravity and Fundamental Metrology, VNIIMS, 46 Ozyornaya st., Moscow 119361 (Russian Federation); Budaev, R.I.; Grobov, A.V.; Dmitriev, A.E.; Rubin, Sergey G., E-mail: kb20@yandex.ru, E-mail: buday48@mail.ru, E-mail: alexey.grobov@gmail.com, E-mail: alexdintras@mail.ru, E-mail: sergeirubin@list.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow (Russian Federation)

    2017-10-01

    We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ{sub 4} in pure f ( R ) theory, and the extra dimensions are stable relative to the 'radion mode' of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ{sub 4}. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure f ( R ) gravity.

  15. Gauge theories from toric geometry and brane tilings

    International Nuclear Information System (INIS)

    Franco, Sebastian; Hanany, Amihay; Martelli, Dario; Sparks, James; Vegh, David; Wecht, Brian

    2006-01-01

    We provide a general set of rules for extracting the data defining a quiver gauge theory from a given toric Calabi-Yau singularity. Our method combines information from the geometry and topology of Sasaki-Einstein manifolds, AdS/CFT, dimers, and brane tilings. We explain how the field content, quantum numbers, and superpotential of a superconformal gauge theory on D3-branes probing a toric Calabi-Yau singularity can be deduced. The infinite family of toric singularities with known horizon Sasaki-Einstein manifolds L a,b,c is used to illustrate these ideas. We construct the corresponding quiver gauge theories, which may be fully specified by giving a tiling of the plane by hexagons with certain gluing rules. As checks of this construction, we perform a-maximisation as well as Z-minimisation to compute the exact R-charges of an arbitrary such quiver. We also examine a number of examples in detail, including the infinite subfamily L a,b,a , whose smallest member is the Suspended Pinch Point

  16. On tree amplitudes of supersymmetric Einstein-Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, Tim; Casali, Eduardo; Roehrig, Kai A.; Skinner, David [Department of Applied Mathematics & Theoretical Physics, University of Cambridge,Wilberforce Road, Cambridge, CB3 0WA United Kingdom (United Kingdom)

    2015-12-29

    We present a new formula for all single trace tree amplitudes in four dimensional super Yang-Mills coupled to Einstein supergravity. Like the Cachazo-He-Yuan formula, our expression is supported on solutions of the scattering equations, but with momenta written in terms of spinor helicity variables. Supersymmetry and parity are both manifest. In the pure gravity and pure Yang-Mills sectors, it reduces to the known twistor-string formulae. We show that the formula behaves correctly under factorization and sketch how these amplitudes may be obtained from a four-dimensional (ambi)twistor string.

  17. QCD under extreme conditions. Inhomogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Achim

    2014-10-15

    in the form of a CDW dominates the high density regime. The formation of a homogeneous nuclear matter ground state depends on the parameters determined in the vacuum. However, even in the case of a homogeneous nuclear matter ground state the onset of the CDW is not higher than 5.04ρ{sub 0}, a density at which the eLSM is still applicable. Motivated by the rich structure that inhomogeneous condensation produces, and in order to study inhomogeneous condensation in a general framework we describe the finite-mode approach. Former limitations of the finite mode approach to 1+1 dimensions and only one condensate are successively overcome. Different error sources are analyzed and strategies to minimize them are outlined. First, the well-known analytic results for 1+1 dimensional models are reproduced in this purely numerical approach. Second, the finite-mode approach shows to be capable to describe up to four inhomogeneous condensates. Finally, the method is applied to the 3+1 dimensional NJL model. The famous inhomogeneous ''island'' as well as the inhomogeneous ''continent'' are reproduced. The continent persists for different constituent quark masses and different numbers of regulators. However, in contrast to previous findings the continent becomes thinner for increasing chemical potential.

  18. Geometric properties of static Einstein-Maxwell dilaton horizons with a Liouville potential

    International Nuclear Information System (INIS)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2011-01-01

    We study nondegenerate and degenerate (extremal) Killing horizons of arbitrary geometry and topology within the Einstein-Maxwell-dilaton model with a Liouville potential (the EMdL model) in d-dimensional (d≥4) static space-times. Using Israel's description of a static space-time, we construct the EMdL equations and the space-time curvature invariants: the Ricci scalar, the square of the Ricci tensor, and the Kretschmann scalar. Assuming that space-time metric functions and the model fields are real analytic functions in the vicinity of a space-time horizon, we study the behavior of the space-time metric and the fields near the horizon and derive relations between the space-time curvature invariants calculated on the horizon and geometric invariants of the horizon surface. The derived relations generalize similar relations known for horizons of static four- and five-dimensional vacuum and four-dimensional electrovacuum space-times. Our analysis shows that all the extremal horizon surfaces are Einstein spaces. We present the necessary conditions for the existence of static extremal horizons within the EMdL model.

  19. Two-dimensional topological field theories coupled to four-dimensional BF theory

    International Nuclear Information System (INIS)

    Montesinos, Merced; Perez, Alejandro

    2008-01-01

    Four-dimensional BF theory admits a natural coupling to extended sources supported on two-dimensional surfaces or string world sheets. Solutions of the theory are in one to one correspondence with solutions of Einstein equations with distributional matter (cosmic strings). We study new (topological field) theories that can be constructed by adding extra degrees of freedom to the two-dimensional world sheet. We show how two-dimensional Yang-Mills degrees of freedom can be added on the world sheet, producing in this way, an interactive (topological) theory of Yang-Mills fields with BF fields in four dimensions. We also show how a world sheet tetrad can be naturally added. As in the previous case the set of solutions of these theories are contained in the set of solutions of Einstein's equations if one allows distributional matter supported on two-dimensional surfaces. These theories are argued to be exactly quantizable. In the context of quantum gravity, one important motivation to study these models is to explore the possibility of constructing a background-independent quantum field theory where local degrees of freedom at low energies arise from global topological (world sheet) degrees of freedom at the fundamental level

  20. The Chevreton tensor and Einstein-Maxwell spacetimes conformal to Einstein spaces

    International Nuclear Information System (INIS)

    Bergqvist, Goeran; Eriksson, Ingemar

    2007-01-01

    In this paper, we characterize the source-free Einstein-Maxwell spacetimes which have a trace-free Chevreton tensor. We show that this is equivalent to the Chevreton tensor being of pure radiation type and that it restricts the spacetimes to Petrov type N or O. We prove that the trace of the Chevreton tensor is related to the Bach tensor and use this to find all Einstein-Maxwell spacetimes with a zero cosmological constant that have a vanishing Bach tensor. Among these spacetimes we then look for those which are conformal to Einstein spaces. We find that the electromagnetic field and the Weyl tensor must be aligned, and in the case that the electromagnetic field is null, the spacetime must be conformally Ricci-flat and all such solutions are known. In the non-null case, since the general solution is not known on a closed form, we settle by giving the integrability conditions in the general case, but we do give new explicit examples of Einstein-Maxwell spacetimes that are conformal to Einstein spaces, and we also find examples where the vanishing of the Bach tensor does not imply that the spacetime is conformal to a C-space. The non-aligned Einstein-Maxwell spacetimes with vanishing Bach tensor are conformally C-spaces, but none of them are conformal to Einstein spaces

  1. Control of inhomogeneous atomic ensembles of hyperfine qudits

    DEFF Research Database (Denmark)

    Mischuck, Brian Edward; Merkel, Seth T.; Deutsch, Ivan H.

    2012-01-01

    We study the ability to control d-dimensional quantum systems (qudits) encoded in the hyperfine spin of alkali-metal atoms through the application of radio- and microwave-frequency magnetic fields in the presence of inhomogeneities in amplitude and detuning. Such a capability is essential...... to the design of robust pulses that mitigate the effects of experimental uncertainty and also for application to tomographic addressing of particular members of an extended ensemble. We study the problem of preparing an arbitrary state in the Hilbert space from an initial fiducial state. We prove...... that inhomogeneous control of qudit ensembles is possible based on a semianalytic protocol that synthesizes the target through a sequence of alternating rf and microwave-driven SU(2) rotations in overlapping irreducible subspaces. Several examples of robust control are studied, and the semianalytic protocol...

  2. Einstein's meanders

    Science.gov (United States)

    Lomnitz, C.

    2007-05-01

    What does Einstein have to do with subduction? Good question. Peaceful Lake Budi, lying at the heart of an Indian reservation in the Deep South of Chile, had subsided by two meters in the 1960 mega-thrust earthquake. This unique South American salt lake was hiding an awful secret: it was actually an oxbow, not a lake. But Einstein had realized in 1926 that meanders are natural freaks. Rivers will not flow uphill, yet - he claimed - they don't flow down the path of steepest descent either. This anomaly was put at the doorstep of a weak Coriolis Force. Thus Einstein problematized the dilemma of the earth sciences. How can a non-force produce margin-parallel compression in a convergent margin where extension is expected? In fact, where does the energy for meander formation come from? Good question . . . Even Wikipedia knows that Coriolis is not a “force” but an “effect”. So is the obliquity of plate convergence in subduction. Where did Einstein err, and where was he a pioneer? Coastal ablation plus alternating subsidence and emergence in giant earthquakes may yield an answer. Einstein, A. (1926). Die Ursache der Maeanderbildung der Flusslaeufe und das sogenannte Baersche Gesetz, Naturwissenschaften, 14, fascicle II.

  3. Flow equation of quantum Einstein gravity in a higher-derivative truncation

    International Nuclear Information System (INIS)

    Lauscher, O.; Reuter, M.

    2002-01-01

    Motivated by recent evidence indicating that quantum Einstein gravity (QEG) might be nonperturbatively renormalizable, the exact renormalization group equation of QEG is evaluated in a truncation of theory space which generalizes the Einstein-Hilbert truncation by the inclusion of a higher-derivative term (R 2 ). The beta functions describing the renormalization group flow of the cosmological constant, Newton's constant, and the R 2 coupling are computed explicitly. The fixed point properties of the 3-dimensional flow are investigated, and they are confronted with those of the 2-dimensional Einstein-Hilbert flow. The non-Gaussian fixed point predicted by the latter is found to generalize to a fixed point on the enlarged theory space. In order to test the reliability of the R 2 truncation near this fixed point we analyze the residual scheme dependence of various universal quantities; it turns out to be very weak. The two truncations are compared in detail, and their numerical predictions are found to agree with a surprisingly high precision. Because of the consistency of the results it appears increasingly unlikely that the non-Gaussian fixed point is an artifact of the truncation. If it is present in the exact theory QEG is probably nonperturbatively renormalizable and ''asymptotically safe.'' We discuss how the conformal factor problem of Euclidean gravity manifests itself in the exact renormalization group approach and show that, in the R 2 truncation, the investigation of the fixed point is not afflicted with this problem. Also the Gaussian fixed point of the Einstein-Hilbert truncation is analyzed; it turns out that it does not generalize to a corresponding fixed point on the enlarged theory space

  4. Celebrating Einstein

    Science.gov (United States)

    Shapiro Key, Joey; Yunes, Nicolas

    2013-04-01

    The Gravity Group at Montana State University (MSU) hosted Celebrating Einstein, a free public arts and multimedia event celebrating Einstein and his ideas in Bozeman, Montana April 2-6, 2013. The products of our efforts are now available to any party interested in hosting a similar event. Celebrating Einstein is a truly interdisciplinary effort including art, film, dance, music, physics, history, and education. Events included a black hole immersive art installation, a series of public talks by physicists, and Einstein lessons in the public schools leading up to a live free public multimedia performance including a professional dance company, a live interview with a renowned physicist, and an original score composed for the MSU student symphony to be performed with an original film produced by the Science and Natural History film program at MSU. This project is funded by the Montana Space Grant Consortium, Montana State University, and the National Science Foundation.

  5. The Einstein almanac

    CERN Document Server

    Calaprice, Alice

    2005-01-01

    Albert Einstein was an exceptional human being. Perhaps nothing reflects the breadth and scope of his brilliance, his interests, and his influence better than his publications -- more than six hundred scientific papers, books, essays, reviews, and opinion pieces. Einstein began publishing in March 1901 with a scientific work that appeared in the German journal Annalen der Physik when he was twenty-two; the last publication was an editorial in the journal Common Cause which appeared a few months before his death in 1955. In the fifty-four-year interval, his published work ranged widely over relativity theory and quantum physics, nationalism, Judaism, war, peace, and education. Indeed, Einstein's literary output was so abundant that even many of his most informed admirers are not familiar with all of it. The Einstein Almanac takes a look at Einstein's year-by-year output, explaining his three-hundred most important publications and setting them into the context of his life, science, and world history. Concentr...

  6. Einstein and relativity

    International Nuclear Information System (INIS)

    Cullwick, E.G.

    1979-01-01

    Einstein published his Special Theory of Relativity in 1905 and in 1915 his General Theory which predicted the bending of light rays passing near the sun. This prediction was apparently confirmed experimentally in 1919 bringing Einstein popular acclaim. Einstein's work is reviewed and the question of whether he was in fact first in the field is examined with especial reference to the work of Maxwell, Lorentz and Poincare. (U.K.)

  7. Einstein the searcher his work explained from dialogues with Einstein

    CERN Document Server

    Moszkowski, Alexander

    2014-01-01

    This volume, first published in 1921, presents a series of portraits of Einstein, thus offering glimpses in the character and private reflections of the man who changed the course of modern science. Intended neither as a biography, nor as a résumé of Einsteinian physics, Einstein: The Searcher instead focusses on Einstein's relationship with the scientific project as he himself conceived it, and so is still of contemporary significance for those puzzled by the spirit of scientific enquiry.

  8. Modulated amplitude waves in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Porter, Mason A.; Cvitanovic, Predrag

    2004-01-01

    We analyze spatiotemporal structures in the Gross-Pitaevskii equation to study the dynamics of quasi-one-dimensional Bose-Einstein condensates (BECs) with mean-field interactions. A coherent structure ansatz yields a parametrically forced nonlinear oscillator, to which we apply Lindstedt's method and multiple-scale perturbation theory to determine the dependence of the intensity of periodic orbits ('modulated amplitude waves') on their wave number. We explore BEC band structure in detail using Hamiltonian perturbation theory and supporting numerical simulations

  9. Laser dynamics in transversely inhomogeneous plasma and its relevance to wakefield acceleration

    Science.gov (United States)

    Pathak, V. B.; Vieira, J.; Silva, L. O.; Nam, Chang Hee

    2018-05-01

    We present full set of coupled equations describing the weakly relativistic dynamics of a laser in a plasma with transverse inhomogeneity. We apply variational principle approach to obtain these coupled equations governing laser spot-size, transverse wavenumber, curvature, transverse centroid, etc. We observe that such plasma inhomogeneity can lead to stronger self-focusing. We further discuss the guiding conditions of laser in parabolic plasma channels. With the help of multi-dimensional particle in cell simulations the study is extended to the blowout regime of laser wakefield acceleration to show laser as well as self-injected electron bunch steering in plasma to generate unconventional particle trajectories. Our simulation results demonstrate that such transverse inhomogeneities due to asymmetric self focusing lead to asymmetric bubble excitation, thus inducing off-axis self-injection.

  10. From Einstein to AXAF

    International Nuclear Information System (INIS)

    Tananbaum, H.

    1990-01-01

    The presentations at the 10th Anniversary Einstein Symposium and the articles in this book cover a wide variety of scientific topics describing some of the important advances and discoveries made with the Einstein Observatory. The breadth and depth of science carried out with Einstein has made it essentially impossible to cover fully individual subdisciplines in single review talks and papers. Some of the major Einstein highlights are summarized and the scientific prospects for AXAF are assessed. (author)

  11. Einstein. A centenary volume

    International Nuclear Information System (INIS)

    French, A.P.

    1979-01-01

    The subject is divided as follows: part 1, reminiscences (of Einstein and his life, by various authors); part 2, Einstein and his work (includes accounts of special and general relativity, gravitation, the development of quantum physics and concepts of space and time); part 3, Einstein's letters; part 4, Einstein's writings (including accounts of electrodynamics of moving bodies, general relativity, method of theoretical physics and an elementary derivation of the equivalence of mass and energy). (U.K.)

  12. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...

  13. Spectral properties of waves in superlattices with 2D and 3D inhomogeneities

    International Nuclear Information System (INIS)

    Ignatchenko, V. A.; Tsikalov, D. S.

    2011-01-01

    We investigate the dynamic susceptibility and one-dimensional density of states in an initially sinusoidal superlattice containing simultaneously 2D phase inhomogeneities simulating correlated rough-nesses of superlattice interfaces and 3D amplitude inhomogeneities of the superlattice layer materials. The analytic expression for the averaged Green’s function of the sinusoidal superlattice with two phase inhomogeneities is derived in the Bourret approximation. It is shown that the effect of increasing asymmetry in the peak heights of dynamic susceptibility at the Brillouin zone boundary of the superlattice, which was discovered earlier [15] upon an increase in root-mean-square (rms) fluctuations, also takes place upon an increase in the correlation wavenumber of inhomogeneities. However, the peaks in this case also become closer, and the width and depth of the gap in the density of states decrease thereby. It is shown that the enhancement of rms fluctuations of 3D amplitude inhomogeneities in a superlattice containing 2D phase inhomogeneities suppresses the effect of dynamic susceptibility asymmetry and leads to a slight broadening of the gap in the density of states and a decrease in its depth. Targeted experiments aimed at detecting the effects studied here would facilitate the development of radio-spectroscopic and optical methods for identifying the presence of inhomogeneities of various dimensions in multilayer magnetic and optical structures.

  14. Quantum Fluctuations of Low Dimensional Bose-Einstein ...

    African Journals Online (AJOL)

    A system of low dimensional condensed ultracold atomic gases inside a field of a laser-driven optical cavity exhibits dispersive optical bistability. During such a process the system also shows quantum fluctuations. Condensate fluctuations are highly manifested particularly in low dimensional systems. In this paper we have ...

  15. Intermittency for stochastic partial differential equations driven by strongly inhomogeneous space-time white noises

    Science.gov (United States)

    Xie, Bin

    2018-01-01

    In this paper, the main topic is to investigate the intermittent property of the one-dimensional stochastic heat equation driven by an inhomogeneous Brownian sheet, which is a noise deduced from the study of the catalytic super-Brownian motion. Under some proper conditions on the catalytic measure of the inhomogeneous Brownian sheet, we show that the solution is weakly full intermittent based on the estimates of moments of the solution. In particular, it is proved that the second moment of the solution grows at the exponential rate. The novelty is that the catalytic measure relative to the inhomogeneous noise is not required to be absolutely continuous with respect to the Lebesgue measure on R.

  16. The ultimate quotable Einstein

    CERN Document Server

    2011-01-01

    Here is the definitive new edition of the hugely popular collection of Einstein quotations that has sold tens of thousands of copies worldwide and been translated into twenty-five languages. The Ultimate Quotable Einstein features 400 additional quotes, bringing the total to roughly 1,600 in all. This ultimate edition includes new sections--"On and to Children," "On Race and Prejudice," and "Einstein's Verses: A Small Selection"--as well as a chronology of Einstein's life and accomplishments, Freeman Dyson's authoritative foreword, and new commentary by Alice Calaprice.

  17. Nonautonomous spatiotemporal localized structures in the inhomogeneous optical fibers: Interaction and control

    International Nuclear Information System (INIS)

    Dai Chaoqing; Wang Xiaogang; Zhang Jiefang

    2011-01-01

    Research highlights: → The similarity transformation of (n + 1)-dimensional inhomogeneous NLSE are found. → From transformation, analytical self-similar waves and rogue waves are obtained. → Dynamical behaviors of self-similar waves in DDF are discussed. → The propagation and control of spatiotemporal self-similar waves are presented. - Abstract: We develop a systematic way to find the similarity transformation and investigate nonautonomous optical similariton dynamics for (n + 1)-dimensional nonlinear Schroedinger equation in the inhomogeneous optical fibers. A condition between the parameters of the mediums, which hints a exact balance between the dispersion/diffraction, nonlinearity and the gain/loss, has been obtained. Under this condition the optical similariton transmission in the dispersion-decreasing fibers (DDF) can be exactly controlled by proper dispersion management. Moreover, novel propagation dynamics of bright and dark similaritons on the background waves and optical rogue waves (rogons) in DDF are investigated too.

  18. Einstein from 'B' to 'Z'

    CERN Document Server

    Stachel, John

    2002-01-01

    John Stachel, the author of this collection of 37 published and unpublished articles on Albert Einstein, has written about Einstein and his work for over 40 years. Trained as a theoretical physicist specializing in the theory of relativity, he was chosen as the founding editor of The Collected papers of Albert Einstein 25 years ago, and is currently Director of the Boston University Center for Einstein Studies. Based on a detailed study of documentary evidence, much of which was newly discovered in the course of his work, Stachel debunks many of the old (and some new) myths about Einstein and offers novel insight into his life and work. Throughout the volume, a new, more human picture of Einstein is offered to replace the plaster saint of popular legend. In particular, a youthful Einstein emerges from the obscurity that previously shrouded his early years, and much new light is shed on the origins of the special and general theories of relativity. Also discussed in some detail are Einstein's troubled relatio...

  19. Three dimensional changes in maxillary complete dentures immersed in water for seven days after polymerization

    Directory of Open Access Journals (Sweden)

    Shinsuke Sadamori

    2008-03-01

    Full Text Available The purpose of this study was to investigate the three dimensional changes in the fitting surface and artificial teeth of maxillary complete dentures which were fabricated using two different polymerizing processes: heat polymerization (HP and microwave polymerization (MP, after immersion in water for seven days. The amount of distortion in the molar region of the alveolar ridge was significantly different between HP and MP. However, the overall distortion of the dentures polymerized using both methods was similar. The distortion due to immersion in water for seven days compensated for the polymerization distortion, but the amount of distortion was very slight.

  20. Einstein

    CERN Document Server

    Smith, Peter D

    2003-01-01

    Albert Einstein re-wrote the textbooks of science in 1905: physics since has been little more than a series of footnotes to the theories of a 26-year-old patent-office clerk. Einstein's science and emotional life come together in this vivid portrait of a rebellious and contradictory figure, a pacifist whose legendary equation E=mc2 opened scientists' eyes to the terrible power within every atom. 'To punish me for my contempt for authority,' he lamented, 'Fate has made me an authority myself.'

  1. Integrability and soliton solutions for an inhomogeneous generalized fourth-order nonlinear Schrödinger equation describing the inhomogeneous alpha helical proteins and Heisenberg ferromagnetic spin chains

    International Nuclear Information System (INIS)

    Wang, Pan; Tian, Bo; Jiang, Yan; Wang, Yu-Feng

    2013-01-01

    For describing the dynamics of alpha helical proteins with internal molecular excitations, nonlinear couplings between lattice vibrations and molecular excitations, and spin excitations in one-dimensional isotropic biquadratic Heisenberg ferromagnetic spin with the octupole–dipole interactions, we consider an inhomogeneous generalized fourth-order nonlinear Schrödinger equation. Based on the Ablowitz–Kaup–Newell–Segur system, infinitely many conservation laws for the equation are derived. Through the auxiliary function, bilinear forms and N-soliton solutions for the equation are obtained. Interactions of solitons are discussed by means of the asymptotic analysis. Effects of linear inhomogeneity on the interactions of solitons are also investigated graphically and analytically. Since the inhomogeneous coefficient of the equation h=α x+β, the soliton takes on the parabolic profile during the evolution. Soliton velocity is related to the parameter α, distance scale coefficient and biquadratic exchange coefficient, but has no relation with the parameter β. Soliton amplitude and width are only related to α. Soliton position is related to β

  2. Effect of Inhomogeneity on s-wave Superconductivity in the Attractive Hubbard Model

    Energy Technology Data Exchange (ETDEWEB)

    Aryanpour, K. A. [University of California, Davis; Dagotto, Elbio R [ORNL; Mayr, Matthias [Max-Planck-Institut fur Feskorperforschung, Stuttgart, Germany; Paiva, T. [Universidade Federal do Rio de Janeiro, Brazil; Pickett, W. E. [University of California, Davis; Scalettar, Richard T [ORNL

    2006-01-01

    Inhomogeneous s-wave superconductivity is studied in the two-dimensional, square lattice attractive Hubbard Hamiltonian using the Bogoliubov-de Gennes BdG mean field approximation. We find that at weak coupling, and for densities mainly below half-filling, an inhomogeneous interaction in which the on-site interaction Ui takes on two values, Ui=0, 2U results in a larger zero temperature pairing amplitude, and that the superconducting Tc can also be significantly increased, relative to a uniform system with Ui=U on all sites. These effects are observed for stripe, checkerboard, and even random patterns of the attractive centers, suggesting that the pattern of inhomogeneity is unimportant. Monte Carlo calculations which reintroduce some of the fluctuations neglected within the BdG approach see the same effect, both for the attractive Hubbard model and a Hamiltonian with d-wave pairing symmetry.

  3. Gravitational quasinormal modes of static Einstein-Gauss-Bonnet anti-de Sitter black holes

    Science.gov (United States)

    Ma, Hong; Li, Jin

    2018-04-01

    In this paper, we describe quasinormal modes (QNMs) for gravitational perturbations of Einstein-Gauss-Bonnet black holes (BHs) in higher dimensional spacetimes, and derive the corresponding parameters of such black holes in three types of spacetime (flat, de Sitter (dS) and anti-de Sitter (AdS)). Our attention is concentrated on discussing the (in)stability of Einstein-Gauss-Bonnet AdS BHs through the temporal evolution of all types of gravitational perturbation fields (tensor, vector and scalar). It is concluded that the potential functions in vector and scalar gravitational perturbations have negative regions, which suppress quasinormal ringing. Furthermore, the influences of the Gauss-Bonnet coupling parameter α, the number of dimensions n and the angular momentum quantum number l on the Einstein-Gauss-Bonnet AdS BHs quasinormal spectrum are analyzed. The QNM frequencies have greater oscillation and lower damping rate with the growth of α. This indicates that QNM frequencies become increasingly unstable with large α. Meanwhile, the dynamic evolutions of the perturbation field are compliant with the results of computation from the Horowitz and Hubeny method. Because the number of extra dimensions is connected with the string scale, the relationship between α and properties of Einstein-Gauss-Bonnet AdS BHs might be beneficial for the exploitation of string theory and extra-dimensional brane worlds. Supported by FAPESP (2012/08934-0), National Natural Science Foundation of China (11205254, 11178018, 11375279, 11605015), the Natural Science Foundation Project of CQ CSTC (2011BB0052), and the Fundamental Research Funds for the Central Universities (106112016CDJXY300002, 106112017CDJXFLX0014, CDJRC10300003)

  4. Supersymmetry breaking at the end of a cascade of Seiberg dualities

    International Nuclear Information System (INIS)

    Bertolini, M.; Bigazzi, F.; Cotrone, A. L.

    2005-01-01

    We study the IR dynamics of the cascading nonconformal quiver theory on N regular and M fractional D3 branes at the tip of the complex cone over the first del Pezzo surface. The horizon of this cone is the irregular Sasaki-Einstein manifold Y 2,1 . Our analysis shows that at the end of the cascade supersymmetry is dynamically broken

  5. The influence of Bose-Einstein correlations on intermittency in p anti p collisions at sqrts = 630 GeV

    International Nuclear Information System (INIS)

    Neumeister, N.; Norton, A.; Karimaeki, V.; Revol, J.P.; Sphicas, P.; Sumorok, K.; Tan, C.H.; Tether, S.; Lipa, P.

    1993-01-01

    The influence of Bose-Einstein correlations on the rise of factorial moments is small in the 1-dimensional phase space given by the pseudorapidity η, where the 2-body correlation function is dominated by unlike sign particle correlations. Contrarily, the influence is dominant in the higher dimensional phase space. This is shown by using correlation integrals. They exhibit clear power law dependences on the four-momentum transfer Q 2 for all orders investigated (i=2-5). When searching for the origin of this behaviour, we found that the Bose-Einstein ratio itself shows a steep rise for Q 2 →0, compatible with a power law. (orig.)

  6. Ion-optical properties of Wien's filters with inhomogeneous fields

    International Nuclear Information System (INIS)

    Golikov, Yu.K.; Matyshev, A.A.; Solov'ev, K.V.

    1991-01-01

    Common conditions of beam stigmatic focusing in the Wien filters with direct axial trajectory in arbitrary two-dimensional inhomogeneous crossed electrical magnetic fields are obtained. Coefficients for geometrical aberrations of the second order of the crossed field system, characterized by stigmatic focusing properties, are found. Possibility of synthesis on the basis of the developed field system theory with required ion-optical properties is shown

  7. Computation of Partially Invariant Solutions for the Einstein Walker Manifolds' Identifying Equations

    OpenAIRE

    Nadjafikhah, Mehdi; Jafari, Mehdi

    2014-01-01

    In this paper, partially invariant solutions (PISs) method is applied in order to obtain new four-dimensional Einstein Walker manifolds. This method is based on subgroup classification for the symmetry group of partial differential equations (PDEs) and can be regarded as the generalization of the similarity reduction method. For this purpose, those cases of PISs which have the defect structure delta=1 and are resulted from two-dimensional subalgebras are considered in the present paper. Also ...

  8. Spatial interference patterns in the dynamics of a 2D Bose-Einstein condensate

    Science.gov (United States)

    Bera, Jayanta; Roy, Utpal

    2018-05-01

    Bose-Einstein condensate has become a highly tunable physical system, which is proven to mimic a number of interesting physical phenomena in condensed matter physics. We study the dynamics of a two-dimensional Bose Einstein condensate (BEC) in the presence of a flat harmonic confinement and time-dependent sharp potential peak. Condensate density can be meticulously controlled with time by tuning the physically relevant parameters: frequency of the harmonic trap, width of the peaks, frequency of their oscillations, initial density etc. By engineering various trap profile, we solve the system, numerically, and explore the resulting spatial interference patters.

  9. Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates

    Science.gov (United States)

    Chang, Shu-Ming; Lin, Chang-Shou; Lin, Tai-Chia; Lin, Wen-Wei

    2004-09-01

    In this paper, we study the distribution of m segregated nodal domains of the m-mixture of Bose-Einstein condensates under positive and large repulsive scattering lengths. It is shown that components of positive bound states may repel each other and form segregated nodal domains as the repulsive scattering lengths go to infinity. Efficient numerical schemes are created to confirm our theoretical results and discover a new phenomenon called verticillate multiplying, i.e., the generation of multiple verticillate structures. In addition, our proposed Gauss-Seidel-type iteration method is very effective in that it converges linearly in 10-20 steps.

  10. Albert Einstein a biography

    CERN Document Server

    Fölsing, Albrecht

    1997-01-01

    Albert Einstein's achievements are not just milestones in the history of science; decades ago they became an integral part of the twentieth-century world in which we live. Like no other modern physicist he altered and expanded our understanding of nature. Like few other scholars, he stood fully in the public eye. In a world changing with dramatic rapidity, he embodied the role of the scientist by personal example. Albrecht Folsing, relying on previously unknown sources and letters, brings Einstein's "genius" into focus. Whereas former biographies, written in the tradition of the history of science, seem to describe a heroic Einstein who fell to earth from heaven, Folsing attempts to reconstruct Einstein's thought in the context of the state of research at the turn of the century. Thus, perhaps for the first time, Einstein's surroundings come to light.

  11. Einstein's statistical mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Baracca, A; Rechtman S, R

    1985-08-01

    The foundation of equilibrium classical statistical mechanics were laid down in 1902 independently by Gibbs and Einstein. The latter's contribution, developed in three papers published between 1902 and 1904, is usually forgotten and when not, rapidly dismissed as equivalent to Gibb's. We review in detail Einstein's ideas on the foundations of statistical mechanics and show that they constitute the beginning of a research program that led Einstein to quantum theory. We also show how these ideas may be used as a starting point for an introductory course on the subject.

  12. Einstein's statistical mechanics

    International Nuclear Information System (INIS)

    Baracca, A.; Rechtman S, R.

    1985-01-01

    The foundation of equilibrium classical statistical mechanics were laid down in 1902 independently by Gibbs and Einstein. The latter's contribution, developed in three papers published between 1902 and 1904, is usually forgotten and when not, rapidly dismissed as equivalent to Gibb's. We review in detail Einstein's ideas on the foundations of statistical mechanics and show that they constitute the beginning of a research program that led Einstein to quantum theory. We also show how these ideas may be used as a starting point for an introductory course on the subject. (author)

  13. Einstein algebras and general relativity

    International Nuclear Information System (INIS)

    Heller, M.

    1992-01-01

    A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the space-time of a straight cosmic string with quasiregular singularity is constructed. 22 refs

  14. Modulational instability for a self-attractive two-component Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Sheng-Chang, Li; Wen-Shan, Duan

    2009-01-01

    By means of the multiple-scale expansion method, the coupled nonlinear Schrödinger equations without an explicit external potential are obtained in two-dimensional geometry for a self-attractive Bose–Einstein condensate composed of different hyperfine states. The modulational instability of two-component condensate is investigated by using a simple technique. Based on the discussion about two typical cases, the explicit expression of the growth rate for a purely growing modulational instability and the optimum stable conditions are given and analysed analytically. The results show that the modulational instability of this two-dimensional system is quite different from that in a one-dimensional system. (general)

  15. Albert Einsteins Wonderjaar

    NARCIS (Netherlands)

    Dieks, D.G.B.J.

    In het jaar 1905 publiceerde Albert Einstein een reeks artikelen die een omwenteling voor de wetenschap betekende. En toch bleef Einstein een kind van zijn tijd, van een eeuw die in het teken stond van dynamo’s, raderen en stoommachines.

  16. Transport Methods Conquering the Seven-Dimensional Mountain

    International Nuclear Information System (INIS)

    Graziani, F; Olson, G

    2003-01-01

    In a wide variety of applications, a significant fraction of the momentum and energy present in a physical problem is carried by the transport of particles. Depending on the circumstances, the types of particles might involve some or all of photons, neutrinos, charged particles, or neutrons. In application areas that use transport, the computational time is usually dominated by the transport calculation. Therefore, there is a potential for great synergy; progress in transport algorithms could help quicken the time to solution for many applications. The complexity, and hence expense, involved in solving the transport problem can be understood by realizing that the general solution to the Boltzmann transport equation is seven dimensional: 3 spatial coordinates, 2 angles, 1 time, and 1 for speed or energy. Low-order approximations to the transport equation are frequently used due in part to physical justification but many times simply because a solution to the full transport problem is too computationally expensive. An example is the diffusion equation, which effectively drops the two angles in phase space by assuming that a linear representation in angle is adequate. Another approximation is the grey approximation, which drops the energy variable by averaging over it. If the grey approximation is applied to the diffusion equation, the expense of solving what amounts to the simplest possible description of transport is roughly equal to the cost of implicit computational fluid dynamics. It is clear therefore, that for those application areas needing some form of transport, fast, accurate and robust transport algorithms can lead to an increase in overall code performance and a decrease in time to solution. The seven-dimensional nature of transport means that factors of 100 or 1000 improvement in computer speed or memory are quickly absorbed in slightly higher resolution in space, angle, and energy. Therefore, the biggest advances in the last few years and in the next

  17. Rediscovering Einstein's legacy: How Einstein anticipates Kuhn and Feyerabend on the nature of science.

    Science.gov (United States)

    Oberheim, Eric

    2016-06-01

    Thomas Kuhn and Paul Feyerabend promote incommensurability as a central component of their conflicting accounts of the nature of science. This paper argues that in so doing, they both develop Albert Einstein's views, albeit in different directions. Einstein describes scientific revolutions as conceptual replacements, not mere revisions, endorsing 'Kant-on-wheels' metaphysics in light of 'world change'. Einstein emphasizes underdetermination of theory by evidence, rational disagreement in theory choice, and the non-neutrality of empirical evidence. Einstein even uses the term 'incommensurable' specifically to apply to challenges posed to comparatively evaluating scientific theories in 1949, more than a decade before Kuhn and Feyerabend. This analysis shows how Einstein anticipates substantial components of Kuhn and Feyerabend's views, and suggests that there are strong reasons to suspect that Kuhn and Feyerabend were directly inspired by Einstein's use of the term 'incommensurable', as well as his more general methodological and philosophical reflections. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Einstein and cosmology

    International Nuclear Information System (INIS)

    Gekman, O.

