WorldWideScience

Sample records for servo system response

  1. Servo control booster system for minimizing following error

    Science.gov (United States)

    Wise, W.L.

    1979-07-26

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, ..delta..S/sub R/, on a continuous real-time basis, for all operational times of consequence and for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error greater than or equal to ..delta..S/sub R/, to produce precise position correction signals. When the command-to-response error is less than ..delta..S/sub R/, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  2. Dynamic Response of Control Servo System Installed in NAES-Equipped SB2C-5 Airplane (BuAer No. 83135)

    Science.gov (United States)

    Smaus, Louis H.; Stewart, Elwood C.

    1950-01-01

    Dynamic--response measurements for various conditions of displacement and rate signal input, sensitivity setting, and simulated hinge moment were made of the three control-surface servo systems of an NAES-equipped remote-controlled airplane while on the ground. The basic components of the servo systems are those of the General Electric Company type G-1 autopilot using electrical signal. sources, solenoid-operated valves, and hydraulic pistons. The test procedures and difficulties are discussed, Both frequency and transient-response data, are presented and comparisons are made. The constants describing the servo system, the undamped natural frequency, and the damping ratio, are determined by several methods. The response of the system with the addition of airframe rate signal is calculated. The transfer function of the elevator surface, linkage, and cable system is obtained. The agreement between various methods of measurement and calculation is considered very good. The data are complete enough and in such form that they may be used directly with the frequency-response data of an airplane to predict the stability of the autopilot-airplane combination.

  3. Photoelectric radar servo control system based on ARM+FPGA

    Science.gov (United States)

    Wu, Kaixuan; Zhang, Yue; Li, Yeqiu; Dai, Qin; Yao, Jun

    2016-01-01

    In order to get smaller, faster, and more responsive requirements of the photoelectric radar servo control system. We propose a set of core ARM + FPGA architecture servo controller. Parallel processing capability of FPGA to be used for the encoder feedback data, PWM carrier modulation, A, B code decoding processing and so on; Utilizing the advantage of imaging design in ARM Embedded systems achieves high-speed implementation of the PID algorithm. After the actual experiment, the closed-loop speed of response of the system cycles up to 2000 times/s, in the case of excellent precision turntable shaft, using a PID algorithm to achieve the servo position control with the accuracy of + -1 encoder input code. Firstly, This article carry on in-depth study of the embedded servo control system hardware to determine the ARM and FPGA chip as the main chip with systems based on a pre-measured target required to achieve performance requirements, this article based on ARM chip used Samsung S3C2440 chip of ARM7 architecture , the FPGA chip is chosen xilinx's XC3S400 . ARM and FPGA communicate by using SPI bus, the advantage of using SPI bus is saving a lot of pins for easy system upgrades required thereafter. The system gets the speed datas through the photoelectric-encoder that transports the datas to the FPGA, Then the system transmits the datas through the FPGA to ARM, transforms speed datas into the corresponding position and velocity data in a timely manner, prepares the corresponding PWM wave to control motor rotation by making comparison between the position data and the velocity data setted in advance . According to the system requirements to draw the schematics of the photoelectric radar servo control system and PCB board to produce specially. Secondly, using PID algorithm to control the servo system, the datas of speed obtained from photoelectric-encoder is calculated position data and speed data via high-speed digital PID algorithm and coordinate models. Finally, a

  4. Measuring the photodetector frequency response for ultrasonic applications by a heterodyne system with difference- frequency servo control.

    Science.gov (United States)

    Koch, Christian

    2010-05-01

    A technique for the calibration of photodiodes in ultrasonic measurement systems using standard and cost-effective optical and electronic components is presented. A heterodyne system was realized using two commercially available distributed feedback lasers, and the required frequency stability and resolution were ensured by a difference-frequency servo control scheme. The frequency-sensitive element generating the error signal for the servo loop comprised a delay-line discriminator constructed from electronic elements. Measurements were carried out at up to 450 MHz, and the uncertainties of about 5% (k = 2) can be further reduced by improved radio frequency power measurement without losing the feature of using only simple elements. The technique initially dedicated to the determination of the frequency response of photodetectors applied in ultrasonic applications can be transferred to other application fields of optical measurements.

  5. IUSThrust Vector Control (TVC) servo system

    Science.gov (United States)

    Conner, G. E.

    1979-01-01

    The IUS TVC SERVO SYSTEM which consists of four electrically redundant electromechanical actuators, four potentiometer assemblies, and two controllers to provide movable nozzle control on both IUS solid rocket motors is developed. An overview of the more severe IUS TVC servo system design requirements, the system and component designs, and test data acquired on a preliminary development unit is presented. Attention is focused on the unique methods of sensing movable nozzle position and providing for redundant position locks.

  6. A low order adaptive control scheme for hydraulic servo systems

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Bech, Michael Møller

    2015-01-01

    This paper deals with high-performance position control of hydraulics servo systems in general. The hydraulic servo system used is a two link robotic manipulator actuated by two hydraulic servo cylinders. A non-linear model of the hydraulic system and a Newton-Euler based model of the mechanical...

  7. Study of Pneumatic Servo Loading System in Double-Sided Polishing

    International Nuclear Information System (INIS)

    Qian, N; Ruan, J; Li, W

    2006-01-01

    The precise double-sided polishing process is one of the main methods to get the ultra-smooth surface of workpiece. In double-sided polishing machine, a loading system is required to be able to precisely control the load superimposed on the workpiece, while the polishing is being carried out. A pneumatic servo loading system is proposed for this purpose. In the pneumatic servo system, the servo valve, which acts both the electrical to mechanical converter and the power amplifier, has a substantial influence on the performance of the loading system. Therefore a specially designed pneumatic digital servo valve is applied in the control system. In this paper, the construction of the pneumatic servo loading system in double-sided polishing machine and control strategy associated with the digital servo valve are first addressed. The mathematical model of the system established and the hardware of the pneumatic servo system is designed. Finally, the experiments are carried out by measuring the practical load on the workpiece and the quality of the surface finish. It is demonstrated that the error rate of load is less than 5% and a super-smooth surface of silicon wafer with roughness Ra 0.401 nm can be obtained

  8. Control system for the Fermilab Master-Slave servo manipulator

    International Nuclear Information System (INIS)

    Ducar, R.J.

    1977-01-01

    A control system for the Fermilab Master-Slave servo manipulator was developed. This new system offers a significant improvement in operational performance over the extant servo design with additional emphasis on simplicity of operation and maintainability. The servo manipulator is force-reflecting in each of the seven independent bilateral motions. Master force multiplication is automatically increased as the slave force is increased to its fifty pound capacity. The design incorporates triac control of the low inertia two-phase servomotors and makes extensive use of digital circuits in the servo loops. The manipulator is utilized in servicing radioactive beam-line targeting equipment

  9. Position Control of Servo Systems Using Feed-Forward Friction Compensation

    International Nuclear Information System (INIS)

    Park, Min Gyu; Kim, Han Me; Shin, Jong Min; Kim, Jong Shik

    2009-01-01

    Friction is an important factor for precise position tracking control of servo systems. Servo systems with highly nonlinear friction are sensitive to the variation of operating condition. To overcome this problem, we use the LuGre friction model which can consider dynamic characteristics of friction. The LuGre friction model is used as a feed-forward compensator to improve tracking performance of servo systems. The parameters of the LuGre friction model are identified through experiments. The experimental result shows that the tracking performance of servo systems with higherly nonlinear friction can be improved by using feed-forward friction compensation

  10. New method to improve dynamic stiffness of electro-hydraulic servo systems

    Science.gov (United States)

    Bai, Yanhong; Quan, Long

    2013-09-01

    Most current researches working on improving stiffness focus on the application of control theories. But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated, so the control action is lagged. Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms. In this paper, the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed. On this basis, the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward. And a scheme using double servo valves to realize flow feedforward compensation is presented, in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time. The two valves are arranged in parallel to control the cylinder jointly. Furthermore, the model of flow compensation is derived, by which the product of the amplitude and width of the valve’s pulse command signal can be calculated. And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations. Using the proposed scheme, simulations and experiments at different positions with different force changes are conducted. The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time. That is, system dynamic load stiffness is evidently raised. This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.

  11. Pressure control of hydraulic servo system using proportional control valve

    International Nuclear Information System (INIS)

    Yang, Kyong Uk; Oh, In Ho; Lee, Ill Yeong

    1999-01-01

    The purpose of this study is to develop a control scheme for the hydraulic servo system which can rapidly control the pressure in a hydraulic cylinder with very short stroke. Compared with the negligible stroke of the cylinder in the system, the flow gain of the proportional pressure control valve constituting the hydraulic servo system is relatively large and the time delay on the response of the valve is quite long. Therefore, the pressure control system, in this study tends to get unstable during operations. Considering the above mentioned characteristics of the system, a two-degree-of-freedom control scheme, composed of the I-PDD 2 ... feedback compensator and the feedforward controller, is proposed. The reference model scheme is used in deciding the parameters of the controllers. The validity of the proposed control scheme is confirmed through the experiments

  12. Designing compensator of dual servo system for high precision positioning

    International Nuclear Information System (INIS)

    Choi, Hyeun Seok; Song, Chi Woo; Han, Chang Soo; Choi, Tae Hoon; Lee, Nak Kyu; Na, Kyung Hwan

    2003-01-01

    The high precision positioning mechanism is used in various industrial fields. It is used in semiconductor manufacturing line, test instrument, bioengineering, and MEMS and so on. This paper presents a positioning mechanism with dual servo system. Dual servo system consists of a coarse stage and a fine motion stage. The course stage is driven by VCM and the actuator of fine stage is the PZT. The purposes of dual servo system are stability, higher bandwidth, and robustness. Lead compensator is applied to this control system, and is designed by PQ method. Designed compensator can improve property of positioning mechanism

  13. A New Servo Control Drive for Electro Discharge Texturing System Industrial Applications Using Ultrasonic Technology

    Directory of Open Access Journals (Sweden)

    M. Shafik

    2013-07-01

    Full Text Available This paper presents a new ultrasonic servo control drive for electro discharge texturing system industrial applications. The new drive is aiming to overcome the current teething issues of the existing electro discharge texturing system, servo control drive level of precision, processing stability, dynamic response and surface profile of the machined products. The new ultrasonic servo control drive consists of three main apparatuses, an ultrasonic motor, electronic driver and control unit. The ultrasonic motor consists of three main parts, the stator, rotor and sliding element. The motor design process, basic configuration, principles of motion, finite element analysis and experimental examination of the main characteristics is discussed in this paper. The electronic driver of the motor consists of two main stages which are the booster and piezoelectric amplifier. The experimental test and validation of the developed servo control drive in electro discharge texturing platform is also discussed and presented in this paper. The initial results showed that the ultrasonic servo control drive is able to provide: a bidirectional of motion, a resolution of <50μm and a dynamic response of <10msec. The electron microscopic micro examination into the textured samples showed that: a clear improvement in machining stability, products surface profile, a notable reduction in the processing time, arcing and short-circuiting teething phenomena.

  14. Analogical study of the servo-control of a reactivity modulator

    International Nuclear Information System (INIS)

    Le Bot, Michel

    1969-03-01

    In the context of the study of the transfer functions related to the Cabri reactor, this paper presents: the objective of the servo-control (reactivity modulator, reasons for the analogical study), the principles of the servo-control (description of the servo-controlled system, elaboration of the error signal, principles of the phase meter, critical analysis of different types of phase meters), the analogical formulation (transfer diagram of the process, analogical simulation of the process, analogical realization of the phase meter, simulation of the Low Frequency generator), study of the controlled system and results (system responses to echelon and ramp signals, responses of the controlled system with the phase meter in feedback)

  15. Permanent magnet synchronous motor servo system control based on μC/OS

    Science.gov (United States)

    Shi, Chongyang; Chen, Kele; Chen, Xinglong

    2015-10-01

    When Opto-Electronic Tracking system operates in complex environments, every subsystem must operate efficiently and stably. As a important part of Opto-Electronic Tracking system, the performance of PMSM(Permanent Magnet Synchronous Motor) servo system affects the Opto-Electronic Tracking system's accuracy and speed greatly[1][2]. This paper applied embedded real-time operating system μC/OS to the control of PMSM servo system, implemented SVPWM(Space Vector Pulse Width Modulation) algorithm in PMSM servo system, optimized the stability of PMSM servo system. Pointing on the characteristics of the Opto-Electronic Tracking system, this paper expanded μC/OS with software redundancy processes, remote debugging and upgrading. As a result, the Opto- Electronic Tracking system performs efficiently and stably.

  16. Research Based on AMESim of Electro-hydraulic Servo Loading System

    Science.gov (United States)

    Li, Jinlong; Hu, Zhiyong

    2017-09-01

    Electro-hydraulic servo loading system is a subject studied by many scholars in the field of simulation and control at home and abroad. The electro-hydraulic servo loading system is a loading device simulation of stress objects by aerodynamic moment and other force in the process of movement, its function is all kinds of gas in the lab condition to analyze stress under dynamic load of objects. The purpose of this paper is the design of AMESim electro-hydraulic servo system, PID control technology is used to configure the parameters of the control system, complete the loading process under different conditions, the optimal design parameters, optimization of dynamic performance of the loading system.

  17. Modeling of R/C Servo Motor and Application to Underactuated Mechanical Systems

    Science.gov (United States)

    Ishikawa, Masato; Kitayoshi, Ryohei; Wada, Takashi; Maruta, Ichiro; Sugie, Toshiharu

    An R/C servo motor is a compact package of a DC geard-motor associated with a position servo controller. They are widely used in small-sized robotics and mechatronics by virtue of their compactness, easiness-to-use and high/weight ratio. However, it is crucial to clarify their internal model (including the embedded position servo) in order to improve control performance of mechatronic systems using R/C servo motors, such as biped robots or underactuted sysyems. In this paper, we propose a simple and realistic internal model of the R/C servo motors including the embedded servo controller, and estimate their physical parameters using continuous-time system identification method. We also provide a model of reference-to-torque transfer function so that we can estimate the internal torque acting on the load.

  18. CLFs-based optimization control for a class of constrained visual servoing systems.

    Science.gov (United States)

    Song, Xiulan; Miaomiao, Fu

    2017-03-01

    In this paper, we use the control Lyapunov function (CLF) technique to present an optimized visual servo control method for constrained eye-in-hand robot visual servoing systems. With the knowledge of camera intrinsic parameters and depth of target changes, visual servo control laws (i.e. translation speed) with adjustable parameters are derived by image point features and some known CLF of the visual servoing system. The Fibonacci method is employed to online compute the optimal value of those adjustable parameters, which yields an optimized control law to satisfy constraints of the visual servoing system. The Lyapunov's theorem and the properties of CLF are used to establish stability of the constrained visual servoing system in the closed-loop with the optimized control law. One merit of the presented method is that there is no requirement of online calculating the pseudo-inverse of the image Jacobian's matrix and the homography matrix. Simulation and experimental results illustrated the effectiveness of the method proposed here. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Robust control system for belt continuously variable transmission; Robust seigyo wo tekiyoshita mudan hensokuki no hensokuhi servo kei no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, K; Wakahara, T; Shimanaka, S; Yamamoto, M; Oshidari, T [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    The continuously variable transmission control system consists of generation of a desired gear ratio and a servo gear ratio system. The servo gear ratio system must provide the desired response at all times without being influenced by external disturbances. These include oil pressure as well as variation in performance due to operating conditions or changes occurring with us. We have developed the servo gear ratio system incorporating a robust model matching method, which enables the belt continuously variable transmission to satisfy this performance requirement. 2 refs., 9 figs.

  20. Fuzzy model-based servo and model following control for nonlinear systems.

    Science.gov (United States)

    Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O

    2009-12-01

    This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.

  1. Precision position control of servo systems using adaptive back-stepping and recurrent fuzzy neural networks

    International Nuclear Information System (INIS)

    Kim, Han Me; Kim, Jong Shik; Han, Seong Ik

    2009-01-01

    To improve position tracking performance of servo systems, a position tracking control using adaptive back-stepping control(ABSC) scheme and recurrent fuzzy neural networks(RFNN) is proposed. An adaptive rule of the ABSC based on system dynamics and dynamic friction model is also suggested to compensate nonlinear dynamic friction characteristics. However, it is difficult to reduce the position tracking error of servo systems by using only the ABSC scheme because of the system uncertainties which cannot be exactly identified during the modeling of servo systems. Therefore, in order to overcome system uncertainties and then to improve position tracking performance of servo systems, the RFNN technique is additionally applied to the servo system. The feasibility of the proposed control scheme for a servo system is validated through experiments. Experimental results show that the servo system with ABS controller based on the dual friction observer and RFNN including the reconstruction error estimator can achieve desired tracking performance and robustness

  2. Application of AC servo motor on the in-core neutron flux instrumentation system

    International Nuclear Information System (INIS)

    Du Xiaoguang; Wang Mingtao

    2010-01-01

    The application of ac servo motor in the In-Core Neutron Flux Instrumentation System is described. The hardware component of ac servo motor control system is different from the dc motor control system. The effect of two control system on the instrumentation system is compared. The ac servo motor control system can improve the accuracy of the motion control, optimize the speed control and increase the reliability. (authors)

  3. Mathematical-model study of servo system with pulse-duration control of micromovements

    International Nuclear Information System (INIS)

    Dement'eva, M.A.; Leonov, A.P.; Popov, V.V.; Skugarevskii, A.I.; Ustinov, E.A.; Chernyavskii, N.N.

    1988-01-01

    A number of digital servo systems with pulse-duration control have been developed at the Institute of High Energy Physics for the instruments of the scanning and measurement system and various experimental setups. They are based on stock transistor bridge stages, whose loads are high-speed servomotors with printed-circuit armature windings. Study of these servo systems by traditional methods, which are based on Laplace transforms, or by mean values with expansion of the current pulse into a Fourier transform yields approximate results and does not reflect the actual processes that take place in a pulse servo system. They attempt to develop a method and extend it to the study of high-speed servo systems in the area of micromovements and quasistationary velocity without position or velocity feedback

  4. Inducement of Design Parameters for Reliability Improvement of Servo Actuator for Hydraulic Valve Operation

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Baek Ju; Kim, Do Sik [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2014-05-15

    The precision hydraulic valve is widely used in various industrial field like aircraft, automobile, and general machinery. Servo actuator is the most important device for driving the precise hydraulic valve. The reliable operation of servo actuator effects on the overall hydraulic system. The performance of servo actuator relies on frequency response and step response according to arbitrary input signal. In this paper, we performed the analysis for the components of servo actuator to satisfy the reliable operation and response characteristics through the reliability analysis, and also induced the design parameters to realize the reliable operation and fast response characteristics of servo actuator for hydraulic valve operation through the empirical knowledge of experts and electromagnetic theories. We suggested the design equations to determine the values of design parameters of servo actuator as like bobbin size, length of yoke and plunger and turn number of coil, and verified the achieved design values through FEM analysis and performance tests using some prototypes of servo actuators adapted in hydraulic valve.

  5. Modelling and LPV control of an electro-hydraulic servo system

    NARCIS (Netherlands)

    Naus, G.J.L.; Wijnheijmer, F.P.; Post, W.J.A.E.M.; Steinbuch, M.; Teerhuis, A.P.

    2006-01-01

    This paper aims to show the modelling and control of an hydraulic servo system, targeting at frequency domain based controller design and the implementation of a LPV controller. The actual set-up consists of a mass, moved by a hydraulic cylinder and an electro-hydraulic servo valve. A nonlinear

  6. Robust Hinfinity position control synthesis of an electro-hydraulic servo system.

    Science.gov (United States)

    Milić, Vladimir; Situm, Zeljko; Essert, Mario

    2010-10-01

    This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  7. A deterministic - approach controller design for electrohydraulic position servo control system

    International Nuclear Information System (INIS)

    Johari Osman

    2000-01-01

    This paper is concerned with the design of a tracking controller for controlling electrohydraulic position servo system based on a deterministic approach. The system is treated as an uncertain system with bounded uncertainties where the bounds are assumed known. It will be shown that the electrohydraulic position servo systems with the proposed controller is practically stable and tracks the desired position in spite of the uncertainties and nonlinearities present in the system (author)

  8. Suppression of mechanical resonance in digital servo system considering oscillation frequency deviation

    DEFF Research Database (Denmark)

    Chen, Yangyang; Yang, Ming; Hu, Kun

    2017-01-01

    High-stiffness servo system is easy to cause mechanical resonance in elastic coupling servo system. Although on-line adaptive notch filter is effective in most cases, it will lead to a severer resonance when resonance frequency deviated from the natural torsional frequency. To explain...

  9. Model-based nonlinear control of hydraulic servo systems: Challenges, developments and perspectives

    Science.gov (United States)

    Yao, Jianyong

    2018-06-01

    Hydraulic servo system plays a significant role in industries, and usually acts as a core point in control and power transmission. Although linear theory-based control methods have been well established, advanced controller design methods for hydraulic servo system to achieve high performance is still an unending pursuit along with the development of modern industry. Essential nonlinearity is a unique feature and makes model-based nonlinear control more attractive, due to benefit from prior knowledge of the servo valve controlled hydraulic system. In this paper, a discussion for challenges in model-based nonlinear control, latest developments and brief perspectives of hydraulic servo systems are presented: Modelling uncertainty in hydraulic system is a major challenge, which includes parametric uncertainty and time-varying disturbance; some specific requirements also arise ad hoc difficulties such as nonlinear friction during low velocity tracking, severe disturbance, periodic disturbance, etc.; to handle various challenges, nonlinear solutions including parameter adaptation, nonlinear robust control, state and disturbance observation, backstepping design and so on, are proposed and integrated, theoretical analysis and lots of applications reveal their powerful capability to solve pertinent problems; and at the end, some perspectives and associated research topics (measurement noise, constraints, inner valve dynamics, input nonlinearity, etc.) in nonlinear hydraulic servo control are briefly explored and discussed.

  10. Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems

    Science.gov (United States)

    Chan, Kwong Wah; Liao, Wei-Hsin

    2006-03-01

    Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.

  11. Researching on YH100 Numerical Control Servo Press Hydraulic Control System and Control Algorithm

    Directory of Open Access Journals (Sweden)

    Kai LI

    2014-09-01

    Full Text Available In order to study the numerical control (NC servo press hydraulic control system and its control algorithm. The numerical control servo press performance and control principle of hydraulic control system are analyzed. According to the flow equation of the hydraulic control valve, hydraulic cylinder flow continuity equation and the force balance equation of the hydraulic cylinder with load press, the mathematical model of hydraulic control system is established. And the servo press hydraulic system transfer function is deduced. Introducing the suitable immune particle swarm control algorithm for servo press hydraulic system, and the control system block diagram is established. Immune algorithm is used to optimize new control parameters of the system and adopt the new optimization results to optimize the system simulation. The simulation result shows that the hydraulic system’s transition time controlled by the immune particle swarm algorithm is shorter than traditional ones, and the control performance is obviously improved. Finally it can be concluded that immune particle swarm PID control have these characteristics such as quickness, stability and accuracy. Applying this principle into application, the obtained YH100 numerical control servo press hydraulic control system meets the requirement.

  12. Development of X-Y servo pneumatic-piezoelectric hybrid actuators for position control with high response, large stroke and nanometer accuracy.

    Science.gov (United States)

    Chiang, Mao-Hsiung

    2010-01-01

    This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally.

  13. Development of X-Y Servo Pneumatic-Piezoelectric Hybrid Actuators for Position Control with High Response, Large Stroke and Nanometer Accuracy

    Directory of Open Access Journals (Sweden)

    Mao-Hsiung Chiang

    2010-03-01

    Full Text Available This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm and nanometer accuracy (20 nm. In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally.

  14. An electro-hydraulic servo control system research for CFETR blanket RH

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Changqi [Hefei University of Technology, Hefei 230009, Anhui (China); Tang, Hongjun, E-mail: taurustang@126.com [Hefei University of Technology, Hefei 230009, Anhui (China); Qi, Songsong [Hefei University of Technology, Hefei 230009, Anhui (China); Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2014-11-15

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system.

  15. An electro-hydraulic servo control system research for CFETR blanket RH

    International Nuclear Information System (INIS)

    Chen, Changqi; Tang, Hongjun; Qi, Songsong; Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao

    2014-01-01

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system

  16. Analysis of the servo-spill control for slow beam extraction

    International Nuclear Information System (INIS)

    Sato, Hikaru; Toyama, Takeshi; Marutsuka, Katsumi; Shirakata, Masashi.

    1994-01-01

    This report describes an analysis of servo-spill control system for the slow beam extraction from the KEK PS. Transfer function of extraction process is derived from measurement of the closed-loop characteristic using measured frequency response of each equipment. Result indicates the restriction of the present servo-spill control and give a guide line for the improvement. (author)

  17. Magnetic particle clutch controls servo system

    Science.gov (United States)

    Fow, P. B.

    1973-01-01

    Magnetic clutches provide alternative means of driving low-power rate or positioning servo systems. They may be used over wide variety of input speed ranges and weigh comparatively little. Power drain is good with overall motor/clutch efficiency greater than 50 percent, and gain of clutch is close to linear, following hysteresis curve of core and rotor material.

  18. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    International Nuclear Information System (INIS)

    Kim, Hyo-gon; Han, Changsoo; Lee, Jong-won; Park, Sangdeok

    2015-01-01

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program

  19. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  20. Performance verification and system parameter identification of spacecraft tape recorder control servo

    Science.gov (United States)

    Mukhopadhyay, A. K.

    1979-01-01

    Design adequacy of the lead-lag compensator of the frequency loop, accuracy checking of the analytical expression for the electrical motor transfer function, and performance evaluation of the speed control servo of the digital tape recorder used on-board the 1976 Viking Mars Orbiters and Voyager 1977 Jupiter-Saturn flyby spacecraft are analyzed. The transfer functions of the most important parts of a simplified frequency loop used for test simulation are described and ten simulation cases are reported. The first four of these cases illustrate the method of selecting the most suitable transfer function for the hysteresis synchronous motor, while the rest verify and determine the servo performance parameters and alternative servo compensation schemes. It is concluded that the linear methods provide a starting point for the final verification/refinement of servo design by nonlinear time response simulation and that the variation of the parameters of the static/dynamic Coulomb friction is as expected in a long-life space mission environment.

  1. HYDRAULIC SERVO CONTROL MECHANISM

    Science.gov (United States)

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  2. A computer-based servo system for controlling isotonic contractions of muscle.

    Science.gov (United States)

    Smith, J P; Barsotti, R J

    1993-11-01

    We have developed a computer-based servo system for controlling isotonic releases in muscle. This system is a composite of commercially available devices: an IBM personal computer, an analog-to-digital (A/D) board, an Akers AE801 force transducer, and a Cambridge Technology motor. The servo loop controlling the force clamp is generated by computer via the A/D board, using a program written in QuickBASIC 4.5. Results are shown that illustrate the ability of the system to clamp the force generated by either skinned cardiac trabeculae or single rabbit psoas fibers down to the resolution of the force transducer within 4 ms. This rate is independent of the level of activation of the tissue and the size of the load imposed during the release. The key to the effectiveness of the system consists of two algorithms that are described in detail. The first is used to calculate the error signal to hold force to the desired level. The second algorithm is used to calculate the appropriate gain of the servo for a particular fiber and the size of the desired load to be imposed. The results show that the described computer-based method for controlling isotonic releases in muscle represents a good compromise between simplicity and performance and is an alternative to the custom-built digital/analog servo devices currently being used in studies of muscle mechanics.

  3. Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    International Nuclear Information System (INIS)

    Dixon, Warren

    2004-01-01

    There is significant motivation to provide robotic systems with improved autonomy as a means to significantly accelerate deactivation and decommissioning (DandD) operations while also reducing the associated costs, removing human operators from hazardous environments, and reducing the required burden and skill of human operators. To achieve improved autonomy, this project focused on the basic science challenges leading to the development of visual servo controllers. The challenge in developing these controllers is that a camera provides 2-dimensional image information about the 3-dimensional Euclidean-space through a perspective (range dependent) projection that can be corrupted by uncertainty in the camera calibration matrix and by disturbances such as nonlinear radial distortion. Disturbances in this relationship (i.e., corruption in the sensor information) propagate erroneous information to the feedback controller of the robot, leading to potentially unpredictable task execution. This research project focused on the development of a visual servo control methodology that targets compensating for disturbances in the camera model (i.e., camera calibration and the recovery of range information) as a means to achieve predictable response by the robotic system operating in unstructured environments. The fundamental idea is to use nonlinear Lyapunov-based techniques along with photogrammetry methods to overcome the complex control issues and alleviate many of the restrictive assumptions that impact current robotic applications. The outcome of this control methodology is a plug-and-play visual servoing control module that can be utilized in conjunction with current technology such as feature recognition and extraction to enable robotic systems with the capabilities of increased accuracy, autonomy, and robustness, with a larger field of view (and hence a larger workspace). The developed methodology has been reported in numerous peer-reviewed publications and the

  4. Application of IFT and SPSA to servo system control.

    Science.gov (United States)

    Rădac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M; Preitl, Stefan

    2011-12-01

    This paper treats the application of two data-based model-free gradient-based stochastic optimization techniques, i.e., iterative feedback tuning (IFT) and simultaneous perturbation stochastic approximation (SPSA), to servo system control. The representative case of controlled processes modeled by second-order systems with an integral component is discussed. New IFT and SPSA algorithms are suggested to tune the parameters of the state feedback controllers with an integrator in the linear-quadratic-Gaussian (LQG) problem formulation. An implementation case study concerning the LQG-based design of an angular position controller for a direct current servo system laboratory equipment is included to highlight the pros and cons of IFT and SPSA from an application's point of view. The comparison of IFT and SPSA algorithms is focused on an insight into their implementation.

  5. The research on algorithms for optoelectronic tracking servo control systems

    Science.gov (United States)

    Zhu, Qi-Hai; Zhao, Chang-Ming; Zhu, Zheng; Li, Kun

    2016-10-01

    The photoelectric servo control system based on PC controllers is mainly used to control the speed and position of the load. This paper analyzed the mathematical modeling and the system identification of the servo system. In the aspect of the control algorithm, the IP regulator, the fuzzy PID, the Active Disturbance Rejection Control (ADRC) and the adaptive algorithms were compared and analyzed. The PI-P control algorithm was proposed in this paper, which not only has the advantages of the PI regulator that can be quickly saturated, but also overcomes the shortcomings of the IP regulator. The control system has a good starting performance and the anti-load ability in a wide range. Experimental results show that the system has good performance under the guarantee of the PI-P control algorithm.

  6. Data-Driven Based Asynchronous Motor Control for Printing Servo Systems

    Science.gov (United States)

    Bian, Min; Guo, Qingyun

    Modern digital printing equipment aims to the environmental-friendly industry with high dynamic performances and control precision and low vibration and abrasion. High performance motion control system of printing servo systems was required. Control system of asynchronous motor based on data acquisition was proposed. Iterative learning control (ILC) algorithm was studied. PID control was widely used in the motion control. However, it was sensitive to the disturbances and model parameters variation. The ILC applied the history error data and present control signals to approximate the control signal directly in order to fully track the expect trajectory without the system models and structures. The motor control algorithm based on the ILC and PID was constructed and simulation results were given. The results show that data-driven control method is effective dealing with bounded disturbances for the motion control of printing servo systems.

  7. Characteristic analysis of servo valve

    International Nuclear Information System (INIS)

    Ko, J. H.; Ryu, D. R.; Lee, J. H.; Kim, Y. S.; Na, J. C.; Kim, D. S.

    2008-01-01

    Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The first objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. And a tester for conducting an overall performance test was designed and manufactured, and as a result of conducting the flow rate test, the pressure test and the frequency test on the developed pneumatic servo valve

  8. Robust and Stable Disturbance Observer of Servo System for Low-Speed Operation

    DEFF Research Database (Denmark)

    Lee, Kyo Beum; Blaabjerg, Frede

    2007-01-01

    A new scheme to estimate the moment of inertia in the servo motor drive system in very low speed is proposed in this paper. The speed estimation scheme in most servo drive systems for low-speed operation is sensitive to the variation of machine parameter, especially the moment of inertia....... To estimate the motor inertia value, the observer using the Radial Basis Function Network (RBFN) is applied. A control law for stabilizing the system and adaptive laws for updating both of the weights in the RBFN and a bounding constant are established so that the whole closed-loop system is stable...

  9. Piloted Simulator Investigation of Techniques to Achieve Attitude Command Response with Limited Authority Servos

    National Research Council Canada - National Science Library

    Key, David

    2002-01-01

    The purpose of the study was to develop generic design principles for obtaining attitude command response in moderate to aggressive maneuvers without increasing SCAS series servo authority from the existing +/- 10...

  10. Experimental research of flow servo-valve

    Science.gov (United States)

    Takosoglu, Jakub

    Positional control of pneumatic drives is particularly important in pneumatic systems. Some methods of positioning pneumatic cylinders for changeover and tracking control are known. Choking method is the most development-oriented and has the greatest potential. An optimal and effective method, particularly when applied to pneumatic drives, has been searched for a long time. Sophisticated control systems with algorithms utilizing artificial intelligence methods are designed therefor. In order to design the control algorithm, knowledge about real parameters of servo-valves used in control systems of electro-pneumatic servo-drives is required. The paper presents the experimental research of flow servo-valve.

  11. SAMSIN: the next-generation servo-manipulator

    International Nuclear Information System (INIS)

    Adams, R.H.; Jennrich, C.E.; Korpi, K.W.

    1985-01-01

    The Central Research Laboratories (CRL) Division of Sargent Industries is now developing SAMSIN, a next-generation servo-manipulator. SAMSIN is an acronym for Servo-Actuated Manipulator Systems with Intelligent Networks. This paper discusses the objectives of this development and describes the key features of the servo-manipulator system. There are three main objectives in the SAMSIN development: adaptability, reliability, and maintainability. SAMSIN utilizes standard Sargent/CRL sealed master and slave manipulator arms as well as newly developed compact versions. The mechanical arms have more than 20 yr of successful performance in industrial applications such as hot cells, high vacuums, fuel pools, and explosives handling. The servo-actuator package is in a protective enclosure, which may be sealed in various ways from the remote environment. The force limiting characteristics of the servo-actuators extend motion tendon life. Protective bootings increase the reliability of the arms in an environment that is high in airborne contamination. These bootings also simplify the decontamination of the system. The modularity in construction permits quick removal and replacement of slave arms, wrist joints, tong fingers, and actuator packages for maintenance. SAMSIN utilizes readily available off-the-shelf actuator and control system components. Each manipulator motion uses the same actuator and control system components

  12. Automated servo controlled calorimetry

    International Nuclear Information System (INIS)

    Wetzel, J.R.

    1984-01-01

    A method of operating a calorimeter is called the servo controlled method. An internal heater is driven by a controlled voltage source to produce a constant internal temperature. The heater power is controlled by a digital computer program that uses as one of its inputs the bridge potential. The heater power can be calculated by multiplying the heater current by the heater voltage. A bridge potential can then be determined that will produce the desired internal power level. When a sample is placed in the calorimeter the servo system reduces the heater power to maintain the set point bridge potential. There will be four calorimeters in the system - two for large sizes and two for small sizes. They will be servo controlled using a DEC Micro-11 computer with a IEEE-488 interface buss

  13. Autonomous docking control of visual-servo type underwater vehicle system aiming at underwater automatic charging

    International Nuclear Information System (INIS)

    Yanou, Akira; Ohnishi, Shota; Ishiyama, Shintaro; Minami, Mamoru

    2015-01-01

    A visual-servo type remotely operated vehicle (ROV) system with binocular wide-angle lens was developed to survey submarine resources, decontaminate radiation from mud in dam lake and so on. This paper explores the experiments on regulator performance and underwater docking of the robot system utilizing Genetic Algorithm (GA) for real-time recognition of the robot's relative position and posture through 3D marker. The visual servoing performances have been verified as follows; (1) The stability performances of the proposed regulator system have been evaluated by exerting abrupt distrubane force while the ROV is controlled by visual servoing. (2) The proposed system can track time-variant desired target position in x-axis (front-back direction of the robot). (3) The underwater docking can be completed by switching visual servoing and docking modes based on the error threshold, and by giving time-varying desired target position and orientation to the controller as a desired pose. (author)

  14. The design of a servo system for a Moessbauer spectrometer

    International Nuclear Information System (INIS)

    Cranshaw, T.E.

    1981-06-01

    This report describes the design of a transducer system and servo drive amplifier suitable for Moessbauer spectrometers. Particular attention is paid to low and zero frequency drift. Measurements of the loop gain of a practical system are presented. (author)

  15. Robustness-tracking control based on sliding mode and H∞ theory for linear servo system

    Institute of Scientific and Technical Information of China (English)

    TIAN Yan-feng; GUO Qing-ding

    2005-01-01

    A robustness-tracking control scheme based on combining H∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H∞ robustness controller suppresses the disturbances well within the close loop( including the load and the end effect force of linear motor etc. ) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.

  16. All-Coefficient Adaptive Control of Dual-Motor Driving Servo System

    Directory of Open Access Journals (Sweden)

    Zhao Haibo

    2017-01-01

    Full Text Available Backlash nonlinearity and friction nonlinearity exist in dual-motor driving servo system, which reducing system response speed, steady accuracy and anti-interference ability. In order to diminish the adverse effects of backlash and friction nonlinearity to system, we proposed a new all-coefficient adaptive control method. Firstly, we introduced the dynamic model of backlash and friction nonlinearity respectively. Then on this basis, we established the characteristic model when backlash and friction nonlinearity coexist. We used recursive least square method for parameter estimation. Finally we designed the all-coefficient adaptive controller. On the basis of simplex all-coefficient adaptive controller, we designed a feedforward all-coefficient adaptive controller. The simulations of feedforward all-coefficient adaptive control and simplex all-coefficient adaptive control were compared. The results show that the former has quicker response speed, higher steady accuracy, stronger anti-interference performance and better robustness, which validating the efficacy of the proposed control strategy.

  17. Experimental research of flow servo-valve

    Directory of Open Access Journals (Sweden)

    Takosoglu Jakub

    2017-01-01

    Full Text Available Positional control of pneumatic drives is particularly important in pneumatic systems. Some methods of positioning pneumatic cylinders for changeover and tracking control are known. Choking method is the most development-oriented and has the greatest potential. An optimal and effective method, particularly when applied to pneumatic drives, has been searched for a long time. Sophisticated control systems with algorithms utilizing artificial intelligence methods are designed therefor. In order to design the control algorithm, knowledge about real parameters of servo-valves used in control systems of electro-pneumatic servo-drives is required. The paper presents the experimental research of flow servo-valve.

  18. Research on intelligent algorithm of electro - hydraulic servo control system

    Science.gov (United States)

    Wang, Yannian; Zhao, Yuhui; Liu, Chengtao

    2017-09-01

    In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.

  19. Adaptive Neural Network Control for Nonlinear Hydraulic Servo-System with Time-Varying State Constraints

    Directory of Open Access Journals (Sweden)

    Shu-Min Lu

    2017-01-01

    Full Text Available An adaptive neural network control problem is addressed for a class of nonlinear hydraulic servo-systems with time-varying state constraints. In view of the low precision problem of the traditional hydraulic servo-system which is caused by the tracking errors surpassing appropriate bound, the previous works have shown that the constraint for the system is a good way to solve the low precision problem. Meanwhile, compared with constant constraints, the time-varying state constraints are more general in the actual systems. Therefore, when the states of the system are forced to obey bounded time-varying constraint conditions, the high precision tracking performance of the system can be easily realized. In order to achieve this goal, the time-varying barrier Lyapunov function (TVBLF is used to prevent the states from violating time-varying constraints. By the backstepping design, the adaptive controller will be obtained. A radial basis function neural network (RBFNN is used to estimate the uncertainties. Based on analyzing the stability of the hydraulic servo-system, we show that the error signals are bounded in the compacts sets; the time-varying state constrains are never violated and all singles of the hydraulic servo-system are bounded. The simulation and experimental results show that the tracking accuracy of system is improved and the controller has fast tracking ability and strong robustness.

  20. Characteristic Modeling and Control of Servo Systems with Backlash and Friction

    Directory of Open Access Journals (Sweden)

    Yifei Wu

    2014-01-01

    Full Text Available A novel approach for modeling and control of servo systems with backlash and friction is proposed based on the characteristic model. Firstly, to deal with friction-induced nonlinearities, a smooth Stribeck friction model is introduced. The backlash is modeled by a continuous and derivable mathematical function. Secondly, a characteristic model in the form of a second-order slowly time-varying difference equation is established and verified by simulations. Thirdly, a composite controller including the golden-section adaptive control law and the integral control law is designed and the stability of the closed-loop system is analyzed. The simulation and experimental results show that the proposed control scheme is effective and can improve the steady-state precision and the dynamic performance of the servo system with backlash and friction.

  1. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    Science.gov (United States)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  2. Dynamic Characteristics of DC Servo Motor Driven by Conventional Servo Driver: Estimation of Circuit Constants in Conventional Servo Driver

    OpenAIRE

    酒井, 史敏; 神谷, 好承; 関, 啓明; 疋津, 正利

    2000-01-01

    DC servo motors that are made as manufactured goods in the factory are widely used as actuators for driving many automatic machines. Then the manufactured driver (amplifier) that is matched to its servo motor is coveniently chosen to drive when aiming at high performance of the motion control. Motion of motor that is driven by the manufactured servo driver has very complicated dynamic characteristics. In this study, it is tried to make clear about inner composition of the servo driver through...

  3. Improving dynamic performances of PWM-driven servo-pneumatic systems via a novel pneumatic circuit.

    Science.gov (United States)

    Taghizadeh, Mostafa; Ghaffari, Ali; Najafi, Farid

    2009-10-01

    In this paper, the effect of pneumatic circuit design on the input-output behavior of PWM-driven servo-pneumatic systems is investigated and their control performances are improved using linear controllers instead of complex and costly nonlinear ones. Generally, servo-pneumatic systems are well known for their nonlinear behavior. However, PWM-driven servo-pneumatic systems have the advantage of flexibility in the design of pneumatic circuits which affects the input-output linearity of the whole system. A simple pneumatic circuit with only one fast switching valve is designed which leads to a quasi-linear input-output relation. The quasi-linear behavior of the proposed circuit is verified both experimentally and by simulations. Closed loop position control experiments are then carried out using linear P- and PD-controllers. Since the output position is noisy and cannot be directly differentiated, a Kalman filter is designed to estimate the velocity of the cylinder. Highly improved tracking performances are obtained using these linear controllers, compared to previous works with nonlinear controllers.

  4. Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor

    Science.gov (United States)

    Wang, Yannian; Wu, Peizhi; Liu, Chengtao

    2017-09-01

    To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.

  5. Fault Diagnosis for Hydraulic Servo System Using Compressed Random Subspace Based ReliefF

    Directory of Open Access Journals (Sweden)

    Yu Ding

    2018-01-01

    Full Text Available Playing an important role in electromechanical systems, hydraulic servo system is crucial to mechanical systems like engineering machinery, metallurgical machinery, ships, and other equipment. Fault diagnosis based on monitoring and sensory signals plays an important role in avoiding catastrophic accidents and enormous economic losses. This study presents a fault diagnosis scheme for hydraulic servo system using compressed random subspace based ReliefF (CRSR method. From the point of view of feature selection, the scheme utilizes CRSR method to determine the most stable feature combination that contains the most adequate information simultaneously. Based on the feature selection structure of ReliefF, CRSR employs feature integration rules in the compressed domain. Meanwhile, CRSR substitutes information entropy and fuzzy membership for traditional distance measurement index. The proposed CRSR method is able to enhance the robustness of the feature information against interference while selecting the feature combination with balanced information expressing ability. To demonstrate the effectiveness of the proposed CRSR method, a hydraulic servo system joint simulation model is constructed by HyPneu and Simulink, and three fault modes are injected to generate the validation data.

  6. Adaptive Sliding Mode Robust Control for Virtual Compound-Axis Servo System

    Directory of Open Access Journals (Sweden)

    Yan Ren

    2013-01-01

    Full Text Available A structure mode of virtual compound-axis servo system is proposed to improve the tracking accuracy of the ordinary optoelectric tracking platform. It is based on the structure and principles of compound-axis servo system. A hybrid position control scheme combining the PD controller and feed-forward controller is used in subsystem to track the tracking error of the main system. This paper analyzes the influences of the equivalent disturbance in main system and proposes an adaptive sliding mode robust control method based on the improved disturbance observer. The sliding mode technique helps this disturbance observer to deal with the uncompensated disturbance in high frequency by making use of the rapid switching control value, which is based on the subtle error of disturbance estimation. Besides, the high-frequency chattering is alleviated effectively in this proposal. The effectiveness of the proposal is confirmed by experiments on optoelectric tracking platform.

  7. Motion control of servo cylinder using neural network

    International Nuclear Information System (INIS)

    Hwang, Un Kyoo; Cho, Seung Ho

    2004-01-01

    In this paper, a neural network controller that can be implemented in parallel with a PD controller is suggested for motion control of a hydraulic servo cylinder. By applying a self-excited oscillation method, the system design parameters of open loop transfer function of servo cylinder system are identified. Based on system design parameters, the PD gains are determined for the desired closed loop characteristics. The neural network is incorporated with PD control in order to compensate the inherent nonlinearities of hydraulic servo system. As an application example, a motion control using PD-NN has been performed and proved its superior performance by comparing with that of a PD control

  8. A parameter estimation for DC servo motor by using optimization process

    International Nuclear Information System (INIS)

    Arjoni Amir

    2010-01-01

    Modeling and simulation parameters of DC servo motor using Matlab Simulink software have been done. The objective to define the DC servo motor parameter estimation is to get DC servo motor parameter values (B, La, Ra, Km, J) which are significant value that can be used for actuation process of control systems. In the analysis of control systems DC the servo motor expressed by transfer function equation to make faster to be analyzed as a component of the actuator. To obtain the data model parameters and initial conditions of the DC servo motors is then carried out the processor modeling and simulation in which the DC servo motor combined with other components. To obtain preliminary data of the DC servo motor parameters as estimated venue, it is obtained from the data factory of the DC servo motor. The initial data parameters of the DC servo motor are applied for the optimization process by using nonlinear least square algorithm and minimize the cost function value so that the DC servo motors parameter values are obtained significantly. The result of the optimization process of the DC servo motor parameter values are B = 0.039881, J= 1.2608e-007, Km = 0.069648, La = 2.3242e-006 and Ra = 1.8837. (author)

  9. A servo controlled gradient loading triaxial model test system for deep-buried cavern

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xu-guang [College of Engineering, Ocean University of China, Qingdao 266100 (China); Shandong Provincial Key Laboratory of Ocean Engineering, Qingdao 266100 (China); Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan 250061 (China); Zhang, Qiang-yong; Li, Shu-cai [Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan 250061 (China)

    2015-10-15

    A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the “real” geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures.

  10. A servo controlled gradient loading triaxial model test system for deep-buried cavern.

    Science.gov (United States)

    Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai

    2015-10-01

    A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the "real" geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures.

  11. A servo controlled gradient loading triaxial model test system for deep-buried cavern

    International Nuclear Information System (INIS)

    Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai

    2015-01-01

    A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the “real” geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures

  12. Development of a Control System for PRIDE Remote Servo-manipulator

    International Nuclear Information System (INIS)

    Lee, Jong Kwang; Park, Byung Suk; Lee, Hyo Jik; Kim, Kyung Tae; Kim, Sung Hyun; Park, Hee Sung; Kim, Young Hwan; Jung, Jae Hoo; Kim, Ki Ho; Kim, Ho Dong

    2009-12-01

    KAERI is developing the PRIDE(PyRoprocess Integrated inactive DEmonstration) facility to verify the integrated performance of full Pyroprocess flow. A main process cell in the PRIDE facility will be filled with argon gas which prohibits direct access by human operators. Therefore, all the operation and maintenance of the process equipment is performed remotely through a master-slave manipulation. This research focuses on the design, fabrication, and interface of a control system which integrates several hardware systems such as a dual arm master-slave servo-manipulator, a horizontally moving transporter for a master manipulator, a bridge transporter for a slave manipulator, a chain hoist, camera systems and their display system, a manual console, and a pendant, etc. Also, a bilateral force-reflection controller considering an elasticity and vibration modes of wire cable has been developed for master-slave remote manipulation. The results obtained in this study will be applied for the force-reflection control of the bridge-transported master-slave servo-manipulator system for use in the PRIDE facility. Since this research is an essential work in robotics related fields, the results would be widely used for developing power manipulators and process automation equipment

  13. Development of a Control System for PRIDE Remote Servo-manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Kwang; Park, Byung Suk; Lee, Hyo Jik; Kim, Kyung Tae; Kim, Sung Hyun; Park, Hee Sung; Kim, Young Hwan; Jung, Jae Hoo; Kim, Ki Ho; Kim, Ho Dong

    2009-12-15

    KAERI is developing the PRIDE(PyRoprocess Integrated inactive DEmonstration) facility to verify the integrated performance of full Pyroprocess flow. A main process cell in the PRIDE facility will be filled with argon gas which prohibits direct access by human operators. Therefore, all the operation and maintenance of the process equipment is performed remotely through a master-slave manipulation. This research focuses on the design, fabrication, and interface of a control system which integrates several hardware systems such as a dual arm master-slave servo-manipulator, a horizontally moving transporter for a master manipulator, a bridge transporter for a slave manipulator, a chain hoist, camera systems and their display system, a manual console, and a pendant, etc. Also, a bilateral force-reflection controller considering an elasticity and vibration modes of wire cable has been developed for master-slave remote manipulation. The results obtained in this study will be applied for the force-reflection control of the bridge-transported master-slave servo-manipulator system for use in the PRIDE facility. Since this research is an essential work in robotics related fields, the results would be widely used for developing power manipulators and process automation equipment.

  14. Enhancement of tracking performance in electro-optical system based on servo control algorithm

    Science.gov (United States)

    Choi, WooJin; Kim, SungSu; Jung, DaeYoon; Seo, HyoungKyu

    2017-10-01

    Modern electro-optical surveillance and reconnaissance systems require tracking capability to get exact images of target or to accurately direct the line of sight to target which is moving or still. This leads to the tracking system composed of image based tracking algorithm and servo control algorithm. In this study, we focus on the servo control function to minimize the overshoot in the tracking motion and do not miss the target. The scheme is to limit acceleration and velocity parameters in the tracking controller, depending on the target state information in the image. We implement the proposed techniques by creating a system model of DIRCM and simulate the same environment, validate the performance on the actual equipment.

  15. Fuzzy self-learning control for magnetic servo system

    Science.gov (United States)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  16. Modeling and stability of electro-hydraulic servo of hydraulic excavator

    Science.gov (United States)

    Jia, Wenhua; Yin, Chenbo; Li, Guo; Sun, Menghui

    2017-11-01

    The condition of the hydraulic excavator is complicated and the working environment is bad. The safety and stability of the control system is influenced by the external factors. This paper selects hydraulic excavator electro-hydraulic servo system as the research object. A mathematical model and simulation model using AMESIM of servo system is established. Then the pressure and flow characteristics are analyzed. The design and optimization of electro-hydraulic servo system and its application in engineering machinery is provided.

