WorldWideScience

Sample records for servo pressure regulator

  1. Analysis of an controller design for an electro-hydraulic servo pressure regulator

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Madsen, A. M.

    2009-01-01

    Mobile hydraulics is in a transition phase, where electronic sensors and digital signal processors are starting to become standard on a high number of machines, hereby replacing hydraulic pilot lines and oering new possibilities with regard to both control and feasibility. For controlling some...... of the existing hydraulic components there are, however, still a need for being able to generate a hydraulic pilot pressure, as e.g. almost all open-circuit pumps are hydraulically controlled. The focus of the current paper is therefore on the analysis and controller design an electro-hydraulic servo pressure...... regulator, which generates a hydraulic LS-pressure based on an electrical reference, hereby synergistically integrating knowledge from all parts of the mechatronics area. The servo pressure regulator is used to generate the LS-signal for a variable displacement pump, and the paper rst presents...

  2. Analysis of and H∞ Controller Design For An Electro-Hydraulic Servo Pressure Regulator

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2011-01-01

    -circuit pumps are still hydraulically controlled, there is however still a need for being able to generate a hydraulic pilot pressure. The focus of the current paper is on the analysis and controller design of an electrohydraulic servo pressure regulator, which generates a hydraulic LS-pressure for a variable...

  3. Optimum back-pressure forging using servo die cushion

    OpenAIRE

    Kawamoto, Kiichiro; Yoneyama, Takeshi; Okada, Masato; Kitayama, Satoshi; Chikahisa, Junpei

    2014-01-01

    This study focused on utilizing a servo die cushion (in conjunction with a servo press) as a "back-pressure load generator," to determine its effect on shape accuracy of the formed part and total forming load in forward extrusion during cold forging. The effect of back-pressure load application was confirmed in experiments, and the optimum setting pattern of back-pressure load was considered to minimize both shape accuracy of the formed part and back-pressure energy, which was representative ...

  4. Asymmetric Fuzzy Control of a Positive and Negative Pneumatic Pressure Servo System

    Science.gov (United States)

    Yang, Gang; Du, Jing-Min; Fu, Xiao-Yun; Li, Bao-Ren

    2017-11-01

    The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonlinearity of such systems limit its application in the field of pressure tracking control. In order to meet the demand of generating dynamic pressure signal in the application of the hardware-in-the-loop simulation of aerospace engineering, a positive and negative pneumatic pressure servo system is provided to implement dynamic adjustment of sealed chamber pressure. A mathematical model is established with simulation and experiment being implemented afterwards to discuss the characteristics of the system, which shows serious asymmetry in the process of charging and discharging. Based on the analysis of the system dynamics, a fuzzy proportional integral derivative (PID) controller with asymmetric fuzzy compensator is proposed. Different from conventional adjusting mechanisms employing the error and change in error of the controlled variable as input parameters, the current chamber pressure and charging or discharging state are chosen as inputs of the compensator, which improves adaptability. To verify the effectiveness and performance of the proposed controller, the comparison experiments tracking sinusoidal and square wave commands are conducted. Experimental results show that the proposed controller can obtain better dynamic performance and relatively consistent control performance across the scope of work (2-140 kPa). The research proposes a fuzzy control method to overcome asymmetry and enhance adaptability for the positive and negative pneumatic pressure servo system.

  5. Pressure control of hydraulic servo system using proportional control valve

    International Nuclear Information System (INIS)

    Yang, Kyong Uk; Oh, In Ho; Lee, Ill Yeong

    1999-01-01

    The purpose of this study is to develop a control scheme for the hydraulic servo system which can rapidly control the pressure in a hydraulic cylinder with very short stroke. Compared with the negligible stroke of the cylinder in the system, the flow gain of the proportional pressure control valve constituting the hydraulic servo system is relatively large and the time delay on the response of the valve is quite long. Therefore, the pressure control system, in this study tends to get unstable during operations. Considering the above mentioned characteristics of the system, a two-degree-of-freedom control scheme, composed of the I-PDD 2 ... feedback compensator and the feedforward controller, is proposed. The reference model scheme is used in deciding the parameters of the controllers. The validity of the proposed control scheme is confirmed through the experiments

  6. Characteristic analysis of servo valve

    International Nuclear Information System (INIS)

    Ko, J. H.; Ryu, D. R.; Lee, J. H.; Kim, Y. S.; Na, J. C.; Kim, D. S.

    2008-01-01

    Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The first objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. And a tester for conducting an overall performance test was designed and manufactured, and as a result of conducting the flow rate test, the pressure test and the frequency test on the developed pneumatic servo valve

  7. Feature tracking for visual servo based range regulation on a mobile robot

    CSIR Research Space (South Africa)

    Burke, Michael G

    2009-11-01

    Full Text Available This poster presents a visual servo approach to straight line range and velocity regulation. The difference in velocity between a lead mobile robot and a follower is regulated through velocity control of the follower, in order to maintain a constant...

  8. Evaluation and compensation of steady gas flow force on the high-pressure electro-pneumatic servo valve direct-driven by voice coil motor

    International Nuclear Information System (INIS)

    Li, Baoren; Gao, Longlong; Yang, Gang

    2013-01-01

    Highlights: ► A novel energy saving high-pressure electro-pneumatic servo valve is presented. ► An evaluated method for steady gas flow forces on pneumatic valves is proposed. ► Gas jet angles at the orifices for the valve are larger than 69° commonly used. ► The steady gas flow force is strongly nonlinear with valve opening. ► The steady gas flow force is compensated and the aim at energy saving is realized. - Abstract: A novel voice coil motor (VCM) direct drive single stage high-pressure pneumatic servo valve is designed, and then the steady gas flow force acting on the spool of the servo valve is investigated by numerical simulation and experimental methods in this paper. At present, many studies about flow force are concentrated mainly on hydraulic valves, but rarely on pneumatic valves. However, the velocity of gas is up to sonic when high-pressure gas flows through the servo valve orifice. And therefore, the steady gas flow force, generated by high pressure and high speed gas flow, cannot be neglected and is an important disturbance for the VCM direct-drive single stage high-pressure pneumatic servo valve. Consequently, the numerical simulation with computational fluid dynamics (CFD) is adopted to analyze the flow filed, jet angles, and steady gas flow forces for the servo valve with different valve openings and inlet pressures. The experimental study is performed to evaluate and confirm the numerical analysis. Then the compensated approach is proposed to reduce the steady gas flow force for the servo valve, changing the angle of non-metering port designed in the valve sleeve to the spool axis. The results demonstrate that the presented numerical analysis method is validated, the gas jet angle for the servo valve orifice is more than 69° and varies with different spool openings, and the steady gas flow force is nonlinear with valve opening and linear with inlet pressure when the outlet boundary is atmospheric pressure. Moreover, the steady gas

  9. Role of pressure in angiotensin II-induced renal injury: chronic servo-control of renal perfusion pressure in rats.

    Science.gov (United States)

    Mori, Takefumi; Cowley, Allen W

    2004-04-01

    Renal perfusion pressure was servo-controlled chronically in rats to quantify the relative contribution of elevated arterial pressure versus angiotensin II (Ang II) on the induction of renal injury in Ang II-induced hypertension. Sprague-Dawley rats fed a 4% salt diet were administered Ang II for 14 days (25 ng/kg per minute IV; saline only for sham rats), and the renal perfusion pressure to the left kidney was continuously servo-controlled to maintain a normal pressure in that kidney throughout the period of hypertension. An aortic occluder was implanted around the aorta between the two renal arteries and carotid and femoral arterial pressure were measured continuously throughout the experiment to determine uncontrolled and controlled renal perfusion pressure, respectively. Renal perfusion pressure of uncontrolled, controlled, and sham kidneys over the period of Ang II or saline infusion averaged 152.6+/-7.0, 117.4+/-3.5, and 110.7+/-2.2 mm Hg, respectively. The high-pressure uncontrolled kidneys exhibited tubular necrosis and interstitial fibrosis, especially prominent in the outer medullary region. Regional glomerular sclerosis and interlobular artery injury were also pronounced. Controlled kidneys were significantly protected from interlobular artery injury, juxtamedullary glomeruli injury, tubular necrosis, and interstitial fibrosis as determined by comparing the level of injury. Glomerular injury was not prevented in the outer cortex. Transforming growth factor (TGF)-beta and active NF-kappaB proteins determined by immunohistochemistry were colocalized in the uncontrolled kidney in regions of interstitial fibrosis. We conclude that the preferential juxtamedullary injury found in Ang II hypertension is largely induced by pressure and is probably mediated through the TGF-beta and NF-kappaB pathway.

  10. Servo-controlled pneumatic pressure oscillator for respiratory impedance measurements and high-frequency ventilation.

    Science.gov (United States)

    Kaczka, David W; Lutchen, Kenneth R

    2004-04-01

    The ability to provide forced oscillatory excitation of the respiratory system can be useful in mechanical impedance measurements as well as high frequency ventilation (HFV). Experimental systems currently used for generating forced oscillations are limited in their ability to provide high amplitude flows or maintain the respiratory system at a constant mean pressure during excitation. This paper presents the design and implementation of a pneumatic pressure oscillator based on a proportional solenoid valve. The device is capable of providing forced oscillatory excitations to the respiratory system over a bandwidth suitable for mechanical impedance measurements and HVF. It delivers high amplitude flows (> 1.4 l/s) and utilizes a servo-control mechanism to maintain a load at a fixed mean pressure during simultaneous oscillation. Under open-loop conditions, the device exhibited a static hysteresis of approximately 7%, while its dynamic magnitude and phase responses were flat out to 10 Hz. Broad-band measurement of total harmonic distortion was approximately 19%. Under closed-loop conditions, the oscillator was able to maintain a mechanical test load at both positive and negative mean pressures during oscillatory excitations from 0.1 to 10.0 Hz. Impedance of the test load agreed closely with theoretical predictions. We conclude that this servo-controlled oscillator can be a useful tool for respiratory impedance measurements as well as HFV.

  11. Characteristic analysis and experiment of pneumatic servo valve

    International Nuclear Information System (INIS)

    Kim, Dong Soo; Lee, Won Hee; Choi, Byung Oh

    2004-01-01

    Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The first objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. And a tester for conducting an overall performance test was designed and manufactured, and as a result of conducting the flow rate test, the pressure test and the frequency test on the developed pneumatic servo valve

  12. HYDRAULIC SERVO CONTROL MECHANISM

    Science.gov (United States)

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  13. A switched energy saving position controller for variable-pressure electro-hydraulic servo systems.

    Science.gov (United States)

    Tivay, Ali; Zareinejad, Mohammad; Rezaei, S Mehdi; Baghestan, Keivan

    2014-07-01

    The electro-hydraulic servo system (EHSS) demonstrates a relatively low level of efficiency compared to other available actuation methods. The objective of this paper is to increase this efficiency by introducing a variable supply pressure into the system and controlling this pressure during the task of position tracking. For this purpose, an EHSS structure with controllable supply pressure is proposed and its dynamic model is derived from the basic laws of physics. A switching control structure is then proposed to control both the supply pressure and the cylinder position at the same time, in a way that reduces the overall energy consumption of the system. The stability of the proposed switching control system is guaranteed by proof, and its performance is verified by experimental testing. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Bi-level positive pressure ventilation and adaptive servo ventilation in patients with heart failure and Cheyne-Stokes respiration.

    Science.gov (United States)

    Fietze, Ingo; Blau, Alexander; Glos, Martin; Theres, Heinz; Baumann, Gert; Penzel, Thomas

    2008-08-01

    Nocturnal positive pressure ventilation (PPV) has been shown to be effective in patients with impaired left ventricular ejection fraction (LVEF) and Cheyne-Stokes respiration (CSR). We investigated the effect of a bi-level PPV and adaptive servo ventilation on LVEF, CSR, and quantitative sleep quality. Thirty-seven patients (New York heart association [NYHA] II-III) with LVEFCSR were investigated by electrocardiography (ECG), echocardiography and polysomnography. The CSR index (CSRI) was 32.3+/-16.2/h. Patients were randomly treated with bi-level PPV using the standard spontaneous/timed (S/T) mode or with adaptive servo ventilation mode (AutoSetCS). After 6 weeks, 30 patients underwent control investigations with ECG, echocardiography, and polysomnography. The CSRI decreased significantly to 13.6+/-13.4/h. LVEF increased significantly after 6 weeks of ventilation (from 25.1+/-8.5 to 28.8+/-9.8%, plevel PPV and adaptive servo ventilation: the CSRI decreased more in the AutoSetCS group while the LVEF increased more in the bi-level PPV group. Administration of PPV can successfully attenuate CSA. Reduced CSA may be associated with improved LVEF; however, this may depend on the mode of PPV. Changed LVEF is evident even in the absence of significant changes in blood pressure.

  15. Modeling and stability of electro-hydraulic servo of hydraulic excavator

    Science.gov (United States)

    Jia, Wenhua; Yin, Chenbo; Li, Guo; Sun, Menghui

    2017-11-01

    The condition of the hydraulic excavator is complicated and the working environment is bad. The safety and stability of the control system is influenced by the external factors. This paper selects hydraulic excavator electro-hydraulic servo system as the research object. A mathematical model and simulation model using AMESIM of servo system is established. Then the pressure and flow characteristics are analyzed. The design and optimization of electro-hydraulic servo system and its application in engineering machinery is provided.

  16. Dynamic Characteristics of DC Servo Motor Driven by Conventional Servo Driver: Estimation of Circuit Constants in Conventional Servo Driver

    OpenAIRE

    酒井, 史敏; 神谷, 好承; 関, 啓明; 疋津, 正利

    2000-01-01

    DC servo motors that are made as manufactured goods in the factory are widely used as actuators for driving many automatic machines. Then the manufactured driver (amplifier) that is matched to its servo motor is coveniently chosen to drive when aiming at high performance of the motion control. Motion of motor that is driven by the manufactured servo driver has very complicated dynamic characteristics. In this study, it is tried to make clear about inner composition of the servo driver through...

  17. Dreams of pneumatic servo and rail way cars in 2010; 2010 nen noyume kukiatsu servo to tetsudo sharyo

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K. [Tokyo Precision Instruments Co. Ltd., Kanagawa (Japan)

    2000-01-15

    This paper describes pneumatic servo and railway cars. The comfort of railway cars is improved by reducing excess transverse centrifugal force, and longitudinal, transverse and vertical vibration. Pneumatic system plays a large role in the comfort. Pneumatic system is used for doors because of certain open/shut operation and protecting a hand caught in a door from excess tightening pressure. Pneumatic system is also used for mechanical brakes. Pneumatic spring for car suspensions improves the comfort considerably. The orifice and auxiliary tank of a pneumatic spring reduce a spring constant, and give damping to the vibration system of car bodies and springs. To reduce an outward excess centrifugal force by tilting a car body inward at curve, a body tilting equipment is used which is adopted for a pendulum car with pneumatic servo control, and a tilting car with height control of both side pneumatic springs. For transverse damping, semi-active equipment using oil damper is in wide use, while that using pneumatic servo is also in rial use. (NEDO)

  18. Hydraulic servo control spool valve

    Science.gov (United States)

    Miller, Donald M.