    1982-01-01

    The brief essay of the development of the main ideas of relativistic cosmology is presented. The Einstein's cosmological work about the Universe - ''Cosmological considerations in connection with the general relativity theory'' - gave the basis to all further treatments in this field. In 1922 A. Friedman's work appeared, in which the first expanding Universe model was proposed as a solution of the Einstein field equations. The model was spherically closed, but its curvature radius was a function of time. About 1955 the searches for anisotropic homogeneous solutions to Einstein field equation began. It turned out that isotropic cosmological models are unstable in general. The predominant part of them transform to anisotropic at insignificant breaking of isotropy. The discovery of isotropic background cosmic radiation in 1965, along with the Hubble low of the Universe expansion, served as the direct confirmation of cosmology based on the Einstein theory

  19. A cosmic equation of state for the inhomogeneous universe: can a global far-from-equilibrium state explain dark energy?

    International Nuclear Information System (INIS)

    Buchert, Thomas

    2005-01-01

    A system of effective Einstein equations for spatially averaged scalar variables of inhomogeneous cosmological models can be solved by providing a 'cosmic equation of state'. Recent efforts to explain dark energy focus on 'backreaction effects' of inhomogeneities on the effective evolution of cosmological parameters in our Hubble volume, avoiding a cosmological constant in the equation of state. In this letter, it is argued that if kinematical backreaction effects are indeed of the order of the averaged density (or larger as needed for an accelerating domain of the universe), then the state of our regional Hubble volume would have to be in the vicinity of a far-from-equilibrium state that balances kinematical backreaction and average density. This property, if interpreted globally, is shared by a stationary cosmos with effective equation of state p eff = -1/3 ρ eff . It is concluded that a confirmed explanation of dark energy by kinematical backreaction may imply a paradigmatic change of cosmology. (letter to the editor)

  20. Nonsingular solutions and instabilities in Einstein-scalar-Gauss-Bonnet cosmology

    Science.gov (United States)

    Sberna, Laura; Pani, Paolo

    2017-12-01

    It is generically believed that higher-order curvature corrections to the Einstein-Hilbert action might cure the curvature singularities that plague general relativity. Here we consider Einstein-scalar-Gauss-Bonnet gravity, the only four-dimensional, ghost-free theory with quadratic curvature terms. For any choice of the coupling function and of the scalar potential, we show that the theory does not allow for bouncing solutions in the flat and open Friedmann universe. For the case of a closed universe, using a reverse-engineering method, we explicitly provide a bouncing solution which is nevertheless linearly unstable in the scalar gravitational sector. Moreover, we show that the expanding, singularity-free, early-time cosmologies allowed in the theory are unstable. These results rely only on analyticity and finiteness of cosmological variables at early times.

  1. Einstein's error

    International Nuclear Information System (INIS)

    Winterflood, A.H.

    1980-01-01

    In discussing Einstein's Special Relativity theory it is claimed that it violates the principle of relativity itself and that an anomalous sign in the mathematics is found in the factor which transforms one inertial observer's measurements into those of another inertial observer. The apparent source of this error is discussed. Having corrected the error a new theory, called Observational Kinematics, is introduced to replace Einstein's Special Relativity. (U.K.)

  2. De Sitter en Einstein. ‘Het lijkt mij dat Einstein hier een vergissing begaan heeft’

    Directory of Open Access Journals (Sweden)

    Jan Guichelaar

    2016-10-01

    Full Text Available De Sitter and EinsteinWillem de Sitter’s interest in gravity was based on his work on celestial mechanics, in particular on the four big moons of Jupiter. His work on cosmology was based on the general theory of relativity of Albert Einstein. De Sitter published in 1917, on request of Arthur Eddington to inform the English astronomers, a series of four articles in The Observatory and the Monthly Notices of the Royal Astronomical Society. Einstein developed his own cosmological models, containing mass. De Sitter found a different solution and described a universe without mass. Einstein could not accept De Sitter’s model and they ‘fought out’ two controversies in their correspondence. In theend Einstein had to confess De Sitter was mainly right in his criticisms. In 1932 Einstein and De Sitter published an article on a new model, the so-called Einstein-De Sitter Model of the universe. So, De Sitter was able to do fundamental work in classical celestial mechanics as well as in the new cosmological theories.

  3. Einstein-Rosen gravitational waves

    International Nuclear Information System (INIS)

    Astefanoaei, Iordana; Maftei, Gh.

    2001-01-01

    In this paper we analyse the behaviour of the gravitational waves in the approximation of the far matter fields, considering the indirect interaction between the matter sources and the gravitational field, in a cosmological model based on the Einstein-Rosen solution, Because the properties of the gravitational waves obtained as the solutions of Einstein fields equations (the gravitational field equations) are most obvious in the weak gravitational fields we consider here, the gravitational field in the linear approximation. Using the Newman-Penrose formalism, we calculate in the null-tetradic base (e a ), the spin coefficients, the directional derivates and the tetradic components of Ricci and Weyl tensors. From the Einstein field equations we obtained the solution for b(z, t) what described the behaviour of gravitational wave in Einstein-Rosen Universe and in the particular case, when t → ∞, p(z, t) leads us to the primordial gravitational waves in the Einstein-Rosen Universe. (authors)

  4. Holonomy of Einstein Lorentzian manifolds

    International Nuclear Information System (INIS)

    Galaev, Anton S

    2010-01-01

    The classification of all possible holonomy algebras of Einstein and vacuum Einstein Lorentzian manifolds is obtained. It is shown that each such algebra appears as the holonomy algebra of an Einstein (resp. vacuum Einstein) Lorentzian manifold; the direct constructions are given. Also the holonomy algebras of totally Ricci-isotropic Lorentzian manifolds are classified. The classification of the holonomy algebras of Lorentzian manifolds is reviewed and a complete description of the spaces of curvature tensors for these holonomies is given.

  5. Einstein (1879-1955)

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    In the first part of this book a historical review of Einstein life and works are presented. In the second part papers about different aspects of quantum mechanics are given. The third part is devoted to a round table on Einstein, Podolski and Rosen paradox [fr

  6. Self-pulsing and chaos in inhomogeneously broadened single mode lasers

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R; Cho, Y

    1983-08-01

    A four-dimensional model and a six-dimensional model describing the self-pulsing instabilities and chaotic dynamics of inhomogeneously broadened single-mode lasers are derived as the first two steps of an infinite hierarchy of approximations increasing in accuracy and complexity. The results of a linear stability analysis of the time-independent states and some numerical solutions are given to show the various types of dynamic behavior which can occur in these models. The dynamic behavior is found to be much more complex than in the homogeneously broadened case and is obtained under physically more realistic conditions. 10 references.

  7. Once upon Einstein

    CERN Document Server

    Damour, Thibault

    2006-01-01

    It is well known that Einstein founded twentieth-century physics with his work on relativity and quanta, but what do we really know about these ground breaking ideas? How were they discovered? What should we retain today from the conceptual upheavals he initiated? Through a selection of concrete scenes taken from Einstein's life, the author offers a view into the formation of his theories, as well as reminders of the day-to-day applications of his ideas. Simultaneously the reader is lead through a reflection on their philosophical impact: How should we think of time according to the theory of relativity, which removes any meaningful "now" and shows that twins can have different ages? How should we think of reality when quantum theory predicts that spatially separated objects nevertheless remain connected through Einstein's notion of "entanglement," which has recently been verified through scientific observation? This book puts readers in Einstein's place, allowing them to share some of those particular moment...

  8. Albert Einstein Centenary

    CERN Document Server

    Weisskopf, Victor Frederick; CERN. Geneva

    1979-01-01

    A socially engaged scientist by V. F. WEISSKOPF. On the origin of the Einstein-Russell statement on nuclear weapon by H. S. BURHOP. This week, we pay homage to Albert Einstein, the giant of twentieth-century physics born exactly 100 years ago on 14 March 1879 in Ulm, Germany. At the height of his career, Einstein made a whole series of monumental contributions to physics, including the elaborate theories of special and general relativity which revolutionized human thought and marked a major breakthrough in our understanding to the Universe. Along with quantum mechanics, relativity is one of the twin pillars of understanding which allow us here at CERN to study the behaviour of the tiniest components of matter. The development of quantum mechanics took the combined efforts of some of the greatest scientists the world has known, while relativity was developed almost single-handed by Einstein. The centenary of his birth is being commemorated all over the world. Exhibitions and symposia are being organized, books...

  9. An Einstein encyclopedia

    CERN Document Server

    Calaprice, Alice; Schulmann, Robert

    2015-01-01

    This is the single most complete guide to Albert Einstein’s life and work for students, researchers, and browsers alike. Written by three leading Einstein scholars who draw on their combined wealth of expertise gained during their work on the Collected Papers of Albert Einstein, this authoritative and accessible reference features more than one hundred entries and is divided into three parts covering the personal, scientific, and public spheres of Einstein’s life. An Einstein Encyclopedia contains entries on Einstein’s birth and death, family and romantic relationships, honors and awards, educational institutions where he studied and worked, citizenships and immigration to America, hobbies and travels, plus the people he befriended and the history of his archives and the Einstein Papers Project. Entries on Einstein’s scientific theories provide useful background and context, along with details about his assistants, collaborators, and rivals, as well as physics concepts related to his work. Coverage o...

  10. Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?

    Energy Technology Data Exchange (ETDEWEB)

    Troisi, Antonio [Universita degli Studi di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Salerno (Italy)

    2017-03-15

    Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f(R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R) = f{sub 0}R{sup n} the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions. (orig.)

  11. Reaction-diffusion fronts with inhomogeneous initial conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bena, I [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Droz, M [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Martens, K [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Racz, Z [Institute for Theoretical Physics, Eoetvoes University, 1117 Budapest (Hungary)

    2007-02-14

    Properties of reaction zones resulting from A+B {yields} C type reaction-diffusion processes are investigated by analytical and numerical methods. The reagents A and B are separated initially and, in addition, there is an initial macroscopic inhomogeneity in the distribution of the B species. For simple two-dimensional geometries, exact analytical results are presented for the time evolution of the geometric shape of the front. We also show using cellular automata simulations that the fluctuations can be neglected both in the shape and in the width of the front.

  12. Wormhole instanton solution in the Einstein-Yang-Mills system

    International Nuclear Information System (INIS)

    Hosoya, Akio; Ogura, Waichi.

    1989-01-01

    A spherical symmetric classical solution of the Einstein and the SU(2) Yang-Mills equations is found in the four dimensional Euclidean space-time with the cosmological constant. The isospinor fermion has zero modes. Their cosmological implications are also discussed with an emphasis on the fact that wormhole instantons in general can be found not only in the sub-Planck physics but also in almost all the stages in lower energy physics. (author)

  13. Hydromagnetic modes in an inhomogeneous collisionless plasma of finite pressure

    International Nuclear Information System (INIS)

    Klimushkin, D.Yu.

    2006-01-01

    One studied three-dimensional structure and rate of growth of hydromagnetic waves. The mode is shown to be the Alfven modified inhomogeneity, finite pressure and plasma anisotropy. The mode structure transverse the magnetic shells may be of two types. Under some specific conditions one may observe image-drift waves in the magnetosphere. The described modes may be responsible for some types of geomagnetic field oscillations [ru

  14. Incorporation of Three-dimensional Radiative Transfer into a Very High Resolution Simulation of Horizontally Inhomogeneous Clouds

    Science.gov (United States)

    Ishida, H.; Ota, Y.; Sekiguchi, M.; Sato, Y.

    2016-12-01

    A three-dimensional (3D) radiative transfer calculation scheme is developed to estimate horizontal transport of radiation energy in a very high resolution (with the order of 10 m in spatial grid) simulation of cloud evolution, especially for horizontally inhomogeneous clouds such as shallow cumulus and stratocumulus. Horizontal radiative transfer due to inhomogeneous clouds seems to cause local heating/cooling in an atmosphere with a fine spatial scale. It is, however, usually difficult to estimate the 3D effects, because the 3D radiative transfer often needs a large resource for computation compared to a plane-parallel approximation. This study attempts to incorporate a solution scheme that explicitly solves the 3D radiative transfer equation into a numerical simulation, because this scheme has an advantage in calculation for a sequence of time evolution (i.e., the scene at a time is little different from that at the previous time step). This scheme is also appropriate to calculation of radiation with strong absorption, such as the infrared regions. For efficient computation, this scheme utilizes several techniques, e.g., the multigrid method for iteration solution, and a correlated-k distribution method refined for efficient approximation of the wavelength integration. For a case study, the scheme is applied to an infrared broadband radiation calculation in a broken cloud field generated with a large eddy simulation model. The horizontal transport of infrared radiation, which cannot be estimated by the plane-parallel approximation, and its variation in time can be retrieved. The calculation result elucidates that the horizontal divergences and convergences of infrared radiation flux are not negligible, especially at the boundaries of clouds and within optically thin clouds, and the radiative cooling at lateral boundaries of clouds may reduce infrared radiative heating in clouds. In a future work, the 3D effects on radiative heating/cooling will be able to be

  15. Thomas precession: a kinematic effect of the algebra of Einstein's velocity addition law. Comments on 'Deriving relativistic momentum and energy: II. Three-dimensional case'

    International Nuclear Information System (INIS)

    Ungar, Abraham A

    2006-01-01

    The authors of a recently published paper (Sonego S and Pin M 2005 Eur. J. Phys. 26 851-6) have erroneously asserted that Einstein's velocity addition law is associative. Moreover, they have attributed the alleged associativity of Einstein's velocity addition law to 'The relativity principle[, which] requires that [Einstein's velocity addition] gives the composition law of a group'. Accordingly, we note that Einstein's velocity addition is non-associative and demonstrate that the breakdown of associativity and commutativity in Einstein's velocity addition law results from the presence of Thomas precession. (letters and comments)

  16. INHOMOGENEOUS NEARLY INCOMPRESSIBLE DESCRIPTION OF MAGNETOHYDRODYNAMIC TURBULENCE

    International Nuclear Information System (INIS)

    Hunana, P.; Zank, G. P.

    2010-01-01

    The nearly incompressible theory of magnetohydrodynamics (MHD) is formulated in the presence of a static large-scale inhomogeneous background. The theory is an inhomogeneous generalization of the homogeneous nearly incompressible MHD description of Zank and Matthaeus and a polytropic equation of state is assumed. The theory is primarily developed to describe solar wind turbulence where the assumption of a composition of two-dimensional (2D) and slab turbulence with the dominance of the 2D component has been used for some time. It was however unclear, if in the presence of a large-scale inhomogeneous background, the dominant component will also be mainly 2D and we consider three distinct MHD regimes for the plasma beta β > 1. For regimes appropriate to the solar wind (β 2 s δp is not valid for the leading-order O(M) density fluctuations, and therefore in observational studies, the density fluctuations should not be analyzed through the pressure fluctuations. The pseudosound relation is valid only for higher order O(M 2 ) density fluctuations, and then only for short-length scales and fast timescales. The spectrum of the leading-order density fluctuations should be modeled as k -5/3 in the inertial range, followed by a Bessel function solution K ν (k), where for stationary turbulence ν = 1, in the viscous-convective and diffusion range. Other implications for solar wind turbulence with an emphasis on the evolution of density fluctuations are also discussed.

  17. Neuromythology of Einstein's brain.

    Science.gov (United States)

    Hines, Terence

    2014-07-01

    The idea that the brain of the great physicist Albert Einstein is different from "average" brains in both cellular structure and external shape is widespread. This belief is based on several studies examining Einstein's brain both histologically and morphologically. This paper reviews these studies and finds them wanting. Their results do not, in fact, provide support for the claim that the structure of Einstein's brain reflects his intellectual abilities. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. How Einstein changed the world

    International Nuclear Information System (INIS)

    Boudenot, J.C.

    2005-01-01

    This book allows the reader to understand in a simple but detailed way the importance of the work of Einstein and its implications in the physics of today. The author first draws a biography of Einstein, then outlines the knowledge of physics at the beginning of the twentieth century, then describes the major contributions of Einstein to the brownian motion, the mass-energy equivalence, relativity and the notion of quantum, and ends by showing that the life-long Einstein's quest for a unitarian theory is still a present-day issue. (A.C.)

  19. Determination of the tissue inhomogeneity correction in high dose rate Brachytherapy for Iridium-192 source

    Directory of Open Access Journals (Sweden)

    Barlanka Ravikumar

    2012-01-01

    Full Text Available In Brachytherapy treatment planning, the effects of tissue heterogeneities are commonly neglected due to lack of accurate, general and fast three-dimensional (3D dose-computational algorithms. In performing dose calculations, it is assumed that the tumor and surrounding tissues constitute a uniform, homogeneous medium equivalent to water. In the recent past, three-dimensional computed tomography (3D-CT based treatment planning for Brachytherapy applications has been popularly adopted. However, most of the current commercially available planning systems do not provide the heterogeneity corrections for Brachytherapy dosimetry. In the present study, we have measured and quantified the impact of inhomogeneity caused by different tissues with a 0.015 cc ion chamber. Measurements were carried out in wax phantom which was employed to measure the heterogeneity. Iridium-192 (192 Ir source from high dose rate (HDR Brachytherapy machine was used as the radiation source. The reduction of dose due to tissue inhomogeneity was measured as the ratio of dose measured with different types of inhomogeneity (bone, spleen, liver, muscle and lung to dose measured with homogeneous medium for different distances. It was observed that different tissues attenuate differently, with bone tissue showing maximum attenuation value and lung tissue resulting minimum value and rest of the tissues giving values lying in between those of bone and lung. It was also found that inhomogeneity at short distance is considerably more than that at larger distances.

  20. Once Upon Einstein

    International Nuclear Information System (INIS)

    Giannetto, E

    2007-01-01

    Thibault Damour is a theoretical physicist, and a member of the French Academy of Sciences. This book is the translation, by Eric Novak, of the original French Si Einstein m'etait conte (Le Cherche Midi, 2005). It is neither a book of theoretical physics nor a biography of Einstein. It is not a book of history nor philosophy of science. In Damour's words it was written to encourage the reader to share with Einstein 'those times when he understood some part of the hidden order of the universe'. It is a relatively short book, written in a very fluent style, but it deals with all the major problems and achievements of Einstein's works. Starting from special relativity, it continues with general relativity, quantum theories, unified field theory and a brief overview of the actual research related to Einstein's legacy. It is essentially a popular science book with some related exploration in history and philosophy to interpret physical theories. The most important problem discussed by Damour is the nature of time. On this subject, there is a very interesting short paragraph (pp 33--35) dedicated to the reception of the relativity idea by the great writer Marcel Proust and its counterpart within A la Recherche du Temps Perdu. A correct discussion of the implications of a relativistic time should imply the distinction of the different possible interpretations of this concept. Damour seems to conclude that only one interpretation is possible: 'time does not exist', flowing of time is an illusion. One has to know that Einstein's ideas on time were related to Spinoza's perspective of a knowledge sub specie aeternitatis. However, other interpretations are possible and are related to the idea of time as an actuality. Damour speaks about the controversy between Einstein and Bergson, but Bergson is considered as a philosopher who did not understand relativity. This philosophical problem of relativistic time is indeed related to a historical problem briefly discussed by Damour

  1. Effect of Inhomogeneity correction for lung volume model in TPS

    International Nuclear Information System (INIS)

    Chung, Se Young; Lee, Sang Rok; Kim, Young Bum; Kwon, Young Ho

    2004-01-01

    The phantom that includes high density materials such as steel was custom-made to fix lung and bone in order to evaluation inhomogeneity correction at the time of conducting radiation therapy to treat lung cancer. Using this, values resulting from the inhomogeneous correction algorithm are compared on the 2 and 3 dimensional radiation therapy planning systems. Moreover, change in dose calculation was evaluated according to inhomogeneous by comparing with the actual measurement. As for the image acquisition, inhomogeneous correction phantom(Pig's vertebra, steel(8.21 g/cm 3 ), cork(0.23 g/cm 3 )) that was custom-made and the CT(Volume zoom, Siemens, Germany) were used. As for the radiation therapy planning system, Marks Plan(2D) and XiO(CMS, USA, 3D) were used. To compare with the measurement value, linear accelerator(CL/1800, Varian, USA) and ion chamber were used. Image, obtained from the CT was used to obtain point dose and dose distribution from the region of interest (ROI) while on the radiation therapy planning device. After measurement was conducted under the same conditions, value on the treatment planning device and measured value were subjected to comparison and analysis. And difference between the resulting for the evaluation on the use (or non-use) of inhomogeneity correction algorithm, and diverse inhomogeneity correction algorithm that is included in the radiation therapy planning device was compared as well. As result of comparing the results of measurement value on the region of interest within the inhomogeneity correction phantom and the value that resulted from the homogeneous and inhomogeneous correction, gained from the therapy planning device, margin of error of the measurement value and inhomogeneous correction value at the location 1 of the lung showed 0.8% on 2D and 0.5% on 3D. Margin of error of the measurement value and inhomogeneous correction value at the location 1 of the steel showed 12% on 2D and 5% on 3D, however, it is possible to

  2. Black Hole Solution of Einstein-Born-Infeld-Yang-Mills Theory

    Directory of Open Access Journals (Sweden)

    Kun Meng

    2017-01-01

    Full Text Available A new four-dimensional black hole solution of Einstein-Born-Infeld-Yang-Mills theory is constructed; several degenerated forms of the black hole solution are presented. The related thermodynamical quantities are calculated, with which the first law of thermodynamics is checked to be satisfied. Identifying the cosmological constant as pressure of the system, the phase transition behaviors of the black hole in the extended phase space are studied.

  3. Ventilation inhomogeneity in obstructive lung diseases measured by electrical impedance tomography: a simulation study.

    Science.gov (United States)

    Schullcke, B; Krueger-Ziolek, S; Gong, B; Jörres, R A; Mueller-Lisse, U; Moeller, K

    2017-10-10

    Electrical impedance tomography (EIT) has mostly been used in the Intensive Care Unit (ICU) to monitor ventilation distribution but is also promising for the diagnosis in spontaneously breathing patients with obstructive lung diseases. Beside tomographic images, several numerical measures have been proposed to quantitatively assess the lung state. In this study two common measures, the 'Global Inhomogeneity Index' and the 'Coefficient of Variation' were compared regarding their capability to reflect the severity of lung obstruction. A three-dimensional simulation model was used to simulate obstructed lungs, whereby images were reconstructed on a two-dimensional domain. Simulations revealed that minor obstructions are not adequately recognized in the reconstructed images and that obstruction above and below the electrode plane may result in misleading values of inhomogeneity measures. EIT measurements on several electrode planes are necessary to apply these measures in patients with obstructive lung diseases in a promising manner.

  4. Einstein-Rosen 'bridge' needs lightlike brane source

    International Nuclear Information System (INIS)

    Guendelman, Eduardo; Kaganovich, Alexander; Nissimov, Emil; Pacheva, Svetlana

    2009-01-01

    The Einstein-Rosen 'bridge' wormhole solution proposed in the classic paper (Einstein and Rosen (1935) ) does not satisfy the vacuum Einstein equations at the wormhole throat. We show that the fully consistent formulation of the original Einstein-Rosen 'bridge' requires solving Einstein equations of bulk D=4 gravity coupled to a lightlike brane with a well-defined world-volume action. The non-vanishing contribution of Einstein-Rosen 'bridge' solution to the right-hand side of Einstein equations at the throat matches precisely the surface stress-energy tensor of the lightlike brane which automatically occupies the throat ('horizon straddling') - a feature triggered by the world-volume lightlike brane dynamics.

  5. Einstein's daughter the search for Lieserl

    CERN Document Server

    Zackheim, Michele

    1999-01-01

    A thoroughly gripping and groundbreaking investigation into the mysterious fate of Albert Einstein's illegitimate daughter. Albert Einstein fell in love with Mileva Maric, the woman who would become his first wife, when they were students at the Zurich Polytechnic Institute. When Maric conceived a child out of wedlock, she went home to her family in Serbia to have the child. Lieserl Maric Einstein was born in 1902. Though Einstein and Maric married the following year, Lieserl was left in the care of her grandparents and never became a part of the Einstein family. In fact, her very existence was unknown until the recent discovery of a cache of letters between Einstein and Maric. The final reference to Lieserl comes in a September 1903 letter, when, at the age of approximately eighteen months, she simply disappears. What happened to Einstein's daughter is the most potent mystery to emerge from the mythology that surrounds one of the century's legendary figures, owing in large part to the careful and apparent...

  6. Computation of partially invariant solutions for the Einstein Walker manifolds' identifying equations

    Science.gov (United States)

    Nadjafikhah, Mehdi; Jafari, Mehdi

    2013-12-01

    In this paper, partially invariant solutions (PISs) method is applied in order to obtain new four-dimensional Einstein Walker manifolds. This method is based on subgroup classification for the symmetry group of partial differential equations (PDEs) and can be regarded as the generalization of the similarity reduction method. For this purpose, those cases of PISs which have the defect structure δ=1 and are resulted from two-dimensional subalgebras are considered in the present paper. Also it is shown that the obtained PISs are distinct from the invariant solutions that obtained by similarity reduction method.

  7. Bose-Einstein correlations

    International Nuclear Information System (INIS)

    Zalewski, Kacper

    2000-01-01

    The effect of Bose-Einstein correlations on multiplicity distributions of identical pions is discussed. It is found that these correlations affect significantly the observed multiplicity distributions, but Einstein's condensation is unlikely to be achieved, unless 'cold spots', i.e. regions, where groups of pions with very small relative momenta are produced, occur in high energy heavy-ion collisions

  8. Orbiting the moons of Pluto complex solutions to the Einstein, Maxwell, Schroedinger and Dirac equations

    CERN Document Server

    Rauscher, Elizabeth A

    2011-01-01

    The Maxwell, Einstein, Schrödinger and Dirac equations are considered the most important equations in all of physics. This volume aims to provide new eight- and twelve-dimensional complex solutions to these equations for the first time in order to reveal

  9. Thermodynamics in Einstein's thought

    International Nuclear Information System (INIS)

    Klein, M.J.

    1983-01-01

    The role of the thermodynamical approach in the Einstein's scientific work is analyzed. The Einstein's development of a notion about statistical fluctuations of thermodynamical systems that leads him to discovery of corpuscular-wave dualism is retraced

  10. Einstein's philosophy of physics

    International Nuclear Information System (INIS)

    Seeger, R.J.

    1979-01-01

    Sources of Einstein's philosophical ideas are discussed. Einstein was indebted to Mach and Poincare, and espoused more or less a logical empiricism. He looked upon Nature as real, rational, and understandable, at least to an extent

  11. Curvature perturbations from dimensional decoupling

    CERN Document Server

    Giovannini, Massimo

    2005-01-01

    The scalar modes of the geometry induced by dimensional decoupling are investigated. In the context of the low energy string effective action, solutions can be found where the spatial part of the background geometry is the direct product of two maximally symmetric Euclidean manifolds whose related scale factors evolve at a dual rate so that the expanding dimensions first accelerate and then decelerate while the internal dimensions always contract. After introducing the perturbative treatment of the inhomogeneities, a class of five-dimensional geometries is discussed in detail. Quasi-normal modes of the system are derived and the numerical solution for the evolution of the metric inhomogeneities shows that the fluctuations of the internal dimensions provide a term that can be interpreted, in analogy with the well-known four-dimensional situation, as a non-adiabatic pressure density variation. Implications of this result are discussed with particular attention to string cosmological scenarios.

  12. Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose—Einstein Condensates

    International Nuclear Information System (INIS)

    Duan Ya-Fan; Xu Zhen; Qian Jun; Sun Jian-Fang; Jiang Bo-Nan; Hong Tao

    2011-01-01

    We numerically analyze the dynamic behavior of Bose—Einstein condensate (BEC) in a one-dimensional disordered potential before it completely loses spatial quantum coherence. We find that both the disorder statistics and the atom interactions produce remarkable effects on localization. We also find that the single phase of the initial condensate is broken into many small pieces while the system approaches localization, showing a counter-intuitive step-wise phase but not a thoroughly randomized phase. Although the condensates as a whole show less flow and expansion, the currents between adjacent phase steps retain strong time dependence. Thus we show explicitly that the localization of a finite size Bose—Einstein condensate is a dynamic equilibrium state. (general)

  13. Correspondence passed between Einstein and Schroedinger; La correspondance entre Einstein et Schroedinger

    Energy Technology Data Exchange (ETDEWEB)

    Balibar, F. [Paris-7 Univ., 75 (France)

    1992-12-31

    The main points of the 26 year long correspondence between Einstein and Schroedinger are reviewed: from the de Broglie thesis and the Bose-Einstein statistics to the Schroedinger equation (1925-1926); from the EPR paradox to the cat parable (1935); a complete collaboration on unitary theories.

  14. Einstein boundary conditions for the 3+1 Einstein equations

    International Nuclear Information System (INIS)

    Frittelli, Simonetta; Gomez, Roberto

    2003-01-01

    In the 3+1 framework of the Einstein equations for the case of a vanishing shift vector and arbitrary lapse, we calculate explicitly the four boundary equations arising from the vanishing of the projection of the Einstein tensor along the normal to the boundary surface of the initial-boundary value problem. Such conditions take the form of evolution equations along (as opposed to across) the boundary for certain components of the extrinsic curvature and for certain space derivatives of the three-metric. We argue that, in general, such boundary conditions do not follow necessarily from the evolution equations and the initial data, but need to be imposed on the boundary values of the fundamental variables. Using the Einstein-Christoffel formulation, which is strongly hyperbolic, we show how three of the boundary equations up to linear combinations should be used to prescribe the values of some incoming characteristic fields. Additionally, we show that the fourth one imposes conditions on some outgoing fields

  15. ν-Dimensional ideal quantum q-gas: Bose-Einstein condensation and λ-point transition

    International Nuclear Information System (INIS)

    R-Monteiro, M.; Roditi, I.; Rodrigues, L.M.C.S.

    1994-01-01

    The authors consider an ideal quantum q-gas in ν spatial dimensions and energy spectrum ω i αp α . Departing from the Hamiltonian H = ω[N], the authors study the effect of the deformation on thermodynamic functions and equation of state of that system. The virial expansion is obtained for the high temperature (or low density) regime. The critical temperature is higher than in non-deformed ideal gases. They show that Bose-Einstein condensation always exists (unless when ν/α = 1) for finite q but not for q = ∞. Employing numerical calculations and selecting for ν/α the values 3/2, 2 and 3, the authors show the critical temperature as a function of q, the specific heat C V and the chemical potential μ as functions of T/T c q for q = 1.05 and q= 4.5. C V exhibits a λ-point discontinuity in all cases, instead of the cusp singularity found in the usual ideal gas. The results indicate that physical systems which have quantum symmetries can exhibit Bose-Einstein condensation phenomenon, the critical temperature being favored by the deformation parameter

  16. On some classes of super quasi-Einstein manifolds

    International Nuclear Information System (INIS)

    Ozguer, Cihan

    2009-01-01

    Quasi-Einstein and generalized quasi-Einstein manifolds are the generalizations of Einstein manifolds. In this study, we consider a super quasi-Einstein manifold, which is another generalization of an Einstein manifold. We find the curvature characterizations of a Ricci-pseudosymmetric and a quasi-conformally flat super quasi-Einstein manifolds. We also consider the condition C ∼ .S=0 on a super quasi-Einstein manifold, where C ∼ and S denote the quasi-conformal curvature tensor and Ricci tensor of the manifold, respectively.

  17. Bose-Einstein condensation of photons in a 'white-wall' photon box

    International Nuclear Information System (INIS)

    Klaers, Jan; Schmitt, Julian; Vewinger, Frank; Weitz, Martin

    2011-01-01

    Bose-Einstein condensation, the macroscopic ground state occupation of a system of bosonic particles below a critical temperature, has been observed in cold atomic gases and solid-state physics quasiparticles. In contrast, photons do not show this phase transition usually, because in Planck's blackbody radiation the particle number is not conserved and at low temperature the photons disappear in the walls of the system. Here we report on the realization of a photon Bose-Einstein condensate in a dye-filled optical microcavity, which acts as a 'white-wall' photon box. The cavity mirrors provide a trapping potential and a non-vanishing effective photon mass, making the system formally equivalent to a two-dimensional gas of trapped massive bosons. Thermalization of the photon gas is reached in a number conserving way by multiple scattering off the dye molecules. Signatures for a BEC upon increased photon density are: a spectral distribution that shows Bose-Einstein distributed photon energies with a macroscopically populated peak on top of a broad thermal wing, the observed threshold of the phase transition showing the predicted absolute value and scaling with resonator geometry, and condensation appearing at the trap centre even for a spatially displaced pump spot.

  18. Bose-Einstein condensation of photons in a 'white-wall' photon box

    Science.gov (United States)

    Klärs, Jan; Schmitt, Julian; Vewinger, Frank; Weitz, Martin

    2011-01-01

    Bose-Einstein condensation, the macroscopic ground state occupation of a system of bosonic particles below a critical temperature, has been observed in cold atomic gases and solid-state physics quasiparticles. In contrast, photons do not show this phase transition usually, because in Planck's blackbody radiation the particle number is not conserved and at low temperature the photons disappear in the walls of the system. Here we report on the realization of a photon Bose-Einstein condensate in a dye-filled optical microcavity, which acts as a "white-wall" photon box. The cavity mirrors provide a trapping potential and a non-vanishing effective photon mass, making the system formally equivalent to a two-dimensional gas of trapped massive bosons. Thermalization of the photon gas is reached in a number conserving way by multiple scattering off the dye molecules. Signatures for a BEC upon increased photon density are: a spectral distribution that shows Bose-Einstein distributed photon energies with a macroscopically populated peak on top of a broad thermal wing, the observed threshold of the phase transition showing the predicted absolute value and scaling with resonator geometry, and condensation appearing at the trap centre even for a spatially displaced pump spot.