  17. Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    International Nuclear Information System (INIS)

    Dixon, Warren

    2003-01-01

    The objective of this project is to enable current and future EM robots with an increased ability to perceive and interact with unstructured and unknown environments through the use of camera-based visual servo controllers. The scientific goals of this research are to develop a new visual servo control methodology that: (1) adapts for the unknown camera calibration parameters (e.g., focal length, scaling factors, camera position, and orientation) and the physical parameters of the robotic system (e.g., mass, inertia, friction), (2) compensates for unknown depth information (extract 3D information from the 2D image), and (3) enables multi-uncalibrated cameras to be used as a means to provide a larger field-of-view. Nonlinear Lyapunov-based techniques in conjunction with results from projective geometry are being used to overcome the complex control issues and alleviate many of the restrictive assumptions that impact current visual servo controlled robotic systems. The potential relevance of this control methodology will be a plug-and-play visual servoing control module that can be utilized in conjunction with current technology such as feature extraction and recognition, to enable current EM robotic systems with the capabilities of increased accuracy, autonomy, and robustness, with a larger field of view (and hence a larger workspace). These capabilities will enable EM robots to significantly accelerate D and D operations by providing for improved robot autonomy and increased worker productivity, while also reducing the associated costs, removing the human operator from the hazardous environments, and reducing the burden and skill of the human operators

  18. Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    International Nuclear Information System (INIS)

    Dixon, Warren

    2002-01-01

    The objective of this project is to enable current and future EM robots with an increased ability to perceive and interact with unstructured and unknown environments through the use of camera-based visual servo controlled robots. The scientific goals of this research are to develop a new visual servo control methodology that: (1) adapts for the unknown camera calibration parameters (e.g., focal length, scaling factors, camera position and orientation) and the physical parameters of the robotic system (e.g., mass, inertia, friction), (2) compensates for unknown depth information (extract 3D information from the 2D image), and (3) enables multi-uncalibrated cameras to be used as a means to provide a larger field-of-view. Nonlinear Lyapunov-based techniques are being used to overcome the complex control issues and alleviate many of the restrictive assumptions that impact current visual servo controlled robotic systems. The potential relevance of this control methodology will be a plug-and-play visual servoing control module that can be utilized in conjunction with current technology such as feature extraction and recognition, to enable current EM robotic systems with the capabilities of increased accuracy, autonomy, and robustness, with a larger field of view (and hence a larger workspace). These capabilities will enable EM robots to significantly accelerate D and D operations by providing for improved robot autonomy and increased worker productivity, while also reducing the associated costs, removing the human operator from the hazardous environments, and reducing the burden and skill of the human operators

  19. All Digital IQ Servo-System for CERN Linacs

    CERN Document Server

    Broere, J; Garoby, R; Rohlev, A; Serrano, J

    2004-01-01

    A VME based control system has been developed and built at CERN for the servo loops regulating the field in linac accelerating structures. It is an all-digital system built on a single VME card, providing digital detection, processing, and modulation. It is foreseen to be used, in different versions, for the needs of both present and future CERN hadron linacs. The first application will be in the energy ramping RF chain of the CERN Heavy Ion Linac (linac 3). Design principle and the experimental results are described.

  20. Pneumatic Rotary Actuator Position Servo System Based on ADE-PD Control

    Directory of Open Access Journals (Sweden)

    Yeming Zhang

    2018-03-01

    Full Text Available In order to accurately control the rotation position of a pneumatic rotary actuator, the flow state of the gas and the motion state of the pneumatic rotary actuator in the pneumatic rotary actuator position servo system are analyzed in this paper. The mathematical model of the system and the experiment platform are established after that. An Adaptive Differential Evolution (ADE algorithm which adaptively ameliorates the scaling factor and crossover probability in the process of individual evolution is proposed and applied to the parameter optimization of PD controller. The experimental platform is used to compare the controller with Differential Evolution (DE algorithm and NCD-PID controller. Finally, the characteristics of the system are tested by increasing the inertial load. The experimental results illustrate that system using ADE-PD control strategy has greater position precision and faster response than using DE-PD and NCD-PID strategies, and shows great robustness.

  1. A Matlab/Simulink-Based Interactive Module for Servo Systems Learning

    Science.gov (United States)

    Aliane, N.

    2010-01-01

    This paper presents an interactive module for learning both the fundamental and practical issues of servo systems. This module, developed using Simulink in conjunction with the Matlab graphical user interface (Matlab-GUI) tool, is used to supplement conventional lectures in control engineering and robotics subjects. First, the paper introduces the…

  2. Development of Servo Motor Trainer for Basic Control System in Laboratory of Electrical Engineering Control System Faculty of Engineering Universitas Negeri Surabaya

    Science.gov (United States)

    Endryansyah; Wanarti Rusimamto, Puput; Ridianto, Adam; Sugiarto, Hariyadi

    2018-04-01

    In the Department of Electrical Engineering FT Unesa, there are 3 majors: S1 Electrical Engineering Education, S1 Electrical Engineering, and D3 Electrical Engineering. Courses the Basic System Settings go to in the curriculum of the three programs. Team lecturer college of basic system settings seek learning innovation, focused on the development of trainer to student practicum at the laboratory of systems control. Trainer developed is a servo motor along with the lab module that contains a wide variety of theories about the servo motor and guide the practicum. This research type is development research using methods Research & development (R & D). In which the steps are applied in this study is as follows: pay attention to the potential and existing problems, gather information and study the literature, design the product, validate the design, revise the design, a limited trial. The results of the validation of learning device in the form of modules and trainer obtained as follows: score validation of learning device is 3,64; score validation lab module Servo Motor is 3,47; and questionnaire responses of students is 3,73. The result of the whole validation value is located in the interval >of 3.25 s/d 4 with the category of “Very Valid”, so it can be concluded that all instruments have a level of validity “Very Valid” and worthy of use for further learning.

  3. Characteristic analysis and experiment of pneumatic servo valve

    International Nuclear Information System (INIS)

    Kim, Dong Soo; Lee, Won Hee; Choi, Byung Oh

    2004-01-01

    Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The first objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. And a tester for conducting an overall performance test was designed and manufactured, and as a result of conducting the flow rate test, the pressure test and the frequency test on the developed pneumatic servo valve

  4. Aerial Object Following Using Visual Fuzzy Servoing

    OpenAIRE

    Olivares Méndez, Miguel Ángel; Mondragon Bernal, Ivan Fernando; Campoy Cervera, Pascual; Mejias Alvarez, Luis; Martínez Luna, Carol Viviana

    2011-01-01

    This article presents a visual servoing system to follow a 3D moving object by a Micro Unmanned Aerial Vehicle (MUAV). The presented control strategy is based only on the visual information given by an adaptive tracking method based on the color information. A visual fuzzy system has been developed for servoing the camera situated on a rotary wing MAUV, that also considers its own dynamics. This system is focused on continuously following of an aerial moving target object, maintai...

  5. Efficient control of servo pneumatic actuator system utilizing by-pass ...

    Indian Academy of Sciences (India)

    The issue of energy saving nowadays is very crucial. Pneumatic systems, constituting an important segment of almost every industry, represent large energy consumers. Also, a significant problem with servo pneumatic actuators is achieving accuracy in positioning. The higher the positioning accuracy, the higher the ...

  6. Antenna servo control system characterization: Rate loop analysis for 34-m antenna at DSS 15

    Science.gov (United States)

    Nickerson, J. A.; Cox, D. G.; Smith, H. K.; Engel, J. H.; Ahlstrom, H. G.

    1986-01-01

    The elevation and azimuth servo rate loops at the 34-m High Efficiency Deep Space Station 15 (DSS 15) are described. Time and frequency response performance criteria were measured. The results are compared to theoretically deduced performance criteria. Unexpected anomalies in the frequency response are observed and identified.

  7. Experimental consideration for realizing image based visual servo control system

    International Nuclear Information System (INIS)

    Ishikawa, N.; Suzuki, K.; Fujii, Y.; Usui, H.

    1995-01-01

    In this study, we consider the experimental aspect of image based visual servo control system. The items considered are the following; 1) Inertial parameter estimation, 2) Focal point estimation, 3) Controller performance for the system with delay. From the experimental result of visual control, it is found that the system is very sensitive to the controller gain because of the computational delay of vision. In order to establish a satisfactory delay compensation, more investigations on controller design are required. (author)

  8. Enhanced control of a flexure-jointed micromanipulation system using a vision-based servoing approach

    Science.gov (United States)

    Chuthai, T.; Cole, M. O. T.; Wongratanaphisan, T.; Puangmali, P.

    2018-01-01

    This paper describes a high-precision motion control implementation for a flexure-jointed micromanipulator. A desktop experimental motion platform has been created based on a 3RUU parallel kinematic mechanism, driven by rotary voice coil actuators. The three arms supporting the platform have rigid links with compact flexure joints as integrated parts and are made by single-process 3D printing. The mechanism overall size is approximately 250x250x100 mm. The workspace is relatively large for a flexure-jointed mechanism, being approximately 20x20x6 mm. A servo-control implementation based on pseudo-rigid-body models (PRBM) of kinematic behavior combined with nonlinear-PID control has been developed. This is shown to achieve fast response with good noise-rejection and platform stability. However, large errors in absolute positioning occur due to deficiencies in the PRBM kinematics, which cannot accurately capture flexure compliance behavior. To overcome this problem, visual servoing is employed, where a digital microscopy system is used to directly measure the platform position by image processing. By adopting nonlinear PID feedback of measured angles for the actuated joints as inner control loops, combined with auxiliary feedback of vision-based measurements, the absolute positioning error can be eliminated. With controller gain tuning, fast dynamic response and low residual vibration of the end platform can be achieved with absolute positioning accuracy within ±1 micron.

  9. Servo-controlling structure of five-axis CNC system for real-time NURBS interpolating

    Science.gov (United States)

    Chen, Liangji; Guo, Guangsong; Li, Huiying

    2017-07-01

    NURBS (Non-Uniform Rational B-Spline) is widely used in CAD/CAM (Computer-Aided Design / Computer-Aided Manufacturing) to represent sculptured curves or surfaces. In this paper, we develop a 5-axis NURBS real-time interpolator and realize it in our developing CNC(Computer Numerical Control) system. At first, we use two NURBS curves to represent tool-tip and tool-axis path respectively. According to feedrate and Taylor series extension, servo-controlling signals of 5 axes are obtained for each interpolating cycle. Then, generation procedure of NC(Numerical Control) code with the presented method is introduced and the method how to integrate the interpolator into our developing CNC system is given. And also, the servo-controlling structure of the CNC system is introduced. Through the illustration, it has been indicated that the proposed method can enhance the machining accuracy and the spline interpolator is feasible for 5-axis CNC system.

  10. Discrete Second-Order Sliding Mode Adaptive Controller Based on Characteristic Model for Servo Systems

    Directory of Open Access Journals (Sweden)

    Zhihong Wang

    2015-01-01

    Full Text Available Considering the varying inertia and load torque in high speed and high accuracy servo systems, a novel discrete second-order sliding mode adaptive controller (DSSMAC based on characteristic model is proposed, and a command observer is also designed. Firstly, the discrete characteristic model of servo systems is established. Secondly, the recursive least square algorithm is adopted to identify time-varying parameters in characteristic model, and the observer is applied to predict the command value of next sample time. Furthermore, the stability of the closed-loop system and the convergence of the observer are analyzed. The experimental results show that the proposed method not only can adapt to varying inertia and load torque, but also has good disturbance rejection ability and robustness to uncertainties.

  11. Dreams of pneumatic servo and rail way cars in 2010; 2010 nen noyume kukiatsu servo to tetsudo sharyo

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K. [Tokyo Precision Instruments Co. Ltd., Kanagawa (Japan)

    2000-01-15

    This paper describes pneumatic servo and railway cars. The comfort of railway cars is improved by reducing excess transverse centrifugal force, and longitudinal, transverse and vertical vibration. Pneumatic system plays a large role in the comfort. Pneumatic system is used for doors because of certain open/shut operation and protecting a hand caught in a door from excess tightening pressure. Pneumatic system is also used for mechanical brakes. Pneumatic spring for car suspensions improves the comfort considerably. The orifice and auxiliary tank of a pneumatic spring reduce a spring constant, and give damping to the vibration system of car bodies and springs. To reduce an outward excess centrifugal force by tilting a car body inward at curve, a body tilting equipment is used which is adopted for a pendulum car with pneumatic servo control, and a tilting car with height control of both side pneumatic springs. For transverse damping, semi-active equipment using oil damper is in wide use, while that using pneumatic servo is also in rial use. (NEDO)

  12. L1 adaptive control of uncertain gear transmission servo systems with deadzone nonlinearity.

    Science.gov (United States)

    Zuo, Zongyu; Li, Xiao; Shi, Zhiguang

    2015-09-01

    This paper deals with the adaptive control problem of Gear Transmission Servo (GTS) systems in the presence of unknown deadzone nonlinearity and viscous friction. A global differential homeomorphism based on a novel differentiable deadzone model is proposed first. Since there exist both matched and unmatched state-dependent unknown nonlinearities, a full-state feedback L1 adaptive controller is constructed to achieve uniformly bounded transient response in addition to steady-state performance. Finally, simulation results are included to show the elimination of limit cycles, in addition to demonstrating the main results in this paper. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Analysis of a biphase-based servo format for hard-disk drives

    NARCIS (Netherlands)

    Makinwa, K.A.A.; Bergmans, J.W.M.; Voorman, J.O.

    2000-01-01

    Biphase modulation in an embedded-servo format for hard-disk drives is investigated. It is shown that for biphase, at the low linear densities typical of servo information, near-maximum-likelihood performance can be attained by a simple bit detector consisting of a full-response linear equalizer and

  14. A port-Hamiltonian approach to image-based visual servo control for dynamic systems

    NARCIS (Netherlands)

    Mahony, R.; Stramigioli, Stefano

    2012-01-01

    This paper introduces a port-Hamiltonian framework for the design of image-based visual servo control for dynamic mechanical systems. The approach taken introduces the concept of an image effort and provides an interpretation of energy exchange between the dynamics of the physical system and virtual

  15. Adaptive control of the radial servo system of a compact disc player

    NARCIS (Netherlands)

    Draijer, W.; Steinbuch, M.; Bosgra, O.H.

    1992-01-01

    The radial servo system of a compact disc player has to cope with large gain variations which are due to disc dependent optical characteristics, tolerances in mechanical and electrical components and nonlinearity in the generation of the position index. In current players this problem has been

  16. A Port-Hamiltonian Approach to Visual Servo Control of a Pick and Place System

    NARCIS (Netherlands)

    Dirksz, Daniel A.; Scherpen, Jacquelien M. A.; Steinbuch, Maarten

    In this paper, we take a port-Hamiltonian approach to address the problem of image-based visual servo control of a pick and place system. Through a coordinate transformation and a passive interconnection between mechanical system and camera dynamics we realize a closed-loop system that is

  17. Direct drive digital servo press with high parallel control

    Science.gov (United States)

    Murata, Chikara; Yabe, Jun; Endou, Junichi; Hasegawa, Kiyoshi

    2013-12-01

    Direct drive digital servo press has been developed as the university-industry joint research and development since 1998. On the basis of this result, 4-axes direct drive digital servo press has been developed and in the market on April of 2002. This servo press is composed of 1 slide supported by 4 ball screws and each axis has linearscale measuring the position of each axis with high accuracy less than μm order level. Each axis is controlled independently by servo motor and feedback system. This system can keep high level parallelism and high accuracy even with high eccentric load. Furthermore the 'full stroke full power' is obtained by using ball screws. Using these features, new various types of press forming and stamping have been obtained by development and production. The new stamping and forming methods are introduced and 'manufacturing' need strategy of press forming with high added value and also the future direction of press forming are also introduced.

  18. Research on Visual Servo Grasping of Household Objects for Nonholonomic Mobile Manipulator

    Directory of Open Access Journals (Sweden)

    Huangsheng Xie

    2014-01-01

    Full Text Available This paper focuses on the problem of visual servo grasping of household objects for nonholonomic mobile manipulator. Firstly, a new kind of artificial object mark based on QR (Quick Response Code is designed, which can be affixed to the surface of household objects. Secondly, after summarizing the vision-based autonomous mobile manipulation system as a generalized manipulator, the generalized manipulator’s kinematic model is established, the analytical inverse kinematic solutions of the generalized manipulator are acquired, and a novel active vision based camera calibration method is proposed to determine the hand-eye relationship. Finally, a visual servo switching control law is designed to control the service robot to finish object grasping operation. Experimental results show that QR Code-based artificial object mark can overcome the difficulties brought by household objects’ variety and operation complexity, and the proposed visual servo scheme makes it possible for service robot to grasp and deliver objects efficiently.

  19. Optimality based repetitive controller design for track-following servo system of optical disk drives.

    Science.gov (United States)

    Chen, Wentao; Zhang, Weidong

    2009-10-01

    In an optical disk drive servo system, to attenuate the external periodic disturbances induced by inevitable disk eccentricity, repetitive control has been used successfully. The performance of a repetitive controller greatly depends on the bandwidth of the low-pass filter included in the repetitive controller. However, owing to the plant uncertainty and system stability, it is difficult to maximize the bandwidth of the low-pass filter. In this paper, we propose an optimality based repetitive controller design method for the track-following servo system with norm-bounded uncertainties. By embedding a lead compensator in the repetitive controller, both the system gain at periodic signal's harmonics and the bandwidth of the low-pass filter are greatly increased. The optimal values of the repetitive controller's parameters are obtained by solving two optimization problems. Simulation and experimental results are provided to illustrate the effectiveness of the proposed method.

  20. A Novel Rotor and Stator Magnetic Fields Direct-Orthogonalized Vector Control Scheme for the PMSM Servo System

    Directory of Open Access Journals (Sweden)

    Shi-Xiong Zhang

    2014-02-01

    Full Text Available Permanent Magnet Synchronous motor (PMSM has received widespread acceptance in recent years. In this paper, a new rotor and stator Magnetic Fields Direct-Orthogonalized Vector Control (MFDOVC scheme is proposed for PMSM servo system. This method simplified the complex calculation of traditional vector control, a part of the system resource is economized. At the same time, through the simulation illustration validation, the performance of PMSM servo system with the proposed MFDOVC scheme can achieve the same with the complex traditional vector control method, but much simpler calculation is implemented using the proposed method.

  1. A port-Hamiltonian approach to visual servo control of a pick and place system

    NARCIS (Netherlands)

    Dirksz, Daniel A.; Scherpen, Jacquelien M.A.

    2012-01-01

    In this paper we take a port-Hamiltonian approach to address the problem of image-based visual servo control of a pick and place system. We realize a closed-loop system, including the nonlinear camera dynamics, which is port-Hamiltonian. Although the closed-loop system is nonlinear, the resulting

  2. Nonlinear control for a class of hydraulic servo system.

    Science.gov (United States)

    Yu, Hong; Feng, Zheng-jin; Wang, Xu-yong

    2004-11-01

    The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.

  3. All Digital IQ Servo-System for CERN Linacs

    CERN Document Server

    Rohlev, A; Garoby, R

    2003-01-01

    A new VME based system has been developed and built at CERN for the servo loops regulating the field in the linac accelerating structure. It makes use of high speed digital In-phase/Quadrature (IQ) detection, digital processing, and digital IQ modulation. The digital processing and IQ modulation is done in a single PLD. The system incorporates continually variable set points, iterative learning, feed forward as well as extensive diagnostics and other features well suited for digital implementations. Built on a single VME card, it will be first used in the energy ramping RF chain of the CERN Heavy Ion Linac (linac 3) and later for upgrading the present proton linac (linac 2). This system serves also as a prototype for the future Superconducting Proton Linac (SPL). The design principle and the experimental results are described.

  4. A new approach to control of xenon spatial oscillation during load follow operation via robust servo systems

    International Nuclear Information System (INIS)

    Ukai, Hiroyuki; Iwazumi, Tetsuo

    1994-01-01

    The control problem of xenon-induced spatial oscillations of PWR in the axial direction during a load following operation is investigated. The system models are described by a one-group diffusion equation with xenon and temperature feed-backs, iodine and xenon dynamic equations, and heat conductions processes. Control is implemented by the full-length and the part-length control rods and the boron concentration. In order to achieve the control purpose, control models are formulated as the design problem of robust servo systems for distributed parameter reactor systems. The total thermal power and the axial offset are chosen as outputs to be controlled. The control systems consist of servo compensators and stabilizing compensators. They are designed based on the finite-dimensional systems which are constructed by linearizing around steady states, approximately by the Galerkin method, and reducing dimensions via the singular perturbation method. A new and simple computational algorithm to obtain an approximate solution of a steady-state neutron balance is developed via the perturbation method. Some results of numerical simulations are shown in order to discuss the effectiveness of the theory developed in this paper. In particular, it is shown that the designed servo systems are robust against model errors with linearization and modal truncation

  5. PID-Controller Tuning Optimization with Genetic Algorithms in Servo Systems

    Directory of Open Access Journals (Sweden)

    Arturo Y. Jaen-Cuellar

    2013-09-01

    Full Text Available Performance improvement is the main goal of the study of PID control and much research has been conducted for this purpose. The PID filter is implemented in almost all industrial processes because of its well-known beneficial features. In general, the whole system's performance strongly depends on the controller's efficiency and hence the tuning process plays a key role in the system's behaviour. In this work, the servo systems will be analysed, specifically the positioning control systems. Among the existent tuning methods, the Gain-Phase Margin method based on Frequency Response analysis is the most adequate for controller tuning in positioning control systems. Nevertheless, this method can be improved by integrating an optimization technique. The novelty of this work is the development of a new methodology for PID control tuning by coupling the Gain-Phase Margin method with the Genetic Algorithms in which the micro-population concept and adaptive mutation probability are applied. Simulations using a positioning system model in MATLAB and experimental tests in two CNC machines and an industrial robot are carried out in order to show the effectiveness of the proposal. The obtained results are compared with both the classical Gain-Phase Margin tuning and with a recent PID controller optimization using Genetic Algorithms based on real codification. The three methodologies are implemented using software.

  6. Experimental evaluation of control strategies for hydraulic servo robot

    DEFF Research Database (Denmark)

    Bech, Michael Møller; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    In this paper different linear and non-linear controllers applied to a hydraulically driven servo robot are evaluated and validated. The task is to make the actuators of the manipulator track a position reference with minimum error. Hydraulic systems are intrinsically non-linear and using linear...... in industrial servo drives. The different controllers are compared and evaluated from simulation and experimental results....

  7. Provision of servo-controlled cooling during neonatal transport.

    Science.gov (United States)

    Johnston, Ewen D; Becher, Julie-Clare; Mitchell, Anne P; Stenson, Benjamin J

    2012-09-01

    Therapeutic hypothermia is a time critical intervention for infants who have experienced a hypoxic-ischaemic event. Previously reported methods of cooling during transport do not demonstrate the same stability achieved in the neonatal unit. The authors developed a system which allowed provision of servo-controlled cooling throughout transport, and present their first year's experience. Retrospective review of routinely collected patient data. 14 out-born infants were referred for cooling during a 12-month period. Nine infants were managed with the servo-controlled system during transport. Cooling was commenced in all infants before 6 h of life. Median time from team arrival to the infant having a temperature in the target range (33-34°C) was 45 min. Median temperature during transfer was 33.5°C (range 33-34°C). Temperature on arrival at the cooling centre ranged from 33.4°C to 33.8°C. Servo-controlled cooling during transport is feasible and provides an optimal level of thermal control.

  8. The computer-aided design of a servo system as a multiple-criteria decision problem

    NARCIS (Netherlands)

    Udink ten Cate, A.J.

    1986-01-01

    This paper treats the selection of controller gains of a servo system as a multiple-criteria decision problem. In contrast to the usual optimization-based approaches to computer-aided design, inequality constraints are included in the problem as unconstrained objectives. This considerably simplifies

  9. Evaluation of Linear and Non-Linear Control Schemes Applied to a Hydraulic Servo System

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen

    2005-01-01

    Due to the innovation of low-cost electronics such as sensors, microcontrollers etc., the focus on highperformance motion control is increasing. This work focuses on position control of single-input single-output hydraulic servo-systems in general. A hydraulically actuated robotic manipulator...

  10. Stepping Motor - Hydraulic Motor Servo Drives for an NC Milling ...

    African Journals Online (AJOL)

    In this paper the retrofit design of the control system of an NC milling machine with a stepping motor and stepping motor - actuated hydraulic motor servo mechanism on the machines X-axis is described. The servo designed in the course of this study was tested practically and shown to be linear - the velocity following errors ...

  11. A Novel Real-Time Path Servo Control of a Hardware-in-the-Loop for a Large-Stroke Asymmetric Rod-Less Pneumatic System under Variable Loads

    Directory of Open Access Journals (Sweden)

    Hao-Ting Lin

    2017-06-01

    Full Text Available This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally.

  12. A Novel Real-Time Path Servo Control of a Hardware-in-the-Loop for a Large-Stroke Asymmetric Rod-Less Pneumatic System under Variable Loads.

    Science.gov (United States)

    Lin, Hao-Ting

    2017-06-04

    This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC) is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally.

  13. Asymmetric Fuzzy Control of a Positive and Negative Pneumatic Pressure Servo System

    Science.gov (United States)

    Yang, Gang; Du, Jing-Min; Fu, Xiao-Yun; Li, Bao-Ren

    2017-11-01

    The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonlinearity of such systems limit its application in the field of pressure tracking control. In order to meet the demand of generating dynamic pressure signal in the application of the hardware-in-the-loop simulation of aerospace engineering, a positive and negative pneumatic pressure servo system is provided to implement dynamic adjustment of sealed chamber pressure. A mathematical model is established with simulation and experiment being implemented afterwards to discuss the characteristics of the system, which shows serious asymmetry in the process of charging and discharging. Based on the analysis of the system dynamics, a fuzzy proportional integral derivative (PID) controller with asymmetric fuzzy compensator is proposed. Different from conventional adjusting mechanisms employing the error and change in error of the controlled variable as input parameters, the current chamber pressure and charging or discharging state are chosen as inputs of the compensator, which improves adaptability. To verify the effectiveness and performance of the proposed controller, the comparison experiments tracking sinusoidal and square wave commands are conducted. Experimental results show that the proposed controller can obtain better dynamic performance and relatively consistent control performance across the scope of work (2-140 kPa). The research proposes a fuzzy control method to overcome asymmetry and enhance adaptability for the positive and negative pneumatic pressure servo system.

  14. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.

    Science.gov (United States)

    Chen, Tien-Chi; Yu, Chih-Hsien

    2009-07-01

    A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.

  15. Fault detection for discrete-time switched systems with sensor stuck faults and servo inputs.

    Science.gov (United States)

    Zhong, Guang-Xin; Yang, Guang-Hong

    2015-09-01

    This paper addresses the fault detection problem of switched systems with servo inputs and sensor stuck faults. The attention is focused on designing a switching law and its associated fault detection filters (FDFs). The proposed switching law uses only the current states of FDFs, which guarantees the residuals are sensitive to the servo inputs with known frequency ranges in faulty cases and robust against them in fault-free case. Thus, the arbitrarily small sensor stuck faults, including outage faults can be detected in finite-frequency domain. The levels of sensitivity and robustness are measured in terms of the finite-frequency H- index and l2-gain. Finally, the switching law and FDFs are obtained by the solution of a convex optimization problem. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Frequency response of slow beam extraction process

    International Nuclear Information System (INIS)

    Toyama, Takeshi; Sato, Hikaru; Marutsuka, Katsumi; Shirakata, Masashi.

    1994-01-01

    A servo control system has been incorporated into the practical slow extraction system in order to stabilize the spill structure less than a few kHz. Frequency responses of the components of the servo-spill control system and the open-loop frequency response were measured. The beam transfer function of the slow extraction process was derived from the measured data and approximated using a simple function. This is utilized to improve the performance of the servo-loop. (author)

  17. Servo Platform Circuit Design of Pendulous Gyroscope Based on DSP

    Science.gov (United States)

    Tan, Lilong; Wang, Pengcheng; Zhong, Qiyuan; Zhang, Cui; Liu, Yunfei

    2018-03-01

    In order to solve the problem when a certain type of pendulous gyroscope in the initial installation deviation more than 40 degrees, that the servo platform can not be up to the speed of the gyroscope in the rough north seeking phase. This paper takes the digital signal processor TMS320F28027 as the core, uses incremental digital PID algorithm, carries out the circuit design of the servo platform. Firstly, the hardware circuit is divided into three parts: DSP minimum system, motor driving circuit and signal processing circuit, then the mathematical model of incremental digital PID algorithm is established, based on the model, writes the PID control program in CCS3.3, finally, the servo motor tracking control experiment is carried out, it shows that the design can significantly improve the tracking ability of the servo platform, and the design has good engineering practice.

  18. Fusing Simulation Results From Multifidelity Aero-servo-elastic Simulators - Application To Extreme Loads On Wind Turbine

    DEFF Research Database (Denmark)

    Abdallah, Imad; Sudret, Bruno; Lataniotis, Christos

    2015-01-01

    Fusing predictions from multiple simulators in the early stages of the conceptual design of a wind turbine results in reduction in model uncertainty and risk mitigation. Aero-servo-elastic is a term that refers to the coupling of wind inflow, aerodynamics, structural dynamics and controls. Fusing...... the response data from multiple aero-servo-elastic simulators could provide better predictive ability than using any single simulator. The co-Kriging approach to fuse information from multifidelity aero-servo-elastic simulators is presented. We illustrate the co-Kriging approach to fuse the extreme flapwise...... bending moment at the blade root of a large wind turbine as a function of wind speed, turbulence and shear exponent in the presence of model uncertainty and non-stationary noise in the output. The extreme responses are obtained by two widely accepted numerical aero-servo-elastic simulators, FAST...

  19. A Design Method of Robust Servo Internal Model Control with Control Input Saturation

    OpenAIRE

    山田, 功; 舩見, 洋祐

    2001-01-01

    In the present paper, we examine a design method of robust servo Internal Model Control with control input saturation. First of all, we clarify the condition that Internal Model Control has robust servo characteristics for the system with control input saturation. From this consideration, we propose new design method of Internal Model Control with robust servo characteristics. A numerical example to illustrate the effectiveness of the proposed method is shown.

  20. Application of simple adaptive control to water hydraulic servo cylinder system

    Science.gov (United States)

    Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji

    2012-09-01

    Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.

  1. Velocity control of servo systems using an integral retarded algorithm.

    Science.gov (United States)

    Ramírez, Adrián; Garrido, Rubén; Mondié, Sabine

    2015-09-01

    This paper presents a design technique for the delay-based controller called Integral Retarded (IR), and its applications to velocity control of servo systems. Using spectral analysis, the technique yields a tuning strategy for the IR by assigning a triple real dominant root for the closed-loop system. This result ultimately guarantees a desired exponential decay rate σ(d) while achieving the IR tuning as explicit function of σ(d) and system parameters. The intentional introduction of delay allows using noisy velocity measurements without additional filtering. The structure of the controller is also able to avoid velocity measurements by using instead position information. The IR is compared to a classical PI, both tested in a laboratory prototype. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Control of xenon spatial oscillations during load follow of nuclear reactor via robust servo systems

    International Nuclear Information System (INIS)

    Ukai, Hiroyuki; Yada, Yukihiro; Iwazumi, Tetsuo; Morita, Yoshifumi.

    1990-01-01

    This paper investigates the control problem of xenon spatial oscillations in the axial direction during load following operations of a nuclear reactor. The system model is described by a one-group diffusion equation with xenon and power feedbacks and iodine-xenon dynamic equations and controlled by full-length and part-length control rods. In order to achieve the control purpose we formulate the control model as the design problem of robust servo systems for distributed parameter reactor systems. Hence the total thermal power and the axial offset are chosen as outputs to be controlled. The control law is designed based upon finite-dimensional systems which are constructed by linearizing around steady states, approximating by the Galerkin approximate method and reducing dimensions via the singular perturbation method. From a computational point of view a simple computational algorithm to obtain an approximate solution of the steady state neutron balance is developed via the perturbation method. Some results of numerical simulations are represented to show effectiveness of the theory developed in this paper. Particularly it is shown that the designed servo systems are robust against model errors with the linearization and the model truncation. (author)

  3. A compound control strategy combining velocity compensation with ADRC of electro-hydraulic position servo control system.

    Science.gov (United States)

    Gao, Bingwei; Shao, Junpeng; Yang, Xiaodong

    2014-11-01

    In order to enhance the anti-jamming ability of electro-hydraulic position servo control system at the same time improve the control precision of the system, a compound control strategy that combines velocity compensation with Active Disturbance Rejection Controller (ADRC) is proposed, and the working principle of the compound control strategy is given. ADRC controller is designed, and the extended state observer is used for observing internal parameters uncertainties and external disturbances, so that the disturbances of the system are suppressed effectively. Velocity compensation controller is designed and the compensation model is derived to further improve the positioning accuracy of the system and to achieve the velocity compensation without disturbance. The compound control strategy is verified by the simulation and experiment respectively, and the simulation and experimental results show that the electro-hydraulic position servo control system with ADRC controller can effectively inhibit the external disturbances, the precise positioning control is realized after introducing the velocity compensation controller, and verify that the compound control strategy is effective. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Robust and Stable Disturbance Observer of Servo System for Low Speed Operation Using the Radial Basis Function Network

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2005-01-01

    A new scheme to estimate the moment of inertia in the servo motor drive system in very low speed is proposed in this paper. The speed estimation scheme in most servo drive systems for low speed operation is sensitive to the variation of machine parameter, especially the moment of inertia....... To estimate the motor inertia value, the observer using the Radial Basis Function Network (RBFN) is applied. A control law for stabilizing the system and adaptive laws for updating both of the weights in the RBFN and a bounding constant are established so that the whole closed-loop system is stable...... in the sense of Lyapunov. The effectiveness of the proposed inertia estimation is verified by simulations and experiments. It is concluded that the speed control performance in low speed region is improved with the proposed disturbance observer using RBFN....

  5. An open source digital servo for atomic, molecular, and optical physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leibrandt, D. R., E-mail: david.leibrandt@nist.gov; Heidecker, J. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2015-12-15

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of {sup 27}Al{sup +} in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  6. An open source digital servo for atomic, molecular, and optical physics experiments

    International Nuclear Information System (INIS)

    Leibrandt, D. R.; Heidecker, J.

    2015-01-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27 Al + in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser

  7. An open source digital servo for atomic, molecular, and optical physics experiments

    Science.gov (United States)

    Leibrandt, D. R.; Heidecker, J.

    2015-12-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  8. Imaged-Based Visual Servo Control for a VTOL Aircraft

    Directory of Open Access Journals (Sweden)

    Liying Zou

    2017-01-01

    Full Text Available This paper presents a novel control strategy to force a vertical take-off and landing (VTOL aircraft to accomplish the pinpoint landing task. The control development is based on the image-based visual servoing method and the back-stepping technique; its design differs from the existing methods because the controller maps the image errors onto the actuator space via a visual model which does not contain the depth information of the feature point. The novelty of the proposed method is to extend the image-based visual servoing technique to the VTOL aircraft control. In addition, the Lyapunov theory is used to prove the asymptotic stability of the VTOL aircraft visual servoing system, while the image error can converge to zero. Furthermore, simulations have been also conducted to demonstrate the performances of the proposed method.

  9. Analysis of the jet pipe electro-hydraulic servo valve with finite element methods

    Directory of Open Access Journals (Sweden)

    Kaiyu Zhao

    2018-01-01

    Full Text Available The dynamic characteristics analysis about the jet pipe electro-hydraulic servo valve based on experience and mathematical derivation was difficult and not so precise. So we have analysed the armature feedback components, torque motor and jet pipe receiver in electrohydraulic servo valve by sophisticated finite element analysis tools respectively and have got physical meaning data on these parts. Then the data were fitted by Matlab and the mathematical relationships among them were calculated. We have done the dynamic multi-physical fields’ Simulink co-simulation using above mathematical relationship, and have got the input-output relationship of the overall valve, the frequency response and step response. This work can show the actual working condition accurately. At the same time, we have considered the materials and the impact of the critical design dimensions in the finite element analysis process. It provides some new ideas to the overall design of jet pipe electro-hydraulic servo valve.

  10. Servo-driven piezo common rail diesel injection system; Servogetriebene Piezo-Common-Rail-Dieseleinspritzung

    Energy Technology Data Exchange (ETDEWEB)

    Schoeppe, Detlev; Stahl, Christian; Krueger, Grit; Dian, Vincent [Continental Automotive GmbH, Regensburg (Germany). Geschaeftsbereich Engine Systems

    2012-03-15

    The requirements to be met by future diesel engines represent major challenges for fuel injection technology: Fuel consumption, emissions and noise development are to be further reduced without impairing driving enjoyment. To address these challenges, Continental has developed a new fuel injection system that features a high level of precision and accuracy. The key component is a servo-driven injector that is operated in a closed control circuit. (orig.)

  11. Using Feedback Error Learning for Control of Electro Hydraulic Servo System by Laguerre

    Directory of Open Access Journals (Sweden)

    Amir Reza Zare Bidaki

    2014-01-01

    Full Text Available In this paper, a new Laguerre controller is proposed to control the electro hydraulic servo system. The proposed controller uses feedback error learning method and leads to significantly improve performance in terms of settling time and amplitude of control signal rather than other controllers. All derived results are validated by simulation of nonlinear mathematical model of the system. The simulation results show the advantages of the proposed method for improved control in terms of both settling time and amplitude of control signal.

  12. AeroPropulsoServoElasticity: Dynamic Modeling of the Variable Cycle Propulsion System

    Science.gov (United States)

    Kopasakis, George

    2012-01-01

    This presentation was made at the 2012 Fundamental Aeronautics Program Technical Conference and it covers research work for the Dynamic Modeling of the Variable cycle Propulsion System that was done under the Supersonics Project, in the area of AeroPropulsoServoElasticity. The presentation covers the objective for the propulsion system dynamic modeling work, followed by the work that has been done so far to model the variable Cycle Engine, modeling of the inlet, the nozzle, the modeling that has been done to model the affects of flow distortion, and finally presenting some concluding remarks and future plans.

  13. Actuation and Control of a Micro Electrohydraulic Digital Servo Valve

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z Q; Hu, M J; Pei, X; Ruan, J [MOE Key Laboratory of Mechanical Manufacture and Automation Zhejiang University of Technology, 310014 (China)

    2006-10-15

    Structure of the micro digital servo valve is given. A micro stepper motor is used as electrical-to-mechanical interface of the valve. A special mechanical device is designed to convert the rotation of the stepper motor into the linear motion of the spool. This moving conversion device functions through an eccentric ball head rigidly connected to the axis of the stepper motor and plugged into a slot at the central spool land. While the stepper motor rotates, the eccentric ball head will actuate the spool to make a linear motion. Unlike conventional servo or proportional valves, in which the spool is forced to central position by a spring force, when the current supply is switched off, the digital valve has a program to control the spool to its central position each time the electrical power supply is switched on or off. The two end screws are used to adjust the position of the sleeve to sustain a mechanical central position coincided with electrical central position given by the stepper motor after initialization. The adjustment has to be carried once before the first time the servo valve is put into service. This paper presents theoretical analysis and experimental study of dynamic characteristics of the proposed micro digital servo valve. Experimental results demonstrated that the valve takes the advantage of high accuracy and fast response.

  14. Actuation and Control of a Micro Electrohydraulic Digital Servo Valve

    International Nuclear Information System (INIS)

    Yu, Z Q; Hu, M J; Pei, X; Ruan, J

    2006-01-01

    Structure of the micro digital servo valve is given. A micro stepper motor is used as electrical-to-mechanical interface of the valve. A special mechanical device is designed to convert the rotation of the stepper motor into the linear motion of the spool. This moving conversion device functions through an eccentric ball head rigidly connected to the axis of the stepper motor and plugged into a slot at the central spool land. While the stepper motor rotates, the eccentric ball head will actuate the spool to make a linear motion. Unlike conventional servo or proportional valves, in which the spool is forced to central position by a spring force, when the current supply is switched off, the digital valve has a program to control the spool to its central position each time the electrical power supply is switched on or off. The two end screws are used to adjust the position of the sleeve to sustain a mechanical central position coincided with electrical central position given by the stepper motor after initialization. The adjustment has to be carried once before the first time the servo valve is put into service. This paper presents theoretical analysis and experimental study of dynamic characteristics of the proposed micro digital servo valve. Experimental results demonstrated that the valve takes the advantage of high accuracy and fast response

  15. Speed tracking control of pneumatic motor servo systems using observation-based adaptive dynamic sliding-mode control

    Science.gov (United States)

    Chen, Syuan-Yi; Gong, Sheng-Sian

    2017-09-01

    This study aims to develop an adaptive high-precision control system for controlling the speed of a vane-type air motor (VAM) pneumatic servo system. In practice, the rotor speed of a VAM depends on the input mass air flow, which can be controlled by the effective orifice area (EOA) of an electronic throttle valve (ETV). As the control variable of a second-order pneumatic system is the integral of the EOA, an observation-based adaptive dynamic sliding-mode control (ADSMC) system is proposed to derive the differential of the control variable, namely, the EOA control signal. In the ADSMC system, a proportional-integral-derivative fuzzy neural network (PIDFNN) observer is used to achieve an ideal dynamic sliding-mode control (DSMC), and a supervisor compensator is designed to eliminate the approximation error. As a result, the ADSMC incorporates the robustness of a DSMC and the online learning ability of a PIDFNN. To ensure the convergence of the tracking error, a Lyapunov-based analytical method is employed to obtain the adaptive algorithms required to tune the control parameters of the online ADSMC system. Finally, our experimental results demonstrate the precision and robustness of the ADSMC system for highly nonlinear and time-varying VAM pneumatic servo systems.

  16. Autonomous Cargo Transport System for an Unmanned Aerial Vehicle, using Visual Servoing

    Directory of Open Access Journals (Sweden)

    Noah Kuntz

    2009-12-01

    Full Text Available This paper presents the design and testing of a system for autonomous tracking, pickup, and delivery of cargo via an unmanned helicopter. The tracking system uses a visual servoing algorithm and is tested using open loop velocity control of a six degree of freedom gantry system with a camera mounted via a pan-tilt unit on the end effecter. The pickup system uses vision to direct the camera pan tilt unit to track the target, and uses a hook attached to a second pan tilt unit to pick up the cargo. The ability of the pickup system to hook a target is tested by mounting it on the Systems Integrated Sensor Test Rig gantry system while recorded helicopter velocities are played back by the test rig.

  17. Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System

    Directory of Open Access Journals (Sweden)

    Ruihong Xie

    2017-05-01

    Full Text Available This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square error is 1.253 mrad when tracking 10° 0.2 Hz signal.

  18. Visual-servoing optical microscopy

    Science.gov (United States)

    Callahan, Daniel E.; Parvin, Bahram

    2009-06-09

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time: quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  19. Digitalni servo sistem za upravljanje infracrvenim lokatorom

    OpenAIRE

    Aleksandar Viličić; Mirko Jezdimirović

    2009-01-01

    U radu je predstavljen digitalni servo sistem sa pogonskim elektromotorom koji zamenjuje postojeći elektrohidraulički servo pogon na uređaju za upravljanje IC lokatorom, koji obezbeđuje zahtevanu tačnost pozicioniranja i praćenja sa minimalnim brzinama.

  20. A new linearized equation for servo valve in hydraulic control systems

    International Nuclear Information System (INIS)

    Kim, Tae Hyung; Lee, Ill Yeong

    2002-01-01

    In the procedure of the hydraulic control system analysis, a linearized approximate equation described by the first order term of Taylor's series has been widely used. Such a linearized equation is effective just near the operating point. And, as of now, there are no general standards on how to determine the operating point of a servo valve in the process of applying the linearized equation. So, in this study, a new linearized equation for valve characteristics is proposed as a modified form of the existing linearized equation. And, a method for selecting an optimal operating point is proposed for the new linearized equation. The effectiveness of the new linearized equation is confirmed through numerical simulations and experiments for a model hydraulic control system

  1. Analysis of Dead Time and Implementation of Smith Predictor Compensation in Tracking Servo Systems for Small Unmanned Aerial Vehicles

    National Research Council Canada - National Science Library

    Brashear , Jr, Thomas J

    2005-01-01

    .... Gimbaled video camera systems, designed at NPS, use two servo actuators to command line of sight orientation via serial controller while tracking a target and is termed Visual Based Target Tracking (VBTT...

  2. Study of Servo Press with a Flywheel

    Science.gov (United States)

    Tso, Pei-Lum; Li, Cheng-Ho

    The servo press with a flywheel is able to provide flexible motions with energy-saving merit, but its true potential has not been thoroughly studied and verified. In this paper, such the “hybrid-driven” servo press is focused on, and the stamping capacity and the energy distribution between the flywheel and the servomotor are investigated. The capacity is derived based on the principle of energy conservation, and a method of using a capacity percentage plane for evaluation is proposed. A case study is included to illustrate and interpret that the stamping capacity is highly dependent on the programmed punch motions, thus the capacity prediction is always necessary while applying this kind of servo press. The energy distribution is validated by blanking experiments, and the results indicate that the servomotor needs only to provide 15% to the flywheel torque, 12% of the total stamping energy. This validates that the servomotor power is significantly saved in comparison with conventional servo presses.

  3. Adaptive integral robust control and application to electromechanical servo systems.

    Science.gov (United States)

    Deng, Wenxiang; Yao, Jianyong

    2017-03-01

    This paper proposes a continuous adaptive integral robust control with robust integral of the sign of the error (RISE) feedback for a class of uncertain nonlinear systems, in which the RISE feedback gain is adapted online to ensure the robustness against disturbances without the prior bound knowledge of the additive disturbances. In addition, an adaptive compensation integrated with the proposed adaptive RISE feedback term is also constructed to further reduce design conservatism when the system also exists parametric uncertainties. Lyapunov analysis reveals the proposed controllers could guarantee the tracking errors are asymptotically converging to zero with continuous control efforts. To illustrate the high performance nature of the developed controllers, numerical simulations are provided. At the end, an application case of an actual electromechanical servo system driven by motor is also studied, with some specific design consideration, and comparative experimental results are obtained to verify the effectiveness of the proposed controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Micro-vision servo control of a multi-axis alignment system for optical fiber assembly

    International Nuclear Information System (INIS)

    Chen, Weihai; Yu, Fei; Qu, Jianliang; Chen, Wenjie; Zhang, Jianbin

    2017-01-01

    This paper describes a novel optical fiber assembly system featuring a multi-axis alignment function based on micro-vision feedback control. It consists of an active parallel alignment mechanism, a passive compensation mechanism, a micro-gripper and a micro-vision servo control system. The active parallel alignment part is a parallelogram-based design with remote-center-of-motion (RCM) function to achieve precise rotation without fatal lateral motion. The passive mechanism, with five degrees of freedom (5-DOF), is used to implement passive compensation for multi-axis errors. A specially designed 1-DOF micro-gripper mounted onto the active parallel alignment platform is adopted to grasp and rotate the optical fiber. A micro-vision system equipped with two charge-coupled device (CCD) cameras is introduced to observe the small field of view and obtain multi-axis errors for servo feedback control. The two CCD cameras are installed in an orthogonal arrangement—thus the errors can be easily measured via the captured images. Meanwhile, a series of tracking and measurement algorithms based on specific features of the target objects are developed. Details of the force and displacement sensor information acquisition in the assembly experiment are also provided. An experiment demonstrates the validity of the proposed visual algorithm by achieving the task of eliminating errors and inserting an optical fiber to the U-groove accurately. (paper)

  5. Synthesis of Servo Pneumatic/Hydraulic Drive

    Directory of Open Access Journals (Sweden)

    K D. Efremova

    2017-01-01

    Full Text Available Servo pneumatic and / or hydraulic drives are widely used in modern engineering and process control. The efficiency of using pneumatic / hydraulic drives depends on their parameters and characteristics. To select the optimal drive parameters, various methods are used, based on finding the minimum of the target (target or criteria function.The objective of this paper was to apply one crucial criterion (target function that provides determination of optimal parameters of the pneumatic / hydraulic drive with the translational motion of the end-effector as well as its use in the synthesis of the servo pneumatic cylinder. The article shows the form of the target function representing a set of drive parameters that do not have direct relationships with each other in a dimensionless form for the pneumatic / hydraulic drive with the translational motion of the end-effector. To calculate the parameters of the servo drive close to the optimal ones, a two-criteria LPτ search was used. As criteria, were used the decisive criterion - the proposed target function, and the power developed by the actuator of the pneumatic / hydraulic drive, which were presented in a dimensionless form. It is shown that the criterion for solution optimality is the minimum distance of the selected point in the space of the normalized criteria from the origin. This point was determined. In addition to the proposed criteria, non-formalised requirements were taken into account: actual and mass-produced components of drive, in terms of which its parameters close to the optimal ones were determined, and the maximum relative error of the obtained useful power value of the servo pneumatic drive was estimated. The paper presents design features of two types of the servo pneumatic drive created, taking into account the proposed target function, implemented according to the schemes "hidden" and "spaced apart". The experimental static characteristic of the servo pneumatic drive is

  6. Evaluating transient performance of servo mechanisms by analysing stator current of PMSM

    Science.gov (United States)

    Zhang, Qing; Tan, Luyao; Xu, Guanghua

    2018-02-01

    Smooth running and rapid response are the desired performance goals for the transient motions of servo mechanisms. Because of the uncertain and unobservable transient behaviour of servo mechanisms, it is difficult to evaluate their transient performance. Under the effects of electromechanical coupling, the stator current signals of a permanent-magnet synchronous motor (PMSM) potentially contain the performance information regarding servo mechanisms in use. In this paper, a novel method based on analysing the stator current of the PMSM is proposed for quantifying the transient performance. First, a vector control model is constructed to simulate the stator current behaviour in the transient processes of consecutive speed changes, consecutive load changes, and intermittent start-stops. It is discovered that the amplitude and frequency of the stator current are modulated by the transient load torque and motor speed, respectively. The stator currents under different performance conditions are also simulated and compared. Then, the stator current is processed using a local means decomposition (LMD) algorithm to extract the instantaneous amplitude and instantaneous frequency. The sample entropy of the instantaneous amplitude, which reflects the complexity of the load torque variation, is calculated as a performance indicator of smooth running. The peak-to-peak value of the instantaneous frequency, which defines the range of the motor speed variation, is set as a performance indicator of rapid response. The proposed method is applied to both simulated data in an intermittent start-stops process and experimental data measured for a batch of servo turrets for turning lathes. The results show that the performance evaluations agree with the actual performance.

  7. Cloud-based Networked Visual Servo Control

    OpenAIRE

    Wu, Haiyan; Lu, Lei; Chen, Chih-Chung; Hirche, Sandra; Kühnlenz, Kolja

    2013-01-01

    The performance of vision-based control systems, in particular of highly dynamic vision-based motion control systems, is often limited by the low sampling rate of the visual feedback caused by the long image processing time. In order to overcome this problem, the networked visual servo control, which integrates networked computational resources for cloud image processing, is considered in this article. The main contributions of this article are i) a real-time transport protocol for transmitti...

  8. Visual Servoing of Mobile Microrobot with Centralized Camera

    Directory of Open Access Journals (Sweden)

    Kiswanto Gandjar

    2018-01-01

    Full Text Available In this paper, a mechanism of visual servoing for mobile microrobot with a centralized camera is developed. Especially for the development of swarm AI applications. In the fields of microrobots the size of robots is minimal and the amount of movement is also small. By replacing various sensors that is needed with a single centralized vision sensor we can eliminate a lot of components and the need for calibration on every robot. A study and design for a visual servoing mobile microrobot has been developed. This system can use multi object tracking and hough transform to identify the positions of the robots. And can control multiple robots at once with an accuracy of 5-6 pixel from the desired target.