    1983-01-01

    A servo operated spool valve having a fixed sleeve and axially movable spool. The sleeve is machined in two halves to form a long, narrow tapered orifice slot across which a transverse wall of the spool is positioned. The axial position of the spool wall along the slot regulates the open orifice area with extreme precision.

  19. The research on algorithms for optoelectronic tracking servo control systems

    Science.gov (United States)

    Zhu, Qi-Hai; Zhao, Chang-Ming; Zhu, Zheng; Li, Kun

    2016-10-01

    The photoelectric servo control system based on PC controllers is mainly used to control the speed and position of the load. This paper analyzed the mathematical modeling and the system identification of the servo system. In the aspect of the control algorithm, the IP regulator, the fuzzy PID, the Active Disturbance Rejection Control (ADRC) and the adaptive algorithms were compared and analyzed. The PI-P control algorithm was proposed in this paper, which not only has the advantages of the PI regulator that can be quickly saturated, but also overcomes the shortcomings of the IP regulator. The control system has a good starting performance and the anti-load ability in a wide range. Experimental results show that the system has good performance under the guarantee of the PI-P control algorithm.

  20. Adaptive Hybrid Visual Servo Regulation of Mobile Robots Based on Fast Homography Decomposition

    Directory of Open Access Journals (Sweden)

    Chunfu Wu

    2015-01-01

    Full Text Available For the monocular camera-based mobile robot system, an adaptive hybrid visual servo regulation algorithm which is based on a fast homography decomposition method is proposed to drive the mobile robot to its desired position and orientation, even when object’s imaging depth and camera’s position extrinsic parameters are unknown. Firstly, the homography’s particular properties caused by mobile robot’s 2-DOF motion are taken into account to induce a fast homography decomposition method. Secondly, the homography matrix and the extracted orientation error, incorporated with the desired view’s single feature point, are utilized to form an error vector and its open-loop error function. Finally, Lyapunov-based techniques are exploited to construct an adaptive regulation control law, followed by the experimental verification. The experimental results show that the proposed fast homography decomposition method is not only simple and efficient, but also highly precise. Meanwhile, the designed control law can well enable mobile robot position and orientation regulation despite the lack of depth information and camera’s position extrinsic parameters.

  1. Autonomous docking control of visual-servo type underwater vehicle system aiming at underwater automatic charging

    International Nuclear Information System (INIS)

    Yanou, Akira; Ohnishi, Shota; Ishiyama, Shintaro; Minami, Mamoru

    2015-01-01

    A visual-servo type remotely operated vehicle (ROV) system with binocular wide-angle lens was developed to survey submarine resources, decontaminate radiation from mud in dam lake and so on. This paper explores the experiments on regulator performance and underwater docking of the robot system utilizing Genetic Algorithm (GA) for real-time recognition of the robot's relative position and posture through 3D marker. The visual servoing performances have been verified as follows; (1) The stability performances of the proposed regulator system have been evaluated by exerting abrupt distrubane force while the ROV is controlled by visual servoing. (2) The proposed system can track time-variant desired target position in x-axis (front-back direction of the robot). (3) The underwater docking can be completed by switching visual servoing and docking modes based on the error threshold, and by giving time-varying desired target position and orientation to the controller as a desired pose. (author)

  2. Design and performance characteristic analysis of servo valve-type water hydraulic poppet valve

    International Nuclear Information System (INIS)

    Park, Sung Hwan

    2009-01-01

    For water hydraulic system control, the flow or pressure control using high-speed solenoid valve controlled by PWM control method could be a good solution for prevention of internal leakage. However, since the PWM control of on-off valves cause extensive flow and pressure fluctuation, it is difficult to control the water hydraulic actuators precisely. In this study, the servo valve-type water hydraulic valve using proportional poppet as the main valve is designed and the performance characteristics of the servo valve-type water hydraulic valve are analyzed. Furthermore, it is demonstrated through experiments that a decline in control chamber pressure that follows the change of pilot flow is caused by the occurrence of cavitation around the proportional poppet, and that fundamental characteristics of the developed valve remain unaffected by the occurrence of cavitation

  3. Adaptive servo ventilation for central sleep apnoea in heart failure: SERVE-HF on-treatment analysis.

    Science.gov (United States)

    Woehrle, Holger; Cowie, Martin R; Eulenburg, Christine; Suling, Anna; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K; Somers, Virend K; Zannad, Faiez; Teschler, Helmut; Wegscheider, Karl

    2017-08-01

    This on-treatment analysis was conducted to facilitate understanding of mechanisms underlying the increased risk of all-cause and cardiovascular mortality in heart failure patients with reduced ejection fraction and predominant central sleep apnoea randomised to adaptive servo ventilation versus the control group in the SERVE-HF trial.Time-dependent on-treatment analyses were conducted (unadjusted and adjusted for predictive covariates). A comprehensive, time-dependent model was developed to correct for asymmetric selection effects (to minimise bias).The comprehensive model showed increased cardiovascular death hazard ratios during adaptive servo ventilation usage periods, slightly lower than those in the SERVE-HF intention-to-treat analysis. Self-selection bias was evident. Patients randomised to adaptive servo ventilation who crossed over to the control group were at higher risk of cardiovascular death than controls, while control patients with crossover to adaptive servo ventilation showed a trend towards lower risk of cardiovascular death than patients randomised to adaptive servo ventilation. Cardiovascular risk did not increase as nightly adaptive servo ventilation usage increased.On-treatment analysis showed similar results to the SERVE-HF intention-to-treat analysis, with an increased risk of cardiovascular death in heart failure with reduced ejection fraction patients with predominant central sleep apnoea treated with adaptive servo ventilation. Bias is inevitable and needs to be taken into account in any kind of on-treatment analysis in positive airway pressure studies. Copyright ©ERS 2017.

  4. Automated servo controlled calorimetry

    International Nuclear Information System (INIS)

    Wetzel, J.R.

    1984-01-01

    A method of operating a calorimeter is called the servo controlled method. An internal heater is driven by a controlled voltage source to produce a constant internal temperature. The heater power is controlled by a digital computer program that uses as one of its inputs the bridge potential. The heater power can be calculated by multiplying the heater current by the heater voltage. A bridge potential can then be determined that will produce the desired internal power level. When a sample is placed in the calorimeter the servo system reduces the heater power to maintain the set point bridge potential. There will be four calorimeters in the system - two for large sizes and two for small sizes. They will be servo controlled using a DEC Micro-11 computer with a IEEE-488 interface buss

  5. Numerical calculation of three-dimensional flow field of servo-piston hydraulic control rod driving mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Wang Ge

    2014-01-01

    Servo-piston hydraulic control rod driving mechanism is a new type built-in driving mechanism which is suitable for integrated reactor and it can be moved continuously. The numerical calculation and analysis of the internal three-dimensional flow field inside the driving mechanism were carried out by the computational fluid dynamics software FLUENT. The result shows that the unique pressure mutation area of flow field inside the driving mechanism is at the place of the servo variable throttle orifice. The differential pressure of the piston can be effectively controlled by changing the gap of variable throttle orifice. When the gap changes within 0.5 mm, the differential pressure can be greatly changed, and then the driving mechanism motion state would be changed too. When the working pressure is 0.1 MPa, the hoisting capacity of the driving mechanism can meet the design requirements, and the flow rate is small. (authors)

  6. Turbofan Volume Dynamics Model for Investigations of Aero-Propulso-Servo-Elastic Effects in a Supersonic Commercial Transport

    Science.gov (United States)

    Connolly, Joseph W.; Kopasakis, George; Lemon, Kimberly A.

    2010-01-01

    A turbofan simulation has been developed for use in aero-propulso-servo-elastic coupling studies, on supersonic vehicles. A one-dimensional lumped volume approach is used whereby each component (fan, high-pressure compressor, combustor, etc.) is represented as a single volume using characteristic performance maps and conservation equations for continuity, momentum and energy. The simulation is developed in the MATLAB/SIMULINK (The MathWorks, Inc.) environment in order to facilitate controls development, and ease of integration with a future aero-servo-elastic vehicle model being developed at NASA Langley. The complete simulation demonstrated steady state results that closely match a proposed engine suitable for a supersonic business jet at the cruise condition. Preliminary investigation of the transient simulation revealed expected trends for fuel flow disturbances as well as upstream pressure disturbances. A framework for system identification enables development of linear models for controller design. Utilizing this framework, a transfer function modeling an upstream pressure disturbance s impacts on the engine speed is developed as an illustrative case of the system identification. This work will eventually enable an overall vehicle aero-propulso-servo-elastic model

  7. Robust control system for belt continuously variable transmission; Robust seigyo wo tekiyoshita mudan hensokuki no hensokuhi servo kei no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, K; Wakahara, T; Shimanaka, S; Yamamoto, M; Oshidari, T [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    The continuously variable transmission control system consists of generation of a desired gear ratio and a servo gear ratio system. The servo gear ratio system must provide the desired response at all times without being influenced by external disturbances. These include oil pressure as well as variation in performance due to operating conditions or changes occurring with us. We have developed the servo gear ratio system incorporating a robust model matching method, which enables the belt continuously variable transmission to satisfy this performance requirement. 2 refs., 9 figs.

  8. Experimental study on performance characteristics of servo-piston hydraulic control rod driving mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Zhou Jie; Liu Chunyu; Yang Zhida; Wang Ge

    2014-01-01

    An experimental study on the performance characteristics of the servo-piston hydraulic control rod driving mechanism is carried out, the dynamic processes of the driving mechanism are obtained through the experiments in different working conditions. Combined with the structure characteristics of the driving mechanism, the change rule between the characteristics parameters and the working condition is analyzed. The results indicate that the traction of the servo-tube decreases quickly at first, then slowly and finally trends to be a constant with the working pressure increasing, the tractions are the largest in the startup and deboost phases. The under pressure of the drive cylinder rises slowly and the upper pressure decreases rapidly at the beginning of the rise, the variation trend is opposite in the falling stage. There exists quick and clear flow change processes in the startup and deboost phases, the flow mutation value reduces and the mutation time changes a little with the working pressure increasing. The driving mechanism runs stable and has high sensitivity precision, the load does not vibrate at all when working conditions has small disturbance, a steady transform can be realized among every condition. (authors)

  9. Experimental research of flow servo-valve

    Science.gov (United States)

    Takosoglu, Jakub

    Positional control of pneumatic drives is particularly important in pneumatic systems. Some methods of positioning pneumatic cylinders for changeover and tracking control are known. Choking method is the most development-oriented and has the greatest potential. An optimal and effective method, particularly when applied to pneumatic drives, has been searched for a long time. Sophisticated control systems with algorithms utilizing artificial intelligence methods are designed therefor. In order to design the control algorithm, knowledge about real parameters of servo-valves used in control systems of electro-pneumatic servo-drives is required. The paper presents the experimental research of flow servo-valve.

  10. SAMSIN: the next-generation servo-manipulator

    International Nuclear Information System (INIS)

    Adams, R.H.; Jennrich, C.E.; Korpi, K.W.

    1985-01-01

    The Central Research Laboratories (CRL) Division of Sargent Industries is now developing SAMSIN, a next-generation servo-manipulator. SAMSIN is an acronym for Servo-Actuated Manipulator Systems with Intelligent Networks. This paper discusses the objectives of this development and describes the key features of the servo-manipulator system. There are three main objectives in the SAMSIN development: adaptability, reliability, and maintainability. SAMSIN utilizes standard Sargent/CRL sealed master and slave manipulator arms as well as newly developed compact versions. The mechanical arms have more than 20 yr of successful performance in industrial applications such as hot cells, high vacuums, fuel pools, and explosives handling. The servo-actuator package is in a protective enclosure, which may be sealed in various ways from the remote environment. The force limiting characteristics of the servo-actuators extend motion tendon life. Protective bootings increase the reliability of the arms in an environment that is high in airborne contamination. These bootings also simplify the decontamination of the system. The modularity in construction permits quick removal and replacement of slave arms, wrist joints, tong fingers, and actuator packages for maintenance. SAMSIN utilizes readily available off-the-shelf actuator and control system components. Each manipulator motion uses the same actuator and control system components

  11. Analysis of High Speed Jets Produced by a Servo Tube Driven Liquid Jet Injector

    Science.gov (United States)

    Portaro, Rocco; Ng, Hoi Dick

    2017-11-01

    In today's healthcare environment many types of medication must be administered through the use of hypodermic needles. Although this practice has been in use for many years, drawbacks such as accidental needle stick injuries, transmission of deadly viruses and bio-hazardous waste are still present. This study focuses on improving a needle free technology known as liquid jet injection, through the implementation of a linear servo tube actuator for the construction of a fully closed loop liquid jet injection system. This device has the ability to deliver both micro- and macro- molecules, high viscosity fluids whilst providing real time control of the jet pressure profile for accurate depth and dispersion control. The experiments are conducted using a prototype that consists of a 3 kW servo tube actuator, coupled to a specially designed injection head allowing nozzle size and injection volume to be varied. The device is controlled via a high speed servo amplifier and FPGA. The high speed jets emanating from the injector are assessed via high speed photography and through the use of a force transducer. Preliminary results indicate that the system allows for accurate shaping of the jet pressure profile, making it possible to target different tissue depths/types accurately.

  12. Forming of AHSS using Servo-Presses

    Science.gov (United States)

    Groseclose, Adam Richard

    Stamping of Advanced High Strength Steel (AHSS) alloys poses several challenges due to the material's higher strength and low formability compared to conventional steels and other problems such as (a) inconsistency of incoming material properties, (b) ductile fracture during forming, (c) higher contact pressure and temperature rise during forming, (d) higher die wear leading to reduced tool life, (e) higher forming load/press capacity, and (f) large springback leading to dimensional inaccuracy in the formed part. [Palaniswamy et. al., 2007]. The use of AHSS has been increasing steadily in automotive stamping. New AHSS alloys (TRIP, TWIP) may replace some of the Hot Stamping applications. Stamping of AHSS alloys, especially higher strength materials, 780 MPa and higher, present new challenges in obtaining good part definition (corner and fillet radii), formability (fracture and resulting scrap) and in reducing springback. Servo-drive presses, having the capability to have infinitely variable and adjustable ram speed and dwell at BDC, offer a potential improvement in quality, part definition, and springback reduction especially when the infinitely adjustable slide motion is used in combination with a CNC hydraulic cushion. Thus, it is desirable to establish a scientific/engineering basis for improving the stamping conditions in forming AHSS using a servo-drive press.