  19. Lie-algebra expansions, Chern-Simons theories and the Einstein-Hilbert Lagrangian

    International Nuclear Information System (INIS)

    Edelstein, Jose D.; Hassaine, Mokhtar; Troncoso, Ricardo; Zanelli, Jorge

    2006-01-01

    Starting from gravity as a Chern-Simons action for the AdS algebra in five dimensions, it is possible to modify the theory through an expansion of the Lie algebra that leads to a system consisting of the Einstein-Hilbert action plus non-minimally coupled matter. The modified system is gauge invariant under the Poincare group enlarged by an Abelian ideal. Although the resulting action naively looks like general relativity plus corrections due to matter sources, it is shown that the non-minimal couplings produce a radical departure from GR. Indeed, the dynamics is not continuously connected to the one obtained from Einstein-Hilbert action. In a matter-free configuration and in the torsionless sector, the field equations are too strong a restriction on the geometry as the metric must satisfy both the Einstein and pure Gauss-Bonnet equations. In particular, the five-dimensional Schwarzschild geometry fails to be a solution; however, configurations corresponding to a brane-world with positive cosmological constant on the worldsheet are admissible when one of the matter fields is switched on. These results can be extended to higher odd dimensions

  20. Inhomogeneous microstructural growth by irradiation

    DEFF Research Database (Denmark)

    Krishan, K.; Singh, Bachu Narain; Leffers, Torben

    1985-01-01

    In the present paper we discuss the development of heterogeneous microstructure for uniform irradiation conditions. It is shown that microstructural inhomogeneities on a scale of 0.1 μm can develop purely from kinematic considerations because of the basic structure of the rate equations used...... to describe such evolution. Two aspects of the growth of such inhomogeneities are discussed. Firstly, it is shown that a local variation in the sink densities of the various microstructural defects will tend to enhance the inhomogeneity rather than remove it. Secondly, such inhomogeneities will lead to point...... defect fluxes that result in a spatial growth of the inhomogeneous region, which will be stopped only when the microstructural density around this region becomes large. The results have important implications in the formation of denuded zones and void formation in metals....

  1. Lower dimensional gravity

    International Nuclear Information System (INIS)

    Brown, J.D.

    1988-01-01

    This book addresses the subject of gravity theories in two and three spacetime dimensions. The prevailing philosophy is that lower dimensional models of gravity provide a useful arena for developing new ideas and insights, which are applicable to four dimensional gravity. The first chapter consists of a comprehensive introduction to both two and three dimensional gravity, including a discussion of their basic structures. In the second chapter, the asymptotic structure of three dimensional Einstein gravity with a negative cosmological constant is analyzed. The third chapter contains a treatment of the effects of matter sources in classical two dimensional gravity. The fourth chapter gives a complete analysis of particle pair creation by electric and gravitational fields in two dimensions, and the resulting effect on the cosmological constant

  2. Once Upon Einstein

    Energy Technology Data Exchange (ETDEWEB)

    Giannetto, E [Dipartimento di Fisica ' A Volta' , via A Bassi 6, I-27100 Pavia (Italy)

    2007-07-20

    Thibault Damour is a theoretical physicist, and a member of the French Academy of Sciences. This book is the translation, by Eric Novak, of the original French Si Einstein m'etait conte (Le Cherche Midi, 2005). It is neither a book of theoretical physics nor a biography of Einstein. It is not a book of history nor philosophy of science. In Damour's words it was written to encourage the reader to share with Einstein 'those times when he understood some part of the hidden order of the universe'. It is a relatively short book, written in a very fluent style, but it deals with all the major problems and achievements of Einstein's works. Starting from special relativity, it continues with general relativity, quantum theories, unified field theory and a brief overview of the actual research related to Einstein's legacy. It is essentially a popular science book with some related exploration in history and philosophy to interpret physical theories. The most important problem discussed by Damour is the nature of time. On this subject, there is a very interesting short paragraph (pp 33--35) dedicated to the reception of the relativity idea by the great writer Marcel Proust and its counterpart within A la Recherche du Temps Perdu. A correct discussion of the implications of a relativistic time should imply the distinction of the different possible interpretations of this concept. Damour seems to conclude that only one interpretation is possible: 'time does not exist', flowing of time is an illusion. One has to know that Einstein's ideas on time were related to Spinoza's perspective of a knowledge sub specie aeternitatis. However, other interpretations are possible and are related to the idea of time as an actuality. Damour speaks about the controversy between Einstein and Bergson, but Bergson is considered as a philosopher who did not understand relativity. This philosophical problem of relativistic time is indeed related to a

  3. Albert Einstein 1879-1955.

    Science.gov (United States)

    Physics Today, 1979

    1979-01-01

    Celebrates the centennial of Einstein's birth with an eight-page pictorial biography and two special articles: (1) Einstein the catalyst; and (2) Unitary field theories. His special and general theories of relativity and his contributions to quantum physics and other topics are also presented. (HM)

  4. Bose-Einstein condensation in magnetic traps. Introduction to the theory

    International Nuclear Information System (INIS)

    Pitaevskii, Lev P

    1998-01-01

    The recent realization of Bose-Einstein condensation in atomic gases opens new possibilities for the observation of macroscopic quantum phenomena. There are two important features of these systems - weak interaction and significant spatial inhomogeneity. Because of this a non-trivial 'zeroth-order' theory exists, compared to the 'first-order' Bogolubov theory. The zeroth-order theory is based on the mean-field Gross-Pitaevskii equation for the condensate ψ-function. The equation is classical in its essence but contains the constant ℎ explicitly. Phenomena such as collective modes, interference, tunneling, Josephson-like current and quantized vortex lines can be described using this equation. Elementary excitations define the thermodynamic behavior of the system and result in a Landau-type damping of collective modes. Fluctuations of the phase of the condensate wave function restrict the monochromaticity of the Josephson current. Fluctuations of the numbers of quanta result in quantum collapse-revival of the collective oscillations. (special issue)

  5. Instabilities in inhomogeneous plasma

    International Nuclear Information System (INIS)

    Mikhailovsky, A.B.

    1983-01-01

    The plasma inhomogeneity across the magnetic field causes a wide class of instabilities which are called instabilities of an inhomogeneous plasma or gradient instabilities. The instabilities that can be studied in the approximation of a magnetic field with parallel straight field lines are treated first, followed by a discussion of the influence of shear on these instabilities. The instabilities of a weakly inhomogeneous plasma with the Maxwellian velocity distribution of particles caused by the density and temperature gradients are often called drift instabilities, and the corresponding types of perturbations are the drift waves. An elementary theory of drift instabilities is presented, based on the simplest equations of motion of particles in the field of low-frequency and long-wavelength perturbations. Following that is a more complete theory of inhomogeneous collisionless plasma instabilities which uses the permittivity tensor and, in the case of electrostatic perturbations, the scalar of permittivity. The results are used to study the instabilities of a strongly inhomogeneous plasma. The instabilities of a plasma in crossed fields are discussed and the electromagnetic instabilities of plasma with finite and high pressure are described. (Auth.)

  6. Einstein: A Historical Perspective

    Science.gov (United States)

    Kormos-Buchwald, Diana

    2015-04-01

    In late 1915, Albert Einstein (1879-1955) completed as series of papers on a generalized theory of gravitation that were to constitute a major conceptual change in the history of modern physics and the crowning achievement of his scientific career. But this accomplishment came after a decade of intense intellectual struggle and was received with muted enthusiasm. Einstein's previously unpublished writings and massive correspondence, edited by the Einstein Papers Project, provide vivid insights into the historical, personal, and scientific context of the formulation, completion, and reception of GR during the first decades of the 20th century.

  7. An Einstein-Goedel universe

    International Nuclear Information System (INIS)

    Vaidya, P.C.

    1978-01-01

    The metric for the standard static Einstein model of the universe can be expressed in coordinates for which a congruence of spacelike world lines of the model will be twisting. A method of 'shifting the twist' has been devised by which the twist on spacelike world lines is shifted onto the timelike world lines. The model universe then becomes Goedel's model. A combined Einstein-Goedel model containing a parameter epsilon is obtained. Switching epsilon from +1 to -1 will effect the shift of twist in the world lines and lead from the Einstein model to the Goedel model. (author)

  8. Spherically symmetric Einstein-aether perfect fluid models

    Energy Technology Data Exchange (ETDEWEB)

    Coley, Alan A.; Latta, Joey [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada); Leon, Genly [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4950, Valparaíso (Chile); Sandin, Patrik, E-mail: aac@mathstat.dal.ca, E-mail: genly.leon@ucv.cl, E-mail: patrik.sandin@aei.mpg.de, E-mail: lattaj@mathstat.dal.ca [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am Mühlenberg 1, D-14476 Potsdam (Germany)

    2015-12-01

    We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysical objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in (β−) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.

  9. Beyond Einstein

    Science.gov (United States)

    Hertz, P.

    2003-03-01

    The Structure and Evolution of the Universe (SEU) theme within NASA's Office of Space Science seeks to explore and understand the dynamic transformations of energy in the Universe - the entire web of biological and physical interactions that determine the evolution of our cosmic habitat. This search for understanding will enrich the human spirit and inspire a new generation of explorers, scientists, and engineers. To that end, NASA's strategic planning process has generated a new Roadmap to enable those goals. Called "Beyond Einstein", this Roadmap identifies three science objectives for the SEU theme: (1) Find out what powered the Big Bang; (2) Observe how black holes manipulate space, time, and matter; and (3) Identify the mysterious dark energy pullingthe Universe apart. These objectives can be realized through a combination of large observatories (Constellation-X, LISA), moderate sized, PI-led missions (the Einstein Probes), and a contuinuing program of technology development, research and analysis, and education/public outreach. In this presentation, NASA's proposed Beyond Einstein Program will be described. The full Roadmap is available at http://universe.nasa.gov/.

  10. Flow and bose-einstein correlations in Au-Au collisions at RHIC

    Science.gov (United States)

    Phobos Collaboration; Manly, Steven; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hofman, D.; Hollis, R. S.; Hołyinski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    Argonne flow and Bose-Einstein correlations have been measured in Au-Au collisions at S=130 and 200 GeV using the PHOBOS detector at RHIC. The systematic dependencies of the flow signal on the transverse momentum, pseudorapidity, and centrality of the collision, as well as the beam energy are shown. In addition, results of a 3-dimensional analysis of two-pion correlations in the 200 GeV data are presented.

  11. The practical Einstein experiments, patents, inventions

    CERN Document Server

    Illy, József

    2012-01-01

    Albert Einstein may be best known as the wire-haired whacky physicist who gave us the theory of relativity, but that's just one facet of this genius' contribution to human knowledge and modern science. As Jozsef Illy expertly shows in this book, Einstein had an eminently practical side as well. As a youth, Einstein was an inveterate tinkerer in the electrical supply factory his father and uncle owned and operated. His first paid job was as a patent examiner. Later in life, Einstein contributed to many inventions, including refrigerators, microphones, and instruments for aviation. In published papers, Einstein often provided ways to test his theories and fundamental problems of the scientific community of his times. He delved deeply into a variety of technological innovations, most notably the gyrocompass, and consulted for industry in patent cases and on other legal matters. Einstein also provided explanations for common and mundane phenomena, such as the meandering of rivers. In these and other hands-on exam...

  12. Constant curvature black holes in Einstein AdS gravity: Euclidean action and thermodynamics

    Science.gov (United States)

    Guilleminot, Pablo; Olea, Rodrigo; Petrov, Alexander N.

    2018-03-01

    We compute the Euclidean action for constant curvature black holes (CCBHs), as an attempt to associate thermodynamic quantities to these solutions of Einstein anti-de Sitter (AdS) gravity. CCBHs are gravitational configurations obtained by identifications along isometries of a D -dimensional globally AdS space, such that the Riemann tensor remains constant. Here, these solutions are interpreted as extended objects, which contain a (D -2 )-dimensional de-Sitter brane as a subspace. Nevertheless, the computation of the free energy for these solutions shows that they do not obey standard thermodynamic relations.

  13. Quantum Fluctuations of Low Dimensional Bose-Einstein ...

    African Journals Online (AJOL)

    Tadesse

    that low dimensional quantum gases exhibit not only highly fascinating .... 2009; Marquardt and Girvin, 2009; Law, 1995; Vitali et al., 2007). ... ideal playground to test correlations between light and mesoscopic objects, to understand the.

  14. Einstein's Revolutionary Light-Quantum Hypothesis

    Science.gov (United States)

    Stuewer, Roger H.

    2005-05-01

    The paper in which Albert Einstein proposed his light-quantum hypothesis was the only one of his great papers of 1905 that he himself termed ``revolutionary.'' Contrary to widespread belief, Einstein did not propose his light-quantum hypothesis ``to explain the photoelectric effect.'' Instead, he based his argument for light quanta on the statistical interpretation of the second law of thermodynamics, with the photoelectric effect being only one of three phenomena that he offered as possible experimental support for it. I will discuss Einstein's light-quantum hypothesis of 1905 and his introduction of the wave-particle duality in 1909 and then turn to the reception of his work on light quanta by his contemporaries. We will examine the reasons that prominent physicists advanced to reject Einstein's light-quantum hypothesis in succeeding years. Those physicists included Robert A. Millikan, even though he provided convincing experimental proof of the validity of Einstein's equation of the photoelectric effect in 1915. The turning point came after Arthur Holly Compton discovered the Compton effect in late 1922, but even then Compton's discovery was contested both on experimental and on theoretical grounds. Niels Bohr, in particular, had never accepted the reality of light quanta and now, in 1924, proposed a theory, the Bohr-Kramers-Slater theory, which assumed that energy and momentum were conserved only statistically in microscopic interactions. Only after that theory was disproved experimentally in 1925 was Einstein's revolutionary light-quantum hypothesis generally accepted by physicists---a full two decades after Einstein had proposed it.

  15. Einstein Up in Smoke

    Science.gov (United States)

    Lisle, John

    2016-01-01

    Albert Einstein's biographers have not explained why he developed the abdominal aortic aneurysm that led to his death. Early conjectures proposed that it was caused by syphilis, without accurate evidence. The present article gives evidence to the contrary, and argues that the principal cause of Einstein's death was smoking.

  16. Two-dimensional perturbations of the accelerated motion of inhomogeneous gas layers and shells in the interstellar medium

    Science.gov (United States)

    Krasnobaev, K. V.; Kotova, G. Yu.; Tagirova, R. R.

    2015-03-01

    The evolution of perturbations in a two-layer spherical shell and a plane layer with a two-step density distribution has been simulated numerically. The clumps formed by instability are shown to have qualitatively different structures, depending on the ratio of the densities in the inner and outer layers of the shell. Inhomogeneities bordered by a dense gas are formed in shells with an outwardly decreasing density. If, however, a denser gas is in the outer layer, then cores surrounded by a more rarefied material appear. These results are used to analyze the expansion of the HII region RCW 82. Since the inhomogeneities observed in the 13CO emission in the outer parts of this region have sharply delineated boundaries, our calculations argue for the model of the expansion of a shell with an outwardly decreasing density. The interaction of an accelerating shell with clumps in front of it has also been investigated. The deformations of a clump during its penetration into the shell and the formation of a groove in the shell gradually fillingwith a cold gas have been revealed. Thereafter, the shell material collapses to form a cumulative jet. As applied to the HII region RCW 82, we conclude that the existence of jets is possible if there are inhomogeneities with a scale of ˜1018 cm in the interstellar medium. The lack of data on such jet flows at the boundary of this region is an additional argument for the model where the inhomogeneous structure of the boundaries is attributable to the development of Rayleigh-Taylor instability.

  17. The Routledge guidebook to Einstein's relativity

    CERN Document Server

    Trefil, James

    2015-01-01

    Albert Einstein, one of the most prolific scientists of the twentieth century, developed the theory of relativity which was crucial for the advancement of modern physics. Young Einstein identified a paradox between Newtonian Mechanics and Maxwell's equations which pointed to a flawed understanding of space and time by the scientists of the day. In Relativity, Einstein presents his findings using a minimal amount of mathematical language, but the text can still be challenging for readers who lack an extensive scientific background.The Routledge Guidebook to Einstein's Relativity expands on and

  18. Einstein's cosmology review of 1933: a new perspective on the Einstein-de Sitter model of the cosmos

    Science.gov (United States)

    O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon

    2015-09-01

    We present a first English translation and analysis of a little-known review of relativistic cosmology written by Albert Einstein in late 1932. The article, which was published in 1933 in a book of Einstein papers translated into French, contains a substantial review of static and dynamic relativistic models of the cosmos, culminating in a discussion of the Einstein-de Sitter model. The article offers a valuable contemporaneous insight into Einstein's cosmology in the early 1930s and confirms that his interest lay in the development of the simplest model of the cosmos that could account for observation. The article also confirms that Einstein did not believe that simplified relativistic models could give an accurate description of the early universe.

  19. Universal Themes of Bose-Einstein Condensation

    Science.gov (United States)

    Proukakis, Nick P.; Snoke, David W.; Littlewood, Peter B.

    2017-04-01

    Foreword; List of contributors; Preface; Part I. Introduction: 1. Universality and Bose-Einstein condensation: perspectives on recent work D. W. Snoke, N. P. Proukakis, T. Giamarchi and P. B. Littlewood; 2. A history of Bose-Einstein condensation of atomic hydrogen T. Greytak and D. Kleppner; 3. Twenty years of atomic quantum gases: 1995-2015 W. Ketterle; 4. Introduction to polariton condensation P. B. Littlewood and A. Edelman; Part II. General Topics: Editorial notes; 5. The question of spontaneous symmetry breaking in condensates D. W. Snoke and A. J. Daley; 6. Effects of interactions on Bose-Einstein condensation R. P. Smith; 7. Formation of Bose-Einstein condensates M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner and N. P. Proukakis; 8. Quenches, relaxation and pre-thermalization in an isolated quantum system T. Langen and J. Schmiedmayer; 9. Ultracold gases with intrinsic scale invariance C. Chin; 10. Berezinskii-Kosterlitz-Thouless phase of a driven-dissipative condensate N. Y. Kim, W. H. Nitsche and Y. Yamamoto; 11. Superfluidity and phase correlations of driven dissipative condensates J. Keeling, L. M. Sieberer, E. Altman, L. Chen, S. Diehl and J. Toner; 12. BEC to BCS crossover from superconductors to polaritons A. Edelman and P. B. Littlewood; Part III. Condensates in Atomic Physics: Editorial notes; 13. Probing and controlling strongly correlated quantum many-body systems using ultracold quantum gases I. Bloch; 14. Preparing and probing chern bands with cold atoms N. Goldman, N. R. Cooper and J. Dalibard; 15. Bose-Einstein condensates in artificial gauge fields L. J. LeBlanc and I. B. Spielman; 16. Second sound in ultracold atomic gases L. Pitaevskii and S. Stringari; 17. Quantum turbulence in atomic Bose-Einstein condensates N. G. Parker, A. J. Allen, C. F. Barenghi and N. P. Proukakis; 18. Spinor-dipolar aspects of Bose-Einstein condensation M. Ueda; Part IV. Condensates in Condensed Matter Physics: Editorial notes; 19. Bose-Einstein

  20. SU-F-T-62: Three-Dimensional Dosimetric Gamma Analysis for Impacts of Tissue Inhomogeneity Using Monte Carlo Simulation in Intracavitary Brachytheray for Cervix Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tran Thi Thao; Nakamoto, Takahiro; Shibayama, Yusuke [Graduate School of Medical Sciences, Kyushu University (Japan); Arimura, Hidetaka [Faculty of Medical Sciences, Kyushu University (Japan); Oku, Yoshifumi [Kagoshima University Hospital (Japan); Yoshiura, Takashi [Graduate School of Diagnostic Radiotherapy, Kagoshima University (Japan)

    2016-06-15

    Purpose: The aim of this study was to investigate the impacts of tissue inhomogeneity on dose distributions using a three-dimensional (3D) gamma analysis in cervical intracavitary brachytherapy using Monte Carlo (MC) simulations. Methods: MC simulations for comparison of dose calculations were performed in a water phantom and a series of CT images of a cervical cancer patient (stage: Ib; age: 27) by employing a MC code, Particle and Heavy Ion Transport Code System (PHIT) version 2.73. The {sup 192}Ir source was set at fifteen dwell positions, according to clinical practice, in an applicator consisting of a tandem and two ovoids. Dosimetric comparisons were performed for the dose distributions in the water phantom and CT images by using gamma index image and gamma pass rate (%). The gamma index is the minimum Euclidean distance between two 3D spatial dose distributions of the water phantom and CT images in a same space. The gamma pass rates (%) indicate the percentage of agreement points, which mean that two dose distributions are similar, within an acceptance criteria (3 mm/3%). The volumes of physical and clinical interests for the gamma analysis were a whole calculated volume and a region larger than t% of a dose (close to a target), respectively. Results: The gamma pass rates were 77.1% for a whole calculated volume and 92.1% for a region within 1% dose region. The differences of 7.7% to 22.9 % between two dose distributions in the water phantom and CT images were found around the applicator region and near the target. Conclusion: This work revealed the large difference on the dose distributions near the target in the presence of the tissue inhomogeneity. Therefore, the tissue inhomogeneity should be corrected in the dose calculation for clinical treatment.

  1. The Einstein tensor characterizing some Riemann spaces

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1993-07-01

    A formal definition of the Einstein tensor is given. Mention is made of how this tensor plays a role of expressing certain conditions in a precise form. The cases of reducing the Einstein tensor to a zero tensor are studied on its merit. A lucid account of results, formulated as theorems, on Einstein symmetric and Einstein recurrent spaces is then presented. (author). 5 refs

  2. A one-to-one correspondence between the static Einstein-Maxwell and stationary Einstein-vacuum space-times

    International Nuclear Information System (INIS)

    Chandrasekhar, Subrahmanyan

    1989-01-01

    A one-to-one correspondence is established between the static solutions of the Einstein-Maxwell equations and the stationary solutions of the Einstein-vacuum equations, that enables one to directly write down a solution for the one from a known solution of the other, and conversely, by a simple transcription. The directness of the correspondence is achieved by writing the metric for static Einstein-Maxwell space-times in a coordinate system and a gauge adapted to the two-centre problem and the metric for stationary Einstein-vacuum space-times in a coordinate system and a gauge adapted to black holes with event horizons. (author)

  3. Einstein A to Z

    CERN Document Server

    Fox, Karen C

    2004-01-01

    Einstein was the twentieth century's most celebrated scientist - a man who developed the theory of relativity, revolutionised physics and became an iconic genius in the popular imagination. Essays range from the reasonably scientific including the theory of relativity, to the odd and engaging, such as Einstein's brain, his favourite jokes and films.

  4. Piecewise linear emulator of the nonlinear Schroedinger equation and the resulting analytic solutions for Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Theodorakis, Stavros

    2003-01-01

    We emulate the cubic term Ψ 3 in the nonlinear Schroedinger equation by a piecewise linear term, thus reducing the problem to a set of uncoupled linear inhomogeneous differential equations. The resulting analytic expressions constitute an excellent approximation to the exact solutions, as is explicitly shown in the case of the kink, the vortex, and a δ function trap. Such a piecewise linear emulation can be used for any differential equation where the only nonlinearity is a Ψ 3 one. In particular, it can be used for the nonlinear Schroedinger equation in the presence of harmonic traps, giving analytic Bose-Einstein condensate solutions that reproduce very accurately the numerically calculated ones in one, two, and three dimensions

  5. Physics before and after Einstein

    CERN Document Server

    Capria, M Mamone

    2005-01-01

    It is now a century ago that one of the icons of modern physics published some of the most influential scientific papers of all times. With his work on relativity and quantum theory, Albert Einstein has altered the field of physics forever. It should not come as a surprise that looking back at Einstein''s work, one needs to rethink the whole scope of physics, before and after his time. This books aims to provide a perspective on the history of modern physics, spanning from the late 19th century up to today. It is not an encyclopaedic work, but it presents the groundbreaking and sometimes provocative main contributions by Einstein as marking the line between ''old'' and ''new'' physics, and expands on some of the developments and open issues to which they gave rise.

  6. Einstein boundary conditions in relation to constraint propagation for the initial-boundary value problem of the Einstein equations

    International Nuclear Information System (INIS)

    Frittelli, Simonetta; Gomez, Roberto

    2004-01-01

    We show how the use of the normal projection of the Einstein tensor as a set of boundary conditions relates to the propagation of the constraints, for two representations of the Einstein equations with vanishing shift vector: the Arnowitt-Deser-Misner formulation, which is ill posed, and the Einstein-Christoffel formulation, which is symmetric hyperbolic. Essentially, the components of the normal projection of the Einstein tensor that act as nontrivial boundary conditions are linear combinations of the evolution equations with the constraints that are not preserved at the boundary, in both cases. In the process, the relationship of the normal projection of the Einstein tensor to the recently introduced 'constraint-preserving' boundary conditions becomes apparent

  7. Unified Maxwell-Einstein and Yang-Mills-Einstein supergravity theories in five dimensions

    International Nuclear Information System (INIS)

    Guenaydin, Murat; Zagermann, Marco

    2003-01-01

    Unified N = 2 Maxwell-Einstein supergravity theories (MESGTs) are supergravity theories in which all the vector fields, including the graviphoton, transform in an irreducible representation of a simple global symmetry group of the Lagrangian. As was established long time ago, in five dimensions there exist only four unified Maxwell-Einstein supergravity theories whose target manifolds are symmetric spaces. These theories are defined by the four simple euclidean Jordan algebras of degree three. In this paper, we show that, in addition to these four unified MESGTs with symmetric target spaces, there exist three infinite families of unified MESGTs as well as another exceptional one. These novel unified MESGTs are defined by non-compact (minkowskian) Jordan algebras, and their target spaces are in general neither symmetric nor homogeneous. The members of one of these three infinite families can be gauged in such a way as to obtain an infinite family of unified N = 2 Yang-Mills-Einstein supergravity theories, in which all vector fields transform in the adjoint representation of a simple gauge group of the type SU(N,1). The corresponding gaugings in the other two infinite families lead to Yang-Mills-Einstein supergravity theories coupled to tensor multiplets. (author)

  8. Casimir stress in an inhomogeneous medium

    International Nuclear Information System (INIS)

    Philbin, T.G.; Xiong, C.; Leonhardt, U.

    2010-01-01

    The Casimir effect in an inhomogeneous dielectric is investigated using Lifshitz's theory of electromagnetic vacuum energy. A permittivity function that depends continuously on one Cartesian coordinate is chosen, bounded on each side by homogeneous dielectrics. The result for the Casimir stress is infinite everywhere inside the inhomogeneous region, a divergence that does not occur for piece-wise homogeneous dielectrics with planar boundaries. A Casimir force per unit volume can be extracted from the infinite stress but it diverges on the boundaries between the inhomogeneous medium and the homogeneous dielectrics. An alternative regularization of the vacuum stress is considered that removes the contribution of the inhomogeneity over small distances, where macroscopic electromagnetism is invalid. The alternative regularization yields a finite Casimir stress inside the inhomogeneous region, but the stress and force per unit volume diverge on the boundaries with the homogeneous dielectrics. The case of inhomogeneous dielectrics with planar boundaries thus falls outside the current understanding of the Casimir effect.

  9. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A

    2017-01-01

    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  10. Generalized spheroidal spacetimes in 5-D Einstein-Maxwell-Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hansraj, Sudan [University of KwaZulu Natal, Astrophysics and Cosmology Research Unit, Durban (South Africa)

    2017-08-15

    The field equations for static EGBM gravity are obtained and transformed to an equivalent form through a coordinate redefinition. A form for one of the metric potentials that generalizes the spheroidal ansatz of Vaidya-Tikekar superdense stars and additionally prescribing the electric field intensity yields viable solutions. Some special cases of the general solution are considered and analogous classes in the Einstein framework are studied. In particular the Finch-Skea ansatz is examined in detail and found to satisfy the elementary physical requirements. These include positivity of pressure and density, the existence of a pressure free hypersurface marking the boundary, continuity with the exterior metric, a subluminal sound speed as well as the energy conditions. Moreover, the solution possesses no coordinate singularities. It is found that the impact of the Gauss-Bonnet term is to correct undesirable features in the pressure profile and sound speed index when compared to the equivalent Einstein gravity model. Furthermore graphical analyses suggest that higher densities are achievable for the same radial values when compared to the 5-dimensional Einstein case. The case of a constant gravitational potential, isothermal distribution as well as an incompressible fluid are studied. All exact solutions derived exhibit an equation of state explicitly. (orig.)

  11. Radio-Wave Tomography of Inhomogeneities in Biological Media with Multi-Frequency Sounding in the Range 2-8 GHZ

    Directory of Open Access Journals (Sweden)

    Shipilov Sergey

    2018-01-01

    Full Text Available In this paper, a method for detecting and mapping inhomogeneities in biological tissues using the radio-wave tomosynthesis method is presented. The proposed method of radio-wave tomosynthesis allows us to calculate the three-dimensional distribution of the permittivity of the space under study and, thereby, to detect tissue inhomogeneities and to determine their location and size. Due to their harmlessness for humans, these methods are suitable for dynamic observation of changes in the size of formation, in contrast to x-ray methods, for which regular doses of ionizing radiation are contraindicated. Therefore, the development of non-invasive methods for the search for inhomogeneities in biological media based on radio-wave sounding, which makes it possible to identify pathological formations, is now very relevant.

  12. Scattering characteristics of electromagnetic waves in time and space inhomogeneous weakly ionized dusty plasma sheath

    Science.gov (United States)

    Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua

    2018-05-01

    The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.

  13. Four dimensional sigma model coupled to the metric tensor field

    International Nuclear Information System (INIS)

    Ghika, G.; Visinescu, M.

    1980-02-01

    We discuss the four dimensional nonlinear sigma model with an internal O(n) invariance coupled to the metric tensor field satisfying Einstein equations. We derive a bound on the coupling constant between the sigma field and the metric tensor using the theory of harmonic maps. A special attention is paid to Einstein spaces and some new explicit solutions of the model are constructed. (author)

  14. Einstein's cosmos how Albert Einstein's vision transformed our understanding of space and time

    CERN Document Server

    Kaku, Michio

    2004-01-01

    Few figures loom as large as Albert Einstein in our contemporary culture. It is truly remarkable that a man from such humble beginnings, an unemployed dreamer without a future or a job, who was written off by his professors as a hopeless loser, could to dare to scale the heights he reached. In this enlightening book Michio Kaku reasseses Einstein's work by centering on his three great theories - special relativity, general relativity and the Unified Field Theory. The first yielded the equation E =mc which is now such a fixture in our culture that it is practically a ubiquitous slogan. But the subsequent theories led to the Big Bang theory and have changed irrevocably the way we perceive time and space. Michio Kaku gives a new, refreshing look at the pioneering work of Einstein, giving a more accurate portrayal of his enduring legacy than previous biographies. As today's advanced physicists continue their intense search to fulfill Einstein's most cherished dream, a 'theory of everything', he is recognised as a...

  15. The NASA Beyond Einstein Program

    Science.gov (United States)

    White, Nicholas E.

    2006-01-01

    Einstein's legacy is incomplete, his theory of General relativity raises -- but cannot answer --three profound questions: What powered the big bang? What happens to space, time, and matter at the edge of a black hole? and What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's Office of Space Science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches towards shared science goals. The Beyond Einstein program has three linked elements which advance science and technology towards two visions; to detect directly gravitational wave signals from the earliest possible moments of the BIg Bang, and to image the event horizon of a black hole. The central element is a pair of Einstein Great Observatories, Constellation-X and LISA. Constellation-X is a powerful new X-ray observatory dedicated to X-Ray Spectroscopy. LISA is the first spaced based gravitational wave detector. These powerful facilities will blaze new paths to the questions about black holes, the Big Bang and dark energy. The second element is a series of competitively selected Einstein Probes, each focused on one of the science questions and includes a mission dedicated resolving the Dark Energy mystery. The third element is a program of technology development, theoretical studies and education. The Beyond Einstein program is a new element in the proposed NASA budget for 2004. This talk will give an overview of the program and the missions contained within it.

  16. Einstein-Gauss-Bonnet theory of gravity: The Gauss-Bonnet-Katz boundary term

    Science.gov (United States)

    Deruelle, Nathalie; Merino, Nelson; Olea, Rodrigo

    2018-05-01

    We propose a boundary term to the Einstein-Gauss-Bonnet action for gravity, which uses the Chern-Weil theorem plus a dimensional continuation process, such that the extremization of the full action yields the equations of motion when Dirichlet boundary conditions are imposed. When translated into tensorial language, this boundary term is the generalization to this theory of the Katz boundary term and vector for general relativity. The boundary term constructed in this paper allows to deal with a general background and is not equivalent to the Gibbons-Hawking-Myers boundary term. However, we show that they coincide if one replaces the background of the Katz procedure by a product manifold. As a first application we show that this Einstein Gauss-Bonnet Katz action yields, without any extra ingredients, the expected mass of the Boulware-Deser black hole.

  17. Einstein a hundred years of relativity

    CERN Document Server

    Robinson, Andrew

    2015-01-01

    "The eternal mystery of the world is its comprehensibility … The fact that it is comprehensible is a miracle." --Albert Einstein, 1936 Albert Einstein's universal appeal is only partially explained by his brilliant work in physics, as Andrew Robinson demonstrates in this authoritative, accessible, and richly illustrated biography. The main narrative is enriched by twelve essays by well-known scientists, scholars, and artists, including three Nobel Laureates. The book presents clearly the beautiful simplicity at the heart of Einstein's greatest discoveries, and explains how his ideas have continued to influence scientific developments such as lasers, the theory of the big bang, and "theories of everything." Einstein's life and activities outside of science are also considered, including his encounters with famous contemporaries such as Chaplin, Roosevelt, and Tagore, his love of music, and his troubled family life. The book recognizes that Einstein's striking originality was expressed in many ways, from hi...

  18. Conversations With Albert Einstein. II

    Science.gov (United States)

    Shankland, R. S.

    1973-01-01

    Discusses Einstein's views on the role of Michelson-Morley, Fizeau, and Miller experiments in the development of relativity and his attitude toward the theories of new quantum mechanics. Indicates that Einstein's opposition to quantum mechanics is beyond dispute. (CC)

  19. Albert Einstein Centenary

    CERN Document Server

    Amati, Daniele; Weisskopf, Victor Frederick; CERN. Geneva

    1979-01-01

    The scientist and his work by D. AMATI and S. FUBINI. A socially engaged scientist by V. F. WEISSKOPF. This week, we pay homage to Albert Einstein, the giant of twentieth-century physics born exactly 100 years ago on 14 March 1879 in Ulm, Germany. At the height of his career, Einstein made a whole series of monumental contributions to physics, including the elaborate theories of special and general relativity which revolutionized human thought and marked a major breakthrough in our understanding to the Universe. Along with quantum mechanics, relativity is one of the twin pillars of understanding which allow us here at CERN to study the behaviour of the tiniest components of matter. The development of quantum mechanics took the combined efforts of some of the greatest scientists the world has known, while relativity was developed almost single-handed by Einstein. The centenary of his birth is being commemorated all over the world. Exhibitions and symposia are being organized, books published, postage stamps is...

  20. Boltzmann, Einstein, Natural Law and Evolution

    International Nuclear Information System (INIS)

    Broda, E.