  9. Design of Servo Scheme and Drive Electronics for the Integrated Electrohydraulic Actuation System of RLV-TD

    Science.gov (United States)

    Kurian, Priya C.; Gopinath, Anish; Shinoy, K. S.; Santhi, P.; Sundaramoorthy, K.; Sebastian, Baby; Jaya, B.; Namboodiripad, M. N.; Mookiah, T.

    2017-12-01

    Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) is a system which has the ability to carry a payload from the earth's surface to the outer space more than once. The control actuation forms the major component of the control system and it actuates the control surfaces of the RLV-TD based on the control commands. Eight electro hydraulic actuators were used in RLV-TD for vectoring the control surfaces about their axes. A centralised Hydraulic Power Generating Unit (HPU) was used for powering the eight actuators located in two stages. The actuation system had to work for the longest ever duration of about 850 s for an Indian launch vehicle. High bandwidth requirement from autopilot was met by the servo design using the nonlinear mathematical model. Single Control Electronics which drive four electrohydraulic actuators was developed for each stage. High power electronics with soft start scheme was realized for driving the BLDC motor which is the prime mover for hydraulic pump. Many challenges arose due to single HPU for two stages, uncertainty of aero load, higher bandwidth requirements etc. and provisions were incorporated in the design to successfully overcome them. This paper describes the servo design and control electronics architecture of control actuation system.

  10. Analysis and Design of Double-sided Air core Linear Servo Motor with Trapezoidal Permanent Magnets

    DEFF Research Database (Denmark)

    Zhang, Yuqiu; Yang, Zilong; Yu, Minghu

    2011-01-01

    In order to reduce the thrust ripple of linear servo system, a double-sided air core permanent magnet linear servo motor with trapezoidal shape permanent magnets (TDAPMLSM) is proposed in this paper. An analytical model of the motor for predicting the magnetic field in the air-gap at no...

  11. Phase-Division-Based Dynamic Optimization of Linkages for Drawing Servo Presses

    Science.gov (United States)

    Zhang, Zhi-Gang; Wang, Li-Ping; Cao, Yan-Ke

    2017-11-01

    Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage optimization and motion planning, a phase-division-based linkage-optimization model for a drawing servo press is established. Considering the motion-planning principles of a drawing servo press, and taking account of work rating and efficiency, the constraints of the optimization model are constructed. Linkage is optimized in two modes: use of either constant eccentric speed or constant slide speed in the work segments. The performances of optimized linkages are compared with those of a mature linkage SL4-2000A, which is optimized by a traditional method. The results show that the work rating of a drawing servo press equipped with linkages optimized by this new method improved and the root-mean-square torque of the servo motors is reduced by more than 10%. This research provides a promising method for designing energy-saving drawing servo presses with high work ratings.

  12. Disturbance observer that uses radial basis function networks for the low speed control of a servo motor

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Bae, C.H.; Blaabjerg, Frede

    2005-01-01

    A scheme to estimate the moment of inertia in a servo motor drive system at very low speed is proposed. The typical speed estimation scheme used in most servo systems operated at low speed is highly sensitive to variations in the moment of inertia. An observer that uses a radial basis function...

  13. Performance Improvement of Servo Machine Low Speed Operation Using RBFN Disturbance Observer

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2004-01-01

    A new scheme to estimate the moment of inertia in the servo motor drive system in very low speed is proposed in this paper. The typical speed estimation scheme in most servo system for low speed operation is sensitive to the variation of machine parameters, especially the moment of inertia....... To estimate the motor inertia value, the observer using the Radial Basis Function Networks (RBFN) is applied. The effectiveness of the proposed inertia estimation method is verified by experiments. It is concluded that the speed control performance in the low speed region is improved with the proposed...

  14. Servo-hydraulic actuator in controllable canonical form: Identification and experimental validation

    Science.gov (United States)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-02-01

    Hydraulic actuators have been widely used to experimentally examine structural behavior at multiple scales. Real-time hybrid simulation (RTHS) is one innovative testing method that largely relies on such servo-hydraulic actuators. In RTHS, interface conditions must be enforced in real time, and controllers are often used to achieve tracking of the desired displacements. Thus, neglecting the dynamics of hydraulic transfer system may result either in system instability or sub-optimal performance. Herein, we propose a nonlinear dynamical model for a servo-hydraulic actuator (a.k.a. hydraulic transfer system) coupled with a nonlinear physical specimen. The nonlinear dynamical model is transformed into controllable canonical form for further tracking control design purposes. Through a number of experiments, the controllable canonical model is validated.

  15. Modeling, simulation, and identification of the servo pumps

    Energy Technology Data Exchange (ETDEWEB)

    Negoita, C G; Vasiliu, D; Vasiliu, Ne; Calinoiu, C, E-mail: claudia.negoita@gmail.co [Faculty of Power Engineering, University POLITEHNICA of Bucharest 313, Splaiul Independentei, Bucharest, 060042 (Romania)

    2010-08-15

    This paper contains the results of a systematic research on the steady-state behavior, and the transients occurring in a basic hydrostatic system containing a servo pump. The optimum structure of such a device working in given condition is found step by step, the synthesis stages are alternating with the analysis ones, in order to establish some general synthesis criteria, as well as for creating some images of the design parameters influence on the real system dynamic behavior. The dynamic computation of the servo pumps is based on the experimental researches carried out by the authors on the control force of the variable displacement axial piston pumps. The analysis takes into account the pressure feedback, the rigid or spring mechanical feedback or the electrical position feedback. The theoretical models are developed by AMESim (Advanced Modeling and Simulation Environment for Systems Engineering). The experimental tests were performed by the aid of LabVIEW software from National Instruments Corporation in the frame of a national certified laboratory set up by the aid of Parker Hannifin Corporation.

  16. Development of BLDC Electric Motor Control System In Hydraulic Servo Drive Based on Variable Hydrostatic Transmission

    Directory of Open Access Journals (Sweden)

    O. I. Tarasov

    2014-01-01

    Full Text Available Modern robotic systems require the use of servo drives. Owing to encoder and negative feedback these drives ensure highly accurate motion parameters. In case of autonomous systems drives must also have high power characteristics. Moreover, in most cases, it was impossible to select the motor so that the speed and torque on its shaft were in compliance with those of required by the actuator. To match these parameters different types of reducers are used. The article justifies and considers a selection criterion of the gear ratios for such transmission. For clarity, there is an example of selecting a motor and a gear for above transmission, taking into account the proposed criterion. In addition, the article discusses the advantages of using hydrostatic transmission in the drive, which monitors the angular position of the output level, in comparison with a mechanical gearbox. Due to the fact that, at the moment, BLDC motors have the best power characteristics, such a servo drive requires a special control system that will take into account the features of variable hydrostatic transmission and electric BLDC motor. Therefore, the paper proposes a structure of such a system and set out the principles of its construction. Various embodiments of sensor types that may be used in this system and their installation scheme explained.

  17. A low-cost, FPGA-based servo controller with lock-in amplifier

    International Nuclear Information System (INIS)

    Yang, G; Barry, J F; Shuman, E S; Steinecker, M H; DeMille, D

    2012-01-01

    We describe the design and implementation of a low-cost, FPGA-based servo controller with an integrated waveform synthesizer and lock-in amplifier. This system has been designed with the specific application of laser frequency locking in mind but should be adaptable to a variety of other purposes as well. The system incorporates an onboard waveform synthesizer, a lock-in amplifier, two channels of proportional-integral (PI) servo control, and a ramp generator on a single FPGA chip. The system is based on an inexpensive, off-the-shelf FPGA evaluation board with a wide variety of available accessories, allowing the system to interface with standard laser controllers and detectors while minimizing the use of custom hardware and electronics. Gains, filter constants, and other relevant parameters are adjustable via onboard knobs and switches. These parameters and other information are displayed to the user via an integrated LCD, allowing full operation of the device without an accompanying computer. We demonstrate the performance of the system in a test setup, in which the frequency of a tunable external-cavity diode laser (ECDL) is locked to a resonant optical transmission peak of a Fabry-Perot cavity. In this setup, we achieve a total servo-loop bandwidth of ∼ 7 kHz and achieve locking of the ECDL to the cavity with a full-width-at-half-maximum (FWHM) linewidth of ∼ 200 kHz.

  18. Dual arm master controller for a bilateral servo-manipulator

    Science.gov (United States)

    Kuban, Daniel P.; Perkins, Gerald S.

    1989-01-01

    A master controller for a mechanically dissimilar bilateral slave servo-manipulator is disclosed. The master controller includes a plurality of drive trains comprising a plurality of sheave arrangements and cables for controlling upper and lower degrees of master movement. The cables and sheaves of the master controller are arranged to effect kinematic duplication of the slave servo-manipulator, despite mechanical differences therebetween. A method for kinematically matching a master controller to a slave servo-manipulator is also disclosed.

  19. Extended state observer–based fractional order proportional–integral–derivative controller for a novel electro-hydraulic servo system with iso-actuation balancing and positioning

    Directory of Open Access Journals (Sweden)

    Qiang Gao

    2015-12-01

    Full Text Available Aiming at balancing and positioning of a new electro-hydraulic servo system with iso-actuation configuration, an extended state observer–based fractional order proportional–integral–derivative controller is proposed in this study. To meet the lightweight requirements of heavy barrel weapons with large diameters, an electro-hydraulic servo system with a three-chamber hydraulic cylinder is especially designed. In the electro-hydraulic servo system, the balance chamber of the hydraulic cylinder is used to realize active balancing of the unbalanced forces, while the driving chambers consisting of the upper and lower chambers are adopted for barrel positioning and dynamic compensation of external disturbances. Compared with conventional proportional–integral–derivative controllers, the fractional order proportional–integral–derivative possesses another two adjustable parameters by expanding integer order to arbitrary order calculus, resulting in more flexibility and stronger robustness of the control system. To better compensate for strong external disturbances and system nonlinearities, the extended state observer strategy is further introduced to the fractional order proportional–integral–derivative control system. Numerical simulation and bench test indicate that the extended state observer–based fractional order proportional–integral–derivative significantly outperforms proportional–integral–derivative and fractional order proportional–integral–derivative control systems with better control accuracy and higher system robustness, well demonstrating the feasibility and effectiveness of the proposed extended state observer–based fractional order proportional–integral–derivative control strategy.

  20. Project calculation of the steering mechanism hydraulic servo control in motor vehicles

    Directory of Open Access Journals (Sweden)

    Zoran Đukan Majkić

    2013-10-01

    Full Text Available Hydraulic servo controls are designed to facilitate rotation in place without providing increased ppower to steering wheels. In the initial design phase, the dimensions required for control systems are usually obtained through the calculation of their load when wheels rotate in place, where the torque is calculated empirically. The starting point in the project calculation is thus to determine the hydraulic power steering torque torsional resistance which is then used to determine the maximum value of force i.e. the torque on the stering wheel. The calculation of the control system servo control consists of determining the basic parameters, the required pump capacity, the main dimensions of the hub and the  pipeline and the conditions for the stability of the system control mechanism. Introduction The aim of the calculation of the steering control system is to determine the basic parameters of its components which ensure the fulfilment of requirements of the control system. Calculations are performed in several stages with a simultaneous  detailed constructive analysis of the control system leading to the best variant. At each stage, design and control calculations of the hydraulic servo of the steering mechanism are performed. The design allows the computation to complete the selection of basic dimensions of the amplifer elements, starting from the approved scheme and the basic building loads of approximate values. Calculations control is carried out to clarify the structural solution and to obtain the output characteristics of the control amplifier which are applied in the  estimation of  potential properties of the structure. Project calculation Baseline data must be sufficiently reliable, ie. must correspond to the construction characteristics of the vehicle design and the control system as well as to service conditions..A proper deterimination of the torque calculation of torsional resistance in wheels is of utmost importance. Moment of

  1. Predictive IP controller for robust position control of linear servo system.

    Science.gov (United States)

    Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi

    2016-07-01

    Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Model-based specification, analysis and synthesis of servo controllers for lithoscanners

    NARCIS (Netherlands)

    Schiffelers, R.; Alberts, W.; Voeten, J.P.M.

    2012-01-01

    ASML is the world's leading provider of complex lithography systems for the semiconductor industry. Such systems consist of numerous servo control systems. To design such control systems, a multi-disciplinary model-based development environment has been developed. It is based on a set of domain

  3. Dual arm master controller for a bilateral servo-manipulator

    International Nuclear Information System (INIS)

    Kuban, D.P.; Perkins, G.S.

    1989-01-01

    A master controller for a mechanically dissimilar bilateral slave servo-manipulator is disclosed. The master controller includes a plurality of drive trains comprising a plurality of sheave arrangements and cables for controlling upper and lower degrees of master movement. The cables and sheaves of the master controller are arranged to effect kinematic duplication of the slave servo-manipulator, despite mechanical differences there between. A method for kinematically matching a master controller to a slave servo-manipulator is also disclosed. 13 figs

  4. Data-driven adaptive fractional order PI control for PMSM servo system with measurement noise and data dropouts.

    Science.gov (United States)

    Xie, Yuanlong; Tang, Xiaoqi; Song, Bao; Zhou, Xiangdong; Guo, Yixuan

    2018-04-01

    In this paper, data-driven adaptive fractional order proportional integral (AFOPI) control is presented for permanent magnet synchronous motor (PMSM) servo system perturbed by measurement noise and data dropouts. The proposed method directly exploits the closed-loop process data for the AFOPI controller design under unknown noise distribution and data missing probability. Firstly, the proposed method constructs the AFOPI controller tuning problem as a parameter identification problem using the modified l p norm virtual reference feedback tuning (VRFT). Then, iteratively reweighted least squares is integrated into the l p norm VRFT to give a consistent compensation solution for the AFOPI controller. The measurement noise and data dropouts are estimated and eliminated by feedback compensation periodically, so that the AFOPI controller is updated online to accommodate the time-varying operating conditions. Moreover, the convergence and stability are guaranteed by mathematical analysis. Finally, the effectiveness of the proposed method is demonstrated both on simulations and experiments implemented on a practical PMSM servo system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Novel AC Servo Rotating and Linear Composite Driving Device for Plastic Forming Equipment

    Science.gov (United States)

    Liang, Jin-Tao; Zhao, Sheng-Dun; Li, Yong-Yi; Zhu, Mu-Zhi

    2017-07-01

    The existing plastic forming equipment are mostly driven by traditional AC motors with long transmission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for complicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion without transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on the dynamic test benches are conducted. The results indicate that the output torque can attain to 420 N·m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive. the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accuracy direct driving device in plastic forming equipment.

  6. Image-based visual servo control using the port-Hamiltonian Approach

    NARCIS (Netherlands)

    Muñoz Arias, Mauricio; El Hawwary, Mohamed; Scherpen, Jacquelien M.A.

    2015-01-01

    This work is devoted to an image-based visual servo control strategy for standard mechanical systems in the port-Hamiltonian framework. We utilize a change of variables that transforms the port-Hamiltonian system into one with constant mass-inertia matrix, and we use an interaction matrix that

  7. Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound.

    Science.gov (United States)

    Seo, Joonho; Koizumi, Norihiro; Mitsuishi, Mamoru; Sugita, Naohiko

    2017-12-01

    Although high intensity focused ultrasound (HIFU) is a promising technology for tumor treatment, a moving abdominal target is still a challenge in current HIFU systems. In particular, respiratory-induced organ motion can reduce the treatment efficiency and negatively influence the treatment result. In this research, we present: (1) a methodology for integration of ultrasound (US) image based visual servoing in a HIFU system; and (2) the experimental results obtained using the developed system. In the visual servoing system, target motion is monitored by biplane US imaging and tracked in real time (40 Hz) by registration with a preoperative 3D model. The distance between the target and the current HIFU focal position is calculated in every US frame and a three-axis robot physically compensates for differences. Because simultaneous HIFU irradiation disturbs US target imaging, a sophisticated interlacing strategy was constructed. In the experiments, respiratory-induced organ motion was simulated in a water tank with a linear actuator and kidney-shaped phantom model. Motion compensation with HIFU irradiation was applied to the moving phantom model. Based on the experimental results, visual servoing exhibited a motion compensation accuracy of 1.7 mm (RMS) on average. Moreover, the integrated system could make a spherical HIFU-ablated lesion in the desired position of the respiratory-moving phantom model. We have demonstrated the feasibility of our US image based visual servoing technique in a HIFU system for moving target treatment. © 2016 The Authors The International Journal of Medical Robotics and Computer Assisted Surgery Published by John Wiley & Sons Ltd.

  8. Fault Diagnosis of Hydraulic Servo Valve Based on Genetic Optimization RBF-BP Neural Network

    Directory of Open Access Journals (Sweden)

    Li-Ping FAN

    2014-04-01

    Full Text Available Electro-hydraulic servo valves are core components of the hydraulic servo system of rolling mills. It is necessary to adopt an effective fault diagnosis method to keep the hydraulic servo valve in a good work state. In this paper, RBF and BP neural network are integrated effectively to build a double hidden layers RBF-BP neural network for fault diagnosis. In the process of training the neural network, genetic algorithm (GA is used to initialize and optimize the connection weights and thresholds of the network. Several typical fault states are detected by the constructed GA-optimized fault diagnosis scheme. Simulation results shown that the proposed fault diagnosis scheme can give satisfactory effect.

  9. Servo-controlled pneumatic pressure oscillator for respiratory impedance measurements and high-frequency ventilation.

    Science.gov (United States)

    Kaczka, David W; Lutchen, Kenneth R

    2004-04-01

    The ability to provide forced oscillatory excitation of the respiratory system can be useful in mechanical impedance measurements as well as high frequency ventilation (HFV). Experimental systems currently used for generating forced oscillations are limited in their ability to provide high amplitude flows or maintain the respiratory system at a constant mean pressure during excitation. This paper presents the design and implementation of a pneumatic pressure oscillator based on a proportional solenoid valve. The device is capable of providing forced oscillatory excitations to the respiratory system over a bandwidth suitable for mechanical impedance measurements and HVF. It delivers high amplitude flows (> 1.4 l/s) and utilizes a servo-control mechanism to maintain a load at a fixed mean pressure during simultaneous oscillation. Under open-loop conditions, the device exhibited a static hysteresis of approximately 7%, while its dynamic magnitude and phase responses were flat out to 10 Hz. Broad-band measurement of total harmonic distortion was approximately 19%. Under closed-loop conditions, the oscillator was able to maintain a mechanical test load at both positive and negative mean pressures during oscillatory excitations from 0.1 to 10.0 Hz. Impedance of the test load agreed closely with theoretical predictions. We conclude that this servo-controlled oscillator can be a useful tool for respiratory impedance measurements as well as HFV.

  10. SYNTHESIS OF THE SERVO DRIVER WITH SPEED LOOP TUNED AT THE MODULAR OPTIMUM

    Directory of Open Access Journals (Sweden)

    Mr. Sergei V. Stelmashchuk

    2016-12-01

    Full Text Available The paper presents a method of synthesis of servo driver for controlling the speed of the object with the speed tuned at the modular optimum. An automatic electric motor drive is considered as the controlled element. This assumes the use of the speed sensor on the output shaft of the drive gear. This approach can be used for geared motors, which are more commonly used in a variety of compact drives. The technique is based on the method of synthesis by using logarithmic frequency response (LFR. The result is a synthesis of the two tracking angle controllers: proportional-integral and proportional-derivative (PIPD regulator. The criterion for the synthesis of tracking angle controller is the desired LFR, the characteristics of which are defined based on saturated capability transition function of controlled object with standard configuration for modular optimum. It is assumed that the maximum speed and acceleration of the transition functions are required for the synthesis of parameters of servo driver system by LFR. The article covers the accuracy and contains an example of a particular electric motor.

  11. Hankel Matrix Correlation Function-Based Subspace Identification Method for UAV Servo System

    Directory of Open Access Journals (Sweden)

    Minghong She

    2018-01-01

    Full Text Available For the identification problem of closed-loop subspace model, we propose a zero space projection method based on the estimation of correlation function to fill the block Hankel matrix of identification model by combining the linear algebra with geometry. By using the same projection of related data in time offset set and LQ decomposition, the multiplication operation of projection is achieved and dynamics estimation of the unknown equipment system model is obtained. Consequently, we have solved the problem of biased estimation caused when the open-loop subspace identification algorithm is applied to the closed-loop identification. A simulation example is given to show the effectiveness of the proposed approach. In final, the practicability of the identification algorithm is verified by hardware test of UAV servo system in real environment.

  12. A switched energy saving position controller for variable-pressure electro-hydraulic servo systems.

    Science.gov (United States)

    Tivay, Ali; Zareinejad, Mohammad; Rezaei, S Mehdi; Baghestan, Keivan

    2014-07-01

    The electro-hydraulic servo system (EHSS) demonstrates a relatively low level of efficiency compared to other available actuation methods. The objective of this paper is to increase this efficiency by introducing a variable supply pressure into the system and controlling this pressure during the task of position tracking. For this purpose, an EHSS structure with controllable supply pressure is proposed and its dynamic model is derived from the basic laws of physics. A switching control structure is then proposed to control both the supply pressure and the cylinder position at the same time, in a way that reduces the overall energy consumption of the system. The stability of the proposed switching control system is guaranteed by proof, and its performance is verified by experimental testing. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. A Visual Servoing-Based Method for ProCam Systems Calibration

    Directory of Open Access Journals (Sweden)

    Jeremie Mosnier

    2013-10-01

    Full Text Available Projector-camera systems are currently used in a wide field of applications, such as 3D reconstruction and augmented reality, and can provide accurate measurements, depending on the configuration and calibration. Frequently, the calibration task is divided into two steps: camera calibration followed by projector calibration. The latter still poses certain problems that are not easy to solve, such as the difficulty in obtaining a set of 2D–3D points to compute the projection matrix between the projector and the world. Existing methods are either not sufficiently accurate or not flexible. We propose an easy and automatic method to calibrate such systems that consists in projecting a calibration pattern and superimposing it automatically on a known printed pattern. The projected pattern is provided by a virtual camera observing a virtual pattern in an OpenGL model. The projector displays what the virtual camera visualizes. Thus, the projected pattern can be controlled and superimposed on the printed one with the aid of visual servoing. Our experimental results compare favorably with those of other methods considering both usability and accuracy.

  14. An ultrasonic sensor controller for mapping and servo control in robotic systems

    International Nuclear Information System (INIS)

    Drotning, W.D.; Garcia, P. Jr.

    1993-03-01

    An ultrasonic sensor controller has been developed and applied in a variety of robotic systems for operation in hazardous environments. The controller consists of hardware and software that control multiple ultrasonic range sensors and provide workspace information to robot controllers for rapid, safe, and reliable operation in hazardous and remote environments. The hardware consists of a programmable multichannel controller that resides on a VMEbus for high speed communication to a multiprocessor architecture. The sensor controller has been used in a number of applications, which include providing high precision range information for proximity servo control of robots, and performing surface and obstacle mapping functions for safe path planning of robots in unstructured environments

  15. Recent results in visual servoing

    Science.gov (United States)

    Chaumette, François

    2008-06-01

    Visual servoing techniques consist in using the data provided by a vision sensor in order to control the motions of a dynamic system. Such systems are usually robot arms, mobile robots, aerial robots,… but can also be virtual robots for applications in computer animation, or even a virtual camera for applications in computer vision and augmented reality. A large variety of positioning tasks, or mobile target tracking, can be implemented by controlling from one to all the degrees of freedom of the system. Whatever the sensor configuration, which can vary from one on-board camera on the robot end-effector to several free-standing cameras, a set of visual features has to be selected at best from the image measurements available, allowing to control the degrees of freedom desired. A control law has also to be designed so that these visual features reach a desired value, defining a correct realization of the task. With a vision sensor providing 2D measurements, potential visual features are numerous, since as well 2D data (coordinates of feature points in the image, moments, …) as 3D data provided by a localization algorithm exploiting the extracted 2D measurements can be considered. It is also possible to combine 2D and 3D visual features to take the advantages of each approach while avoiding their respective drawbacks. From the selected visual features, the behavior of the system will have particular properties as for stability, robustness with respect to noise or to calibration errors, robot 3D trajectory, etc. The talk will present the main basic aspects of visual servoing, as well as technical advances obtained recently in the field inside the Lagadic group at INRIA/INRISA Rennes. Several application results will be also described.

  16. Fuzzy control of small servo motors

    Science.gov (United States)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  17. Development of friction welding method by electric servo motors; Dendo servo shiki masatsu assetsuho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H; Onuma, M; Hasegawa, T; Sakamoto, T [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    The standard friction welding has two methods; the brake method and the inertia method. We have developed a new friction welding method with the electric servo motor system. The forming of plastic fluidity layers of interface is evaluated quantitatively with the feedback control characteristics. The new method has enabled to reduce the heat effect and the burr of friction welding. In the method, we could reduce the getting heat energy, from one-third to half less than the previous methods. 6 refs., 16 figs.

  18. Vision servo of industrial robot: A review

    Science.gov (United States)

    Zhang, Yujin

    2018-04-01

    Robot technology has been implemented to various areas of production and life. With the continuous development of robot applications, requirements of the robot are also getting higher and higher. In order to get better perception of the robots, vision sensors have been widely used in industrial robots. In this paper, application directions of industrial robots are reviewed. The development, classification and application of robot vision servo technology are discussed, and the development prospect of industrial robot vision servo technology is proposed.

  19. Servo Driven Corotation: Development of AN Inertial Clock.

    Science.gov (United States)

    Cheung, Wah-Kwan Stephen

    An inertial clock to test non-metricity of gravity is proposed here. A first, room-temperature, servo corotation -protected, double magnetically suspended precision rotor system is developed for this purpose. The specific goal was to exhibit the properties of such a clock in its entirety at whatever level of precision was achievable. A monolithic system has been completed for these preliminary studies. It includes particular development of individual experimental sub-systems (a hybrid double magnetic suspension; a diffusion pumping system; a microcomputer -controlled eddy-current drive system; and the angular period measuring schemes for the doubly suspended rotors). Double magnetic suspension had been investigated by Beams for other purposes. The upper transducer is optical but parametrized and the lower transducer employs the frequency modulation characteristic of a LC tank circuit. The doubly suspended rotors corotate so that the upper rotor is servoed to rotate at the same angular velocity as that of the lower rotor. This creates a "drag free" environment for the lower rotor and effectively eliminates the gas drag on the lower rotor. Consequently, the decay time constant of the lower rotor increases. With other means of protection, the lower rotor will then, with perfect system operation, suffer no drag and therefore become the inertial time keeper. A commercial microcomputer is introduced to execute the servo-corotation. The tests thus far are, with one exception, run at atmospheric pressure. An idealized analysis for open and closed loop corotation is shown. Such analysis includes only the viscous drag acting on the corotating rotors. The analysis suggests that angular position control be added to the present feedback drive which is of derivative nature only. Open and closed corotation runs show that a strong torsional coupling besides that of the gas drag exists between the rotors. When misalignment of the support pole pieces is deliberately made significant

  20. Use of a novel drainage flow servo-controlled CPB for mitral valve replacement in a Jehovah's Witness.

    Science.gov (United States)

    Niimi, Yoshinari; Murata, Seiichiro; Mitou, Yumi; Ohno, Yusuke

    2018-03-01

    We developed a novel open cardiopulmonary bypass (CPB) system, a drainage flow servo-controlled CPB system (DS-CPB), in which rotational speed of the main roller pump is servo-controlled to generate the same amount of flow as the systemic venous drainage. It was designed to safely decrease the priming volume while maintaining a constant reservoir level, even during fluctuations of the drainage flow. We report a successful use of a novel DS-CPB system in an elderly Jehovah's Witness patient with dehydration who underwent mitral valve replacement.

  1. A model reference and sensitivity model-based self-learning fuzzy logic controller as a solution for control of nonlinear servo systems

    NARCIS (Netherlands)

    Kovacic, Z.; Bogdan, S.; Balenovic, M.

    1999-01-01

    In this paper, the design, simulation and experimental verification of a self-learning fuzzy logic controller (SLFLC) suitable for the control of nonlinear servo systems are described. The SLFLC contains a learning algorithm that utilizes a second-order reference model and a sensitivity model

  2. Numerical calculation for flow field of servo-tube guided hydraulic control rod driving system

    International Nuclear Information System (INIS)

    He Keyu; Han Weishi

    2010-01-01

    A new-style hydraulic control rod driving mechanism was put forward by using servo-tube control elements for the design of control rod driving mechanism. The results of numerical simulation by CFD program Fluent for flow field of hydraulic driving cylinder indicate that the bigger the outer diameter of servo-tube, the smaller the resistance coefficient of variable throttle orifice. The zero position gap of variable throttle orifice could be determined on 0.2 mm in the design. The pressure difference between the upper and nether surfaces of piston was mainly created by the throttle function of fixed throttle orifice. It can be effectively controlled by changing the gap of variable throttle orifice. And the lift force of driving cylinder is able to meet the requirement on the design load. (authors)

  3. Servo-control of water and sodium homeostasis during renal clearance measurements in conscious rats

    DEFF Research Database (Denmark)

    Thomsen, Klaus; Shirley, David G

    2007-01-01

    Servo-controlled fluid and sodium replacement during clearance studies is used in order to prevent loss of body fluid and sodium following diuretic/natriuretic procedures. However, even under control conditions, the use of this technique is sometimes associated with increases in proximal tubular...... fluid output (assessed by lithium clearance) and excretion rates. The present study examined the reason for these increases. The first series of experiments showed that one cause is volume overloading. This can occur if the servo system is activated from the start, i.e., during the establishment...... not seen when blood samples are replaced with the animal's own red blood cells resuspended in isotonic saline. When these pitfalls are avoided, servo-controlled sodium and fluid replacement is a reliable technique that makes it possible to study the effects of natriuretic and/or diuretic stimuli without...

  4. Aero-servo-viscoelasticity theory: Lifting surfaces, plates, velocity transients, flutter, and instability

    Science.gov (United States)

    Merrett, Craig G.

    Modern flight vehicles are fabricated from composite materials resulting in flexible structures that behave differently from the more traditional elastic metal structures. Composite materials offer a number of advantages compared to metals, such as improved strength to mass ratio, and intentional material property anisotropy. Flexible aircraft structures date from the Wright brothers' first aircraft with fabric covered wooden frames. The flexibility of the structure was used to warp the lifting surface for flight control, a concept that has reappeared as aircraft morphing. These early structures occasionally exhibited undesirable characteristics during flight such as interactions between the empennage and the aft fuselage, or control problems with the elevators. The research to discover the cause and correction of these undesirable characteristics formed the first foray into the field of aeroelasticity. Aeroelasticity is the intersection and interaction between aerodynamics, elasticity, and inertia or dynamics. Aeroelasticity is well suited for metal aircraft, but requires expansion to improve its applicability to composite vehicles. The first is a change from elasticity to viscoelasticity to more accurately capture the solid mechanics of the composite material. The second change is to include control systems. While the inclusion of control systems in aeroelasticity lead to aero-servo-elasticity, more control possibilities exist for a viscoelastic composite material. As an example, during the lay-up of carbon-epoxy plies, piezoelectric control patches are inserted between different plies to give a variety of control options. The expanded field is called aero-servo-viscoelasticity. The phenomena of interest in aero-servo-viscoelasticity are best classified according to the type of structure considered, either a lifting surface or a panel, and the type of dynamic stability present. For both types of structures, the governing equations are integral

  5. Active control of residual tool marks for freeform optics functionalization by novel biaxial servo assisted fly cutting.

    Science.gov (United States)

    Zhu, Zhiwei; To, Suet; Zhang, Shaojian

    2015-09-01

    The inherent residual tool marks (RTM) with particular patterns highly affect optical functions of the generated freeform optics in fast tool servo or slow tool servo (FTS/STS) diamond turning. In the present study, a novel biaxial servo assisted fly cutting (BSFC) method is developed for flexible control of the RTM to be a functional micro/nanotexture in freeform optics generation, which is generally hard to achieve in FTS/STS diamond turning. In the BSFC system, biaxial servo motions along the z-axis and side-feeding directions are mainly adopted for primary surface generation and RTM control, respectively. Active control of the RTM from the two aspects, namely, undesired effect elimination or effective functionalization, are experimentally demonstrated by fabricating a typical F-theta freeform surface with scattering homogenization and two functional microstructures with imposition of secondary phase gratings integrating both reflective and diffractive functions.

  6. Electrical servo actuator bracket. [fuel control valves on jet engines

    Science.gov (United States)

    Sawyer, R. V. (Inventor)

    1981-01-01

    An electrical servo actuator is mounted on a support arm which is allowed to pivot on a bolt through a fixed mounting bracket. The actuator is pivotally connected to the end of the support arm by a bolt which has an extension allowed to pass through a slot in the fixed mounting bracket. An actuator rod extends from the servo actuator to a crank arm which turns a control shaft. A short linear thrust of the rod pivots the crank arm through about 90 for full-on control with the rod contracted into the servo actuator, and full-off control when the rod is extended from the actuator. A spring moves the servo actuator and actuator rod toward the control crank arm once the actuator rod is fully extended in the full-off position. This assures the turning of the control shaft to a full-off position. A stop bolt and slot are provided to limit pivot motion. Once fully extended, the spring pivots the motion.

  7. Rancang Bangun Graphical User Interface Untuk Pergerakan Motor Servo menggunakan Microsoft Visual Basic 2010 Express

    Directory of Open Access Journals (Sweden)

    Anggoro S Pramudyo

    2016-03-01

    Full Text Available Zaman sekarang ini teknologi sedang berkembang pesat dan robot-robot dirancang untuk dapat membantu pekerjaan dan tugas-tugas manusia. Motor servo merupakan salah satu jenis dari motor DC dan banyak diaplikasikan pada dunia robotik maupun peralatan lain, contohnya motor servo yang digunakan untuk robot berkaki. Dalam penggunaannya motor servo dapat bergerak karena ada sinyal yang dibangkitkan melalui sinyal PWM. Sinyal yang dihasilkan akan membentuk sudut sesuai nilai yang diberikan. Penelitian ini bertujuan untuk membuat perangkat lunak GUI untuk membuat pergerakan motor servo menggunakan Microsoft Visual Basic dengan bantuan database menggunakan Microsoft Access. Pergerakan motor servo dapat bergerak secara sekuen dan real time menggunakan GUI yang dihubungkan dengan Arduino mega 2560. Parameter yang terdapat di dalam database juga bisa langsung di-export menjadi file Arduino. Hasil penelitian ini GUI yang telah dibuat dapat menggerakkan motor servo secara lancar melalui komunikasi serial ketika baudrate diatur pada kecepatan 9600 bps. GUI yang dibuat juga menghasilkan sudut untuk motor servo yaitu dari 00 sampai 1800 secara tepat dan akurat, sehingga mempercepat waktu dalam  menentukan sudut untuk pergerakan motor servo yang akan digunakan.

  8. Propulsion System Dynamic Modeling for the NASA Supersonic Concept Vehicle: AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.propulsion system dynamics, the structural dynamics, and aerodynamics.

  9. Adaptive-Repetitive Visual-Servo Control of Low-Flying Aerial Robots via Uncalibrated High-Flying Cameras

    Science.gov (United States)

    Guo, Dejun; Bourne, Joseph R.; Wang, Hesheng; Yim, Woosoon; Leang, Kam K.

    2017-08-01

    This paper presents the design and implementation of an adaptive-repetitive visual-servo control system for a moving high-flying vehicle (HFV) with an uncalibrated camera to monitor, track, and precisely control the movements of a low-flying vehicle (LFV) or mobile ground robot. Applications of this control strategy include the use of high-flying unmanned aerial vehicles (UAVs) with computer vision for monitoring, controlling, and coordinating the movements of lower altitude agents in areas, for example, where GPS signals may be unreliable or nonexistent. When deployed, a remote operator of the HFV defines the desired trajectory for the LFV in the HFV's camera frame. Due to the circular motion of the HFV, the resulting motion trajectory of the LFV in the image frame can be periodic in time, thus an adaptive-repetitive control system is exploited for regulation and/or trajectory tracking. The adaptive control law is able to handle uncertainties in the camera's intrinsic and extrinsic parameters. The design and stability analysis of the closed-loop control system is presented, where Lyapunov stability is shown. Simulation and experimental results are presented to demonstrate the effectiveness of the method for controlling the movement of a low-flying quadcopter, demonstrating the capabilities of the visual-servo control system for localization (i.e.,, motion capturing) and trajectory tracking control. In fact, results show that the LFV can be commanded to hover in place as well as track a user-defined flower-shaped closed trajectory, while the HFV and camera system circulates above with constant angular velocity. On average, the proposed adaptive-repetitive visual-servo control system reduces the average RMS tracking error by over 77% in the image plane and over 71% in the world frame compared to using just the adaptive visual-servo control law.

  10. Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control.

    Science.gov (United States)

    Gorju, G; Jucha, A; Jain, A; Crozatier, V; Lorgeré, I; Le Gouët, J-L; Bretenaker, F; Colice, M

    2007-03-01

    We propose and demonstrate a novel active stabilization scheme for wide and fast frequency chirps. The system measures the laser instantaneous frequency deviation from a perfectly linear chirp, thanks to a digital phase detection process, and provides an error signal that is used to servo-loop control the chirped laser. This way, the frequency errors affecting a laser scan over 10 GHz on the millisecond timescale are drastically reduced below 100 kHz. This active optoelectronic digital servo-loop control opens new and interesting perspectives in fields where rapidly chirped lasers are crucial.

  11. The performance and limitations of FPGA-based digital servos for atomic, molecular, and optical physics experiments.

    Science.gov (United States)

    Yu, Shi Jing; Fajeau, Emma; Liu, Lin Qiao; Jones, David J; Madison, Kirk W

    2018-02-01

    In this work, we address the advantages, limitations, and technical subtleties of employing field programmable gate array (FPGA)-based digital servos for high-bandwidth feedback control of lasers in atomic, molecular, and optical physics experiments. Specifically, we provide the results of benchmark performance tests in experimental setups including noise, bandwidth, and dynamic range for two digital servos built with low and mid-range priced FPGA development platforms. The digital servo results are compared to results obtained from a commercially available state-of-the-art analog servo using the same plant for control (intensity stabilization). The digital servos have feedback bandwidths of 2.5 MHz, limited by the total signal latency, and we demonstrate improvements beyond the transfer function offered by the analog servo including a three-pole filter and a two-pole filter with phase compensation to suppress resonances. We also discuss limitations of our FPGA-servo implementation and general considerations when designing and using digital servos.

  12. The performance and limitations of FPGA-based digital servos for atomic, molecular, and optical physics experiments

    Science.gov (United States)

    Yu, Shi Jing; Fajeau, Emma; Liu, Lin Qiao; Jones, David J.; Madison, Kirk W.

    2018-02-01

    In this work, we address the advantages, limitations, and technical subtleties of employing field programmable gate array (FPGA)-based digital servos for high-bandwidth feedback control of lasers in atomic, molecular, and optical physics experiments. Specifically, we provide the results of benchmark performance tests in experimental setups including noise, bandwidth, and dynamic range for two digital servos built with low and mid-range priced FPGA development platforms. The digital servo results are compared to results obtained from a commercially available state-of-the-art analog servo using the same plant for control (intensity stabilization). The digital servos have feedback bandwidths of 2.5 MHz, limited by the total signal latency, and we demonstrate improvements beyond the transfer function offered by the analog servo including a three-pole filter and a two-pole filter with phase compensation to suppress resonances. We also discuss limitations of our FPGA-servo implementation and general considerations when designing and using digital servos.

  13. Optimum back-pressure forging using servo die cushion

    OpenAIRE

    Kawamoto, Kiichiro; Yoneyama, Takeshi; Okada, Masato; Kitayama, Satoshi; Chikahisa, Junpei

    2014-01-01

    This study focused on utilizing a servo die cushion (in conjunction with a servo press) as a "back-pressure load generator," to determine its effect on shape accuracy of the formed part and total forming load in forward extrusion during cold forging. The effect of back-pressure load application was confirmed in experiments, and the optimum setting pattern of back-pressure load was considered to minimize both shape accuracy of the formed part and back-pressure energy, which was representative ...

  14. Visual servoing in medical robotics: a survey. Part I: endoscopic and direct vision imaging - techniques and applications.

    Science.gov (United States)

    Azizian, Mahdi; Khoshnam, Mahta; Najmaei, Nima; Patel, Rajni V

    2014-09-01

    Intra-operative imaging is widely used to provide visual feedback to a clinician when he/she performs a procedure. In visual servoing, surgical instruments and parts of tissue/body are tracked by processing the acquired images. This information is then used within a control loop to manoeuvre a robotic manipulator during a procedure. A comprehensive search of electronic databases was completed for the period 2000-2013 to provide a survey of the visual servoing applications in medical robotics. The focus is on medical applications where image-based tracking is used for closed-loop control of a robotic system. Detailed classification and comparative study of various contributions in visual servoing using endoscopic or direct visual images are presented and summarized in tables and diagrams. The main challenges in using visual servoing for medical robotic applications are identified and potential future directions are suggested. 'Supervised automation of medical robotics' is found to be a major trend in this field. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Development and performance tests of the bridge-transported servo manipulator system for remote maintenance jobs in a hot cell

    International Nuclear Information System (INIS)

    Jin, Jae Hyun; Park, Byung Suk; Ko, Byung Seung; Yoon, Ji Sup; Jung, Ki Jung

    2005-01-01

    In this paper, a prototype of the Bridge-Transported Servo Manipulator (BTSM) system introduced, which has been developed to do operation and maintenance jobs remotely in a hot cell. The system consists of a telescopic transporter, a slave arm, a master arm, and a control system. Several tests such as a positional tracking, a weight handling, reliability, and operability have been performed and test results are presented. Based on the test results, an upgraded system which will be used during demonstrations of the advanced spent fuel conditioning process (ACP) has been designed.

  16. Control-structure interaction in precision pointing servo loops

    Science.gov (United States)

    Spanos, John T.

    1989-01-01

    The control-structure interaction problem is addressed via stability analysis of a generic linear servo loop model. With the plant described by the rigid body mode and a single elastic mode, structural flexibility is categorized into one of three types: (1) appendage, (2) in-the-loop minimum phase, and (3) in-the-loop nonminimum phase. Closing the loop with proportional-derivative (PD) control action and introducing sensor roll-off dynamics in the feedback path, stability conditions are obtained. Trade studies are conducted with modal frequency, modal participation, modal damping, loop bandwidth, and sensor bandwidth treated as free parameters. Results indicate that appendage modes are most likely to produce instability if they are near the sensor rolloff, whereas in-the-loop modes are most dangerous near the loop bandwidth. The main goal of this paper is to provide a fundamental understanding of the control-structure interaction problem so that it may benefit the design of complex spacecraft and pointing system servo loops. In this framework, the JPL Pathfinder gimbal pointer is considered as an example.

  17. High precision tracking control of a servo gantry with dynamic friction compensation.

    Science.gov (United States)

    Zhang, Yangming; Yan, Peng; Zhang, Zhen

    2016-05-01

    This paper is concerned with the tracking control problem of a voice coil motor (VCM) actuated servo gantry system. By utilizing an adaptive control technique combined with a sliding mode approach, an adaptive sliding mode control (ASMC) law with friction compensation scheme is proposed in presence of both frictions and external disturbances. Based on the LuGre dynamic friction model, a dual-observer structure is used to estimate the unmeasurable friction state, and an adaptive control law is synthesized to effectively handle the unknown friction model parameters as well as the bound of the disturbances. Moreover, the proposed control law is also implemented on a VCM servo gantry system for motion tracking. Simulations and experimental results demonstrate good tracking performance, which outperform traditional control approaches. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Evaluation of the Argonne National Laboratory servo-controlled calorimeter system

    International Nuclear Information System (INIS)

    Foster, L.A.

    1997-01-01

    The control system of a replacement mode, twin-bridge, water-bath calorimeter originally built by Mound EG ampersand G Applied Technologies was modified by Argonne National Laboratory. The calorimeter was upgraded with a PC-based computer control and data acquisition system. The system was redesigned to operate in a servo-control mode, and a preheater was constructed to allow pre-equilibration of samples. The instrument was sent to the Plutonium Facility at Los Alamos National Laboratory for testing and evaluation of its performance in the field using heat source standards and plutonium process materials. The important parameters for calorimeter operation necessary to satisfy the nuclear materials control and accountability requirements of the Plutonium Facility were evaluated over a period of several months. These parameters include calorimeter stability, measurement precision and accuracy, and average measurement time. The observed measurement precision and accuracy were found to be acceptable for most accountability measurements, although they were slightly larger than the values for calorimeters in routine use at the Plutonium Facility. Average measurement times were significantly shorter than measurement times for identical items in the Plutonium Facility calorimeters. Unexplained shifts in the baseline measurements were observed on numerous occasions. These shifts could lead to substantial measurement errors if they are not very carefully monitored by the operating facility. Detailed results of the experimental evaluation are presented in this report

  19. An energy-saving nonlinear position control strategy for electro-hydraulic servo systems.

    Science.gov (United States)

    Baghestan, Keivan; Rezaei, Seyed Mehdi; Talebi, Heidar Ali; Zareinejad, Mohammad

    2015-11-01

    The electro-hydraulic servo system (EHSS) demonstrates numerous advantages in size and performance compared to other actuation methods. Oftentimes, its utilization in industrial and machinery settings is limited by its inferior efficiency. In this paper, a nonlinear backstepping control algorithm with an energy-saving approach is proposed for position control in the EHSS. To achieve improved efficiency, two control valves including a proportional directional valve (PDV) and a proportional relief valve (PRV) are used to achieve the control objectives. To design the control algorithm, the state space model equations of the system are transformed to their normal form and the control law through the PDV is designed using a backstepping approach for position tracking. Then, another nonlinear set of laws is derived to achieve energy-saving through the PRV input. This control design method, based on the normal form representation, imposes internal dynamics on the closed-loop system. The stability of the internal dynamics is analyzed in special cases of operation. Experimental results verify that both tracking and energy-saving objectives are satisfied for the closed-loop system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Nonlinear friction model for servo press simulation

    Science.gov (United States)

    Ma, Ninshu; Sugitomo, Nobuhiko; Kyuno, Takunori; Tamura, Shintaro; Naka, Tetsuo

    2013-12-01

    The friction coefficient was measured under an idealized condition for a pulse servo motion. The measured friction coefficient and its changing with both sliding distance and a pulse motion showed that the friction resistance can be reduced due to the re-lubrication during unloading process of the pulse servo motion. Based on the measured friction coefficient and its changes with sliding distance and re-lubrication of oil, a nonlinear friction model was developed. Using the newly developed the nonlinear friction model, a deep draw simulation was performed and the formability was evaluated. The results were compared with experimental ones and the effectiveness was verified.

  1. Frequency doubled dye laser with a servo-tuned crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, J; Spitschan, H

    1975-01-01

    Spectral tuning of the uv output of a frequency doubled dye laser was successfully controlled by a servo motor system which tilts the nonlinear crystal appropriate for phase-matched second harmonic generation while the dye laser emission wavelength is tuned. The spatial direction of the generated uv beam was used as the regulating signal. The feasibility of this technique for spectroscopic applications was successfully tested.

  2. A versatile hydraulically operated respiratory servo system for ventilation and lung function testing.

    Science.gov (United States)

    Meyer, M; Slama, H

    1983-09-01

    A description is given of the design and performance of a microcomputer-controlled respiratory servo system that incorporates the characteristics of a mechanical ventilator and also allows the performance of a multitude of test procedures required for assessment of pulmonary function in paralyzed animals. The device consists of a hydraulically operated cylinder-piston assembly and solenoid valves that direct inspiratory and expiratory gas flow and also enable switching to different test gas sources. The system operates as a volume-flow-preset ventilator but may be switched to other operational cycling modes. Gas flow rates may be constant or variable. The system operates as an assister-controller and, combined with a gas analyzer, can function as a "demand" ventilator allowing for set-point control of end-tidal PCO2 and PO2. Complex breathing maneuvers for a variety of single- and multiple-breath lung function tests are automatically performed. Because of the flexibility in selection and timing of respiratory parameters, the system is particularly suitable for respiratory gas studies.

  3. Visual Servoing Tracking Control of a Ball and Plate System: Design, Implementation and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Ming-Tzu Ho

    2013-07-01

    Full Text Available This paper presents the design, implementation and validation of real-time visual servoing tracking control for a ball and plate system. The position of the ball is measured with a machine vision system. The image processing algorithms of the machine vision system are pipelined and implemented on a field programmable gate array (FPGA device to meet real-time constraints. A detailed dynamic model of the system is derived for the simulation study. By neglecting the high-order coupling terms, the ball and plate system model is simplified into two decoupled ball and beam systems, and an approximate input-output feedback linearization approach is then used to design the controller for trajectory tracking. The designed control law is implemented on a digital signal processor (DSP. The validity of the performance of the developed control system is investigated through simulation and experimental studies. Experimental results show that the designed system functions well with reasonable agreement with simulations.

  4. Towards an Aero-Propulso-Servo-Elasticity Analysis of a Commercial Supersonic Transport

    Science.gov (United States)

    Connolly, Joseph W.; Kopasakis, George; Chwalowski, Pawel; Sanetrik, Mark D.; Carlson, Jan-Renee; Silva, Walt A.; McNamara, Jack

    2016-01-01

    This paper covers the development of an aero-propulso-servo-elastic (APSE) model using computational fluid dynamics (CFD) and linear structural deformations. The APSE model provides the integration of the following two previously developed nonlinear dynamic simulations: a variable cycle turbofan engine and an elastic supersonic commercial transport vehicle. The primary focus of this study is to provide a means to include relevant dynamics of a turbomachinery propulsion system into the aeroelastic studies conducted during a vehicle design, which have historically neglected propulsion effects. A high fidelity CFD tool is used here for the integration platform. The elastic vehicle neglecting the propulsion system serves as a comparison of traditional approaches to the APSE results. An overview of the methodology is presented for integrating the propulsion system and elastic vehicle. Static aeroelastic analysis comparisons between the traditional and developed APSE models for a wing tip detection indicate that the propulsion system impact on the vehicle elastic response could increase the detection by approximately ten percent.

  5. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan

    2016-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report

  6. Identification and Modeling of Electrohydraulic Force Control of the Material Test System (MTS)

    International Nuclear Information System (INIS)

    Ruan, J; Pei, X; Zhu, F M

    2006-01-01

    In the heavy-duty material test device, an electrohydraulic force servo system is usually utilized to load the tested samples. The signal from the pressure sensor is compared with the instruction and the difference between them is then fed to a digital servo valve to form a closed loop control to the target force. The performance of the electrohydraulic force servo system is not only closely related to how accurate to feed the flow rate to the hydraulic cylinder, but also the stiffness of the system which is dominated by the compressibility of oil. Thus the clarification of the characteristic parameters becomes the key of the solution to optimal force control. To identify the electrohydraulic force servo system various step signals are input to excite the dynamic response of the system. From the relationship between the step magnitude and the force response, the system model and the key control parameters are determined. The electrohydraulic force servo system is identified as a first order system with time constant varied with the pressure. Based on the identification of the system optimal control parameters are finally obtained and force rate error is reduced to 0.2% from original 3%

  7. Visual Servo Tracking Control of a Wheeled Mobile Robot with a Monocular Fixed Camera

    National Research Council Canada - National Science Library

    Chen, J; Dixon, W. E; Dawson, D. M; Chitrakaran, V. K

    2004-01-01

    In this paper, a visual servo tracking controller for a wheeled mobile robot (WMR) is developed that utilizes feedback from a monocular camera system that is mounted with a fixed position and orientation...