  13. Experimental research of flow servo-valve

    Directory of Open Access Journals (Sweden)

    Takosoglu Jakub

    2017-01-01

    Full Text Available Positional control of pneumatic drives is particularly important in pneumatic systems. Some methods of positioning pneumatic cylinders for changeover and tracking control are known. Choking method is the most development-oriented and has the greatest potential. An optimal and effective method, particularly when applied to pneumatic drives, has been searched for a long time. Sophisticated control systems with algorithms utilizing artificial intelligence methods are designed therefor. In order to design the control algorithm, knowledge about real parameters of servo-valves used in control systems of electro-pneumatic servo-drives is required. The paper presents the experimental research of flow servo-valve.

  14. A parameter estimation for DC servo motor by using optimization process

    International Nuclear Information System (INIS)

    Arjoni Amir

    2010-01-01

    Modeling and simulation parameters of DC servo motor using Matlab Simulink software have been done. The objective to define the DC servo motor parameter estimation is to get DC servo motor parameter values (B, La, Ra, Km, J) which are significant value that can be used for actuation process of control systems. In the analysis of control systems DC the servo motor expressed by transfer function equation to make faster to be analyzed as a component of the actuator. To obtain the data model parameters and initial conditions of the DC servo motors is then carried out the processor modeling and simulation in which the DC servo motor combined with other components. To obtain preliminary data of the DC servo motor parameters as estimated venue, it is obtained from the data factory of the DC servo motor. The initial data parameters of the DC servo motor are applied for the optimization process by using nonlinear least square algorithm and minimize the cost function value so that the DC servo motors parameter values are obtained significantly. The result of the optimization process of the DC servo motor parameter values are B = 0.039881, J= 1.2608e-007, Km = 0.069648, La = 2.3242e-006 and Ra = 1.8837. (author)

  15. Modeling, simulation, and identification of the servo pumps

    Energy Technology Data Exchange (ETDEWEB)

    Negoita, C G; Vasiliu, D; Vasiliu, Ne; Calinoiu, C, E-mail: claudia.negoita@gmail.co [Faculty of Power Engineering, University POLITEHNICA of Bucharest 313, Splaiul Independentei, Bucharest, 060042 (Romania)

    2010-08-15

    This paper contains the results of a systematic research on the steady-state behavior, and the transients occurring in a basic hydrostatic system containing a servo pump. The optimum structure of such a device working in given condition is found step by step, the synthesis stages are alternating with the analysis ones, in order to establish some general synthesis criteria, as well as for creating some images of the design parameters influence on the real system dynamic behavior. The dynamic computation of the servo pumps is based on the experimental researches carried out by the authors on the control force of the variable displacement axial piston pumps. The analysis takes into account the pressure feedback, the rigid or spring mechanical feedback or the electrical position feedback. The theoretical models are developed by AMESim (Advanced Modeling and Simulation Environment for Systems Engineering). The experimental tests were performed by the aid of LabVIEW software from National Instruments Corporation in the frame of a national certified laboratory set up by the aid of Parker Hannifin Corporation.

  16. Frequency doubled dye laser with a servo-tuned crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, J; Spitschan, H

    1975-01-01

    Spectral tuning of the uv output of a frequency doubled dye laser was successfully controlled by a servo motor system which tilts the nonlinear crystal appropriate for phase-matched second harmonic generation while the dye laser emission wavelength is tuned. The spatial direction of the generated uv beam was used as the regulating signal. The feasibility of this technique for spectroscopic applications was successfully tested.

  17. Servo-controlled hind-limb electrical stimulation for short-term arterial pressure control.

    Science.gov (United States)

    Kawada, Toru; Shimizu, Shuji; Yamamoto, Hiromi; Shishido, Toshiaki; Kamiya, Atsunori; Miyamoto, Tadayoshi; Sunagawa, Kenji; Sugimachi, Masaru

    2009-05-01

    Autonomic neural intervention is a promising tool for modulating the circulatory system thereby treating some cardiovascular diseases. In 8 pentobarbital-anesthetized cats, it was examined whether the arterial pressure (AP) could be controlled by acupuncture-like hind-limb electrical stimulation (HES). With a 0.5-ms pulse width, HES monotonically reduced AP as the stimulus current increased from 1 to 5 mA, suggesting that the stimulus current could be a primary control variable. In contrast, the depressor effect of HES showed a nadir approximately 10 Hz in the frequency range between 1 and 100 Hz. Dynamic characteristics of the AP response to HES approximated a second-order low-pass filter with dead time (gain: -10.2 +/- 1.6 mmHg/mA, natural frequency: 0.040 +/- 0.004 Hz, damping ratio 1.80 +/- 0.24, dead time: 1.38 +/- 0.13 s, mean +/- SE). Based on these dynamic characteristics, a servo-controlled HES system was developed. When a target AP value was set at 20 mmHg below the baseline AP, the time required for the AP response to reach 90% of the target level was 38 +/- 10 s. The steady-state error between the measured and target AP values was 1.3 +/- 0.1 mmHg. Autonomic neural intervention by acupuncture-like HES might provide an additional modality to quantitatively control the circulatory system.

  18. Optimization and performance characteristics of servo-piston hydraulic control rod drive mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Wang Ge

    2014-01-01

    This paper introduces the structure and working principles of the servo-piston hydraulic control rod drive mechanism (SHCM), which can be moved continuously and has self-lock capacity. The steady state characteristics of SHCM are simulated using FLUENT codes. Based on comparison with the experimental results, the simulation is proven to be credible as a tool to describe the steady state characteristics. Finally, the influence of structural parameters is analyzed to obtain an optimal design. The experimental results indicate that the traction of the servo-tube is larger in the starting and braking stages. The resistance coefficient of SHCM increases gradually in the starting and lifting stage, and then tends to be stable. This coefficient has a maximum value while the inlet pressure is low. Performance norms of SHCM, such as the anti-disturbance ability and positioning accuracy, are tested, the anti-disturbance ability of the actuator is strong while the inlet pressure is fluctuating. The positioning accuracy is high regardless of the action process (lifting or not). (author)

  19. Digitalni servo sistem za upravljanje infracrvenim lokatorom

    OpenAIRE

    Aleksandar Viličić; Mirko Jezdimirović

    2009-01-01

    U radu je predstavljen digitalni servo sistem sa pogonskim elektromotorom koji zamenjuje postojeći elektrohidraulički servo pogon na uređaju za upravljanje IC lokatorom, koji obezbeđuje zahtevanu tačnost pozicioniranja i praćenja sa minimalnim brzinama.

  20. Control system for the Fermilab Master-Slave servo manipulator

    International Nuclear Information System (INIS)

    Ducar, R.J.

    1977-01-01

    A control system for the Fermilab Master-Slave servo manipulator was developed. This new system offers a significant improvement in operational performance over the extant servo design with additional emphasis on simplicity of operation and maintainability. The servo manipulator is force-reflecting in each of the seven independent bilateral motions. Master force multiplication is automatically increased as the slave force is increased to its fifty pound capacity. The design incorporates triac control of the low inertia two-phase servomotors and makes extensive use of digital circuits in the servo loops. The manipulator is utilized in servicing radioactive beam-line targeting equipment

  1. Study of Servo Press with a Flywheel

    Science.gov (United States)

    Tso, Pei-Lum; Li, Cheng-Ho

    The servo press with a flywheel is able to provide flexible motions with energy-saving merit, but its true potential has not been thoroughly studied and verified. In this paper, such the “hybrid-driven” servo press is focused on, and the stamping capacity and the energy distribution between the flywheel and the servomotor are investigated. The capacity is derived based on the principle of energy conservation, and a method of using a capacity percentage plane for evaluation is proposed. A case study is included to illustrate and interpret that the stamping capacity is highly dependent on the programmed punch motions, thus the capacity prediction is always necessary while applying this kind of servo press. The energy distribution is validated by blanking experiments, and the results indicate that the servomotor needs only to provide 15% to the flywheel torque, 12% of the total stamping energy. This validates that the servomotor power is significantly saved in comparison with conventional servo presses.

  2. Synthesis of Servo Pneumatic/Hydraulic Drive

    Directory of Open Access Journals (Sweden)

    K D. Efremova

    2017-01-01

    Full Text Available Servo pneumatic and / or hydraulic drives are widely used in modern engineering and process control. The efficiency of using pneumatic / hydraulic drives depends on their parameters and characteristics. To select the optimal drive parameters, various methods are used, based on finding the minimum of the target (target or criteria function.The objective of this paper was to apply one crucial criterion (target function that provides determination of optimal parameters of the pneumatic / hydraulic drive with the translational motion of the end-effector as well as its use in the synthesis of the servo pneumatic cylinder. The article shows the form of the target function representing a set of drive parameters that do not have direct relationships with each other in a dimensionless form for the pneumatic / hydraulic drive with the translational motion of the end-effector. To calculate the parameters of the servo drive close to the optimal ones, a two-criteria LPτ search was used. As criteria, were used the decisive criterion - the proposed target function, and the power developed by the actuator of the pneumatic / hydraulic drive, which were presented in a dimensionless form. It is shown that the criterion for solution optimality is the minimum distance of the selected point in the space of the normalized criteria from the origin. This point was determined. In addition to the proposed criteria, non-formalised requirements were taken into account: actual and mass-produced components of drive, in terms of which its parameters close to the optimal ones were determined, and the maximum relative error of the obtained useful power value of the servo pneumatic drive was estimated. The paper presents design features of two types of the servo pneumatic drive created, taking into account the proposed target function, implemented according to the schemes "hidden" and "spaced apart". The experimental static characteristic of the servo pneumatic drive is

  3. A low order adaptive control scheme for hydraulic servo systems

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Bech, Michael Møller

    2015-01-01

    This paper deals with high-performance position control of hydraulics servo systems in general. The hydraulic servo system used is a two link robotic manipulator actuated by two hydraulic servo cylinders. A non-linear model of the hydraulic system and a Newton-Euler based model of the mechanical...

  4. Project calculation of the steering mechanism hydraulic servo control in motor vehicles

    Directory of Open Access Journals (Sweden)

    Zoran Đukan Majkić

    2013-10-01

    resistance to wheel rotation in place The magnitude of the torque required to rotate drive wheels in place, is affected by: 1 load on wheels; 2 coefficient of friction of the tire surface; 3 dimensions and shape of the tire footprint on the surface, as deterimined by the pressure in the tire and its construction; 4 lateral stiffness of the tire; 5 turning radius of drive wheels; 6 angles of inclination of the pin; 7 moment of friction in pins and steering gear mechanism. To achieve the proper torque values of torsional resistance in drive wheels, it is necessary to take into account all these influential factors, as this provides a lower load on the elements in the control system while enabling easier control and reducing the moment of force on the steering wheel. Moment of resistance to rotating drive wheels in place according to Mitin Mitin obtained the coefficient  only for one tire so the use of this formula is practically impossible. Moment of resistance to rotating drive wheels in place according to Taborek Moment of resistance to rotating drive wheels in place according to Lisov This formula takes into account the radius of the tire, but does not take into account the pressure and elastic characteristics of tires. Moment of resistance ito rotating drive wheels in place by Litvinov For the calculation by this formula, it is necessary to know the dependence of the tire footprint surface and the load on it. Moment of resistance to rotating drive wheels in place by Gough Experimental studies have shown that this term is very acceptable. Dimensions of the executive hydraulic cylinder The control amplifier must provide that the wheels rotate in place when the force of the driver on the steering wheel is not above 160 – 200 N in a complete range of the rotation angles from   for the inner wheel to for the outer wheel. Reactive and centering elements of the hydraulic servo control The control system without a hydraulic servo control must have one very important

  5. Study of Pneumatic Servo Loading System in Double-Sided Polishing

    International Nuclear Information System (INIS)

    Qian, N; Ruan, J; Li, W

    2006-01-01

    The precise double-sided polishing process is one of the main methods to get the ultra-smooth surface of workpiece. In double-sided polishing machine, a loading system is required to be able to precisely control the load superimposed on the workpiece, while the polishing is being carried out. A pneumatic servo loading system is proposed for this purpose. In the pneumatic servo system, the servo valve, which acts both the electrical to mechanical converter and the power amplifier, has a substantial influence on the performance of the loading system. Therefore a specially designed pneumatic digital servo valve is applied in the control system. In this paper, the construction of the pneumatic servo loading system in double-sided polishing machine and control strategy associated with the digital servo valve are first addressed. The mathematical model of the system established and the hardware of the pneumatic servo system is designed. Finally, the experiments are carried out by measuring the practical load on the workpiece and the quality of the surface finish. It is demonstrated that the error rate of load is less than 5% and a super-smooth surface of silicon wafer with roughness Ra 0.401 nm can be obtained

  6. Phase-Division-Based Dynamic Optimization of Linkages for Drawing Servo Presses

    Science.gov (United States)

    Zhang, Zhi-Gang; Wang, Li-Ping; Cao, Yan-Ke

    2017-11-01

    Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage optimization and motion planning, a phase-division-based linkage-optimization model for a drawing servo press is established. Considering the motion-planning principles of a drawing servo press, and taking account of work rating and efficiency, the constraints of the optimization model are constructed. Linkage is optimized in two modes: use of either constant eccentric speed or constant slide speed in the work segments. The performances of optimized linkages are compared with those of a mature linkage SL4-2000A, which is optimized by a traditional method. The results show that the work rating of a drawing servo press equipped with linkages optimized by this new method improved and the root-mean-square torque of the servo motors is reduced by more than 10%. This research provides a promising method for designing energy-saving drawing servo presses with high work ratings.

  7. IUSThrust Vector Control (TVC) servo system

    Science.gov (United States)

    Conner, G. E.

    1979-01-01

    The IUS TVC SERVO SYSTEM which consists of four electrically redundant electromechanical actuators, four potentiometer assemblies, and two controllers to provide movable nozzle control on both IUS solid rocket motors is developed. An overview of the more severe IUS TVC servo system design requirements, the system and component designs, and test data acquired on a preliminary development unit is presented. Attention is focused on the unique methods of sensing movable nozzle position and providing for redundant position locks.

  8. Position Control of Servo Systems Using Feed-Forward Friction Compensation

    International Nuclear Information System (INIS)

    Park, Min Gyu; Kim, Han Me; Shin, Jong Min; Kim, Jong Shik

    2009-01-01

    Friction is an important factor for precise position tracking control of servo systems. Servo systems with highly nonlinear friction are sensitive to the variation of operating condition. To overcome this problem, we use the LuGre friction model which can consider dynamic characteristics of friction. The LuGre friction model is used as a feed-forward compensator to improve tracking performance of servo systems. The parameters of the LuGre friction model are identified through experiments. The experimental result shows that the tracking performance of servo systems with higherly nonlinear friction can be improved by using feed-forward friction compensation

  9. Dual arm master controller for a bilateral servo-manipulator

    Science.gov (United States)

    Kuban, Daniel P.; Perkins, Gerald S.