    1980-01-01

    Like Boltzmann, Einstein was a protagonist of atomistics. As a physicist, he has been called Boltzmann's true successor. Also in epistemology, after overcoming the positivist influence of Mach, Einstein approached Boltzmann. Any difference between Boltzmann's realism, or even materialism, and Einstein's pantheism may be merely a matter of emphasis. Yet a real difference exists in another respect. Boltzmann explained man's power of thinking and feeling, his morality and his esthetic sense, on an evolutionary, Darwinian, basis. In contrast, evolution had no role in Einstein's thought, though Darwin was accepted by him. This lack of appreciation of the importance of evolution is now attributed to socio-political factors. (author)

  1. Dynamics of Bose-Einstein condensates in novel optical potentials

    Energy Technology Data Exchange (ETDEWEB)

    Kueber, Johannes

    2014-07-21

    Matter wave interferometry offers a novel approach for high precision measurements, such as the determination of physical constants like the local gravity constant g or the fine-structure constant. Since its early demonstration, it has become an important tool in the fields of fundamental and applied physics. The present work covers the implementation of matter wave interferometers as well as the creation of novel guiding potentials for ultra-cold ensembles of atoms and Bose-Einstein condensates for this purpose. In addition, novel techniques for the manipulation of atoms with Bragg lattices are presented, serving as elements for interferometry. The measurements in this work are performed with a Bose-Einstein condensate of 25000 {sup 87}rubidium atoms created in a crossed optical dipole trap. The crossed optical dipole trap is loaded from a magneto-optical trap and allows a measurement every 25 s. This work introduces the novel technique of double Bragg diffraction as a tool for atom optics for the first time experimentally. The creation of beamsplitters and mirrors for advanced interferometric measurements is characterized. An in depth discussion on the momentum distribution of atomic clouds and its influence on double Bragg diffraction is given. Additionally experimental results for higher-order Bragg diffraction are explained and double Bragg diffraction is used to implement a full Ramsey-type interferometer. A second central result of this work is the implementation of novel guiding structures for ultra-cold atoms. These structures are created with conical refraction, an effect that occurs when light is guided along one of the optical axis of a bi-axial crystal. The conical refraction crystal used to operate the novel trapping geometries is a KGd(WO{sub 4}){sub 2} crystal that has been specifically cut orthogonal to one of the optical axis. Two regimes are discussed in detail: the creation of a toroidal matter wave guide and the implementation of a three-dimensional

  2. When Art Meets Einstein

    Science.gov (United States)

    Science Scope, 2006

    2006-01-01

    This article deals with a pale blue sculpture entitled "A New World View", as an homage to the most famous scientist in modern history, Albert Einstein. It has 32 bas-relief squares composed of glass and steel that represent one aspect of the life and legacy of Albert Einstein. Images of children's faces peer out from behind the glass squares,…

  3. Percolation for a model of statistically inhomogeneous random media

    International Nuclear Information System (INIS)

    Quintanilla, J.; Torquato, S.

    1999-01-01

    We study clustering and percolation phenomena for a model of statistically inhomogeneous two-phase random media, including functionally graded materials. This model consists of inhomogeneous fully penetrable (Poisson distributed) disks and can be constructed for any specified variation of volume fraction. We quantify the transition zone in the model, defined by the frontier of the cluster of disks which are connected to the disk-covered portion of the model, by defining the coastline function and correlation functions for the coastline. We find that the behavior of these functions becomes largely independent of the specific choice of grade in volume fraction as the separation of length scales becomes large. We also show that the correlation function behaves in a manner similar to that of fractal Brownian motion. Finally, we study fractal characteristics of the frontier itself and compare to similar properties for two-dimensional percolation on a lattice. In particular, we show that the average location of the frontier appears to be related to the percolation threshold for homogeneous fully penetrable disks. copyright 1999 American Institute of Physics

  4. Albert Einstein memorial lectures

    CERN Document Server

    Mechoulam, Raphael; The Israel Academy for Sciences and Humanities

    2012-01-01

    This volume consists of a selection of the Albert Einstein Memorial Lectures presented annually at the Israel Academy of Sciences and Humanities. Delivered by eminent scientists and scholars, including Nobel laureates, they cover a broad spectrum of subjects in physics, chemistry, life science, mathematics, historiography and social issues. This distinguished memorial lecture series was inaugurated by the Israel Academy of Sciences and Humanities following an international symposium held in Jerusalem in March 1979 to commemorate the centenary of Albert Einstein's birth. Considering that Einstein's interests, activities and influence were not restricted to theoretical physics but spanned broad fields affecting society and the welfare of humankind, it was felt that these memorial lectures should be addressed to scientists, scholars and erudite laypersons rather than to physicists alone.

  5. Astrophysical observations: lensing and eclipsing Einstein's theories.

    Science.gov (United States)

    Bennett, Charles L

    2005-02-11

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Einstein's insights, including gravitational redshifts, gravitational lensing, gravitational waves, the Lense-Thirring effect, and modern cosmology. A complete understanding of cosmology, from the earliest moments to the ultimate fate of the universe, will require developments in physics beyond Einstein, to a unified theory of gravity and quantum physics.

  6. Higher-dimensional relativistic-fluid spheres

    International Nuclear Information System (INIS)

    Patel, L. K.; Ahmedabad, Gujarat Univ.

    1997-01-01

    They consider the hydrostatic equilibrium of relativistic-fluid spheres for a D-dimensional space-time. Three physically viable interior solutions of the Einstein field equations corresponding to perfect-fluid spheres in a D-dimensional space-time are obtained. When D = 4 they reduce to the Tolman IV solution, the Mehra solution and the Finch-Skea solution. The solutions are smoothly matched with the D-dimensional Schwarzschild exterior solution at the boundary r = a of the fluid sphere. Some physical features and other related details of the solutions are briefly discussed. A brief description of two other new solutions for higher-dimensional perfect-fluid spheres is also given

  7. Numerical analysis of three-dimensional MHD shock interactions in an inhomogeneous medium

    International Nuclear Information System (INIS)

    Prndergast, M.; Wu, S.T.

    1987-01-01

    Study of the formation and propagation of solar-originated shock waves in heliospheric space has attracted significant attention in the past decade. This attention is important because the propagation of shocks in heliospheric space has been thought of as one of the major physical processes for solar wind and cosmic ray modulations and their subsequent influence on the earth's environment. A version of the two step Lax-Wendroff difference method is used to seek solutions of the unsteady magnetohydrodynamic (MHD) equations for the study of a solar flare generated shock wave propagating through an inhomogeneous medium. 8 references

  8. Inhomogeneous Markov point processes by transformation

    DEFF Research Database (Denmark)

    Jensen, Eva B. Vedel; Nielsen, Linda Stougaard

    2000-01-01

    We construct parametrized models for point processes, allowing for both inhomogeneity and interaction. The inhomogeneity is obtained by applying parametrized transformations to homogeneous Markov point processes. An interesting model class, which can be constructed by this transformation approach......, is that of exponential inhomogeneous Markov point processes. Statistical inference For such processes is discussed in some detail....

  9. Einstein before Israel Zionist icon or iconoclast?

    CERN Document Server

    Rosenkranz, Ze’ev

    2011-01-01

    Albert Einstein was initially skeptical and even disdainful of the Zionist movement, yet he affiliated himself with this controversial political ideology and today is widely seen as an outspoken advocate for a modern Jewish homeland in Palestine. What enticed this renowned scientist and humanitarian, who repeatedly condemned nationalism of all forms, to radically change his views? Was he in fact a Zionist? Einstein Before Israel traces Einstein's involvement with Zionism from his initial contacts with the movement at the end of World War I to his emigration from Germany in 1933 in the wake of Hitler's rise to power. Drawing on a wealth of rare archival evidence--much of it never before published--this book offers the most nuanced picture yet of Einstein's complex and sometimes stormy relationship with Jewish nationalism. Ze'ev Rosenkranz sheds new light on Einstein's encounters with prominent Zionist leaders, and reveals exactly what Einstein did and didn't like about Zionist beliefs, objectives, and methods...

  10. Particle creation in inhomogeneous spacetimes

    International Nuclear Information System (INIS)

    Frieman, J.A.

    1989-01-01

    We study the creation of particles by inhomogeneous perturbations of spatially flat Friedmann-Robertson-Walker cosmologies. For massless scalar fields, the pair-creation probability can be expressed in terms of geometric quantities (curvature invariants). The results suggest that inhomogeneities on scales up to the particle horizon will be damped out near the Planck time. Perturbations on scales larger than the horizon are explicitly shown to yield no created pairs. The results generalize to inhomogeneous spacetimes several earlier studies of pair creation in homogeneous anisotropic cosmologies

  11. On solutions of Einstein and Einstein-Yang-Mills equations with (maximal) conformal subsymmetries

    International Nuclear Information System (INIS)

    Sinzinkayo, S.; Demaret, J.

    1985-01-01

    The maximal subgroups of the conformal group (which have in common as a subgroup the group of pure spatial rotations) are considered as isometry groups of conformally flat space-times. The corresponding cosmological solutions of Einstein's field equations are identified. For each of them, the possibility is investigated that it could be generated by an SU(2) Yang-Mills field built, via the Corrigan-Fairlie-'t Hooft-Wilczek ansatz, from a scalar field identical with the square root of the conformal factor defining the space-time metric tensor. In particular, the Einstein cosmological model can be generated in this manner, but in the framework of strong gravity only, a micro-Einstein universe being then viewed as a possible model for a hadron. (author)

  12. Fuel effects on the stability of turbulent flames with compositionally inhomogeneous inlets

    KAUST Repository

    Guiberti, T. F.

    2016-10-11

    This paper reports an analysis of the influence of fuels on the stabilization of turbulent piloted jet flames with inhomogeneous inlets. The burner is identical to that used earlier by the Sydney Group and employs two concentric tubes within the pilot stream. The inner tube, carrying fuel, can be recessed, leading to a varying degree of inhomogeneity in mixing with the outer air stream. Three fuels are tested: dimethyl ether (DME), liquefied petroleum gas (LPG), and compressed natural gas (CNG). It is found that improvement in flame stability at the optimal compositional inhomogeneity is highest for CNG and lowest for DME. Three possible reasons for this different enhancement in stability are investigated: mixing patterns, pilot effects, and fuel chemistry. Numerical simulations realized in the injection tube highlight similarities and differences in the mixing patterns for all three fuels and demonstrate that mixing cannot explain the different stability gains. Changing the heat release rates from the pilot affects the three fuels in similar ways and this also implies that the pilot stream is unlikely to be responsible for the observed differences. Fuel reactivity is identified as a key factor in enhancing stability at some optimal compositional inhomogeneity. This is confirmed by inference from joint images of PLIF-OH and PLIF-CHO, collected at a repetition rate of 10kHz in turbulent flames of DME, and from one-dimensional calculations of laminar flames using detailed chemistry for DME, CNG, and LPG.

  13. Elements of Dynamics of a One-Dimensional Trapped Bose-Einstein Condensate Excited by a Time-Dependent Dimple: A Lagrangian Variational Approach

    Science.gov (United States)

    Sakhel, Asaad R.; Sakhel, Roger R.

    2018-02-01

    We examine the dynamics of a one-dimensional harmonically trapped Bose-Einstein condensate (BEC), induced by the addition of a dimple trap whose depth oscillates with time. For this purpose, the Lagrangian variational method (LVM) is applied to provide the required analytical equations. The goal is to provide an analytical explanation for the quasiperiodic oscillations of the BEC size at resonance, that is additional to the one given by Adhikari (J Phys B At Mol Opt Phys 36:1109, 2003). It is shown that LVM is able to reproduce instabilities in the dynamics along the same lines outlined by Lellouch et al. (Phys Rev X 7:021015, 2017). Moreover, it is found that at resonance the energy dynamics display ordered oscillations, whereas at off-resonance they tend to be chaotic. Further, by using the Poincare-Lindstedt method to solve the LVM equation of motion, the resulting solution is able to reproduce the quasiperiodic oscillations of the BEC.

  14. Multistable selection equations of pattern formation type in the case of inhomogeneous growth rates: With applications to two-dimensional assignment problems

    International Nuclear Information System (INIS)

    Frank, T.D.

    2011-01-01

    We study the stability of solutions of a particular type of multistable selection equations proposed by Starke, Schanz and Haken in the case of an inhomogeneous spectrum of growth parameters. We determine how the stability of feasible solutions depends on the inhomogeneity of the spectrum. We show that the strength of the competitive interaction between feasible solutions can act as a control parameter that induces bifurcations reducing the degree of multistability. - Research highlights: → Feasible solutions can be stable in the case of inhomogeneous growth parameters. → Changing coupling strength can induce bifurcations of feasible solutions. → Optimal solutions are obtained when selected winnings are relatively large.

  15. Einstein's Jury The Race to Test Relativity

    CERN Document Server

    Crelinsten, Jeffrey

    2006-01-01

    Einstein's Jury is the dramatic story of how astronomers in Germany, England, and America competed to test Einstein's developing theory of relativity. Weaving a rich narrative based on extensive archival research, Jeffrey Crelinsten shows how these early scientific debates shaped cultural attitudes we hold today. The book examines Einstein's theory of general relativity through the eyes of astronomers, many of whom were not convinced of the legitimacy of Einstein's startling breakthrough. These were individuals with international reputations to uphold and benefactors and shareholders to p

  16. Piecewise linear manifolds: Einstein metrics and Ricci flows

    International Nuclear Information System (INIS)

    Schrader, Robert

    2016-01-01

    This article provides an attempt to extend concepts from the theory of Riemannian manifolds to piecewise linear (p.l.) spaces. In particular we propose an analogue of the Ricci tensor, which we give the name of an Einstein vector field . On a given set of p.l. spaces we define and discuss (normalized) Einstein flows. p.l. Einstein metrics are defined and examples are provided. Criteria for flows to approach Einstein metrics are formulated. Second variations of the total scalar curvature at a specific Einstein space are calculated. (paper)

  17. Einstein's universe

    CERN Document Server

    Calder, Nigel

    1979-01-01

    This brilliantly written book unlocks the astounding implications of Einstein's revolutionary theories on the nature of science, time and motion. It far surpasses any previous explanation of Relativity for laymen.

  18. Tailoring diffuse reflectance of inhomogeneous films containing microplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Slovick, Brian A., E-mail: brian.slovick@sri.com; Baker, John M.; Flom, Zachary; Krishnamurthy, Srini [Applied Optics Laboratory, SRI International, Menlo Park, California 94025 (United States)

    2015-10-05

    We develop an analytical model for calculating the diffuse reflectance of inhomogeneous films containing aligned microplatelets with diameters much greater than the wavelength. The scattering parameters are derived by modeling the platelets as one-dimensional thin films, and the overall diffuse reflectance of the slab is calculated using the Kubelka-Munk model. Our model predicts that reflection minima and maxima arising from coherent interference within the platelets are preserved in the diffuse reflectance of the disordered slab. Experimental validation of the model is provided by reflectance measurements (0.3–15 μm) of a solid aerosol film of aligned hexagonal boron nitride platelets.

  19. The Adolescence of Relativity: Einstein, Minkowski, and the Philosophy of Space and Time

    Science.gov (United States)

    Dieks, Dennis

    An often repeated account of the genesis of special relativity tells us that relativity theory was to a considerable extent the fruit of an operationalist philosophy of science. Indeed, Einstein's 1905 paper stresses the importance of rods and clocks for giving concrete physical content to spatial and temporal notions. I argue, however, that it would be a mistake to read too much into this. Einstein's operationalist remarks should be seen as serving rhetoric purposes rather than as attempts to promulgate a particular philosophical position - in fact, Einstein never came close to operationalism in any of his philosophical writings. By focussing on what could actually be measured with rods and clocks Einstein shed doubt on the empirical status of a number of pre-relativistic concepts, with the intention to persuade his readers that the applicability of these concepts was not obvious. This rhetoric manoeuvre has not always been rightly appreciated in the philosophy of physics. Thus, the influence of operationalist misinterpretations, according to which associated operations strictly define what a concept means, can still be felt in present-day discussions about the conventionality of simultaneity.The standard story continues by pointing out that Minkowski in 1908 supplanted Einstein's approach with a realist spacetime account that has no room for a foundational role of rods and clocks: relativity theory became a description of a four-dimensional "absolute world." As it turns out, however, it is not at all clear that Minkowski was proposing a substantivalist position with respect to spacetime. On the contrary, it seems that from a philosophical point of view Minkowski's general position was not very unlike the one in the back of Einstein's mind. However, in Minkowski's formulation of special relativity it becomes more explicit that the content of spatiotemporal concepts relates to considerations about the form of physical laws. If accepted, this position has important

  20. Onsager Vortex Formation in Two-component Bose-Einstein Condensates

    Science.gov (United States)

    Han, Junsik; Tsubota, Makoto

    2018-06-01

    We numerically study the dynamics of quantized vortices in two-dimensional two-component Bose-Einstein condensates (BECs) trapped by a box potential. For one-component BECs in a box potential, it is known that quantized vortices form Onsager vortices, which are clusters of same-sign vortices. We confirm that the vortices of the two components spatially separate from each other — even for miscible two-component BECs — suppressing the formation of Onsager vortices. This phenomenon is caused by the repulsive interaction between vortices belonging to different components, hence, suggesting a new possibility for vortex phase separation.

  1. Conceptual Development of Einstein's Mass-Energy Relationship

    Science.gov (United States)

    Wong, Chee Leong; Yap, Kueh Chin

    2005-01-01

    Einstein's special theory of relativity was published in 1905. It stands as one of the greatest intellectual achievements in the history of human thought. Einstein described the equivalence of mass and energy as "the most important upshot of the special theory of relativity" (Einstein, 1919). In this paper, we will discuss the evolution of the…

  2. Series expansion of the modified Einstein Procedure

    Science.gov (United States)

    Seema Chandrakant Shah-Fairbank

    2009-01-01

    This study examines calculating total sediment discharge based on the Modified Einstein Procedure (MEP). A new procedure based on the Series Expansion of the Modified Einstein Procedure (SEMEP) has been developed. This procedure contains four main modifications to MEP. First, SEMEP solves the Einstein integrals quickly and accurately based on a series expansion. Next,...

  3. Guiding-center dynamics of vortex dipoles in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Middelkamp, S.; Schmelcher, P.; Torres, P. J.; Kevrekidis, P. G.; Frantzeskakis, D. J.; Carretero-Gonzalez, R.; Freilich, D. V.; Hall, D. S.

    2011-01-01

    A quantized vortex dipole is the simplest vortex molecule, comprising two countercirculating vortex lines in a superfluid. Although vortex dipoles are endemic in two-dimensional superfluids, the precise details of their dynamics have remained largely unexplored. We present here several striking observations of vortex dipoles in dilute-gas Bose-Einstein condensates, and develop a vortex-particle model that generates vortex line trajectories that are in good agreement with the experimental data. Interestingly, these diverse trajectories exhibit essentially identical quasiperiodic behavior, in which the vortex lines undergo stable epicyclic orbits.

  4. Mileva Maric Einstein vivre avec Albert Einstein

    CERN Document Server

    Milentijevic, Radmila

    2013-01-01

    Radmila Milentijevic n’est pas la première à écrire sur les relations entre le génial Albert Einstein et sa première épouse et précieuse collaboratrice durant ses années de recherches, la scientifique serbe Mileva Maric. Mais c’est la première fois qu’un ouvrage traite de cette idylle, puis de ce drame familial qui a duré près de cinquante années, sous une forme quasiment poétique, si rare dans l’historiographie scientifique.Professeur émérite d’histoire à l’université de New York, l’auteur propose ici une monographie riche et vivante, dévoilant une face cachée d’Albert Einstein, et faisant de sa compagne une figure historique de premier plan en même temps qu’un personnage romanesque dont le destin tragique ne laissera aucun lecteur indifférent.

  5. On the stability of Einstein static universe at background level in massive bigravity

    Directory of Open Access Journals (Sweden)

    M. Mousavi

    2017-06-01

    Full Text Available We study the static cosmological solutions and their stability at background level in the framework of massive bigravity theory with Friedmann–Robertson–Walker (FRW metrics. By the modification proposed in the cosmological equations subject to a perfect fluid we obtain new solutions interpreted as the Einstein static universe. It turns out that the non-vanishing size of initial scale factor of Einstein static universe depends on the non-vanishing three-dimensional spatial curvature of FRW metrics and also the graviton's mass. By dynamical system approach and numerical analysis, we find that the extracted solutions for closed and open universes can be stable for some viable ranges of equation of state parameter, viable values of fraction of two scale factors, and viable values of graviton's mass obeying the hierarchy m<

  6. Cooperative ring exchange and quantum melting of vortex lattices in atomic Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Ghosh, Tarun Kanti; Baskaran, G.

    2004-01-01

    Cooperative ring exchange is suggested as a mechanism of quantum melting of vortex lattices in a rapidly rotating quasi-two-dimensional atomic Bose-Einstein condensate (BEC). Using an approach pioneered by Kivelson et al. [Phys. Rev. Lett. 56, 873 (1986)] for the fractional quantized Hall effect, we calculate the condition for quantum melting instability by considering large-correlated ring exchanges in a two-dimensional Wigner crystal of vortices in a strong 'pseudomagnetic field' generated by the background superfluid Bose particles. BEC may be profitably used to address issues of quantum melting of a pristine Wigner solid devoid of complications of real solids

  7. Gauss-Bonnet actions and their dimensionally reduced descendants

    International Nuclear Information System (INIS)

    Mueller-Hoissen, F.

    1989-01-01

    A brief introduction to Gauss-Bonnet type generalizations of the Einstein-Hilbert gravity action in more than four dimensions is given and the structure of associated (effective) theories obtained by dimensional reduction is discussed. (author)

  8. Bose-Einstein condensation in a decorated lattice: an application to the problem of supersolid He

    International Nuclear Information System (INIS)

    Fil, D.V.; Shevchenko, S.I.

    2008-01-01

    The Bose-Einstein condensation of vacancies in a three-dimensional decorated lattice is considered. The model describes possible scenario of superfluidity of solid helium, caused by the presence of zero-point vacancies in a dislocation network. It is shown that the temperature of Bose-Einstein condensation decreases under increase of the length of the network segments, and the law of decrease depends essentially on the properties of the vertices of the network. If the vertices correspond to barriers with a small transparency, the critical temperature varies inversely as the square of the length of the segment. On the contrary, if the vertices correspond to traps for the vacancies (it is energetically preferable for the vacancies to be localized at the vertices), an exponential lowering of the temperature of transition takes place. The highest temperature of Bose-Einstein condensation is reached in the intermediate case of vertices with large transparency, but in the absence of tendency of localization at them. In the latter case the critical temperature is inversely as the length of the segment

  9. Conformal symmetries of the Einstein-Hilbert action on horizons of stationary and axisymmetric black holes

    International Nuclear Information System (INIS)

    Mei Jianwei

    2012-01-01

    We suggest a way to study possible conformal symmetries on black hole horizons. We do this by carrying out a Kaluza-Klein-like reduction of the Einstein-Hilbert action along the ignorable coordinates of stationary and axisymmetric black holes. Rigid diffeomorphism invariance of the m-ignorable coordinates then becomes a global SL(m, R) gauge symmetry of the reduced action. Related to each non-vanishing angular velocity, there is a particular SL(2, R) subgroup, which can be extended to the Witt algebra on the black hole horizons. The classical Einstein-Hilbert action thus has k-copies of infinite-dimensional conformal symmetries on a given black hole horizon, with k being the number of non-vanishing angular velocities of the black hole. (paper)

  10. MATHEMATICAL MODELING OF UNSTEADY FILTRATION OF ELASTIC LIQUID IN AN INHOMOGENEOUS RESERVOIR

    Directory of Open Access Journals (Sweden)

    A. G. Balamirzoev

    2013-01-01

    Full Text Available The article considers the possibility of numerical solution of two-dimensional problem of unsteady filtration in an inhomogeneous elastic liquid reservoir. The problem of finding the distribution of the pressure p(x,y,t in the process of exploitation of deposits is reduced to the solution of a differential equation of parabolic type with variable coefficients. The problem is solved approximately by using the method of finite differences.

  11. Einstein and the "Crucial" Experiment

    Science.gov (United States)

    Holton, Gerald

    1969-01-01

    Examines the widespread view that it was the crucial Michelson-Morley experiment that led Einstein to formulate the special relativity theory. From Einstein's writings, evidence is presented that no such direct genetic connection exists. The author suggests that the historian of science must resist the experimenticist's fallacy of imposing a…

  12. 2011 Einstein Fellows Chosen

    Science.gov (United States)

    2011-03-01

    ASA has announced the selection of the 2011 Einstein Fellows who will conduct research related to NASA's Physics of the Cosmos program, which aims to expand our knowledge of the origin, evolution, and fate of the Universe. The Einstein Fellowship provides support to the awardees for three years, and the Fellows may pursue their research at a host university or research center of their choosing in the United States. The new Fellows will begin their programs in the fall of 2011. The new Einstein Fellows and their host institutions are listed below: * Akos Bogdan (Smithsonian Astrophysical Observatory, Cambridge, Mass.) * Samuel Gralla (University of Maryland, College Park, Md.) * Philip Hopkins (University of California at Berkeley) * Matthew Kunz (Princeton University, Princeton, N.J.) * Laura Lopez (Massachusetts Institute of Technology, Cambridge, Mass.) * Amy Reines (National Radio Astronomy Observatory, Charlottesville, Virg.) * Rubens Reis (University of Michigan, Ann Arbor) * Ken Shen (Lawrence Berkeley National Laboratory, Berkeley, Calif.) * Jennifer Siegal-Gaskins (California Institute of Technology, Pasadena) * Lorenzo Sironi (Harvard University, Cambridge, Mass.) NASA has two other astrophysics theme-based fellowship programs: the Sagan Fellowship Program, which supports research into exoplanet exploration, and the Hubble Fellowship Program, which supports research into cosmic origins. More information on the Einstein Fellowships can be found at: http://cxc.harvard.edu/fellows/

  13. Exact Solutions for Einstein's Hyperbolic Geometric Flow

    International Nuclear Information System (INIS)

    He Chunlei

    2008-01-01

    In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow

  14. Spatially inhomogeneous barrier height in graphene/MoS2 Schottky junctions

    Science.gov (United States)

    Tomer, Dushyant; Rajput, Shivani; Li, Lian

    Graphene interfaced with a semiconductor forms a Schottky junction with rectifying properties. In this study, graphene Schottky junctions are fabricated by transferring CVD monolayer graphene on mechanically exfoliated MoS2 multilayers. The forward bias current-voltage characteristics are measured in the temperature range of 210-300 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature. Such behavior is attributed to Schottky barrier inhomogeneities possibly due to graphene ripples and ridges at the junction interface as suggested by atomic force microscopy. Assuming a Gaussian distribution of the barrier height, mean barrier of 0.97+/-0.10 eV is found for the graphene MoS2 junction. Our findings provide significant insight on the barrier height inhomogeneities in graphene/two dimensional semiconductor Schottky junctions. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Award No. DEFG02-07ER46228.

  15. Modulated electromagnetic fields in inhomogeneous media, hyperbolic pseudoanalytic functions, and transmutations

    Energy Technology Data Exchange (ETDEWEB)

    Khmelnytskaya, Kira V., E-mail: khmel@uaq.edu.mx [Faculty of Engineering, Autonomous University of Queretaro, Cerro de las Campanas s/n, col. Las Campanas Querétaro, Qro. CP 76010 (Mexico); Kravchenko, Vladislav V., E-mail: vkravchenko@math.cinvestav.edu.mx; Torba, Sergii M., E-mail: storba@math.cinvestav.edu.mx [Department of Mathematics, CINVESTAV del IPN, Unidad Querétaro, Libramiento Norponiente # 2000 Fracc. Real de Juriquilla Querétaro, Qro., CP 76230 (Mexico)

    2016-05-15

    The time-dependent Maxwell system describing electromagnetic wave propagation in inhomogeneous isotropic media in the one-dimensional case reduces to a Vekua-type equation for bicomplex-valued functions of a hyperbolic variable, see Kravchenko and Ramirez [Adv. Appl. Cliord Algebr. 21(3), 547–559 (2011)]. Using this relation, we solve the problem of the transmission through an inhomogeneous layer of a normally incident electromagnetic time-dependent plane wave. The solution is written in terms of a pair of Darboux-associated transmutation operators [Kravchenko, V. V. and Torba, S. M., J. Phys. A: Math. Theor. 45, 075201 (2012)], and combined with the recent results on their construction [Kravchenko, V. V. and Torba, S. M., Complex Anal. Oper. Theory 9, 379-429 (2015); Kravchenko, V. V. and Torba, S. M., J. Comput. Appl. Math. 275, 1–26 (2015)] can be used for efficient computation of the transmitted modulated signals. We develop the corresponding numerical method and illustrate its performance with examples.

  16. Quantum theory and Einstein's general relativity

    International Nuclear Information System (INIS)

    Borzeszkowski, H.H.v.; Treder, H.J.

    1984-01-01

    The paper concerns Einstein's general relativity, wave mechanics and the quantization of Einstein's gravitation equations. The principle of equivalence and its association with both wave mechanics and quantum gravity, is discussed. (U.K.)

  17. The world-line. Albert Einstein and modern physics; Die Weltlinie. Albert Einstein und die moderne Physik

    Energy Technology Data Exchange (ETDEWEB)

    Maalampi, Jukka [Jyvaeskylae Univ. (Finland). Dept. of Physics

    2008-07-01

    This book is an entertaining and formula-free presentation of modern physics from the 19th century to present. The life of Albert Einstein and his scientific works are drawn as red fathom through the text. The author explains central terms and results of modern physics in populary-scientific form from the historical perspective. To the reader in humorous form an imagination is mediated how modern physics has been developed. We learn from the exciting effects of the ether, we hear from faraday and magnetic needles, from Maxwell's prediction of the electromagnetic waves, from heinrich Hertz and from the photoelectric effect. Was the Michelson-Morley experiment a measurement success or an unsuccess? Why has Einstein abandoned the ether? How has Einstein in the miraculous year 1905 revolutionated physics and why he has begged Newton for excusement? Exist atoms? What is motion? What is light and what is to be understood under ''now'' and ''here''? Light deviation or non-deviation? How act the tidal forces? And above all: How has Einstein answered these questions. We meet Poincare, Lorentz and Hilbert, Boltzmann and Bohr, Minkowski, Planck, de Broglie, Hubble and Weyl, Gamow, Hahn and Meitner, Kapiza and Landau, Fermi and many other famous scientists. What had Eddington against Chandrasekhar and what had Einstein against black holes? Why should space tourists and dream tourists make holiday not on the Loch Ness but on the safe side of a black hole? Why inveighed Pauli against Einstein? Is the concern with the atomic-bomb formula right? Smeared matter, big bang and cosmic background radiation, gravitational waves and double pulsars, the cosmological constant and the expansion of the universe are further themes, which keep the reader in breath and let no mental vacuum arise. [German] Das Buch ist eine unterhaltsame und formelfreie Darstellung der modernen Physik vom 19. Jahrhundert bis zur Gegenwart. Das Leben Albert Einsteins

  18. Albert Einstein's Magic Mountain: An Aarau Education*

    Science.gov (United States)

    Hunziker, Herbert

    2015-03-01

    For economic reasons, the electrotechnical factory J. Einstein & Cie. (co-owned by Albert Einstein's father Hermann) had to be closed in the summer of 1894. While Albert's parents emigrated to Italy to build a new existence, he remained in Munich to complete his studies at the Gymnasium. Left behind, however, he had a difficult time with what he considered the rigid educational practices at the Munich Luitpold-Gymnasium and quit without a diploma. The present article discusses Einstein's richly winding path to the Aargau Cantonal School (Switzerland), especially its history and educational philosophy during the time of his stay in Aarau. There, Einstein met some outstanding teachers, who could serve him as models of scholars and human beings. In spite of Einstein's distinct independence of mind, these personalities may well have had a significant influence on the alignment of his inner compass.

  19. Albert Einstein: A Biographical Sketch

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 4. Albert Einstein: A Biographical Sketch. Maja Winteler-Einstein. Reflections Volume 5 Issue 4 April 2000 pp 111-120. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/04/0111-0120 ...

  20. Scroll-wave dynamics in human cardiac tissue: lessons from a mathematical model with inhomogeneities and fiber architecture.

    Directory of Open Access Journals (Sweden)

    Rupamanjari Majumder

    2011-04-01

    Full Text Available Cardiac arrhythmias, such as ventricular tachycardia (VT and ventricular fibrillation (VF, are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study.

  1. Einstein's Materialism and Modern Tests of Quantum Mechanics

    Science.gov (United States)

    Vigier, J. P.

    After a presentation of Einstein's and Bohr's antagonistic point of view on the interpretation of Quantum Mechanics an illustration of their conflicting positions in the particular case of Young's double slit experiment is presented. It is then shown that in their most recent form (i. e. time dependent neutron interferometry) these experiments suggest (if one accepts absolute energymomentum conservation in all individual microprocesses) that Einstein was right in the Bohr-Einstein controversy.Translated AbstractEinsteins Materialismus und heutige Tests der QuantenmechanikNach einer Darstellung von Einsteins und Bohrs antagonistischen Standpunkten in der Interpretation der Quantenmechanik werden ihre widersprüchlichen Positionen im speziellen Fall des Youngschen Doppelspaltexperiments dargestellt. Es wird dann gezeigt, daß diese Experimente in ihrer neuesten Form (d. h. zeitabhängige Neutroneninterferometrie) Einstein in der Bohr-Einsteinkontroverse recht gaben (wenn man absolute Energie-Impulserhaltung bei allen individuellen Mikroprozessen annimmt).

  2. Perturbed soliton excitations in inhomogeneous DNA

    International Nuclear Information System (INIS)

    Daniel, M.; Vasumathi, V.

    2005-05-01

    We study nonlinear dynamics of inhomogeneous DNA double helical chain under dynamic plane-base rotator model by considering angular rotation of bases in a plane normal to the helical axis. The DNA dynamics in this case is found to be governed by a perturbed sine-Gordon equation when taking into account the interstrand hydrogen bonding energy and intrastrand inhomogeneous stacking energy and making an analogy with the Heisenberg model of the Hamiltonian for an inhomogeneous anisotropic spin ladder with ferromagnetic legs and antiferromagentic rung coupling. In the homogeneous limit the dynamics is governed by the kink-antikink soliton of the sine-Gordon equation which represents the formation of open state configuration in DNA double helix. The effect of inhomogeneity in stacking energy in the form of localized and periodic variations on the formation of open states in DNA is studied under perturbation. The perturbed soliton is obtained using a multiple scale soliton perturbation theory by solving the associated linear eigen value problem and constructing the complete set of eigen functions. The inhomogeneity in stacking energy is found to modulate the width and speed of the soliton depending on the nature of inhomogeneity. Also it introduces fluctuations in the form of train of pulses or periodic oscillation in the open state configuration (author)

  3. Revisiting Einstein's brain in Brain Awareness Week.

    Science.gov (United States)

    Chen, Hao; Chen, Su; Zeng, Lidan; Zhou, Lin; Hou, Shengtao

    2014-10-01

    Albert Einstein's brain has long been an object of fascination to both neuroscience specialists and the general public. However, without records of advanced neuro-imaging of his brain, conclusions regarding Einstein's extraordinary cognitive capabilities can only be drawn based on the unique external features of his brain and through comparison of the external features with those of other human brain samples. The recent discovery of 14 previously unpublished photographs of Einstein's brain taken at unconventional angles by Dr. Thomas Stoltz Harvey, the pathologist, ignited a renewed frenzy about clues to explain Einstein's genius. Dr. Dean Falk and her colleagues, in their landmark paper published in Brain (2013; 136:1304-1327), described in such details about the unusual features of Einstein's brain, which shed new light on Einstein's intelligence. In this article, we ask what are the unique structures of his brain? What can we learn from this new information? Can we really explain his extraordinary cognitive capabilities based on these unique brain structures? We conclude that studying the brain of a remarkable person like Albert Einstein indeed provides us a better example to comprehensively appreciate the relationship between brain structures and advanced cognitive functions. However, caution must be exercised so as not to over-interpret his intelligence solely based on the understanding of the surface structures of his brain.