  8. Fault Detection and Severity Analysis of Servo Valves Using Recurrence Quantification Analysis

    Science.gov (United States)

    2014-10-02

    method of false nearest neighbors, we found that the minimum embedding dimension for the system is d=2. Figure 3 shows the recurrence plots of the...manufacturing process planning method for the components of a complex mechatronic system . Applied Mathematical Modelling, 37(24), 9829–9845. Samadani, M...diagnostics of nonlinear systems . A detailed nonlinear math- ematical model of a servo electro-hydraulic system has been used to demonstrate the procedure

  9. Image-Based Visual Servoing for Manipulation Via Predictive Control – A Survey of Some Results

    Directory of Open Access Journals (Sweden)

    Corneliu Lazăr

    2016-09-01

    Full Text Available In this paper, a review of predictive control algorithms developed by the authors for visual servoing of robots in manipulation applications is presented. Using these algorithms, a control predictive framework was created for image-based visual servoing (IBVS systems. Firstly, considering the point features, in the year 2008 we introduced an internal model predictor based on the interaction matrix. Secondly, distinctly from the set-point trajectory, we introduced in 2011 the reference trajectory using the concept from predictive control. Finally, minimizing a sum of squares of predicted errors, the optimal input trajectory was obtained. The new concept of predictive control for IBVS systems was employed to develop a cascade structure for motion control of robot arms. Simulation results obtained with a simulator for predictive IBVS systems are also presented.

  10. Design of an Image-Servo Mask Alignment System Using Dual CCDs with an XXY Stage

    Directory of Open Access Journals (Sweden)

    Chih-Jer Lin

    2016-02-01

    Full Text Available Mask alignment of photolithography technology is used in many applications, such as micro electro mechanical systems’ semiconductor process, printed circuits board, and flat panel display. As the dimensions of the product are getting smaller and smaller, the automatic mask alignment of photolithography is becoming more and more important. The traditional stacked XY-Θz stage is heavy and it has cumulative flatness errors due to its stacked assembly mechanism. The XXY stage has smaller cumulative error due to its coplanar design and it can move faster than the traditional XY-Θz stage. However, the relationship between the XXY stage’s movement and the commands of the three motors is difficult to compute, because the movements of the three motors on the same plane are coupling. Therefore, an artificial neural network is studied to establish a nonlinear mapping from the desired position and orientation of the stage to three motors’ commands. Further, this paper proposes an image-servo automatic mask alignment system, which consists of a coplanar XXY stage, dual GIGA-E CCDs with lens and a programmable automatic controller (PAC. Before preforming the compensation, a self-developed visual-servo provides the positioning information which is obtained from the image processing and pattern recognition according to the specified fiducial marks. To obtain better precision, two methods including the center of gravity method and the generalize Hough Transformation are studied to correct the shift positioning error.

  11. Analysis of High Speed Jets Produced by a Servo Tube Driven Liquid Jet Injector

    Science.gov (United States)

    Portaro, Rocco; Ng, Hoi Dick

    2017-11-01

    In today's healthcare environment many types of medication must be administered through the use of hypodermic needles. Although this practice has been in use for many years, drawbacks such as accidental needle stick injuries, transmission of deadly viruses and bio-hazardous waste are still present. This study focuses on improving a needle free technology known as liquid jet injection, through the implementation of a linear servo tube actuator for the construction of a fully closed loop liquid jet injection system. This device has the ability to deliver both micro- and macro- molecules, high viscosity fluids whilst providing real time control of the jet pressure profile for accurate depth and dispersion control. The experiments are conducted using a prototype that consists of a 3 kW servo tube actuator, coupled to a specially designed injection head allowing nozzle size and injection volume to be varied. The device is controlled via a high speed servo amplifier and FPGA. The high speed jets emanating from the injector are assessed via high speed photography and through the use of a force transducer. Preliminary results indicate that the system allows for accurate shaping of the jet pressure profile, making it possible to target different tissue depths/types accurately.

  12. Conceptual design of stepper motor replacing servo motor for control rod controller

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat

    2010-01-01

    In PUSPATI TRIGA Reactor, current control rod controller are using servo motor to control the movement. Control rod is a very important safety element and measure in every nuclear reactor. So, precision is very important in measurement of security in the nuclear reactor. In this case, there are a few disadvantages when using the servo motor is measurement of the motor is not precise. One solution to overcome this is by shifting servo motor with stepper motor. A stepper motor (or step motor) is a brush less, synchronous electric motor that can divide a full rotation into a large number of steps. (author)

  13. Theoretical Design and First Test in Laboratory of a Composite Visual Servo-Based Target Spray Robotic System

    Directory of Open Access Journals (Sweden)

    Dongjie Zhao

    2016-01-01

    Full Text Available In order to spray onto the canopy of interval planting crop, an approach of using a target spray robot with a composite vision servo system based on monocular scene vision and monocular eye-in-hand vision was proposed. Scene camera was used to roughly locate target crop, and then the image-processing methods for background segmentation, crop canopy centroid extraction, and 3D positioning were studied. Eye-in-hand camera was used to precisely determine spray position of each crop. Based on the center and area of 2D minimum-enclosing-circle (MEC of crop canopy, a method to calculate spray position and spray time was determined. In addition, locating algorithm for the MEC center in nozzle reference frame and the hand-eye calibration matrix were studied. The processing of a mechanical arm guiding nozzle to spray was divided into three stages: reset, alignment, and hovering spray, and servo method of each stage was investigated. For preliminary verification of the theoretical studies on the approach, a simplified experimental prototype containing one spray mechanical arm was built and some performance tests were carried out under controlled environment in laboratory. The results showed that the prototype could achieve the effect of “spraying while moving and accurately spraying on target.”

  14. Compact, Lightweight Servo-Controllable Brakes

    Science.gov (United States)

    Lovchik, Christopher S.; Townsend, William; Guertin, Jeffrey; Matsuoka, Yoky

    2010-01-01

    Compact, lightweight servo-controllable brakes capable of high torques are being developed for incorporation into robot joints. A brake of this type is based partly on the capstan effect of tension elements. In a brake of the type under development, a controllable intermediate state of torque is reached through on/off switching at a high frequency.

  15. Hydraulic servo control spool valve

    Science.gov (United States)

    Miller, Donald M.

    1983-01-01

    A servo operated spool valve having a fixed sleeve and axially movable spool. The sleeve is machined in two halves to form a long, narrow tapered orifice slot across which a transverse wall of the spool is positioned. The axial position of the spool wall along the slot regulates the open orifice area with extreme precision.

  16. Visual servoing in medical robotics: a survey. Part II: tomographic imaging modalities--techniques and applications.

    Science.gov (United States)

    Azizian, Mahdi; Najmaei, Nima; Khoshnam, Mahta; Patel, Rajni

    2015-03-01

    Intraoperative application of tomographic imaging techniques provides a means of visual servoing for objects beneath the surface of organs. The focus of this survey is on therapeutic and diagnostic medical applications where tomographic imaging is used in visual servoing. To this end, a comprehensive search of the electronic databases was completed for the period 2000-2013. Existing techniques and products are categorized and studied, based on the imaging modality and their medical applications. This part complements Part I of the survey, which covers visual servoing techniques using endoscopic imaging and direct vision. The main challenges in using visual servoing based on tomographic images have been identified. 'Supervised automation of medical robotics' is found to be a major trend in this field and ultrasound is the most commonly used tomographic modality for visual servoing. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Development of an interface for an ultrareliable fault-tolerant control system and an electronic servo-control unit

    Science.gov (United States)

    Shaver, Charles; Williamson, Michael

    1986-01-01

    The NASA Ames Research Center sponsors a research program for the investigation of Intelligent Flight Control Actuation systems. The use of artificial intelligence techniques in conjunction with algorithmic techniques for autonomous, decentralized fault management of flight-control actuation systems is explored under this program. The design, development, and operation of the interface for laboratory investigation of this program is documented. The interface, architecturally based on the Intel 8751 microcontroller, is an interrupt-driven system designed to receive a digital message from an ultrareliable fault-tolerant control system (UFTCS). The interface links the UFTCS to an electronic servo-control unit, which controls a set of hydraulic actuators. It was necessary to build a UFTCS emulator (also based on the Intel 8751) to provide signal sources for testing the equipment.

  18. Exploiting H infinity sampled-data control theory for high-precision electromechanical servo control design

    NARCIS (Netherlands)

    Oomen, T.A.E.; Wal, van de M.M.J.; Bosgra, O.H.

    2006-01-01

    Optimal design of digital controllers for industrial electromechanical servo systems using an Hinf-criterion is considered. Present industrial practice is to perform the control design in the continuous time domain and to discretize the controller a posteriori. This procedure involves unnecessary

  19. Adaptive servo ventilation for central sleep apnoea in heart failure: SERVE-HF on-treatment analysis.

    Science.gov (United States)

    Woehrle, Holger; Cowie, Martin R; Eulenburg, Christine; Suling, Anna; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K; Somers, Virend K; Zannad, Faiez; Teschler, Helmut; Wegscheider, Karl

    2017-08-01

    This on-treatment analysis was conducted to facilitate understanding of mechanisms underlying the increased risk of all-cause and cardiovascular mortality in heart failure patients with reduced ejection fraction and predominant central sleep apnoea randomised to adaptive servo ventilation versus the control group in the SERVE-HF trial.Time-dependent on-treatment analyses were conducted (unadjusted and adjusted for predictive covariates). A comprehensive, time-dependent model was developed to correct for asymmetric selection effects (to minimise bias).The comprehensive model showed increased cardiovascular death hazard ratios during adaptive servo ventilation usage periods, slightly lower than those in the SERVE-HF intention-to-treat analysis. Self-selection bias was evident. Patients randomised to adaptive servo ventilation who crossed over to the control group were at higher risk of cardiovascular death than controls, while control patients with crossover to adaptive servo ventilation showed a trend towards lower risk of cardiovascular death than patients randomised to adaptive servo ventilation. Cardiovascular risk did not increase as nightly adaptive servo ventilation usage increased.On-treatment analysis showed similar results to the SERVE-HF intention-to-treat analysis, with an increased risk of cardiovascular death in heart failure with reduced ejection fraction patients with predominant central sleep apnoea treated with adaptive servo ventilation. Bias is inevitable and needs to be taken into account in any kind of on-treatment analysis in positive airway pressure studies. Copyright ©ERS 2017.

  20. Robust Control for High-Speed Visual Servoing Applications

    DEFF Research Database (Denmark)

    Ellekilde, Lars-Peter; Favrholdt, Peter; Paulin, Mads

    2007-01-01

    This paper presents a new control scheme for visual servoing applications. The approach employs quadratic optimization, and explicitly handles both joint position, velocity and acceleration limits. Contrary to existing techniques, our method does not rely on large safety margins and slow task...... execution to avoid joint limits, and is hence able to exploit the full potential of the robot. Furthermore, our control scheme guarantees a well-defined behavior of the robot even when it is in a singular configuration, and thus handles both internal and external singularities robustly. We demonstrate...... the correctness and efficiency of our approach in a number of visual servoing applications, and compare it to a range of previously proposed techniques....

  1. A TSR Visual Servoing System Based on a Novel Dynamic Template Matching Method

    Directory of Open Access Journals (Sweden)

    Jia Cai

    2015-12-01

    Full Text Available The so-called Tethered Space Robot (TSR is a novel active space debris removal system. To solve its problem of non-cooperative target recognition during short-distance rendezvous events, this paper presents a framework for a real-time visual servoing system using non-calibrated monocular-CMOS (Complementary Metal Oxide Semiconductor. When a small template is used for matching with a large scene, it always leads to mismatches, so a novel template matching algorithm to solve the problem is presented. Firstly, the novel matching algorithm uses a hollow annulus structure according to a FAST (Features from Accelerated Segment algorithm and makes the method be rotation-invariant. Furthermore, the accumulative deviation can be decreased by the hollow structure. The matching function is composed of grey and gradient differences between template and object image, which help it reduce the effects of illumination and noises. Then, a dynamic template update strategy is designed to avoid tracking failures brought about by wrong matching or occlusion. Finally, the system synthesizes the least square integrated predictor, realizing tracking online in complex circumstances. The results of ground experiments show that the proposed algorithm can decrease the need for sophisticated computation and improves matching accuracy.

  2. Servo-control of water and sodium homeostasis during renal clearance measurements in conscious rats.

    Science.gov (United States)

    Thomsen, Klaus; Shirley, David G

    2007-01-01

    Servo-controlled fluid and sodium replacement during clearance studies is used in order to prevent loss of body fluid and sodium following diuretic/natriuretic procedures. However, even under control conditions, the use of this technique is sometimes associated with increases in proximal tubular fluid output (assessed by lithium clearance) and excretion rates. The present study examined the reason for these increases. The first series of experiments showed that one cause is volume overloading. This can occur if the servo system is activated from the start, i.e., during the establishment of a suitably high urine flow rate by constant infusion of hypotonic glucose solution. The second series of experiments showed that replacement of blood samples with donor blood can also lead to increases in fractional lithium excretion and accompanying increases in water and sodium excretion, a problem not seen when blood samples are replaced with the animal's own red blood cells resuspended in isotonic saline. When these pitfalls are avoided, servo-controlled sodium and fluid replacement is a reliable technique that makes it possible to study the effects of natriuretic and/or diuretic stimuli without interference from unwanted changes in extracellular volume. 2007 S. Karger AG, Basel

  3. Design and performance characteristic analysis of servo valve-type water hydraulic poppet valve

    International Nuclear Information System (INIS)

    Park, Sung Hwan

    2009-01-01

    For water hydraulic system control, the flow or pressure control using high-speed solenoid valve controlled by PWM control method could be a good solution for prevention of internal leakage. However, since the PWM control of on-off valves cause extensive flow and pressure fluctuation, it is difficult to control the water hydraulic actuators precisely. In this study, the servo valve-type water hydraulic valve using proportional poppet as the main valve is designed and the performance characteristics of the servo valve-type water hydraulic valve are analyzed. Furthermore, it is demonstrated through experiments that a decline in control chamber pressure that follows the change of pilot flow is caused by the occurrence of cavitation around the proportional poppet, and that fundamental characteristics of the developed valve remain unaffected by the occurrence of cavitation

  4. Turbofan Volume Dynamics Model for Investigations of Aero-Propulso-Servo-Elastic Effects in a Supersonic Commercial Transport

    Science.gov (United States)

    Connolly, Joseph W.; Kopasakis, George; Lemon, Kimberly A.

    2010-01-01

    A turbofan simulation has been developed for use in aero-propulso-servo-elastic coupling studies, on supersonic vehicles. A one-dimensional lumped volume approach is used whereby each component (fan, high-pressure compressor, combustor, etc.) is represented as a single volume using characteristic performance maps and conservation equations for continuity, momentum and energy. The simulation is developed in the MATLAB/SIMULINK (The MathWorks, Inc.) environment in order to facilitate controls development, and ease of integration with a future aero-servo-elastic vehicle model being developed at NASA Langley. The complete simulation demonstrated steady state results that closely match a proposed engine suitable for a supersonic business jet at the cruise condition. Preliminary investigation of the transient simulation revealed expected trends for fuel flow disturbances as well as upstream pressure disturbances. A framework for system identification enables development of linear models for controller design. Utilizing this framework, a transfer function modeling an upstream pressure disturbance s impacts on the engine speed is developed as an illustrative case of the system identification. This work will eventually enable an overall vehicle aero-propulso-servo-elastic model

  5. Active Vibration Isolation Devices with Inertial Servo Actuators

    Science.gov (United States)

    Melik-Shakhnazarov, V. A.; Strelov, V. I.; Sofiyanchuk, D. V.; Tregubenko, A. A.

    2018-03-01

    The use of active vibration isolation devices (AVIDs) in aerospace engineering is subject to the following restrictions. First, the volume for installing additional devices is always limited in instrument racks and compartments. Secondly, in many cases, it is impossible to add supports for servo actuators for fundamental or design considerations. In the paper, it has been shown that this problem can be solved if the inertial servo actuators are used in AVIDs instead of reference actuators. A transfer function has been theoretically calculated for an AVID controlled by inertial actuators. It has been shown that the volume of a six-mode single-housing AVID with inertial actuators can be 2-2.5 times smaller than that of devices with support actuators.

  6. iSERVO: Implementing the International Solid Earth Research Virtual Observatory by Integrating Computational Grid and Geographical Information Web Services

    Science.gov (United States)

    Aktas, Mehmet; Aydin, Galip; Donnellan, Andrea; Fox, Geoffrey; Granat, Robert; Grant, Lisa; Lyzenga, Greg; McLeod, Dennis; Pallickara, Shrideep; Parker, Jay; Pierce, Marlon; Rundle, John; Sayar, Ahmet; Tullis, Terry

    2006-12-01

    We describe the goals and initial implementation of the International Solid Earth Virtual Observatory (iSERVO). This system is built using a Web Services approach to Grid computing infrastructure and is accessed via a component-based Web portal user interface. We describe our implementations of services used by this system, including Geographical Information System (GIS)-based data grid services for accessing remote data repositories and job management services for controlling multiple execution steps. iSERVO is an example of a larger trend to build globally scalable scientific computing infrastructures using the Service Oriented Architecture approach. Adoption of this approach raises a number of research challenges in millisecond-latency message systems suitable for internet-enabled scientific applications. We review our research in these areas.

  7. Adaptive GSA-based optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness.

    Science.gov (United States)

    Precup, Radu-Emil; David, Radu-Codrut; Petriu, Emil M; Radac, Mircea-Bogdan; Preitl, Stefan

    2014-11-01

    This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices. An original back-calculation and tracking anti-windup scheme is proposed in order to prevent the integrator wind-up and to compensate for the dead zone nonlinearity of the process. The minimization of the objective functions is carried out in the framework of optimization problems with inequality constraints which guarantee the robust stability with respect to the process parametric variations and the controller robustness. An adaptive gravitational search algorithm (GSA) solves the optimization problems focused on the optimal tuning of the design parameter specific to the ESO method and of the anti-windup tracking gain. A tuning method for PI controllers is proposed as an efficient approach to the design of resilient control systems. The tuning method and the PI controllers are experimentally validated by the adaptive GSA-based tuning of PI controllers for the angular position control of a laboratory servo system.

  8. Robust H(∞) positional control of 2-DOF robotic arm driven by electro-hydraulic servo system.

    Science.gov (United States)

    Guo, Qing; Yu, Tian; Jiang, Dan

    2015-11-01

    In this paper an H∞ positional feedback controller is developed to improve the robust performance under structural and parametric uncertainty disturbance in electro-hydraulic servo system (EHSS). The robust control model is described as the linear state-space equation by upper linear fractional transformation. According to the solution of H∞ sub-optimal control problem, the robust controller is designed and simplified to lower order linear model which is easily realized in EHSS. The simulation and experimental results can validate the robustness of this proposed method. The comparison result with PI control shows that the robust controller is suitable for this EHSS under the critical condition where the desired system bandwidth is higher and the external load of the hydraulic actuator is closed to its limited capability. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Use of servo controlled weld head for end closure welding

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, S.K.; Setty, D.S.; Rameswara Rao, A.; Hemantha Rao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2010-07-01

    In the PHWR fuel fabrication line resistance welding processes are used for joining various zirconium based alloy components to fuel tube of similar material. The quality requirement of these welding processes is very stringent and has to meet all the product requirements. At present these welding processes are being carried out by using standard resistance welding machines. In the resistance welding process in addition to current and time, force is one of the critical and important parameter, which influences the weld quality. At present advanced feed back type fast response medium frequency weld controllers are being used. This has upslope/down slope, constant and repetitive weld pattern selection features makes this critical welding process more reliable. Compared to weld controllers, squeeze force application devices are limited and normally standard high response pneumatic cylinders are used in the welding process. With this type of devices the force is constant during welding process and cannot be varied during welding process as per the material deformation characteristics. Similarly due to non-availability of feed back systems in the squeeze force application systems restricts the accuracy and quality of the welding process. In the present paper the influence of squeeze force pattern on the weld quality using advanced feed back type servo based force control system was studied. Different squeeze forces were used during pre and post weld heat periods along with constant force and compared with the weld quality. (author)

  10. Indirect adaptive fuzzy wavelet neural network with self- recurrent consequent part for AC servo system.

    Science.gov (United States)

    Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao

    2017-09-01

    This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.

  11. Influence of Forming Conditions on Springback in V-bending Process Using Servo Press

    Science.gov (United States)

    Abe, Shinya; Takahashi, Susumu

    To improve fuel efficiency, aluminum alloys and high tensile steel sheets are increasingly being applied to automotive body parts. However, it is difficult to obtain accurate dimensions of formed parts. Therefore, technologies for reducing springback for the part formed by press are strongly demanded. It is said that the die holding time at the bottom dead center of a servo press slide can affect springback. To clarify the forming mechanisms of this phenomenon, a V bending test with a servo press was performed. Aluminum alloys sheets are applied as specimens. The location of press slide was measured by linear scales. It was found that the movement of the slide in a slide motion program differs from the actual movement of the slide. It is important to confirm if the slide is located in the position specified in the program. In addition, a springback angle measurement system is proposed that uses laser displacement measurement apparatus. Because it avoids human error, the proposed measurement system is more accurate than the image processing method.

  12. Strong stabilization servo controller with optimization of performance criteria.

    Science.gov (United States)

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2011-07-01

    Synthesis of a simple robust controller with a pole placement technique and a H(∞) metrics is the method used for control of a servo mechanism with BLDC and BDC electric motors. The method includes solving a polynomial equation on the basis of the chosen characteristic polynomial using the Manabe standard polynomial form and parametric solutions. Parametric solutions are introduced directly into the structure of the servo controller. On the basis of the chosen parametric solutions the robustness of a closed-loop system is assessed through uncertainty models and assessment of the norm ‖•‖(∞). The design procedure and the optimization are performed with a genetic algorithm differential evolution - DE. The DE optimization method determines a suboptimal solution throughout the optimization on the basis of a spectrally square polynomial and Šiljak's absolute stability test. The stability of the designed controller during the optimization is being checked with Lipatov's stability condition. Both utilized approaches: Šiljak's test and Lipatov's condition, check the robustness and stability characteristics on the basis of the polynomial's coefficients, and are very convenient for automated design of closed-loop control and for application in optimization algorithms such as DE. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Real Time Implementation of PID and Fuzzy PD Controllers for DC-Servo Motor Based on Lab View Environment

    Directory of Open Access Journals (Sweden)

    Safaa M. Z. Al-Ubaidi

    2012-06-01

    Full Text Available This paper presents an implementation of conventional PID (CPID controller using Ziegler-Nichols rules and fuzzy PD (FPD controller for position servo motor control based on Lab View (Laboratory Virtual Instrument Engineering Workbench Environment through Data Acquisition (DAQ Device PCI- 6521 of National Instrument's and Data Acquisition Accessory Board Model (CB-68LP.CPID controller is perhaps the most well-known and most widely used in industrial applications. However, it has been known that CPID controller generally don’t work well for non-linear systems, higher order and time-delayed linear system and particularly complex and vague system. To overcome these difficulties, this paper proposes to use the FPD controller for a servo motor system instead of CPID. The parameters of servo motor used are completely unknown. The FPD structure has two-input single-output and fairly similar characteristic to its conventional counterpart and provides good performance. Simple rules base are used for FPD (nine rules only. Performance evaluation was carried out via a comparison study for the proposed control scheme and other existing control scheme, such as CPID controller. The critical point for this experiment on position system is a steady state error and settling time.  The performance showing that the FPD has less settling time and zero steady state error over its CPID. The algorithms of FPD and CPID controllers are implemented using PID, Fuzzy Logic and simulation toolkits of the Lab View environment.

  14. Reduced-order model based active disturbance rejection control of hydraulic servo system with singular value perturbation theory.

    Science.gov (United States)

    Wang, Chengwen; Quan, Long; Zhang, Shijie; Meng, Hongjun; Lan, Yuan

    2017-03-01

    Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Modeling and Parameter Identification of the Vibration Characteristics of Armature Assembly in a Torque Motor of Hydraulic Servo Valves under Electromagnetic Excitations

    Directory of Open Access Journals (Sweden)

    Jinghui Peng

    2014-07-01

    Full Text Available The resonance of the armature assembly is the main problem leading to the fatigue of the spring pipe in a torque motor of hydraulic servo valves, which can cause the failure of servo valves. To predict the vibration characteristics of the armature assembly, this paper focuses on the mathematical modeling of the vibration characteristics of armature assembly in a hydraulic servo valve and the identification of parameters in the models. To build models more accurately, the effect of the magnetic spring is taken into account. Vibration modal analysis is performed to obtain the mode shapes and natural frequencies, which are necessary to implement the identification of damping ratios in the mathematical models. Based on the mathematical models for the vibration characteristics, the harmonic responses of the armature assembly are analyzed using the finite element method and measured under electromagnetic excitations. The simulation results agree well with the experimental studies.

  16. Preterm infant thermal care: differing thermal environments produced by air versus skin servo-control incubators.

    Science.gov (United States)

    Thomas, K A; Burr, R

    1999-06-01

    Incubator thermal environments produced by skin versus air servo-control were compared. Infant abdominal skin and incubator air temperatures were recorded from 18 infants in skin servo-control and 14 infants in air servo-control (26- to 29-week gestational age, 14 +/- 2 days postnatal age) for 24 hours. Differences in incubator and infant temperature, neutral thermal environment (NTE) maintenance, and infant and incubator circadian rhythm were examined using analysis of variance and scatterplots. Skin servo-control resulted in more variable air temperature, yet more stable infant temperature, and more time within the NTE. Circadian rhythm of both infant and incubator temperature differed by control mode and the relationship between incubator and infant temperature rhythms was a function of control mode. The differences between incubator control modes extend beyond temperature stability and maintenance of NTE. Circadian rhythm of incubator and infant temperatures is influenced by incubator control.

  17. DC motors and servo-motors controlled by Raspberry Pi 2B

    Directory of Open Access Journals (Sweden)

    Šustek Michal

    2017-01-01

    Full Text Available The expanding capabilities of today’s microcontrollers and other devices lead to an increased utilization of these technologies in diverse fields. The automation and issue of remote control of moving objects belong to these fields. In this project, a microcontroller Raspberry Pi 2B was chosen for controlling DC motors and servo-motors. This paper provides basic insight into issue of controlling DC motors and servo-motors, connection between Raspberry and other components on breadboard and programming syntaxes for controlling motors in Python programming language.

  18. Application of prediction of equilibrium to servo-controlled calorimetry measurements

    International Nuclear Information System (INIS)

    Mayer, R.L. II

    1987-01-01

    Research was performed to develop an endpoint prediction algorithm for use with calorimeters operating in the digital servo-controlled mode. The purpose of this work was to reduce calorimetry measurement times while maintaining the high degree of precision and low bias expected from calorimetry measurements. Data from routine operation of two calorimeters were used to test predictive models at each stage of development against time savings, precision, and robustness criteria. The results of the study indicated that calorimetry measurement times can be significantly reduced using this technique. The time savings is, however, dependent on parameters in the digital servo-control algorithm and on packaging characteristics of measured items

  19. Servo-controlled hind-limb electrical stimulation for short-term arterial pressure control.

    Science.gov (United States)

    Kawada, Toru; Shimizu, Shuji; Yamamoto, Hiromi; Shishido, Toshiaki; Kamiya, Atsunori; Miyamoto, Tadayoshi; Sunagawa, Kenji; Sugimachi, Masaru

    2009-05-01

    Autonomic neural intervention is a promising tool for modulating the circulatory system thereby treating some cardiovascular diseases. In 8 pentobarbital-anesthetized cats, it was examined whether the arterial pressure (AP) could be controlled by acupuncture-like hind-limb electrical stimulation (HES). With a 0.5-ms pulse width, HES monotonically reduced AP as the stimulus current increased from 1 to 5 mA, suggesting that the stimulus current could be a primary control variable. In contrast, the depressor effect of HES showed a nadir approximately 10 Hz in the frequency range between 1 and 100 Hz. Dynamic characteristics of the AP response to HES approximated a second-order low-pass filter with dead time (gain: -10.2 +/- 1.6 mmHg/mA, natural frequency: 0.040 +/- 0.004 Hz, damping ratio 1.80 +/- 0.24, dead time: 1.38 +/- 0.13 s, mean +/- SE). Based on these dynamic characteristics, a servo-controlled HES system was developed. When a target AP value was set at 20 mmHg below the baseline AP, the time required for the AP response to reach 90% of the target level was 38 +/- 10 s. The steady-state error between the measured and target AP values was 1.3 +/- 0.1 mmHg. Autonomic neural intervention by acupuncture-like HES might provide an additional modality to quantitatively control the circulatory system.

  20. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller.

    Science.gov (United States)

    Lopez-Franco, Carlos; Gomez-Avila, Javier; Alanis, Alma Y; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-08-12

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results.

  1. Visual servo control for a human-following robot

    CSIR Research Space (South Africa)

    Burke, Michael G

    2011-03-01

    Full Text Available This thesis presents work completed on the design of control and vision components for use in a monocular vision-based human-following robot. The use of vision in a controller feedback loop is referred to as vision-based or visual servo control...

  2. Application of prediction of equilibrium to servo-controlled calorimetry measurements

    International Nuclear Information System (INIS)

    Mayer, R.L. II.

    1987-01-01

    Research was performed to develop an endpoint prediction algorithm for use with calorimeters operating in the digital servo-controlled mode. The purpose of this work was to reduce calorimetry measurement times while maintaining the high degree of precision and low bias expected from calorimetry measurements. Data from routine operation of two calorimeters were used to test predictive models at each stage of development against time savings, precision, and robustness criteria. The results of the study indicated that calorimetry measurement times can be significantly reduced using this technique. The time savings is, however, dependent on parameters in the digital servo-control algorithm and on packaging characteristics of measured items. 7 refs., 4 figs., 1 tab

  3. What is the Optimal Strategy for Adaptive Servo-Ventilation Therapy?

    Science.gov (United States)

    Imamura, Teruhiko; Kinugawa, Koichiro

    2018-05-23

    Clinical advantages in the adaptive servo-ventilation (ASV) therapy have been reported in selected heart failure patients with/without sleep-disorder breathing, whereas multicenter randomized control trials could not demonstrate such advantages. Considering this discrepancy, optimal patient selection and device setting may be a key for the successful ASV therapy. Hemodynamic and echocardiographic parameters indicating pulmonary congestion such as elevated pulmonary capillary wedge pressure were reported as predictors of good response to ASV therapy. Recently, parameters indicating right ventricular dysfunction also have been reported as good predictors. Optimal device setting with appropriate pressure setting during appropriate time may also be a key. Large-scale prospective trial with optimal patient selection and optimal device setting is warranted.

  4. Forming of AHSS using Servo-Presses

    Science.gov (United States)

    Groseclose, Adam Richard

    Stamping of Advanced High Strength Steel (AHSS) alloys poses several challenges due to the material's higher strength and low formability compared to conventional steels and other problems such as (a) inconsistency of incoming material properties, (b) ductile fracture during forming, (c) higher contact pressure and temperature rise during forming, (d) higher die wear leading to reduced tool life, (e) higher forming load/press capacity, and (f) large springback leading to dimensional inaccuracy in the formed part. [Palaniswamy et. al., 2007]. The use of AHSS has been increasing steadily in automotive stamping. New AHSS alloys (TRIP, TWIP) may replace some of the Hot Stamping applications. Stamping of AHSS alloys, especially higher strength materials, 780 MPa and higher, present new challenges in obtaining good part definition (corner and fillet radii), formability (fracture and resulting scrap) and in reducing springback. Servo-drive presses, having the capability to have infinitely variable and adjustable ram speed and dwell at BDC, offer a potential improvement in quality, part definition, and springback reduction especially when the infinitely adjustable slide motion is used in combination with a CNC hydraulic cushion. Thus, it is desirable to establish a scientific/engineering basis for improving the stamping conditions in forming AHSS using a servo-drive press.

  5. Design of decoupled dual servo stage with voice coil motor and linear motor for XY long stroke ultra-precision scanning system

    Science.gov (United States)

    Kim, Ki-Hyun; Choi, Young-Man; Gweon, Dae-Gab; Hong, Dong-Pyo; Kim, Koung-Suk; Lee, Suk-Won; Lee, Moon-Gu

    2005-12-01

    A decoupled dual servo (DDS) stage for ultra-precision scanning system is introduced in this paper. The proposed DDS consists of a 3 axis fine stage for handling and carrying workpieces and a XY coarse stage. Especially, the DDS uses three voice coil motors (VCM) as a planar actuation system of the fine stage to reduce the disturbances due to any mechanical connections with its coarse stage. VCMs are governed by Lorentz law. According to the law and its structure, there are no mechanical connections between coils and magnetic circuits. Moreover, the VCM doesn't have force ripples due to imperfections of commutation components of linear motor systems - currents and flux densities. However, due to the VCM's mechanical constraints the working range of the fine is about 5mm2. To break that hurdle, the coarse stage with linear motors is used for the fine stage to move about 200mm2. Because of the above reasons, the proposed DDS can achieve higher precision scanning than other stages with only one servo. Using MATLAB's Sequential Quadratic Programming (SQP), the VCMs are optimally designed for the highest force under conditions and constraints such as thermal dissipations due to its coil, its size, and so on. For linear motors, Halbach magnet linear motor is proposed and optimally designed in this paper. In addition, for their smooth movements without any frictions, guide systems of the DDS are composed of air bearings. And then, precisely to get their positions, linear scales with 0.1um resolution are used for the coarse's XY motions and plane mirror laser interferometers with 20nm for the fine's XYθz. On scanning, the two stages have same trajectories and are controlled. The control algorithm is Parallel method. The embodied ultra-precision scanning system has about 100nm tracking error and in-positioning stability.

  6. A new state space model for the NASA/JPL 70-meter antenna servo controls

    Science.gov (United States)

    Hill, R. E.

    1987-01-01

    A control axis referenced model of the NASA/JPL 70-m antenna structure is combined with the dynamic equations of servo components to produce a comprehansive state variable (matrix) model of the coupled system. An interactive Fortran program for generating the linear system model and computing its salient parameters is described. Results are produced in a state variable, block diagram, and in factored transfer function forms to facilitate design and analysis by classical as well as modern control methods.

  7. MA-23-6000: underwater bilateral servo master slave manipulator

    International Nuclear Information System (INIS)

    Vertut, Jean

    The different types of manipulators, recent data on their dexterity and the underwater work possible with servo master slave manipulators are reviewed. The general specifications of the manipulator MA 23-6000 designed for the machine ERIC II are given [fr

  8. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller

    Science.gov (United States)

    Lopez-Franco, Carlos; Alanis, Alma Y.; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-01-01

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results. PMID:28805689

  9. A Quasiphysics Intelligent Model for a Long Range Fast Tool Servo

    Science.gov (United States)

    Liu, Qiang; Zhou, Xiaoqin; Lin, Jieqiong; Xu, Pengzi; Zhu, Zhiwei

    2013-01-01

    Accurately modeling the dynamic behaviors of fast tool servo (FTS) is one of the key issues in the ultraprecision positioning of the cutting tool. Herein, a quasiphysics intelligent model (QPIM) integrating a linear physics model (LPM) and a radial basis function (RBF) based neural model (NM) is developed to accurately describe the dynamic behaviors of a voice coil motor (VCM) actuated long range fast tool servo (LFTS). To identify the parameters of the LPM, a novel Opposition-based Self-adaptive Replacement Differential Evolution (OSaRDE) algorithm is proposed which has been proved to have a faster convergence mechanism without compromising with the quality of solution and outperform than similar evolution algorithms taken for consideration. The modeling errors of the LPM and the QPIM are investigated by experiments. The modeling error of the LPM presents an obvious trend component which is about ±1.15% of the full span range verifying the efficiency of the proposed OSaRDE algorithm for system identification. As for the QPIM, the trend component in the residual error of LPM can be well suppressed, and the error of the QPIM maintains noise level. All the results verify the efficiency and superiority of the proposed modeling and identification approaches. PMID:24163627

  10. Inherent limitations of fixed time servo-controlled radiometric calorimetry

    International Nuclear Information System (INIS)

    Wetzel, J.R.; Duff, M.F.; Lemming, J.F.

    1987-01-01

    There has been some interest in low precision, short run time calorimetry measurements. This type of calorimetry measurement has been proposed for use when high precision measurements are not required, for example, to screen scrap containers to determine if there is enough material to be measured more accurately of for confirmatory measurements that only require low precision results. The equipment needed to make these measurements is a servo-controlled calorimeter with a sample preequilibration bath. The preequilibration bath temperature is set to the internal temperature of the calorimeter running at a fixed servo-controlled wattage level. The sample power value is determined at a fixed time form the sample loading into the calorimeter. There are some limitations and areas of uncertainties in the use of data obtained by this method. Data collected under controlled conditions demonstrate the limitations. Sample packaging, preequilibration time, and item wattage were chosen as the variables most likely to be encountered in a plant environment

  11. Inherent limitations of fixed-time, servo-controlled radiometric calorimetry

    International Nuclear Information System (INIS)

    Wetzel, J.R.; Lemming, J.F.; Duff, M.F.

    1987-01-01

    Interest has been shown in using fixed-time, servo-controlled calorimetry to shorten the measurement times for certain samples that require low precision values (3 to 5%). This type of calorimeter measurement could be particularly useful for screening scrap samples to determine whether there is a need for a more accurate measurement or for certain confirmatory measurements for which low precision numbers are sufficient. The equipment required for this type of measurement is a servo-controlled calorimeter and a preconditioning unit. Samples to be measured are placed in the preconditioning unit, which is maintained at the internal temperature of the calorimeter. The power value for the sample is determined at a fixed time after loading into the calorimeter, for example, 30 min. When a calorimeter is operated using a fixed cutoff time, there are additional sources of uncertainty that need to be considered. The major factors affecting the uncertainty of the calorimetry power values are discussed. 2 refs., 4 figs

  12. Real-time tracking control of electro-hydraulic force servo systems using offline feedback control and adaptive control.

    Science.gov (United States)

    Shen, Gang; Zhu, Zhencai; Zhao, Jinsong; Zhu, Weidong; Tang, Yu; Li, Xiang

    2017-03-01

    This paper focuses on an application of an electro-hydraulic force tracking controller combined with an offline designed feedback controller (ODFC) and an online adaptive compensator in order to improve force tracking performance of an electro-hydraulic force servo system (EHFS). A proportional-integral controller has been employed and a parameter-based force closed-loop transfer function of the EHFS is identified by a continuous system identification algorithm. By taking the identified system model as a nominal plant model, an H ∞ offline design method is employed to establish an optimized feedback controller with consideration of the performance, control efforts, and robustness of the EHFS. In order to overcome the disadvantage of the offline designed controller and cope with the varying dynamics of the EHFS, an online adaptive compensator with a normalized least-mean-square algorithm is cascaded to the force closed-loop system of the EHFS compensated by the ODFC. Some comparative experiments are carried out on a real-time EHFS using an xPC rapid prototype technology, and the proposed controller yields a better force tracking performance improvement. Copyright © 2016. Published by Elsevier Ltd.

  13. Servo-Drive Amplifier for Micro-Satellite Superconductor-Levitated Flywheels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new servo-drive technology is available to support energy storage and navigation for micro-satellites. Exploiting the ?pinning? effect of high-temperature...

  14. Development of an EtherCAT enabled digital servo controller for the Green Bank Telescope

    Science.gov (United States)

    Whiteis, Peter G.; Mello, Melinda J.

    2012-09-01

    EtherCAT (Ethernet for Control Automation Technology) is gaining wide spread popularity in the automation industry as a real time field bus based on low cost, Ethernet hardware. EtherCAT maximizes use of 100Mbps Ethernet hardware by using a collision free ring topology, efficient Ethernet frame utilization (> 95%), and data exchange "on the fly". These characteristics enable EtherCAT to achieve Master to Slave node data exchange rates of > 1000 Hz. The Green Bank Telescope, commissioned in 2000, utilizes an analog control system for motion control of 8 elevation and 16 azimuth motors. This architecture, while sufficient for observations at frequencies up to 50GHz, has significant limitations for the current scientific goals of observing at 115GHz. Accordingly, the Green Bank staff has embarked on a servo upgrade project to develop a digital servo system which accommodates development and implementation of advanced control algorithms. This paper describes how the new control system requirements, use of existing infrastructure and budget constraints led us to define a distributed motion control architecture where EtherCAT real-time Ethernet was selected as the communication bus. Finally, design details are provided that describe how NRAO developed a custom EtherCAT-enabled motor controller interface for the GBT's legacy motor drives in order to provide technical benefits and flexibility not available in commercial products.

  15. Finite-time tracking control for multiple non-holonomic mobile robots based on visual servoing

    Science.gov (United States)

    Ou, Meiying; Li, Shihua; Wang, Chaoli

    2013-12-01

    This paper investigates finite-time tracking control problem of multiple non-holonomic mobile robots via visual servoing. It is assumed that the pinhole camera is fixed to the ceiling, and camera parameters are unknown. The desired reference trajectory is represented by a virtual leader whose states are available to only a subset of the followers, and the followers have only interaction. First, the camera-objective visual kinematic model is introduced by utilising the pinhole camera model for each mobile robot. Second, a unified tracking error system between camera-objective visual servoing model and desired reference trajectory is introduced. Third, based on the neighbour rule and by using finite-time control method, continuous distributed cooperative finite-time tracking control laws are designed for each mobile robot with unknown camera parameters, where the communication topology among the multiple mobile robots is assumed to be a directed graph. Rigorous proof shows that the group of mobile robots converges to the desired reference trajectory in finite time. Simulation example illustrates the effectiveness of our method.

  16. Cylinder Position Servo Control Based on Fuzzy PID

    Directory of Open Access Journals (Sweden)

    Shibo Cai

    2013-01-01

    Full Text Available The arbitrary position control of cylinder has always been the hard challenge in pneumatic system. We try to develop a cylinder position servo control method by combining fuzzy PID with the theoretical model of the proportional valve-controlled cylinder system. The pressure differential equation of cylinder, pressure-flow equation of proportional valve, and moment equilibrium equation of cylinder are established. And the mathematical models of the cylinder driving system are linearized. Then fuzzy PID control algorithm is designed for the cylinder position control, including the detail analysis of fuzzy variables and domain, fuzzy logic rules, and defuzzification. The stability of the proposed fuzzy PID controller is theoretically proved according to the small gain theorem. Experiments for targets position of 250 mm, 300 mm, and 350 mm were done and the results showed that the absolute error of the position control is less than 0.25 mm. And comparative experiment between fuzzy PID and classical PID verified the advantage of the proposed algorithm.

  17. Stability and servo-control of the crystal pulling process

    International Nuclear Information System (INIS)

    Johansen, T.H.

    1990-11-01

    The paper analyzes why the crystal pulling process needs servo-control, and how it can be implemented. Special emphasis is put on the fundamental question of inherent stability, and how to interpret the signal from a balance when the weighing method is used for cystal diameter detection. 15 refs., 13 figs

  18. A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Lee, Jong Jik

    2016-01-01

    To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

  19. A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Lee, Jong Jik [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-06-15

    To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

  20. Application of a Self-recurrent Wavelet Neural Network in the Modeling and Control of an AC Servo System

    Directory of Open Access Journals (Sweden)

    Run Min HOU

    2014-05-01

    Full Text Available To control the nonlinearity, widespread variations in loads and time varying characteristic of the high power ac servo system, the modeling and control techniques are studied here. A self-recurrent wavelet neural network (SRWNN modeling scheme is proposed, which successfully addresses the issue of the traditional wavelet neural network easily falling into local optimum, and significantly improves the network approximation capability and convergence rate. The control scheme of a SRWNN based on fuzzy compensation is expected. Gradient information is provided in real time for the controller by using a SRWNN identifier, so as to ensure that the learning and adjusting function of the controller of the SRWNN operate well, and fuzzy compensation control is applied to improve rapidity and accuracy of the entire system. Then the Lyapunov function is utilized to judge the stability of the system. The experimental analysis and comparisons with other modeling and control methods, it is clearly shown that the validities of the proposed modeling scheme and control scheme are effective.

  1. Plataforma de desarrollo para el control en tiempo real de estructuras cinemáticas con realimentación visual//Platform to develop real time visual servoing control in kinematics systems

    Directory of Open Access Journals (Sweden)

    René González-Rodríguez

    2012-09-01

    Full Text Available En este trabajo se presenta una plataforma de desarrollo para el control en tiempo real de estructuras cinemáticas con realimentación visual. Se ha diseñado una configuración genérica que permite la implementación de cualquier variante de control visual. Para el procesamiento de la imagen se ha propuesto una estrategia que permite el uso de diferentes herramientas comerciales o algoritmos propiospara la captura y extracción de características de la imagen. El uso de Real Time Work Shop y Real Time Windows Target en el lazo de control interno brinda la posibilidad de implementar algoritmos de control servovisual en tiempo real. Al final del trabajo se presentan los resultados de un esquema de controlservovisual aplicado en un manipulador industrial. La plataforma propuesta constituye una herramienta de desarrollo para aplicaciones industriales de control servovisual y sirve de apoyo a la enseñanza de la mecatrónica en pregrado y postgrado.Palabras claves: control servovisual, control en tiempo real, estructuras cinemáticas._______________________________________________________________________________AbstractIn this work we propose a platform to develop visual servoing control systems. The platform has a generic design with the possibility to implement direct or look and move visual servoing systems. For the image processing we present a generic design allowing the use of any image processing library like Matrox MIL,Intel IPP, OpenCV or any algorithms for image capture and target characteristics extraction. The uses of Real Time Work Shop and Real Time Windows Target in the internal loop permits modify the control structure in SIMULINK very easy.Key words: visual servoing, real time control, kinematics systems.

  2. Control Servo-Visual de un Robot Manipulador Planar Basado en Pasividad

    Directory of Open Access Journals (Sweden)

    Carlos Soria

    2008-10-01

    Full Text Available Resumen: En este trabajo se diseña un controlador servo visual basado en la propiedad de pasividad del sistema visual. Se propone un regulador con ganancias de control variables, de tal manera que se evita la saturación de los actuadores y al mismo tiempo presenta la capacidad de corregir errores de pequeña magnitud. Asimismo el diseno se hace tenieñdo en cuenta el desempeño L2, a fin de darle capacidad de seguimiento de objetos en movimiento, con un error de control pequeño. Se muestran resultados experimentales realizados en un robot manipulador industrial tipo planar para verificar el cumplimiento de los objetivos del controlador propuesto. Palabras Clave: robot manipulador industrial, control servo visual, control no lineal, pasividad

  3. Development And Evaluation Of A Low Cost Servo-valve For Liquid Inputs Application [desenvolvimento E Avaliação De Uma Servoválvula De Baixo Custo Para A Aplicação De Insumos Líquidos

    OpenAIRE

    Johann A.L.; Russo E.; Cappelli N.L.; Umezu C.K.

    2006-01-01

    The present work aimed the development of a low cost servo-valve that answers to an electronic control signal, for variable rates liquid inputs application. A literature research to define which valve type should be used was made. A mechanically activated proportional valve with an electronically controlled servo-engine was designed and evaluated. Since developed the servo-valve, the system was submited to a number of tests .The evaluation of its behavior was obtained in terms of repeatabilit...

  4. Forward Models Applied in Visual Servoing for a Reaching Task in the iCub Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Daniel Fernando Tello Gamarra

    2009-01-01

    Full Text Available This paper details the application of a forward model to improve a reaching task. The reaching task must be accomplished by a humanoid robot with 53 degrees of freedom (d.o.f. and a stereo-vision system. We have explored via simulations a new way of constructing and utilizing a forward model that encodes eye–hand relationships. We constructed a forward model using the data obtained from only a single reaching attempt. ANFIS neural networks are used to construct the forward model, but the forward model is updated online with new information that comes from each reaching attempt. Using the obtained forward model, an initial image Jacobian is estimated and is used with a visual servoing controller. Simulation results demonstrate that errors are lower when the initial image Jacobian is derived from the forward model. This paper is one of the few attempts at applying visual servoing in a complete humanoid robot.

  5. Concurrent image-based visual servoing with adaptive zooming for non-cooperative rendezvous maneuvers

    Science.gov (United States)

    Pomares, Jorge; Felicetti, Leonard; Pérez, Javier; Emami, M. Reza

    2018-02-01

    An image-based servo controller for the guidance of a spacecraft during non-cooperative rendezvous is presented in this paper. The controller directly utilizes the visual features from image frames of a target spacecraft for computing both attitude and orbital maneuvers concurrently. The utilization of adaptive optics, such as zooming cameras, is also addressed through developing an invariant-image servo controller. The controller allows for performing rendezvous maneuvers independently from the adjustments of the camera focal length, improving the performance and versatility of maneuvers. The stability of the proposed control scheme is proven analytically in the invariant space, and its viability is explored through numerical simulations.

  6. Smart Rotor Modeling: Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    the trailing edge flap deflection to actively reduce the fatigue loads on the structure. The performance of the smart rotor configuration and its control algorithms are finally quantified by aero-servo-elastic simulations of the smart rotor turbine operating in a standard turbulent wind field.......This book presents the formulation of an aero-servo-elastic model for a wind turbine rotor equipped with Adaptive Trailing Edge Flaps (ATEF), a smart rotor configuration. As the name suggests, an aero-servo-elastic model consists of three main components: an aerodynamic model, a structural model......, and a control model. The book first presents an engineering type of aerodynamic model that accounts for the dynamic effects of flap deflection. The aerodynamic model is implemented in a Blade Element Momentum framework, and coupled with a multi-body structural model in the aero-servoelastic simulation code HAWC...

  7. Nonlinear Dynamic Modeling of a Supersonic Commercial Transport Turbo-Machinery Propulsion System for Aero-Propulso-Servo-Elasticity Research

    Science.gov (United States)

    Connolly, Joe; Carlson, Jan-Renee; Kopasakis, George; Woolwine, Kyle

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic model for a variable cycle turbofan engine, supersonic inlet, and convergent-divergent nozzle that can be integrated with an aeroelastic vehicle model to create an overall Aero-Propulso-Servo-Elastic (APSE) modeling tool. The primary focus of this study is to provide a means to capture relevant thrust dynamics of a full supersonic propulsion system by using relatively simple quasi-one dimensional computational fluid dynamics (CFD) methods that will allow for accurate control algorithm development and capture the key aspects of the thrust to feed into an APSE model. Previously, propulsion system component models have been developed and are used for this study of the fully integrated propulsion system. An overview of the methodology is presented for the modeling of each propulsion component, with a focus on its associated coupling for the overall model. To conduct APSE studies the described dynamic propulsion system model is integrated into a high fidelity CFD model of the full vehicle capable of conducting aero-elastic studies. Dynamic thrust analysis for the quasi-one dimensional dynamic propulsion system model is presented along with an initial three dimensional flow field model of the engine integrated into a supersonic commercial transport.

  8. A Proposal Of Simulation Model Of A Wind-Steering System For Sailing Yachts, Based On Single-Stage Servo-Pendulum Coupled With Main Rudder

    Directory of Open Access Journals (Sweden)

    Piętak Andrzej

    2015-04-01

    Full Text Available The aim of this study was to investigate possible application of fast design prototyping methods for wind-steering systems used in offshore sailing yachts. The development of such methods would help to speed up the construction work and reduce the scope of necessary experimental research, prior to implementation of the system. In the present work, based on an analysis of existing designs of windvane systems, a preliminary selection of the system configuration has been undertaken, in terms of a compromise between efficiency, performance, and design complexity. Construction design of a single-stage, servo – pendulum system, has been developed by using the Autodesk Inventor design package. Next, based on the design data, a simulation model of the system, has been produced by using Matlab - Simulink software and SimMechanics library. The model was further verified in terms of kinematics mapping with the use of Matlab visualization tools.