    1989-01-01

    A master controller for a mechanically dissimilar bilateral slave servo-manipulator is disclosed. The master controller includes a plurality of drive trains comprising a plurality of sheave arrangements and cables for controlling upper and lower degrees of master movement. The cables and sheaves of the master controller are arranged to effect kinematic duplication of the slave servo-manipulator, despite mechanical differences therebetween. A method for kinematically matching a master controller to a slave servo-manipulator is also disclosed.

  10. All Digital IQ Servo-System for CERN Linacs

    CERN Document Server

    Broere, J; Garoby, R; Rohlev, A; Serrano, J

    2004-01-01

    A VME based control system has been developed and built at CERN for the servo loops regulating the field in linac accelerating structures. It is an all-digital system built on a single VME card, providing digital detection, processing, and modulation. It is foreseen to be used, in different versions, for the needs of both present and future CERN hadron linacs. The first application will be in the energy ramping RF chain of the CERN Heavy Ion Linac (linac 3). Design principle and the experimental results are described.

  11. Dual arm master controller for a bilateral servo-manipulator

    International Nuclear Information System (INIS)

    Kuban, D.P.; Perkins, G.S.

    1989-01-01

    A master controller for a mechanically dissimilar bilateral slave servo-manipulator is disclosed. The master controller includes a plurality of drive trains comprising a plurality of sheave arrangements and cables for controlling upper and lower degrees of master movement. The cables and sheaves of the master controller are arranged to effect kinematic duplication of the slave servo-manipulator, despite mechanical differences there between. A method for kinematically matching a master controller to a slave servo-manipulator is also disclosed. 13 figs

  12. What is the Optimal Strategy for Adaptive Servo-Ventilation Therapy?

    Science.gov (United States)

    Imamura, Teruhiko; Kinugawa, Koichiro

    2018-05-23

    Clinical advantages in the adaptive servo-ventilation (ASV) therapy have been reported in selected heart failure patients with/without sleep-disorder breathing, whereas multicenter randomized control trials could not demonstrate such advantages. Considering this discrepancy, optimal patient selection and device setting may be a key for the successful ASV therapy. Hemodynamic and echocardiographic parameters indicating pulmonary congestion such as elevated pulmonary capillary wedge pressure were reported as predictors of good response to ASV therapy. Recently, parameters indicating right ventricular dysfunction also have been reported as good predictors. Optimal device setting with appropriate pressure setting during appropriate time may also be a key. Large-scale prospective trial with optimal patient selection and optimal device setting is warranted.

  13. Motion control of servo cylinder using neural network

    International Nuclear Information System (INIS)

    Hwang, Un Kyoo; Cho, Seung Ho

    2004-01-01

    In this paper, a neural network controller that can be implemented in parallel with a PD controller is suggested for motion control of a hydraulic servo cylinder. By applying a self-excited oscillation method, the system design parameters of open loop transfer function of servo cylinder system are identified. Based on system design parameters, the PD gains are determined for the desired closed loop characteristics. The neural network is incorporated with PD control in order to compensate the inherent nonlinearities of hydraulic servo system. As an application example, a motion control using PD-NN has been performed and proved its superior performance by comparing with that of a PD control

  14. Modeling of R/C Servo Motor and Application to Underactuated Mechanical Systems

    Science.gov (United States)

    Ishikawa, Masato; Kitayoshi, Ryohei; Wada, Takashi; Maruta, Ichiro; Sugie, Toshiharu

    An R/C servo motor is a compact package of a DC geard-motor associated with a position servo controller. They are widely used in small-sized robotics and mechatronics by virtue of their compactness, easiness-to-use and high/weight ratio. However, it is crucial to clarify their internal model (including the embedded position servo) in order to improve control performance of mechatronic systems using R/C servo motors, such as biped robots or underactuted sysyems. In this paper, we propose a simple and realistic internal model of the R/C servo motors including the embedded servo controller, and estimate their physical parameters using continuous-time system identification method. We also provide a model of reference-to-torque transfer function so that we can estimate the internal torque acting on the load.

  15. Numerical calculation for flow field of servo-tube guided hydraulic control rod driving system

    International Nuclear Information System (INIS)

    He Keyu; Han Weishi

    2010-01-01

    A new-style hydraulic control rod driving mechanism was put forward by using servo-tube control elements for the design of control rod driving mechanism. The results of numerical simulation by CFD program Fluent for flow field of hydraulic driving cylinder indicate that the bigger the outer diameter of servo-tube, the smaller the resistance coefficient of variable throttle orifice. The zero position gap of variable throttle orifice could be determined on 0.2 mm in the design. The pressure difference between the upper and nether surfaces of piston was mainly created by the throttle function of fixed throttle orifice. It can be effectively controlled by changing the gap of variable throttle orifice. And the lift force of driving cylinder is able to meet the requirement on the design load. (authors)

  16. Direct drive digital servo press with high parallel control

    Science.gov (United States)

    Murata, Chikara; Yabe, Jun; Endou, Junichi; Hasegawa, Kiyoshi

    2013-12-01

    Direct drive digital servo press has been developed as the university-industry joint research and development since 1998. On the basis of this result, 4-axes direct drive digital servo press has been developed and in the market on April of 2002. This servo press is composed of 1 slide supported by 4 ball screws and each axis has linearscale measuring the position of each axis with high accuracy less than μm order level. Each axis is controlled independently by servo motor and feedback system. This system can keep high level parallelism and high accuracy even with high eccentric load. Furthermore the 'full stroke full power' is obtained by using ball screws. Using these features, new various types of press forming and stamping have been obtained by development and production. The new stamping and forming methods are introduced and 'manufacturing' need strategy of press forming with high added value and also the future direction of press forming are also introduced.

  17. Aerial Object Following Using Visual Fuzzy Servoing

    OpenAIRE

    Olivares Méndez, Miguel Ángel; Mondragon Bernal, Ivan Fernando; Campoy Cervera, Pascual; Mejias Alvarez, Luis; Martínez Luna, Carol Viviana

    2011-01-01

    This article presents a visual servoing system to follow a 3D moving object by a Micro Unmanned Aerial Vehicle (MUAV). The presented control strategy is based only on the visual information given by an adaptive tracking method based on the color information. A visual fuzzy system has been developed for servoing the camera situated on a rotary wing MAUV, that also considers its own dynamics. This system is focused on continuously following of an aerial moving target object, maintai...

  18. Vision servo of industrial robot: A review

    Science.gov (United States)

    Zhang, Yujin

    2018-04-01

    Robot technology has been implemented to various areas of production and life. With the continuous development of robot applications, requirements of the robot are also getting higher and higher. In order to get better perception of the robots, vision sensors have been widely used in industrial robots. In this paper, application directions of industrial robots are reviewed. The development, classification and application of robot vision servo technology are discussed, and the development prospect of industrial robot vision servo technology is proposed.

  19. A Novel Real-Time Path Servo Control of a Hardware-in-the-Loop for a Large-Stroke Asymmetric Rod-Less Pneumatic System under Variable Loads

    Directory of Open Access Journals (Sweden)

    Hao-Ting Lin

    2017-06-01

    Full Text Available This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally.

  20. A Novel Real-Time Path Servo Control of a Hardware-in-the-Loop for a Large-Stroke Asymmetric Rod-Less Pneumatic System under Variable Loads.

    Science.gov (United States)

    Lin, Hao-Ting

    2017-06-04

    This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC) is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally.

  1. CLFs-based optimization control for a class of constrained visual servoing systems.

    Science.gov (United States)

    Song, Xiulan; Miaomiao, Fu

    2017-03-01

    In this paper, we use the control Lyapunov function (CLF) technique to present an optimized visual servo control method for constrained eye-in-hand robot visual servoing systems. With the knowledge of camera intrinsic parameters and depth of target changes, visual servo control laws (i.e. translation speed) with adjustable parameters are derived by image point features and some known CLF of the visual servoing system. The Fibonacci method is employed to online compute the optimal value of those adjustable parameters, which yields an optimized control law to satisfy constraints of the visual servoing system. The Lyapunov's theorem and the properties of CLF are used to establish stability of the constrained visual servoing system in the closed-loop with the optimized control law. One merit of the presented method is that there is no requirement of online calculating the pseudo-inverse of the image Jacobian's matrix and the homography matrix. Simulation and experimental results illustrated the effectiveness of the method proposed here. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Inducement of Design Parameters for Reliability Improvement of Servo Actuator for Hydraulic Valve Operation

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Baek Ju; Kim, Do Sik [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2014-05-15

    The precision hydraulic valve is widely used in various industrial field like aircraft, automobile, and general machinery. Servo actuator is the most important device for driving the precise hydraulic valve. The reliable operation of servo actuator effects on the overall hydraulic system. The performance of servo actuator relies on frequency response and step response according to arbitrary input signal. In this paper, we performed the analysis for the components of servo actuator to satisfy the reliable operation and response characteristics through the reliability analysis, and also induced the design parameters to realize the reliable operation and fast response characteristics of servo actuator for hydraulic valve operation through the empirical knowledge of experts and electromagnetic theories. We suggested the design equations to determine the values of design parameters of servo actuator as like bobbin size, length of yoke and plunger and turn number of coil, and verified the achieved design values through FEM analysis and performance tests using some prototypes of servo actuators adapted in hydraulic valve.

  3. Servo Platform Circuit Design of Pendulous Gyroscope Based on DSP

    Science.gov (United States)

    Tan, Lilong; Wang, Pengcheng; Zhong, Qiyuan; Zhang, Cui; Liu, Yunfei

    2018-03-01

    In order to solve the problem when a certain type of pendulous gyroscope in the initial installation deviation more than 40 degrees, that the servo platform can not be up to the speed of the gyroscope in the rough north seeking phase. This paper takes the digital signal processor TMS320F28027 as the core, uses incremental digital PID algorithm, carries out the circuit design of the servo platform. Firstly, the hardware circuit is divided into three parts: DSP minimum system, motor driving circuit and signal processing circuit, then the mathematical model of incremental digital PID algorithm is established, based on the model, writes the PID control program in CCS3.3, finally, the servo motor tracking control experiment is carried out, it shows that the design can significantly improve the tracking ability of the servo platform, and the design has good engineering practice.

  4. Designing compensator of dual servo system for high precision positioning

    International Nuclear Information System (INIS)

    Choi, Hyeun Seok; Song, Chi Woo; Han, Chang Soo; Choi, Tae Hoon; Lee, Nak Kyu; Na, Kyung Hwan

    2003-01-01

    The high precision positioning mechanism is used in various industrial fields. It is used in semiconductor manufacturing line, test instrument, bioengineering, and MEMS and so on. This paper presents a positioning mechanism with dual servo system. Dual servo system consists of a coarse stage and a fine motion stage. The course stage is driven by VCM and the actuator of fine stage is the PZT. The purposes of dual servo system are stability, higher bandwidth, and robustness. Lead compensator is applied to this control system, and is designed by PQ method. Designed compensator can improve property of positioning mechanism

  5. Electrical servo actuator bracket. [fuel control valves on jet engines

    Science.gov (United States)

    Sawyer, R. V. (Inventor)

    1981-01-01

    An electrical servo actuator is mounted on a support arm which is allowed to pivot on a bolt through a fixed mounting bracket. The actuator is pivotally connected to the end of the support arm by a bolt which has an extension allowed to pass through a slot in the fixed mounting bracket. An actuator rod extends from the servo actuator to a crank arm which turns a control shaft. A short linear thrust of the rod pivots the crank arm through about 90 for full-on control with the rod contracted into the servo actuator, and full-off control when the rod is extended from the actuator. A spring moves the servo actuator and actuator rod toward the control crank arm once the actuator rod is fully extended in the full-off position. This assures the turning of the control shaft to a full-off position. A stop bolt and slot are provided to limit pivot motion. Once fully extended, the spring pivots the motion.

  6. Experimental evaluation of control strategies for hydraulic servo robot

    DEFF Research Database (Denmark)

    Bech, Michael Møller; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    In this paper different linear and non-linear controllers applied to a hydraulically driven servo robot are evaluated and validated. The task is to make the actuators of the manipulator track a position reference with minimum error. Hydraulic systems are intrinsically non-linear and using linear...... in industrial servo drives. The different controllers are compared and evaluated from simulation and experimental results....

  7. Rancang Bangun Graphical User Interface Untuk Pergerakan Motor Servo menggunakan Microsoft Visual Basic 2010 Express

    Directory of Open Access Journals (Sweden)

    Anggoro S Pramudyo

    2016-03-01

    Full Text Available Zaman sekarang ini teknologi sedang berkembang pesat dan robot-robot dirancang untuk dapat membantu pekerjaan dan tugas-tugas manusia. Motor servo merupakan salah satu jenis dari motor DC dan banyak diaplikasikan pada dunia robotik maupun peralatan lain, contohnya motor servo yang digunakan untuk robot berkaki. Dalam penggunaannya motor servo dapat bergerak karena ada sinyal yang dibangkitkan melalui sinyal PWM. Sinyal yang dihasilkan akan membentuk sudut sesuai nilai yang diberikan. Penelitian ini bertujuan untuk membuat perangkat lunak GUI untuk membuat pergerakan motor servo menggunakan Microsoft Visual Basic dengan bantuan database menggunakan Microsoft Access. Pergerakan motor servo dapat bergerak secara sekuen dan real time menggunakan GUI yang dihubungkan dengan Arduino mega 2560. Parameter yang terdapat di dalam database juga bisa langsung di-export menjadi file Arduino. Hasil penelitian ini GUI yang telah dibuat dapat menggerakkan motor servo secara lancar melalui komunikasi serial ketika baudrate diatur pada kecepatan 9600 bps. GUI yang dibuat juga menghasilkan sudut untuk motor servo yaitu dari 00 sampai 1800 secara tepat dan akurat, sehingga mempercepat waktu dalam  menentukan sudut untuk pergerakan motor servo yang akan digunakan.

  8. Modelling and LPV control of an electro-hydraulic servo system

    NARCIS (Netherlands)

    Naus, G.J.L.; Wijnheijmer, F.P.; Post, W.J.A.E.M.; Steinbuch, M.; Teerhuis, A.P.