  4. Bose–Einstein condensation temperature of finite systems

    Science.gov (United States)

    Xie, Mi

    2018-05-01

    In studies of the Bose–Einstein condensation of ideal gases in finite systems, the divergence problem usually arises in the equation of state. In this paper, we present a technique based on the heat kernel expansion and zeta function regularization to solve the divergence problem, and obtain the analytical expression of the Bose–Einstein condensation temperature for general finite systems. The result is represented by the heat kernel coefficients, where the asymptotic energy spectrum of the system is used. Besides the general case, for systems with exact spectra, e.g. ideal gases in an infinite slab or in a three-sphere, the sums of the spectra can be obtained exactly and the calculation of corrections to the critical temperatures is more direct. For a system confined in a bounded potential, the form of the heat kernel is different from the usual heat kernel expansion. We show that as long as the asymptotic form of the global heat kernel can be found, our method works. For Bose gases confined in three- and two-dimensional isotropic harmonic potentials, we obtain the higher-order corrections to the usual results of the critical temperatures. Our method can also be applied to the problem of generalized condensation, and we give the correction of the boundary on the second critical temperature in a highly anisotropic slab.

  5. Simple inhomogeneous cosmological (toy) models

    International Nuclear Information System (INIS)

    Isidro, Eddy G. Chirinos; Zimdahl, Winfried; Vargas, Cristofher Zuñiga

    2016-01-01

    Based on the Lemaître-Tolman-Bondi (LTB) metric we consider two flat inhomogeneous big-bang models. We aim at clarifying, as far as possible analytically, basic features of the dynamics of the simplest inhomogeneous models and to point out the potential usefulness of exact inhomogeneous solutions as generalizations of the homogeneous configurations of the cosmological standard model. We discuss explicitly partial successes but also potential pitfalls of these simplest models. Although primarily seen as toy models, the relevant free parameters are fixed by best-fit values using the Joint Light-curve Analysis (JLA)-sample data. On the basis of a likelihood analysis we find that a local hump with an extension of almost 2 Gpc provides a better description of the observations than a local void for which we obtain a best-fit scale of about 30 Mpc. Future redshift-drift measurements are discussed as a promising tool to discriminate between inhomogeneous configurations and the ΛCDM model.

  6. BOOK REVIEW: Once Upon Einstein

    Science.gov (United States)

    Giannetto, E.

    2007-07-01

    Thibault Damour is a theoretical physicist, and a member of the French Academy of Sciences. This book is the translation, by Eric Novak, of the original French Si Einstein m'etait conté (Le Cherche Midi, 2005). It is neither a book of theoretical physics nor a biography of Einstein. It is not a book of history nor philosophy of science. In Damour's words it was written to encourage the reader to share with Einstein `those times when he understood some part of the hidden order of the universe'. It is a relatively short book, written in a very fluent style, but it deals with all the major problems and achievements of Einstein's works. Starting from special relativity, it continues with general relativity, quantum theories, unified field theory and a brief overview of the actual research related to Einstein's legacy. It is essentially a popular science book with some related exploration in history and philosophy to interpret physical theories. The most important problem discussed by Damour is the nature of time. On this subject, there is a very interesting short paragraph (pp 33--35) dedicated to the reception of the relativity idea by the great writer Marcel Proust and its counterpart within À la Recherche du Temps Perdu. A correct discussion of the implications of a relativistic time should imply the distinction of the different possible interpretations of this concept. Damour seems to conclude that only one interpretation is possible: `time does not exist', flowing of time is an illusion. One has to know that Einstein's ideas on time were related to Spinoza's perspective of a knowledge sub specie aeternitatis. However, other interpretations are possible and are related to the idea of time as an actuality. Damour speaks about the controversy between Einstein and Bergson, but Bergson is considered as a philosopher who did not understand relativity. This philosophical problem of relativistic time is indeed related to a historical problem briefly discussed by Damour

  7. Einstein 1905-1955: His Approach to Physics

    Science.gov (United States)

    Damour, Thibault

    We review Einstein's epistemological conceptions, and indicate their philosophical roots. The particular importance of the ideas of Hume, Kant, Mach, and Poincaré is highlighted. The specific characteristics of Einstein's approach to physics are underlined. Lastly, we consider the practical application of Einstein's methodological principles to the two theories of relativity, and to quantum theory. We emphasize a Kantian approach to quantum theory.

  8. Einstein's first paper on relativity

    International Nuclear Information System (INIS)

    Schwartz, H.M.

    1977-01-01

    Because of its exceptional significance in the history of great ideas in science, Einstein's first paper on relativity, especially its first part, deserves a more careful translation into English than presently exists. A new and annotated translation of this first part is presented here, together with a brief discussion of certain aspects of Einstein's paper

  9. Einstein and a century of time

    Science.gov (United States)

    Raine, D. J.

    2005-09-01

    In a world overabundant in information, a subject is defined by its iconography. Physics is the falling apple, the planetary atom, the laser, the mushroom cloud and the image of the later Einstein - images that represent, respectively, gravity, atomic theory, quantum theory, mass-energy and the scientist who had a hand in all four. It is therefore appropriate that World Year of Physics is called Einstein Year in the UK. Of course one can argue that progress in science depends on the contributions of many people; that there are other geniuses in physics, even some colourful personalities. Nevertheless there are fundamental reasons why Einstein's early achievements stand out even in their company. When at last the thought came to him that 'time itself was suspect', Einstein had found a new insight into the nature of the physical universe. It is this: that the universal properties of material objects tell us about the nature of space and time, and it is through these properties, not philosophical logic or common sense, that we discover the structure of spacetime. The later Einstein turned this successful formula on its head and sought to use the properties of spacetime to define those of material objects, thereby seeking to abolish matter entirely in favour of geometry. Before I introduce this special feature of European Journal of Physics I will say a few words about what is not here. Like all great geniuses Einstein can be seen as the climax of what went before him and the initiation of what was to follow. Looking back we can see the influence of Mach's positivism, according to which the role of science is to relate observations to other observations; hence only observations can tell us what is 'real'. But Einstein also grew up with the family electromechanical businesses, which testifies to the reality of the Maxwellian electromagnetic fields: thus only theory can tell us what is real! As is well known, Einstein himself refused to accept the full consequences of

  10. Correct Linearization of Einstein's Equations

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2006-06-01

    Full Text Available Regularly Einstein's equations can be reduced to a wave form (linearly dependent from the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel's symbols. As shown here, the origin of the problem is that one uses the general covariant theory of measurement. Here the wave form of Einstein's equations is obtained in the terms of Zelmanov's chronometric invariants (physically observable projections on the observer's time line and spatial section. The obtained equations depend on solely the second derivatives even if gravitation, the space rotation and Christoffel's symbols. The correct linearization proves: the Einstein equations are completely compatible with weak waves of the metric.

  11. NCEL: two dimensional finite element code for steady-state temperature distribution in seven rod-bundle

    International Nuclear Information System (INIS)

    Hrehor, M.

    1979-01-01

    The paper deals with an application of the finite element method to the heat transfer study in seven-pin models of LMFBR fuel subassembly. The developed code NCEL solves two-dimensional steady state heat conduction equation in the whole subassembly model cross-section and enebles to perform the analysis of thermal behaviour in both normal and accidental operational conditions as eccentricity of the central rod or full or partial (porous) blockage of some part of the cross-flow area. The heat removal is simulated by heat sinks in coolant under conditions of subchannels slug flow approximation

  12. FDTD analysis of reflection of electromagnetic wave from a conductive plane covered with inhomogeneous time-varying plasma

    International Nuclear Information System (INIS)

    Liu Shaobin; Mo Jinjun; Yuan Naichang

    2003-01-01

    A finite-difference time-domain (FDTD) algorithm is applied to study the electro-magnetic reflection of conduction plane covered with inhomogeneous time-varying plasma, homogeneous plasma and inhomogeneous plasma. The collisions frequency of plasma is a function of electron density and plasma temperature. The number density profile follows a parabolic function. A discussion on the effect of various plasma parameters on the reflection coefficient is presented. Under the one-dimensional case, transient electromagnetic propagation through various plasmas has been obtained, and the reflection coefficients of EM wave through various plasma are calculated under different conditions. The results illustrate that a plasma cloaking system can successfully absorb the incident EM wave

  13. Books on Einstein--Collectors' Delight

    Science.gov (United States)

    Khoon, Koh Aik; Jalal, Azman; Abd-Shukor, R.; Yatim, Baharudin; Talib, Ibrahim Abu; Daud, Abdul Razak; Samat, Supian

    2009-01-01

    A survey of thirteen books on Einstein is presented. Its gives an idea on how much is written about the man and how frequent are the publications. The year 2005 saw the most publications. It is the centenary for the Miraculous Year. Interestingly some books can just sustain their readers' interest with just words. Einstein comes alive with the…

  14. Scattering and emission from inhomogeneous vegetation canopy and alien target beneath by using three-dimensional vector radiative transfer (3D-VRT) equation

    International Nuclear Information System (INIS)

    Jin Yaqiu; Liang Zichang

    2005-01-01

    To solve the 3D-VRT equation for the model of spatially inhomogeneous scatter media, the finite enclosure of the scatter media is geometrically divided, in both vertical z and transversal (x,y) directions, to form very thin multi-boxes. The zeroth order emission, first-order Mueller matrix of each thin box and an iterative approach of high-order radiative transfer are applied to derive high-order scattering and emission of whole inhomogeneous scatter media. Numerical results of polarized brightness temperature at microwave frequency and under different radiometer resolutions from inhomogeneous scatter model such as vegetation canopy and alien target beneath canopy are simulated and discussed

  15. Multicolour Observations, Inhomogeneity & Evolution

    OpenAIRE

    Hellaby, Charles

    2000-01-01

    We propose a method of testing source evolution theories that is independent of the effects of inhomogeneity, and thus complementary to other studies of evolution. It is suitable for large scale sky surveys, and the new generation of large telescopes. In an earlier paper it was shown that basic cosmological observations - luminosity versus redshift, area distance versus redshift and number counts versus redshift - cannot separate the effects of cosmic inhomogeneity, cosmic evolution and sourc...

  16. Einstein pictures the x-ray sky

    International Nuclear Information System (INIS)

    Hartline, B.K.

    1979-01-01

    The second High Energy Astronomy Observatory (HEAO-2, Einstein) is revolutionizing x-ray astronomy just as its namesake revolutionized physics. Earlier x-ray observatories, including HEAO-1, were designed to scan the sky for x-ray emitters. With Einstein, the challenge has shifted from discovering x-ray sources to understanding the processes producing the x-rays. But having 500 times the sensitivity of previous detectors, Einstein makes more than its share of discoveries, too. For example, it sees distant quasars and clusters of galaxies that can barely be detected by the largest optical telescopes

  17. A student's guide to Einstein's major papers

    CERN Document Server

    Kennedy, Robert E

    2012-01-01

    Our understanding of the physical universe underwent a revolution in the early twentieth century - evolving from the classical physics of Newton, Galileo, and Maxwell to the modern physics of relativity and quantum mechanics. The dominant figure in this revolutionary change was Albert Einstein. In a single year, 1905, Einstein produced breakthrough works in three areas of physics: on the size and the effects of atoms; on the quantization of the electromagnetic field; and on the special theory of relativity. In 1916 he produced a fourth breakthrough work, the general theory of relativity. A Student's Guide to Einstein's Major Papers focuses on Einstein's contributions, setting his major works into their historical context, and then takes the reader through the details of each paper, including the mathematics. This book helps the reader appreciate the simplicity and insightfulness of Einstein's ideas and how revolutionary his work was, and locate it in the evolution of scientific thought begun by the ancient...

  18. Secrets of the old one Einstein, 1905

    CERN Document Server

    Bernstein, Jeremy

    2006-01-01

    In March 1905, at approximately eight week intervals, the Editor of the noted German physics journal, Annalen der Physik, received three hand-written manuscripts from a relatively unknown patent examiner in Bern, Switzerland. This patent examiner was the twenty-six year old Albert Einstein and the three papers would set the agenda for twentieth century physics. A fourth short paper was received in September 1905 and contained Einstein's derivation of the formula E=mc^2. These papers changed our lives in the twentieth century and beyond. While to a professional physicist the mathematics in these papers are quite straight forward, the ideas behind them are not. In fact, none of Einstein's contemporaries fully understood what he had done. In SECRETS OF THE OLD ONE: Einstein, 1905, renowned science writer Jeremy Bernstein makes these ideas accessible to a general reader with a limited background in mathematics. After reading this book, you will understand why 1905 is often designated as Einstein's miracle year.

  19. OBSERVABLE DEVIATIONS FROM HOMOGENEITY IN AN INHOMOGENEOUS UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Giblin, John T. Jr. [Department of Physics, Kenyon College, 201 N College Road Gambier, OH 43022 (United States); Mertens, James B.; Starkman, Glenn D. [CERCA/ISO, Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States)

    2016-12-20

    How does inhomogeneity affect our interpretation of cosmological observations? It has long been wondered to what extent the observable properties of an inhomogeneous universe differ from those of a corresponding Friedmann–Lemaître–Robertson–Walker (FLRW) model, and how the inhomogeneities affect that correspondence. Here, we use numerical relativity to study the behavior of light beams traversing an inhomogeneous universe, and construct the resulting Hubble diagrams. The universe that emerges exhibits an average FLRW behavior, but inhomogeneous structures contribute to deviations in observables across the observer’s sky. We also investigate the relationship between angular diameter distance and the angular extent of a source, finding deviations that grow with source redshift. These departures from FLRW are important path-dependent effects, with implications for using real observables in an inhomogeneous universe such as our own.

  20. OBSERVABLE DEVIATIONS FROM HOMOGENEITY IN AN INHOMOGENEOUS UNIVERSE

    International Nuclear Information System (INIS)

    Giblin, John T. Jr.; Mertens, James B.; Starkman, Glenn D.

    2016-01-01

    How does inhomogeneity affect our interpretation of cosmological observations? It has long been wondered to what extent the observable properties of an inhomogeneous universe differ from those of a corresponding Friedmann–Lemaître–Robertson–Walker (FLRW) model, and how the inhomogeneities affect that correspondence. Here, we use numerical relativity to study the behavior of light beams traversing an inhomogeneous universe, and construct the resulting Hubble diagrams. The universe that emerges exhibits an average FLRW behavior, but inhomogeneous structures contribute to deviations in observables across the observer’s sky. We also investigate the relationship between angular diameter distance and the angular extent of a source, finding deviations that grow with source redshift. These departures from FLRW are important path-dependent effects, with implications for using real observables in an inhomogeneous universe such as our own.

  1. Four-dimensional anti-de Sitter toroidal black holes from a three-dimensional perspective: Full complexity

    International Nuclear Information System (INIS)

    Zanchin, Vilson T.; Kleber, Antares; Lemos, Jose P.S.

    2002-01-01

    The dimensional reduction of black hole solutions in four-dimensional (4D) general relativity is performed and new 3D black hole solutions are obtained. Considering a 4D spacetime with one spacelike Killing vector, it is possible to split the Einstein-Hilbert-Maxwell action with a cosmological term in terms of 3D quantities. Definitions of quasilocal mass and charges in 3D spacetimes are reviewed. The analysis is then particularized to the toroidal charged rotating anti-de Sitter black hole. The reinterpretation of the fields and charges in terms of a three-dimensional point of view is given in each case, and the causal structure analyzed

  2. Einstein's Third Paradise%爱因斯坦的第三乐园

    Institute of Scientific and Technical Information of China (English)

    Gerald Holton

    2005-01-01

    @@ Ⅰ Historians of modern science have good reasons to be grateful to Paul Arthur Schilpp, professor of philosophy and Methodist clergyman but better known as the editor of a series of volumes on" Living Philosophers", including several on scientist-philosophers. His motto was:"The asking of questions about a philosopher's meaning while he is alive." And to his everlasting credit, he persuaded Albert Einstein to do what he had resisted all his years: to sit down to write, in 1946 at age sixty-seven, an extensive autobiography-forty-five pages long in print.

  3. Einstein's Mirror

    Science.gov (United States)

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-10-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity.1-4 The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a constant velocity.5 Einstein showed an intriguing fact that the usual law of reflection would not hold in the case of a uniformly moving mirror, that is, the angles of incidence and reflection of the light would not equal each other. Later on, it has been shown that the law of reflection at a moving mirror can be obtained in various alternative ways,6-10 but none of them seems suitable for bringing this interesting subject into the high school classroom.

  4. The Einstein-Podolsky-Rosen paradox

    International Nuclear Information System (INIS)

    Roy, S.M.

    1980-01-01

    The celebrated arguments of Einstein, Podolsky and Rosen claiming that quantum mechanics cannot be a complete theory are reviewed. Recent research climaxed by Bell's theorem shows that Einstein's locality or ''no telepathy'' postulate conflicts with quantum theory. It adds a new dimension to the paradox by catapulting the problem from the domain of metaphysics into that of experimental physics. (auth.)

  5. The times of Albert Einstein

    International Nuclear Information System (INIS)

    Ahmad, S.M.W.

    1990-09-01

    ''The life of Albert Einstein has a dramatic quality that does not rest exclusively on his theory of relativity. The extravagant timing of history linked him with three shattering developments of the twentieth century: the rise and fall of Nazi Germany, the birth of nuclear weapons, and the birth of zionism (and Israel). Their impact on Einstein's genius combined to drive him into a contact with the affairs of the world for which Einstein had little taste''. This article is the result of my lecture delivered at ICTP on 17 August, 1990 before a knowledgable audience that included scientists from many countries including the third world countries. This one and half hour lecture was organised by Dr. A.M. Hamende and Dr. H.R. Dalafi. 10 refs

  6. Structural origin of fractional Stokes-Einstein relation in glass-forming liquids.

    Science.gov (United States)

    Pan, Shaopeng; Wu, Z W; Wang, W H; Li, M Z; Xu, Limei

    2017-01-06

    In many glass-forming liquids, fractional Stokes-Einstein relation (SER) is observed above the glass transition temperature. However, the origin of such phenomenon remains elusive. Using molecular dynamics simulations, we investigate the break- down of SER and the onset of fractional SER in a model of metallic glass-forming liquid. We find that SER breaks down when the size of the largest cluster consisting of trapped atoms starts to increase sharply at which the largest cluster spans half of the simulations box along one direction, and the fractional SER starts to follows when the largest cluster percolates the entire system and forms 3-dimentional network structures. Further analysis based on the percolation theory also confirms that percolation occurs at the onset of the fractional SER. Our results directly link the breakdown of the SER with structure inhomogeneity and onset of the fraction SER with percolation of largest clusters, thus provide a possible picture for the break- down of SER and onset of fractional SER in glass-forming liquids, which is is important for the understanding of the dynamic properties in glass-forming liquids.

  7. Albert Einstein, Analogizer Extraordinaire

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Where does deep insight in physics come from? It is tempting to think that it comes from the purest and most precise of reasoning, following ironclad laws of thought that compel the clear mind completely rigidly. And yet the truth is quite otherwise. One finds, when one looks closely at any major discovery, that the greatest of physicists are, in some sense, the most crazily daring and irrational of all physicists. Albert Einstein exemplifies this thesis in spades. In this talk I will describe the key role, throughout Albert Einstein's fabulously creative life, played by wild guesses made by analogy lacking any basis whatsoever in pure reasoning. In particular, in this year of 2007, the centenary of 1907, I will describe how over the course of two years (1905 through 1907) of pondering, Einstein slowly came, via analogy, to understand the full, radical consequences of the equation that he had first discovered and published in 1905, arguably the most famous equation of all time: E = mc2.

  8. The Einstein-Vlasov System/Kinetic Theory.

    Science.gov (United States)

    Andréasson, Håkan

    2011-01-01

    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to a good comprehension of kinetic theory in general relativity.

  9. Covariant Conformal Decomposition of Einstein Equations

    Science.gov (United States)

    Gourgoulhon, E.; Novak, J.

    It has been shown1,2 that the usual 3+1 form of Einstein's equations may be ill-posed. This result has been previously observed in numerical simulations3,4. We present a 3+1 type formalism inspired by these works to decompose Einstein's equations. This decomposition is motivated by the aim of stable numerical implementation and resolution of the equations. We introduce the conformal 3-``metric'' (scaled by the determinant of the usual 3-metric) which is a tensor density of weight -2/3. The Einstein equations are then derived in terms of this ``metric'', of the conformal extrinsic curvature and in terms of the associated derivative. We also introduce a flat 3-metric (the asymptotic metric for isolated systems) and the associated derivative. Finally, the generalized Dirac gauge (introduced by Smarr and York5) is used in this formalism and some examples of formulation of Einstein's equations are shown.

  10. Controlled generation of nonlinear resonances through sinusoidal lattice modes in Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Das, Priyam; Panigrahi, Prasanta K

    2015-01-01

    We study Bose–Einstein condensate in the combined presence of time modulated optical lattice and harmonic trap in the mean-field approach. Through the self-similar method, we show the existence of sinusoidal lattice modes in this inhomogeneous system, commensurate with the lattice potential. A significant advantage of this system is wide tunability of the parameters through chirp management. The combined effect of the interaction, harmonic trap and lattice potential leads to the generation of nonlinear resonances, exactly where the matter wave changes its direction. When the harmonic trap is switched off, the BEC undergoes a nonlinear compression for the static optical lattice potential. For better understanding of chirp management and the nature of the sinusoidal excitation, we investigate the energy spectrum of the condensate, which clearly reveals the generation of nonlinear resonances in the appropriate regime. We have also identified a classical dynamical phase transition occurring in the system, where loss of superfluidity takes the superfluid phase to an insulating state. (paper)

  11. Inhomogeneous wire explosion in water

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Kong, H.J.; Lee, S.S.

    1980-01-01

    Inhomogeneous processes are observed in underwater copper wire explosion induced by a condensed capacitor discharge. The wire used is 0.1 mm in diameter and 10 mm long, and the capacitor of 2 μF is charged to 5 KV. A N 2 laser is used for the diagnostic of spatial extension of exploding copper vapour. The photographs obtained in this experiment show unambiguously the inhomogeneous explosion along the exploding wire. The quenching of plasma by the surrounding water inhibits the expansion of the vapour. It is believed the observed inhomogeneous explosion along the wire is located and localized around Goronkin's striae, which was first reported by Goronkin and discussed by Froengel as a pre-breakdown phenomenon. (author)

  12. Simple and efficient generation of gap solitons in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Matuszewski, Michal; Krolikowski, Wieslaw; Trippenbach, Marek; Kivshar, Yuri S.

    2006-01-01

    We suggest an efficient method for generating matter-wave gap solitons in a repulsive Bose-Einstein condensate, when the gap soliton is formed from a condensate cloud in a harmonic trap after turning on a one-dimensional optical lattice. We demonstrate numerically that this approach does not require preparing the initial atomic wave packet in a specific state corresponding to the edge of the Brillouin zone of the spectrum, and losses that occur during the soliton generation process can be suppressed by an appropriate adiabatic switching of the optical lattice

  13. Magnetic resonance, especially spin echo, in spinor Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Yasunaga, Masashi; Tsubota, Makoto

    2009-01-01

    Magnetic resonance, especially NMR and ESR, has been studied in magnetic materials for a long time, having been used in various fields. Spin echo is typical phenomenon in magnetic resonance. The magnetic resonance should be applied to spinor Bose-Einstein condensates (BECs). We numerically study spin echo of a spinor BEC in a gradient magnetic field by calculating the spin-1 two-dimensional Gross-Pitaevskii equations, obtaining the recovery of the signal of the spins, which is called spin echo. We will discuss the relation between the spin echo and the Stern-Gelrach separation in the system.

  14. Einstein in love a scientific romance

    CERN Document Server

    Overbye, Dennis

    2000-01-01

    At its height, Einstein's marriage to Mileva was an extraordinary one - a colleague and often fierce adversary, Mileva was brilliantly matched with the scientific genius. Dennis Overbye seeks to present this scientific romance in a vivid light, telling the private story of the young Einstein.

  15. Spontaneous compactification of D=10 Maxwell-Einstein theory leads to SU(3) X SU(2) X U(1) gauge symmetry

    International Nuclear Information System (INIS)

    Watamura, S.

    1983-01-01

    Solutions of ten-dimensional Maxwell-Einstein theory and a bosonic part of N = 2, D = 10 supergravity theory are examined. It is shown that there is a solution for which six-dimensional internal space is compactified into CP 2 x S 2 . The gauge symmetry of the effective four-dimensional theory is SU(3) x SU(2) x U(1). The introduction of fermions is also considered. The requirement of consistency in introducing a spinsup(C) structure on CP 2 results in a U(1) charge quantization condition. (orig.)

  16. Einstein, Kant, and Taoism

    OpenAIRE

    Kim, Y. S.

    2006-01-01

    It is said that Einstein's conceptual base for the theory of relativity was the philosophy formulated by Immanuel Kant. Then, is it possible to see how Kant played a role in Einstein's thinking without reading Kant's books? This question arises because it is not possible for physicists to read Kant's writings. Yes, it is possible if we use the method of physics. It is known also that Kant's mode of thinking was profoundly affected by the geography of Koenigsberg where he spent eighty years of...

  17. Ceremony marking Einstein Year

    CERN Multimedia

    2005-01-01

    Sunday 13th November at 10:00amat Geneva's St. Peter's Cathedral To mark Einstein Year and the importance of the intercultural dialogue of which it forms a part, a religious service will take place on Sunday 13 November at 10 a.m. in St. Peter's Cathedral, to which CERN members and colleagues are warmly welcomed. Pastor Henry Babel, senior minister at the Cathedral, will speak on the theme: 'God in Einstein's Universe'. Diether Blechschmidt will convey a message on behalf of the scientific community.

  18. Quantum theory and Einstein's general relativity

    International Nuclear Information System (INIS)

    Borzeszkowski, H. von; Treder, H.

    1982-01-01

    We dicusss the meaning and prove the accordance of general relativity, wave mechanics, and the quantization of Einstein's gravitation equations themselves. Firstly, we have the problem of the influence of gravitational fields on the de Broglie waves, which influence is in accordance with Einstein's weak principle of equivalence and the limitation of measurements given by Heisenberg's uncertainty relations. Secondly, the quantization of the gravitational fields is a ''quantization of geometry.'' However, classical and quantum gravitation have the same physical meaning according to limitations of measurements given by Einstein's strong principle of equivalence and the Heisenberg uncertainties for the mechanics of test bodies

  19. Spatial chaos of trapped Bose-Einstein condensate in one-dimensional weak optical lattice potential

    International Nuclear Information System (INIS)

    Chong Guishu; Hai Wenhua; Xie Qiongtao

    2004-01-01

    The spatially chaotic attractor in an elongated cloud of Bose-Einstein condensed atoms perturbed by a weak optical lattice potential is studied. The analytical insolvability and numerical incomputability of the atomic number density are revealed by a perturbed solution that illustrates the unpredictability of the deterministic chaos. Although this could lead the nonphysical explosion and unboundedness to the numerical solution, the theoretical analysis offers a criterion to avoid them. Moreover, the velocity field is investigated that exhibits the superfluid property of the chaotic system

  20. Quantum billiards with branes on product of Einstein spaces

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchuk, V.D. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia, Institute of Gravitation and Cosmology, Moscow (Russian Federation)

    2016-05-15

    We consider a gravitational model in dimension D with several forms, l scalar fields and a Λ-term. We study cosmological-type block-diagonal metrics defined on a product of an 1-dimensional interval and n oriented Einstein spaces. As an electromagnetic composite brane ansatz is adopted and certain restrictions on the branes are imposed the conformally covariant Wheeler-DeWitt (WDW) equation for the model is studied. Under certain restrictions, asymptotic solutions to the WDW equation are found in the limit of the formation of the billiard walls. These solutions reduce the problem to the so-called quantum billiard in (n + l -1)-dimensional hyperbolic space. Several examples of quantum billiards in the model with electric and magnetic branes, e.g. corresponding to hyperbolic Kac-Moody algebras, are considered. In the case n = 2 we find a set of basis asymptotic solutions to the WDW equation and derive asymptotic solutions for the metric in the classical case. (orig.)

  1. Correspondence passed between Einstein and Schroedinger

    International Nuclear Information System (INIS)

    Balibar, F.

    1992-01-01

    The main points of the 26 year long correspondence between Einstein and Schroedinger are reviewed: from the de Broglie thesis and the Bose-Einstein statistics to the Schroedinger equation (1925-1926); from the EPR paradox to the cat parable (1935); a complete collaboration on unitary theories

  2. Big Bounce and inhomogeneities

    International Nuclear Information System (INIS)

    Brizuela, David; Mena Marugan, Guillermo A; Pawlowski, Tomasz

    2010-01-01

    The dynamics of an inhomogeneous universe is studied with the methods of loop quantum cosmology, via a so-called hybrid quantization, as an example of the quantization of vacuum cosmological spacetimes containing gravitational waves (Gowdy spacetimes). The analysis of this model with an infinite number of degrees of freedom, performed at the effective level, shows that (i) the initial Big Bang singularity is replaced (as in the case of homogeneous cosmological models) by a Big Bounce, joining deterministically two large universes, (ii) the universe size at the bounce is at least of the same order of magnitude as that of the background homogeneous universe and (iii) for each gravitational wave mode, the difference in amplitude at very early and very late times has a vanishing statistical average when the bounce dynamics is strongly dominated by the inhomogeneities, whereas this average is positive when the dynamics is in a near-vacuum regime, so that statistically the inhomogeneities are amplified. (fast track communication)

  3. Exact solutions of Einstein and Einstein-scalar equations in 2+1 dimensions

    International Nuclear Information System (INIS)

    Virbhadra, K.S.

    1995-01-01

    A nonstatic and circularly symmetric exact solution of the Einstein equations (with a cosmological constant Λ and null fluid) in 2 + 1 dimensions is given. This is a nonstatic generalization of the uncharged spinless Bandos Teitelboim Zanelli (BTZ) metric. For Λ = 0, spacetime is though not flat, the Kretschmann invariant vanishes. The energy, momentum, and power output for this metric are obtained. Further a static and circularly symmetric exact solution of the Einstein-massless scalar equations is given, which has a curvature singularity at r=0 and the scalar field diverges at r=0 as well as at infinity. (author). 12 refs

  4. Large scale inhomogeneities and the cosmological principle

    International Nuclear Information System (INIS)

    Lukacs, B.; Meszaros, A.

    1984-12-01

    The compatibility of cosmologic principles and possible large scale inhomogeneities of the Universe is discussed. It seems that the strongest symmetry principle which is still compatible with reasonable inhomogeneities, is a full conformal symmetry in the 3-space defined by the cosmological velocity field, but even in such a case, the standard model is isolated from the inhomogeneous ones when the whole evolution is considered. (author)

  5. Static Einstein--Maxwell field equations

    International Nuclear Information System (INIS)

    Das, A.

    1979-01-01

    The static Einstein--Maxwell field equations are investigated in the presence of both electric and magnetic fields. The sources or bodies are assumed to be of finite size and to not affect the connectivity of the associated space. Furthermore, electromagnetic and metric fields are assumed to have reasonable differentiabilities. It is then proved that the electric and magnetic field vectors are constant multiples of one another. Moreover, the static Einstein--Maxwell equations reduce to the static magnetovac case. If, furthermore, the variational derivation of the Einstein--Maxwell equations is assumed, then both the total electric and magnetic charge of each body must vanish. As a physical consequence it is pointed out that if a suspended magnet be electrically charged then it must experience a purely general relativistic torque

  6. Bose-Einstein condensation in microgravity.

    Science.gov (United States)

    van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J

    2010-06-18

    Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.

  7. Einstein's essays in science

    CERN Document Server

    Einstein, Albert

    2009-01-01

    His name is synonymous with ""genius,"" but these essays by the renowned physicist and scholar are accessible to any reader. In addition to outlining the core of relativity theory in everyday language, Albert Einstein presents fascinating discussions of other scientific fields to which he made significant contributions. The Nobel Laureate also profiles some of history's most influential physicists, upon whose studies his own work was based.Assembled during Einstein's lifetime from his speeches and essays, this book marks the first presentation to the wider world of the scientist's accomplishme

  8. Ethic and Evolution in Boltzmann's and Einstein's Thought

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1980-07-01

    In physics and to a large extent in epistomology, Einstein was the natural successor to Boltzmann. But while Boltzmann was an ardent evolutionist, Einstein cared little for biology. Boltzmann applied Darwinian principles also to ethics, but remained aloof from politics. In contrast, Einstein's morality, though expressed in magnificent and selfless activity, lacked a firm theoretical basis. (author)

  9. Ethic and Evolution in Boltzmann's and Einstein's Thought

    International Nuclear Information System (INIS)

    Broda, E.

    1980-01-01

    In physics and to a large extent in epistomology, Einstein was the natural successor to Boltzmann. But while Boltzmann was an ardent evolutionist, Einstein cared little for biology. Boltzmann applied Darwinian principles also to ethics, but remained aloof from politics. In contrast, Einstein's morality, though expressed in magnificent and selfless activity, lacked a firm theoretical basis. (author)

  10. Parametric instabilities in inhomogeneous plasma

    International Nuclear Information System (INIS)

    Nicholson, D.R.

    1975-01-01

    The nonlinear coupling of three waves in a plasma is considered. One of the waves is assumed large and constant; its amplitude is the parameter of the parametric instability. The spatial-temporal evolution of the other two waves is treated theoretically, in one dimension, by analytic methods and by direct numerical integration of the basic equations. Various monotonic forms of inhomogeneity are considered; agreement with previous work is found and new results are established. Nonmonotonic inhomogeneities are considered, in the form of turbulence and, as a model problem, in the form of a simple sinusoidal modulation. Relatively small amounts of nonmonotonic inhomogeneity, in the presence of a linear density gradient, are found to destabilize the well-known convective saturation, absolute growth occurring instead. (U.S.)

  11. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  12. Consideration of inhomogeneities in irradiation planning. Pt. 1

    International Nuclear Information System (INIS)

    Zwicker, H.; Felix, R.