  9. Evaluation and compensation of steady gas flow force on the high-pressure electro-pneumatic servo valve direct-driven by voice coil motor

    International Nuclear Information System (INIS)

    Li, Baoren; Gao, Longlong; Yang, Gang

    2013-01-01

    Highlights: ► A novel energy saving high-pressure electro-pneumatic servo valve is presented. ► An evaluated method for steady gas flow forces on pneumatic valves is proposed. ► Gas jet angles at the orifices for the valve are larger than 69° commonly used. ► The steady gas flow force is strongly nonlinear with valve opening. ► The steady gas flow force is compensated and the aim at energy saving is realized. - Abstract: A novel voice coil motor (VCM) direct drive single stage high-pressure pneumatic servo valve is designed, and then the steady gas flow force acting on the spool of the servo valve is investigated by numerical simulation and experimental methods in this paper. At present, many studies about flow force are concentrated mainly on hydraulic valves, but rarely on pneumatic valves. However, the velocity of gas is up to sonic when high-pressure gas flows through the servo valve orifice. And therefore, the steady gas flow force, generated by high pressure and high speed gas flow, cannot be neglected and is an important disturbance for the VCM direct-drive single stage high-pressure pneumatic servo valve. Consequently, the numerical simulation with computational fluid dynamics (CFD) is adopted to analyze the flow filed, jet angles, and steady gas flow forces for the servo valve with different valve openings and inlet pressures. The experimental study is performed to evaluate and confirm the numerical analysis. Then the compensated approach is proposed to reduce the steady gas flow force for the servo valve, changing the angle of non-metering port designed in the valve sleeve to the spool axis. The results demonstrate that the presented numerical analysis method is validated, the gas jet angle for the servo valve orifice is more than 69° and varies with different spool openings, and the steady gas flow force is nonlinear with valve opening and linear with inlet pressure when the outlet boundary is atmospheric pressure. Moreover, the steady gas

  10. Investigation on Superior Performance by Fractional Controller for Cart-Servo Laboratory Set-Up

    Directory of Open Access Journals (Sweden)

    Ameya Anil Kesarkar

    2014-01-01

    Full Text Available In this paper, an investigation is made on the superiority of fractional PID controller (PI^alpha D^beta over conventional PID for the cart-servo laboratory set-up. The designed controllers are optimum in the sense of Integral Absolute Error (IAE and Integral Square Error (ISE. The paper contributes in three aspects: 1 Acquiring nonlinear mathematical model for the cart-servo laboratory set-up, 2 Designing fractional and integer order PID for minimizing IAE, ISE, 3 Analyzing the performance of designed controllers for simulated plant model as well as real plant. The results show a significantly superior performance by PI^alpha D^beta as compared to the conventional PID controller.

  11. Optimization of Smart Structure for Improving Servo Performance of Hard Disk Drive

    Science.gov (United States)

    Kajiwara, Itsuro; Takahashi, Masafumi; Arisaka, Toshihiro

    Head positioning accuracy of the hard disk drive should be improved to meet today's increasing performance demands. Vibration suppression of the arm in the hard disk drive is very important to enhance the servo bandwidth of the head positioning system. In this study, smart structure technology is introduced into the hard disk drive to suppress the vibration of the head actuator. It has been expected that the smart structure technology will contribute to the development of small and light-weight mechatronics devices with the required performance. First, modeling of the system is conducted with finite element method and modal analysis. Next, the actuator location and the control system are simultaneously optimized using genetic algorithm. Vibration control effect with the proposed vibration control mechanisms has been evaluated by some simulations.

  12. A Design Method for Fault Reconfiguration and Fault-Tolerant Control of a Servo Motor

    Directory of Open Access Journals (Sweden)

    Jing He

    2013-01-01

    Full Text Available A design scheme that integrates fault reconfiguration and fault-tolerant position control is proposed for a nonlinear servo system with friction. Analysis of the non-linear friction torque and fault in the system is used to guide design of a sliding mode position controller. A sliding mode observer is designed to achieve fault reconfiguration based on the equivalence principle. Thus, active fault-tolerant position control of the system can be realized. A real-time simulation experiment is performed on a hardware-in-loop simulation platform. The results show that the system reconfigures well for both incipient and abrupt faults. Under the fault-tolerant control mechanism, the output signal for the system position can rapidly track given values without being influenced by faults.

  13. Servo Reduces Friction In Flexure Bearing

    Science.gov (United States)

    Clingman, W. Dean

    1991-01-01

    Proposed servocontrol device reduces such resistive torques as stiction, friction, ripple, and cogging in flexure bearing described in LAR-14348, "Flexure Bearing Reduces Startup Friction". Reduces frictional "bump" torque encountered when bearing ball runs into buildup of grease on bearing race. Also used as cable follower to reduce torque caused by cable and hoses when they bend because of motion of bearing. New device includes torquer across ball race. Torquer controlled by servo striving to keep flexure at null, removing torque to outer ring. In effect, device is inner control loop reducing friction, but does not control platforms or any outer-control-loop functions.

  14. Decommissioning of hot cells using a hydraulically powered servo manipulator

    International Nuclear Information System (INIS)

    Asquith, J.D.; Loughborough, D.

    1993-01-01

    This paper describes the preparations and initial trials involved in remotely dismantling the containment boxes within two concrete shielded hot cells at Harwell Laboratory using a hydraulically powered servo manipulator, ARTISAN. The manipulator deploys a variety of tools for cutting operations. The modular design has enabled it to be specifically configured for this application by adjusting the link lengths using spacers between the joints. In addition to the remote handling requirements, a new posting and ventilation system for the facility is outlined. Trials with ARTISAN in an in-active mock-up have now been successfully completed, and the manipulator is installed in the active facility. The considerations and approach adopted in this project are typical of many situations where remote techniques are required for decommissioning activities. (author)

  15. Cine-servo lens technology for 4K broadcast and cinematography

    Science.gov (United States)

    Nurishi, Ryuji; Wakazono, Tsuyoshi; Usui, Fumiaki

    2015-09-01

    Central to the rapid evolution of 4K image capture technology in the past few years, deployment of large-format cameras with Super35mm Single Sensors is increasing in TV production for diverse shows such as dramas, documentaries, wildlife, and sports. While large format image capture has been the standard in the cinema world for quite some time, the recent experiences within the broadcast industry have revealed a variety of requirement differences for large format lenses compared to those of the cinema industry. A typical requirement for a broadcast lens is a considerably higher zoom ratio in order to avoid changing lenses in the middle of a live event, which is mostly not the case for traditional cinema productions. Another example is the need for compact size, light weight, and servo operability for a single camera operator shooting in a shoulder-mount ENG style. On the other hand, there are new requirements that are common to both worlds, such as smooth and seamless change in angle of view throughout the long zoom range, which potentially offers new image expression that never existed in the past. This paper will discuss the requirements from the two industries of cinema and broadcast, while at the same time introducing the new technologies and new optical design concepts applied to our latest "CINE-SERVO" lens series which presently consists of two models, CN7x17KAS-S and CN20x50IAS-H. It will further explain how Canon has realized 4K optical performance and fast servo control while simultaneously achieving compact size, light weight and high zoom ratio, by referring to patent-pending technologies such as the optical power layout, lens construction, and glass material combinations.

  16. Dynamic modeling and experiment of a new type of parallel servo press considering gravity counterbalance

    Science.gov (United States)

    He, Jun; Gao, Feng; Bai, Yongjun; Wu, Shengfu

    2013-11-01

    The large capacity servo press is traditionally realized by means of redundant actuation, however there exist the over-constraint problem and interference among actuators, which increases the control difficulty and the product cost. A new type of press mechanism with parallel topology is presented to develop the mechanical servo press with high stamping capacity. The dynamic model considering gravity counterbalance is proposed based on the virtual work principle, and then the effect of counterbalance cylinder on the dynamic performance of the servo press is studied. It is found that the motor torque required to operate the press is a lot less than the others when the ratio of the counterbalance force to the gravity of ram is in the vicinity of 1.0. The stamping force of the real press prototype can reach up to 25 MN on the position of 13 mm away from the bottom dead center. The typical deep-drawing process with 1 200 mm stroke at 8 strokes per minute is proposed by means of five order polynomial. On this process condition, the driving torques are calculated based on the above dynamic model and the torque measuring test is also carried out on the prototype. It is shown that the curve trend of calculation torque is consistent to the measured result and that the average error is less than 15%. The parallel mechanism is introduced into the development of large capacity servo press to avoid the over-constraint and interference of traditional redundant actuation, and its dynamic characteristics with gravity counterbalance are presented.

  17. Investigation of the low flux servo-controlled limit of a co-phased interferometer

    Science.gov (United States)

    Damé, Luc; Derrien, Marc; Kozlowski, Mathias; Merdjane, Mohamed

    2018-04-01

    This paper, "Investigation of the low flux servo-controlled limit of a co-phased interferometer," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  18. Analysis of an controller design for an electro-hydraulic servo pressure regulator

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Madsen, A. M.

    2009-01-01

    Mobile hydraulics is in a transition phase, where electronic sensors and digital signal processors are starting to become standard on a high number of machines, hereby replacing hydraulic pilot lines and oering new possibilities with regard to both control and feasibility. For controlling some...... of the existing hydraulic components there are, however, still a need for being able to generate a hydraulic pilot pressure, as e.g. almost all open-circuit pumps are hydraulically controlled. The focus of the current paper is therefore on the analysis and controller design an electro-hydraulic servo pressure...... regulator, which generates a hydraulic LS-pressure based on an electrical reference, hereby synergistically integrating knowledge from all parts of the mechatronics area. The servo pressure regulator is used to generate the LS-signal for a variable displacement pump, and the paper rst presents...

  19. Lung function studied by servo-controlled ventilator and respiratory mass spectrometer

    International Nuclear Information System (INIS)

    Piiper, J.

    1987-01-01

    The gas exchange function of lungs is studied. The gas concentration, measured by mass spectrometry and the lung volume and rate of change of lung volume are discussed. A servo-controlled ventilator is presented. Several experimental projects performed on anesthetized paralyzed dogs are reported. (M.A.C.) [pt

  20. Servo-elastic dynamics of a hydraulic actuator pitching a blade with large deflections

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Kallesøe, Bjarne Skovmose

    2007-01-01

    This paper deals with the servo-elastic dynamics of a hydraulic pitch actuator acting on a largely bend wind turbine blade. The compressibility of the oil and flexibility of the hoses introduce a dynamic mode in the pitch bearing degree of freedom. This mode may obtain negative damping...... if the proportional gain on the actuator position error is defined too large relative to the viscous forces in the hydraulic system and the total rotational inertia of the pitch bearing degree of freedom. A simple expression for the stability limit of this proportional gain is derived for tuning the gain based...

  1. Feature tracking for visual servo based range regulation on a mobile robot

    CSIR Research Space (South Africa)

    Burke, Michael G

    2009-11-01

    Full Text Available This poster presents a visual servo approach to straight line range and velocity regulation. The difference in velocity between a lead mobile robot and a follower is regulated through velocity control of the follower, in order to maintain a constant...

  2. Identification and real-time position control of a servo-hydraulic rotary actuator by means of a neurobiologically motivated algorithm.

    Science.gov (United States)

    Sadeghieh, Ali; Sazgar, Hadi; Goodarzi, Kamyar; Lucas, Caro

    2012-01-01

    This paper presents a new intelligent approach for adaptive control of a nonlinear dynamic system. A modified version of the brain emotional learning based intelligent controller (BELBIC), a bio-inspired algorithm based upon a computational model of emotional learning which occurs in the amygdala, is utilized for position controlling a real laboratorial rotary electro-hydraulic servo (EHS) system. EHS systems are known to be nonlinear and non-smooth due to many factors such as leakage, friction, hysteresis, null shift, saturation, dead zone, and especially fluid flow expression through the servo valve. The large value of these factors can easily influence the control performance in the presence of a poor design. In this paper, a mathematical model of the EHS system is derived, and then the parameters of the model are identified using the recursive least squares method. In the next step, a BELBIC is designed based on this dynamic model and utilized to control the real laboratorial EHS system. To prove the effectiveness of the modified BELBIC's online learning ability in reducing the overall tracking error, results have been compared to those obtained from an optimal PID controller, an auto-tuned fuzzy PI controller (ATFPIC), and a neural network predictive controller (NNPC) under similar circumstances. The results demonstrate not only excellent improvement in control action, but also less energy consumption. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Automatic local beam steering systems for NSLS x-ray storage ring: Design and implementation

    International Nuclear Information System (INIS)

    Singh, O.V.; Nawrocky, R.; Flannigan, J.

    1991-01-01

    Recently, two local automatic steering systems, controlled by microprocessors, have been installed and commissioned in the NSLS X- Ray storage ring. In each system, the position of the electron beam is stabilized at two locations by four independent servo systems. This paper describes three aspects of the local feedback program: design; commissioning; and limitation. The system design is explained by identifying major elements such as beam position detectors, signal processors, compensation amplifiers, ratio amplifiers, trim equalizers and microprocessor feedback controllers. System commissioning involves steps such as matching trim compensation, determination of local orbit bumps, measurement of open loop responses and design of servo circuits. Several limitations of performance are also discussed. 7 refs., 2 figs

  4. Vision Servo Motion Control and Error Analysis of a Coplanar XXY Stage for Image Alignment Motion

    Directory of Open Access Journals (Sweden)

    Hau-Wei Lee

    2013-01-01

    Full Text Available In recent years, as there is demand for smart mobile phones with touch panels, the alignment/compensation system of alignment stage with vision servo control has also increased. Due to the fact that the traditional stacked-type XYθ stage has cumulative errors of assembly and it is heavy, it has been gradually replaced by the coplanar stage characterized by three actuators on the same plane with three degrees of freedom. The simplest image alignment mode uses two cameras as the equipments for feedback control, and the work piece is placed on the working stage. The work piece is usually engraved/marked. After the cameras capture images and when the position of the mark in the camera is obtained by image processing, the mark can be moved to the designated position in the camera by moving the stage and using alignment algorithm. This study used a coplanar XXY stage with 1 μm positioning resolution. Due to the fact that the resolution of the camera is about 3.75 μm per pixel, thus a subpixel technology is used, and the linear and angular alignment repeatability of the alignment system can achieve 1 μm and 5 arcsec, respectively. The visual servo motion control for alignment motion is completed within 1 second using the coplanar XXY stage.

  5. Chiari malformation and central sleep apnea syndrome: efficacy of treatment with adaptive servo-ventilation

    Directory of Open Access Journals (Sweden)

    Jorge Marques do Vale

    2014-10-01

    Full Text Available The Chiari malformation type I (CM-I has been associated with sleep-disordered breathing, especially central sleep apnea syndrome. We report the case of a 44-year-old female with CM-I who was referred to our sleep laboratory for suspected sleep apnea. The patient had undergone decompressive surgery 3 years prior. An arterial blood gas analysis showed hypercapnia. Polysomnography showed a respiratory disturbance index of 108 events/h, and all were central apnea events. Treatment with adaptive servo-ventilation was initiated, and central apnea was resolved. This report demonstrates the efficacy of servo-ventilation in the treatment of central sleep apnea syndrome associated with alveolar hypoventilation in a CM-I patient with a history of decompressive surgery.

  6. Dynamic parameter identification of robot arms with servo-controlled electrical motors

    Science.gov (United States)

    Jiang, Zhao-Hui; Senda, Hiroshi

    2005-12-01

    This paper addresses the issue of dynamic parameter identification of the robot manipulator with servo-controlled electrical motors. An assumption is made that all kinematical parameters, such as link lengths, are known, and only dynamic parameters containing mass, moment of inertia, and their functions need to be identified. First, we derive dynamics of the robot arm with a linear form of the unknown dynamic parameters by taking dynamic characteristics of the motor and servo unit into consideration. Then, we implement the parameter identification approach to identify the unknown parameters with respect to individual link separately. A pseudo-inverse matrix is used for formulation of the parameter identification. The optimal solution is guaranteed in a sense of least-squares of the mean errors. A Direct Drive (DD) SCARA type industrial robot arm AdeptOne is used as an application example of the parameter identification. Simulations and experiments for both open loop and close loop controls are carried out. Comparison of the results confirms the correctness and usefulness of the parameter identification and the derived dynamic model.

  7. Induced hypothermia for infants with hypoxic- ischemic encephalopathy using a servo-controlled fan: an exploratory pilot study.

    Science.gov (United States)

    Horn, Alan; Thompson, Clare; Woods, David; Nel, Alida; Bekker, Adrie; Rhoda, Natasha; Pieper, Clarissa

    2009-06-01

    Several trials suggest that hypothermia is beneficial in selected infants with hypoxic-ischemic encephalopathy. However, the cooling methods used required repeated interventions and were either expensive or reported significant temperature variation. The objective of this pilot study was to describe the use, efficacy, and physiologic impact of an inexpensive servo-controlled cooling fan blowing room-temperature air. A servo-controlled fan was manufactured and used to cool 10 infants with hypoxic-ischemic encephalopathy to a rectal temperature of 33 degrees C to 34 degrees C. The infants were sedated with phenobarbital, but clonidine was administered to some infants if shivering or discomfort occurred. A servo-controlled radiant warmer was used simultaneously with the fan to prevent overcooling. The settings used on the fan and radiant warmer differed slightly between some infants as the technique evolved. A rectal temperature of 34 degrees C was achieved in a median time of 58 minutes. Overcooling did not occur, and the mean temperature during cooling was 33.6 degrees C +/- 0.2 degrees C. Inspired oxygen requirements increased in 6 infants, and 5 infants required inotropic support during cooling, but this was progressively reduced after 1 to 2 days. Dehydration did not occur. Five infants shivered when faster fan speeds were used, but 4 of the 5 infants had hypomagnesemia. Shivering was controlled with clonidine in 4 infants, but 1 infant required morphine. Servo-controlled fan cooling with room-temperature air, combined with servo-controlled radiant warming, was an effective, simple, and safe method of inducing and maintaining rectal temperatures of 33 degrees C to 34 degrees C in sedated infants with hypoxic-ischemic encephalopathy. After induction of hypothermia, a low fan speed facilitated accurate temperature control, and warmer-controlled rewarming at 0.2 degrees C increments every 30 minutes resulted in more appropriate rewarming than when 0.5 degrees C

  8. A Predictive Velocity Observer in Wire Bonder’s Control System

    Directory of Open Access Journals (Sweden)

    Lei Zhou

    2014-01-01

    Full Text Available Wire bonder is a typical high speed machine. The motion speed of XY-stage is the key factor of bonding efficiency. However, phase lag elements in the servo system limit the bandwidth and slow down the system’s response. A predictive velocity observer is proposed to compensate for those phase lags. Then, the velocity loop controller can be designed as for a servo system which does not have those phase lags. Loop gains are enlarged and bandwidth is enlarged correspondingly. Then, the motion speed is improved and settling time is decreased. Experiment results verify that the predictive velocity observer provided a significant phase lead and the performance of wire bonder is improved.

  9. Panoramic optical-servoing for industrial inspection and repair

    Science.gov (United States)

    Sallinger, Christian; O'Leary, Paul; Retschnig, Alexander; Kammerhofer, Martin

    2004-05-01

    Recently specialized robots were introduced to perform the task of inspection and repair in large cylindrical structures such as ladles, melting furnaces and converters. This paper reports on the image processing system and optical servoing for one such a robot. A panoramic image of the vessels inner surface is produced by performing a coordinated robot motion and image acquisition. The level of projective distortion is minimized by acquiring a high density of images. Normalized phase correlation calculated via the 2D Fourier transform is used to calculate the shift between the single images. The narrow strips from the dense image map are then stitched together to build the panorama. The mapping between the panoramic image and the positioning of the robot is established during the stitching of the images. This enables optical feedback. The robots operator can locate a defect on the surface by selecting the area of the image. Calculation of the forward and inverse kinematics enable the robot to automatically move to the location on the surface requiring repair. Experimental results using a standard 6R industrial robot have shown the full functionality of the system concept. Finally, were test measurements carried out successfully, in a ladle at a temperature of 1100° C.

  10. Detection of Surface Defects and Servo Signal Restoration for a Compact Disc Player

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2006-01-01

    Compact disc (CD) players have been on the market for more than two decades, and the involved technologies, including control are very mature. Some problems, however, still remain with respect to playing CDs having to surface defects like scratches and fingerprints. Two servo control loops are used...... to keep the optical pick-up unit (OPU) focused and radially locked to the information track of the CD. The problem is to design servo controllers which are well suited for both handling surface defects and disturbances like mechanical shocks. The handling of surface defects requires a low-controller...... bandwidth which is in conflict with the requirement for the handling of disturbances. This control problem can be solved by the use of a fault tolerant control strategy, where the fault detection is very important. The OPU feeds the controllers with detector signals. Based on these, focus and radial...

  11. Modal space three-state feedback control for electro-hydraulic servo plane redundant driving mechanism with eccentric load decoupling.

    Science.gov (United States)

    Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining

    2018-06-01

    The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Servo-Elastic Dynamics of a Hydraulic Actuator Pitching a Blade with Large Deflections

    International Nuclear Information System (INIS)

    Hansen, M H; Kallesoee, B S

    2007-01-01

    This paper deals with the servo-elastic dynamics of a hydraulic pitch actuator acting on a largely bend wind turbine blade. The compressibility of the oil and flexibility of the hoses introduce a dynamic mode in the pitch bearing degree of freedom. This mode may obtain negative damping if the proportional gain on the actuator position error is defined too large relative to the viscous forces in the hydraulic system and the total rotational inertia of the pitch bearing degree of freedom. A simple expression for the stability limit of this proportional gain is derived for tuning the gain based on the Ziegler-Nichols method. Computed transfer functions from reference to actual pitch angles indicate that the actuator can be approximated as a low-pass filter with some appropriate limitations on pitching speed and acceleration. The structural blade model includes the geometrical coupling of edgewise bending and torsion for large flapwise deflections. This coupling is shown to introduce edgewise bending response for pitch reference oscillations around the natural frequency of the edgewise bending mode, in which frequency range the transfer function from reference to actual pitch angle cannot be modeled as a simple low-pass filter. The pitch bearing is assumed to be frictionless as a first approximation

  13. Optimization and performance characteristics of servo-piston hydraulic control rod drive mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Wang Ge

    2014-01-01

    This paper introduces the structure and working principles of the servo-piston hydraulic control rod drive mechanism (SHCM), which can be moved continuously and has self-lock capacity. The steady state characteristics of SHCM are simulated using FLUENT codes. Based on comparison with the experimental results, the simulation is proven to be credible as a tool to describe the steady state characteristics. Finally, the influence of structural parameters is analyzed to obtain an optimal design. The experimental results indicate that the traction of the servo-tube is larger in the starting and braking stages. The resistance coefficient of SHCM increases gradually in the starting and lifting stage, and then tends to be stable. This coefficient has a maximum value while the inlet pressure is low. Performance norms of SHCM, such as the anti-disturbance ability and positioning accuracy, are tested, the anti-disturbance ability of the actuator is strong while the inlet pressure is fluctuating. The positioning accuracy is high regardless of the action process (lifting or not). (author)

  14. Design of a Novel Servo-motorized Laser Device for Visual Pathways Diseases Therapy

    Directory of Open Access Journals (Sweden)

    Carlos Ignacio Sarmiento

    2015-12-01

    Full Text Available We discuss a novel servo-motorized laser device and a research protocol for visual pathways diseases therapies. The proposed servo-mechanized laser device can be used for potential rehabilitation of patients with hemianopia, quadrantanopia, scotoma, and some types of cortical damages. The device uses a semi spherical structure where the visual stimulus will be shown inside, according to a previous stimuli therapy designed by an ophthalmologist or neurologist. The device uses a pair of servomotors (with torque=1.5kg, which controls the laser stimuli position for the internal therapy and another pair for external therapy. Using electronic tools such as microcontrollers along with miscellaneous electronic materials, combined with LabVIEW based interface, a control mechanism is developed for the new device. The proposed device is well suited to run various visual stimuli therapies. We outline the major design principles including the physical dimensions, laser device’s kinematical analysis and the corresponding software development.

  15. Servo-control for maintaining abdominal skin temperature at 36C in low birth weight infants.

    Science.gov (United States)

    Sinclair, J C

    2002-01-01

    Randomized trials have shown that the neonatal mortality rate of low birth-weight babies can be reduced by keeping them warm. For low birth-weight babies nursed in incubators, warm conditions may be achieved either by heating the air to a desired temperature, or by servo-controlling the baby's body temperature at a desired set-point. In low birth weight infants, to determine the effect on death and other important clinical outcomes of targeting body temperature rather than air temperature as the end-point of control of incubator heating. Standard search strategy of the Cochrane Neonatal Review Group. Searches were made of the Cochrane Controlled Trials Register (CCTR) (Cochrane Library, Issue 4, 2001) and MEDLINE, 1966 to November 2001. Randomized or quasi-randomized trials which test the effects of having the heat output of the incubator servo-controlled from body temperature compared with setting a constant incubator air temperature. Trial methodologic quality was systematically assessed. Outcome measures included death, timing of death, cause of death, and other clinical outcomes. Categorical outcomes were analyzed using relative risk and risk difference. Meta-analysis assumed a fixed effect model. Two eligible trials were found. In total, they included 283 babies and 112 deaths. Compared to setting a constant incubator air temperature of 31.8C, servo-control of abdominal skin temperature at 36C reduces the neonatal death rate among low birth weight infants: relative risk 0.72 (95% CI 0.54, 0.97); risk difference -12.7% (95% CI -1.6, -23.9). This effect is even greater among VLBW infants. During at least the first week after birth, low birth weight babies should be provided with a carefully regulated thermal environment that is near the thermoneutral point. For LBW babies in incubators, this can be achieved by adjusting incubator temperature to maintain an anterior abdominal skin temperature of at least 36C, using either servo-control or frequent manual

  16. Analysis of and H∞ Controller Design For An Electro-Hydraulic Servo Pressure Regulator

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2011-01-01

    -circuit pumps are still hydraulically controlled, there is however still a need for being able to generate a hydraulic pilot pressure. The focus of the current paper is on the analysis and controller design of an electrohydraulic servo pressure regulator, which generates a hydraulic LS-pressure for a variable...

  17. Transmission Characteristics on Wire-Driven Links of a Bridge Transported Servo Manipulator for the ACP Equipment Maintenance

    International Nuclear Information System (INIS)

    Park, Byung Suk; Jin, Jae Hyun; Song, Tae Gil; Kim, Sung Hyun; Yoon, Ji Sup

    2004-01-01

    A bridge transported servo manipulator (BTSM) system for the advanced spent fuel conditioning process (ACP) has been developed to overcome the limitation of access, which is a drawback of mechanical master-slave manipulators (MSM) for the equipment maintenance. The servo manipulator is composed of a slave manipulator attached to the telescoping tube sets equipped with the overhead bridge installed at a hot cell and a master manipulator installed at an out-of-hot cell. Each manipulator has 7 degrees-of-freedom (DOF): a body rotation, an upper-arm tilt, a lower-arm tilt, a lower-arm rotation, a wrist pan and tilt, and a grasp motion. A wire-driven mechanism for a lower-arm rotation, a wrist pan and tilt, and a grasp motion of the manipulator has been adopted to increase the handling capacity compared to the manipulator weight and decrease the friction. The main disadvantage of the wire-driven mechanism is that if one link is in motion, other links can be affected. In this paper, the transmission characteristics among the wire-driven links have been formulated to overcome this drawback. The unexpected behaviors are confirmed by analyses of transmission characteristics as well as experiments. Also, the experimental results show that the unexpected behaviors are greatly decreased by the proposed compensation equations

  18. Position Based Visual Servoing control of a Wheelchair Mounter Robotic Arm using Parallel Tracking and Mapping of task objects

    Directory of Open Access Journals (Sweden)

    Alessandro Palla

    2017-05-01

    Full Text Available In the last few years power wheelchairs have been becoming the only device able to provide autonomy and independence to people with motor skill impairments. In particular, many power wheelchairs feature robotic arms for gesture emulation, like the interaction with objects. However, complex robotic arms often require a joystic to be controlled; this feature make the arm hard to be controlled by impaired users. Paradoxically, if the user were able to proficiently control such devices, he would not need them. For that reason, this paper presents a highly autonomous robotic arm, designed in order to minimize the effort necessary for the control of the arm. In order to do that, the arm feature an easy to use human - machine interface and is controlled by Computer Vison algorithm, implementing a Position Based Visual Servoing (PBVS control. It was realized by extracting features by the camera and fusing them with the distance from the target, obtained by a proximity sensor. The Parallel Tracking and Mapping (PTAM algorithm was used to find the 3D position of the task object in the camera reference system. The visual servoing algorithm was implemented in an embedded platform, in real time. Each part of the control loop was developed in Robotic Operative System (ROS Environment, which allows to implement the previous algorithms as different nodes. Theoretical analysis, simulations and in system measurements proved the effectiveness of the proposed solution.

  19. Adaptive servo ventilation for central sleep apnoea in heart failure : SERVE-HF on-treatment analysis

    NARCIS (Netherlands)

    Woehrle, Holger; Cowie, Martin R.; Eulenburg, Christine; Suling, Anna; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K.; Somers, Virend K.; Zannad, Faiez; Teschler, Helmut; Wegscheider, Karl

    2017-01-01

    This on-treatment analysis was conducted to facilitate understanding of mechanisms underlying the increased risk of all-cause and cardiovascular mortality in heart failure patients with reduced ejection fraction and predominant central sleep apnoea randomised to adaptive servo ventilation versus the

  20. Performance of MSRE Nuclear Power Control Systems (MSRE Test Report 5.2.1)

    International Nuclear Information System (INIS)

    Gabbard, C. H.

    1968-01-01

    The nuclear power control systems of the MSRE were evaluated by observing the steady-state operation of the reactor and by conducting a series of transient tests. The temperature servo was found capable of controlling all the transients that were introduced. However, because of the relatively slow response and inherent stability of the reactor system, the temperature servo was found to be relatively inactive during many of the load change transients. The automatic load control operated as expected except that the minimum power available to the automatic control was about 2 Mw instead of l Mw as had been planned. This has not caused a problem in the reactor operation because the load control has normally been operated in 'manual'.

  1. Numerical calculation of three-dimensional flow field of servo-piston hydraulic control rod driving mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Wang Ge

    2014-01-01

    Servo-piston hydraulic control rod driving mechanism is a new type built-in driving mechanism which is suitable for integrated reactor and it can be moved continuously. The numerical calculation and analysis of the internal three-dimensional flow field inside the driving mechanism were carried out by the computational fluid dynamics software FLUENT. The result shows that the unique pressure mutation area of flow field inside the driving mechanism is at the place of the servo variable throttle orifice. The differential pressure of the piston can be effectively controlled by changing the gap of variable throttle orifice. When the gap changes within 0.5 mm, the differential pressure can be greatly changed, and then the driving mechanism motion state would be changed too. When the working pressure is 0.1 MPa, the hoisting capacity of the driving mechanism can meet the design requirements, and the flow rate is small. (authors)

  2. The analysis and compensation of errors of precise simple harmonic motion control under high speed and large load conditions based on servo electric cylinder

    Science.gov (United States)

    Ma, Chen-xi; Ding, Guo-qing

    2017-10-01

    Simple harmonic waves and synthesized simple harmonic waves are widely used in the test of instruments. However, because of the errors caused by clearance of gear and time-delay error of FPGA, it is difficult to control servo electric cylinder in precise simple harmonic motion under high speed, high frequency and large load conditions. To solve the problem, a method of error compensation is proposed in this paper. In the method, a displacement sensor is fitted on the piston rod of the electric cylinder. By using the displacement sensor, the real-time displacement of the piston rod is obtained and fed back to the input of servo motor, then a closed loop control is realized. There is compensation of pulses in the next period of the synthetic waves. This paper uses FPGA as the processing core. The software mainly comprises a waveform generator, an Ethernet module, a memory module, a pulse generator, a pulse selector, a protection module, an error compensation module. A durability of shock absorbers is used as the testing platform. The durability mainly comprises a single electric cylinder, a servo motor for driving the electric cylinder, and the servo motor driver.

  3. Disturbance torque rejection properties of the NASA/JPL 70-meter antenna axis servos

    Science.gov (United States)

    Hill, R. E.

    1989-01-01

    Analytic methods for evaluating pointing errors caused by external disturbance torques are developed and applied to determine the effects of representative values of wind and friction torque. The expressions relating pointing errors to disturbance torques are shown to be strongly dependent upon the state estimator parameters, as well as upon the state feedback gain and the flow versus pressure characteristics of the hydraulic system. Under certain conditions, when control is derived from an uncorrected estimate of integral position error, the desired type 2 servo properties are not realized and finite steady-state position errors result. Methods for reducing these errors to negligible proportions through the proper selection of control gain and estimator correction parameters are demonstrated. The steady-state error produced by a disturbance torque is found to be directly proportional to the hydraulic internal leakage. This property can be exploited to provide a convenient method of determining system leakage from field measurements of estimator error, axis rate, and hydraulic differential pressure.

  4. Two-dimensional laser servoing for precision motion control of an ODV robotic license plate recognition system

    Science.gov (United States)

    Song, Zhen; Moore, Kevin L.; Chen, YangQuan; Bahl, Vikas

    2003-09-01

    As an outgrowth of series of projects focused on mobility of unmanned ground vehicles (UGV), an omni-directional (ODV), multi-robot, autonomous mobile parking security system has been developed. The system has two types of robots: the low-profile Omni-Directional Inspection System (ODIS), which can be used for under-vehicle inspections, and the mid-sized T4 robot, which serves as a ``marsupial mothership'' for the ODIS vehicles and performs coarse resolution inspection. A key task for the T4 robot is license plate recognition (LPR). For a successful LPR task without compromising the recognition rate, the robot must be able to identify the bumper locations of vehicles in the parking area and then precisely position the LPR camera relative to the bumper. This paper describes a 2D-laser scanner based approach to bumper identification and laser servoing for the T4 robot. The system uses a gimbal-mounted scanning laser. As the T4 robot travels down a row of parking stalls, data is collected from the laser every 100ms. For each parking stall in the range of the laser during the scan, the data is matched to a ``bumper box'' corresponding to where a car bumper is expected, resulting in a point cloud of data corresponding to a vehicle bumper for each stall. Next, recursive line-fitting algorithms are used to determine a line for the data in each stall's ``bumper box.'' The fitting technique uses Hough based transforms, which are robust against segmentation problems and fast enough for real-time line fitting. Once a bumper line is fitted with an acceptable confidence, the bumper location is passed to the T4 motion controller, which moves to position the LPR camera properly relative to the bumper. The paper includes examples and results that show the effectiveness of the technique, including its ability to work in real-time.

  5. New mode switching algorithm for the JPL 70-meter antenna servo controller

    Science.gov (United States)

    Nickerson, J. A.

    1988-01-01

    The design of control mode switching algorithms and logic for JPL's 70 m antenna servo controller are described. The old control mode switching logic was reviewed and perturbation problems were identified. Design approaches for mode switching are presented and the final design is described. Simulations used to compare old and new mode switching algorithms and logic show that the new mode switching techniques will significantly reduce perturbation problems.

  6. Bi-level positive pressure ventilation and adaptive servo ventilation in patients with heart failure and Cheyne-Stokes respiration.

    Science.gov (United States)

    Fietze, Ingo; Blau, Alexander; Glos, Martin; Theres, Heinz; Baumann, Gert; Penzel, Thomas

    2008-08-01

    Nocturnal positive pressure ventilation (PPV) has been shown to be effective in patients with impaired left ventricular ejection fraction (LVEF) and Cheyne-Stokes respiration (CSR). We investigated the effect of a bi-level PPV and adaptive servo ventilation on LVEF, CSR, and quantitative sleep quality. Thirty-seven patients (New York heart association [NYHA] II-III) with LVEFCSR were investigated by electrocardiography (ECG), echocardiography and polysomnography. The CSR index (CSRI) was 32.3+/-16.2/h. Patients were randomly treated with bi-level PPV using the standard spontaneous/timed (S/T) mode or with adaptive servo ventilation mode (AutoSetCS). After 6 weeks, 30 patients underwent control investigations with ECG, echocardiography, and polysomnography. The CSRI decreased significantly to 13.6+/-13.4/h. LVEF increased significantly after 6 weeks of ventilation (from 25.1+/-8.5 to 28.8+/-9.8%, plevel PPV and adaptive servo ventilation: the CSRI decreased more in the AutoSetCS group while the LVEF increased more in the bi-level PPV group. Administration of PPV can successfully attenuate CSA. Reduced CSA may be associated with improved LVEF; however, this may depend on the mode of PPV. Changed LVEF is evident even in the absence of significant changes in blood pressure.

  7. Sistema de servocontrol visual empleando redes neuronales y filtros en el dominio de CIELAB//Visual servo-control system using neural networks and filters based on CIELAB

    Directory of Open Access Journals (Sweden)

    Germán Buitrago Salazar

    2015-05-01

    Full Text Available En este trabajo se presentan los resultados de un sistema servocontrol visual de un brazo robótico de seis grados de libertad. Para esto, se utiliza una red neuronal de tipo feed forward, entrenada por back propagation, para determinar la distancia entre el brazo robótico y un objeto de referencia, que permite ubicarlo en un espacio de trabajo. Las entradas de la red corresponden a la información obtenida de las imágenes capturadas por el Kinect, utilizando un filtro que discrimina la posición de los elementos, en el espacio de color CIELAB (Commission Internationale de l'Eclairage L*a*b components. El resultado de esta investigación demostró que la distancia estimada por la red tiene un margen de error menor, que el algoritmo propuesto en otros trabajos. Igualmente, se probó que el sistema de procesamiento de imágenes es más robusto a ruidos digitales, en comparación con los sistemas que utilizan filtros en el dominio RGB (Red-Green-Blue.Palabras claves: sistema de servocontrol visual, CIELAB, redes neuronales, filtrado de imágenes.______________________________________________________________________________AbstractIn this paper the results of visual servo-control system for a robotic arm with six degrees of freedom are presented. For this purpose, a feed fordward neural network, which was trained by back propagation, is used to determine the distance between the robot arm and a reference object and sitting the robot in the workspace. The inputs of neural network correspond to the information obtained from the images captured by the Kinect, using a filter that discriminates the position of the elements in the CIELAB (Commission Internationale de l'Eclairage L*a*bcomponents color space. The result of this research showed that the estimated distance with the network has an errorless than the algorithm proposed in other works. Similarly, it was proved that the image processing system is more robust to digital noise, compared to

  8. Flow pumping system for physiological waveforms.

    Science.gov (United States)

    Tsai, William; Savaş, Omer

    2010-02-01

    A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.

  9. Digital simulation of FM-ZCS-quasi resonant converter fed DD servo drive using Matlab Simulink

    Directory of Open Access Journals (Sweden)

    Kattamuri Narasimha Rao

    2009-01-01

    Full Text Available This paper deals with digital simulation of FM-ZCS-quasi resonant converter fed DC servo drive using Matlab Simulink. Quasi Resonant Converter (QRC is fast replacing conventional PWM converters in high frequency operation. The salient feature of QRC is that the switching devices can be either switched on at zero voltage or switched off at zero current, so that switching losses are zero ideally. Switching stresses are low, volumes are low and power density is high. This property imparts high efficiency and high power density to the converters. The output of QRC is regulated by varying the switching frequency of the converter. Hence it is called Frequency modulated Zero current/zero voltage switching quasi resonant converter. The present work deals with simulation of DC Servo motor fed from ZCS-QRC using Matlab. Simulation results show that the ZCS-QRC's have low total harmonic distortion. The ZCS-QRC operating in half wave and full wave modes are simulated successfully. .

  10. Experimental study on performance characteristics of servo-piston hydraulic control rod driving mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Zhou Jie; Liu Chunyu; Yang Zhida; Wang Ge

    2014-01-01

    An experimental study on the performance characteristics of the servo-piston hydraulic control rod driving mechanism is carried out, the dynamic processes of the driving mechanism are obtained through the experiments in different working conditions. Combined with the structure characteristics of the driving mechanism, the change rule between the characteristics parameters and the working condition is analyzed. The results indicate that the traction of the servo-tube decreases quickly at first, then slowly and finally trends to be a constant with the working pressure increasing, the tractions are the largest in the startup and deboost phases. The under pressure of the drive cylinder rises slowly and the upper pressure decreases rapidly at the beginning of the rise, the variation trend is opposite in the falling stage. There exists quick and clear flow change processes in the startup and deboost phases, the flow mutation value reduces and the mutation time changes a little with the working pressure increasing. The driving mechanism runs stable and has high sensitivity precision, the load does not vibrate at all when working conditions has small disturbance, a steady transform can be realized among every condition. (authors)

  11. A discrete time-varying internal model-based approach for high precision tracking of a multi-axis servo gantry.

    Science.gov (United States)

    Zhang, Zhen; Yan, Peng; Jiang, Huan; Ye, Peiqing

    2014-09-01

    In this paper, we consider the discrete time-varying internal model-based control design for high precision tracking of complicated reference trajectories generated by time-varying systems. Based on a novel parallel time-varying internal model structure, asymptotic tracking conditions for the design of internal model units are developed, and a low order robust time-varying stabilizer is further synthesized. In a discrete time setting, the high precision tracking control architecture is deployed on a Voice Coil Motor (VCM) actuated servo gantry system, where numerical simulations and real time experimental results are provided, achieving the tracking errors around 3.5‰ for frequency-varying signals. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Application to the field of medical and welfare with fluid power; Fluid power servo no iryo fukushi bun`ya eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Y. [Nara Technical Coll., Nara (Japan)

    1999-05-15

    Reported herein are medical and welfare apparatuses activated by fluid power servos. Reference is also made to equipment now undergoing research and development. Numerous fluid power-driven welfare and caring apparatuses have been developed, some of which are named below. In an externally powered prosthetic leg, a rocking type hydraulic servo actuator is attached on the knee section. In this device, switching is performed between an active operation in which much torque is required for instance going up and down a stairway and a passive operation in which less torque is required for instance walking on a flat place, this for increased energy efficiency. In an externally powered orthosisis, an exoskeleton is installed on the lower extremities of a patient suffering from the paralysis of both legs, and enables physical exercises for rehabilitation. Such devices are controlled by one of the two methods, the master-slave method or the manual method. Devices for the transfer of patients include an in-home bathing assist system, powered assist suit for caring, powered assist chair, movable lift for transfer, pneumatic Rubbertuator-driven rehabilitation equipment, walk training device, and wavy motion pneumatic vibrator. (NEDO)

  13. Development of the maintenance process by the servo manipulator for the parts of the equipment outside the MSM's workspace in a hot cell

    International Nuclear Information System (INIS)

    Lee, J. Y.; Kim, S. H.; Song, D. K.; Park, B. S.; Yun, G. S.

    2003-01-01

    In this study, the maintenance process by the servo manipulator for the parts of the equipment that cannot be reached by MSM in the hot cell was developed. To do this, the virtual mock up is implemented using virtual prototyping technology. And, Using this mock-up, the workspace of the manipulators in the hot cell and the operator's view through the wall-mounted lead glass are analyzed. And the path planning of the servo manipulator using the collision detection of the virtual mockup is established. Also, the maintenance process for the parts of the equipment that are located out area of the MSM's workspace by the servo manipulator is proposed and verified through the graphic simulation. The proposed remote maintenance process of the equipment can be effectively used in the real hot cell operation. Also, the implemented virtual mock-up of the hot cell can be effecively used in analyzing the various hot cell operation and in enhancing the reliability and safety of the spent fuel manaement

  14. Electromagnetic servoing-a new tracking paradigm.

    Science.gov (United States)

    Reichl, Tobias; Gardiazabal, José; Navab, Nassir

    2013-08-01

    Electromagnetic (EM) tracking is highly relevant for many computer assisted interventions. This is in particular due to the fact that the scientific community has not yet developed a general solution for tracking of flexible instruments within the human body. Electromagnetic tracking solutions are highly attractive for minimally invasive procedures, since they do not require line of sight. However, a major problem with EM tracking solutions is that they do not provide uniform accuracy throughout the tracking volume and the desired, highest accuracy is often only achieved close to the center of tracking volume. In this paper, we present a solution to the tracking problem, by mounting an EM field generator onto a robot arm. Proposing a new tracking paradigm, we take advantage of the electromagnetic tracking to detect the sensor within a specific sub-volume, with known and optimal accuracy. We then use the more accurate and robust robot positioning for obtaining uniform accuracy throughout the tracking volume. Such an EM servoing methodology guarantees optimal and uniform accuracy, by allowing us to always keep the tracked sensor close to the center of the tracking volume. In this paper, both dynamic accuracy and accuracy distribution within the tracking volume are evaluated using optical tracking as ground truth. In repeated evaluations, the proposed method was able to reduce the overall error from 6.64±7.86 mm to a significantly improved accuracy of 3.83±6.43 mm. In addition, the combined system provides a larger tracking volume, which is only limited by the reach of the robot and not the much smaller tracking volume defined by the magnetic field generator.

  15. A comparative design view for accurate control of servos using a field programmable gate array

    International Nuclear Information System (INIS)

    Tickle, A J; Harvey, P K; Smith, J S; Wu, F; Buckle, J R

    2009-01-01

    An embedded system is a special-purpose computer system designed to perform one or a few dedicated functions. Altera DSP Builder presents designers and users with an alternate approach when creating their systems by employing a blockset similar to that already used in Simulink. The application considered in this paper is the design of a Pulse Width Modulation (PWM) system for use in stereo vision. PWM can replace a digital-to-analogue converter to control audio speakers, LED intensity, motor speed, and servo position. Rather than the conventional HDL coding approach this Simulink approach provides an easy understanding platform to the PWM design. This paper includes a comparison between two approaches regarding resource usage and flexibility etc. Included is how DSP Builder manipulates an onboard clock signal, in order to create the control pulses to the 'raw' coding of a PWM generator in VHDL. Both methods were shown to a selection of people and their views on which version they would subsequently use in their relative fields is discussed.

  16. High mechanical advantage design of six-bar Stephenson mechanism for servo mechanical presses

    Directory of Open Access Journals (Sweden)

    Jianguo Hu

    2016-06-01

    Full Text Available This article proposed a two-phase design scheme of Stephenson six-bar working mechanisms for servo mechanical presses with high mechanical advantage. In the qualitative design phase, first, a Stephenson six-bar mechanism with a slide was derived from Stephenson six-bar kinematic chains. Second, based on the instant center analysis method, the relationship between mechanical advantage and some special instant centers was founded, and accordingly a primary mechanism configuration with high mechanical advantage was designed qualitatively. Then, a parameterized prototype model was established, and the influences of design parameters toward slide kinematical characteristics were analyzed. In the quantitative design phase, a multi-objective optimization model, aiming at high mechanical advantage and dwelling characteristics, was built, and a case design was done to find optimal dimensions. Finally, simulations based on the software ADAMS were conducted to compare the transmission characteristics of the optimized working mechanism with that of slide-crank mechanism and symmetrical toggle mechanism, and an experimental press was made to validate the design scheme. The simulation and experiment results show that, compared with general working mechanisms, the Stephenson six-bar working mechanism has higher mechanical advantage and better dwelling characteristics, reducing capacities and costs of servo motors effectively.

  17. Application of Automatic Zooming and Autofocusing in Microassembly using Visual Servoing

    International Nuclear Information System (INIS)

    Jang, Kyung-Nam; Kim, Jong-Seog

    2006-01-01

    In recent years, many industrial products and their components are evolving toward miniaturization. To have more functionalities within less dimensional volume, they are usually made of various materials with different characteristics, and they are manufactured using incompatible manufacturing processes with complex geometrical shapes. For these reasons, the assembly technique for mating micro-parts so called microassembly has become important for advanced manufacturing and drawn extensive research interest. Currently, due to various difficulties arising from handling of extremely small size parts, manual assembly method has been widely used. Since this manual method is somehow timeconsuming and not productive enough, automation of micro-assembly has become an essential part for micro parts manufacturing. As an alternative, the vision sensor is widely used in microassembly. The vision sensor has a wide field of view, and it can obtain the wide range data with high speed without contact. In the previous research works, the orientation of the mating parts has not been considered for corrective motion, and, furthermore, the developed vision systems are not adaptive to accommodate various sizes of the mated parts to avoid such criticism, we propose a visual feedback system that accommodates micro parts of various sizes and parts arbitrarily oriented. In this paper, the system that employs adaptive zooming and auto focusing techniques during visual servoing is described

  18. Practical Stabilization of Uncertain Nonholonomic Mobile Robots Based on Visual Servoing Model with Uncalibrated Camera Parameters

    Directory of Open Access Journals (Sweden)

    Hua Chen

    2013-01-01

    Full Text Available The practical stabilization problem is addressed for a class of uncertain nonholonomic mobile robots with uncalibrated visual parameters. Based on the visual servoing kinematic model, a new switching controller is presented in the presence of parametric uncertainties associated with the camera system. In comparison with existing methods, the new design method is directly used to control the original system without any state or input transformation, which is effective to avoid singularity. Under the proposed control law, it is rigorously proved that all the states of closed-loop system can be stabilized to a prescribed arbitrarily small neighborhood of the zero equilibrium point. Furthermore, this switching control technique can be applied to solve the practical stabilization problem of a kind of mobile robots with uncertain parameters (and angle measurement disturbance which appeared in some literatures such as Morin et al. (1998, Hespanha et al. (1999, Jiang (2000, and Hong et al. (2005. Finally, the simulation results show the effectiveness of the proposed controller design approach.

  19. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  20. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    Science.gov (United States)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  1. Control issues for a hydraulically powered dissimilar teleoperated system

    International Nuclear Information System (INIS)

    Jansen, J.F.; Kress, R.L.

    1995-01-01

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented. (Schilling's Titan II hydraulic manipulators are the slave manipulators and the master manipulators are from the Oak Ridge National Laboratory-developed Advanced Servo Manipulator.)

  2. Myoelectric hand prosthesis force control through servo motor current feedback.

    Science.gov (United States)

    Sono, Tálita Saemi Payossim; Menegaldo, Luciano Luporini

    2009-10-01

    This paper presents the prehension force closed-loop control design of a mechanical finger commanded by electromyographic signal (EMG) from a patient's arm. The control scheme was implemented and tested in a mechanical finger prototype with three degrees of freedom and one actuator, driven by arm muscles EMG of normal volunteers. Real-time indirect estimation of prehension force was assessed by measuring the DC servo motor actuator current. A model of the plant comprising finger, motor, and grasped object was proposed. Model parameters were identified experimentally and a classical feedback phase-lead compensator was designed. The controlled mechanical finger was able to provide a more accurate prehension force modulation of a compliant object when compared to open-loop control.

  3. Research of Control Strategy in the Large Electric Cylinder Position Servo System

    Directory of Open Access Journals (Sweden)

    Yongguang Liu

    2015-01-01

    Full Text Available An ideal positioning response is very difficult to realize in the large electric cylinder system that is applied in missile launcher because of the presence of many nonlinear factors such as load disturbance, parameter variations, lost motion, and friction. This paper presents a piecewise control strategy based on the optimized positioning principle. The combined application of position interpolation method and modified incremental PID with dead band is proposed and applied into control system. The experimental result confirms that this combined control strategy is not only simple to be applied into high accuracy real-time control system but also significantly improves dynamic response, steady accuracy, and anti-interference performance, which has very important significance to improve the smooth control of the large electric cylinder.