    2006-01-01

    This paper aims to show the modelling and control of an hydraulic servo system, targeting at frequency domain based controller design and the implementation of a LPV controller. The actual set-up consists of a mass, moved by a hydraulic cylinder and an electro-hydraulic servo valve. A nonlinear

  9. A servo controlled gradient loading triaxial model test system for deep-buried cavern

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xu-guang [College of Engineering, Ocean University of China, Qingdao 266100 (China); Shandong Provincial Key Laboratory of Ocean Engineering, Qingdao 266100 (China); Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan 250061 (China); Zhang, Qiang-yong; Li, Shu-cai [Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan 250061 (China)

    2015-10-15

    A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the “real” geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures.

  10. A servo controlled gradient loading triaxial model test system for deep-buried cavern.

    Science.gov (United States)

    Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai

    2015-10-01

    A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the "real" geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures.

  11. A servo controlled gradient loading triaxial model test system for deep-buried cavern

    International Nuclear Information System (INIS)

    Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai

    2015-01-01

    A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the “real” geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures

  12. Analogical study of the servo-control of a reactivity modulator

    International Nuclear Information System (INIS)

    Le Bot, Michel

    1969-03-01

    In the context of the study of the transfer functions related to the Cabri reactor, this paper presents: the objective of the servo-control (reactivity modulator, reasons for the analogical study), the principles of the servo-control (description of the servo-controlled system, elaboration of the error signal, principles of the phase meter, critical analysis of different types of phase meters), the analogical formulation (transfer diagram of the process, analogical simulation of the process, analogical realization of the phase meter, simulation of the Low Frequency generator), study of the controlled system and results (system responses to echelon and ramp signals, responses of the controlled system with the phase meter in feedback)

  13. The performance and limitations of FPGA-based digital servos for atomic, molecular, and optical physics experiments.

    Science.gov (United States)

    Yu, Shi Jing; Fajeau, Emma; Liu, Lin Qiao; Jones, David J; Madison, Kirk W

    2018-02-01

    In this work, we address the advantages, limitations, and technical subtleties of employing field programmable gate array (FPGA)-based digital servos for high-bandwidth feedback control of lasers in atomic, molecular, and optical physics experiments. Specifically, we provide the results of benchmark performance tests in experimental setups including noise, bandwidth, and dynamic range for two digital servos built with low and mid-range priced FPGA development platforms. The digital servo results are compared to results obtained from a commercially available state-of-the-art analog servo using the same plant for control (intensity stabilization). The digital servos have feedback bandwidths of 2.5 MHz, limited by the total signal latency, and we demonstrate improvements beyond the transfer function offered by the analog servo including a three-pole filter and a two-pole filter with phase compensation to suppress resonances. We also discuss limitations of our FPGA-servo implementation and general considerations when designing and using digital servos.

  14. The performance and limitations of FPGA-based digital servos for atomic, molecular, and optical physics experiments

    Science.gov (United States)

    Yu, Shi Jing; Fajeau, Emma; Liu, Lin Qiao; Jones, David J.; Madison, Kirk W.

    2018-02-01

    In this work, we address the advantages, limitations, and technical subtleties of employing field programmable gate array (FPGA)-based digital servos for high-bandwidth feedback control of lasers in atomic, molecular, and optical physics experiments. Specifically, we provide the results of benchmark performance tests in experimental setups including noise, bandwidth, and dynamic range for two digital servos built with low and mid-range priced FPGA development platforms. The digital servo results are compared to results obtained from a commercially available state-of-the-art analog servo using the same plant for control (intensity stabilization). The digital servos have feedback bandwidths of 2.5 MHz, limited by the total signal latency, and we demonstrate improvements beyond the transfer function offered by the analog servo including a three-pole filter and a two-pole filter with phase compensation to suppress resonances. We also discuss limitations of our FPGA-servo implementation and general considerations when designing and using digital servos.

  15. Precision position control of servo systems using adaptive back-stepping and recurrent fuzzy neural networks

    International Nuclear Information System (INIS)

    Kim, Han Me; Kim, Jong Shik; Han, Seong Ik

    2009-01-01

    To improve position tracking performance of servo systems, a position tracking control using adaptive back-stepping control(ABSC) scheme and recurrent fuzzy neural networks(RFNN) is proposed. An adaptive rule of the ABSC based on system dynamics and dynamic friction model is also suggested to compensate nonlinear dynamic friction characteristics. However, it is difficult to reduce the position tracking error of servo systems by using only the ABSC scheme because of the system uncertainties which cannot be exactly identified during the modeling of servo systems. Therefore, in order to overcome system uncertainties and then to improve position tracking performance of servo systems, the RFNN technique is additionally applied to the servo system. The feasibility of the proposed control scheme for a servo system is validated through experiments. Experimental results show that the servo system with ABS controller based on the dual friction observer and RFNN including the reconstruction error estimator can achieve desired tracking performance and robustness

  16. Photoelectric radar servo control system based on ARM+FPGA

    Science.gov (United States)

    Wu, Kaixuan; Zhang, Yue; Li, Yeqiu; Dai, Qin; Yao, Jun

    2016-01-01

    In order to get smaller, faster, and more responsive requirements of the photoelectric radar servo control system. We propose a set of core ARM + FPGA architecture servo controller. Parallel processing capability of FPGA to be used for the encoder feedback data, PWM carrier modulation, A, B code decoding processing and so on; Utilizing the advantage of imaging design in ARM Embedded systems achieves high-speed implementation of the PID algorithm. After the actual experiment, the closed-loop speed of response of the system cycles up to 2000 times/s, in the case of excellent precision turntable shaft, using a PID algorithm to achieve the servo position control with the accuracy of + -1 encoder input code. Firstly, This article carry on in-depth study of the embedded servo control system hardware to determine the ARM and FPGA chip as the main chip with systems based on a pre-measured target required to achieve performance requirements, this article based on ARM chip used Samsung S3C2440 chip of ARM7 architecture , the FPGA chip is chosen xilinx's XC3S400 . ARM and FPGA communicate by using SPI bus, the advantage of using SPI bus is saving a lot of pins for easy system upgrades required thereafter. The system gets the speed datas through the photoelectric-encoder that transports the datas to the FPGA, Then the system transmits the datas through the FPGA to ARM, transforms speed datas into the corresponding position and velocity data in a timely manner, prepares the corresponding PWM wave to control motor rotation by making comparison between the position data and the velocity data setted in advance . According to the system requirements to draw the schematics of the photoelectric radar servo control system and PCB board to produce specially. Secondly, using PID algorithm to control the servo system, the datas of speed obtained from photoelectric-encoder is calculated position data and speed data via high-speed digital PID algorithm and coordinate models. Finally, a

  17. Servo control booster system for minimizing following error

    Science.gov (United States)

    Wise, W.L.

    1979-07-26

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, ..delta..S/sub R/, on a continuous real-time basis, for all operational times of consequence and for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error greater than or equal to ..delta..S/sub R/, to produce precise position correction signals. When the command-to-response error is less than ..delta..S/sub R/, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  18. Provision of servo-controlled cooling during neonatal transport.

    Science.gov (United States)

    Johnston, Ewen D; Becher, Julie-Clare; Mitchell, Anne P; Stenson, Benjamin J

    2012-09-01

    Therapeutic hypothermia is a time critical intervention for infants who have experienced a hypoxic-ischaemic event. Previously reported methods of cooling during transport do not demonstrate the same stability achieved in the neonatal unit. The authors developed a system which allowed provision of servo-controlled cooling throughout transport, and present their first year's experience. Retrospective review of routinely collected patient data. 14 out-born infants were referred for cooling during a 12-month period. Nine infants were managed with the servo-controlled system during transport. Cooling was commenced in all infants before 6 h of life. Median time from team arrival to the infant having a temperature in the target range (33-34°C) was 45 min. Median temperature during transfer was 33.5°C (range 33-34°C). Temperature on arrival at the cooling centre ranged from 33.4°C to 33.8°C. Servo-controlled cooling during transport is feasible and provides an optimal level of thermal control.

  19. Safety supervision on high-pressure gas regulations

    International Nuclear Information System (INIS)

    Lee, Won Il

    1991-01-01

    The first part lists the regulation on safety supervision of high-pressure gas, enforcement ordinance on high-pressure gas safety supervision and enforcement regulations about high-pressure gas safety supervision. The second part indicates safety regulations on liquefied petroleum gas and business, enforcement ordinance of safety on liquefied petroleum gas and business, enforcement regulation of safety supervision over liquefied petroleum gas and business. The third part lists regulation on gas business, enforcement ordinance and enforcement regulations on gas business. Each part has theory and explanation for questions.

  20. Permanent magnet synchronous motor servo system control based on μC/OS

    Science.gov (United States)

    Shi, Chongyang; Chen, Kele; Chen, Xinglong

    2015-10-01

    When Opto-Electronic Tracking system operates in complex environments, every subsystem must operate efficiently and stably. As a important part of Opto-Electronic Tracking system, the performance of PMSM(Permanent Magnet Synchronous Motor) servo system affects the Opto-Electronic Tracking system's accuracy and speed greatly[1][2]. This paper applied embedded real-time operating system μC/OS to the control of PMSM servo system, implemented SVPWM(Space Vector Pulse Width Modulation) algorithm in PMSM servo system, optimized the stability of PMSM servo system. Pointing on the characteristics of the Opto-Electronic Tracking system, this paper expanded μC/OS with software redundancy processes, remote debugging and upgrading. As a result, the Opto- Electronic Tracking system performs efficiently and stably.

  1. Research Based on AMESim of Electro-hydraulic Servo Loading System

    Science.gov (United States)

    Li, Jinlong; Hu, Zhiyong

    2017-09-01

    Electro-hydraulic servo loading system is a subject studied by many scholars in the field of simulation and control at home and abroad. The electro-hydraulic servo loading system is a loading device simulation of stress objects by aerodynamic moment and other force in the process of movement, its function is all kinds of gas in the lab condition to analyze stress under dynamic load of objects. The purpose of this paper is the design of AMESim electro-hydraulic servo system, PID control technology is used to configure the parameters of the control system, complete the loading process under different conditions, the optimal design parameters, optimization of dynamic performance of the loading system.

  2. Servo Driven Corotation: Development of AN Inertial Clock.

    Science.gov (United States)

    Cheung, Wah-Kwan Stephen

    An inertial clock to test non-metricity of gravity is proposed here. A first, room-temperature, servo corotation -protected, double magnetically suspended precision rotor system is developed for this purpose. The specific goal was to exhibit the properties of such a clock in its entirety at whatever level of precision was achievable. A monolithic system has been completed for these preliminary studies. It includes particular development of individual experimental sub-systems (a hybrid double magnetic suspension; a diffusion pumping system; a microcomputer -controlled eddy-current drive system; and the angular period measuring schemes for the doubly suspended rotors). Double magnetic suspension had been investigated by Beams for other purposes. The upper transducer is optical but parametrized and the lower transducer employs the frequency modulation characteristic of a LC tank circuit. The doubly suspended rotors corotate so that the upper rotor is servoed to rotate at the same angular velocity as that of the lower rotor. This creates a "drag free" environment for the lower rotor and effectively eliminates the gas drag on the lower rotor. Consequently, the decay time constant of the lower rotor increases. With other means of protection, the lower rotor will then, with perfect system operation, suffer no drag and therefore become the inertial time keeper. A commercial microcomputer is introduced to execute the servo-corotation. The tests thus far are, with one exception, run at atmospheric pressure. An idealized analysis for open and closed loop corotation is shown. Such analysis includes only the viscous drag acting on the corotating rotors. The analysis suggests that angular position control be added to the present feedback drive which is of derivative nature only. Open and closed corotation runs show that a strong torsional coupling besides that of the gas drag exists between the rotors. When misalignment of the support pole pieces is deliberately made significant

  3. Stepping Motor - Hydraulic Motor Servo Drives for an NC Milling ...

    African Journals Online (AJOL)

    In this paper the retrofit design of the control system of an NC milling machine with a stepping motor and stepping motor - actuated hydraulic motor servo mechanism on the machines X-axis is described. The servo designed in the course of this study was tested practically and shown to be linear - the velocity following errors ...

  4. Analysis of the servo-spill control for slow beam extraction

    International Nuclear Information System (INIS)

    Sato, Hikaru; Toyama, Takeshi; Marutsuka, Katsumi; Shirakata, Masashi.

    1994-01-01

    This report describes an analysis of servo-spill control system for the slow beam extraction from the KEK PS. Transfer function of extraction process is derived from measurement of the closed-loop characteristic using measured frequency response of each equipment. Result indicates the restriction of the present servo-spill control and give a guide line for the improvement. (author)

  5. Nonlinear friction model for servo press simulation

    Science.gov (United States)

    Ma, Ninshu; Sugitomo, Nobuhiko; Kyuno, Takunori; Tamura, Shintaro; Naka, Tetsuo

    2013-12-01

    The friction coefficient was measured under an idealized condition for a pulse servo motion. The measured friction coefficient and its changing with both sliding distance and a pulse motion showed that the friction resistance can be reduced due to the re-lubrication during unloading process of the pulse servo motion. Based on the measured friction coefficient and its changes with sliding distance and re-lubrication of oil, a nonlinear friction model was developed. Using the newly developed the nonlinear friction model, a deep draw simulation was performed and the formability was evaluated. The results were compared with experimental ones and the effectiveness was verified.

  6. Cylinder Position Servo Control Based on Fuzzy PID

    Directory of Open Access Journals (Sweden)

    Shibo Cai

    2013-01-01

    Full Text Available The arbitrary position control of cylinder has always been the hard challenge in pneumatic system. We try to develop a cylinder position servo control method by combining fuzzy PID with the theoretical model of the proportional valve-controlled cylinder system. The pressure differential equation of cylinder, pressure-flow equation of proportional valve, and moment equilibrium equation of cylinder are established. And the mathematical models of the cylinder driving system are linearized. Then fuzzy PID control algorithm is designed for the cylinder position control, including the detail analysis of fuzzy variables and domain, fuzzy logic rules, and defuzzification. The stability of the proposed fuzzy PID controller is theoretically proved according to the small gain theorem. Experiments for targets position of 250 mm, 300 mm, and 350 mm were done and the results showed that the absolute error of the position control is less than 0.25 mm. And comparative experiment between fuzzy PID and classical PID verified the advantage of the proposed algorithm.

  7. Imaged-Based Visual Servo Control for a VTOL Aircraft

    Directory of Open Access Journals (Sweden)

    Liying Zou

    2017-01-01

    Full Text Available This paper presents a novel control strategy to force a vertical take-off and landing (VTOL aircraft to accomplish the pinpoint landing task. The control development is based on the image-based visual servoing method and the back-stepping technique; its design differs from the existing methods because the controller maps the image errors onto the actuator space via a visual model which does not contain the depth information of the feature point. The novelty of the proposed method is to extend the image-based visual servoing technique to the VTOL aircraft control. In addition, the Lyapunov theory is used to prove the asymptotic stability of the VTOL aircraft visual servoing system, while the image error can converge to zero. Furthermore, simulations have been also conducted to demonstrate the performances of the proposed method.