    1976-01-01

    In radiation therapy, the focal doses during irradiation of a tumor are based on the values for water, since water has almost the same absorption coefficient as muscular tissue, even for different kinds and energies of radiation. But calculation of the tumor dose will become inaccurate if inhomogeneities in the ray path are not considered such as fat, bones, plaster, metal plates, Kuentscher nails, endoprotheses. These materials, having a density sigma different from water, represent inhomogeneities relative to water with regard to the absorption of high-energy radiation. The experiments yielded the following results: All measurements revealed that the change in the course of the depth dose curve caused by inhomogeneities in water depends essentially on the density sigma and on the thickness d of the inhomogeneity. If the density sigma of the inhomogeneity exceeds one, a shift of the depth dose curve in water results in the direction of the surface; if the density sigma is smaller than one, the depth dose curve will move towards greater depth because of the inhomogeneity. With Co-60 gamma radiation, the shift of the depth dose curve in water due to an inhomogeneity occurs almost parallel. A correlation obtained empirically allows a calculation of th extent of the shift the depth dose is subject to for different inhomogeneities. (orig./ORU) [de

  13. Antennas in inhomogeneous media

    CERN Document Server

    Galejs, Janis; Fock, V A; Wait, J R

    2013-01-01

    Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book wil

  14. Einstein and solid-state physics

    International Nuclear Information System (INIS)

    Aut, I.

    1982-01-01

    A connection between the development of solid-state physics and the works and activity of Albert Einstein is traced. A tremendous Einstein contribution to solid state physics is marked. A strict establishment of particle-wave dualism; a conclusion about the applicability of the Plank radiation law not only to black body radiation; finding out particles indistinguishability - all three discoveries have a principle significance for solid state physics too

  15. Einstein and the twin paradox

    International Nuclear Information System (INIS)

    Pesic, Peter

    2003-01-01

    Einstein was the first to discuss and resolve the 'twin paradox', which in 1905 he did not consider paradoxical and treated as a consequence of lack of simultaneity. He maintained this view until at least 1914. However, in 1918 Einstein brought forward arguments about accelerated frames of reference that tended to overshadow his initial resolution. His earlier arguments were gradually rediscovered during the subsequent controversy about this 'paradox'

  16. Entanglement Equilibrium and the Einstein Equation.

    Science.gov (United States)

    Jacobson, Ted

    2016-05-20

    A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.

  17. An Einstein-Cartan Fine Structure Constant Definition

    Directory of Open Access Journals (Sweden)

    Stone R. A. Jr.

    2010-01-01

    Full Text Available The fine structure constant definition given in Stone R.A. Jr. Progress in Physics, 2010, v.1, 11-13 is compared to an Einstein-Cartan fine structure constant definition. It is shown that the Einstein-Cartan definition produces the correct pure theory value, just not the measure value. To produce the measured value, the pure theory Einstein-Cartan fine structure constant requires only the new variables and spin coupling of the fine structure constant definition in [1].

  18. Albert Einstein and the relativity theory

    International Nuclear Information System (INIS)

    Pavlickova, E.

    1975-01-01

    A bibliography is presented of Albert Einstein's works, listing his correspondence, biographical literature, articles on A. Einstein published in Czech journals, principal relativity theory monographs and popular, historical and philosophical publications. The bibliographical records are listed alphabetically. Most references give the abbreviations of libraries where the publications are available. (J.P.)

  19. Hamiltonian dynamics of spatially-homogeneous Vlasov-Einstein systems

    International Nuclear Information System (INIS)

    Okabe, Takahide; Morrison, P. J.; Friedrichsen, J. E. III; Shepley, L. C.

    2011-01-01

    We introduce a new matter action principle, with a wide range of applicability, for the Vlasov equation in terms of a conjugate pair of functions. Here we apply this action principle to the study of matter in Bianchi cosmological models in general relativity. The Bianchi models are spatially-homogeneous solutions to the Einstein field equations, classified by the three-dimensional Lie algebra that describes the symmetry group of the model. The Einstein equations for these models reduce to a set of coupled ordinary differential equations. The class A Bianchi models admit a Hamiltonian formulation in which the components of the metric tensor and their time derivatives yield the canonical coordinates. The evolution of anisotropy in the vacuum Bianchi models is determined by a potential due to the curvature of the model, according to its symmetry. For illustrative purposes, we examine the evolution of anisotropy in models with Vlasov matter. The Vlasov content is further simplified by the assumption of cold, counter-streaming matter, a kind of matter that is far from thermal equilibrium and is not describable by an ordinary fluid model nor other more simplistic matter models. Qualitative differences and similarities are found in the dynamics of certain vacuum class A Bianchi models and Bianchi type I models with cold, counter-streaming Vlasov-matter potentials analogous to the curvature potentials of corresponding vacuum models.

  20. Linear Einstein equations and Kerr-Schild maps

    International Nuclear Information System (INIS)

    Gergely, Laszlo A

    2002-01-01

    We prove that given a solution of the Einstein equations g ab for the matter field T ab , an autoparallel null vector field l a and a solution (l a l c , T ac ) of the linearized Einstein equation on the given background, the Kerr-Schild metric g ac + λl a l c (λ arbitrary constant) is an exact solution of the Einstein equation for the energy-momentum tensor T ac + λT ac + λ 2 l (a T c)b l b . The mixed form of the Einstein equation for Kerr-Schild metrics with autoparallel null congruence is also linear. Some more technical conditions hold when the null congruence is not autoparallel. These results generalize previous theorems for vacuum due to Xanthopoulos and for flat seed spacetime due to Guerses and Guersey

  1. Twisting null geodesic congruences and the Einstein-Maxwell equations

    International Nuclear Information System (INIS)

    Newman, Ezra T; Silva-Ortigoza, Gilberto

    2006-01-01

    In a recent article, we returned to the study of asymptotically flat solutions of the vacuum Einstein equations with a rather unconventional point of view. The essential observation in that work was that from a given asymptotically flat vacuum spacetime with a given Bondi shear, one can find a class of asymptotically shear-free (but, in general, twisting) null geodesic congruences where the class was uniquely given up to the arbitrary choice of a complex analytic 'worldline' in a four-dimensional complex space. By imitating certain terms in the Weyl tensor that are found in the algebraically special type II metrics, this complex worldline could be made unique and given-or assigned-the physical meaning as the complex centre of mass. Equations of motion for this case were found. The purpose of the present work is to extend those results to asymptotically flat solutions of the Einstein-Maxwell equations. Once again, in this case, we get a class of asymptotically shear-free null geodesic congruences depending on a complex worldline in the same four-dimensional complex space. However in this case there will be, in general, two distinct but uniquely chosen worldlines, one of which can be assigned as the complex centre of charge while the other could be called the complex centre of mass. Rather than investigating the situation where there are two distinct complex worldlines, we study instead the special degenerate case where the two worldlines coincide, i.e., where there is a single unique worldline. This mimics the case of algebraically special Einstein-Maxwell fields where the degenerate principle null vector of the Weyl tensor coincides with a Maxwell principle null vector. Again we obtain equations of motion for this worldline-but explicitly found here only in an approximation. Though there are ambiguities in assigning physical meaning to different terms it appears as if reliance on the Kerr and charged Kerr metrics and classical electromagnetic radiation theory helps

  2. Quantum entanglement in inhomogeneous 1D systems

    Science.gov (United States)

    Ramírez, Giovanni

    2018-04-01

    The entanglement entropy of the ground state of a quantum lattice model with local interactions usually satisfies an area law. However, in 1D systems some violations may appear in inhomogeneous systems or in random systems. In our inhomogeneous system, the inhomogeneity parameter, h, allows us to tune different regimes where a volumetric violation of the area law appears. We apply the strong disorder renormalization group to describe the maximally entangled state of the system in a strong inhomogeneity regime. Moreover, in a weak inhomogeneity regime, we use a continuum approximation to describe the state as a thermo-field double in a conformal field theory with an effective temperature which is proportional to the inhomogeneity parameter of the system. The latter description also shows that the universal scaling features of this model are captured by a massless Dirac fermion in a curved space-time with constant negative curvature R = h2, providing another example of the relation between quantum entanglement and space-time geometry. The results we discuss here were already published before, but here we present a more didactic exposure of basic concepts of the rainbow system for the students attending the Latin American School of Physics "Marcos Moshinsky" 2017.

  3. The effect of inhomogeneity of microstructure on ducility in superplasticity

    International Nuclear Information System (INIS)

    Manonukul, A.; Dunne, F.P.E.

    1996-01-01

    Finite element cell models have been developed to represent inhomogeneous grain size fields that occur in commercial Ti-6Al-4V. The models are used to investigate the influence of microstructure on superplastic stress-strain behaviour, inhomogeneity of deformation, and on ductility in superplastic deformation. It is shown that increasing the level of initial microstructural inhomogeneity leads to increasing flow stress for given strain, and that the microstructural inhomogeneity leads to inhomogeneous deformation. As superplasticity proceeds, the level of microstructural inhomogeneity diminishes, but the inhomogeneity itself is preserved during the deformation. It is shown that the inhomogeneity of microstructure leads to strain localisation which increases in severity with deformation until material necking and failure occur. Increasing the initial microstructural inhomogeneity is shown to lead to a decrease in ductility, but the effect diminishes for grain size ranges in excess of 30 μm. An empirical relationship is presented that relates the ductility to the initial grain size range through a power law. (orig.)

  4. On static black holes solutions in Einstein and Einstein-Gauss-Bonnet gravity with topology [Formula: see text].

    Science.gov (United States)

    Dadhich, Naresh; Pons, Josep M

    We study static black hole solutions in Einstein and Einstein-Gauss-Bonnet gravity with the topology of the product of two spheres, [Formula: see text], in higher dimensions. There is an unusual new feature of the Gauss-Bonnet black hole: the avoidance of a non-central naked singularity prescribes a mass range for the black hole in terms of [Formula: see text]. For an Einstein-Gauss-Bonnet black hole a limited window of negative values for [Formula: see text] is also permitted. This topology encompasses black strings, branes, and generalized Nariai metrics. We also give new solutions with the product of two spheres of constant curvature.

  5. CERN physicist receives Einstein Medal

    CERN Multimedia

    2006-01-01

    On 29 June the CERN theorist Gabriele Veneziano was awarded the prestigious Albert Einstein Medal for significant contributions to the understanding of string theory. This award is given by the Albert Einstein Society in Bern to individuals whose scientific contributions relate to the work of Einstein. Former recipients include exceptional physicists such as Murray Gell-Mann last year, but also Stephen Hawking and Victor Weisskopf. Gabriele Veneziano, a member of the integrated CERN Theory Team since 1977, led the Theory Division from 1994 to 1997 and has already received many prestigious prizes for his outstanding work, including the Enrico Fermi Prize (see CERN Courier, November 2005), the Dannie Heineman Prize for mathematical physics of the American Physical Society in 2004 (see Bulletin No. 47/2003), and the I. Ya. Pomeranchuk Prize of the Institute of Theoretical and Experimental Physics (Moscow) in 1999.

  6. Einstein as a Missionary of Science

    Science.gov (United States)

    Renn, Jürgen

    2013-01-01

    The paper reviews Einstein's engagement as a mediator and popularizer of science. It discusses the formative role of popular scientific literature for the young Einstein, showing that not only his broad scientific outlook but also his internationalist political views were shaped by these readings. Then, on the basis of recent detailed…

  7. Einstein-Friedmann equation, nonlinear dynamics and chaotic behaviours

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Nakano, Shingo; Ohta, Shigetoshi; Mori, Keisuke; Horiuchi, Tanji

    2009-01-01

    We have studied the Einstein-Friedmann equation [Case 1] on the basis of the bifurcation theory and shown that the chaotic behaviours in the Einstein-Friedmann equation [Case 1] are reduced to the pitchfork bifurcation and the homoclinic bifurcation. We have obtained the following results: (i) 'The chaos region diagram' (the p-λ plane) in the Einstein-Friedmann equation [Case 1]. (ii) 'The chaos inducing chart' of the homoclinic orbital systems in the unforced differential equations. We have discussed the non-integrable conditions in the Einstein-Friedmann equation and proposed the chaotic model: p=p 0 ρ n (n≥0). In case n≠0,1, the Einstein-Friedmann equation is not integrable and there may occur chaotic behaviours. The cosmological constant (λ) turns out to play important roles for the non-integrable condition in the Einstein-Friedmann equation and also for the pitchfork bifurcation and the homoclinic bifurcation in the relativistic field equation. With the use of the E-infinity theory, we have also discussed the physical quantities in the gravitational field equations, and obtained the formula logκ=-10(1/φ) 2 [1+(φ) 8 ]=-26.737, which is in nice agreement with the experiment (-26.730).

  8. Linearized pseudo-Einstein equations on the Heisenberg group

    Science.gov (United States)

    Barletta, Elisabetta; Dragomir, Sorin; Jacobowitz, Howard

    2017-02-01

    We study the pseudo-Einstein equation R11bar = 0 on the Heisenberg group H1 = C × R. We consider first order perturbations θɛ =θ0 + ɛ θ and linearize the pseudo-Einstein equation about θ0 (the canonical Tanaka-Webster flat contact form on H1 thought of as a strictly pseudoconvex CR manifold). If θ =e2uθ0 the linearized pseudo-Einstein equation is Δb u - 4 | Lu|2 = 0 where Δb is the sublaplacian of (H1 ,θ0) and L bar is the Lewy operator. We solve the linearized pseudo-Einstein equation on a bounded domain Ω ⊂H1 by applying subelliptic theory i.e. existence and regularity results for weak subelliptic harmonic maps. We determine a solution u to the linearized pseudo-Einstein equation, possessing Heisenberg spherical symmetry, and such that u(x) → - ∞ as | x | → + ∞.

  9. Einstein y la complejidad

    Directory of Open Access Journals (Sweden)

    Jou, David

    2007-12-01

    Full Text Available We study Einstein’s contributions to thermodynamics and statistical physics and their influence on some fields of physics which have led to current studies on complexity. We focus our attention on the use of fluctuations and entropy as a common framework for light and matter, whcich leds him to some of his fundamental contributions (phtoelectric effect, Brownian motion, specific heat of solids, stimulated light emission, Bose-Einstein condensation. We underline some aspects of Einstein’s research style: extrapolations, analogies, simplifications. We underline the relationship between light and matter as a common link of his researches in statistical physics.Presentamos las contribuciones de Einstein a la termodinámica y la mecánica estadística y su resonancia en ramas de la física que han conducido hasta la consideración actual de lo complejo. Nos referimos especialmente al uso de las fluctuaciones y de la entropía como marco común y nexo de unión entre luz y materia, que le conducen a algunas de sus aportaciones fundamentales (efecto fotoeléctrico, movimiento browniano, calor específico de los sólidos, emisión estimulada de la luz, condensación de Bose-Einstein. Consideramos también algunas facetas del estilo de investigación de Einstein, que se manifiestan con especial claridad en este campo: extrapolaciones, analogías, simplificaciones. Destacamos especialmente la importancia de la relación entre luz y materia en sus investigaciones.

  10. Acoustic Streaming and Its Suppression in Inhomogeneous Fluids.

    Science.gov (United States)

    Karlsen, Jonas T; Qiu, Wei; Augustsson, Per; Bruus, Henrik

    2018-02-02

    We present a theoretical and experimental study of boundary-driven acoustic streaming in an inhomogeneous fluid with variations in density and compressibility. In a homogeneous fluid this streaming results from dissipation in the boundary layers (Rayleigh streaming). We show that in an inhomogeneous fluid, an additional nondissipative force density acts on the fluid to stabilize particular inhomogeneity configurations, which markedly alters and even suppresses the streaming flows. Our theoretical and numerical analysis of the phenomenon is supported by ultrasound experiments performed with inhomogeneous aqueous iodixanol solutions in a glass-silicon microchip.

  11. Solitons, gauge theories and the 'great Einstein theorem'

    International Nuclear Information System (INIS)

    Dresden, M.; Chen, S.F.

    1976-01-01

    A field theory is said to be of 'Einstein type' if it has the property that the field equations imply the equations of motion. It is known that general relativity is of Einstein type, it is demonstrated here that the Yang-Mills gauge theory is of Einstein type. The relationship between the singularities in the solutions of the field equations and soliton type is analyzed. (Auth.)

  12. From Petrov-Einstein to Navier-Stokes

    Science.gov (United States)

    Lysov, Vyacheslav

    The fluid/gravity correspondence relates solutions of the incompressible Navier-Stokes equation to metrics which solve the Einstein equations. We propose propose two possible approaches to establish this correspondence: perturbative expansion for shear modes and large mean curvature expansion for algebraically special metrics. We show by explicit construction that for every solution of the incompressible Navier-Stokes equation in p+1 dimensions, there is an associated "dual" solution of the vacuum Einstein equations in p+2 dimensions. The dual geometry has an intrinsically flat time-like boundary segment whose extrinsic curvature is given by the stress tensor of the Navier-Stokes fluid. We consider a "near-horizon" limit in which hypersurface becomes highly accelerated. The near-horizon expansion in gravity is shown to be mathematically equivalent to the hydrodynamic expansion in fluid dynamics, and the Einstein equation reduces to the incompressible Navier-Stokes equation. It is shown that imposing a Petrov type I condition on the hypersurface geometry reduces the degrees of freedom in the extrinsic curvature to those of a fluid. Moreover, expanding around a limit in which the mean curvature of the embedding diverges, the leading-order Einstein constraint equations on hypersurface are shown to reduce to the non-linear incompressible Navier-Stokes equation for a fluid moving in hypersurface. We extend the fluid/gravity correspondence to include the magnetohydrodynamics/gravity correspondence, which translates solutions of the equations of magnetohydrodynamics (describing charged fluids) into geometries that satisfy the Einstein-Maxwell equations. We present an explicit example of this new correspondence in the context of flat Minkowski space. We show that a perturbative deformation of the Rindler wedge satisfies the Einstein-Maxwell equations provided that the parameters appearing in the expansion, which we interpret as fluid fields, satisfy the

  13. The Einstein-Vlasov System/Kinetic Theory

    Directory of Open Access Journals (Sweden)

    Håkan Andréasson

    2002-12-01

    Full Text Available The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e., fluid models. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.

  14. Sky surveys with Einstein

    International Nuclear Information System (INIS)

    Gioia, I.M.

    1990-01-01

    Since the early times after the launch of the Einstein Observatory, systematic studies of serendipitous Einstein x-ray sources have been carried out by several observers with interests in both galactic and extragalactic astronomy. The majority of these studies were not surveys in the strict sense of the word: in several cases no analyses requiring flux completeness were performed. However, these systematic searches for sources added much to our knowledge of the behaviour in the X-ray domain of the different classes of astronomical objects and in many instances led to the study of their properties at different wavebands. (author)

  15. Einstein and modern cosmology

    International Nuclear Information System (INIS)

    Stabell, R.

    1979-01-01

    Einstein applied his gravitation theory to a universe model with positively curved space in 1917. In order to maintain a static universe he introduced the cosmological constant, which in the light of later nonstatic universe models, he described as his life's greatest mistake. The best known such model is the Einstein-de Sitter model, which is here discussed in some detail. The 'big bang' theory is also discussed leading to the cosmic background radiation. The early phase of the 'big bang' cosmology, the first ten seconds, and the first minutes are discussed, leading to the transparent stage. (JIW)

  16. The intellectual quadrangle: Mach-Boltzmann-Planck-Einstein

    International Nuclear Information System (INIS)

    Broda, E.

    1981-01-01

    These four men were influential in the transition from classical to modern physics. They interacted as scientists, often antagonistically. Thus Boltzmann was the greatest champion of the atom, while Mach remained unconvinced all his life. As a aphysicist, Einstein was greatly influenced by both Mach and Boltzmann, although Mach in the end rejected relativity as well. Because of his work on statistical mechanics, fluctuations, and quantum theory, Einstein has been called the natural successor to Boltzmann. Planck also was influenced by Mach at first. Hence he and Boltzmann were adversaries antil Planck converted to atomistics in 1900 and used the statistical interpretation of entropy to establish his radiation law. Planck accepted relativity early, but in quantum theory he was for a long time partly opposed to Einstein, and vice versa - Einstein considered Planck's derivation of his radiation law as unsound, while Planck could not accept the light quantum. In the case of all four physicists, science was interwoven with philosophy. Boltzmann consistently fought Mach's positivism, while Planck and Einstein moved from positivism to realism. All were also, though in very different ways, actively interested in public affairs. (orig.)

  17. How History Helped Einstein in Special Relativity

    Science.gov (United States)

    Martinez, Alberto

    2013-04-01

    I will discuss how the German intellectual movement known as ``critical history'' motivated several physicists in the late 1900s to radically analyze the fundamental principles of mechanics, leading eventually to Einstein's special theory of relativity. Eugen Karl Dühring, Johann Bernhard Stallo, Ludwig Lange, and Ernst Mach wrote critical histories of mechanics, some of which emphasized notions of relativity and observation, in opposition to old metaphysical concepts that seemed to infect the foundations of physics. This strand of critical history included the ``genetic method'' of analyzing how concepts develop over time, in our minds, by way of ordinary experiences, which by 1904 was young Albert Einstein's favorite approach for examining fundamental notions. Thus I will discuss how history contributed in Einstein's path to relativity, as well as comment more generally on Einstein's views on history.

  18. Development of Einstein's general theory of relativity

    International Nuclear Information System (INIS)

    Datta, B.K.

    1980-01-01

    Starting from Poincare's Lorentz-invariant theory of gravity formulated in 1906, development of Einstein's general theory of relativity during 1906-1916 is discussed. Three stages in this development are recognised. In the first stage during 1907-1914, Einstein tried to extend the relativity principle of uniform motion to the frames in non-uniform motion. For this purpose, he introduced the principle of equivalence which made it possible to calculate the effect of homogeneous gravitational field on arbitrary physical processes. During the second stage comprising years 1912-1914 overlapping the first stage, Einstein and Grossmann were struggling to translate physical postulates into the language of the absolute differential calculus. In the period 1915-1916, Einstein formulated the field equations of general relativity. While discussing these developmental stages, theories of gravitation formulated by Abraham, Nordstroem and Mie are also discussed. (M.G.B.)

  19. Ehrenfest en Einstein. Menselijke katalysator van het heldere denken

    Directory of Open Access Journals (Sweden)

    Marijn J. Hollestelle

    2016-10-01

    Full Text Available Ehrenfest and EinsteinEhrenfest and Einstein met just before Ehrenfest became professor at Leiden University. They had much in common and became best friends. Ehrenfest shed light on some problematic aspects of Einstein’s work and during the years acted as an important sparring partner for Einstein. Ehrenfest also explained difficult aspects of Einstein’s work to the physics community. He set others on the track of working on general relativity and made Leiden an international centre for these developments during the years 1912–1920. Ehrenfest made sure Einstein was appointed part-time professor at Leiden, from which Leiden physics profited. He also aided Bohr and Einstein during their notorious debates. Ehrenfest struggled with depression his whole life. The rapid developments and mathematicising of quantum physics, Hitler’s appointment as Reichs Chancellor, money and marriage problems worsened his depressions. In 1933 Ehrenfest committed suicide, and Einstein moved to the United States and away from the study on quantum physics.

  20. Ferroelectricity by Bose-Einstein condensation in a quantum magnet.

    Science.gov (United States)

    Kimura, S; Kakihata, K; Sawada, Y; Watanabe, K; Matsumoto, M; Hagiwara, M; Tanaka, H

    2016-09-26

    The Bose-Einstein condensation is a fascinating phenomenon, which results from quantum statistics for identical particles with an integer spin. Surprising properties, such as superfluidity, vortex quantization or Josephson effect, appear owing to the macroscopic quantum coherence, which spontaneously develops in Bose-Einstein condensates. Realization of Bose-Einstein condensation is not restricted in fluids like liquid helium, a superconducting phase of paired electrons in a metal and laser-cooled dilute alkali atoms. Bosonic quasi-particles like exciton-polariton and magnon in solids-state systems can also undergo Bose-Einstein condensation in certain conditions. Here, we report that the quantum coherence in Bose-Einstein condensate of the magnon quasi particles yields spontaneous electric polarization in the quantum magnet TlCuCl 3 , leading to remarkable magnetoelectric effect. Very soft ferroelectricity is realized as a consequence of the O(2) symmetry breaking by magnon Bose-Einstein condensation. The finding of this ferroelectricity will open a new window to explore multi-functionality of quantum magnets.

  1. Development of inhomogeneous {kappa}-{epsilon}-{upsilon}{sup 2} turbulence model for 3D flow analysis of SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Chun, K. H.; Whang, Y. D.; Yoon, H. Y.; Kim, H. C

    2003-07-01

    The objective of the present report is to select and develop a turbulence model that will be implemented in TASS-3D code for 3-D heat and fluid analysis on the integral reactor, SMART-P primary coolant system. The turbulence model was selected with the consideration on the economy, accuracy, theorization and applicability for the complex three dimensional flow, natural convection and the high Reynolds number turbulent flow of SMART-P.On the models investigated in this present study, the standard {kappa}-{epsilon} model of high Reynolds model, the {kappa}-{epsilon}-{upsilon}{sup 2} model and ERRSM of low Reynolds model were selected out of them finally. The {kappa}-{epsilon}-{upsilon}{sup 2} model was selected as the applicable turbulence model for three dimensional flow analysis of SMART-P. The problem of original {kappa}-{epsilon}-{upsilon}{sup 2} model is the amplification of the pressure strain rate in the log region. The amplification is caused by Elliptic Relaxation Equation(ERE). The present model approaches inhomogeneous for the source term of the ERE to reduce the pressure-strain amplification. The source term was decomposed into homogeneous part and inhomogeneous part and derived as a form of variable coefficients of the ERE. The pressure strain and dissipation terms were fully coupled with the source term of the ERE. The pressure diffusion was modified to treat the boundary conditions indirectly and the pressure strain of the inhomogeneous correction ERE was noticeably decreased in both log layer and outer layer. The results of the inhomogeneous correction {kappa}-{epsilon}-{upsilon}{sup 2} model showed a good agreement with DNS results for channel flows and estimated improved results on the turbulent components in comparison with other models.

  2. Two-dimensional simulation of the development of an inhomogeneous volume discharge in a Ne/Xe/HCl gas mixture

    International Nuclear Information System (INIS)

    Bychkov, Yu. I.; Yampolskaya, S. A.; Yastremskii, A. G.

    2013-01-01

    The kinetic processes accompanying plasma column formation in an inhomogeneous discharge in a Ne/Xe/HCl gas mixture at a pressure of 4 atm were investigated by using a two-dimensional model. Two cathode spots spaced by 0.7 cm were initiated by distorting the cathode surface at local points, which resulted in an increase in the field strength in the cathode region. Three regimes differing in the charging voltage, electric circuit inductance, and electric field strength at the local cathode points were considered. The spatiotemporal distributions of the discharge current; the electron density; and the densities of excited xenon atoms, HCl(v = 0) molecules in the ground state, and HCl(v > 0) molecules in vibrational levels were calculated. The development of the discharge with increasing the electron density from 10 4 to 10 16 cm −3 was analyzed, and three characteristic stages in the evolution of the current distribution were demonstrated. The width of the plasma column was found to depend on the energy deposited in the discharge. The width of the plasma column was found to decrease in inverse proportion to the deposited energy due to spatiotemporal variations in the rates of electron production and loss. The calculated dependences of the cross-sectional area of the plasma column on the energy deposited in the discharge agree with the experimental results.

  3. Metrical theorems on systems of small inhomogeneous linear forms

    DEFF Research Database (Denmark)

    Hussain, Mumtaz; Kristensen, Simon

    In this paper we establish complete Khintchine-Groshev and Schmidt type theorems for inhomogeneous small linear forms in the so-called doubly metric case, in which the inhomogeneous parameter is not fixed.......In this paper we establish complete Khintchine-Groshev and Schmidt type theorems for inhomogeneous small linear forms in the so-called doubly metric case, in which the inhomogeneous parameter is not fixed....

  4. Effects of nanoscale density inhomogeneities on shearing fluids

    DEFF Research Database (Denmark)

    Ben, Dalton,; Peter, Daivis,; Hansen, Jesper Schmidt

    2013-01-01

    It is well known that density inhomogeneities at the solid-liquid interface can have a strong effect on the velocity profile of a nanoconfined fluid in planar Poiseuille flow. However, it is difficult to control the density inhomogeneities induced by solid walls, making this type of system...... systems. Using the sinusoidal transverse force method to produce shearing velocity profiles and the sinusoidal longitudinal force method to produce inhomogeneous density profiles, we are able to observe the interactions between the two property inhomogeneities at the level of individual Fourier components....... This gives us a method for direct measurement of the coupling between the density and velocity fields and allows us to introduce various feedback control mechanisms which customize fluid behavior in individual Fourier components. We briefly discuss the role of temperature inhomogeneity and consider whether...

  5. ONETRAN, 1-D Transport in Planar, Cylindrical, Spherical Geometry for Homogeneous, Inhomogeneous Problem, Anisotropic Source

    International Nuclear Information System (INIS)

    1982-01-01

    1 - Description of problem or function: ONETRAN solves the one- dimensional multigroup transport equation in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous (K-eff and eigenvalue searches) problems subject to vacuum, reflective, periodic, white, albedo or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. 2 - Method of solution: The discrete ordinates approximation for the angular variable is used with the diamond (central) difference approximation for the angular extrapolation in curved geometries. A linear discontinuous finite element representation for the angular flux in each spatial mesh cell is used. Negative fluxes are eliminated by a local set-to-zero and correct algorithm. Standard inner (within-group) iteration cycles are accelerated by system re-balance, coarse mesh re-balance, or Chebyshev acceleration. Outer iteration cycles are accelerated by coarse-mesh re-balance. 3 - Restrictions on the complexity of the problem: Variable dimensioning is used so that any combination of problem parameters leading to a container array less than MAXCOR can be accommodated. On CDC machines MAXCOR can be about 25 000 words and peripheral storage is used for most group-dependent data

  6. Momentum correlations as signature of sonic Hawking radiation in Bose-Einstein condensates

    Directory of Open Access Journals (Sweden)

    A. Fabbri, N. Pavloff

    2018-04-01

    Full Text Available We study the two-body momentum correlation signal in a quasi one dimensional Bose-Einstein condensate in the presence of a sonic horizon. We identify the relevant correlation lines in momentum space and compute the intensity of the corresponding signal. We consider a set of different experimental procedures and identify the specific issues of each measuring process. We show that some inter-channel correlations, in particular the Hawking quantum-partner one, are particularly well adapted for witnessing quantum non-separability, being resilient to the effects of temperature and/or quantum quenches.

  7. Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Carusotto, Iacopo; Recati, Alessio; Fagnocchi, Serena; Balbinot, Roberto; Fabbri, Alessandro

    2008-01-01

    We report numerical evidence of Hawking emission of Bogoliubov phonons from a sonic horizon in a flowing one-dimensional atomic Bose-Einstein condensate. The presence of Hawking radiation is revealed from peculiar long-range patterns in the density-density correlation function of the gas. Quantitative agreement between our fully microscopic calculations and the prediction of analog models is obtained in the hydrodynamic limit. New features are predicted and the robustness of the Hawking signal against a finite temperature discussed.

  8. The odd side of torsion geometry

    DEFF Research Database (Denmark)

    Conti, Diego; Madsen, Thomas Bruun

    2014-01-01

    We introduce and study a notion of `Sasaki with torsion structure' (ST) as an odd-dimensional analogue of Kähler with torsion geometry (KT). These are normal almost contact metric manifolds that admit a unique compatible connection with 3-form torsion. Any odd-dimensional compact Lie group is sho...

  9. Inhomogenous loop quantum cosmology with matter

    International Nuclear Information System (INIS)

    Martín-de Bias, D; Mena Marugán, G A; Martín-Benito, M

    2012-01-01

    The linearly polarized Gowdy T 3 model with a massless scalar field with the same symmetries as the metric is quantized by applying a hybrid approach. The homogeneous geometry degrees of freedom are loop quantized, fact which leads to the resolution of the cosmological singularity, while a Fock quantization is employed for both matter and gravitational inhomogeneities. Owing to the inclusion of the massless scalar field this system allows us to modelize flat Friedmann-Robertson-Walker cosmologies filled with inhomogeneities propagating in one direction. It provides a perfect scenario to study the quantum back-reaction between the inhomogeneities and the polymeric homogeneous and isotropic background.

  10. Estimating functions for inhomogeneous Cox processes

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus

    2006-01-01

    Estimation methods are reviewed for inhomogeneous Cox processes with tractable first and second order properties. We illustrate the various suggestions by means of data examples.......Estimation methods are reviewed for inhomogeneous Cox processes with tractable first and second order properties. We illustrate the various suggestions by means of data examples....

  11. Effective wave tilt and surface impedance over a laterally inhomogeneous two-layer earth

    International Nuclear Information System (INIS)

    Hughes, W.J.; Wait, J.R.

    1975-01-01

    Using a perturbation method, the effect of a simple two-dimensional model on the electromagnetic fields at the surface of the Earth is considered for a postulated downcoming plane wave. The calculated change in the surface impedance and wave tilt due to lateral inhomogeneities is examined. It is found that the magnetic wave tilt (H/sub z//H/sub x/) is most seriously affected by such anomalies. This may have important consequences on electromagnetic probing of nonuniform portions of the Earth's crust

  12. Compression behavior of cellular metals with inhomogeneous mass distribution

    International Nuclear Information System (INIS)

    Foroughi, B.

    2001-05-01

    Mechanical behavior of two types of closed cell metals (ALULIGHT and ALPORAS) is investigated experimentally and numerically. Compressive tests performed on prismatic specimens indicate that inhomogeneities in the mass density distribution are a key factor in the deformation behavior of cellular metals. The three dimensional cellular structure of the investigated specimens is recorded using x-ray medical computed tomography (CT). A special procedure called density mapping method has been used to transfer the recorded CT data into a continuum by averaging over a certain domain (averaging domain). This continuum model is implemented using finite elements to study the effect of variations in local mass densities. The finite element model is performed by a simple regular discretization of a specimen's volume with elements which have constant edge length. Mechanical properties derived from compression tests of ALPORAS samples are assigned to the corresponding mesoscopic density value of each element. The effect of averaging domain size is studied to obtain a suitable dimension which fulfils the homogenization requirements and allows the evaluation of inhomogenities in the specimens. The formation and propagation of deformation band(s) and stress-strain responses of tested cellular metals are modeled with respect to their mass distribution. It is shown that the inhomogeneous density distribution leads to plastic strain localization and causes a monotonically increase of the stress in the plateau regime although no hardening response was considered for homogeneous material in this regime. The simulated plastic strain localization and the calculated stress-strain responses are compared with the experimental results. The stiffness values of experiment and simulation agree very well for both cellular materials. The values of plateau strength as well, but it differs in some cases of ALULIGHT samples, where the hardening response can be predicted at least qualitatively

  13. Non-Hermitian spin chains with inhomogeneous coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bytsko, Andrei G. [Rossijskaya Akademiya Nauk, St. Petersburg (Russian Federation). Inst. Matematiki; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2009-11-15

    An open U{sub q}(sl{sub 2})-invariant spin chain of spin S and length N with inhomogeneous coupling is investigated as an example of a non-Hermitian (quasi-Hermitian) model. For several particular cases of such a chain, the ranges of the deformation parameter {gamma} are determined for which the spectrum of the model is real. For a certain range of {gamma}, a universal metric operator is constructed and thus the quasi-Hermiticity of the model is established. The constructed metric operator is non-dynamical, its structure is determined only by the symmetry of the model. The results apply, in particular, to all known homogeneous U{sub q}(sl{sub 2})-invariant integrable spin chains with nearest-neighbour interaction. In addition, the most general form of a metric operator for a quasi-Hermitian operator in finite dimensional space is discussed. (orig.)