  4. Self-Contained Avionics Sensing and Flight Control System for Small Unmanned Aerial Vehicle

    Science.gov (United States)

    Shams, Qamar A. (Inventor); Logan, Michael J. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox, legal representative, Melanie L. (Inventor); Ingham, John C. (Inventor); Laughter, Sean A. (Inventor); Kuhn, III, Theodore R. (Inventor); Adams, James K. (Inventor); Babel, III, Walter C. (Inventor)

    2011-01-01

    A self-contained avionics sensing and flight control system is provided for an unmanned aerial vehicle (UAV). The system includes sensors for sensing flight control parameters and surveillance parameters, and a Global Positioning System (GPS) receiver. Flight control parameters and location signals are processed to generate flight control signals. A Field Programmable Gate Array (FPGA) is configured to provide a look-up table storing sets of values with each set being associated with a servo mechanism mounted on the UAV and with each value in each set indicating a unique duty cycle for the servo mechanism associated therewith. Each value in each set is further indexed to a bit position indicative of a unique percentage of a maximum duty cycle for the servo mechanism associated therewith. The FPGA is further configured to provide a plurality of pulse width modulation (PWM) generators coupled to the look-up table. Each PWM generator is associated with and adapted to be coupled to one of the servo mechanisms.

  5. Control system design concepts for improving bilateral characteristics of master-slave manipulators

    International Nuclear Information System (INIS)

    Hewitt, J.E.; Siva, K.V.

    1986-01-01

    The paper concerns control system design concepts for improving bilateral characteristics of master-slave manipulators. In particular, the article concentrates on the identification of the remote manipulative process itself from studying direct manipulation with hand tools. Bilateral servo loop systems in operator controlled manipular systems are discussed, as well as Bond Graph modelling techniques. The performance of different kinds of bilateral servos are compared. (U.K.)

  6. A six-degree-of-freedom magnetic levitation fine stage for a high-precision and high-acceleration dual-servo stage

    International Nuclear Information System (INIS)

    Kim, MyeongHyeon; Jeong, Jae-heon; Gweon, DaeGab; Kim, HyoYoung

    2015-01-01

    This paper presents a novel six-degree-of-freedom magnetic levitation fine stage for a dual-servo stage. The proposed fine stage is levitated and actuated, using a voice coil motor actuator with a Halbach magnet array. For a dual-servo stage, fine stage performance is deeply intertwined with coarse stage performance. Because the fine stage is installed over the coarse stage, the overall size of the fine stage can be limited by the moving plate of the coarse stage. Therefore, magnetic flux modeling and optimization are performed to manufacture optimal fine stages. To control the fine stage, actuator kinetics and sensor kinematics are proposed. Homing control is implemented by using linear variable differential transformers, whereas fine control is implemented by capacitance sensors and laser interferometers. Finally, experimental results of in-position stability, moving range, and repeatability are presented. (paper)

  7. Reconfigurable Flight Control Design using a Robust Servo LQR and Radial Basis Function Neural Networks

    Science.gov (United States)

    Burken, John J.

    2005-01-01

    This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.

  8. State feedback integral control for a rotary direct drive servo valve using a Lyapunov function approach.

    Science.gov (United States)

    Yu, Jue; Zhuang, Jian; Yu, Dehong

    2015-01-01

    This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Simple and robust phase-locking of optical cavities with > 200 KHz servo-bandwidth using a piezo-actuated mirror mounted in soft materials.

    Science.gov (United States)

    Goldovsky, David; Jouravsky, Valery; Pe'er, Avi

    2016-12-12

    We present an approach to locking of optical cavities with piezoelectric actuated mirrors based on a simple and effective mechanical decoupling of the mirror and actuator from the surrounding mount. Using simple elastic materials (e.g. rubber or soft silicone gel pads) as mechanical dampers between the piezo-mirror compound and the surrounding mount, a firm and stable mounting of a relatively large mirror (8mm diameter) can be maintained that is isolated from external mechanical resonances, and is limited only by the internal piezo-mirror resonance of > 330 KHz. Our piezo lock showed positive servo gain up to 208 KHz, and a temporal response to a step interference within < 3 μs.

  10. Discrete Model Reference Adaptive Control for Gimbal Servosystem of Control Moment Gyro with Harmonic Drive

    Directory of Open Access Journals (Sweden)

    Bangcheng Han

    2013-01-01

    Full Text Available The double-gimbal control moment gyro (DGCMG demands that the gimbal servosystem should have fast response and small overshoot. But due to the low and nonlinear torsional stiffness of harmonic drive, the gimbal servo-system has poor dynamic performance with large overshoot and low bandwidth. In order to improve the dynamic performance of gimbal servo-system, a model reference adaptive control (MRAC law is introduced in this paper. The model of DGCMG gimbal servo-system with harmonic drive is established, and the adaptive control law based on POPOV super stable theory is designed. The MATLAB simulation results are provided to verify the effectiveness of the proposed control algorithm. The experimental results indicate that the MRAC could increase the bandwidth of gimbal servo-system to 3 Hz and improve the dynamic performance with small overshoot.

  11. An Air Bearing Rotating Coil Magnetic Measurement System

    CERN Document Server

    Gottschalk, Stephen C; Taylor, David J; Thayer, William

    2005-01-01

    This paper describes a rotating coil magnetic measurement system supported on air bearings. The design is optimized for measurements of 0.1micron magnetic centerline changes on long, small aperture quadrupoles. Graphite impregnated epoxy resin is used for the coil holder and coil winding forms. Coil holder diameter is 11 mm with a length between supports of 750mm. A pair of coils is used to permit quadrupole bucking during centerline measurements. Coil length is 616mm, inner radius 1.82mm, outer radius 4.74mm. The key features of the mechanical system are simplicity; air bearings for accurate, repeatable measurements without needing warm up time and a vibration isolated stand that uses a steel-topped Newport optical table with air suspension. Coil rotation is achieved by a low noise servo motor controlled by a standalone Ethernet servo board running custom servo software. Coil calibration procedures that correct wire placement errors, tests for mechanical resonances, and other system checks will also be discu...

  12. Adaptive Hybrid Visual Servo Regulation of Mobile Robots Based on Fast Homography Decomposition

    Directory of Open Access Journals (Sweden)

    Chunfu Wu

    2015-01-01

    Full Text Available For the monocular camera-based mobile robot system, an adaptive hybrid visual servo regulation algorithm which is based on a fast homography decomposition method is proposed to drive the mobile robot to its desired position and orientation, even when object’s imaging depth and camera’s position extrinsic parameters are unknown. Firstly, the homography’s particular properties caused by mobile robot’s 2-DOF motion are taken into account to induce a fast homography decomposition method. Secondly, the homography matrix and the extracted orientation error, incorporated with the desired view’s single feature point, are utilized to form an error vector and its open-loop error function. Finally, Lyapunov-based techniques are exploited to construct an adaptive regulation control law, followed by the experimental verification. The experimental results show that the proposed fast homography decomposition method is not only simple and efficient, but also highly precise. Meanwhile, the designed control law can well enable mobile robot position and orientation regulation despite the lack of depth information and camera’s position extrinsic parameters.

  13. Demonstration of non-collocated vibration control of a flexible manipulator using electrical dynamic absorbers

    International Nuclear Information System (INIS)

    Kim, Sang-Myeong; Kim, Heungseob; Boo, Kwangsuck; Brennan, Michael J

    2013-01-01

    This paper describes an experimental study into the vibration control of a servo system comprising a servo motor and a flexible manipulator. Two modes of the system are controlled by using the servo motor and an accelerometer attached to the tip of the flexible manipulator. The control system is thus non-collocated. It consists of two electrical dynamic absorbers, each of which consists of a modal filter and, in case of an out-of-phase mode, a phase inverter. The experimental results show that each absorber acts as a mechanical dynamic vibration absorber attached to each mode and significantly reduces the settling time for the system response to a step input. (technical note)

  14. Visual servo simulation of EAST articulated maintenance arm robot

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang, E-mail: yangyang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Song, Yuntao; Pan, Hongtao; Cheng, Yong; Feng, Hansheng [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Wu, Huapeng [Lappeenranta University of Technology, Skinnarilankatu 34, Lappeenranta (Finland)

    2016-03-15

    For the inspection and light-duty maintenance of the vacuum vessel in the EAST tokamak, a serial robot arm, called EAST articulated maintenance arm, is developed. Due to the 9-m-long cantilever arm, the large flexibility of the EAMA robot introduces a problem in the accurate positioning. This article presents an autonomous robot control to cope with the robot positioning problem, which is a visual servo approach in context of tile grasping for the EAMA robot. In the experiments, the proposed method was implemented in a simulation environment to position and track a target graphite tile with the EAMA robot. As a result, the proposed visual control scheme can successfully drive the EAMA robot to approach and track the target tile until the robot reaches the desired position. Furthermore, the functionality of the simulation software presented in this paper is proved to be suitable for the development of the robotic and computer vision application.

  15. Visual servo simulation of EAST articulated maintenance arm robot

    International Nuclear Information System (INIS)

    Yang, Yang; Song, Yuntao; Pan, Hongtao; Cheng, Yong; Feng, Hansheng; Wu, Huapeng

    2016-01-01

    For the inspection and light-duty maintenance of the vacuum vessel in the EAST tokamak, a serial robot arm, called EAST articulated maintenance arm, is developed. Due to the 9-m-long cantilever arm, the large flexibility of the EAMA robot introduces a problem in the accurate positioning. This article presents an autonomous robot control to cope with the robot positioning problem, which is a visual servo approach in context of tile grasping for the EAMA robot. In the experiments, the proposed method was implemented in a simulation environment to position and track a target graphite tile with the EAMA robot. As a result, the proposed visual control scheme can successfully drive the EAMA robot to approach and track the target tile until the robot reaches the desired position. Furthermore, the functionality of the simulation software presented in this paper is proved to be suitable for the development of the robotic and computer vision application.

  16. Servo scanning 3D micro EDM for array micro cavities using on-machine fabricated tool electrodes

    Science.gov (United States)

    Tong, Hao; Li, Yong; Zhang, Long

    2018-02-01

    Array micro cavities are useful in many fields including in micro molds, optical devices, biochips and so on. Array servo scanning micro electro discharge machining (EDM), using array micro electrodes with simple cross-sectional shape, has the advantage of machining complex 3D micro cavities in batches. In this paper, the machining errors caused by offline-fabricated array micro electrodes are analyzed in particular, and then a machining process of array servo scanning micro EDM is proposed by using on-machine fabricated array micro electrodes. The array micro electrodes are fabricated on-machine by combined procedures including wire electro discharge grinding, array reverse copying and electrode end trimming. Nine-array tool electrodes with Φ80 µm diameter and 600 µm length are obtained. Furthermore, the proposed process is verified by several machining experiments for achieving nine-array hexagonal micro cavities with top side length of 300 µm, bottom side length of 150 µm, and depth of 112 µm or 120 µm. In the experiments, a chip hump accumulates on the electrode tips like the built-up edge in mechanical machining under the conditions of brass workpieces, copper electrodes and the dielectric of deionized water. The accumulated hump can be avoided by replacing the water dielectric by an oil dielectric.

  17. Modeling of Target Tracking System for Homing Missiles and Air Defense Systems

    Directory of Open Access Journals (Sweden)

    Yunes Sh. ALQUDSI

    2018-06-01

    Full Text Available One reason of why the guidance and control systems are imperfect is due to the dynamics of both the tracker and the missile, which appears as an error in the alignment with the LOS and delay in the response of the missile to change its orientation. Other reasons are the bias and disturbances as well as the noise about and within the system such as the thermal noise. This paper deals with the tracking system used in the homing guidance and air defense systems. A realistic model for the tracking system model is developed including the receiver servo dynamics and the possible disturbance and noise that may affect the accuracy of the tracking signals measured by the seeker sensor. Modeling the parameters variability and uncertainty is also examined to determine the robustness margin of the tracking system.

  18. Fabrication and correction of freeform surface based on Zernike polynomials by slow tool servo

    Science.gov (United States)

    Cheng, Yuan-Chieh; Hsu, Ming-Ying; Peng, Wei-Jei; Hsu, Wei-Yao

    2017-10-01

    Recently, freeform surface widely using to the optical system; because it is have advance of optical image and freedom available to improve the optical performance. For freeform optical fabrication by integrating freeform optical design, precision freeform manufacture, metrology freeform optics and freeform compensate method, to modify the form deviation of surface, due to production process of freeform lens ,compared and provides more flexibilities and better performance. This paper focuses on the fabrication and correction of the free-form surface. In this study, optical freeform surface using multi-axis ultra-precision manufacturing could be upgrading the quality of freeform. It is a machine equipped with a positioning C-axis and has the CXZ machining function which is also called slow tool servo (STS) function. The freeform compensate method of Zernike polynomials results successfully verified; it is correction the form deviation of freeform surface. Finally, the freeform surface are measured experimentally by Ultrahigh Accurate 3D Profilometer (UA3P), compensate the freeform form error with Zernike polynomial fitting to improve the form accuracy of freeform.

  19. Fracture tolerance analysis of the solid rocket booster servo-actuator for the space shuttle

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.H.; Ghadiali, N.D.; Zahoor, A.; Wilson, M.R.

    1982-01-01

    The results of an evaluation of the fracture tolerance of three components of the thrust vector control servo-actuator for the solid rocket booster of the space shuttle are described. These components were considered as being potentially fracture critical and therefore having the potential to fall short of a desired service life of 80 missions (that is, a service life factor of 4.0 on a basic service life of 20 missions). Detailed stress analysis of the rod end, cylinder, and feedback link components was accomplished by three-dimensional finite-element stress analysis methods. A dynamic structural model of the feedback system was used to determine the dynamic inertia loads and reactions to apply to the finite-element model of the feedback link. Twenty mission stress spectra consisting of lift-off, boost, re-entry, and water impact mission segments were developed for each component based on dynamic loadings. Most components were determined to have the potential of reaching a service life of 80 missions or service life factor of 4.0. 22 refs.

  20. Adaptive servo-ventilation therapy for patients with chronic heart failure in a confirmatory, multicenter, randomized, controlled study.

    Science.gov (United States)

    Momomura, Shin-Ichi; Seino, Yoshihiko; Kihara, Yasuki; Adachi, Hitoshi; Yasumura, Yoshio; Yokoyama, Hiroyuki; Wada, Hiroshi; Ise, Takayuki; Tanaka, Koichi

    2015-01-01

    Adaptive servo-ventilation (ASV) therapy is expected to be novel nonpharmacotherapy with hemodynamic effects on patients with chronic heart failure (CHF), but sufficient evidence has not been obtained. A 24-week, open-label, randomized, controlled study was performed to confirm the cardiac function-improving effect of ASV therapy on CHF patients. At 39 institutions, 213 outpatients with CHF, whose left ventricular ejection fraction (LVEF) was control group], respectively. The primary endpoint was LVEF, and the secondary endpoints were HF deterioration, B-type natriuretic peptide (BNP), and clinical composite response (CCR: NYHA class+HF deterioration). LVEF and BNP improved significantly at completion against the baseline values in the 2 groups. However, no significant difference was found between these groups. HF deterioration tended to be suppressed. The ASV group showed a significant improvement in CCR corroborated by significant improvements in NYHA class and ADL against the control group. Under the present study's conditions, ASV therapy was not superior to GDMT in the cardiac function-improving effect but showed a clinical status-improving effect, thus indicating a given level of clinical benefit.

  1. On-machine measurement of a slow slide servo diamond-machined 3D microstructure with a curved substrate

    International Nuclear Information System (INIS)

    Zhu, Wu-Le; Yang, Shunyao; Ju, Bing-Feng; Jiang, Jiacheng; Sun, Anyu

    2015-01-01

    A scanning tunneling microscope-based multi-axis measuring system is specially developed for the on-machine measurement of three-dimensional (3D) microstructures, to address the quality control difficulty with the traditional off-line measurement process. A typical 3D microstructure of the curved compound eye was diamond-machined by the slow slide servo technique, and then the whole surface was on-machine scanned three-dimensionally based on the tip-tracking strategy by utilizing a spindle, two linear motion stages, and an additional rotary stage. The machined surface profile and its shape deviation were accurately measured on-machine. The distortion of imaged ommatidia on the curved substrate was distinctively evaluated based on the characterized points extracted from the measured surface. Furthermore, the machining errors were investigated in connection with the on-machine measured surface and its characteristic parameters. Through experiments, the proposed measurement system is demonstrated to feature versatile on-machine measurement of 3D microstructures with a curved substrate, which is highly meaningful for quality control in the fabrication field. (paper)

  2. Real-time markerless tracking for augmented reality: the virtual visual servoing framework.

    Science.gov (United States)

    Comport, Andrew I; Marchand, Eric; Pressigout, Muriel; Chaumette, François

    2006-01-01

    Tracking is a very important research subject in a real-time augmented reality context. The main requirements for trackers are high accuracy and little latency at a reasonable cost. In order to address these issues, a real-time, robust, and efficient 3D model-based tracking algorithm is proposed for a "video see through" monocular vision system. The tracking of objects in the scene amounts to calculating the pose between the camera and the objects. Virtual objects can then be projected into the scene using the pose. Here, nonlinear pose estimation is formulated by means of a virtual visual servoing approach. In this context, the derivation of point-to-curves interaction matrices are given for different 3D geometrical primitives including straight lines, circles, cylinders, and spheres. A local moving edges tracker is used in order to provide real-time tracking of points normal to the object contours. Robustness is obtained by integrating an M-estimator into the visual control law via an iteratively reweighted least squares implementation. This approach is then extended to address the 3D model-free augmented reality problem. The method presented in this paper has been validated on several complex image sequences including outdoor environments. Results show the method to be robust to occlusion, changes in illumination, and mistracking.

  3. Novel Round Energy Director for Use with Servo-driven Ultrasonic Welder

    Science.gov (United States)

    Savitski, Alex; Klinstein, Leo; Holt, Kenneth

    Increasingly stringent process repeatability and precision of assembly requirements are common for high-volume manufacturing for electronic, automotive and especially medical device industries, in which components for disposable medication delivery devices are produced in hundreds of millions annually. Ultrasonic welding, one of the most efficient of plastic welding processes often joins these small plastic parts together, and quite possibly, the one most broadly adopted for high volume assembly. The very fundamental factor in ultrasonic welding process performance is a proper joint design, the most common of which is a design utilizing an energy director. Keeping the energy director size and shape consistent on a part-to-part basis in high volume, multi-cavity operations presents a constant challenge to molded part vendors, as dimensional variations from cavity to cavity and variations in the molding process are always present. A newly developed concept of energy director design, when the tip of the energy director is round, addresses these problems, as the round energy director is significantly easier to mold and maintain its dimensional consistency. It also eliminates a major source of process variability for assembly operations. Materializing the benefits of new type of joint design became possible with the introduction of servo-driven ultrasonic welders, which allow an unprecedented control of material flow during the welding cycle and results in significantly improved process repeatability. This article summarizes results of recent studies focused on evaluating performance of round energy director and investigating the main factors responsible for the joint quality.

  4. Design of The Test Stand for Hydraulic Active Heave Compensation System

    Directory of Open Access Journals (Sweden)

    Jakubowski Arkadiusz

    2017-01-01

    Full Text Available The article presented here described the design of a test stand for hydraulic active heave compensation system. The simulation of sea waves is realized by the use of hydraulic cylinder. A hydraulic motor is used for sea waves compensation. The hydraulic cylinder and the hydraulic motor are controlled by electrohydraulic servo valves. For the measurements Authors used displacement sensor and incremental encoder. Control algorithm is implemented on the PLC. The performed tests included hydraulic actuator and hydraulic motor step responses.

  5. Improved servo-controlled inertial clock for laboratory tests of general relativity

    International Nuclear Information System (INIS)

    Leyh, C.H.

    1984-01-01

    An inertial clock, consisting of a protected macroscopic rotor as the time base, was developed and tested preliminarily and partially by Cheung. This research offers considerable refinement of the equipment and the operating software, and includes serious testing of the experimental behavior. The inertial clock uses magnetic suspension to levitate a capped hollow cylindrical rotor (called the shroud rotor) within a vacuum chamber. A second rotor (called the proof rotor) is magnetically suspended within the shroud rotor. The shroud rotor is caused to corotate precisely with the rotating proof rotor by a microcomputer-controlled eddy current drive feedback servo loop. This produces a drag-free environment for the proof rotor which becomes the inertial timekeeper. In this way corotation effectively eliminates the residual gas drag on the proof rotor and the magnetic suspension bearing reduces bearing drag

  6. Hybrid Robust Control Law with Disturbance Observer for High-Frequency Response Electro-Hydraulic Servo Loading System

    Directory of Open Access Journals (Sweden)

    Zhiqing Sheng

    2016-04-01

    Full Text Available Addressing the simulating issue of the helicopter-manipulating booster aerodynamic load with high-frequency dynamic load superimposed on a large static load, this paper studies the design of the robust controller for the electro-hydraulic loading system to realize the simulation of this kind of load. Firstly, the equivalent linear model of the electro-hydraulic loading system under assumed parameter uncertainty is established. Then, a hybrid control scheme is proposed for the loading system. This control scheme consists of a constant velocity feed-forward compensator, a robust inner loop compensator based on disturbance observer and a robust outer loop feedback controller. The constant velocity compensator eliminates most of the extraneous force at first, and then the double-loop cascade composition control strategy is employed to design the compensated system. The disturbance observer–based inner loop compensator further restrains the disturbances including the remaining extraneous force, and makes the actual plant tracking a nominal model approximately in a certain frequency range. The robust outer loop controller achieves the desired force-tracking performance, and guarantees system robustness in the high frequency region. The optimized low-pass filter Q(s is designed by using the H∞ mixed sensitivity optimization method. The simulation results show that the proposed hybrid control scheme and controller can effectively suppress the extraneous force and improve the robustness of the electro-hydraulic loading system.

  7. On-orbit evaluation of the control system/structural mode interactions on OSO-8

    Science.gov (United States)

    Slafer, L. I.

    1980-01-01

    The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. This paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments. The test results have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system, and also verified the approach taken to vehicle and servo ground testing.

  8. Novel electro-hydraulic position control system for primary mirror supporting system

    Directory of Open Access Journals (Sweden)

    Xiongbin Peng

    2016-05-01

    Full Text Available In the field of modern large-scale telescope, primary mirror supporting system technology faces the difficulties of theoretically uniform output force request and bias compensation. Therefore, a novel position control system combining hydraulic system with servo motor system is introduced. The novel system ensures uniform output force on supporting points without complicating the mechanical structure. The structures of both primary mirror supporting system and novel position system are described. Then, the mathematical model of novel position control system is derived for controller selection. A proportional–derivative controller is adopted for simulations and experiments of step response and triangle path tracking. The results show that proportional–derivative controller guarantees the system with micrometer-level positioning ability. A modified proportional–derivative controller is utilized to promote system behavior with faster response overshoot. The novel position control system is then applied on primary mirror supporting system. Coupling effect is observed among actuator partitions, and relocation of virtual pivot supporting point is chosen as the decoupling measurement. The position keeping ability of the primary mirror supporting system is verified by rotating the mirror cell at a considerably high rate. The experiment results show that the decoupled system performs better with smaller bias and shorter recovery time.

  9. Thermocouples used in emission systems of internal combustion engines; Thermoelemente fuer den Einsatz in Abgassystemen von Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Augustin, Silke; Froehlich, Thomas; Mammen, Helge [Technische Univ. Illmenau (Germany). Inst. fuer Prozessmess- und Sensortechnik; Ament, Christoph; Guether, Thomas [Technische Univ. Illmenau (Germany). Inst. fuer Automatisierungs- und Systemtechnik

    2012-11-01

    Thermocouples used in exhaust systems of combustion engines are exposed to high temperature gradients and temperature leaps ({Delta}T > 900 K), high flow speeds and pressure. When constructing these thermocouples, a compromise is needed between the resulting high demands on the mechanical-thermal stability, accuracy and the fast response time demanded by the servo-control of the motors. Additionally, a numerical correction of the measured signal may contribute to an improved sensor dynamics. (orig.)

  10. Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps

    CERN Document Server

    Bergami, Leonardo

    2014-01-01

    A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam

  11. Time-dependent rheoforging of A6061 aluminum alloy on a mechanical servo press and the effects of forming conditions on homogeneity of rheoforged samples

    Directory of Open Access Journals (Sweden)

    Meng Yi

    2015-01-01

    Full Text Available The solid and liquid phases in semisolid metal slurry exhibited different forming behaviours during deformation result in products with inhomogeneous quality. A6061 aluminum alloy was forged in the semisolid state on a mechanical servo press with the capability of multistage compression. To improve the homogeneity of rheoforged samples a time-dependent rheoforging strategy was designed. The distributions of the microstructure and mechanical properties the samples manufactured under various experimental conditions were investigated. The A6061 samples forged in the temperature range from 625 to 628 ∘C with a short holding time of 4 s and the upper die preheated to 300 ∘C exhibited a homogeneous microstructure and mechanical properties. The homogeneity of rheoforged samples resulted from the controllable free motion capability of the mechanical servo press and the adjustable fluidity and viscosity of the semisolid slurry.

  12. Simulation of proportional control of hydraulic actuator using digital hydraulic valves

    Science.gov (United States)

    Raghuraman, D. R. S.; Senthil Kumar, S.; Kalaiarasan, G.

    2017-11-01

    Fluid power systems using oil hydraulics in earth moving and construction equipment have been using proportional and servo control valves for a long time to achieve precise and accurate position control backed by system performance. Such valves are having feedback control in them and exhibit good response, sensitivity and fine control of the actuators. Servo valves and proportional valves are possessing less hysteresis when compared to on-off type valves, but when the servo valve spools get stuck in one position, a high frequency called as jitter is employed to bring the spool back, whereas in on-off type valves it requires lesser technology to retract the spool. Hence on-off type valves are used in a technology known as digital valve technology, which caters to precise control on slow moving loads with fast switching times and with good flow and pressure control mimicking the performance of an equivalent “proportional valve” or “servo valve”.

  13. Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators

    Science.gov (United States)

    Vu, Van Tan; Sename, Olivier; Dugard, Luc; Gaspar, Peter

    2017-09-01

    Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.

  14. The Improved SVM Multi Objects' Identification For the Uncalibrated Visual Servoing

    Directory of Open Access Journals (Sweden)

    Min Wang

    2009-03-01

    Full Text Available For the assembly of multi micro objects in micromanipulation, the first task is to identify multi micro parts. We present an improved support vector machine algorithm, which employs invariant moments based edge extraction to obtain feature attribute and then presents a heuristic attribute reduction algorithm based on rough set's discernibility matrix to obtain attribute reduction, with using support vector machine to identify and classify the targets. The visual servoing is the second task. For avoiding the complicated calibration of intrinsic parameter of camera, We apply an improved broyden's method to estimate the image jacobian matrix online, which employs chebyshev polynomial to construct a cost function to approximate the optimization value, obtaining a fast convergence for online estimation. Last, a two DOF visual controller based fuzzy adaptive PD control law for micro-manipulation is presented. The experiments of micro-assembly of micro parts in microscopes confirm that the proposed methods are effective and feasible.

  15. The Improved SVM Multi Objects's Identification for the Uncalibrated Visual Servoing

    Directory of Open Access Journals (Sweden)

    Xiangjin Zeng

    2009-03-01

    Full Text Available For the assembly of multi micro objects in micromanipulation, the first task is to identify multi micro parts. We present an improved support vector machine algorithm, which employs invariant moments based edge extraction to obtain feature attribute and then presents a heuristic attribute reduction algorithm based on rough set's discernibility matrix to obtain attribute reduction, with using support vector machine to identify and classify the targets. The visual servoing is the second task. For avoiding the complicated calibration of intrinsic parameter of camera, We apply an improved broyden's method to estimate the image jacobian matrix online, which employs chebyshev polynomial to construct a cost function to approximate the optimization value, obtaining a fast convergence for online estimation. Last, a two DOF visual controller based fuzzy adaptive PD control law for micro-manipulation is presented. The experiments of micro-assembly of micro parts in microscopes confirm that the proposed methods are effective and feasible.

  16. VME applications to the Daresbury SRS control system

    International Nuclear Information System (INIS)

    Martlew, B.G.; McCarthy, M.; Rawlinson, W.R.

    1992-01-01

    The control system for the Daresbury SRS has recently been extended with a VME based alarm system which is operational. A further development is a steering system to provide servo control of the electron beam orbit position in the storage ring. (author)

  17. A Simulation Model of Focus and Radial Servos in Compact Disc Players with Disc Surface Defects

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2004-01-01

    Compact Disc players have been on the market in more than two decades.As a consequence most of the control servo problems have been solved. A large remaining problem to solve is the handling of Compact Discs with severe surface defects like scratches and fingerprints. This paper introduces a method...... for making the design of controllers handling surface defects easier. A simulation model of Compact Disc players playing discs with surface defects is presented. The main novel element in the model is a model of the surface defects. That model is based on data from discs with surface defects. This model...

  18. Miniaturization of a Quasi-Servo Valve and Its Application to Positon Control of a Rubber Artificial Muscle with Built-in Sensor

    Directory of Open Access Journals (Sweden)

    Moriwake Yoshinori

    2016-01-01

    Full Text Available Nowadays, the care and welfare pneumatic devices to support a nursing care and a self-reliance of the elderly and the disabled are actively researched and developed by many researchers. These wearable devices require many actuators and control valves for multi degrees of freedom. The total weight and volume of the wearable devices increases according to the degree of freedom. Our final goal is to develop a compact wearable actuator with built-in sensor, controller and control valve and to apply it to a wearable assisted device. In our previous study, a small-sized quasi-servo valve which consists of two on/off control valves and an embedded controller was developed. In this study, the quasi-servo valve composing of much smaller-sized (40% in mass, 42% in volume on/off valves is proposed and tested. In addition, the rubber artificial muscle with an ultrasonic sensor as a built-in displacement sensor is proposed and a position control of the muscle is carried out using the tested tiny valve and built-in sensor. As a result, it was confirmed that the position control of the muscle can be realized using the tested ultrasonic sensor.

  19. Steady flow torques in a servo motor operated rotary directional control valve

    International Nuclear Information System (INIS)

    Wang, He; Gong, Guofang; Zhou, Hongbin; Wang, Wei

    2016-01-01

    Highlights: • A novel servo motor operated rotary directional control valve is proposed. • Steady flow torque is a crucial issue that affects rotary valve performance. • Steady flow torque is analyzed on the aspects of theory, simulation and experiment. • Change law of the steady flow torque with spool rotation angle is explored. • Effect of pressure drop and flow rate on the steady flow torque is studied. - Abstract: In this paper, a servo motor operated rotary directional control valve is proposed, and a systematic analysis of steady flow torques in this valve is provided by theoretical calculation, CFD simulation and experimental test. In the analysis, spool rotation angle corresponding to the maximum orifice opening is tagged as 0°. Over a complete change cycle of the orifice, the range of spool rotation angle is symmetric about 0°. The results show that the direction of steady flow torques in this valve is always the direction of orifice closing. The steady flow torques serve as resistances to the spool rotation when the orifice opening increases, while impetuses to the spool rotation when the orifice opening decreases. At a certain pressure drop or flow rate, steady flow torques are approximately equal and opposite when at spool rotation angles which are symmetric about 0°. When the spool rotates from 0°, at a certain pressure drop, their values increase first then decrease with the spool rotation and reach their maximum values at an angle corresponding to about 1/2 of the maximum orifice opening, and at a certain flow rate, their values increase with the spool rotation. The steady flow torques in this valve are the sums of those in the meter-in and meter-out valve chambers. At a certain spool rotation angle, steady flow torques in the meter-in and meter-out valve chambers are approximately proportional to the pressure drop and the second power of the flow rate through the orifice. Theoretical calculation and CFD simulation can be validated by

  20. NSLS RF system improvements

    International Nuclear Information System (INIS)

    Keane, J.; Thomas, M.; McKenzie-Wilson, R.; D'Alsace, R.; Ackerman, H.; Biscardi, R.; Langenbach, H.; Ramirez, G.

    1985-01-01

    It is required that the NSLS x-ray accelerator reach an energy of 2.5 GeV. An additional accelerating cavity and power amplifier system were installed to meet this goal. A new control system was designed to include phase and amplitude servos as well as computer interfacing. Commissioning and operating experience will be reported

  1. Design of scanning motion control system for high-energy X-ray industrial CT

    International Nuclear Information System (INIS)

    Duan Liming

    2008-01-01

    A scanning motion control system was developed for the high-energy X-ray industrial computerized tomography (CT). The system consists of an industrial control computer, a counter card, a control card, servo drivers, servo motors, working platforms, gratings and control software. Based on windows driver model(WDM) mode, the composition of the driver pro- gram for the system was studied. Took the motor control card as an example, the method to develop the driver program was researched, and the intercourse process between the device driver program and the user-program was analyzed. The real-time control of the system was implemented using the WDM driver. The real-time performance and reliability of the system can satisfy the requirement of high-energy X-ray industrial CT. (authors)

  2. Study of the effect of static/dynamic Coulomb friction variation at the tape-head interface of a spacecraft tape recorder by non-linear time response simulation

    Science.gov (United States)

    Mukhopadhyay, A. K.

    1978-01-01

    A description is presented of six simulation cases investigating the effect of the variation of static-dynamic Coulomb friction on servo system stability/performance. The upper and lower levels of dynamic Coulomb friction which allowed operation within requirements were determined roughly to be three times and 50% respectively of nominal values considered in a table. A useful application for the nonlinear time response simulation is the sensitivity analysis of final hardware design with respect to such system parameters as cannot be varied realistically or easily in the actual hardware. Parameters of the static/dynamic Coulomb friction fall in this category.

  3. BLDC technology and its application in weapon system launching ...

    African Journals Online (AJOL)

    Due to inherent properties of BLDC Technology BLDC Motors and Drives are profoundly used in military and strategic weapon system applications. In this paper, BLDC Motor and Electromechanical Servo Drive System, operating principle, modeling, characteristics and its application in various weapon system programs are ...

  4. Hydraulically powered dissimilar teleoperated system controller design

    International Nuclear Information System (INIS)

    Jansen, J.F.; Kress, R.L.

    1996-01-01

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented

  5. Rapid response systems.

    Science.gov (United States)

    Lyons, Patrick G; Edelson, Dana P; Churpek, Matthew M

    2018-07-01

    Rapid response systems are commonly employed by hospitals to identify and respond to deteriorating patients outside of the intensive care unit. Controversy exists about the benefits of rapid response systems. We aimed to review the current state of the rapid response literature, including evolving aspects of afferent (risk detection) and efferent (intervention) arms, outcome measurement, process improvement, and implementation. Articles written in English and published in PubMed. Rapid response systems are heterogeneous, with important differences among afferent and efferent arms. Clinically meaningful outcomes may include unexpected mortality, in-hospital cardiac arrest, length of stay, cost, and processes of care at end of life. Both positive and negative interventional studies have been published, although the two largest randomized trials involving rapid response systems - the Medical Early Response and Intervention Trial (MERIT) and the Effect of a Pediatric Early Warning System on All-Cause Mortality in Hospitalized Pediatric Patients (EPOCH) trial - did not find a mortality benefit with these systems, albeit with important limitations. Advances in monitoring technologies, risk assessment strategies, and behavioral ergonomics may offer opportunities for improvement. Rapid responses may improve some meaningful outcomes, although these findings remain controversial. These systems may also improve care for patients at the end of life. Rapid response systems are expected to continue evolving with novel developments in monitoring technologies, risk prediction informatics, and work in human factors. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    Directory of Open Access Journals (Sweden)

    Thangam Chinnadurai

    2016-12-01

    Full Text Available This study focuses on investigating the effects of process parameters, namely, Peak current (Ip, Pulse on time (Ton, Pulse off time (Toff, Water pressure (Wp, Wire feed rate (Wf, Wire tension (Wt, Servo voltage (Sv and Servo feed setting (Sfs, on the Material Removal Rate (MRR and Surface Roughness (SR for Wire electrical discharge machining (Wire-EDM of nickel using Taguchi method. Response Surface Methodology (RSM is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used.

  7. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    International Nuclear Information System (INIS)

    Chinnadurai, T.; Vendan, S.A.

    2016-01-01

    This study focuses on investigating the effects of process parameters, namely, Peak current (Ip), Pulse on time (Ton), Pulse off time (Toff), Water pressure (Wp), Wire feed rate (Wf), Wire tension (Wt), Servo voltage (Sv) and Servo feed setting (Sfs), on the Material Removal Rate (MRR) and Surface Roughness (SR) for Wire electrical discharge machining (Wire-EDM) of nickel using Taguchi method. Response Surface Methodology (RSM) is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA) method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used. (Author)

  8. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Chinnadurai, T.; Vendan, S.A.

    2016-07-01

    This study focuses on investigating the effects of process parameters, namely, Peak current (Ip), Pulse on time (Ton), Pulse off time (Toff), Water pressure (Wp), Wire feed rate (Wf), Wire tension (Wt), Servo voltage (Sv) and Servo feed setting (Sfs), on the Material Removal Rate (MRR) and Surface Roughness (SR) for Wire electrical discharge machining (Wire-EDM) of nickel using Taguchi method. Response Surface Methodology (RSM) is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA) method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used. (Author)

  9. [Development of a gait trainer with regulated servo-drive for rehabilitation of locomotor disabled patients].

    Science.gov (United States)

    Uhlenbrock, D; Sarkodie-Gyan, T; Reiter, F; Konrad, M; Hesse, S

    1997-01-01

    The aim of the present study was to develop a new gait trainer for the rehabilitation of non-ambulatory patients. For the simulation of the gait phase, we used a commercially available fitness trainer (Fast Track) with two foot plates moving in an alternating fashion and connected to a servo-controlled propulsion system providing the necessary support for the movement depending on the patient's impairment level. To compensate deficient equilibrium reflexes, the patient was suspended in a harness capable of supporting some of his/her weight. Video analysis of gait and the kinesiological EMG were used to assess the pattern of movement and the corresponding muscle activity, which were then evaluated in healthy subjects, spinal cord injured and stroke patients and compared with walking on the flat or on a treadmill. Walking on the gait trainer was characterised by a symmetrical, sinusoidal movement of lower amplitude than in normal gait. The EMG showed a low activity of the tibialis anterior muscle, while the antigravity muscles were clearly activated by the gait trainer during the stance phase. In summary, the new gait trainer generates a symmetrical gait-like movement, promoting weight acceptance in the stance phase, which is important for the restoration of walking ability.

  10. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2010-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  11. Investigation of a Ball Screw Feed Drive System Based on Dynamic Modeling for Motion Control

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Huang

    2017-06-01

    Full Text Available This paper examines the frequency response relationship between the ball screw nut preload, ball screw torsional stiffness variations and table mass effect for a single-axis feed drive system. Identification for the frequency response of an industrial ball screw drive system is very important for the precision motion when the vibration modes of the system are critical for controller design. In this study, there is translation and rotation modes of a ball screw feed drive system when positioning table is actuated by a servo motor. A lumped dynamic model to study the ball nut preload variation and torsional stiffness of the ball screw drive system is derived first. The mathematical modeling and numerical simulation provide the information of peak frequency response as the different levels of ball nut preload, ball screw torsional stiffness and table mass. The trend of increasing preload will indicate the abrupt peak change in frequency response spectrum analysis in some mode shapes. This study provides an approach to investigate the dynamic frequency response of a ball screw drive system, which provides significant information for better control performance when precise motion control is concerned.

  12. Multicriteria Gain Tuning for Rotorcraft Flight Controls (also entitled The Development of the Conduit Advanced Control System Design and Evaluation Interface with a Case Study Application Fly by Wire Helicopter Design)

    Science.gov (United States)

    Biezad, Daniel

    1997-01-01

    Handling qualities analysis and control law design would seem to be naturally complimenting components of aircraft flight control system design, however these two closely coupled disciplines are often not well integrated in practice. Handling qualities engineers and control system engineers may work in separate groups within an aircraft company. Flight control system engineers and handling quality specialists may come from different backgrounds and schooling and are often not aware of the other group's research. Thus while the handling qualities specifications represent desired aircraft response characteristics, these are rarely incorporated directly in the control system design process. Instead modem control system design techniques are based on servo-loop robustness specifications, and simple representations of the desired control response. Comprehensive handling qualities analysis is often left until the end of the design cycle and performed as a check of the completed design for satisfactory performance. This can lead to costly redesign or less than satisfactory aircraft handling qualities when the flight testing phase is reached. The desire to integrate the fields of handling qualities and flight,control systems led to the development of the CONDUIT system. This tool facilitates control system designs that achieve desired handling quality requirements and servo-loop specifications in a single design process. With CONDUIT, the control system engineer is now able to directly design and control systems to meet the complete handling specifications. CONDUIT allows the designer to retain a preferred control law structure, but then tunes the system parameters to meet the handling quality requirements.

  13. BLDC technology and its application in weapon system launching ...

    African Journals Online (AJOL)

    In this paper Brushless DC (BLDC) Technology and its Application in Articulation of Weapon System Launching Platform using Electromechanical Servo Drive is presented. ... Due to inherent properties of BLDC Technology BLDC Motors and Drives are profoundly used in military and strategic weapon system applications.

  14. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system.

    Science.gov (United States)

    Rahman, Md Arifur; Al Mamun, Abdullah; Yao, Kui

    2015-08-01

    The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results.

  15. Adaptive vibration isolation system for diesel engine

    Institute of Scientific and Technical Information of China (English)

    YANG Tie-jun; ZHANG Xin-yu; XIAO You-hong; HUANG Jin-e; LIU Zhi-gang

    2004-01-01

    An active two-stage isolation mounting, on which servo-hydraulic system is used as the actuator (secondary vibration source) and a diesel engine is used as primary vibration source, has been built. The upper mass of the mounting is composed of a 495diesel and an electrical eddy current dynamometer. The lower mass is divided into four small masses to which servo-hydraulic actuator and rubber isolators are attached. According to the periodical characteristics of diesel vibration signals, a multi-point adaptive strategy based on adaptive comb filtered algorithm is applied to active multi-direction coupled vibrations control for the engine. The experimental results demonstrate that a good suppression in the effective range of phase compensation in secondary path (within 100Hz) at different operation conditions is achieved, and verify that this strategy is effective. The features of the active system, the development activities carried out on the system and experimental results are discussed in the paper.

  16. A real-time control system architecture for industrial power amplifiers

    NARCIS (Netherlands)

    Qureshi, F.; Spinu, V.; Wijnands, C.G.E.; Lazar, M.

    2013-01-01

    Power amplifiers are a highly important component in a range of industrial applications, such as, servo-drives, magnetic resonance imaging, energy systems, and audio. The control system for power amplifiers should satisfy a range of requirements, e.g., offset free tracking, stability margins, and

  17. Summary report on development of bilateral servo manipulator (BSM) for nuclear fuel cycle facilities in the Japan Nuclear Cycle Development Institute

    International Nuclear Information System (INIS)

    Miki, Yasuo; Koizumi, Tsutomu; Aoshima, Atsushi; Kawanobe, Kazunori; Kobayashi, Yuichi

    2000-03-01

    In order to improve availability of nuclear fuel cycle facilities such as fuel reprocessing plants, reduce occupational radiation exposure, the Japan Nuclear Cycle Development Institute (JNC) has been developing an advanced remote manipulative system for fully remote maintenance and repair tasks in large volume repair cells. Fully remote maintenance and repair task is performed primarily by the utilization of overhead bridge cranes, mechanical master-slave manipulators and electro-mechanical power manipulators. This system requires also that plant process and remote processing equipment should be designed to provide modular or unit replacement based on the potential mode of system failures. Repair of equipment is performed following removal of the failed component from process line and transfer to the repair cell. Equipment repair in the cell is commonly carried out by the use of remote manipulators. However, the realization of fully remote maintenance facility requires so remote manipulative systems as to provide excellent controllability, durability and remote maintenance capability, development of a bilateral servo-manipulator was initiated in 1982. Two of BSM were installed in the Tokai Vitrification Facility (TVF) cell and their remote maintenance feasibility was evaluated. Following installation in the TVF, developing efforts toward achieving advanced remote maintenance capability for the Recycle Equipment Test Facility (RETF) have been made. This report summarizes mainly mechanical and control system design for improvement, particularly upgrading controllability. (Itami, H.)

  18. Role of pressure in angiotensin II-induced renal injury: chronic servo-control of renal perfusion pressure in rats.

    Science.gov (United States)

    Mori, Takefumi; Cowley, Allen W

    2004-04-01

    Renal perfusion pressure was servo-controlled chronically in rats to quantify the relative contribution of elevated arterial pressure versus angiotensin II (Ang II) on the induction of renal injury in Ang II-induced hypertension. Sprague-Dawley rats fed a 4% salt diet were administered Ang II for 14 days (25 ng/kg per minute IV; saline only for sham rats), and the renal perfusion pressure to the left kidney was continuously servo-controlled to maintain a normal pressure in that kidney throughout the period of hypertension. An aortic occluder was implanted around the aorta between the two renal arteries and carotid and femoral arterial pressure were measured continuously throughout the experiment to determine uncontrolled and controlled renal perfusion pressure, respectively. Renal perfusion pressure of uncontrolled, controlled, and sham kidneys over the period of Ang II or saline infusion averaged 152.6+/-7.0, 117.4+/-3.5, and 110.7+/-2.2 mm Hg, respectively. The high-pressure uncontrolled kidneys exhibited tubular necrosis and interstitial fibrosis, especially prominent in the outer medullary region. Regional glomerular sclerosis and interlobular artery injury were also pronounced. Controlled kidneys were significantly protected from interlobular artery injury, juxtamedullary glomeruli injury, tubular necrosis, and interstitial fibrosis as determined by comparing the level of injury. Glomerular injury was not prevented in the outer cortex. Transforming growth factor (TGF)-beta and active NF-kappaB proteins determined by immunohistochemistry were colocalized in the uncontrolled kidney in regions of interstitial fibrosis. We conclude that the preferential juxtamedullary injury found in Ang II hypertension is largely induced by pressure and is probably mediated through the TGF-beta and NF-kappaB pathway.

  19. Design and simulation of the direct drive servo system

    Science.gov (United States)

    Ren, Changzhi; Liu, Zhao; Song, Libin; Yi, Qiang; Chen, Ken; Zhang, Zhenchao

    2010-07-01

    As direct drive technology is finding their way into telescope drive designs for its many advantages, it would push to more reliable and cheaper solutions for future telescope complex motion system. However, the telescope drive system based on the direct drive technology is one high integrated electromechanical system, which one complex electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The telescope is one ultra-exact, ultra-speed, high precision and huge inertial instrument, which the direct torque motor adopted by the telescope drive system is different from traditional motor. This paper explores the design process and some simulation results are discussed.

  20. Adaptive servo control for umbilical mating

    Science.gov (United States)

    Zia, Omar

    1988-01-01

    Robotic applications at Kennedy Space Center are unique and in many cases require the fime positioning of heavy loads in dynamic environments. Performing such operations is beyond the capabilities of an off-the-shelf industrial robot. Therefore Robotics Applications Development Laboratory at Kennedy Space Center has put together an integrated system that coordinates state of the art robotic system providing an excellent easy to use testbed for NASA sensor integration experiments. This paper reviews the ways of improving the dynamic response of the robot operating under force feedback with varying dynamic internal perturbations in order to provide continuous stable operations under variable load conditions. The goal is to improve the stability of the system with force feedback using the adaptive control feature of existing system over a wide range of random motions. The effect of load variations on the dynamics and the transfer function (order or values of the parameters) of the system has been investigated, more accurate models of the system have been determined and analyzed.

  1. Closed-Loop Tension Control System for Injection Moulding Machine

    African Journals Online (AJOL)

    When the mould unit is full, this drive keeps transporting filament materials without proper control. This project developed a closed loop feedback tension control system and it is to replace servo motor drive system for the transportation of filament and it demonstrated a new technological advancement and the theory of ...

  2. Desenvolvimento e avaliação de uma servoválvula de baixo custo para a aplicação de insumos líquidos Development and evaluation of a low cost servo-valve for liquid inputs application

    Directory of Open Access Journals (Sweden)

    André L. Johann

    2006-04-01

    Full Text Available O presente trabalho teve o objetivo de desenvolver uma servoválvula de baixo custo, que respondesse a um sinal eletrônico de controle, para a aplicação de insumos líquidos a taxas variáveis. Depois de realizada pesquisa na literatura das opções de válvulas existentes para a dosagem de líquidos a baixas pressões, partiu-se para o desenvolvimento de uma válvula proporcional com acionamento mecânico por intermédio de um servomotor controlado eletronicamente. Uma vez desenvolvida a servoválvula, o sistema foi submetido a um conjunto de testes, realizados em bancada desenvolvida especificamente para esse fim, onde se procurou avaliar seu comportamento em termos de repetitividade, histerese e linearidade. Como resultados, obtiveram-se três curvas de vazão em função do percentual de abertura, descrevendo três incrementos de abertura e fechamento em duas pressões diferentes de trabalho. A servoválvula apresentou boa repetitividade, razoável histerese e curva tipicamente quadrática, bem como manteve a proposta de baixo custo. Esses resultados apresentaram-se bastante satisfatórios, uma vez que a não-linearidade e a histerese podem ser facilmente corrigidas por meio de software.The present work aimed the development of a low cost servo-valve that answers to an electronic control signal, for variable rates liquid inputs application. A literature research to define which valve type should be used was made. A mechanically activated proportional valve with an electronically controlled servo-engine was designed and evaluated. Since developed the servo-valve, the system was submited to a number of tests .The evaluation of its behavior was obtained in terms of repeatability, hystheresis and linearity. The test was accomplished in a bench, specially developed for this aim. As a result, were obtained three curves of opening percentage as function of flow rate, describing three opening and closing increments in two different work pressures

  3. A Digital Motion Control System for Large Telescopes

    Science.gov (United States)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.

    2001-05-01

    We have designed and programmed a digital motion control system for large telescopes, in particular, the 6-meter antennas of the Submillimeter Array on Mauna Kea. The system consists of a single robust, high-reliability microcontroller board which implements a two-axis velocity servo while monitoring and responding to critical safety parameters. Excellent tracking performance has been achieved with this system (0.3 arcsecond RMS at sidereal rate). The 24x24 centimeter four-layer printed circuit board contains a multitude of hardware devices: 40 digital inputs (for limit switches and fault indicators), 32 digital outputs (to enable/disable motor amplifiers and brakes), a quad 22-bit ADC (to read the motor tachometers), four 16-bit DACs (that provide torque signals to the motor amplifiers), a 32-LED status panel, a serial port to the LynxOS PowerPC antenna computer (RS422/460kbps), a serial port to the Palm Vx handpaddle (RS232/115kbps), and serial links to the low-resolution absolute encoders on the azimuth and elevation axes. Each section of the board employs independent ground planes and power supplies, with optical isolation on all I/O channels. The processor is an Intel 80C196KC 16-bit microcontroller running at 20MHz on an 8-bit bus. This processor executes an interrupt-driven, scheduler-based software system written in C and assembled into an EPROM with user-accessible variables stored in NVSRAM. Under normal operation, velocity update requests arrive at 100Hz from the position-loop servo process running independently on the antenna computer. A variety of telescope safety checks are performed at 279Hz including routine servicing of a 6 millisecond watchdog timer. Additional ADCs onboard the microcontroller monitor the winding temperature and current in the brushless three-phase drive motors. The PID servo gains can be dynamically changed in software. Calibration factors and software filters can be applied to the tachometer readings prior to the application of

  4. AI-based adaptive control and design of autopilot system

    Indian Academy of Sciences (India)

    The objective of this paper is to design an autopilot system for unmanned aerial vehicle (UAV) to control the speed and altitude using electronic throttle control system (ETCS) and elevator, respectively. A DC servo motor is used for designing of ETCS to control the throttle position for appropriate amount of air mass flow.