  8. Mathematical-model study of servo system with pulse-duration control of micromovements

    International Nuclear Information System (INIS)

    Dement'eva, M.A.; Leonov, A.P.; Popov, V.V.; Skugarevskii, A.I.; Ustinov, E.A.; Chernyavskii, N.N.

    1988-01-01

    A number of digital servo systems with pulse-duration control have been developed at the Institute of High Energy Physics for the instruments of the scanning and measurement system and various experimental setups. They are based on stock transistor bridge stages, whose loads are high-speed servomotors with printed-circuit armature windings. Study of these servo systems by traditional methods, which are based on Laplace transforms, or by mean values with expansion of the current pulse into a Fourier transform yields approximate results and does not reflect the actual processes that take place in a pulse servo system. They attempt to develop a method and extend it to the study of high-speed servo systems in the area of micromovements and quasistationary velocity without position or velocity feedback

  9. An open source digital servo for atomic, molecular, and optical physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leibrandt, D. R., E-mail: david.leibrandt@nist.gov; Heidecker, J. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2015-12-15

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of {sup 27}Al{sup +} in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  10. An open source digital servo for atomic, molecular, and optical physics experiments

    International Nuclear Information System (INIS)

    Leibrandt, D. R.; Heidecker, J.

    2015-01-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27 Al + in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser

  11. An open source digital servo for atomic, molecular, and optical physics experiments

    Science.gov (United States)

    Leibrandt, D. R.; Heidecker, J.

    2015-12-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  12. Simulation Analysis of Computer-Controlled pressurization for Mixture Ratio Control

    Science.gov (United States)

    Alexander, Leslie A.; Bishop-Behel, Karen; Benfield, Michael P. J.; Kelley, Anthony; Woodcock, Gordon R.

    2005-01-01

    A procedural code (C++) simulation was developed to investigate potentials for mixture ratio control of pressure-fed spacecraft rocket propulsion systems by measuring propellant flows, tank liquid quantities, or both, and using feedback from these measurements to adjust propellant tank pressures to set the correct operating mixture ratio for minimum propellant residuals. The pressurization system eliminated mechanical regulators in favor of a computer-controlled, servo- driven throttling valve. We found that a quasi-steady state simulation (pressure and flow transients in the pressurization systems resulting from changes in flow control valve position are ignored) is adequate for this purpose. Monte-Carlo methods are used to obtain simulated statistics on propellant depletion. Mixture ratio control algorithms based on proportional-integral-differential (PID) controller methods were developed. These algorithms actually set target tank pressures; the tank pressures are controlled by another PID controller. Simulation indicates this approach can provide reductions in residual propellants.

  13. Application of AC servo motor on the in-core neutron flux instrumentation system

    International Nuclear Information System (INIS)

    Du Xiaoguang; Wang Mingtao

    2010-01-01

    The application of ac servo motor in the In-Core Neutron Flux Instrumentation System is described. The hardware component of ac servo motor control system is different from the dc motor control system. The effect of two control system on the instrumentation system is compared. The ac servo motor control system can improve the accuracy of the motion control, optimize the speed control and increase the reliability. (authors)

  14. A Design Method of Robust Servo Internal Model Control with Control Input Saturation

    OpenAIRE

    山田, 功; 舩見, 洋祐

    2001-01-01

    In the present paper, we examine a design method of robust servo Internal Model Control with control input saturation. First of all, we clarify the condition that Internal Model Control has robust servo characteristics for the system with control input saturation. From this consideration, we propose new design method of Internal Model Control with robust servo characteristics. A numerical example to illustrate the effectiveness of the proposed method is shown.

  15. Analysis of a biphase-based servo format for hard-disk drives

    NARCIS (Netherlands)

    Makinwa, K.A.A.; Bergmans, J.W.M.; Voorman, J.O.

    2000-01-01

    Biphase modulation in an embedded-servo format for hard-disk drives is investigated. It is shown that for biphase, at the low linear densities typical of servo information, near-maximum-likelihood performance can be attained by a simple bit detector consisting of a full-response linear equalizer and

  16. Reconfigurable Flight Control Design using a Robust Servo LQR and Radial Basis Function Neural Networks

    Science.gov (United States)

    Burken, John J.

    2005-01-01

    This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.

  17. Fuzzy model-based servo and model following control for nonlinear systems.

    Science.gov (United States)

    Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O

    2009-12-01

    This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.

  18. Pressure control device in a BWR type reactor

    International Nuclear Information System (INIS)

    Nagata, Yoshifumi.

    1983-01-01

    Purpose: To perform an adequate pressure control with no erroneous scram operation even when the balance of pressure is lost between main steam pipelines. Constitution: Pressure detectors are disposed respectively to a plurality of main steam pipelines and pressure detection values therefrom are inputted into a higher value preference circuit to select a higher value. The deviation between the higher pressure value signal and an aimed value is calculated in an addition circuit and the calculated deviation is inputted to a succeeding higher value preference circuit by way of a servo mechanism as an output from an electronic main steam pressure controller. The above output and the output from another mechanical main steam pressure controller are compared in this circuit to issue a higher value signal to a governer to control the degree of a steam control valve by way of the governor and the servo mechanism. The deviation hereinafter is converged through the same procedures into an aimed predetermined value. (Sekiya, K.)

  19. SYNTHESIS OF THE SERVO DRIVER WITH SPEED LOOP TUNED AT THE MODULAR OPTIMUM

    Directory of Open Access Journals (Sweden)

    Mr. Sergei V. Stelmashchuk

    2016-12-01

    Full Text Available The paper presents a method of synthesis of servo driver for controlling the speed of the object with the speed tuned at the modular optimum. An automatic electric motor drive is considered as the controlled element. This assumes the use of the speed sensor on the output shaft of the drive gear. This approach can be used for geared motors, which are more commonly used in a variety of compact drives. The technique is based on the method of synthesis by using logarithmic frequency response (LFR. The result is a synthesis of the two tracking angle controllers: proportional-integral and proportional-derivative (PIPD regulator. The criterion for the synthesis of tracking angle controller is the desired LFR, the characteristics of which are defined based on saturated capability transition function of controlled object with standard configuration for modular optimum. It is assumed that the maximum speed and acceleration of the transition functions are required for the synthesis of parameters of servo driver system by LFR. The article covers the accuracy and contains an example of a particular electric motor.

  20. Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems

    Science.gov (United States)

    Chan, Kwong Wah; Liao, Wei-Hsin

    2006-03-01

    Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.

  1. Suppression of mechanical resonance in digital servo system considering oscillation frequency deviation

    DEFF Research Database (Denmark)

    Chen, Yangyang; Yang, Ming; Hu, Kun

    2017-01-01

    High-stiffness servo system is easy to cause mechanical resonance in elastic coupling servo system. Although on-line adaptive notch filter is effective in most cases, it will lead to a severer resonance when resonance frequency deviated from the natural torsional frequency. To explain...

  2. Conceptual design of stepper motor replacing servo motor for control rod controller

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat

    2010-01-01

    In PUSPATI TRIGA Reactor, current control rod controller are using servo motor to control the movement. Control rod is a very important safety element and measure in every nuclear reactor. So, precision is very important in measurement of security in the nuclear reactor. In this case, there are a few disadvantages when using the servo motor is measurement of the motor is not precise. One solution to overcome this is by shifting servo motor with stepper motor. A stepper motor (or step motor) is a brush less, synchronous electric motor that can divide a full rotation into a large number of steps. (author)

  3. Fuzzy self-learning control for magnetic servo system

    Science.gov (United States)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  4. Model-based nonlinear control of hydraulic servo systems: Challenges, developments and perspectives

    Science.gov (United States)

    Yao, Jianyong

    2018-06-01

    Hydraulic servo system plays a significant role in industries, and usually acts as a core point in control and power transmission. Although linear theory-based control methods have been well established, advanced controller design methods for hydraulic servo system to achieve high performance is still an unending pursuit along with the development of modern industry. Essential nonlinearity is a unique feature and makes model-based nonlinear control more attractive, due to benefit from prior knowledge of the servo valve controlled hydraulic system. In this paper, a discussion for challenges in model-based nonlinear control, latest developments and brief perspectives of hydraulic servo systems are presented: Modelling uncertainty in hydraulic system is a major challenge, which includes parametric uncertainty and time-varying disturbance; some specific requirements also arise ad hoc difficulties such as nonlinear friction during low velocity tracking, severe disturbance, periodic disturbance, etc.; to handle various challenges, nonlinear solutions including parameter adaptation, nonlinear robust control, state and disturbance observation, backstepping design and so on, are proposed and integrated, theoretical analysis and lots of applications reveal their powerful capability to solve pertinent problems; and at the end, some perspectives and associated research topics (measurement noise, constraints, inner valve dynamics, input nonlinearity, etc.) in nonlinear hydraulic servo control are briefly explored and discussed.

  5. Adaptive-Repetitive Visual-Servo Control of Low-Flying Aerial Robots via Uncalibrated High-Flying Cameras

    Science.gov (United States)

    Guo, Dejun; Bourne, Joseph R.; Wang, Hesheng; Yim, Woosoon; Leang, Kam K.

    2017-08-01

    This paper presents the design and implementation of an adaptive-repetitive visual-servo control system for a moving high-flying vehicle (HFV) with an uncalibrated camera to monitor, track, and precisely control the movements of a low-flying vehicle (LFV) or mobile ground robot. Applications of this control strategy include the use of high-flying unmanned aerial vehicles (UAVs) with computer vision for monitoring, controlling, and coordinating the movements of lower altitude agents in areas, for example, where GPS signals may be unreliable or nonexistent. When deployed, a remote operator of the HFV defines the desired trajectory for the LFV in the HFV's camera frame. Due to the circular motion of the HFV, the resulting motion trajectory of the LFV in the image frame can be periodic in time, thus an adaptive-repetitive control system is exploited for regulation and/or trajectory tracking. The adaptive control law is able to handle uncertainties in the camera's intrinsic and extrinsic parameters. The design and stability analysis of the closed-loop control system is presented, where Lyapunov stability is shown. Simulation and experimental results are presented to demonstrate the effectiveness of the method for controlling the movement of a low-flying quadcopter, demonstrating the capabilities of the visual-servo control system for localization (i.e.,, motion capturing) and trajectory tracking control. In fact, results show that the LFV can be commanded to hover in place as well as track a user-defined flower-shaped closed trajectory, while the HFV and camera system circulates above with constant angular velocity. On average, the proposed adaptive-repetitive visual-servo control system reduces the average RMS tracking error by over 77% in the image plane and over 71% in the world frame compared to using just the adaptive visual-servo control law.

  6. Performance verification and system parameter identification of spacecraft tape recorder control servo

    Science.gov (United States)

    Mukhopadhyay, A. K.

    1979-01-01

    Design adequacy of the lead-lag compensator of the frequency loop, accuracy checking of the analytical expression for the electrical motor transfer function, and performance evaluation of the speed control servo of the digital tape recorder used on-board the 1976 Viking Mars Orbiters and Voyager 1977 Jupiter-Saturn flyby spacecraft are analyzed. The transfer functions of the most important parts of a simplified frequency loop used for test simulation are described and ten simulation cases are reported. The first four of these cases illustrate the method of selecting the most suitable transfer function for the hysteresis synchronous motor, while the rest verify and determine the servo performance parameters and alternative servo compensation schemes. It is concluded that the linear methods provide a starting point for the final verification/refinement of servo design by nonlinear time response simulation and that the variation of the parameters of the static/dynamic Coulomb friction is as expected in a long-life space mission environment.

  7. Compact, Lightweight Servo-Controllable Brakes

    Science.gov (United States)

    Lovchik, Christopher S.; Townsend, William; Guertin, Jeffrey; Matsuoka, Yoky

    2010-01-01

    Compact, lightweight servo-controllable brakes capable of high torques are being developed for incorporation into robot joints. A brake of this type is based partly on the capstan effect of tension elements. In a brake of the type under development, a controllable intermediate state of torque is reached through on/off switching at a high frequency.

  8. Digital simulation of FM-ZCS-quasi resonant converter fed DD servo drive using Matlab Simulink

    Directory of Open Access Journals (Sweden)

    Kattamuri Narasimha Rao

    2009-01-01

    Full Text Available This paper deals with digital simulation of FM-ZCS-quasi resonant converter fed DC servo drive using Matlab Simulink. Quasi Resonant Converter (QRC is fast replacing conventional PWM converters in high frequency operation. The salient feature of QRC is that the switching devices can be either switched on at zero voltage or switched off at zero current, so that switching losses are zero ideally. Switching stresses are low, volumes are low and power density is high. This property imparts high efficiency and high power density to the converters. The output of QRC is regulated by varying the switching frequency of the converter. Hence it is called Frequency modulated Zero current/zero voltage switching quasi resonant converter. The present work deals with simulation of DC Servo motor fed from ZCS-QRC using Matlab. Simulation results show that the ZCS-QRC's have low total harmonic distortion. The ZCS-QRC operating in half wave and full wave modes are simulated successfully. .

  9. A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Lee, Jong Jik

    2016-01-01

    To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

  10. A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Lee, Jong Jik [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-06-15

    To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

  11. Visual servoing in medical robotics: a survey. Part II: tomographic imaging modalities--techniques and applications.

    Science.gov (United States)

    Azizian, Mahdi; Najmaei, Nima; Khoshnam, Mahta; Patel, Rajni

    2015-03-01

    Intraoperative application of tomographic imaging techniques provides a means of visual servoing for objects beneath the surface of organs. The focus of this survey is on therapeutic and diagnostic medical applications where tomographic imaging is used in visual servoing. To this end, a comprehensive search of the electronic databases was completed for the period 2000-2013. Existing techniques and products are categorized and studied, based on the imaging modality and their medical applications. This part complements Part I of the survey, which covers visual servoing techniques using endoscopic imaging and direct vision. The main challenges in using visual servoing based on tomographic images have been identified. 'Supervised automation of medical robotics' is found to be a major trend in this field and ultrasound is the most commonly used tomographic modality for visual servoing. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Robust Hinfinity position control synthesis of an electro-hydraulic servo system.

    Science.gov (United States)

    Milić, Vladimir; Situm, Zeljko; Essert, Mario

    2010-10-01

    This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Intraocular pressure reduction and regulation system

    Science.gov (United States)

    Baehr, E. F.; Burnett, J. E.; Felder, S. F.; Mcgannon, W. J.