  14. Static solutions in Einstein-Chern-Simons gravity

    Energy Technology Data Exchange (ETDEWEB)

    Crisóstomo, J.; Gomez, F.; Mella, P.; Quinzacara, C.; Salgado, P., E-mail: jcrisostomo@udec.cl, E-mail: fernagomez@udec.cl, E-mail: patriciomella@udec.cl, E-mail: cristian.cortesq@uss.cl, E-mail: pasalgad@udec.cl [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile)

    2016-06-01

    In this paper we study static solutions with more general symmetries than the spherical symmetry of the five-dimensional Einstein-Chern-Simons gravity. In this context, we study the coupling of the extra bosonic field h{sup a} with ordinary matter which is quantified by the introduction of an energy-momentum tensor field associated with h{sup a}. It is found that exist (i) a negative tangential pressure zone around low-mass distributions (μ < μ{sub 1}) when the coupling constant α is greater than zero; (ii) a maximum in the tangential pressure, which can be observed in the outer region of a field distribution that satisfies μ < μ{sub 2}; (iii) solutions that behave like those obtained from models with negative cosmological constant. In such a situation, the field h{sup a} plays the role of a cosmological constant.

  15. Dynamic and static correlation functions in the inhomogeneous Hartree-Fock-state approach with random-phase-approximation fluctuations

    International Nuclear Information System (INIS)

    Lorenzana, J.; Grynberg, M.D.; Yu, L.; Yonemitsu, K.; Bishop, A.R.

    1992-11-01

    The ground state energy, and static and dynamic correlation functions are investigated in the inhomogeneous Hartree-Fock (HF) plus random phase approximation (RPA) approach applied to a one-dimensional spinless fermion model showing self-trapped doping states at the mean field level. Results are compared with homogeneous HF and exact diagonalization. RPA fluctuations added to the generally inhomogeneous HF ground state allows the computation of dynamical correlation functions that compare well with exact diagonalization results. The RPA correction to the ground state energy agrees well with the exact results at strong and weak coupling limits. We also compare it with a related quasi-boson approach. The instability towards self-trapped behaviour is signaled by a RPA mode with frequency approaching zero. (author). 21 refs, 10 figs

  16. Shortcut loading a Bose–Einstein condensate into an optical lattice

    Science.gov (United States)

    Zhou, Xiaoji; Jin, Shengjie; Schmiedmayer, Jörg

    2018-05-01

    We present an effective and fast (few microseconds) procedure for transferring a Bose–Einstein condensate from the ground state in a harmonic trap into the desired bands of an optical lattice. Our shortcut method is a designed pulse sequence where the time duration and the interval in each step are fully optimized in order to maximize robustness and fidelity of the final state with respect to the target state. The atoms can be prepared in a single band with even or odd parity, and superposition states of different bands can be prepared and manipulated. Furthermore, we extend this idea to the case of two-dimensional or three-dimensional optical lattices where the energies of excited states are degenerate. We experimentally demonstrate various examples and show very good agreement with the theoretical model. Efficient shortcut methods will find applications in the preparation of quantum systems, in quantum information processing, in precise measurement and as a starting point to investigate dynamics in excited bands.

  17. High-definition, single-scan 2D MRI in inhomogeneous fields using spatial encoding methods.

    Science.gov (United States)

    Ben-Eliezer, Noam; Shrot, Yoav; Frydman, Lucio

    2010-01-01

    An approach has been recently introduced for acquiring two-dimensional (2D) nuclear magnetic resonance images in a single scan, based on the spatial encoding of the spin interactions. This article explores the potential of integrating this spatial encoding together with conventional temporal encoding principles, to produce 2D single-shot images with moderate field of views. The resulting "hybrid" imaging scheme is shown to be superior to traditional schemes in non-homogeneous magnetic field environments. An enhancement of previously discussed pulse sequences is also proposed, whereby distortions affecting the image along the spatially encoded axis are eliminated. This new variant is also characterized by a refocusing of T(2)(*) effects, leading to a restoration of high-definition images for regions which would otherwise be highly dephased and thus not visible. These single-scan 2D images are characterized by improved signal-to-noise ratios and a genuine T(2) contrast, albeit not free from inhomogeneity distortions. Simple postprocessing algorithms relying on inhomogeneity phase maps of the imaged object can successfully remove most of these residual distortions. Initial results suggest that this acquisition scheme has the potential to overcome strong field inhomogeneities acting over extended acquisition durations, exceeding 100 ms for a single-shot image.

  18. Einstein, Ethics and the Atomic Bomb

    Science.gov (United States)

    Rife, Patricia

    2005-03-01

    Einstein voiced his ethical views against war as well as fascism via venues and alliances with a variety of organizations still debated today. In 1939, he signed a letter to President Roosevelt (drafted by younger colleagues Szilard, Wigner and others) warning the U.S.government about the danger of Nazi Germany gaining control of uranium in the Belgian-controlled Congo in order to develop atomic weapons, based on the discovery of fission by Otto Hahn and Lise Meitner. In 1945, he became a member of the Princeton-based ``Emergency Committee for Atomic Scientists'' organized by Bethe, Condon, Bacher, Urey, Szilard and Weisskopf. Rare Einstein slides will illustrate Dr.Rife's presentation on Albert Einstein's philosophic and ethical convictions about peace, and public stance against war (1914-1950).

  19. Classes of exact Einstein Maxwell solutions

    Science.gov (United States)

    Komathiraj, K.; Maharaj, S. D.

    2007-12-01

    We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.

  20. Propagation of strong electromagnetic beams in inhomogeneous plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A; Massaglia, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale)

    1980-09-01

    We study some simple aspects of nonlinear propagation of relativistically strong electromagnetic beams in inhomogeneous plasmas, especially in connection with effects of beam self-trapping in extended extragalactic radio sources. The two effects of (i) long scale longitudinal and radial inhomogeneities inherent to the plasma and (ii) radial inhomogeneities produced by the ponderomotive force of the beam itself are investigated.

  1. Einstein wrote back my life in physics

    CERN Document Server

    Moffat, John W

    2012-01-01

    John W. Moffat was a poor student of math and science. That is, until he read Einstein's famous paper on general relativity. Realizing instantly that he had an unusual and unexplained aptitude for understanding the complex physics described in the paper, Moffat wrote a letter to Einstein that would change the course of his life. Einstein Wrote Back tells the story of Moffat's unusual entry into the world of academia and documents his career at the frontlines of twentieth-century physics as he worked and associated with some of the greatest minds in scientific history, including Niels Bohr,

  2. Einstein constraints in the Yang-Mills form

    International Nuclear Information System (INIS)

    Ashtekar, A.

    1987-01-01

    It is pointed out that constraints of Einstein's theory play a powerful role in both classical and quantum theory because they generate motions in spacetime, rather than in an internal space. New variables are then introduced on the Einstein phase space in terms of which constraints simplify considerably. In particular, the use of these variables enables one to imbed the constraint surface of Einstein's theory into that of Yang-Mills. The imbedding suggests new lines of attack to a number of problems in classical and quantum gravity and provides new concepts and tools to investigate the microscopic structure of space-time geometry

  3. Bose-Einstein correlations in charged current muon-neutrino interactions in the NOMAD experiment at CERN

    International Nuclear Information System (INIS)

    Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.C.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; De Santo, A.; Dignan, T.; Di Lella, L.; Couto e Silva, E. do; Dumarchez, J.; Ellis, M.; Feldman, G.J.; Ferrari, R.; Ferrere, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Goessling, C.; Gouanere, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Lacaprara, S.; Lachaud, C.; Lakic, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubicic, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Mechain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S.R.; Moorhead, G.F.; Naumov, D.; Nedelec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Sevior, M.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipcevic, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S.N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F.V.; Weisse, T.; Wilson, F.F.; Winton, L.J.; Yabsley, B.D.; Zaccone, H.; Zei, R.; Zuber, K.; Zuccon, P.

    2004-01-01

    Bose-Einstein correlations in one and two dimensions have been studied, with high statistics, in charged current muon-neutrino interaction events collected with the NOMAD detector at CERN. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov-Podgoretskii phenomenological parametrizations. The Goldhaber parametrization gives the radius of the pion emission region R G =1.01±0.05(stat) +0.09 -0.06 (sys) fm and for the chaoticity parameter the value λ=0.40±0.03(stat) +0.01 -0.06 (sys). Using the Kopylov-Podgoretskii parametrization yields R KP =2.07±0.04(stat) +0.01 -0.14 (sys) fm and λ KP =0.29±0.06(stat) +0.01 -0.04 (sys). Different parametrizations of the long-range correlations have been also studied. The two-dimensional shape of the source has been investigated in the longitudinal comoving frame. A significant difference between the transverse and the longitudinal dimensions is observed. The high statistics of the collected sample allowed the study of the Bose-Einstein correlations as a function of rapidity, charged particle multiplicity and hadronic energy. A weak dependence of both radius and chaoticity on multiplicity and hadronic energy is found

  4. Effective equivalence of the Einstein-Cartan and Einstein theories of gravity

    International Nuclear Information System (INIS)

    Nester, J.M.

    1977-01-01

    I prove that, for any choice of minimally coupled source field Lagrangian for the Einstein-Cartan-Sciama-Kibble theory of gravity, there exists a related minimally coupled source field Lagrangian for the Einstein theory which produces the same field equations for the metric and source field. By using a standard first-order form for source Lagrangians, the converse is also demonstrated. This establishes a one-to-one correspondence between source Lagrangians for the two theories which clearly reveals their similarities and their differences. Because of this ''equivalence,'' one can view either theory, in terms of the other, as minimal coupling for a related Minkowski source Lagrangian or as nonminimal coupling for the same Minkowski source Lagrangian. Consequently the two theories are, in this sense, indistinguishable. Some other implications of this ''equivalence'' are discussed

  5. Drift effect and "negative" mass transport in an inhomogeneous medium: limiting case of a two-component lattice gas.

    Science.gov (United States)

    Lukyanets, Sergei P; Kliushnychenko, Oleksandr V

    2010-11-01

    The mass transport in an inhomogeneous medium is modeled as the limiting case of a two-component lattice gas with excluded volume constraint and one of the components fixed. In the long-wavelength approximation, the density relaxation of mobile particles is governed by diffusion and interaction with a medium inhomogeneity represented by the static component distribution. It is shown that the density relaxation can be locally accompanied by density distribution compression, i.e., the local mass transport directed from low-to high-density regions. The origin of such a "negative" mass transport is shown to be associated with the presence of a stationary drift flow defined by the medium inhomogeneity. In the quasi-one-dimensional case, the compression dynamics manifests itself in the hoppinglike motion of packet front position of diffusing substance due to staged passing through inhomogeneity barriers, and it leads to fragmentation of the packet and retardation of its spreading. The root-mean-square displacement reflects only the averaged packet front dynamics and becomes inappropriate as the transport characteristic in this regime. In the stationary case, the mass transport throughout the whole system may be directed from the boundary with lower concentration towards the boundary with higher concentration. Implications of the excluded volume constraint and particle distinguishability for these effects are discussed.

  6. Albert Einstein and 20th century's physics

    International Nuclear Information System (INIS)

    Zajac, R.

    1979-01-01

    Albert Einstein's teaching and his three fundamental works are discussed dealing with the molecular theory of heat applied to the motion of suspended particles in liquids at rest, the photoelectric effect, and the theory of relativity. Albert Einstein's impact on contemporary physics is evaluated. (J.P.)

  7. Scale-dependent three-dimensional charged black holes in linear and non-linear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, Angel; Koch, Benjamin [Pontificia Universidad Catolica de Chile, Instituto de Fisica, Santiago (Chile); Contreras, Ernesto; Bargueno, Pedro; Hernandez-Arboleda, Alejandro [Universidad de los Andes, Departamento de Fisica, Bogota, Distrito Capital (Colombia); Panotopoulos, Grigorios [Universidade de Lisboa, CENTRA, Instituto Superior Tecnico, Lisboa (Portugal)

    2017-07-15

    In the present work we study the scale dependence at the level of the effective action of charged black holes in Einstein-Maxwell as well as in Einstein-power-Maxwell theories in (2 + 1)-dimensional spacetimes without a cosmological constant. We allow for scale dependence of the gravitational and electromagnetic couplings, and we solve the corresponding generalized field equations imposing the null energy condition. Certain properties, such as horizon structure and thermodynamics, are discussed in detail. (orig.)

  8. Reduction of entanglement degradation in Einstein-Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Nasr Esfahani, B.; Shamirzaie, M.; Soltani, M.

    2011-01-01

    Bipartite entanglement for states of a noninteracting bosonic or fermionic field in the spacetime of a spherically symmetric black hole of Einstein-Gauss-Bonnet gravity is investigated. Although the initial state is chosen to be maximally entangled as the Bell states, the Hawking-Unruh effect causes the state to be mixed and the entanglement degrades, but with different asymptotic behaviors for the fermionic and bosonic fields. The Gauss-Bonnet term with positive α can play an antigravitation role and so this causes a decrease in the Hawking-Unruh effect and consequently reduces the entanglement degradation. On the other hand, the suggested higher dimensions for the spacetime lead to increased entanglement degradation by increasing the dimension. There is a dramatic difference between the behaviors of the entanglement in terms of the radius of the horizon for a five-dimensional black hole and that for higher dimensional black holes. Both bosonic and fermionic fields entanglements are treated beyond the single-mode approximation. Also, the cases where the accelerating observers located at regions near and far from the event horizon of black hole are studied separately.

  9. Spectroscopy of dark soliton states in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Bongs, K; Burger, S; Hellweg, D; Kottke, M; Dettmer, S; Rinkleff, T; Cacciapuoti, L; Arlt, J; Sengstock, K; Ertmer, W

    2003-01-01

    Experimental and numerical studies of the velocity field of dark solitons in Bose-Einstein condensates are presented. The formation process after phase imprinting as well as the propagation of the emerging soliton are investigated using spatially resolved Bragg spectroscopy of soliton states in Bose-Einstein condensates of 87 Rb. A comparison of experimental data to results from numerical simulations of the Gross-Pitaevskii equation clearly identifies the flux underlying a dark soliton propagating in a Bose-Einstein condensate. The results allow further optimization of the phase imprinting method for creating collective excitations of Bose-Einstein condensates

  10. Large sample neutron activation analysis of a reference inhomogeneous sample

    International Nuclear Information System (INIS)

    Vasilopoulou, T.; Athens National Technical University, Athens; Tzika, F.; Stamatelatos, I.E.; Koster-Ammerlaan, M.J.J.

    2011-01-01

    A benchmark experiment was performed for Neutron Activation Analysis (NAA) of a large inhomogeneous sample. The reference sample was developed in-house and consisted of SiO 2 matrix and an Al-Zn alloy 'inhomogeneity' body. Monte Carlo simulations were employed to derive appropriate correction factors for neutron self-shielding during irradiation as well as self-attenuation of gamma rays and sample geometry during counting. The large sample neutron activation analysis (LSNAA) results were compared against reference values and the trueness of the technique was evaluated. An agreement within ±10% was observed between LSNAA and reference elemental mass values, for all matrix and inhomogeneity elements except Samarium, provided that the inhomogeneity body was fully simulated. However, in cases that the inhomogeneity was treated as not known, the results showed a reasonable agreement for most matrix elements, while large discrepancies were observed for the inhomogeneity elements. This study provided a quantification of the uncertainties associated with inhomogeneity in large sample analysis and contributed to the identification of the needs for future development of LSNAA facilities for analysis of inhomogeneous samples. (author)

  11. Stationary axisymmetric Einstein--Maxwell field equations

    International Nuclear Information System (INIS)

    Catenacci, R.; Diaz Alonso, J.

    1976-01-01

    We show the existence of a formal identity between Einstein's and Ernst's stationary axisymmetric gravitational field equations and the Einstein--Maxwell and the Ernst equations for the electrostatic and magnetostatic axisymmetric cases. Our equations are invariant under very simple internal symmetry groups, and one of them appears to be new. We also obtain a method for associating two stationary axisymmetric vacuum solutions with every electrostatic known

  12. A new characterization of half-flat solutions to Einstein's equation

    International Nuclear Information System (INIS)

    Ashtekar, A.; California Univ., Santa Barbara; Jacobson, T.; California Univ., Santa Barbara; Smolin, L.; Yale Univ., New Haven, CT

    1988-01-01

    A 3+1 formulation of complex Einstein's equation is first obtained on a real 4-manifold M, topologically Σ x R, where Σ is an arbitrary 3-manifold. The resulting constraint and evolution equations are then simplified by using variables that capture the (anti-) self dual part of the 4-dimensional Weyl curvature. As a result, to obtain a vacuum self-dual solution, one has just to solve one constraint and one ''evolution'' equation on a field of triads on Σ: Div V i a = 0 and V i a = ε ijk [V j , V k ] a , with i = 1, 2, 3, where Div denotes divergence with respect to a fixed, non-dynamical volume element. If the triad is real, the resulting self-dual metric is real and positive definite. This characterization of self-dual solutions in terms of triads appears to be particularly well suited for analysing the issues of exact integrability of the (anti-)-self-dual Einstein system. Finally, although the use of a 3+1 decomposition seems artificial from a strict mathematical viewpoint, as David C. Robinson has recently shown, the resulting triad description is closely related to the hyperkaehler geometry that (anti-)self-dual vacuum solutions naturally admit. (orig.)

  13. Disordered-quantum-walk-induced localization of a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Chandrashekar, C. M.

    2011-01-01

    We present an approach to induce localization of a Bose-Einstein condensate in a one-dimensional lattice under the influence of unitary quantum-walk evolution using disordered quantum coin operation. We introduce a discrete-time quantum-walk model in which the interference effect is modified to diffuse or strongly localize the probability distribution of the particle by assigning a different set of coin parameters picked randomly for each step of the walk, respectively. Spatial localization of the particle or state is explained by comparing the variance of the probability distribution of the quantum walk in position space using disordered coin operation to that of the walk using an identical coin operation for each step. Due to the high degree of control over quantum coin operation and most of the system parameters, ultracold atoms in an optical lattice offer opportunities to implement a disordered quantum walk that is unitary and induces localization. Here we present a scheme to use a Bose-Einstein condensate that can be evolved to the superposition of its internal states in an optical lattice and control the dynamics of atoms to observe localization. This approach can be adopted to any other physical system in which controlled disordered quantum walk can be implemented.

  14. On Certain Conceptual Anomalies in Einstein's Theory of Relativity

    Directory of Open Access Journals (Sweden)

    Crothers S. J.

    2008-01-01

    Full Text Available There are a number of conceptual anomalies occurring in the Standard exposition of Einstein's Theory of Relativity. These anomalies relate to issues in both mathematics and in physics and penetrate to the very heart of Einstein's theory. This paper reveals and amplifies a few such anomalies, including the fact that Einstein's field equations for the so-called static vacuum configuration, $R_{mu u} = 0$, violates his Principle of Equivalence, and is therefore erroneous. This has a direct bearing on the usual concept of conservation of energy for the gravitational field and the conventional formulation for localisation of energy using Einstein's pseudo-tensor. Misconceptions as to the relationship between Minkowski spacetime and Special Relativity are also discussed, along with their relationships to the pseudo-Riemannian metric manifold of Einstein's gravitational field, and their fundamental geometric structures pertaining to spherical symmetry.

  15. What about Albert Einstein? Using Biographies to Promote Students' Scientific Thinking

    Science.gov (United States)

    Fingon, Joan C.; Fingon, Shallon D.

    2009-01-01

    Who hasn't heard of Einstein? Science educators everywhere are familiar with Einstein's genius and general theory of relativity. Students easily recognize Einstein's image by his white flyaway hair and bushy mustache. It is well known that Einstein was a brilliant physicist and an abstract thinker who often used his creativity and imagination in…

  16. One dimensional Bosons: From Condensed Matter Systems to Ultracold Gases

    OpenAIRE

    Cazalilla, M. A.; Citro, R.; Giamarchi, T.; Orignac, E.; Rigol, M.

    2011-01-01

    The physics of one-dimensional interacting bosonic systems is reviewed. Beginning with results from exactly solvable models and computational approaches, the concept of bosonic Tomonaga-Luttinger liquids relevant for one-dimensional Bose fluids is introduced, and compared with Bose-Einstein condensates existing in dimensions higher than one. The effects of various perturbations on the Tomonaga-Luttinger liquid state are discussed as well as extensions to multicomponent and out of equilibrium ...

  17. Deterministic joint remote preparation of an equatorial hybrid state via high-dimensional Einstein-Podolsky-Rosen pairs: active versus passive receiver

    Science.gov (United States)

    Bich, Cao Thi; Dat, Le Thanh; Van Hop, Nguyen; An, Nguyen Ba

    2018-04-01

    Entanglement plays a vital and in many cases non-replaceable role in the quantum network communication. Here, we propose two new protocols to jointly and remotely prepare a special so-called bipartite equatorial state which is hybrid in the sense that it entangles two Hilbert spaces with arbitrary different dimensions D and N (i.e., a type of entanglement between a quDit and a quNit). The quantum channels required to do that are however not necessarily hybrid. In fact, we utilize four high-dimensional Einstein-Podolsky-Rosen pairs, two of which are quDit-quDit entanglements, while the other two are quNit-quNit ones. In the first protocol the receiver has to be involved actively in the process of remote state preparation, while in the second protocol the receiver is passive as he/she needs to participate only in the final step for reconstructing the target hybrid state. Each protocol meets a specific circumstance that may be encountered in practice and both can be performed with unit success probability. Moreover, the concerned equatorial hybrid entangled state can also be jointly prepared for two receivers at two separated locations by slightly modifying the initial particles' distribution, thereby establishing between them an entangled channel ready for a later use.

  18. Classes of general axisymmetric solutions of Einstein-Maxwell equations

    International Nuclear Information System (INIS)

    Krori, K.D.; Choudhury, T.

    1981-01-01

    An exact solution of the Einstein equations for a stationary axially symmetric distribution of mass composed of all types of multipoles is obtained. Following Ernst (1968), from this vacuum solution the corresponding solution of the coupled Einstein-Maxwell equations is derived. A solution of Einstein-Maxwell fields for a static axially symmetric system composed of all types of multipoles is also obtained. (author)

  19. Bose-Einstein Condensation

    Indian Academy of Sciences (India)

    absolute zero. These ideas had ... Everybody is talking about Bose-Einstein condensation. This discovery ... needed if we want to find the probability distribution of the x- ... Boltzmann took two approaches to the problem, both of them deep and ...

  20. Competition between Bose-Einstein Condensation and Spin Dynamics.

    Science.gov (United States)

    Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B

    2016-10-28

    We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.

  1. Einstein's Mirror

    Science.gov (United States)

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  2. Solitons in four dimensional gravity

    International Nuclear Information System (INIS)

    Matos, T.

    1990-01-01

    An alternative method to solve the Chiral equations with SL (2,R) symmetry is developed. One gets the N-soliton solution using the Neugebauer Ansatz. For N = 1 one obtains the Backlund transformation of the Chiral equations. From the application of this transformation for the flat seed solution one finds the Kerr-NUT solution. This method can be applied to generate solutions of the n-dimensional Einstein equations (Author)

  3. Cyclotron spectra from inhomogeneous accretion columns. II. Polarization

    International Nuclear Information System (INIS)

    Wu, K.; Chanmugam, G.

    1989-01-01

    Circularly and linearly polarized radiation from inhomogeneous cyclotron emission regions with uniform magnetic field and temperature but different electron density profiles are studied. Calculations show that the inhomogeneous models generally produce larger polarization for low harmonics and smaller polarization for high harmonics compared to the homogeneous models. Polarization light curves for different inhomogeneous models with a wide variety of parameters are presented, providing handy theoretical results to compare with observations. The observed polarization light curves of ST LMi, EF Eri, and BL Hydri are fitted using an inhomogeneous model for the first time, and good fits are obtained, supporting the hypothesis that the cyclotron emission regions of AM Her systems have a complicated structure. 37 refs

  4. You err, Einstein.. Newton, Einstein, Heisenberg, and Feynman discuss quantum physics

    International Nuclear Information System (INIS)

    Fritzsch, Harald

    2008-01-01

    Harald Fritzsch and his star physicists Einstein, Heisenberg, and Feynman explain the central concept of nowadays physics, quantum mechanics, without it nothing goes in modern world. And the great Isaac newton puts the questions, which all would put

  5. Theory of a gauge gravitational field at localization of the Einstein group

    International Nuclear Information System (INIS)

    Tunyak, V.N.

    1985-01-01

    Theory of a gauge gravitational field when localizing a group of movements of the Einstein homogeneous static Universe (the R x SO Einstein group (4)) has been formulated. Proceeding from tetrade components of the Einstein Universe the relation between the Riemann metrics and gauge fields of the Einstein group has been established. Metric coherence with torsion transforming to the Kristoffel coherence of the Einstein Universe has been found when switching out gauge fields. It is shown that within the limit of infinite radius of the Einstein Universe curvature the given Einstein-invariant gauge theory transforms to the tetrade gravitation theory with localized triade rotations. Exact solutions in the form of nonsingular cosmological models have been obtained

  6. EINSTEIN EQUATIONS FOR TETRAD FIELDS ECUACIONES DE EINSTEIN PARA CAMPOS TETRADOS

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available Every metric tensor can be expressed by the inner product of tetrad fields. We prove that Einstein's equations for these fields have the same form as the stress-energy tensor of electromagnetism if the total external current . Using the Evans' unified field theory, we show that the true unification of gravity and electromagnetism is with source-free Maxwell equations.Todo tensor métrico puede ser expresado por el producto interno de campos tetrados. Se prueba que las ecuaciones de Einstein para esos campos tienen la misma forma que el tensor electromagnético de momento-energía si la corriente externa total es igual a cero. Usando la teoría de campo unificado de Evans se muestra que la verdadera unificación de la gravedad y el electromagnetismo es con las ecuaciones de Maxwell sin fuentes.

  7. Effective Ohm's law for magnetized plasmas with anisotropic inhomogeneities

    International Nuclear Information System (INIS)

    Shamma, S.E.; Martinez-Sanchez, M.; Louis, J.F.

    1978-01-01

    Reduction formulae for the effective, or macroscopic, Ohm's law parameters are derived for inhomogeneous plasmas with anisotropic conductivity fluctuations having two general types of geometry: (a) elongated or shortened in the direction of the magnetic field and (b) two-dimensional, with the direction of constant properties lying in the plane perpendicular to the magnetic field. In each case, two approaches are used: (a) a small perturbation method and (b) an approximate method where each region in the plasma is considered separately, and consistency conditions are used to relate the results corresponding to each separate region to the effective properties of the whole plasma. Both methods are found to agree well when the fluctuations are weak, but differences appear at high fluctuation levels and, for nonuniformities very elongated along B, when the Hall parameter β is high. Comparison with available exact solutions valid at high β and strong fluctuation levels indicates that the self-consistency method gives accurate results even in these cases. The results of these analyses are used to evaluate the performance reduction in magnetohydrodynamic channels with plasma nonuniformities of several geometries, including axial streamers, perfectly isotropic fluctuations, and fluctuations elongated along B; the power density is reduced most strongly when β and the rms of the fluctuations are high, and also when the inhomogeneities are stretched along the magnetic field

  8. MRI intensity inhomogeneity correction by combining intensity and spatial information

    International Nuclear Information System (INIS)

    Vovk, Uros; Pernus, Franjo; Likar, Bostjan

    2004-01-01

    We propose a novel fully automated method for retrospective correction of intensity inhomogeneity, which is an undesired phenomenon in many automatic image analysis tasks, especially if quantitative analysis is the final goal. Besides most commonly used intensity features, additional spatial image features are incorporated to improve inhomogeneity correction and to make it more dynamic, so that local intensity variations can be corrected more efficiently. The proposed method is a four-step iterative procedure in which a non-parametric inhomogeneity correction is conducted. First, the probability distribution of image intensities and corresponding second derivatives is obtained. Second, intensity correction forces, condensing the probability distribution along the intensity feature, are computed for each voxel. Third, the inhomogeneity correction field is estimated by regularization of all voxel forces, and fourth, the corresponding partial inhomogeneity correction is performed. The degree of inhomogeneity correction dynamics is determined by the size of regularization kernel. The method was qualitatively and quantitatively evaluated on simulated and real MR brain images. The obtained results show that the proposed method does not corrupt inhomogeneity-free images and successfully corrects intensity inhomogeneity artefacts even if these are more dynamic

  9. Structure of the space of solutions of Einstein's equations II: Several killing fields and the Einstein-Yang-Mills equations

    International Nuclear Information System (INIS)

    Arms, J.M.; Marsden, J.E.; Moncrief, V.

    1982-01-01

    The space of solutions of Einstein's vacuum equations is shown to have conical singularities at each spacetime possessing a compact Cauchy surface of constant mean curvature and a nontrivial set of Killing fields. Similar results are shown for the coupled Einstein-Yang-Mills system. Combined with an appropriate slice theorem, the results show that the space of geometrically equivalent solutions is a stratified manifold with each stratum being a symplectic manifold characterized by the symmetry type of its members. Contents: Introduction 1. The Kuranishi map and its properties. 2. The momentum constraints. 3. The Hamiltonian constraints. 4. The Einstein-Yang-Mills system. 5. Discussion and examples

  10. EGSnrc calculated and MRI-polymer gel dosimeter measured dose distribution of gamma knife in presence of inhomogeneities

    International Nuclear Information System (INIS)

    Allahverdi Pourfallah, T.; Allahverdi, M.; Riahi Alam, N.; Ay, M.; Zahmatkesh, M.; Ibbott, J.S.

    2008-01-01

    Stereotactic gamma-knife radiosurgery plays an important role in managing small intracranial brain lesions. Currently, polymer gel dosimetry is still the only dosimetry method for directly measuring three-dimensional dose distributions. polymer gel dosimeters are tissue equivalent and can act as a phantom material. In this study effects of inhomogeneities on those distributions have been investigated using both EGSnrc calculation and PAGAT polymer gel dosimeter. (author)

  11. Vortex nucleation in Bose-Einstein condensates in time-dependent traps

    International Nuclear Information System (INIS)

    Lundh, Emil; Martikainen, J.-P.; Suominen, Kalle-Antti

    2003-01-01

    Vortex nucleation in a Bose-Einstein condensate subject to a stirring potential is studied numerically using the zero-temperature, two-dimensional Gross-Pitaevskii equation. In the case of a rotating, slightly anisotropic harmonic potential, the numerical results reproduce experimental findings, thereby showing that finite temperatures are not necessary for vortex excitation below the quadrupole frequency. In the case of a condensate subject to stirring by a narrow rotating potential, the process of vortex excitation is described by a classical model that treats the multitude of vortices created by the stirrer as a continuously distributed vorticity at the center of the cloud, but retains a potential flow pattern at large distances from the center

  12. Einstein's Years in Switzerland

    Science.gov (United States)

    Plendl, Hans S.

    2005-11-01

    Albert Einstein left Germany, the country of his birth, in 1894 and moved to Switzerland in 1895. He studied, worked and taught there, except for a year's stay in Prague, until1914. That year he returned to Germany, where he lived until his emigration to the United States in 1933. In 1905, while living with his wife Mileva and their first son Hans Albert in Bern and working as a technical expert at the Swiss Patent Office, he published his dissertation on the determination of molecular dimensions, his papers on Brownian Motion that helped to establish the Kinetic Theory of Heat and on the Photo-Electric Effect that validated the Quantum Theory of Light, and the two papers introducing the Special Theory of Relativity. How the young Einstein could help to lay the foundations of these theories while still working on his dissertation, holding a full-time job and helping to raise a family has evoked much discussion among his biographers. In this contribution, the extent to which living within Swiss society and culture could have made this feat possible will be examined. Old and recent photos of places in Switzerland where Einstein has lived and worked will be shown.

  13. What Einstein Can Teach Us about Education

    Science.gov (United States)

    Hayes, Denis

    2007-01-01

    People are more likely to associate Einstein with complex scientific theories and mathematical calculations than with education theory. In fact, Einstein's own experiences of schooling and his reflections on the meaning of life and the significance of education are profound and oddly relevant to the situation that pertains in England today. It is…

  14. From Einstein's theorem to Bell's theorem: a history of quantum non-locality

    Science.gov (United States)

    Wiseman, H. M.

    2006-04-01

    In this Einstein Year of Physics it seems appropriate to look at an important aspect of Einstein's work that is often down-played: his contribution to the debate on the interpretation of quantum mechanics. Contrary to physics ‘folklore’, Bohr had no defence against Einstein's 1935 attack (the EPR paper) on the claimed completeness of orthodox quantum mechanics. I suggest that Einstein's argument, as stated most clearly in 1946, could justly be called Einstein's reality locality completeness theorem, since it proves that one of these three must be false. Einstein's instinct was that completeness of orthodox quantum mechanics was the falsehood, but he failed in his quest to find a more complete theory that respected reality and locality. Einstein's theorem, and possibly Einstein's failure, inspired John Bell in 1964 to prove his reality locality theorem. This strengthened Einstein's theorem (but showed the futility of his quest) by demonstrating that either reality or locality is a falsehood. This revealed the full non-locality of the quantum world for the first time.