  5. Design Method of Active Disturbance Rejection Variable Structure Control System

    Directory of Open Access Journals (Sweden)

    Yun-jie Wu

    2015-01-01

    Full Text Available Based on lines cluster approaching theory and inspired by the traditional exponent reaching law method, a new control method, lines cluster approaching mode control (LCAMC method, is designed to improve the parameter simplicity and structure optimization of the control system. The design guidelines and mathematical proofs are also given. To further improve the tracking performance and the inhibition of the white noise, connect the active disturbance rejection control (ADRC method with the LCAMC method and create the extended state observer based lines cluster approaching mode control (ESO-LCAMC method. Taking traditional servo control system as example, two control schemes are constructed and two kinds of comparison are carried out. Computer simulation results show that LCAMC method, having better tracking performance than the traditional sliding mode control (SMC system, makes the servo system track command signal quickly and accurately in spite of the persistent equivalent disturbances and ESO-LCAMC method further reduces the tracking error and filters the white noise added on the system states. Simulation results verify the robust property and comprehensive performance of control schemes.

  6. A hybrid press system: Motion design and inverse kinematics issues

    Directory of Open Access Journals (Sweden)

    M. Erkan Kütük

    2016-06-01

    Full Text Available A hybrid machine (HM is a system integrating two types of motor; servo and constant velocity with a mechanism. The purpose is to make use of the energy in the system efficiently with a flexible system having more than one degree of freedom (DOF. A review is included on hybrid press systems. This study is included as a part of an industrial project used for metal forming. The system given here includes a 7 link mechanism, one of link is driven by a constant velocity motor (CV and the other is driven by a servo motor (SM. Kinematics analysis of the hybrid driven mechanism is presented here as inverse kinematics analysis. Motion design is very crucial step when using a hybrid machine. So motion design procedure is given with motion curve examples needed. Curve Fitting Toolbox (CFT in Matlab® is offered as an auxiliary method which can be successfully applied. Motion characteristics are chosen by looking at requirements taken from metal forming industry. Results are then presented herein.

  7. Stochastic dynamic response analysis of spar-type wind turbines with catenary or taut mooring systems

    Energy Technology Data Exchange (ETDEWEB)

    Karimirad, Madjid

    2011-03-15

    Floating wind turbines can be the most practical and economical way to extract the vast offshore wind energy resources at deep and intermediate water depths. The Norwegian Ministry of Petroleum and Energy is strongly committed to developing offshore wind technology that utilises available renewable energy sources. As the wind is steadier and stronger over the sea than over land, the wind industry recently moved to offshore areas. Analysis of the structural dynamic response of offshore wind turbines subjected to stochastic wave and wind loads is an important aspect of the assessment of their potential for power production and of their structural integrity. Of the concepts that have been proposed for floating wind turbines, spar-types such as the catenary moored spar (CMS) and tension leg spar (TLS) wind turbines seem to be well-suited to the harsh environmental conditions that exist in the North Sea. Hywind and Sway are two examples of such Norwegian concepts; they are based on the CMS and TLS, respectively. Floating wind turbines are sophisticated structures that are subjected to simultaneous wind and wave actions. The coupled nonlinear structural dynamics and motion response equations of these turbines introduce geometrical nonlinearities through the relative motions and velocities. Moreover, the hydrodynamic and aerodynamic loading of this type of structure is nonlinear. A floating wind turbine is a multi body aero-hydro-servo-elastic structural system; for such structures, the coupled nonlinear equations of motion considering nonlinear excitation and damping forces, including all wave- and wind-induced features, should be solved in the time domain. In this thesis, the motion and structural responses for operational and extreme environmental conditions were considered to investigate the performance and the structural integrity of spar-type floating wind turbines. The power production and the effects of aerodynamic and hydrodynamic damping, including wind

  8. Sinusoidal visuomotor tracking: intermittent servo-control or coupled oscillations?

    Science.gov (United States)

    Russell, D M; Sternad, D

    2001-12-01

    In visuomotor tasks that involve accuracy demands, small directional changes in the trajectories have been taken as evidence of feedback-based error corrections. In the present study variability, or intermittency, in visuomanual tracking of sinusoidal targets was investigated. Two lines of analyses were pursued: First, the hypothesis that humans fundamentally act as intermittent servo-controllers was re-examined, probing the question of whether discontinuities in the movement trajectory directly imply intermittent control. Second, an alternative hypothesis was evaluated: that rhythmic tracking movements are generated by entrainment between the oscillations of the target and the actor, such that intermittency expresses the degree of stability. In 2 experiments, participants (N = 6 in each experiment) swung 1 of 2 different hand-held pendulums, tracking a rhythmic target that oscillated at different frequencies with a constant amplitude. In 1 line of analyses, the authors tested the intermittency hypothesis by using the typical kinematic error measures and spectral analysis. In a 2nd line, they examined relative phase and its variability, following analyses of rhythmic interlimb coordination. The results showed that visually guided corrective processes play a role, especially for slow movements. Intermittency, assessed as frequency and power components of the movement trajectory, was found to change as a function of both target frequency and the manipulandum's inertia. Support for entrainment was found in conditions in which task frequency was identical to or higher than the effector's eigenfrequency. The results suggest that it is the symmetry between task and effector that determines which behavioral regime is dominant.

  9. Microcomputer-based equipment-control and data-acquisition system for fission-reactor reactivity-worth measurements

    International Nuclear Information System (INIS)

    McDowell, W.P.; Bucher, R.G.

    1980-01-01

    Material reactivity-worth measurements are one of the major classes of experiments conducted on the Zero Power research reactors (ZPR) at Argonne National Laboratory. These measurements require the monitoring of the position of a servo control element as a sample material is positioned at various locations in a critical reactor configuration. In order to guarantee operational reliability and increase experimental flexibility for these measurements, the obsolete hardware-based control unit has been replaced with a microcomputer based equipment control and data acquisition system. This system is based on an S-100 bus, dual floppy disk computer with custom built cards to interface with the experimental system. To measure reactivity worths, the system accurately positions samples in the reactor core and acquires data on the position of the servo control element. The data are then analyzed to determine statistical adequacy. The paper covers both the hardware and software aspects of the design

  10. Microcomputer-based equipment-control and data-acquisition system for fission-reactor reactivity-worth measurements

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, W.P.; Bucher, R.G.

    1980-01-01

    Material reactivity-worth measurements are one of the major classes of experiments conducted on the Zero Power research reactors (ZPR) at Argonne National Laboratory. These measurements require the monitoring of the position of a servo control element as a sample material is positioned at various locations in a critical reactor configuration. In order to guarantee operational reliability and increase experimental flexibility for these measurements, the obsolete hardware-based control unit has been replaced with a microcomputer based equipment control and data acquisition system. This system is based on an S-100 bus, dual floppy disk computer with custom built cards to interface with the experimental system. To measure reactivity worths, the system accurately positions samples in the reactor core and acquires data on the position of the servo control element. The data are then analyzed to determine statistical adequacy. The paper covers both the hardware and software aspects of the design.

  11. Elevation scanning laser/multi-sensor hazard detection system controller and mirror/mast speed control components. [roving vehicle electromechanical devices

    Science.gov (United States)

    Craig, J.; Yerazunis, S. W.

    1978-01-01

    The electro-mechanical and electronic systems involved with pointing a laser beam from a roving vehicle along a desired vector are described. A rotating 8 sided mirror, driven by a phase-locked dc motor servo system, and monitored by a precision optical shaft encoder is used. This upper assembly is then rotated about an orthogonal axis to allow scanning into all 360 deg around the vehicle. This axis is also driven by a phase locked dc motor servo-system, and monitored with an optical shaft encoder. The electronics are realized in standard TTL integrated circuits with UV-erasable proms used to store desired coordinates of laser fire. Related topics such as the interface to the existing test vehicle are discussed.

  12. Dynamics analysis of the fast-slow hydro-turbine governing system with different time-scale coupling

    Science.gov (United States)

    Zhang, Hao; Chen, Diyi; Wu, Changzhi; Wang, Xiangyu

    2018-01-01

    Multi-time scales modeling of hydro-turbine governing system is crucial in precise modeling of hydropower plant and provides support for the stability analysis of the system. Considering the inertia and response time of the hydraulic servo system, the hydro-turbine governing system is transformed into the fast-slow hydro-turbine governing system. The effects of the time-scale on the dynamical behavior of the system are analyzed and the fast-slow dynamical behaviors of the system are investigated with different time-scale. Furthermore, the theoretical analysis of the stable regions is presented. The influences of the time-scale on the stable region are analyzed by simulation. The simulation results prove the correctness of the theoretical analysis. More importantly, the methods and results of this paper provide a perspective to multi-time scales modeling of hydro-turbine governing system and contribute to the optimization analysis and control of the system.

  13. A Generalized Visual Aid System for Teleoperation Applied to Satellite Servicing

    Directory of Open Access Journals (Sweden)

    Guoliang Zhang

    2014-02-01

    Full Text Available This paper presents the latest results of a newly developed visual aid system for direct teleoperation. This method is extended to visual control to make an efficient teleoperation system by combining direct teleoperation and automatic control. On the one hand, an operator can conduct direct teleoperation with 3D graphic prediction simulation established by the VR technique. In order to remove inconsistencies between the virtual and real environments, a practical model-matching method is investigated. On the other hand, to realize real-time visual servoing control, a particular object recognition and pose estimation algorithm based on polygonal approximation is investigated to ensure a low computational cost for image processing. To avoid undesired forces involved in contact operation, 3D visual servoing incorporating a compliant control based on impedance control is developed. Finally, in a representative laboratory environment, a typical satellite servicing experiment is carried out based on this combined system. Experimental results demonstrate the feasibility and the effectiveness of the proposed method.

  14. Wind Assessment for Aerial Payload Delivery Systems Using GPS and IMU Sensors

    Science.gov (United States)

    2016-09-01

    PWM_0_out = data_raw(:,59)-1000; % servo out [0,1000] Deflection_inches = ((PWM_0_out-1000*.94)/(0-1000*.94)*(9+9))-9; Servo_Current_A = data_raw(:,43...66.5; % Servo Current in Amps User_1 = data_raw(:,6); User_2 = data_raw(:,7); User_3 = data_raw(:,8); ground_speed = data_raw(:,23); yaw_rate...with Applications to Orbits, Aerospace, and Virtual Reality, Princeton: Princeton University Press , 1999. [15] Center for Interdisciplinary

  15. Suppression of Squeal Noise Excited by the Pressure Pulsation from the Flapper-Nozzle Valve inside a Hydraulic Energy System

    Directory of Open Access Journals (Sweden)

    Meng Chen

    2018-04-01

    Full Text Available Squeal noise often occurs in a two-stage electrohydraulic servo-valve, which is an unfavorable issue of modern hydraulic energy systems. The root causes of such noise from the servo-valve are still unclear. The objective of this paper is to explore the noise mechanism in a servo-valve excited by the pressure pulsations from the hydraulic energy system perspective. The suppressing capability of squeal noise energy is investigated by changing the pressure pulsation frequency and natural frequency of the flapper-armature assembly. The frequencies of the pressure pulsations are adjusted by setting different speeds of the hydraulic pump varying from 10,400–14,400 rpm, and two flapper-armature assemblies with different armature lengths are used in the tested hydraulic energy system. The first eight vibration mode shapes and natural frequencies of the flapper-armature assembly are obtained by numerical modal analysis using two different armature lengths. The characteristics of pressure pulsations at the pump outlet and in the chamber of the flapper-nozzle valve, armature vibration and noise are tested and compared with the natural frequencies of the flapper-armature assembly. The results reveal that the flapper-armature assembly vibrates and makes the noise with the same frequencies as the pressure pulsations inside the hydraulic energy system. Resonance appears when the frequency of the pressure pulsations coincides with the natural frequency of the flapper-armature assembly. Therefore, it can be concluded that the pressure pulsation energy from the power supply may excite the vibration of the flapper-armature assembly, which may consequently cause the squeal noise inside the servo-valve. It is verified by the numerical simulations and experiments that setting the pressure pulsation frequencies different from the natural frequencies of the flapper-armature assembly can suppress the resonance and squeal noise.

  16. HAWC2 and BeamDyn: Comparison Between Beam Structural Models for Aero-Servo-Elastic Frameworks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pavese, Christian; Kim, Taeseong; Wang, Qi; Jonkman, Jason; Sprague, Michael A.

    2016-08-01

    This work presents a comparison of two beam codes for aero-servo-elastic frameworks: a new structural model for the aeroelastic code HAWC2 and a new nonlinear beam model, BeamDyn, for the aeroelastic modularization framework FAST v8. The main goal is to establish the suitability of the two approaches to model the structural behaviour of modern wind turbine blades in operation. Through a series of benchmarking structural cases of increasing complexity, the capability of the two codes to simulate highly nonlinear effects is investigated and analyzed. Results show that even though the geometrically exact beam theory can better model effects such as very large deflections, rotations, and structural couplings, an approach based on a multi-body formulation assembled through linear elements is capable of computing accurate solutions for typical nonlinear beam theory benchmarking cases.

  17. Feedback-stabilized fractional fringe laser interferometer for plasma density measurements

    International Nuclear Information System (INIS)

    Schneider, J.; Robertson, S.

    1979-01-01

    A feedback stabilization technique is described for a fractional fringe interferometer measuring plasma electron densities. Using this technique, a CO 2 laser Michelson interferometer with a pyroelectric detector exhibited a sensitivity of 3.4 x 10 -4 fringe on a 1-ms time scale and, due to acoustic pickup, 1.8 x 10 -2 fringe on a 10-ms time scale. The rise time is 45 μs. Stabilization against slow drifts in mirror distances is achieved by an electromechanically translated mirror driven by a servo system having a 0.2-s response time. A mechanical chopper in one of the two beam paths generates the signal which drives the servo system

  18. Noncontact optical motion sensing for real-time analysis

    Science.gov (United States)

    Fetzer, Bradley R.; Imai, Hiromichi

    1990-08-01

    The adaptation of an image dissector tube (IDT) within the OPTFOLLOW system provides high resolution displacement measurement of a light discontinuity. Due to the high speed response of the IDT and the advanced servo loop circuitry, the system is capable of real time analysis of the object under test. The image of the discontinuity may be contoured by direct or reflected light and ranges spectrally within the field of visible light. The image is monitored to 500 kHz through a lens configuration which transposes the optical image upon the photocathode of the IDT. The photoelectric effect accelerates the resultant electrons through a photomultiplier and an enhanced current is emitted from the anode. A servo loop controls the electron beam, continually centering it within the IDT using magnetic focusing of deflection coils. The output analog voltage from the servo amplifier is thereby proportional to the displacement of the target. The system is controlled by a microprocessor with a 32kbyte memory and provides a digital display as well as instructional readout on a color monitor allowing for offset image tracking and automatic system calibration.

  19. Electromagnetic variable degrees of freedom actuator systems and methods

    Science.gov (United States)

    Montesanti, Richard C [Pleasanton, CA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.

    2009-02-17

    The present invention provides a variable reluctance actuator system and method that can be adapted for simultaneous rotation and translation of a moving element by applying a normal-direction magnetic flux on the moving element. In a beneficial example arrangement, the moving element includes a swing arm that carries a cutting tool at a set radius from an axis of rotation so as to produce a rotary fast tool servo that provides a tool motion in a direction substantially parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. An actuator rotates a swing arm such that a cutting tool moves toward and away from a mounted rotating workpiece in a controlled manner in order to machine the workpiece. Position sensors provide rotation and displacement information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in feed slide of a precision lathe.

  20. Variable friction device for structural control based on duo-servo vehicle brake: Modeling and experimental validation

    Science.gov (United States)

    Cao, Liang; Downey, Austin; Laflamme, Simon; Taylor, Douglas; Ricles, James

    2015-07-01

    Supplemental damping can be used as a cost-effective method to reduce structural vibrations. In particular, passive systems are now widely accepted and have numerous applications in the field. However, they are typically tuned to specific excitations and their performances are bandwidth-limited. A solution is to use semi-active devices, which have shown to be capable of substantially enhanced mitigation performance. The authors have recently proposed a new type of semi-active device, which consists of a variable friction mechanism based on a vehicle duo-servo drum brake, a mechanically robust and reliable technology. The theoretical performance of the proposed device has been previously demonstrated via numerical simulations. In this paper, we further the understanding of the device, termed Modified Friction Device (MFD) by fabricating a small scale prototype and characterizing its dynamic behavior. While the dynamics of friction is well understood for automotive braking technology, we investigate for the first time the dynamic behavior of this friction mechanism at low displacements and velocities, in both forward and backward directions, under various hydraulic pressures. A modified 3-stage dynamic model is introduced. A LuGre friction model is used to characterize the friction zone (Stage 1), and two pure stiffness regions to characterize the dynamics of the MFD once the rotation is reversed and the braking shoes are sticking to the drum (Stage 2) and the rapid build up of forces once the shoes are held by the anchor pin (Stage 3). The proposed model is identified experimentally by subjecting the prototype to harmonic excitations. It is found that the proposed model can be used to characterize the dynamics of the MFD, and that the largest fitting error arises at low velocity under low pressure input. The model is then verified by subjecting the MFD to two different earthquake excitations under different pressure inputs. The model is capable of tracking the

  1. NASA Goddard Space Flight Center Robotic Processing System Program Automation Systems, volume 2

    Science.gov (United States)

    Dobbs, M. E.

    1991-01-01

    Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form. Some of the areas covered include: (1) mission requirements; (2) automation management system; (3) Space Transportation System (STS) Hitchhicker Payload; (4) Spacecraft Command Language (SCL) scripts; (5) SCL software components; (6) RoMPS EasyLab Command & Variable summary for rack stations and annealer module; (7) support electronics assembly; (8) SCL uplink packet definition; (9) SC-4 EasyLab System Memory Map; (10) Servo Axis Control Logic Suppliers; and (11) annealing oven control subsystem.

  2. Design considerations for a servo optical projection system

    Science.gov (United States)

    Nadalsky, Michael; Allen, Daniel; Bien, Joseph

    1987-01-01

    The present servooptical projection system (SOPS) furnishes 'out-the-window' scenery for a pilot-training flight simulator; attention is given to the parametric tradeoffs made in the SOPS' optical design, as well as to its mechanical packaging and the servonetwork performance of the unit as integrated into a research/training helicopter flight simulator. The final SOPS configuration is a function of scan head design, assembly modularity, image deterioration method, and focal lengths and relative apertures.

  3. Design and motion control of bioinspired humanoid robot head from servo motors toward artificial muscles

    Science.gov (United States)

    Almubarak, Yara; Tadesse, Yonas

    2017-04-01

    The potential applications of humanoid robots in social environments, motivates researchers to design, and control biomimetic humanoid robots. Generally, people are more interested to interact with robots that have similar attributes and movements to humans. The head is one of most important part of any social robot. Currently, most humanoid heads use electrical motors, pneumatic actuators, and shape memory alloy (SMA) actuators for actuation. Electrical and pneumatic actuators take most of the space and would cause unsmooth motions. SMAs are expensive to use in humanoids. Recently, in many robotic projects, Twisted and Coiled Polymer (TCP) artificial muscles are used as linear actuators which take up little space compared to the motors. In this paper, we will demonstrate the designing process and motion control of a robotic head with TCP muscles. Servo motors and artificial muscles are used for actuating the head motion, which have been controlled by a cost efficient ARM Cortex-M7 based development board. A complete comparison between the two actuators is presented.

  4. Adaptive Automatic Gauge Control of a Cold Strip Rolling Process

    Directory of Open Access Journals (Sweden)

    ROMAN, N.

    2010-02-01

    Full Text Available The paper tackles with thickness control structure of the cold rolled strips. This structure is based on the rolls position control of a reversible quarto rolling mill. The main feature of the system proposed in the paper consists in the compensation of the errors introduced by the deficient dynamics of the hydraulic servo-system used for the rolls positioning, by means of a dynamic compensator that approximates the inverse system of the servo-system. Because the servo-system is considered variant over time, an on-line identification of the servo-system and parameter adapting of the compensator are achieved. The results obtained by numerical simulation are presented together with the data taken from real process. These results illustrate the efficiency of the proposed solutions.

  5. Electromechanical motion systems design and simulation

    CERN Document Server

    Moritz, Frederick G

    2013-01-01

    An introductory reference covering the devices, simulations and limitations in the control of servo systems Linking theoretical material with real-world applications, this book provides a valuable introduction to motion system design. The book begins with an overview of classic theory, its advantages and limitations, before showing how classic limitations can be overcome with complete system simulation. The ability to efficiently vary system parameters (such as inertia, friction, dead-band, damping), and quickly determine their effect on performance, stability, efficiency, is also described. T

  6. In-orbit evaluation of the control system/structural mode interactions of the OSO-8 spacecraft

    Science.gov (United States)

    Slafer, L. I.

    1979-01-01

    The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. The paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments, and have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system.

  7. A 2-Dof LQR based PID controller for integrating processes considering robustness/performance tradeoff.

    Science.gov (United States)

    Srivastava, Saurabh; Pandit, V S

    2017-11-01

    This paper focuses on the analytical design of a Proportional Integral and Derivative (PID) controller together with a unique set point filter that makes the overall Two-Degree of-Freedom (2-Dof) control system for integrating processes with time delay. The PID controller tuning is based on the Linear Quadratic Regulator (LQR) using dominant pole placement approach to obtain good regulatory response. The set point filter is designed with the calculated PID parameters and using a single filter time constant (λ) to precisely control the servo response. The effectiveness of the proposed methodology is demonstrated through a series of illustrative examples using real industrial integrated process models. The whole range of PID parameters is obtained for each case in a tradeoff between the robustness of the closed loop system measured in terms of Maximum Sensitivity (M s ) and the load disturbance measured in terms of Integral of Absolute Errors (IAE). Results show improved closed loop response in terms of regulatory and servo responses with less control efforts when compared with the latest PID tuning methods of integrating systems. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Multi-Response Optimization of Wire Electrical Discharge Machining for Titanium Grade-5 by Weighted Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Sachin Ashok Sonawane

    2018-04-01

    Full Text Available This paper reports the results of research to examine the effects of cutting parameters such as pulse-on time, pulse-off time, servo voltage, peak current, wire feed rate and cable tension on surface finish, overcut and metal removal rate (MRR during Wire Electrical Discharge Machining (WEDM of grade-5 titanium (Ti-6Al-4V. Taguchi’s L27 orthogonal design method is used for experimentation. Multi-response optimization is performed by applying weighted principal component analysis (WPCA. The optimum values of cutting variables are found as a pulse on time 118 μs, pulse off time 45 μs, servo voltage 40 volts, peak current 190 Amp. , wire feed rate 5 m/min and cable tension 5 gram. On the other hand, Analysis of Variance (ANOVA, simulation results indicate that pulse-on time is the primary influencing variable which affects the response characteristics contributing 76.00%. The results of verification experiments show improvement in the value of output characteristics at the optimal cutting variables settings. Scanning electron microscopic (SEM analysis of the surface after machining indicates the formation of craters, resolidified material, tool material transfer and increase in the thickness of recast layer at higher values of the pulse on time.

  9. The Digital Motion Control System for the Submillimeter Array Antennas

    Science.gov (United States)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.; Patel, N. A.; Blundell, R.; Christensen, R. D.; Diven, A. R.; Maute, J.; Plante, R. J.; Riddle, P.; Young, K. H.

    2013-09-01

    We describe the design and performance of the digital servo and motion control system for the 6-meter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error function. Calibration factors and software filters are applied to the tachometer feedback prior to the application of the servo gains in the torque computations. All of these parameters are remotely adjustable in the software. The three layers of the control system monitor each other and are capable of shutting down the system safely if a failure or anomaly occurs. The Unix system continuously relays the antenna status to the central observatory computer via reflective memory. In each antenna, a Palm Vx hand controller displays the complete system status and allows full local control of the drives in an intuitive touchscreen user interface. The hand controller can also be connected outside the cabin, a major convenience during the frequent reconfigurations of the interferometer. Excellent tracking performance ( 0.3‧‧ rms) is achieved with this system. It has been in reliable operation on 8 antennas for over 10 years and has required minimal maintenance.

  10. Robot Arm with Tendon Connector Plate and Linear Actuator

    Science.gov (United States)

    Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Bridgwater, Lyndon (Inventor); Nguyen, Vienny (Inventor); Millerman, Alexander (Inventor)

    2014-01-01

    A robotic system includes a tendon-driven end effector, a linear actuator, a flexible tendon, and a plate assembly. The linear actuator assembly has a servo motor and a drive mechanism, the latter of which translates linearly with respect to a drive axis of the servo motor in response to output torque from the servo motor. The tendon connects to the end effector and drive mechanism. The plate assembly is disposed between the linear actuator assembly and the tendon-driven end effector and includes first and second plates. The first plate has a first side that defines a boss with a center opening. The second plate defines an accurate through-slot having tendon guide channels. The first plate defines a through passage for the tendon between the center opening and a second side of the first plate. A looped end of the flexible tendon is received within the tendon guide channels.

  11. Modeling response variation for radiometric calorimeters

    International Nuclear Information System (INIS)

    Mayer, R.L. II.

    1986-01-01

    Radiometric calorimeters are widely used in the DOE complex for accountability measurements of plutonium and tritium. Proper characterization of response variation for these instruments is, therefore, vital for accurate assessment of measurement control as well as for propagation of error calculations. This is not difficult for instruments used to measure items within a narrow range of power values; however, when a single instrument is used to measure items over a wide range of power values, improper estimates of uncertainty can result since traditional error models for radiometric calorimeters assume that uncertainty is not a function of sample power. This paper describes methods which can be used to accurately estimate random response variation for calorimeters used to measure items over a wide range of sample powers. The model is applicable to the two most common modes of calorimeter operation: heater replacement and servo control. 5 refs., 4 figs., 1 tab

  12. Synthesis of adaptive traffic control discrete neminimalno-phase system

    Directory of Open Access Journals (Sweden)

    В.М. Азарсков

    2007-01-01

    Full Text Available  An adaptive approach to synthesizing the digital tracking system with direct set-point coupling is extended under conditions when a plant is non-minimum phase. Some bounded set of belonging of servo drive unknown parameters vector is believed to be known. The object’s model non-singularity condition is established. The asymptotical properties of control system are studied. Simulation results are given.

  13. Development of an integrated closed loop control system with virtual reality monitoring for Prototype Robotic Articulated System (PRAS)

    International Nuclear Information System (INIS)

    Rastogi, Naveen; Dutta, Pramit; Gotewal, K.K.

    2015-01-01

    The Prototype Robotic Articulated System (PRAS) is a servo driven 4 degrees of freedom robotic arm capable of handling of upto 5 kg payload. A virtual reality based monitoring application has been developed in blender and was intergrated with the control system to read the joint values of the robotic arm at 10Hz and update the CAD model to visualize the robotic operations remotely. This paper presents the design details and implementation results of the integrated control system for PRAS

  14. Faulting of rocks in three-dimensional strain fields I. Failure of rocks in polyaxial, servo-control experiments

    Science.gov (United States)

    Reches, Ze'ev; Dieterich, James H.

    1983-05-01

    The dependence of the number of sets of faults and their orientation on the intermediate strain axis is investigated through polyaxial tests, reported here, and theoretical analysis, reported in an accompanying paper. In the experiments, cubic samples of Berea sandstone, Sierra-White and Westerly granites, and Candoro and Solnhofen limestones were loaded on their three pairs of faces by three independent, mutually perpendicular presses at room temperature. Two of the presses were servo-controlled and applied constant displacement rates throughout the experiment. Most samples display three or four sets of faults in orthorhombic symmetry. These faults form in several yielding events that follow a stage of elastic deformation. In many experiments, the maximum and the intermediate compressive stresses interchange orientations during the yielding events, where the corresponding strains are constant. The final stage of most experiments is characterized by slip along the faults.

  15. The development of robotic system for the nuclear power plants -The development of advanced robotics for the nuclear industry-

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Kim, Chang Hoi; Kim, Byung Soo; Lee, Yong Bum; Hwang, Suk Yeoung; Kim, Woong Ki; Park, Soon Yong; Lee, Young Kwang; Lee, Jae Gyeong; Seo, Yong Chil

    1994-07-01

    The omni-directional planetary wheel type mobile robot (KAEROT/ml) has been developed on the concepts of the modularity, reliability, and stability. Manipulator system is designed in order to be able to install on mobile system and to upgrade operating capability. Control system consists of 68030 processor board, servo motor controller and I/O board. The 6 DOFs hydraulic manipulator is designed for nozzle dam installation and removal. The reachable length of manipulator is 1.7 m with the wrist configuration of pitch-yaw-roll. For the easy installation of manipulator from outside steam generator, specially designed guider is considered. Also master manipulator is designed for force feedback control. RCP (Remote Control Part) is constructed with Sparc processor boards and servo control boards. Graphic simulation has done for the evaluation of manipulator performance of nozzle dam works. (Author)

  16. Experience with a servo-hydraulic mechanical testing machine installed in a new shielded active facility at Windscale Nuclear Power Development Laboratories

    International Nuclear Information System (INIS)

    Garlick, A.; Hindmarch, P.; Gravenor, J.G.; Rhodes, D.

    1982-03-01

    An Instron model 1273 servo-hydraulic machine has been installed within a lead-shielded cell at Windscale in order to provide a facility capable of performing a wide range of mechanical tests on nuclear reactor structural materials and fuel assembly components. This particular type of machine was chosen because it has design features associated with the load frame, location of the actuator and adjustment and clamping of the cross-head that are especially well suited to remote operation within a shielded cell. The design of the testing facility is described and the programmes of work that have been completed over the past 11/2 years of operation are reviewed. (author)

  17. The Total In-Flight Simulator (TIFS) aerodynamics and systems: Description and analysis. [maneuver control and gust alleviators

    Science.gov (United States)

    Andrisani, D., II; Daughaday, H.; Dittenhauser, J.; Rynaski, E.

    1978-01-01

    The aerodynamics, control system, instrumentation complement and recording system of the USAF Total In/Flight Simulator (TIFS) airplane are described. A control system that would allow the ailerons to be operated collectively, as well as, differentially to entrance the ability of the vehicle to perform the dual function of maneuver load control and gust alleviation is emphasized. Mathematical prediction of the rigid body and the flexible equations of longitudinal motion using the level 2.01 FLEXSTAB program are included along with a definition of the vehicle geometry, the mass and stiffness distribution, the calculated mode frequencies and mode shapes, and the resulting aerodynamic equations of motion of the flexible vehicle. A complete description of the control and instrumentation system of the aircraft is presented, including analysis, ground test and flight data comparisons of the performance and bandwidth of the aerodynamic surface servos. Proposed modification for improved performance of the servos are also presented.

  18. Actively lubricated bearings applied as calibrated shakers to aid parameter identification in rotordynamics

    DEFF Research Database (Denmark)

    Santos, Ilmar; Cerda Varela, Alejandro Javier

    2013-01-01

    The servo valve input signal and the radial injection pressure are the two main parameters responsible for dynamically modifying the journal oil film pressure and generating active fluid film forces in controllable fluid film bearings. Such fluid film forces, resulting from a strong coupling...... domain and the application of such a controllable bearing as a calibrated shaker aiming at determining the frequency response function (FRF) of rotordynamic systems; b) experimental quantification of the influence of the supply pressure and servo valve input signal on the FRF of rotor-journal bearing...... between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. An accurate characterization of the active oil film forces is of fundamental importance to elucidate the feasibility of applying the active lubrication as non...

  19. Wind emergency response system

    International Nuclear Information System (INIS)

    Garrett, A.J.; Buckner, M.R.; Mueller, R.A.

    1981-01-01

    The WIND system is an automated emergency response system for real-time predictions of the consequences of liquid and airborne releases from SRP. The system consists of a minicomputer and associated peripherals necessary for acquisition and handling of large amounts of meteorological data from a local tower network and the National Weather Service. The minicomputer uses these data and several predictive models to assess the impact of accidental releases. The system is fast and easy to use, and output is displayed both in tabular form and as trajectory map plots for quick interpretation. The rapid response capabilities of the WIND system have been demonstrated in support of SRP operations

  20. dynamic performance of research reactors

    International Nuclear Information System (INIS)

    Abo elnor, A.G.M.

    2007-01-01

    this work studies the dynamic performance of material testing reactor (MTR), where the dynamic performance of any reactor reflects its safety behavior and it should enhance its intrinsic characteristics s ystem corrects itself internally without introducing external corrective action . the present work analyzes and studies the dynamic performance of mtr through the transfer function. the servo system parameters can be changed to fit the system demand. the servo system is an excellent approximation to some of the practical servo system currently use in reactor control system, and a quadratic form of this sort should closely approximate the behavior of almost any type of physical equipment which might be chosen to drive a control rod. proposed changes in servo system parameters could enhance the dynamic performance of the system , but the suitable parameters can be evaluated by using the automatic reactor power control system model

  1. Development of remote crane system for use inside small argon hot-cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Kwang; Park, Byung Suk; Yu, Seung-Nam; Kim, Kiho; Cho, Ilje [Nuclear Fuel Cycle Process Technology Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    In this paper, we describe the design of a novel crane system for the use in a small argon hot-cell where only a pair of master-slave manipulators (MSM) is available for the remote maintenance of the crane. To increase the remote maintainability in the space-limited environment, we devised a remote actuation mechanism in which electrical parts consisting of a servo-motor, a position sensor, and two limit switches located inside the workspace of the MSM transmit power to the mechanical parts located in the ceiling. Even though the design concept does not provide thoroughly sufficient solution because the mechanical parts are placed out of the MSM's workspace, the durability of mechanical parts can be easily increased if they have a high safety margin. Therefore, the concept may be one of the best solutions for our special crane system. In addition, we developed a servo-control system based on absolute positioning technology; therefore, it is possible for us to perform the given tasks more safely through an automatic operation. (authors)

  2. Suppressing non-periodically repeating disturbances in mechanical servo systems

    NARCIS (Netherlands)

    Tousain, R.L.; Boissy, J.C.; Norg, M.L.; Steinbuch, M.; Bosgra, O.H.

    1998-01-01

    Non-periodically repeating (NPR) disturbances are fixed-shape disturbances that occur randomly in time. We can provide a control system with the capability to suppress this type of disturbance by adding in parallel to the input of the nominal feedback controller a learning look-up-table based

  3. Faulting of rocks in three-dimensional strain fields I. Failure of rocks in polyaxial, servo-control experiments

    Science.gov (United States)

    Reches, Z.; Dieterich, J.H.

    1983-01-01

    The dependence of the number of sets of faults and their orientation on the intermediate strain axis is investigated through polyaxial tests, reported here, and theoretical analysis, reported in an accompanying paper. In the experiments, cubic samples of Berea sandstone, Sierra-White and Westerly granites, and Candoro and Solnhofen limestones were loaded on their three pairs of faces by three independent, mutually perpendicular presses at room temperature. Two of the presses were servo-controlled and applied constant displacement rates throughout the experiment. Most samples display three or four sets of faults in orthorhombic symmetry. These faults form in several yielding events that follow a stage of elastic deformation. In many experiments, the maximum and the intermediate compressive stresses interchange orientations during the yielding events, where the corresponding strains are constant. The final stage of most experiments is characterized by slip along the faults. ?? 1983.

  4. Analysis of Time Delay Simulation in Networked Control System

    OpenAIRE

    Nyan Phyo Aung; Zaw Min Naing; Hla Myo Tun

    2016-01-01

    The paper presents a PD controller for the Networked Control Systems (NCS) with delay. The major challenges in this networked control system (NCS) are the delay of the data transmission throughout the communication network. The comparative performance analysis is carried out for different delays network medium. In this paper, simulation is carried out on Ac servo motor control system using CAN Bus as communication network medium. The True Time toolbox of MATLAB is used for simulation to analy...

  5. Development of a Remote Handling System in an Integrated Pyroprocessing Facility

    Directory of Open Access Journals (Sweden)

    Hyo Jik Lee

    2013-10-01

    Full Text Available Over the course of a decade-long research programme, the Korea Atomic Energy Research Institute (KAERI has developed several remote handling systems for use in pyroprocessing research facilities. These systems are now used successfully for the operation and maintenance of processing equipment. The most recent remote handling system is the bridge-transported dual arm servo-manipulator system (BDSM, which is used for remote operation at the world's largest pyroprocess integrated inactive demonstration facility (PRIDE. Accurate and reliable servo-control is the basic requirement for the BDSM to accomplish any given tasks successfully in a hotcell environment. To achieve this end, the hardware and software of a digital signal processor-based remote control system were fully custom-developed and implemented to control the BDSM. To reduce the residual vibration of the BDSM, several input profiles, including input shaping, were carefully chosen and evaluated. Furthermore, a time delay controller was employed to achieve good tracking performance and systematic gain tuning. The experimental results demonstrate that the applied control algorithms are more effective than conventional approaches. The BDSM successfully completed its performance tests at a mock-up and was installed at PRIDE for real-world operation. The remote handling system at KAERI is expected to advance the actualization of pyroprocessing.

  6. Design of aquaponics water monitoring system using Arduino microcontroller

    Science.gov (United States)

    Murad, S. A. Z.; Harun, A.; Mohyar, S. N.; Sapawi, R.; Ten, S. Y.

    2017-09-01

    This paper describes the design of aquaponics water monitoring system using Arduino microcontroller. Arduino Development Environment (IDE) software is used to develop a program for the microcontroller to communicate with multiple sensors and other hardware. The circuit of pH sensor, temperature sensor, water sensor, servo, liquid crystal displays (LCD), peristaltic pump, solar and Global System for Mobile communication (GSM) are constructed and connected to the system. The system powered by a rechargeable battery using solar energy. When the results of pH, temperature and water sensor are out of range, a notification message will be sent to a mobile phone through GSM. If the pH of water is out of range, peristaltic pump is automatic on to maintain back the pH value of water. The water sensor is fixed in the siphon outlet water flow to detect water flow from grow bed to the fish tank. In addition, servo is used to auto feeding the fish for every 12 hours. Meanwhile, the LCD is indicated the pH, temperature, siphon outlet water flow and remaining time for the next feeding cycle. The pH and temperature of water are set in the ranges of 6 to 7 and 25 °C to 30 °C, respectively.

  7. System Identification and Integration Design of an Air/Electric Motor

    Directory of Open Access Journals (Sweden)

    Shih-Yao Huang

    2013-02-01

    Full Text Available This paper presents an integration design and implementation of an air motor and a DC servo motor which utilizes a magnetic powder brake to integrate these two motors together. The dynamic model of the air/electric hybrid system will be derived and eventually leads to successful ECE-40 driving cycle tests with a FPGA-based speed controller. The testing results obtained by using the proposed experimental platform indicate that the total air consumption is about 256 L under air motor mode and the electric charge consumption is about 530 coulombs under DC servo motor mode. In a hybrid mode, the current reduction of the battery is about 18.5%, and then the service life of the battery can be improved. Furthermore, a prototype is built with a proportional-integral (PI speed controller based on a field-programmable gate array (FPGA in order to facilitate the entire analysis of the velocity switch experiment. Through the modular methodology of FPGA, the hybrid power platform can successfully operate under ECE-40 driving cycle with the PI speed controller. The experimental data shows that the chattering ranges of the air motor within ±1 km/h and ±0.2 km/h under DC servo motor drive. Therefore, the PI speed controller based on FPGA is successfully actualized.

  8. Four-quadrant speed control circuit of DC servo motor using integrated voltage control method; Den`atsu sekibunchi seigyo wo mochoiita chokuryu dendoki no shishogen sokudo seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Okui, H. [Osaka polytechnic College, Osaka (Japan); Irie, H. [Osaka Electro-Communication Univ., Osaka (Japan)

    1996-08-20

    The Two-Quadrant chopper is constructed by using smoothing reactor in common of the step-down chopper and step-up chopper of the DC chopper. Furthermore, since the circuit connected in bridge type by using these two groups has both of positive and negative voltage from DC source and can supplies the current from positive and negative directions for load, it is called in general as the Four-Quadrant chopper. As the Four-Quadrant chopper may supply and regenerate power, it works as power amplifier with high efficiency. In this paper, the speed control circuit of DC servo motor using Four-Quadrant integrated voltage control circuit is described. The speed control circuit is composed of simple circuits of one adder integrator and four hysteresis comparators. The Four-Quadrant speed control circuit has a DC motor speed feedback loop and a voltage feedback loop which connects with AC, it plays the Four-Quadrant speed control without current inspection. The speed control characteristics with no steady state error over four quadrants may be obtained, changing of the quadrant is smooth and transition response is rapid. 9 refs., 11 figs.

  9. Design of General SCP Servo Controller for Track Model CNC Cutting Machine Based on IPC Bus%基于工控机总线的单片机通用数控伺服控制器设计

    Institute of Scientific and Technical Information of China (English)

    周永鹏; 何顶新; 万淑芸

    2001-01-01

    为解决工控机结构的轨道式切割机数控系统与交流伺服和步进电机驱动系统的联结与精插补控制问题,提出一种基于IPC的80C196KC单片机控制系统,使系统的可靠性得到有效保证。%A control system based on 80C196KC single chip computer of IPC is proposed,the reliability of the system can be guaranteed validly.It can be used for solving couple problem between the track model CNC cutting machine based on a IPC and AC servo or stepping driving as well as elaborate interpolation control problem.

  10. Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems

    DEFF Research Database (Denmark)

    Choux, Martin

    is designed and implemented on the test bed that successfully diagnoses internal or external leakages, friction variations in the actuator or fault related to pressure sensors. The presented algorithm uses the position and pressure measurements to detect and isolate faults, avoiding missed detection and false...... numerous attractive properties, hydraulic systems are always subject to potential leakages in their components, friction variation in their hydraulic actuators and deciency in their sensors. These violations of normal behaviour reduce the system performances and can lead to system failure...... if they are not detected early and handled. Moreover, the task of controlling electro hydraulic systems for high performance operations is challenging due to the highly nonlinear behaviour of such systems and the large amount of uncertainties present in their models. This thesis focuses on nonlinear adaptive fault...

  11. A numerical study of cavitation phenomenon in a flapper-nozzle pilot stage of an electrohydraulic servo-valve with an innovative flapper shape

    International Nuclear Information System (INIS)

    Aung, Nay Zar; Li, Songjing

    2014-01-01

    Highlights: • The flapper with curved edge develops a significant cavitation in pilot stage. • The rectangular shape flapper significantly reduces cavitation in pilot stage. • The innovative flapper eliminates undesired transverse lateral force. • The innovative flapper maintains the same flow control capability and construction. - Abstract: The flapper-nozzle pilot stage, whose performance can be deteriorated by the generated flow cavitation phenomenon, is a vital segment in achieving precise control of electrohydraulic servo-valves. Aiming to find out a reasonable flapper shape to reduce cavitation, this paper presents a numerical study of cavitation phenomenon in a flapper-nozzle pilot stage with different flapper shapes. A simple rectangular shape, carefully designed without disturbing the flow control characteristics of the pilot stage, is set as an innovative flapper shape in this work. Cavitation phenomena in the pilot stage are simulated for both of the traditionally used flapper shape and the innovative flapper shape at flow conditions with various nozzle inlet pressures, 1 MPa to 7 MPa. Then, systematic comparison of resulted cavitation phenomena for the two different flapper shapes is carried out. The results confirm that, for both flapper shapes, cavitation commonly occurs along the nozzle tip wall beyond stagnation region. The curved edge in traditionally used flapper shape is a massive contributor of cavitation in the pilot stage and the selected innovative shape shows a significant reduction of cavitation on its surface. From the flow structure, it is also noticeable that undesired transverse lateral force of sheded vortices is eliminated by using the innovative flapper shape. Meanwhile, the innovative flapper shape highlights the same effectiveness on the performance of flow control as the traditionally used flapper shape. Thus, a simple and effective flapper shape is proposed for cavitation reduction in the flapper-nozzle pilot stage of an

  12. The Brazilian emergency response system

    International Nuclear Information System (INIS)

    Santos, Raul dos

    1997-01-01

    With the objective of improving the response actions to potential or real emergency situations generated by radiological or nuclear accidents, the Brazilian National Nuclear Energy Commission (CNEN) installed an integrated response system on a 24 hours basis. All the natiowide notifications on events that may start an emergency situation are converged to this system. Established since July 1990, this system has received around 300 notifications in which 5% were classified as potential emergency situation. (author)

  13. Piezoelectric Response Evaluation of ZnO Thin Film Prepared by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Cheng Da-Long

    2017-01-01

    Full Text Available The most important parameter of piezoelectric materials is piezoelectric coefficient (d33. In this study, the piezoelectric ZnO thin films were deposited on the SiNx/Si substrate. The 4 inches substrate is diced into 8 cm× 8 cm piece. During the deposition process, a zinc target (99.999 wt% of 2 inches diameter was used. The vertical distance between the target and the substrate holder was fixed at 5 cm. The piezoelectric response of zinc oxide (ZnO thin films were obtained by using a direct measurement system. The system adopts a mini impact tip to generate an impulsive force and read out the piezoelectric signals immediately. Experimentally, a servo motor is used to produce a fixed quantity of force, for giving an impact against to the piezoelectric film. The ZnO thin films were deposited using the reactive radio frequency (RF magnetron sputtering method. The electric charges should be generated because of the material’s extrusion. This phenomenon was investigated through the oscilloscope by one shot trigger. It was apparent that all ZnO films exhibit piezoelectric responses evaluated by our measurement system, however, its exhibit a significant discrepancy. The piezoelectric responses of ZnO thin film at various deposition positions were measured and the crystal structures of the sputtering pressure were also discussed. The crystalline characteristics of ZnO thin films are investigated through the XRD and SEM. The results show the ZnO thin film exhibits good crystalline pattern and surface morphology with controlled sputtering condition. The ZnO thin films sputtered using 2 inches target present various piezoelectric responses. With the exactly related position, a best piezoelectric response of ZnO thin film can be achieved.

  14. New MA 23 master-slave manipulators with servo control and force feedback. Their application in routine work and in scheduled and exceptional operations

    International Nuclear Information System (INIS)

    Vertut, J.; Marchal, P.; Debrie, G.; Kissel, Ph.

    1976-01-01

    Manipulators of this type manufactured 10-15 years ago were not a success, their widespread introduction having been prevented by their excessive weight, too low capacity, too extensive electronics and high price. The MA 22 system, based on the Virgule device, led to the development of a new technology which combines high reliability with excellent performance, very small electronics and high-torque d.c. motors. The second generation, MA 23, is characterized by a substantially improved mechanism, enabling maximum advantage to be derived from the servo control and making it possible to reproduce, at unlimited distance and with very high slave strength, the dexterity displaced by light master-slave manipulators on the operator side. The authors describe the equipment and indicate the various possibilites for its use in facilities. Long-term development and testing is also being directed towards under-water operation and industrial automatic manipulation. The equipment described opens up a totally new potential for the development of remote-controlled intervention devices, and the authors refer to work on these lines in the Federal Republic of Germany and in France. The research and development effort will also be concerned with penetration into inaccessible parts of facilities. (author)

  15. Application of Ethernet Powerlink for communication in a Linux RTAI open CNC control system

    OpenAIRE

    Erwiński, Krystian; Paprocki, Marcin; Grzesiak, Lech; Karwowski, Kazimierz; Wawrzak, Andrzej

    2013-01-01

    In computerized numerical control (CNC) systems, the communication bus between the controller and axis servo drives must offer high bandwidth, noise immunity, and time determinism. More and more CNC systems use real-time Ethernet protocols such as Ethernet Powerlink (EPL). Many modern controllers are closed costly hardware-based solutions. In this paper, the implementation of EPL communication bus in a PC-based CNC system is presented. The CNC system includes a PC, a s...

  16. Daresbury SRS Positional Feedback Systems

    CERN Document Server

    Smith, S L

    2000-01-01

    The Daresbury SRS is a second generation synchrotron radiation source which ramps from its injection energy of 600 MeV to 2.0 GeV. Beam orbit feedback systems have been in routine operation on the SRS since 1994 and are now an essential element in delivering stable photon beams to experimental stations. The most recent enhancements to these systems have included the introduction of a ramp servo system to provide the orbit control demanded by the installation of two new narrow gap insertion device and development of the vertical orbit feedback system to cope with an increasing number of photon beamlines. This paper summaries the current status of these systems and briefly discusses proposed developments.

  17. Optimal design of a main driving mechanism for servo punch press based on performance atlases

    Science.gov (United States)

    Zhou, Yanhua; Xie, Fugui; Liu, Xinjun

    2013-09-01

    The servomotor drive turret punch press is attracting more attentions and being developed more intensively due to the advantages of high speed, high accuracy, high flexibility, high productivity, low noise, cleaning and energy saving. To effectively improve the performance and lower the cost, it is necessary to develop new mechanisms and establish corresponding optimal design method with uniform performance indices. A new patented main driving mechanism and a new optimal design method are proposed. In the optimal design, the performance indices, i.e., the local motion/force transmission indices ITI, OTI, good transmission workspace good transmission workspace(GTW) and the global transmission indices GTIs are defined. The non-dimensional normalization method is used to get all feasible solutions in dimensional synthesis. Thereafter, the performance atlases, which can present all possible design solutions, are depicted. As a result, the feasible solution of the mechanism with good motion/force transmission performance is obtained. And the solution can be flexibly adjusted by designer according to the practical design requirements. The proposed mechanism is original, and the presented design method provides a feasible solution to the optimal design of the main driving mechanism for servo punch press.

  18. Multi-objective optimum design of fast tool servo based on improved differential evolution algorithm

    International Nuclear Information System (INIS)

    Zhu, Zhiwei; Zhou, Xiaoqin; Liu, Qiang; Zhao, Shaoxin

    2011-01-01

    The flexure-based mechanism is a promising realization of fast tool servo (FTS), and the optimum determination of flexure hinge parameters is one of the most important elements in the FTS design. This paper presents a multi-objective optimization approach to optimizing the dimension and position parameters of the flexure-based mechanism, which is based on the improved differential evolution algorithm embedding chaos and nonlinear simulated anneal algorithm. The results of optimum design show that the proposed algorithm has excellent performance and a well-balanced compromise is made between two conflicting objectives, the stroke and natural frequency of the FTS mechanism. The validation tests based on finite element analysis (FEA) show good agreement with the results obtained by using the proposed theoretical algorithm of this paper. Finally, a series of experimental tests are conducted to validate the design process and assess the performance of the FTS mechanism. The designed FTS reaches up to a stroke of 10.25 μm with at least 2 kHz bandwidth. Both of the FEA and experimental results demonstrate that the parameters of the flexure-based mechanism determined by the proposed approaches can achieve the specified performance and the proposed approach is suitable for the optimum design of FTS mechanism and of excellent performances

  19. Robust Control of a Hydraulically Actuated Manipulator Using Sliding Mode Control

    DEFF Research Database (Denmark)

    Hansen, Michael Rygaard; Andersen, Torben Ole; Pedersen, Henrik Clemmensen

    2005-01-01

    This paper presents an approach to robust control called sliding mode control (SMC) applied to the a hydraulic servo system (HSS), consisting of a servo valve controlled symmetrical cylinder. The motivation for applying sliding mode control to hydraulically actuated systems is its robustness...

  20. Lighting Systems Control for Demand Response

    NARCIS (Netherlands)

    Husen, S.A.; Pandharipande, A.; Tolhuizen, L.M.G.; Wang, Y.; Zhao, M.