    1979-01-01

    An intraocular pressure reduction and regulation system is described and data are presented covering performance in: (1) reducing intraocular pressure to a preselected value, (2) maintaining a set minimum intraocular pressure, and (3) reducing the dynamic increases in intraocular pressure resulting from external loads applied to the eye.

  14. Actuation and Control of a Micro Electrohydraulic Digital Servo Valve

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z Q; Hu, M J; Pei, X; Ruan, J [MOE Key Laboratory of Mechanical Manufacture and Automation Zhejiang University of Technology, 310014 (China)

    2006-10-15

    Structure of the micro digital servo valve is given. A micro stepper motor is used as electrical-to-mechanical interface of the valve. A special mechanical device is designed to convert the rotation of the stepper motor into the linear motion of the spool. This moving conversion device functions through an eccentric ball head rigidly connected to the axis of the stepper motor and plugged into a slot at the central spool land. While the stepper motor rotates, the eccentric ball head will actuate the spool to make a linear motion. Unlike conventional servo or proportional valves, in which the spool is forced to central position by a spring force, when the current supply is switched off, the digital valve has a program to control the spool to its central position each time the electrical power supply is switched on or off. The two end screws are used to adjust the position of the sleeve to sustain a mechanical central position coincided with electrical central position given by the stepper motor after initialization. The adjustment has to be carried once before the first time the servo valve is put into service. This paper presents theoretical analysis and experimental study of dynamic characteristics of the proposed micro digital servo valve. Experimental results demonstrated that the valve takes the advantage of high accuracy and fast response.

  15. Actuation and Control of a Micro Electrohydraulic Digital Servo Valve

    International Nuclear Information System (INIS)

    Yu, Z Q; Hu, M J; Pei, X; Ruan, J

    2006-01-01

    Structure of the micro digital servo valve is given. A micro stepper motor is used as electrical-to-mechanical interface of the valve. A special mechanical device is designed to convert the rotation of the stepper motor into the linear motion of the spool. This moving conversion device functions through an eccentric ball head rigidly connected to the axis of the stepper motor and plugged into a slot at the central spool land. While the stepper motor rotates, the eccentric ball head will actuate the spool to make a linear motion. Unlike conventional servo or proportional valves, in which the spool is forced to central position by a spring force, when the current supply is switched off, the digital valve has a program to control the spool to its central position each time the electrical power supply is switched on or off. The two end screws are used to adjust the position of the sleeve to sustain a mechanical central position coincided with electrical central position given by the stepper motor after initialization. The adjustment has to be carried once before the first time the servo valve is put into service. This paper presents theoretical analysis and experimental study of dynamic characteristics of the proposed micro digital servo valve. Experimental results demonstrated that the valve takes the advantage of high accuracy and fast response

  16. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    International Nuclear Information System (INIS)

    Kim, Hyo-gon; Han, Changsoo; Lee, Jong-won; Park, Sangdeok

    2015-01-01

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program

  17. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  18. Robust Control for High-Speed Visual Servoing Applications

    DEFF Research Database (Denmark)

    Ellekilde, Lars-Peter; Favrholdt, Peter; Paulin, Mads

    2007-01-01

    This paper presents a new control scheme for visual servoing applications. The approach employs quadratic optimization, and explicitly handles both joint position, velocity and acceleration limits. Contrary to existing techniques, our method does not rely on large safety margins and slow task...... execution to avoid joint limits, and is hence able to exploit the full potential of the robot. Furthermore, our control scheme guarantees a well-defined behavior of the robot even when it is in a singular configuration, and thus handles both internal and external singularities robustly. We demonstrate...... the correctness and efficiency of our approach in a number of visual servoing applications, and compare it to a range of previously proposed techniques....

  19. All Digital IQ Servo-System for CERN Linacs

    CERN Document Server

    Rohlev, A; Garoby, R

    2003-01-01

    A new VME based system has been developed and built at CERN for the servo loops regulating the field in the linac accelerating structure. It makes use of high speed digital In-phase/Quadrature (IQ) detection, digital processing, and digital IQ modulation. The digital processing and IQ modulation is done in a single PLD. The system incorporates continually variable set points, iterative learning, feed forward as well as extensive diagnostics and other features well suited for digital implementations. Built on a single VME card, it will be first used in the energy ramping RF chain of the CERN Heavy Ion Linac (linac 3) and later for upgrading the present proton linac (linac 2). This system serves also as a prototype for the future Superconducting Proton Linac (SPL). The design principle and the experimental results are described.

  20. Steady flow torques in a servo motor operated rotary directional control valve

    International Nuclear Information System (INIS)

    Wang, He; Gong, Guofang; Zhou, Hongbin; Wang, Wei

    2016-01-01

    Highlights: • A novel servo motor operated rotary directional control valve is proposed. • Steady flow torque is a crucial issue that affects rotary valve performance. • Steady flow torque is analyzed on the aspects of theory, simulation and experiment. • Change law of the steady flow torque with spool rotation angle is explored. • Effect of pressure drop and flow rate on the steady flow torque is studied. - Abstract: In this paper, a servo motor operated rotary directional control valve is proposed, and a systematic analysis of steady flow torques in this valve is provided by theoretical calculation, CFD simulation and experimental test. In the analysis, spool rotation angle corresponding to the maximum orifice opening is tagged as 0°. Over a complete change cycle of the orifice, the range of spool rotation angle is symmetric about 0°. The results show that the direction of steady flow torques in this valve is always the direction of orifice closing. The steady flow torques serve as resistances to the spool rotation when the orifice opening increases, while impetuses to the spool rotation when the orifice opening decreases. At a certain pressure drop or flow rate, steady flow torques are approximately equal and opposite when at spool rotation angles which are symmetric about 0°. When the spool rotates from 0°, at a certain pressure drop, their values increase first then decrease with the spool rotation and reach their maximum values at an angle corresponding to about 1/2 of the maximum orifice opening, and at a certain flow rate, their values increase with the spool rotation. The steady flow torques in this valve are the sums of those in the meter-in and meter-out valve chambers. At a certain spool rotation angle, steady flow torques in the meter-in and meter-out valve chambers are approximately proportional to the pressure drop and the second power of the flow rate through the orifice. Theoretical calculation and CFD simulation can be validated by

  1. New method to improve dynamic stiffness of electro-hydraulic servo systems

    Science.gov (United States)

    Bai, Yanhong; Quan, Long

    2013-09-01

    Most current researches working on improving stiffness focus on the application of control theories. But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated, so the control action is lagged. Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms. In this paper, the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed. On this basis, the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward. And a scheme using double servo valves to realize flow feedforward compensation is presented, in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time. The two valves are arranged in parallel to control the cylinder jointly. Furthermore, the model of flow compensation is derived, by which the product of the amplitude and width of the valve’s pulse command signal can be calculated. And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations. Using the proposed scheme, simulations and experiments at different positions with different force changes are conducted. The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time. That is, system dynamic load stiffness is evidently raised. This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.

  2. Safety regulation on high-pressure gas and gas business

    International Nuclear Information System (INIS)

    Kim, Du Yeoung; An, Dae Jun

    1978-09-01

    This book is divided into two parts. The first part introduces safety regulation on high-pressure gas, enforcement ordinance on safety regulation about high-pressure gas and enforcement regulation on safety regulation about high-pressure gas. The second part indicates regulations on gas business such as general rules, gas business gas supplies, using land, supervision, supple mentary rules and penalty. It has two appendixes on expected questions and questions during last years.

  3. Researching on YH100 Numerical Control Servo Press Hydraulic Control System and Control Algorithm

    Directory of Open Access Journals (Sweden)

    Kai LI

    2014-09-01

    Full Text Available In order to study the numerical control (NC servo press hydraulic control system and its control algorithm. The numerical control servo press performance and control principle of hydraulic control system are analyzed. According to the flow equation of the hydraulic control valve, hydraulic cylinder flow continuity equation and the force balance equation of the hydraulic cylinder with load press, the mathematical model of hydraulic control system is established. And the servo press hydraulic system transfer function is deduced. Introducing the suitable immune particle swarm control algorithm for servo press hydraulic system, and the control system block diagram is established. Immune algorithm is used to optimize new control parameters of the system and adopt the new optimization results to optimize the system simulation. The simulation result shows that the hydraulic system’s transition time controlled by the immune particle swarm algorithm is shorter than traditional ones, and the control performance is obviously improved. Finally it can be concluded that immune particle swarm PID control have these characteristics such as quickness, stability and accuracy. Applying this principle into application, the obtained YH100 numerical control servo press hydraulic control system meets the requirement.

  4. A deterministic - approach controller design for electrohydraulic position servo control system

    International Nuclear Information System (INIS)

    Johari Osman

    2000-01-01

    This paper is concerned with the design of a tracking controller for controlling electrohydraulic position servo system based on a deterministic approach. The system is treated as an uncertain system with bounded uncertainties where the bounds are assumed known. It will be shown that the electrohydraulic position servo systems with the proposed controller is practically stable and tracks the desired position in spite of the uncertainties and nonlinearities present in the system (author)

  5. Visual Servoing of Mobile Microrobot with Centralized Camera

    Directory of Open Access Journals (Sweden)

    Kiswanto Gandjar

    2018-01-01

    Full Text Available In this paper, a mechanism of visual servoing for mobile microrobot with a centralized camera is developed. Especially for the development of swarm AI applications. In the fields of microrobots the size of robots is minimal and the amount of movement is also small. By replacing various sensors that is needed with a single centralized vision sensor we can eliminate a lot of components and the need for calibration on every robot. A study and design for a visual servoing mobile microrobot has been developed. This system can use multi object tracking and hough transform to identify the positions of the robots. And can control multiple robots at once with an accuracy of 5-6 pixel from the desired target.

  6. Active Vibration Isolation Devices with Inertial Servo Actuators

    Science.gov (United States)

    Melik-Shakhnazarov, V. A.; Strelov, V. I.; Sofiyanchuk, D. V.; Tregubenko, A. A.

    2018-03-01

    The use of active vibration isolation devices (AVIDs) in aerospace engineering is subject to the following restrictions. First, the volume for installing additional devices is always limited in instrument racks and compartments. Secondly, in many cases, it is impossible to add supports for servo actuators for fundamental or design considerations. In the paper, it has been shown that this problem can be solved if the inertial servo actuators are used in AVIDs instead of reference actuators. A transfer function has been theoretically calculated for an AVID controlled by inertial actuators. It has been shown that the volume of a six-mode single-housing AVID with inertial actuators can be 2-2.5 times smaller than that of devices with support actuators.

  7. Servo-control for maintaining abdominal skin temperature at 36C in low birth weight infants.

    Science.gov (United States)

    Sinclair, J C

    2002-01-01

    Randomized trials have shown that the neonatal mortality rate of low birth-weight babies can be reduced by keeping them warm. For low birth-weight babies nursed in incubators, warm conditions may be achieved either by heating the air to a desired temperature, or by servo-controlling the baby's body temperature at a desired set-point. In low birth weight infants, to determine the effect on death and other important clinical outcomes of targeting body temperature rather than air temperature as the end-point of control of incubator heating. Standard search strategy of the Cochrane Neonatal Review Group. Searches were made of the Cochrane Controlled Trials Register (CCTR) (Cochrane Library, Issue 4, 2001) and MEDLINE, 1966 to November 2001. Randomized or quasi-randomized trials which test the effects of having the heat output of the incubator servo-controlled from body temperature compared with setting a constant incubator air temperature. Trial methodologic quality was systematically assessed. Outcome measures included death, timing of death, cause of death, and other clinical outcomes. Categorical outcomes were analyzed using relative risk and risk difference. Meta-analysis assumed a fixed effect model. Two eligible trials were found. In total, they included 283 babies and 112 deaths. Compared to setting a constant incubator air temperature of 31.8C, servo-control of abdominal skin temperature at 36C reduces the neonatal death rate among low birth weight infants: relative risk 0.72 (95% CI 0.54, 0.97); risk difference -12.7% (95% CI -1.6, -23.9). This effect is even greater among VLBW infants. During at least the first week after birth, low birth weight babies should be provided with a carefully regulated thermal environment that is near the thermoneutral point. For LBW babies in incubators, this can be achieved by adjusting incubator temperature to maintain an anterior abdominal skin temperature of at least 36C, using either servo-control or frequent manual

  8. Blood pressure regulation in diabetic autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1985-01-01

    Defective blood pressure responses to standing, exercise and epinephrine infusions have been demonstrated in diabetic patients with autonomic neuropathy. The circulatory mechanisms underlying blood pressure responses to exercise and standing up in these patients are well characterized: In both...... which may contribute to exercise hypotension in these patients. During hypoglycemia, blood pressure regulation seems intact in patients with autonomic neuropathy. This is probably due to release of substantial amounts of catecholamines during these experiments. During epinephrine infusions a substantial...... blood pressure fall ensues in patients with autonomic neuropathy, probably due to excessive muscular vasodilation. It is unresolved why blood pressure regulation is intact during hypoglycemia and severely impaired--at similar catecholamine concentrations--during epinephrine infusions....

  9. Magnetic particle clutch controls servo system

    Science.gov (United States)

    Fow, P. B.

    1973-01-01

    Magnetic clutches provide alternative means of driving low-power rate or positioning servo systems. They may be used over wide variety of input speed ranges and weigh comparatively little. Power drain is good with overall motor/clutch efficiency greater than 50 percent, and gain of clutch is close to linear, following hysteresis curve of core and rotor material.

  10. A computer-based servo system for controlling isotonic contractions of muscle.

    Science.gov (United States)

    Smith, J P; Barsotti, R J

    1993-11-01

    We have developed a computer-based servo system for controlling isotonic releases in muscle. This system is a composite of commercially available devices: an IBM personal computer, an analog-to-digital (A/D) board, an Akers AE801 force transducer, and a Cambridge Technology motor. The servo loop controlling the force clamp is generated by computer via the A/D board, using a program written in QuickBASIC 4.5. Results are shown that illustrate the ability of the system to clamp the force generated by either skinned cardiac trabeculae or single rabbit psoas fibers down to the resolution of the force transducer within 4 ms. This rate is independent of the level of activation of the tissue and the size of the load imposed during the release. The key to the effectiveness of the system consists of two algorithms that are described in detail. The first is used to calculate the error signal to hold force to the desired level. The second algorithm is used to calculate the appropriate gain of the servo for a particular fiber and the size of the desired load to be imposed. The results show that the described computer-based method for controlling isotonic releases in muscle represents a good compromise between simplicity and performance and is an alternative to the custom-built digital/analog servo devices currently being used in studies of muscle mechanics.