  15. Integrable properties of a variable-coefficient Korteweg-de Vries model from Bose-Einstein condensates and fluid dynamics

    International Nuclear Information System (INIS)

    Zhang Chunyi; Gao Yitian; Meng Xianghua; Li Juan; Xu Tao; Wei Guangmei; Zhu Hongwu

    2006-01-01

    The phenomena of the trapped Bose-Einstein condensates related to matter waves and nonlinear atom optics can be governed by a variable-coefficient Korteweg-de Vries (vc-KdV) model with additional terms contributed from the inhomogeneity in the axial direction and the strong transverse confinement of the condensate, and such a model can also be used to describe the water waves propagating in a channel with an uneven bottom and/or deformed walls. In this paper, with the help of symbolic computation, the bilinear form for the vc-KdV model is obtained and some exact solitonic solutions including the N-solitonic solution in explicit form are derived through the extended Hirota method. We also derive the auto-Baecklund transformation, nonlinear superposition formula, Lax pairs and conservation laws of this model. Finally, the integrability of the variable-coefficient model and the characteristic of the nonlinear superposition formula are discussed

  16. Vortices in trapped Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Jackson, B.

    2000-09-01

    In this thesis we solve the Gross-Pitaevskii equation numerically in order to model the response of trapped Bose-Einstein condensed gases to perturbations by electromagnetic fields. First, we simulate output coupling of pulses from the condensate and compare our results to experiments. The excitation and separation of eigenmodes on flow through a constriction is also studied. We then move on to the main theme of this thesis: the important subject of quantised vortices in Bose condensates, and the relation between Bose-Einstein condensation and superfluidity. We propose methods of producing vortex pairs and rings by controlled motion of objects. Full three-dimensional simulations under realistic experimental conditions are performed in order to test the validity of these ideas. We link vortex formation to drag forces on the object, which in turn is connected with energy transfer to the condensate. We therefore argue that vortex formation by moving objects is intimately related to the onset of dissipation in superfluids. We discuss this idea in the context of a recent experiment, using simulations to provide evidence of vortex formation in the experimental scenario. Superfluidity is also manifest in the property of persistent currents, which is linked to vortex stability and dynamics. We simulate vortex line and ring motion, and find in both cases precessional motion and thermodynamic instability to dissipation. Strictly speaking, the Gross-Pitaevskii equation is valid only for temperatures far below the BEC transition. We end the thesis by describing a simple finite-temperature model to describe mean-field coupling between condensed and non-condensed components of the gas. We show that our hybrid Monte-Carlo/FFT technique can describe damping of the lowest energy excitations of the system. Extensions to this model and future research directions are discussed in the conclusion. (author)

  17. Die Leben Einsteins eine Reise durch die Geschichte der Physik

    CERN Document Server

    Fiami

    2005-01-01

    Jeder kennt die Namen Einstein, Newton oder Galilei. aber was weiss man über sie? Hier ein Porträt Einsteins anhand von sechs Meilensteinen aus der Geschichte der Physik. Einstein tritt auf als Protagonist in verschiedenen Epochen und bei verschiedenen Entdeckungen, die die Welt verändert haben.

  18. Derivation of Einstein-Cartan theory from general relativity

    Science.gov (United States)

    Petti, Richard

    2015-04-01

    General relativity cannot describe exchange of classical intrinsic angular momentum and orbital angular momentum. Einstein-Cartan theory fixes this problem in the least invasive way. In the late 20th century, the consensus view was that Einstein-Cartan theory requires inclusion of torsion without adequate justification, it has no empirical support (though it doesn't conflict with any known evidence), it solves no important problem, and it complicates gravitational theory with no compensating benefit. In 1986 the author published a derivation of Einstein-Cartan theory from general relativity, with no additional assumptions or parameters. Starting without torsion, Poincaré symmetry, classical or quantum spin, or spinors, it derives torsion and its relation to spin from a continuum limit of general relativistic solutions. The present work makes the case that this computation, combined with supporting arguments, constitutes a derivation of Einstein-Cartan theory from general relativity, not just a plausibility argument. This paper adds more and simpler explanations, more computational details, correction of a factor of 2, discussion of limitations of the derivation, and discussion of some areas of gravitational research where Einstein-Cartan theory is relevant.

  19. Thermodynamic properties of charged three-dimensional black holes in the scalar-tensor gravity theory

    Science.gov (United States)

    Dehghani, M.

    2018-02-01

    Making use of the suitable transformation relations, the action of three-dimensional Einstein-Maxwell-dilaton gravity theory has been obtained from that of scalar-tensor modified gravity theory coupled to the Maxwell's electrodynamics as the matter field. Two new classes of the static three-dimensional charged dilatonic black holes, as the exact solutions to the coupled scalar, electromagnetic and gravitational field equations, have been obtained in the Einstein frame. Also, it has been found that the scalar potential can be written in the form of a generalized Liouville-type potential. The conserved black hole charge and masses as well as the black entropy, temperature, and electric potential have been calculated from the geometrical and thermodynamical approaches, separately. Through comparison of the results arisen from these two alternative approaches, the validity of the thermodynamical first law has been proved for both of the new black hole solutions in the Einstein frame. Making use of the canonical ensemble method, a black hole stability or phase transition analysis has been performed. Regarding the black hole heat capacity, with the black hole charge as a constant, the points of type-1 and type-2 phase transitions have been determined. Also, the ranges of the black hole horizon radius at which the Einstein black holes are thermally stable have been obtained for both of the new black hole solutions. Then making use of the inverse transformation relations, two new classes of the string black hole solutions have been obtained from their Einstein counterpart. The thermodynamics and thermal stability of the new string black hole solutions have been investigated. It has been found that thermodynamic properties of the new charged black holes are identical in the Einstein and Jordan frames.

  20. Rivaroxaban for the treatment of symptomatic deep-vein thrombosis and pulmonary embolism in Chinese patients: a subgroup analysis of the EINSTEIN DVT and PE studies.

    Science.gov (United States)

    Wang, Yuqi; Wang, Chen; Chen, Zhong; Zhang, Jiwei; Liu, Zhihong; Jin, Bi; Ying, Kejing; Liu, Changwei; Shao, Yuxia; Jing, Zhicheng; Meng, Isabelle Ling; Prins, Martin H; Pap, Akos F; Müller, Katharina; Lensing, Anthonie Wa

    2013-12-16

    The worldwide EINSTEIN DVT and EINSTEIN PE studies randomized 8282 patients with acute symptomatic deep-vein thrombosis (DVT) and/or pulmonary embolism (PE) and, for the first time in trials in this setting, included patients in China. This analysis evaluates the results of these studies in this subgroup of patients. A total of 439 Chinese patients who had acute symptomatic DVT (n=211), or PE with or without DVT (n=228), were randomized to receive rivaroxaban (15 mg twice daily for 21 days, followed by 20 mg once daily) or standard therapy of enoxaparin overlapping with and followed by an adjusted-dose vitamin K antagonist, for 3, 6, or 12 months. The primary efficacy outcome was symptomatic recurrent venous thromboembolism. The principal safety outcome was major or non-major clinically relevant bleeding. The primary efficacy outcome occurred in seven (3.2%) of the 220 patients in the rivaroxaban group and in seven (3.2%) of the 219 patients in the standard-therapy group (hazard ratio, 1.04; 95% confidence interval 0.36-3.0; p=0.94). The principal safety outcome occurred in 13 (5.9%) patients in the rivaroxaban group and in 20 (9.2%) patients in the standard-therapy group (hazard ratio, 0.63; 95% confidence interval 0.31-1.26; p=0.19). Major bleeding was observed in no patients in the rivaroxaban group and in five (2.3%) patients in the standard-therapy group. In fragile patients (defined as age >75 years, creatinine clearance EINSTEIN PE, ClinicalTrials.gov NCT00439777; EINSTEIN DVT, ClinicalTrials.gov NCT00440193.

  1. S1 x S2 as a bag membrane and its Einstein-Weyl geometry

    International Nuclear Information System (INIS)

    Rosu, H.

    1992-10-01

    In the hybrid skyrmion in which an anti-de Sitter bag is embedded into the skyrmion configuration a S 1 x S 2 membrane is lying on the compactified spatial infinity of the bag. The connection between the quark degrees of freedom and the mesonic ones is made through the membrane. This 3-dimensional manifold is at the same time Weyl-Einstein space. We present what is known until the present time to people working in the differential geometry of these spaces. (author). 11 refs

  2. Control and synchronisation of a novel seven-dimensional ...

    Indian Academy of Sciences (India)

    METIN VARAN

    2018-03-16

    Mar 16, 2018 ... This paper is organised as follows: In §2, seven- ..... Intelligent Control and Automation (Hangzhou, 2004). Vol. ... [42] M A Franchek, M W Ryan and R J Bernhard, J. Sound ... Chaotic systems, artificial neural networks, random.

  3. Superconductivity in an Inhomogeneous Bundle of Metallic and Semiconducting Nanotubes

    Directory of Open Access Journals (Sweden)

    Ilya Grigorenko

    2013-01-01

    Full Text Available Using Bogoliubov-de Gennes formalism for inhomogeneous systems, we have studied superconducting properties of a bundle of packed carbon nanotubes, making a triangular lattice in the bundle's transverse cross-section. The bundle consists of a mixture of metallic and doped semiconducting nanotubes, which have different critical transition temperatures. We investigate how a spatially averaged superconducting order parameter and the critical transition temperature depend on the fraction of the doped semiconducting carbon nanotubes in the bundle. Our simulations suggest that the superconductivity in the bundle will be suppressed when the fraction of the doped semiconducting carbon nanotubes will be less than 0.5, which is the percolation threshold for a two-dimensional triangular lattice.

  4. Elastic scattering of a Bose-Einstein condensate at a potential landscape

    International Nuclear Information System (INIS)

    Březinová, Iva; Burgdörfer, Joachim; Lode, Axel U J; Streltsov, Alexej I; Cederbaum, Lorenz S; Alon, Ofir E; Collins, Lee A; Schneider, Barry I

    2014-01-01

    We investigate the elastic scattering of Bose-Einstein condensates at shallow periodic and disorder potentials. We show that the collective scattering of the macroscopic quantum object couples to internal degrees of freedom of the Bose-Einstein condensate such that the Bose-Einstein condensate gets depleted. As a precursor for the excitation of the Bose-Einstein condensate we observe wave chaos within a mean-field theory

  5. Generalized Einstein-Aether theories and the Solar System

    International Nuclear Information System (INIS)

    Bonvin, Camille; Durrer, Ruth; Ferreira, Pedro G.; Zlosnik, Tom G.; Starkman, Glenn

    2008-01-01

    It has been shown that generalized Einstein-Aether theories may lead to significant modifications to the nonrelativistic limit of the Einstein equations. In this paper we study the effect of a general class of such theories on the Solar System. We consider corrections to the gravitational potential in negative and positive powers of distance from the source. Using measurements of the perihelion shift of Mercury and time delay of radar signals to Cassini, we place constraints on these corrections. We find that a subclass of generalized Einstein-Aether theories is compatible with these constraints

  6. Black holes in the dilatonic Einstein-Gauss-Bonnet theory in various dimensions. 1. Asymptotically flat black holes

    International Nuclear Information System (INIS)

    Guo, Zong-Kuan; Ohta, Nobuyoshi; Torii, Takashi

    2008-01-01

    We study spherically symmetric, asymptotically flat black hole solutions in the low-energy effective heterotic string theory, which is the Einstein gravity with Gauss-Bonnet term and the dilaton, in various dimensions. We derive the field equations for suitable ansatz for general D dimensions and construct black hole solutions of various masses numerically in D=4,5,6 and 10 dimensional spacetime with (D-2)-dimensional hypersurface with positive constant curvature. A detailed comparison with the non-dilatonic solutions is made. We also examine the thermodynamic properties of the solutions. It is found that the dilaton has significant effects on the black hole solutions, and we discuss physical consequences. (author)

  7. Interactions of Ultracold Impurity Particles with Bose-Einstein Condensates

    Science.gov (United States)

    2015-06-23

    AFRL-OSR-VA-TR-2015-0141 INTERACTIONS OF ULTRACOLD IMPURITY PARTICLES WITH BOSE- EINSTEIN CONDENSATES Georg Raithel UNIVERSITY OF MICHIGAN Final...SUBTITLE Interactions of ultracold impurity particles with Bose- Einstein Condensates 5a. CONTRACT NUMBER FA9550-10-1-0453 5b. GRANT NUMBER 5c...Interactions of ultracold impurity particles with Bose- Einstein Condensates Contract/Grant #: FA9550-10-1-0453 Reporting Period: 8/15/2010 to 2/14

  8. [Photoeffects, Einstein's light quanta and the history of their acceptance].

    Science.gov (United States)

    Wiederkehr, Karl Heinrich

    2006-01-01

    It is generally supposed, that the discovery of the efficacy-quantum by Planck was the impetus to Einstein's hypothesis of lightquanta. With its help Einstein could explain the external light-electrical effect. But even years before Einstein had worked at the photoeffect and already made experiments on it. For that reason the article gives a short survey about the history of the lightelectric effects. Lenard's basical work about the release of the photoelectrons is dealt with in detail, without which Einstein would scarcely have found his lightquanta. Furthermore it is shown how difficult it was for the physicists to give up--at least partially--the traditional view of the undulation-nature of light, and how they searched to explain the great energies of the photoelectrons. On the other side it is set forth how Einstein's formula of lightquanta was gradually confirmed. The tragical development of Einstein's personal relations with Johannes Stark and Philipp Lenard are briefly described. Stark was one of the few who supported Einstein's ideas at the beginning. Only with the Compton-effect, which could only be quantitatively interpreted by means of lightquanta and the special theory of relativity 1923, the way was free for the general acceptance of the lightquanta. Einstein did not agree to the obtained dualism of undulation and corpuscle; he had a different solution in mind about the fusion of the two forms of appearance of light.

  9. Approximate radiative solutions of the Einstein equations

    International Nuclear Information System (INIS)

    Kuusk, P.; Unt, V.

    1976-01-01

    In this paper the external field of a bounded source emitting gravitational radiation is considered. A successive approximation method is used to integrate the Einstein equations in Bondi's coordinates (Bondi et al, Proc. R. Soc.; A269:21 (1962)). A method of separation of angular variables is worked out and the approximate Einstein equations are reduced to key equations. The losses of mass, momentum, and angular momentum due to gravitational multipole radiation are found. It is demonstrated that in the case of proper treatment a real mass occurs instead of a mass aspect in a solution of the Einstein equations. In an appendix Bondi's new function is given in terms of sources. (author)

  10. Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates

    Science.gov (United States)

    Fadel, Matteo; Zibold, Tilman; Décamps, Boris; Treutlein, Philipp

    2018-04-01

    Many-particle entanglement is a fundamental concept of quantum physics that still presents conceptual challenges. Although nonclassical states of atomic ensembles were used to enhance measurement precision in quantum metrology, the notion of entanglement in these systems was debated because the correlations among the indistinguishable atoms were witnessed by collective measurements only. Here, we use high-resolution imaging to directly measure the spin correlations between spatially separated parts of a spin-squeezed Bose-Einstein condensate. We observe entanglement that is strong enough for Einstein-Podolsky-Rosen steering: We can predict measurement outcomes for noncommuting observables in one spatial region on the basis of corresponding measurements in another region with an inferred uncertainty product below the Heisenberg uncertainty bound. This method could be exploited for entanglement-enhanced imaging of electromagnetic field distributions and quantum information tasks.

  11. Academic Training: Einstein and beyond: Introduction to General relativity

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 3, 4, 5, 6, 7 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Einstein and beyond: Introduction to General relativity by N. Straumann / Institut fur theoretische physics, Univ. Zürich We review the enduring achievements of Einstein's papers of 1905 and their impact on the further developments in physics. Program : Lectures I and II:Einstein's Contributions to Statistical Mechanics and Quantum Theory Lecture III:Einstein's Thesis at the University of Zürich Lecture IV: From Special to General Relativity Lecture V: The History and the Mystery of the Cosmological Constant ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  12. Chemical potential of one-dimensional simple harmonic oscillators

    International Nuclear Information System (INIS)

    Mungan, Carl E

    2009-01-01

    Expressions for the chemical potential of an Einstein solid, and of ideal Fermi and Bose gases in an external one-dimensional oscillatory trap, are calculated by two different methods and are all found to share the same functional form. These derivations are easier than traditional textbook calculations for an ideal gas in an infinite three-dimensional square well. Furthermore, the results indicate some important features of chemical potential that could promote student learning in an introductory course in statistical mechanics at the undergraduate level.

  13. Einstein was right!

    CERN Multimedia

    2003-01-01

    For the first time scientists have succeeded in measuring the speed of gravity. They took advantage of a rare alignment of Jupiter against a far-off quasar to measure the fundamental constant described by Albert Einstein in his general theory of relativity (2 pages).

  14. Radiating black holes in Einstein-Maxwell-dilaton theory and cosmic censorship violation

    International Nuclear Information System (INIS)

    Aniceto, Pedro; Pani, Paolo; Rocha, Jorge V.

    2016-01-01

    We construct exact, time-dependent, black hole solutions of Einstein-Maxwell-dilaton theory with arbitrary dilaton coupling, a. For a=1 this theory arises as the four-dimensional low-energy effective description of heterotic string theory. These solutions represent electrically charged, spherically symmetric black holes emitting or absorbing charged null fluids and generalize the Vaidya and Bonnor-Vaidya solutions of general relativity and of Einstein-Maxwell theory, respectively. The a=1 case stands out as special, in the sense that it is the only choice of the coupling that allows for a time-dependent dilaton field in this class of solutions. As a by-product, when a=1 we show that an electrically charged black hole in this theory can be overcharged by bombarding it with a stream of electrically charged null fluid, resulting in the formation of a naked singularity. This provides an example of cosmic censorship violation in an exact dynamical solution to low-energy effective string theory and in a case in which the total stress-energy tensor satisfies all energy conditions. When a≠1, our solutions necessarily have a time-independent scalar field and consequently cannot be overcharged.

  15. Radiating black holes in Einstein-Maxwell-dilaton theory and cosmic censorship violation

    Energy Technology Data Exchange (ETDEWEB)

    Aniceto, Pedro [CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049 Lisboa (Portugal); Pani, Paolo [Dipartimento di Fisica, “Sapienza” Università di Roma & Sezione INFN Roma 1,Piazzale Aldo Moro 5, 00185 Roma (Italy); CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049 Lisboa (Portugal); Rocha, Jorge V. [Departament de Física Fonamental, Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)

    2016-05-19

    We construct exact, time-dependent, black hole solutions of Einstein-Maxwell-dilaton theory with arbitrary dilaton coupling, a. For a=1 this theory arises as the four-dimensional low-energy effective description of heterotic string theory. These solutions represent electrically charged, spherically symmetric black holes emitting or absorbing charged null fluids and generalize the Vaidya and Bonnor-Vaidya solutions of general relativity and of Einstein-Maxwell theory, respectively. The a=1 case stands out as special, in the sense that it is the only choice of the coupling that allows for a time-dependent dilaton field in this class of solutions. As a by-product, when a=1 we show that an electrically charged black hole in this theory can be overcharged by bombarding it with a stream of electrically charged null fluid, resulting in the formation of a naked singularity. This provides an example of cosmic censorship violation in an exact dynamical solution to low-energy effective string theory and in a case in which the total stress-energy tensor satisfies all energy conditions. When a≠1, our solutions necessarily have a time-independent scalar field and consequently cannot be overcharged.

  16. New details emerge from the Einstein files

    CERN Multimedia

    Overbye, D

    2002-01-01

    For many years the FBI spied on Einstein. New details of this surveilance are emerging in "The Einstein File: J. Edgar Hoover's Secret War Against the World's Most Famous Scientist," by Fred Jerome, who sued the government with the help of the Public Citizen Litigation Group to obtain a less censored version of the file (1 page).

  17. EPR before EPR: A 1930 Einstein-Bohr thought Experiment Revisited

    Science.gov (United States)

    Nikolic, Hrvoje

    2012-01-01

    In 1930, Einstein argued against the consistency of the time-energy uncertainty relation by discussing a thought experiment involving a measurement of the mass of the box which emitted a photon. Bohr seemingly prevailed over Einstein by arguing that Einstein's own general theory of relativity saves the consistency of quantum mechanics. We revisit…

  18. Higher dimensional global monopole in Brans–Dicke theory

    Indian Academy of Sciences (India)

    Keywords. Global monopole; Brans–Dicke theory; higher dimension. PACS Nos 04.20.Jb; 98.80.Bp; 04.50.+h. 1. Introduction. The idea of higher dimensional theory was originated in super string and super gravity the- ories to unify gravity with other fundamental forces in nature. Solutions of Einstein field equations in higher ...

  19. Acoustic Streaming and Its Suppression in Inhomogeneous Fluids

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Qiu, Wei; Augustsson, Per

    2018-01-01

    We present a theoretical and experimental study of boundary-driven acoustic streaming in an inhomogeneous fluid with variations in density and compressibility. In a homogeneous fluid this streaming results from dissipation in the boundary layers (Rayleigh streaming). We show...... that in an inhomogeneous fluid, an additional nondissipative force density acts on the fluid to stabilize particular inhomogeneity configurations, which markedly alters and even suppresses the streaming flows. Our theoretical and numerical analysis of the phenomenon is supported by ultrasound experiments performed...

  20. Modified Einstein and Navier–Stokes Equations

    Science.gov (United States)

    Bulyzhenkov, I. É.

    2018-05-01

    The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.

  1. Modified Einstein and Navier-Stokes Equations

    Science.gov (United States)

    Bulyzhenkov, I. É.

    2018-05-01

    The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.

  2. The Stokes-Einstein relation at moderate Schmidt number.

    Science.gov (United States)

    Balboa Usabiaga, Florencio; Xie, Xiaoyi; Delgado-Buscalioni, Rafael; Donev, Aleksandar

    2013-12-07

    The Stokes-Einstein relation for the self-diffusion coefficient of a spherical particle suspended in an incompressible fluid is an asymptotic result in the limit of large Schmidt number, that is, when momentum diffuses much faster than the particle. When the Schmidt number is moderate, which happens in most particle methods for hydrodynamics, deviations from the Stokes-Einstein prediction are expected. We study these corrections computationally using a recently developed minimally resolved method for coupling particles to an incompressible fluctuating fluid in both two and three dimensions. We find that for moderate Schmidt numbers the diffusion coefficient is reduced relative to the Stokes-Einstein prediction by an amount inversely proportional to the Schmidt number in both two and three dimensions. We find, however, that the Einstein formula is obeyed at all Schmidt numbers, consistent with linear response theory. The mismatch arises because thermal fluctuations affect the drag coefficient for a particle due to the nonlinear nature of the fluid-particle coupling. The numerical data are in good agreement with an approximate self-consistent theory, which can be used to estimate finite-Schmidt number corrections in a variety of methods. Our results indicate that the corrections to the Stokes-Einstein formula come primarily from the fact that the particle itself diffuses together with the momentum. Our study separates effects coming from corrections to no-slip hydrodynamics from those of finite separation of time scales, allowing for a better understanding of widely observed deviations from the Stokes-Einstein prediction in particle methods such as molecular dynamics.

  3. Hermitian-Einstein metrics on holomorphic vector bundles over Hermitian manifolds

    International Nuclear Information System (INIS)

    Xi Zhang

    2004-07-01

    In this paper, we prove the long-time existence of the Hermitian-Einstein flow on a holomorphic vector bundle over a compact Hermitian (non-kaehler) manifold, and solve the Dirichlet problem for the Hermitian-Einstein equations. We also prove the existence of Hermitian-Einstein metrics for holomorphic vector bundles on a class of complete noncompact Hermitian manifolds. (author)

  4. Spherical and planar three-dimensional anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Zanchin, Vilson T; Miranda, Alex S

    2004-01-01

    The technique of dimensional reduction was used in a recent paper (Zanchin V T, Kleber A and Lemos J P S 2002 Phys. Rev. D 66 064022) where a three-dimensional (3D) Einstein-Maxwell-dilaton theory was built from the usual four-dimensional (4D) Einstein-Maxwell-Hilbert action for general relativity. Starting from a class of 4D toroidal black holes in asymptotically anti-de Sitter (AdS) spacetimes several 3D black holes were obtained and studied in such a context. In the present work we choose a particular case of the 3D action which presents Maxwell field, dilaton field and an extra scalar field, besides gravity field and a negative cosmological constant, and obtain new 3D static black hole solutions whose horizons may have spherical or planar topology. We show that there is a 3D static spherically symmetric solution analogous to the 4D Reissner-Nordstroem-AdS black hole, and obtain other new 3D black holes with planar topology. From the static spherical solutions, new rotating 3D black holes are also obtained and analysed in some detail

  5. Thermostatistical properties of q-deformed bosons trapped in a D-dimensional power-law potential

    International Nuclear Information System (INIS)

    Su Guozhen; Chen Jincan; Chen Lixuan

    2003-01-01

    The thermostatistical properties of an ideal gas of q-deformed bosons trapped in a D-dimensional power-law potential are studied, based on the q-deformed Bose-Einstein distribution. The effects of q-deformation on the properties of the system are discussed. It is shown that q-deformed bosons (q ≠ 1) possess many different characteristics from those of ordinary bosons, which include the condition that Bose-Einstein condensation (BEC) occurs, the critical temperature and the continuity of heat capacity

  6. Einstein's conversion from his static to an expanding universe

    Science.gov (United States)

    Nussbaumer, Harry

    2014-02-01

    In 1917 Einstein initiated modern cosmology by postulating, based on general relativity, a homogenous, static, spatially curved universe. To counteract gravitational contraction he introduced the cosmological constant. In 1922 Alexander Friedman showed that Albert Einstein's fundamental equations also allow dynamical worlds, and in 1927 Georges Lemaître, backed by observational evidence, concluded that our universe was expanding. Einstein impetuously rejected Friedman's as well as Lemaître's findings. However, in 1931 he retracted his former static model in favour of a dynamic solution. This investigation follows Einstein on his hesitating path from a static to the expanding universe. Contrary to an often advocated belief the primary motive for his switch was not observational evidence, but the realisation that his static model was unstable.

  7. Einstein's pathway to the special theory of relativity

    CERN Document Server

    Weinstein, Galina

    2015-01-01

    This book pieces together the jigsaw puzzle of Einstein's journey to discovering the special theory of relativity. Between 1902 and 1905, Einstein sat in the Patent Office and may have made calculations on old pieces of paper that were once patent drafts. One can imagine Einstein trying to hide from his boss, writing notes on small sheets of paper, and, according to reports, seeing to it that the small sheets of paper on which he was writing would vanish into his desk-drawer as soon as he heard footsteps approaching his door. He probably discarded many pieces of papers and calculations and flu

  8. On gravitational wave energy in Einstein gravitational theory

    International Nuclear Information System (INIS)

    Folomeshkin, V.N.; Vlasov, A.A.

    1978-01-01

    By the example of precise wave solutions for the Einstein equations it is shown that a standard commonly adopted formulation of energy-momentum problem with pseudotensors provides us either with a zero or sign-variable values for the energy of gravitational waves. It is shown that if in the Einstein gravitational theory a strict transition to the limits of weak fields is realised then the theory gives us an unambiguous zero result for weak gravitational waves. The well-known non-zero result arises due to incorrect transition to weak field approximation in the Einstein gravitation theory

  9. Restricted gravity: Abelian projection of Einstein's theory

    International Nuclear Information System (INIS)

    Cho, Y.M.

    2013-01-01

    Treating Einstein's theory as a gauge theory of Lorentz group, we decompose the gravitational connection Γμ into the restricted connection made of the potential of the maximal Abelian subgroup H of Lorentz group G and the valence connection made of G/H part of the potential which transforms covariantly under Lorentz gauge transformation. With this we show that Einstein's theory can be decomposed into the restricted gravity made of the restricted connection which has the full Lorentz gauge invariance which has the valence connection as gravitational source. The decomposition shows the existence of a restricted theory of gravitation which has the full general invariance but is much simpler than Einstein's theory. Moreover, it tells that the restricted gravity can be written as an Abelian gauge theory,

  10. New Information about Albert Einstein's Brain.

    Science.gov (United States)

    Falk, Dean

    2009-01-01

    In order to glean information about hominin (or other) brains that no longer exist, details of external neuroanatomy that are reproduced on endocranial casts (endocasts) from fossilized braincases may be described and interpreted. Despite being, of necessity, speculative, such studies can be very informative when conducted in light of the literature on comparative neuroanatomy, paleontology, and functional imaging studies. Albert Einstein's brain no longer exists in an intact state, but there are photographs of it in various views. Applying techniques developed from paleoanthropology, previously unrecognized details of external neuroanatomy are identified on these photographs. This information should be of interest to paleoneurologists, comparative neuroanatomists, historians of science, and cognitive neuroscientists. The new identifications of cortical features should also be archived for future scholars who will have access to additional information from improved functional imaging technology. Meanwhile, to the extent possible, Einstein's cerebral cortex is investigated in light of available data about variation in human sulcal patterns. Although much of his cortical surface was unremarkable, regions in and near Einstein's primary somatosensory and motor cortices were unusual. It is possible that these atypical aspects of Einstein's cerebral cortex were related to the difficulty with which he acquired language, his preference for thinking in sensory impressions including visual images rather than words, and his early training on the violin.

  11. Ehrenfest force in inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Sisakyan, A.N.; Shevchenko, O.Yu.; Samojlov, V.N.

    2000-01-01

    The Ehrenfest force in an inhomogeneous magnetic field is calculated. It is shown that there exist such (very rare) topologically nontrivial physical situations when the Gauss theorem in its classic formulation fails and, as a consequence, apart from the usual Lorentz force an additional, purely imaginary force acts on the charged particle. This force arises only in inhomogeneous magnetic fields of special configurations, has a purely quantum origin, and disappears in the classical limit

  12. Fermilab | Science | Questions for the Universe | Einstein's Dream of

    Science.gov (United States)

    newsletter Einstein's Dream of Unified Forces In this Section: Einstein's Dream of Unified Forces Are there dream of an ultimate explanation for everything from the tiniest quanta of particle physics to the

  13. Einstein's enigma or black holes in my bubble bath

    CERN Document Server

    Vishveshwara, C V

    2006-01-01

    A funny rendition of the story of gravitation theory from the early historic origins to the developments in astrophysics, focusing on Albert Einstein''s theory of general relativity and black-hole physics.

  14. Radiating Kerr particle in Einstein universe

    International Nuclear Information System (INIS)

    Vaidya, P.C.; Patel, L.K.

    1989-01-01

    A generalized Kerr-NUT type metric is considered in connection with Einstein field equations corresponding to perfect fluid plus a pure radiation field. A general scheme for obtaining the exact solutions of these field equations is developed. Two physically meaningful particular cases are investigated in detail. One gives the field of a radiating Kerr particle embedded in the Einstein universe. The other solution may probably represent a deSitter-like universe pervaded by a pure radiation field. (author). 7 refs

  15. On Einstein's kinematics and his derivation of Lorentz transformation equations

    International Nuclear Information System (INIS)

    Gulati, Shobha; Gulati, S.P.

    1981-01-01

    Recently the present authors have claimed that Einstein's historic derivation of 1905 of Lorentz transformation equations is a 'howler' - a correct result achieved through some incorrect steps. In the present contribution, this howler is fully resolved. Incidently, Einstein's kinematical considerations are found to be void of any new definitional elements or conventionality as unjustifiably claimed by Einstein and some other scientists. (author)

  16. Reassessing the Ritz-Einstein debate on the radiation asymmetry in classical electrodynamics

    Science.gov (United States)

    Frisch, Mathias; Pietsch, Wolfgang

    2016-08-01

    We investigate the debate between Walter Ritz and Albert Einstein on the origin and nature of the radiation asymmetry. We argue that Ritz's views on the radiation asymmetry were far richer and nuanced than the oft-cited joint letter with Einstein (Ritz & Einstein, 1909) suggests, and that Einstein's views in 1909 on the asymmetry are far more ambiguous than is commonly recognized. Indeed, there is strong evidence that Einstein ultimately came to agree with Ritz that elementary radiation processes in classical electrodynamics are non-symmetric and fully retarded.

  17. Evolution of vacuum bubbles embedded in inhomogeneous spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Pannia, Florencia Anabella Teppa [Grupo de Astrofísica, Relatividad y Cosmología, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n B1900FWA, La Plata (Argentina); Bergliaffa, Santiago Esteban Perez, E-mail: fteppa@fcaglp.unlp.edu.ar, E-mail: sepbergliaffa@gmail.com [Departamento de Física Teórica, Instituto de Física, Universidade do Estado de Rio de Janeiro, CEP 20550-013, Rio de Janeiro, Brazil. (Brazil)

    2017-03-01

    We study the propagation of bubbles of new vacuum in a radially inhomogeneous background filled with dust or radiation, and including a cosmological constant, as a first step in the analysis of the influence of inhomogeneities in the evolution of an inflating region. We also compare the cases with dust and radiation backgrounds and show that the evolution of the bubble in radiation environments is notably different from that in the corresponding dust cases, both for homogeneous and inhomogeneous ambients, leading to appreciable differences in the evolution of the proper radius of the bubble.

  18. Einstein, Bohr, and Bell

    Science.gov (United States)

    Bellac, Michel Le

    2014-11-01

    The final form of quantum physics, in the particular case of wave mechanics, was established in the years 1925-1927 by Heisenberg, Schrödinger, Born and others, but the synthesis was the work of Bohr who gave an epistemological interpretation of all the technicalities built up over those years; this interpretation will be examined briefly in Chapter 10. Although Einstein acknowledged the success of quantum mechanics in atomic, molecular and solid state physics, he disagreed deeply with Bohr's interpretation. For many years, he tried to find flaws in the formulation of quantum theory as it had been more or less accepted by a large majority of physicists, but his objections were brushed away by Bohr. However, in an article published in 1935 with Podolsky and Rosen, universally known under the acronym EPR, Einstein thought he had identified a difficulty in the by then standard interpretation. Bohr's obscure, and in part beyond the point, answer showed that Einstein had hit a sensitive target. Nevertheless, until 1964, the so-called Bohr-Einstein debate stayed uniquely on a philosophical level, and it was actually forgotten by most physicists, as the few of them aware of it thought it had no practical implication. In 1964, the Northern Irish physicist John Bell realized that the assumptions contained in the EPR article could be tested experimentally. These assumptions led to inequalities, the Bell inequalities, which were in contradiction with quantum mechanical predictions: as we shall see later on, it is extremely likely that the assumptions of the EPR article are not consistent with experiment, which, on the contrary, vindicates the predictions of quantum physics. In Section 3.2, the origin of Bell's inequalities will be explained with an intuitive example, then they will be compared with the predictions of quantum theory in Section 3.3, and finally their experimental status will be reviewed in Section 3.4. The debate between Bohr and Einstein goes much beyond a

  19. Einstein's Gravity and Dark Energy/Matter

    CERN Document Server

    Sarfatti, J

    2003-01-01

    Should Einstein's general relativity be quantized in the usual way even though it is not renormalizable the way the spin 1/2 lepto-quark - spin 1 gauge force boson local field theories are? Condensed matter theorists using P.W. Anderson's "More is different" approach, consistent with Andrei Sakharov's idea of "metric elasticity" with gravity emergent out of quantum electrodynamic zero point vacuum fluctuations, is the approach I take in this paper. The QED vacuum in globally-flat Minkowski space-time is unstable due to exchange of virtual photons between virtual electrons and positron "holes" near the -mc2 Fermi surface well inside the 2mc2 energy gap. This results in a non-perturbative emergence of both Einstein's gravity and a unified dark energy/dark matter w = -1 exotic vacuum zero point fluctuation field controlled by the local macro-quantum vacuum coherent field. The latter is a Bose-Einstein condensate of virtual off-mass-shell bound electron-positron pairs. The dark matter exotic vacuum phase with pos...

  20. Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Drummond, P.D.; Kheruntsyan, K.V.; Heinzen, D.J.; Wynar, R.H.

    2002-01-01

    The process of stimulated Raman adiabatic passage (STIRAP) provides a possible route for the generation of a coherent molecular Bose-Einstein condensate (BEC) from an atomic BEC. We analyze this process in a three-dimensional mean-field theory, including atom-atom interactions and nonresonant intermediate levels. We find that the process is feasible, but at larger Rabi frequencies than anticipated from a crude single-mode lossless analysis, due to two-photon dephasing caused by the atomic interactions. We then identify optimal strategies in STIRAP allowing one to maintain high conversion efficiencies with smaller Rabi frequencies and under experimentally less demanding conditions