    2012-01-01

    Lighting is a major part of energy consumption in buildings. Lighting systems will thus be one of the important component systems of a smart grid for dynamic load management services like demand response.In the scenario considered in this paper, under a demand response request, lighting systems in a

  1. Adaptive servo-ventilation for central sleep apnoea in systolic heart failure: results of the major substudy of SERVE-HF.

    Science.gov (United States)

    Cowie, Martin R; Woehrle, Holger; Wegscheider, Karl; Vettorazzi, Eik; Lezius, Susanne; Koenig, Wolfgang; Weidemann, Frank; Smith, Gillian; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K; Somers, Virend K; Zannad, Faiez; Teschler, Helmut

    2018-03-01

    The SERVE-HF trial investigated the impact of treating central sleep apnoea (CSA) with adaptive servo-ventilation (ASV) in patients with systolic heart failure. A preplanned substudy was conducted to provide insight into mechanistic changes underlying the observed effects of ASV, including assessment of changes in left ventricular function, ventricular remodelling, and cardiac, renal and inflammatory biomarkers. In a subset of the 1325 randomised patients, echocardiography, cardiac magnetic resonance imaging (cMRI) and biomarker analysis were performed at baseline, and 3 and 12 months. In secondary analyses, data for patients with baseline and 12-month values were evaluated; 312 patients participated in the substudy. The primary endpoint, change in echocardiographically determined left ventricular ejection fraction from baseline to 12 months, did not differ significantly between the ASV and the control groups. There were also no significant between-group differences for changes in left ventricular dimensions, wall thickness, diastolic function or right ventricular dimensions and ejection fraction (echocardiography), and on cMRI (in small patient numbers). Plasma N-terminal pro B-type natriuretic peptide concentration decreased in both groups, and values were similar at 12 months. There were no significant between-group differences in changes in cardiac, renal and systemic inflammation biomarkers. In patients with systolic heart failure and CSA, addition of ASV to guideline-based medical management had no statistically significant effect on cardiac structure and function, or on cardiac biomarkers, renal function and systemic inflammation over 12 months. The increased cardiovascular mortality reported in SERVE-HF may not be related to adverse remodelling or worsening heart failure. © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.

  2. Adaptive control of servo system based on LuGre model

    Science.gov (United States)

    Jin, Wang; Niancong, Liu; Jianlong, Chen; Weitao, Geng

    2018-03-01

    This paper established a mechanical model of feed system based on LuGre model. In order to solve the influence of nonlinear factors on the system running stability, a nonlinear single observer is designed to estimate the parameter z in the LuGre model and an adaptive friction compensation controller is designed. Simulink simulation results show that the control method can effectively suppress the adverse effects of friction and external disturbances. The simulation show that the adaptive parameter kz is between 0.11-0.13, and the value of gamma1 is between 1.9-2.1. Position tracking error reaches level 10-3 and is stabilized near 0 values within 0.3 seconds, the compensation method has better tracking accuracy and robustness.

  3. Deceleration system for kinematic linkages of positioning

    Science.gov (United States)

    Stan, G.

    2017-08-01

    Flexible automation is used more and more in various production processes, so that both machining itself on CNC machine tools and workpiece handling means are performed through programming the needed working cycle. In order to obtain a successful precise positioning, each motion degree needs a certain deceleration before stopping at a programmed point. The increase of motion speed of moving elements within the manipulators structure depends directly on deceleration duty quality before the programmed stop. Proportional valves as well as servo-valves that can perform hydraulic decelerations are well known, but they feature several disadvantages, such as: high price, severe conditions for oil filtering and low reliability under industrial conditions. This work presents a new deceleration system that allows adjustment of deceleration slope according to actual conditions: inertial mass, speed etc. The new solution of hydraulic decelerator allows its integration to a position loop or its usage in case of positioning large elements that only perform fixed cycles. The results being obtained on the positioning accuracy of a linear axis using the new solution of the hydraulic decelerator are presented, too. The price of the new deceleration system is much lower compared to the price of proportional valves or servo-valves.

  4. Voice Response Systems Technology.

    Science.gov (United States)

    Gerald, Jeanette

    1984-01-01

    Examines two methods of generating synthetic speech in voice response systems, which allow computers to communicate in human terms (speech), using human interface devices (ears): phoneme and reconstructed voice systems. Considerations prior to implementation, current and potential applications, glossary, directory, and introduction to Input Output…

  5. The systemic inflammatory response syndrome.

    Science.gov (United States)

    Robertson, Charles M; Coopersmith, Craig M

    2006-04-01

    The systemic inflammatory response syndrome (SIRS) is the body's response to an infectious or noninfectious insult. Although the definition of SIRS refers to it as an "inflammatory" response, it actually has pro- and anti-inflammatory components. This review outlines the pathophysiology of SIRS and highlights potential targets for future therapeutic intervention in patients with this complex entity.

  6. Pressure Feedback in Fluid Power Systems--Active Damping Explained and Exemplified

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben O.

    2018-01-01

    Fluid power systems are inherently nonlinear and typically suffer from very poor damping. Despite these characteristics, it is not uncommon that traditional linear type controllers are applied. This typically results in conservative adjustment of the controllers, or when more advanced controllers...... a given system, and how to adjust the parameters of the pressure feedback to obtain the best results. This is done for both a traditional symmetric cylinder servo system and a system with a differential cylinder using both pressure and nonpressure compensated proportional valves. Based on the presented...

  7. Hydraulic bilateral construction robot; Yuatsushiki bilateral kensetsu robot

    Energy Technology Data Exchange (ETDEWEB)

    Maehata, K.; Mori, N. [Kayaba Industry Co. Ltd., Tokyo (Japan)

    1999-05-15

    Concerning a hydraulic bilateral construction robot, its system constitution, structures and functions of important components, and the results of some tests are explained, and the researches conducted at Gifu University are described. The construction robot in this report is a servo controlled system of a version developed from the mini-shovel now available in the market. It is equipped, in addition to an electrohydraulic servo control system, with various sensors for detecting the robot attitude, vibration, and load state, and with a camera for visualizing the surrounding landscape. It is also provided with a bilateral joy stick which is a remote control actuator capable of working sensation feedback and with a rocking unit that creates robot movements of rolling, pitching, and heaving. The construction robot discussed here, with output increased and response faster thanks to the employment of a hydraulic driving system for the aim of building a robot system superior in performance to the conventional model designed primarily for heavy duty, proves after tests to be a highly sophisticated remotely controlled robot control system. (NEDO)

  8. A Ship Cargo Hold Inspection Approach Using Laser Vision Systems

    OpenAIRE

    SHEN Yang; ZHAO Ning; LIU Haiwei; MI Chao

    2013-01-01

    Our paper represents a vision system based on the laser measurement system (LMS) for bulk ship inspection. The LMS scanner with 2-axis servo system is installed on the ship loader to build the shape of the ship. Then, a group of real-time image processing algorithms are implemented to compute the shape of the cargo hold, the inclination angle of the ship and the relative position between the ship loader and the cargo hold. Based on those computed inspection data of the ship, the ship loader c...

  9. Embedded Control System for Smart Walking Assistance Device.

    Science.gov (United States)

    Bosnak, Matevz; Skrjanc, Igor

    2017-03-01

    This paper presents the design and implementation of a unique control system for a smart hoist, a therapeutic device that is used in rehabilitation of walking. The control system features a unique human-machine interface that allows the human to intuitively control the system just by moving or rotating its body. The paper contains an overview of the complete system, including the design and implementation of custom sensors, dc servo motor controllers, communication interfaces and embedded-system based central control system. The prototype of the complete system was tested by conducting a 6-runs experiment on 11 subjects and results are showing that the proposed control system interface is indeed intuitive and simple to adopt by the user.

  10. Real-time object tracking system based on field-programmable gate array and convolution neural network

    Directory of Open Access Journals (Sweden)

    Congyi Lyu

    2016-12-01

    Full Text Available Vision-based object tracking has lots of applications in robotics, like surveillance, navigation, motion capturing, and so on. However, the existing object tracking systems still suffer from the challenging problem of high computation consumption in the image processing algorithms. The problem can prevent current systems from being used in many robotic applications which have limitations of payload and power, for example, micro air vehicles. In these applications, the central processing unit- or graphics processing unit-based computers are not good choices due to the high weight and power consumption. To address the problem, this article proposed a real-time object tracking system based on field-programmable gate array, convolution neural network, and visual servo technology. The time-consuming image processing algorithms, such as distortion correction, color space convertor, and Sobel edge, Harris corner features detector, and convolution neural network were redesigned using the programmable gates in field-programmable gate array. Based on the field-programmable gate array-based image processing, an image-based visual servo controller was designed to drive a two degree of freedom manipulator to track the target in real time. Finally, experiments on the proposed system were performed to illustrate the effectiveness of the real-time object tracking system.

  11. New achievements in the EAST plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Q.P., E-mail: qpyuan@ipp.ac.c [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xiao, B.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Penaflor, B.G.; Piglowski, D.A. [General Atomics, DIII-D National Fusion Facility, San Diego, CA (United States); Liu, L.Z. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Johnson, R.D.; Walker, M.L.; Humphreys, D.A. [General Atomics, DIII-D National Fusion Facility, San Diego, CA (United States)

    2010-07-15

    In order to realize the low latency and distortion-free signal transmission between the plasma control system (PCS) and servo systems, the digital output structure configured with reflective memory board (RFM) was adopted in EAST PCS. And the enhanced performances are reported. Another achievement made in the latest EAST PCS was the implementation of density control algorithm, which controlled the line average density in either voltage or width modulation mode. The new integrated algorithm improved the precision of density calculation and control performance greatly. The details and experiment results are presented in this paper.

  12. Optimizing the feedback control of Galvo scanners for laser manufacturing systems

    Science.gov (United States)

    Mirtchev, Theodore; Weeks, Robert; Minko, Sergey

    2010-06-01

    This paper summarizes the factors that limit the performance of moving-magnet galvo scanners driven by closed-loop digital servo amplifiers: torsional resonances, drifts, nonlinearities, feedback noise and friction. Then it describes a detailed Simulink® simulator that takes into account these factors and can be used to automatically tune the controller for best results with given galvo type and trajectory patterns. It allows for rapid testing of different control schemes, for instance combined position/velocity PID loops and displays the corresponding output in terms of torque, angular position and feedback sensor signal. The tool is configurable and can either use a dynamical state-space model of galvo's open-loop response, or can import the experimentally measured frequency domain transfer function. Next a drive signal digital pre-filtering technique is discussed. By performing a real-time Fourier analysis of the raw command signal it can be pre-warped to minimize all harmonics around the torsional resonances while boosting other non-resonant high frequencies. The optimized waveform results in much smaller overshoot and better settling time. Similar performance gain cannot be extracted from the servo controller alone.

  13. Precision Force Control for an Electro-Hydraulic Press Machine

    Directory of Open Access Journals (Sweden)

    Hong-Ming Chen

    2014-08-01

    Full Text Available This thesis is primarily intended to design a PC-based control system to control the force of an electro-hydraulic servo press system for implementing precision force control. The main feature is to develop a composite control by using the relief valve and the flow servo valve. Using feedback from a force sensor, a fuzzy controller was designed with LabVIEW software as the system control core for achieving a precision force control for the hydraulic cylinder on its travel and output. The weakness of hydraulic systems is that hydraulic oil is compressible and prone to leaking, and its characteristics can vary with oil temperature, thus making it difficult for a general linear controller to achieve accurate control. Therefore, a fuzzy controller was designed with LabVIEW along with a NI-PCI_6221 interface card and a load cell to control the servo valve flow and the relief valve to control the pressure source. The testing results indicate that accurate force control output of an electro-hydraulic servo press system can be obtained.

  14. Magnetic-Field-Response Measurement-Acquisition System

    Science.gov (United States)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a

  15. Improvement of a Pneumatic Control Valve with Self-Holding Function

    Science.gov (United States)

    Dohta, Shujiro; Akagi, Tetsuya; Kobayashi, Wataru; Shimooka, So; Masago, Yusuke

    2017-10-01

    The purpose of this study is to develop a small-sized, lightweight and low-cost control valve with low energy consumption and to apply it to the assistive system. We have developed some control valves; a tiny on/off valve using a vibration motor, and an on/off valve with self-holding function. We have also proposed and tested the digital servo valve with self-holding function using permanent magnets and a small-sized servo motor. In this paper, in order to improve the valve, an analytical model of the digital servo valve is proposed. And the simulated results by using the analytical model and identified parameters were compared with the experimental results. Then, the improved digital servo valve was designed based on the calculated results and tested. As a result, we realized the digital servo valve that can control the flow rate more precisely while maintaining its volume and weight compared with the previous valve. As an application of the improved valve, a position control system of rubber artificial muscle was built and the position control was performed successfully.

  16. The Institutional System of Economic Agents’ Social Responsibility

    Directory of Open Access Journals (Sweden)

    Frolova Elena, A.

    2015-12-01

    Full Text Available In this paper it was made an attempt to analyse the main characteristics of the institutional system of economic agents social responsibility. The institutional system can be described as a complex of norms, rules, regulations and enforcement mechanisms in the context of interactions and communications of economic agents. The institutional nature of social responsibility allow to solve social dilemmas through the internalization of social responsibility norms and creating social value orientations, which are determine the prosocial behaviour of economic agents. The institutional system of social responsibility was described from the methodological institutionalism point of view. Analysing this phenomenon we are required to develop research on the objects of this system (norms, regulations, behaviour, on the subjects of this system (persons, business, government and on the institutional mechanisms (internalization of social responsibility norms, promoting prosocial behaviour, adaptation and transformation of the social responsibility norms aimed to ensure the understanding of origin and significance of social responsibility for modern society.

  17. Control of the Tevatron Satellite Refrigeration system

    International Nuclear Information System (INIS)

    Theilacker, J.; Chapman, L.; Gannon, J.; Hentges, M.; Martin, M.; Rode, C.H.; Zagel, J.

    1984-01-01

    This chapter describes a computerized control system for 24 satellite refrigerators which cool a six kilometer ring of superconducting magnets. The control system consists of 31 independent microprocessors operating over 400 servo loops, and a central computer system which provides monitoring, alarms, logging and changing of parameters. Topics considered include pressure measurement, flow measurement, temperature measurement, gas analysis, control valves, expansion engine controllers, and control loops. Each refrigerator has 12 active microprocessor based control loops which tune the refrigerator to one of its four operating modes: satellite, liquefier, refrigerator, and stand-by. It is suggested that optimizing the refrigerator control loops and quench recovery scheme will minimize the accelerator down time

  18. Modelling structural systems for transient response analysis

    International Nuclear Information System (INIS)

    Melosh, R.J.

    1975-01-01

    This paper introduces and reports success of a direct means of determining the time periods in which a structural system behaves as a linear system. Numerical results are based on post fracture transient analyses of simplified nuclear piping systems. Knowledge of the linear response ranges will lead to improved analysis-test correlation and more efficient analyses. It permits direct use of data from physical tests in analysis and simplication of the analytical model and interpretation of its behavior. The paper presents a procedure for deducing linearity based on transient responses. Given the forcing functions and responses of discrete points of the system at various times, the process produces evidence of linearity and quantifies an adequate set of equations of motion. Results of use of the process with linear and nonlinear analyses of piping systems with damping illustrate its success. Results cover the application to data from mathematical system responses. The process is successfull with mathematical models. In loading ranges in which all modes are excited, eight digit accuracy of predictions are obtained from the equations of motion deduced. Small changes (less than 0.01%) in the norm of the transfer matrices are produced by manipulation errors for linear systems yielding evidence that nonlinearity is easily distinguished. Significant changes (greater than five %) are coincident with relatively large norms of the equilibrium correction vector in nonlinear analyses. The paper shows that deducing linearity and, when admissible, quantifying linear equations of motion from transient response data for piping systems can be achieved with accuracy comparable to that of response data

  19. Modernization of the Mayall Telescope control system: design, implementation, and performance

    Science.gov (United States)

    Sprayberry, David; Dunlop, Patrick; Evatt, Matthew; Reddell, Larry; Gott, Shelby; George, James R.; Donaldson, John; Stupak, Robert J.; Marshall, Robert; Abareshi, Behzad; Stover, Deanna; Warner, Michael; Cantarutti, Rolando E.; Probst, Ronald G.

    2016-08-01

    Motivated by a desire to improve the KPNO Mayall 4m telescope's pointing and tracking performance prior to the start of the DESI installation and by a need to improve the maintainability of its telescope control system (TCS), we recently completed a major modernization of that system based heavily on recent changes made at the CTIO Blanco 4m, as described by Warner et al (2012). We describe here the things we did differently from the Blanco upgrade. We also present results from the as-built performance of the new servo and pointing systems.

  20. Research on a six-phase permanent magnet synchronous motor system at dual-redundant and fault tolerant modes in aviation application

    Directory of Open Access Journals (Sweden)

    Xiaolin KUANG

    2017-08-01

    Full Text Available With the development of more/all electrical aircraft technology, an electro-mechanical actuator (EMA is more and more used in an aircraft actuation system. The motor system, as the crucial part of an EMA, usually adopts the redundancy technology or fault tolerance technology to improve the reliability. To compare the performances of these two motor systems, a 10-pole/12-slot six-phase permanent magnet synchronous motor (PMSM is designed with the concentrated single-layer winding, which is able to operate at dual-redundant and fault tolerant modes. Furthermore, the position servo performances of the six-phase PMSM at dual-redundant and fault tolerant modes are analyzed, including the normal and fault conditions. In addition, a variable structure proportional-integral-derivative (PID control strategy is proposed to solve the performance degradation problem caused by phase current saturation. Simulation and experimental results show that the fault tolerant PMSM has a better position servo performance than the dual-redundant PMSM, and the variable structure PID control strategy is able to improve the performance due to phase current saturation.

  1. Design of a High Power Robotic Manipulator for Emergency Response to the Nuclear Accidents

    International Nuclear Information System (INIS)

    Park, Jongwon; Bae, Yeong-Geol; Kim, Myoung Ho; Choi, Young Soo

    2016-01-01

    An accident in a nuclear facility causes a great social cost. To prevent an unexpected nuclear accident from spreading to the catastrophic disaster, emergency response action in early stage is required. However, high radiation environment has been proved as a challenging obstacle for human workers to access to the accident site and take an action in previous accident cases. Therefore, emergency response robotic technology to be used in a nuclear accident site instead of human workers are actively conducted in domestically and internationally. Robots in an accident situation are required to carry out a variety of tasks depend on the types and patterns of accidents. An emergency response usually includes removing of debris, make an access road to a certain place and handling valves. These tasks normally involve high payload handling. A small sized high power robotic manipulator can be an appropriate candidate to deal with a wide spectrum of tasks in an emergency situation. In this paper, we discuss about the design of a high power robotic manipulator, which is capable of handling high payloads for an initial response action to the nuclear facility accident. In this paper, we presented a small sized high power robotic manipulator design. Actuator types of manipulator was selected and mechanical structure was discussed. In the future, the servo valve and hydraulic pump systems will be determined. Furthermore, control algorithms and test bed experiments will be also conducted

  2. Design of a High Power Robotic Manipulator for Emergency Response to the Nuclear Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongwon; Bae, Yeong-Geol; Kim, Myoung Ho; Choi, Young Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    An accident in a nuclear facility causes a great social cost. To prevent an unexpected nuclear accident from spreading to the catastrophic disaster, emergency response action in early stage is required. However, high radiation environment has been proved as a challenging obstacle for human workers to access to the accident site and take an action in previous accident cases. Therefore, emergency response robotic technology to be used in a nuclear accident site instead of human workers are actively conducted in domestically and internationally. Robots in an accident situation are required to carry out a variety of tasks depend on the types and patterns of accidents. An emergency response usually includes removing of debris, make an access road to a certain place and handling valves. These tasks normally involve high payload handling. A small sized high power robotic manipulator can be an appropriate candidate to deal with a wide spectrum of tasks in an emergency situation. In this paper, we discuss about the design of a high power robotic manipulator, which is capable of handling high payloads for an initial response action to the nuclear facility accident. In this paper, we presented a small sized high power robotic manipulator design. Actuator types of manipulator was selected and mechanical structure was discussed. In the future, the servo valve and hydraulic pump systems will be determined. Furthermore, control algorithms and test bed experiments will be also conducted.

  3. A novel magnetic suspension cum linear actuator system for satellite cryo coolers

    International Nuclear Information System (INIS)

    Sivadasan, K.K.

    1994-01-01

    Stirling cycle cryogenic coolers have been widely used for device cooling in satellites. Various types of magnetic bearings and linear actuators find application in such systems. The most widely used configurations have two-axis-radially-active suspension stations placed at either ends of a reciprocating shaft in the compression and expansion sections. Separate or integral liner motors are provided in each section for axial shaft movement. It may be noted that such configurations are rather complicated and less reliable because of the presence of numerous electro-mechanical components, sensors and electronic servo channels. In this paper, a simple and reliable scheme is suggested which axially stabilizes and linearly perturbs the piston so that the need for a separate motor for axial actuation can be totally dispensed with. The piston is radially supported by passive repulsive bearings. In the axial direction, a servo actuator ''balances'' the piston and also actuates it bi-directionally. Implemented of this ''bearing cum motor theme,'' reduces the number of electromechanical and electronic components required to operate the system and hence minimizes the chances of system failure. Apart from this, the system's power consumption is reduced and efficiency is improved as electrical heating losses caused by quiescent-operating currents are removed and electromagnetic losses on the moving parts are minimized. The necessary system parameters have been derived using finite element analysis techniques. Finally, the proposed design is validated by computer-aided system simulation

  4. SICOEM: emergency response data system

    International Nuclear Information System (INIS)

    Martin, A.; Villota, C.; Francia, L.

    1993-01-01

    The main characteristics of the SICOEM emergency response system are: -direct electronic redundant transmission of certain operational parameters and plant status informations from the plant process computer to a computer at the Regulatory Body site, - the system will be used in emergency situations, -SICOEM is not considered as a safety class system. 1 fig

  5. SICOEM: emergency response data system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Villota, C.; Francia, L. (UNESA, Madrid (Spain))

    1993-01-01

    The main characteristics of the SICOEM emergency response system are: -direct electronic redundant transmission of certain operational parameters and plant status informations from the plant process computer to a computer at the Regulatory Body site, - the system will be used in emergency situations, -SICOEM is not considered as a safety class system. 1 fig.

  6. TS Fuzzy Model-Based Controller Design for a Class of Nonlinear Systems Including Nonsmooth Functions

    DEFF Research Database (Denmark)

    Vafamand, Navid; Asemani, Mohammad Hassan; Khayatiyan, Alireza

    2018-01-01

    This paper proposes a novel robust controller design for a class of nonlinear systems including hard nonlinearity functions. The proposed approach is based on Takagi-Sugeno (TS) fuzzy modeling, nonquadratic Lyapunov function, and nonparallel distributed compensation scheme. In this paper, a novel...... criterion, new robust controller design conditions in terms of linear matrix inequalities are derived. Three practical case studies, electric power steering system, a helicopter model and servo-mechanical system, are presented to demonstrate the importance of such class of nonlinear systems comprising...

  7. Overground walking training with the i-Walker, a robotic servo-assistive device, enhances balance in patients with subacute stroke: a randomized controlled trial.

    Science.gov (United States)

    Morone, Giovanni; Annicchiarico, Roberta; Iosa, Marco; Federici, Alessia; Paolucci, Stefano; Cortés, Ulises; Caltagirone, Carlo

    2016-05-26

    Patients affected by mild stroke benefit more from physiological overground walking training than walking-like training performed in place using specific devices. The aim of the study was to evaluate the effects of overground robotic walking training performed with the servo-assistive robotic rollator (i-Walker) on walking, balance, gait stability and falls in a community setting in patients with mild subacute stroke. Forty-four patients were randomly assigned to two different groups that received the same therapy in two daily 40-min sessions 5 days a week for 4 weeks. Twenty sessions of standard therapy were performed by both groups. In the other 20 sessions the subjects enrolled in the i-Walker-Group (iWG) performed with the i-Walker and the Control-Group patients (CG) performed the same amount of conventional walking oriented therapy. Clinical and instrumented gait assessments were made pre- and post-treatment. The follow-up observation consisted of recording the number of fallers in the community setting after 6 months. Treatment effectiveness was higher in the iWG group in terms of balance improvement (Tinetti: 68.4 ± 27.6 % vs. 48.1 ± 33.9 %, p = 0.033) and 10-m and 6-min timed walking tests (significant interaction between group and time: F(1,40) = 14.252, p = 0.001; and F(1,40) = 7.883, p = 0.008, respectively). When measured, latero-lateral upper body accelerations were reduced in iWG (F = 4.727, p = 0.036), suggesting increased gait stability, which was supported by a reduced number of falls at home. A robotic servo-assisted i-Walker improved walking performance and balance in patients affected by mild/moderate stroke, leading to increased gait stability and reduced falls in the community. This study was registered on anzctr.org.au (July 1, 2015; ACTRN12615000681550 ).

  8. DESCRIBING FUNCTION METHOD FOR PI-FUZZY CONTROLLED SYSTEMS STABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Stefan PREITL

    2004-12-01

    Full Text Available The paper proposes a global stability analysis method dedicated to fuzzy control systems containing Mamdani PI-fuzzy controllers with output integration to control SISO linear / linearized plants. The method is expressed in terms of relatively simple steps, and it is based on: the generalization of the describing function method for the considered fuzzy control systems to the MIMO case, the approximation of the describing functions by applying the least squares method. The method is applied to the stability analysis of a class of PI-fuzzy controlled servo-systems, and validated by considering a case study.

  9. Magnetic Field Response Measurement Acquisition System

    Science.gov (United States)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  10. Development of radiation hard components for ITER blanket remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Makiko, E-mail: saito.makiko@jaea.go.jp; Anzai, Katsunori; Maruyama, Takahito; Noguchi, Yuto; Ueno, Kenichi; Takeda, Nobukazu; Kakudate, Satoshi

    2016-11-01

    Highlights: • Clarify the components that will degrade by gamma ray irradiation. • Perform the irradiation tests to BRHS components. • Optimize the materials to increase the radiation hardness. - Abstract: The ITER blanket remote handling system (BRHS) will be operated in a high radiation environment (250 Gy/h max.) and must stably handle the blanket modules, which weigh 4.5 t and are more than 1.5 m in length, with a high degree of position and posture accuracy. The reliability of the system can be improved by reviewing the failure events of the system caused by high radiation. A failure mode and effects analysis (FMEA) identified failure modes and determined that lubricants, O-rings, and electric insulation cables were the dominant components affecting radiation hardness. Accordingly, we tried to optimize the lubricants and cables of the AC servo motors by using polyphenyl ether (PPE)-based grease and polyether ether ketone (PEEK), respectively. Materials containing radiation protective agents were also selected for the cable sheaths and O-rings to improve radiation hardness. Gamma ray irradiation tests were performed on these components and as a result, a radiation hardness of 8 MGy was achieved for the AC servo motors. On the other hand, to develop the radiation hardness and BRHS compatibility furthermore, the improvement of materials of cable and O ring were performed.

  11. Missile rolling tail brake torque system. [simulating bearing friction on canard controlled missiles

    Science.gov (United States)

    Davis, W. T. (Inventor)

    1984-01-01

    Apparatus for simulating varying levels of friction in the bearings of a free rolling tail afterbody on a canard-controlled missile to determine friction effects on aerodynamic control characteristics is described. A ring located between the missile body and the afterbody is utilized in a servo system to create varying levels of friction between the missile body and the afterbody to simulate bearing friction.

  12. Control of plasma position in the CASTOR tokamak

    International Nuclear Information System (INIS)

    Valovic, M.

    1988-11-01

    A simple servo-system designed for plasma position control in the CASTOR tokamak is described. Both radial and vertical plasma displacements were minimized using two servo-loops consisting of detection coils, a conventional electric controller and an amplifier operated as an unipolar voltage-controlled current source. To ensure the optimum conditions in the start-up phase of the discharge, currents in the servo-systems were externally preprogrammed. The prescribed plasma position was maintained with the accuracy of 3 mm. The feedback control improves plasma parameters, e.g. it removes the positional disruption at the end of the tokamak discharge. (J.U.). 4 figs., 3 refs

  13. Research and Development of Fully Automatic Alien Smoke Stack and Packaging System

    Science.gov (United States)

    Yang, Xudong; Ge, Qingkuan; Peng, Tao; Zuo, Ping; Dong, Weifu

    2017-12-01

    The problem of low efficiency of manual sorting packaging for the current tobacco distribution center, which developed a set of safe efficient and automatic type of alien smoke stack and packaging system. The functions of fully automatic alien smoke stack and packaging system adopt PLC control technology, servo control technology, robot technology, image recognition technology and human-computer interaction technology. The characteristics, principles, control process and key technology of the system are discussed in detail. Through the installation and commissioning fully automatic alien smoke stack and packaging system has a good performance and has completed the requirements for shaped cigarette.

  14. Students Prefer Audience Response System for Lecture Evaluation

    Directory of Open Access Journals (Sweden)

    Joseph W Turban

    2011-12-01

    Full Text Available Objectives: Student evaluation of courses is an important component of overall course evaluation. The extent of student participation in the evaluation may be related to the ease of the evaluation process. The standard evaluation format is a paper form. This study examines medical students preference of utilizing Audience Response System compared to a paper method. Methods: Following several medical school lectures, students were queried if they preferred Audience Response System versus a paper method, and if they would prefer using Audience Response System more for future course evaluations. Results: 391 students were queried. Overall response rate was 94%. Using a five point Likert scale, 299 out of 361 (82% responded they agreed, or strongly agreed with the statement “We should use ARS more. . .” When asked which format they preferred to use for evaluation, 299/367 (81% responded Audience Response System, 31 (8% preferred paper, and 37 (10% were not sure, or had no opinion (chi squared = 378.936, df2, p<0.0001. Conclusion: The medical students surveyed showed a strong preference for utilizing Audience Response System as a course evaluation modality, and desired its continued use in medical school. Audience Response System should be pursued as a lecture evaluation modality, and its use in medical school education should be encouraged.

  15. Multivariable robust adaptive sliding mode control of an industrial boiler-turbine in the presence of modeling imprecisions and external disturbances: A comparison with type-I servo controller.

    Science.gov (United States)

    Ghabraei, Soheil; Moradi, Hamed; Vossoughi, Gholamreza

    2015-09-01

    To guarantee the safety and efficient performance of the power plant, a robust controller for the boiler-turbine unit is needed. In this paper, a robust adaptive sliding mode controller (RASMC) is proposed to control a nonlinear multi-input multi-output (MIMO) model of industrial boiler-turbine unit, in the presence of unknown bounded uncertainties and external disturbances. To overcome the coupled nonlinearities and investigate the zero dynamics, input-output linearization is performed, and then the new decoupled inputs are derived. To tackle the uncertainties and external disturbances, appropriate adaption laws are introduced. For constructing the RASMC, suitable sliding surface is considered. To guarantee the sliding motion occurrence, appropriate control laws are constructed. Then the robustness and stability of the proposed RASMC is proved via Lyapunov stability theory. To compare the performance of the purposed RASMC with traditional control schemes, a type-I servo controller is designed. To evaluate the performance of the proposed control schemes, simulation studies on nonlinear MIMO dynamic system in the presence of high frequency bounded uncertainties and external disturbances are conducted and compared. Comparison of the results reveals the superiority of proposed RASMC over the traditional control schemes. RAMSC acts efficiently in disturbance rejection and keeping the system behavior in desirable tracking objectives, without the existence of unstable quasi-periodic solutions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. In situ observation of high temperature tensile deformation and low cycle fatigue response in a nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xudong, E-mail: lxdong0700@hotmail.com; Du, Jinhui; Deng, Qun

    2013-12-20

    High temperature tension and low cycle fatigue experiments of IN718 alloy have been performed in the electro-hydraulic servo system with scanning electron microscope at 455 °C. Fatigue crack initiation and propagation process are investigated in situ. Results show that the carbide and twin grain are the crack source of the low cycle fatigue of IN718 alloy, and the low cycle fatigue life of the alloy increases with the decrease in grain size.

  17. Active Response Gravity Offload System

    Science.gov (United States)

    Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina

    2011-01-01

    The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.

  18. Step response and frequency response of an air conditioning system

    NARCIS (Netherlands)

    Crommelin, R.D.; Jackman, P.J.

    1978-01-01

    A system of induction units of an existing air conditioning system has been analyzed with respect to its dynamic properties. Time constants were calculated and measured by analogue models. Comparison with measurements at the installation itself showed a reasonable agreement. Frequency responses were

  19. New Spill Control for the Slow Extraction in the Multi-Cycling SPS

    CERN Document Server

    Kain, Verena; Effinger, Ewald

    2016-01-01

    The flux of particles slow extracted with the 1/3 integer resonance from the Super Proton Synchrotron at CERN was previously controlled with a servo-spill feedback system which acted on the horizontal tune such as to keep the spill rate as constant as possible during the whole extraction time. The current in two servo-quadrupoles was modulated as a function of the difference between the measured and the desired spill rate. With servo quadrupoles at a single location in the SPS ring and the SPS in multi-cycling mode, the trajectory of the slow extracted beam was seen to change from cycle to cycle depending on the current applied by the servo feedback. Hence this system was replaced by a feed-forward tune correction using the main SPS quadrupoles. In this way the spill control can now be guaranteed without changing the trajectory of the extracted beam. This paper presents the algorithm and implementation in the control system and summarizes the advantages of the new approach. The obtained spill characteristics ...

  20. Prototype radiographic system for emergency and intensive care units: Initial experience

    International Nuclear Information System (INIS)

    Mirvis, S.

    1986-01-01

    A prototype radiographic system has been developed for use in bedside examinations in multibed trauma or intensive care units and emergency rooms. The system features a single-phase, high-frequency 30-kW ceiling-mounted generator with an x-ray tube extending from a long counterbalanced arm. All movements are servo-assisted for ease of operation. Based on initial experience, the unit allows easier access to the patient around resuscitation and monitoring equipment, occupies less floor space, and yields better quality images than do standard mobile radiographic units

  1. Demo : an embedded vision system for high frame rate visual servoing

    NARCIS (Netherlands)

    Ye, Z.; He, Y.; Pieters, R.S.; Mesman, B.; Corporaal, H.; Jonker, P.P.

    2011-01-01

    The frame rate of commercial off-the-shelf industrial cameras is breaking the threshold of 1000 frames-per-second, the sample rate required in high performance motion control systems. On the one hand, it enables computer vision as a cost-effective feedback source; On the other hand, it imposes

  2. Simulation on following Performance of High-Speed Railway In Situ Testing System

    Directory of Open Access Journals (Sweden)

    Fei-Long Zheng

    2013-01-01

    Full Text Available Subgrade bears both the weight of superstructures and the impacts of running trains. Its stability affects the line smoothness directly, but in situ testing method on it is inadequate. This paper presents a railway roadbed in situ testing device, the key component of which is an excitation hydraulic servo cylinder that can output the static pressure and dynamic pressure simultaneously to simulate the force of the trains to the subgrade. The principle of the excitation system is briefly introduced, and the transfer function of the closed-loop force control system is derived and simulated; that, it shows without control algorithm, the dynamic response is very low and the following performance is quite poor. So, the improvedadaptive model following control (AMFC algorithm based on direct state method is adopted. Then, control block diagram is built and simulated with the input of different waveforms and frequencies. The simulation results show that the system has been greatly improved; the output waveform can follow the input signal much better except for a little distortion when the signal varies severely. And the following performance becomes even better as the load stiffness increases.

  3. Emergency response and radiation monitoring systems in Russian regions

    International Nuclear Information System (INIS)

    Arutyunyan, R.; Osipiyants, I.; Kiselev, V.; Ogar, K; Gavrilov, S.

    2008-01-01

    Full text: Preparedness of the emergency response system to elimination of radiation incidents and accidents is one of the most important elements of ensuring safe operation of nuclear power facilities. Routine activities on prevention of emergency situations along with adequate, efficient and opportune response actions are the key factors reducing the risks of adverse effects on population and environment. Both high engineering level and multiformity of the nuclear branch facilities make special demands on establishment of response system activities to eventual emergency situations. First and foremost, while resolving sophisticated engineering and scientific problems emerging during the emergency response process, one needs a powerful scientific and technical support system.The emergency response system established in the past decade in Russian nuclear branch provides a high efficiency of response activities due to the use of scientific and engineering potential and experience of the involved institutions. In Russia the responsibility for population protection is imposed on regional authority. So regional emergence response system should include up-to-date tools of radiation monitoring and infrastructure. That's why new activities on development of radiation monitoring and emergency response system were started in the regions of Russia. The main directions of these activities are: 1) Modernization of the existing and setting-up new facility and territorial automatic radiation monitoring systems, including mobile radiation surveillance kits; 2) Establishment of the Regional Crisis Centres and Crisis Centres of nuclear and radiation hazardous facilities; 3) Setting up communication systems for transfer, acquisition, processing, storage and presentation of data for participants of emergency response at the facility, regional and federal levels; 4) Development of software and hardware systems for expert support of decision-making on protection of personnel, population

  4. A New Three-Dimensional High-Accuracy Automatic Alignment System For Single-Mode Fibers

    Science.gov (United States)

    Yun-jiang, Rao; Shang-lian, Huang; Ping, Li; Yu-mei, Wen; Jun, Tang

    1990-02-01

    In order to achieve the low-loss splices of single-mode fibers, a new three-dimension high-accuracy automatic alignment system for single -mode fibers has been developed, which includes a new-type three-dimension high-resolution microdisplacement servo stage driven by piezoelectric elements, a new high-accuracy measurement system for the misalignment error of the fiber core-axis, and a special single chip microcomputer processing system. The experimental results show that alignment accuracy of ±0.1 pin with a movable stroke of -±20μm has been obtained. This new system has more advantages than that reported.

  5. Performance of integrated systems of automated roller shade systems and daylight responsive dimming systems

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung-Chul; Choi, An-Seop; Jeong, Jae-Weon [Department of Architectural Engineering, Sejong University, Kunja-Dong, Kwangjin-Gu, Seoul (Korea, Republic of); Lee, Eleanor S. [Building Technologies Department, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2011-03-15

    Daylight responsive dimming systems have been used in few buildings to date because they require improvements to improve reliability. The key underlying factor contributing to poor performance is the variability of the ratio of the photosensor signal to daylight workplane illuminance in accordance with sun position, sky condition, and fenestration condition. Therefore, this paper describes the integrated systems between automated roller shade systems and daylight responsive dimming systems with an improved closed-loop proportional control algorithm, and the relative performance of the integrated systems and single systems. The concept of the improved closed-loop proportional control algorithm for the integrated systems is to predict the varying correlation of photosensor signal to daylight workplane illuminance according to roller shade height and sky conditions for improvement of the system accuracy. In this study, the performance of the integrated systems with two improved closed-loop proportional control algorithms was compared with that of the current (modified) closed-loop proportional control algorithm. In the results, the average maintenance percentage and the average discrepancies of the target illuminance, as well as the average time under 90% of target illuminance for the integrated systems significantly improved in comparison with the current closed-loop proportional control algorithm for daylight responsive dimming systems as a single system. (author)

  6. Development of proto-type advanced leaked fuel rod detection system

    International Nuclear Information System (INIS)

    Kang, Kyung Chul; Cho, Seong Won; Jeon, Jae Hyuk; Jeong, Jae Cheon; Kim, Min

    1996-02-01

    The fuel inspection equipment using ultrasonic signal has been developed its design and configuration in order to get inspection results more accurate and easier than the previous ones. In this task, the system functions are advanced by adopting of state of the art technologies in the field of digital servo control and signal processing. By the above endeavors, the total performance are improved and made to handle easily. 61 tabs., 31 figs., 3 ills., 9 refs. (Author)

  7. Linear optical response of finite systems using multishift linear system solvers

    Energy Technology Data Exchange (ETDEWEB)

    Hübener, Hannes; Giustino, Feliciano [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)

    2014-07-28

    We discuss the application of multishift linear system solvers to linear-response time-dependent density functional theory. Using this technique the complete frequency-dependent electronic density response of finite systems to an external perturbation can be calculated at the cost of a single solution of a linear system via conjugate gradients. We show that multishift time-dependent density functional theory yields excitation energies and oscillator strengths in perfect agreement with the standard diagonalization of the response matrix (Casida's method), while being computationally advantageous. We present test calculations for benzene, porphin, and chlorophyll molecules. We argue that multishift solvers may find broad applicability in the context of excited-state calculations within density-functional theory and beyond.

  8. Control System Design of the YWZ Multi-Fingered Dexterous Hand

    Directory of Open Access Journals (Sweden)

    Wenzhen Yang

    2012-07-01

    Full Text Available The manipulation abilities of a multi-fingered dexterous hand, such as motion in real-time, flexibility, grasp stability etc., are largely dependent on its control system. This paper developed a control system for the YWZ dexterous hand, which had five fingers and twenty degrees of freedom (DOFs. All of the finger joints of the YWZ dexterous handwere active joints driven by twenty micro-stepper motors respectively. The main contribution of this paper was that we were able to use stepper motor control to actuate the hand's fingers, thus, increasing the hands feasibility. Based the actuators of the YWZ dexterous hand, we firstly developed an integrated circuit board (ICB, which was the communication hardware between the personal computer (PC and the YWZ dexterous hand. The ICB included a centre controller, twenty driver chips, a USB port and other electrical parts. Then, a communication procedure between the PC and the ICB was developed to send the control commands to actuate the YWZ dexterous hand. Experiment results showed that under this control system, the motion of the YWZ dexterous hand was real-time; both the motion accuracy and the motion stability of the YWZ dexterous hand were reliable. Compared with other types of actuators related to dexterous hands, such as pneumatic servo cylinder, DC servo motor, shape memory alloy etc., experiment results verified that the stepper motors as actuators for the dexterous handswere effective, economical, controllable and stable.

  9. Conventional estimating method of earthquake response of mechanical appendage system

    International Nuclear Information System (INIS)

    Aoki, Shigeru; Suzuki, Kohei

    1981-01-01

    Generally, for the estimation of the earthquake response of appendage structure system installed in main structure system, the method of floor response analysis using the response spectra at the point of installing the appendage system has been used. On the other hand, the research on the estimation of the earthquake response of appendage system by the statistical procedure based on probability process theory has been reported. The development of a practical method for simply estimating the response is an important subject in aseismatic engineering. In this study, the method of estimating the earthquake response of appendage system in the general case that the natural frequencies of both structure systems were different was investigated. First, it was shown that floor response amplification factor was able to be estimated simply by giving the ratio of the natural frequencies of both structure systems, and its statistical property was clarified. Next, it was elucidated that the procedure of expressing acceleration, velocity and displacement responses with tri-axial response spectra simultaneously was able to be applied to the expression of FRAF. The applicability of this procedure to nonlinear system was examined. (Kako, I.)

  10. Solar maximum mission panel jettison analysis remote manipulator system

    Science.gov (United States)

    Bauer, R. B.

    1980-01-01

    A study is presented of the development of the Remote Manipulator System (RMS) configurations for jettison of the solar panels on the Solar Maximum Mission/Multimission Satellite. A valid RMS maneuver between jettison configurations was developed. Arm and longeron loads and effector excursions due to the solar panel jettison were determined to see if they were within acceptable limits. These loads and end effector excursions were analyzed under two RMS modes, servos active in position hold submode, and in the brakes on mode.

  11. Information Systems Security: Whose Responsibility? | Senzige ...

    African Journals Online (AJOL)

    ... compounded by the increasingly international nature of information systems, this responsibility still rests with managers only. This paper looks at security concerns related to information systems, identifies the threats and suggests how the security of information systems should be handled. African Journal of Finance and ...

  12. Refinement for Transition Systems with Responses

    Directory of Open Access Journals (Sweden)

    Marco Carbone

    2012-07-01

    Full Text Available Motivated by the response pattern for property specifications and applications within flexible workflow management systems, we report upon an initial study of modal and mixed transition systems in which the must transitions are interpreted as must eventually, and in which implementations can contain may behaviors that are resolved at run-time. We propose Transition Systems with Responses (TSRs as a suitable model for this study. We prove that TSRs correspond to a restricted class of mixed transition systems, which we refer to as the action-deterministic mixed transition systems. We show that TSRs allow for a natural definition of deadlocked and accepting states. We then transfer the standard definition of refinement for mixed transition systems to TSRs and prove that refinement does not preserve deadlock freedom. This leads to the proposal of safe refinements, which are those that preserve deadlock freedom. We exemplify the use of TSRs and (safe refinements on a small medication workflow.

  13. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system

    Directory of Open Access Journals (Sweden)

    Linliang Guo

    2017-04-01

    Full Text Available To satisfy the validation requirements of flight control law for advanced aircraft, a wind tunnel based virtual flight testing has been implemented in a low speed wind tunnel. A 3-degree-of-freedom gimbal, ventrally installed in the model, was used in conjunction with an actively controlled dynamically similar model of aircraft, which was equipped with the inertial measurement unit, attitude and heading reference system, embedded computer and servo-actuators. The model, which could be rotated around its center of gravity freely by the aerodynamic moments, together with the flow field, operator and real time control system made up the closed-loop testing circuit. The model is statically unstable in longitudinal direction, and it can fly stably in wind tunnel with the function of control augmentation of the flight control laws. The experimental results indicate that the model responds well to the operator’s instructions. The response of the model in the tests shows reasonable agreement with the simulation results. The difference of response of angle of attack is less than 0.5°. The effect of stability augmentation and attitude control law was validated in the test, meanwhile the feasibility of virtual flight test technique treated as preliminary evaluation tool for advanced flight vehicle configuration research was also verified.

  14. Designing effective questions for classroom response system teaching

    Science.gov (United States)

    Beatty, Ian D.; Gerace, William J.; Leonard, William J.; Dufresne, Robert J.

    2006-01-01

    Classroom response systems can be powerful tools for teaching physics. Their efficacy depends strongly on the quality of the questions. Creating effective questions is difficult and differs from creating exam and homework problems. Each classroom response system question should have an explicit pedagogic purpose consisting of a content goal, a process goal, and a metacognitive goal. Questions can be designed to fulfill their purpose through four complementary mechanisms: directing students' attention, stimulating specific cognitive processes, communicating information to the instructor and students via classroom response system-tabulated answer counts, and facilitating the articulation and confrontation of ideas. We identify several tactics that are useful for designing potent questions and present four "makeovers" to show how these tactics can be used to convert traditional physics questions into more powerful questions for a classroom response system.

  15. LOFT system structural response during subcooled blowdown

    International Nuclear Information System (INIS)

    Martinell, J.S.

    1978-01-01

    The Loss-of-Fluid Test (LOFT) facility is a highly instrumented, pressurized water reactor test system designed to be representative of large pressurized water reactors (LPWRs) for the simulation of loss-of-coolant accidents (LOCAs). Detailed structural analysis and appropriate instrumentation (accelerometers and strain gages) on the LOFT system provided information for evaluation of the structural response of the LOFT facility for loss-of-coolant experiment (LOCE) induced loads. In general, the response of the system during subcooled blowdown was small with typical structural accelerations below 2.0 G's and dynamic strains less than 150 x 10 - 6 m/m. The accelerations measured at the steam generator and simulated steam generator flange exceeded LOCE design values; however, integration of the accelerometer data at these locations yielded displacements which were less than one half of the design values associated with a safe shutdown earthquake (SSE), which assures structural integrity for LOCE loads. The existing measurement system was adequate for evaluation of the LOFT system response during the LOCEs. The conditions affecting blowdown loads during nuclear LOCEs will be nearly the same as those experienced during the nonnuclear LOCEs, and the characteristics of the structural response data in both types of experiments are expected to be the same. The LOFT system is concluded to be adequately designed and further analysis of the LOFT system with structural codes is not required for future LOCE experiments

  16. Rigid hoist articulated grapple system development for enhanced remote maintenance

    International Nuclear Information System (INIS)

    Witham, C.; White, P.; Garin, J.

    1979-01-01

    Remote maintenance and repair within nuclear environments have become more demanding of remote manipulation equipment in the last few years. A deficiency exists in the array of tools available for dexterous operations of loads in the 180-kg range. The development of a manipulation system with enhanced operator controls is discussed. This system is a six-degree-of-freedom manipulator with bilateral servo control. It is to be attached to a mobile support boom in order to operate throughout the nuclear cell. The manipulator is intended to work in conjunction with light duty servomanipulators, overhead crane systems, and through-the-wall mechanical master slaves

  17. Frequency response functions for nonlinear convergent systems

    NARCIS (Netherlands)

    Pavlov, A.V.; Wouw, van de N.; Nijmeijer, H.

    2007-01-01

    Convergent systems constitute a practically important class of nonlinear systems that extends the class of asymptotically stable linear time-invariant systems. In this note, we extend frequency response functions defined for linear systems to nonlinear convergent systems. Such nonlinear frequency

  18. Design and Implementation of Electric Steering Gear Inspection System for Unmanned Aerial Vehicles Based on Virtual Instruments

    Directory of Open Access Journals (Sweden)

    Zheng Xing

    2016-01-01

    Full Text Available A kind of UAV electric servo detection system based on Virtual Instrument is designed in this paper, including the hardware platform based on PC-DAQ virtual instrument architecture and the software platform based on LabVIEW function, structure and system implementation methods. The function, structure and system implementation method of software platform is also described. The gear limits checking, zero testing, time domain characteristics test results showed that the system achieves testing requirements well, and can complete detection of electric steering gear automatically, fast, easy and accurate.

  19. The TransPetro emergency response system

    Energy Technology Data Exchange (ETDEWEB)

    Filho, A.T.F.; Cardoso, V.F.; Carbone, R.; Berardinelli, R.P. [Petrobras-TransPetro, Rio de Janeiro (Brazil); Carvalho, M.T.M.; Casanova, M.A. [Pontificia Univ. Catolica, Rio de Janeiro (Brazil). Dept. de Informatica, TeCGraf

    2004-07-01

    Petrobras-TransPetro developed the TransPetro Emergency Response System in response to emergency situations at large oil pipelines or at terminal facilities located in sea or river harbour areas. The standard of excellence includes full compliance with environmental regulations set by the federal government. A distributed workflow management software called InfoPAE forms the basis of the system in which actions are defined, along with geographic and conventional data. The first prototype of InfoPAE was installed in 1999. Currently it is operational in nearly 80 installations. The basic concepts and functionality of the TransPetro Emergency Response System were outlined in this paper with reference to the mitigative actions that are based on an evaluation of the organization of the emergency teams; the communication procedures; characterization of the installations; definition of accidental scenarios; environmental sensitivity maps; simulation of oil spill trajectories and dispersion behaviour; geographical data of the area surrounding the installations; and, other conventional data related to the installations, including available equipment. The emergency response team can take action as soon as an accident is detected. The action plan involves characterizing several scenarios and delegating mitigative actions to specific sub-teams, each with access to geographic data on the region where the emergency occurred. 13 refs., 3 figs.

  20. Error response test system and method using test mask variable

    Science.gov (United States)

    Gender, Thomas K. (Inventor)

    2006-01-01

    An error response test system and method with increased functionality and improved performance is provided. The error response test system provides the ability to inject errors into the application under test to test the error response of the application under test in an automated and efficient manner. The error response system injects errors into the application through a test mask variable. The test mask variable is added to the application under test. During normal operation, the test mask variable is set to allow the application under test to operate normally. During testing, the error response test system can change the test mask variable to introduce an error into the application under test. The error response system can then monitor the application under test to determine whether the application has the correct response to the error.