  11. An electro-hydraulic servo control system research for CFETR blanket RH

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Changqi [Hefei University of Technology, Hefei 230009, Anhui (China); Tang, Hongjun, E-mail: taurustang@126.com [Hefei University of Technology, Hefei 230009, Anhui (China); Qi, Songsong [Hefei University of Technology, Hefei 230009, Anhui (China); Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2014-11-15

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system.

  12. An electro-hydraulic servo control system research for CFETR blanket RH

    International Nuclear Information System (INIS)

    Chen, Changqi; Tang, Hongjun; Qi, Songsong; Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao

    2014-01-01

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system

  13. Preterm infant thermal care: differing thermal environments produced by air versus skin servo-control incubators.

    Science.gov (United States)

    Thomas, K A; Burr, R

    1999-06-01

    Incubator thermal environments produced by skin versus air servo-control were compared. Infant abdominal skin and incubator air temperatures were recorded from 18 infants in skin servo-control and 14 infants in air servo-control (26- to 29-week gestational age, 14 +/- 2 days postnatal age) for 24 hours. Differences in incubator and infant temperature, neutral thermal environment (NTE) maintenance, and infant and incubator circadian rhythm were examined using analysis of variance and scatterplots. Skin servo-control resulted in more variable air temperature, yet more stable infant temperature, and more time within the NTE. Circadian rhythm of both infant and incubator temperature differed by control mode and the relationship between incubator and infant temperature rhythms was a function of control mode. The differences between incubator control modes extend beyond temperature stability and maintenance of NTE. Circadian rhythm of incubator and infant temperatures is influenced by incubator control.

  14. DC motors and servo-motors controlled by Raspberry Pi 2B

    Directory of Open Access Journals (Sweden)

    Šustek Michal

    2017-01-01

    Full Text Available The expanding capabilities of today’s microcontrollers and other devices lead to an increased utilization of these technologies in diverse fields. The automation and issue of remote control of moving objects belong to these fields. In this project, a microcontroller Raspberry Pi 2B was chosen for controlling DC motors and servo-motors. This paper provides basic insight into issue of controlling DC motors and servo-motors, connection between Raspberry and other components on breadboard and programming syntaxes for controlling motors in Python programming language.

  15. Application of prediction of equilibrium to servo-controlled calorimetry measurements

    International Nuclear Information System (INIS)

    Mayer, R.L. II

    1987-01-01

    Research was performed to develop an endpoint prediction algorithm for use with calorimeters operating in the digital servo-controlled mode. The purpose of this work was to reduce calorimetry measurement times while maintaining the high degree of precision and low bias expected from calorimetry measurements. Data from routine operation of two calorimeters were used to test predictive models at each stage of development against time savings, precision, and robustness criteria. The results of the study indicated that calorimetry measurement times can be significantly reduced using this technique. The time savings is, however, dependent on parameters in the digital servo-control algorithm and on packaging characteristics of measured items

  16. Fault Diagnosis of Hydraulic Servo Valve Based on Genetic Optimization RBF-BP Neural Network

    Directory of Open Access Journals (Sweden)

    Li-Ping FAN

    2014-04-01

    Full Text Available Electro-hydraulic servo valves are core components of the hydraulic servo system of rolling mills. It is necessary to adopt an effective fault diagnosis method to keep the hydraulic servo valve in a good work state. In this paper, RBF and BP neural network are integrated effectively to build a double hidden layers RBF-BP neural network for fault diagnosis. In the process of training the neural network, genetic algorithm (GA is used to initialize and optimize the connection weights and thresholds of the network. Several typical fault states are detected by the constructed GA-optimized fault diagnosis scheme. Simulation results shown that the proposed fault diagnosis scheme can give satisfactory effect.

  17. Fusing Simulation Results From Multifidelity Aero-servo-elastic Simulators - Application To Extreme Loads On Wind Turbine

    DEFF Research Database (Denmark)

    Abdallah, Imad; Sudret, Bruno; Lataniotis, Christos

    2015-01-01

    Fusing predictions from multiple simulators in the early stages of the conceptual design of a wind turbine results in reduction in model uncertainty and risk mitigation. Aero-servo-elastic is a term that refers to the coupling of wind inflow, aerodynamics, structural dynamics and controls. Fusing...... the response data from multiple aero-servo-elastic simulators could provide better predictive ability than using any single simulator. The co-Kriging approach to fuse information from multifidelity aero-servo-elastic simulators is presented. We illustrate the co-Kriging approach to fuse the extreme flapwise...... bending moment at the blade root of a large wind turbine as a function of wind speed, turbulence and shear exponent in the presence of model uncertainty and non-stationary noise in the output. The extreme responses are obtained by two widely accepted numerical aero-servo-elastic simulators, FAST...

  18. Disturbance torque rejection properties of the NASA/JPL 70-meter antenna axis servos

    Science.gov (United States)

    Hill, R. E.

    1989-01-01

    Analytic methods for evaluating pointing errors caused by external disturbance torques are developed and applied to determine the effects of representative values of wind and friction torque. The expressions relating pointing errors to disturbance torques are shown to be strongly dependent upon the state estimator parameters, as well as upon the state feedback gain and the flow versus pressure characteristics of the hydraulic system. Under certain conditions, when control is derived from an uncorrected estimate of integral position error, the desired type 2 servo properties are not realized and finite steady-state position errors result. Methods for reducing these errors to negligible proportions through the proper selection of control gain and estimator correction parameters are demonstrated. The steady-state error produced by a disturbance torque is found to be directly proportional to the hydraulic internal leakage. This property can be exploited to provide a convenient method of determining system leakage from field measurements of estimator error, axis rate, and hydraulic differential pressure.

  19. Analysis and Design of Double-sided Air core Linear Servo Motor with Trapezoidal Permanent Magnets

    DEFF Research Database (Denmark)

    Zhang, Yuqiu; Yang, Zilong; Yu, Minghu

    2011-01-01

    In order to reduce the thrust ripple of linear servo system, a double-sided air core permanent magnet linear servo motor with trapezoidal shape permanent magnets (TDAPMLSM) is proposed in this paper. An analytical model of the motor for predicting the magnetic field in the air-gap at no...

  20. Research on Visual Servo Grasping of Household Objects for Nonholonomic Mobile Manipulator

    Directory of Open Access Journals (Sweden)

    Huangsheng Xie

    2014-01-01

    Full Text Available This paper focuses on the problem of visual servo grasping of household objects for nonholonomic mobile manipulator. Firstly, a new kind of artificial object mark based on QR (Quick Response Code is designed, which can be affixed to the surface of household objects. Secondly, after summarizing the vision-based autonomous mobile manipulation system as a generalized manipulator, the generalized manipulator’s kinematic model is established, the analytical inverse kinematic solutions of the generalized manipulator are acquired, and a novel active vision based camera calibration method is proposed to determine the hand-eye relationship. Finally, a visual servo switching control law is designed to control the service robot to finish object grasping operation. Experimental results show that QR Code-based artificial object mark can overcome the difficulties brought by household objects’ variety and operation complexity, and the proposed visual servo scheme makes it possible for service robot to grasp and deliver objects efficiently.

  1. Visual servo control for a human-following robot

    CSIR Research Space (South Africa)

    Burke, Michael G

    2011-03-01

    Full Text Available This thesis presents work completed on the design of control and vision components for use in a monocular vision-based human-following robot. The use of vision in a controller feedback loop is referred to as vision-based or visual servo control...

  2. Application of IFT and SPSA to servo system control.

    Science.gov (United States)

    Rădac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M; Preitl, Stefan

    2011-12-01

    This paper treats the application of two data-based model-free gradient-based stochastic optimization techniques, i.e., iterative feedback tuning (IFT) and simultaneous perturbation stochastic approximation (SPSA), to servo system control. The representative case of controlled processes modeled by second-order systems with an integral component is discussed. New IFT and SPSA algorithms are suggested to tune the parameters of the state feedback controllers with an integrator in the linear-quadratic-Gaussian (LQG) problem formulation. An implementation case study concerning the LQG-based design of an angular position controller for a direct current servo system laboratory equipment is included to highlight the pros and cons of IFT and SPSA from an application's point of view. The comparison of IFT and SPSA algorithms is focused on an insight into their implementation.

  3. Application of prediction of equilibrium to servo-controlled calorimetry measurements

    International Nuclear Information System (INIS)

    Mayer, R.L. II.

    1987-01-01

    Research was performed to develop an endpoint prediction algorithm for use with calorimeters operating in the digital servo-controlled mode. The purpose of this work was to reduce calorimetry measurement times while maintaining the high degree of precision and low bias expected from calorimetry measurements. Data from routine operation of two calorimeters were used to test predictive models at each stage of development against time savings, precision, and robustness criteria. The results of the study indicated that calorimetry measurement times can be significantly reduced using this technique. The time savings is, however, dependent on parameters in the digital servo-control algorithm and on packaging characteristics of measured items. 7 refs., 4 figs., 1 tab

  4. A New Servo Control Drive for Electro Discharge Texturing System Industrial Applications Using Ultrasonic Technology

    Directory of Open Access Journals (Sweden)

    M. Shafik

    2013-07-01

    Full Text Available This paper presents a new ultrasonic servo control drive for electro discharge texturing system industrial applications. The new drive is aiming to overcome the current teething issues of the existing electro discharge texturing system, servo control drive level of precision, processing stability, dynamic response and surface profile of the machined products. The new ultrasonic servo control drive consists of three main apparatuses, an ultrasonic motor, electronic driver and control unit. The ultrasonic motor consists of three main parts, the stator, rotor and sliding element. The motor design process, basic configuration, principles of motion, finite element analysis and experimental examination of the main characteristics is discussed in this paper. The electronic driver of the motor consists of two main stages which are the booster and piezoelectric amplifier. The experimental test and validation of the developed servo control drive in electro discharge texturing platform is also discussed and presented in this paper. The initial results showed that the ultrasonic servo control drive is able to provide: a bidirectional of motion, a resolution of <50μm and a dynamic response of <10msec. The electron microscopic micro examination into the textured samples showed that: a clear improvement in machining stability, products surface profile, a notable reduction in the processing time, arcing and short-circuiting teething phenomena.

  5. Visual-servoing optical microscopy

    Science.gov (United States)

    Callahan, Daniel E.; Parvin, Bahram

    2009-06-09

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time: quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  6. The feasibility and reliability of capillary blood pressure measurements in the fingernail fold

    NARCIS (Netherlands)

    de Graaff, Jurgen C.; Ubbink, Dirk Th; Lagarde, Sjoerd M.; Jacobs, Michael J. H. M.

    2002-01-01

    Capillary blood pressure is an essential parameter in the study of the (patho-)physiology of microvascular perfusion. Currently, capillary pressure measurements in humans are performed using a servo-nulling micropressure system containing an oil-water interface, which suffers some drawbacks. In

  7. Suppression of Squeal Noise Excited by the Pressure Pulsation from the Flapper-Nozzle Valve inside a Hydraulic Energy System

    Directory of Open Access Journals (Sweden)

    Meng Chen

    2018-04-01

    Full Text Available Squeal noise often occurs in a two-stage electrohydraulic servo-valve, which is an unfavorable issue of modern hydraulic energy systems. The root causes of such noise from the servo-valve are still unclear. The objective of this paper is to explore the noise mechanism in a servo-valve excited by the pressure pulsations from the hydraulic energy system perspective. The suppressing capability of squeal noise energy is investigated by changing the pressure pulsation frequency and natural frequency of the flapper-armature assembly. The frequencies of the pressure pulsations are adjusted by setting different speeds of the hydraulic pump varying from 10,400–14,400 rpm, and two flapper-armature assemblies with different armature lengths are used in the tested hydraulic energy system. The first eight vibration mode shapes and natural frequencies of the flapper-armature assembly are obtained by numerical modal analysis using two different armature lengths. The characteristics of pressure pulsations at the pump outlet and in the chamber of the flapper-nozzle valve, armature vibration and noise are tested and compared with the natural frequencies of the flapper-armature assembly. The results reveal that the flapper-armature assembly vibrates and makes the noise with the same frequencies as the pressure pulsations inside the hydraulic energy system. Resonance appears when the frequency of the pressure pulsations coincides with the natural frequency of the flapper-armature assembly. Therefore, it can be concluded that the pressure pulsation energy from the power supply may excite the vibration of the flapper-armature assembly, which may consequently cause the squeal noise inside the servo-valve. It is verified by the numerical simulations and experiments that setting the pressure pulsation frequencies different from the natural frequencies of the flapper-armature assembly can suppress the resonance and squeal noise.

  8. Application of simple adaptive control to water hydraulic servo cylinder system

    Science.gov (United States)

    Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji

    2012-09-01

    Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.

  9. Pressure regulation system for modern gas-filled detectors

    International Nuclear Information System (INIS)

    McDonald, R.J.

    1986-08-01

    A gas pressure and flow regulation system has been designed and constructed to service a wide variety of gas-filled detectors which operate at pressures of ∼2 to 1000 Torr and flow rate of ∼5 to 200 standard cubic centimeters per minute (sccm). Pressure regulation is done at the detector input by a pressure transducer linked to a solenoid leak valve via an electronic control system. Gas flow is controlled via a mechanical leak valve at the detector output. Interchangeable transducers, flowmeters, and leak valves allow for different pressure and flow ranges. The differential pressure transducer and control system provide automatic let-up of vacuum chambers to atmospheric pressure while maintaining a controlled overpressure in the detector. The gas system is constructed on a standard 19'' rack-mounted panel from commercially available parts. Five of these systems have been built and are routinely used for both ionization chambers and position-sensitive avalanche detectors

  10. Blood pressure regulation III: what happens when one system must serve two masters: temperature and pressure regulation?

    Science.gov (United States)

    Kenney, W Larry; Stanhewicz, Anna E; Bruning, Rebecca S; Alexander, Lacy M

    2014-03-01

    When prolonged intense exercise is performed at high ambient temperatures, cardiac output must meet dual demands for increased blood flow to contracting muscle and to the skin. The literature has commonly painted this scenario as a fierce competition, wherein one circulation preserves perfusion at the expense of the other, with the regulated maintenance of blood pressure as the ultimate goal. This review redefines this scenario as commensalism, an integrated balance of regulatory control where one circulation benefits with little functional effect on the other. In young, healthy subjects, arterial pressure rarely falls to any great extent during either extreme passive heating or prolonged dynamic exercise in the heat, nor does body temperature rise disproportionately due to a compromised skin blood flow. Rather, it often takes the superimposition of additional stressors--e.g., dehydration or simulated hemorrhage--upon heat stress to substantially impact blood pressure regulation.

  11. Research on intelligent algorithm of electro - hydraulic servo control system

    Science.gov (United States)

    Wang, Yannian; Zhao, Yuhui; Liu, Chengtao

    2017-09-01

    In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.

  12. Renal intercalated cells and blood pressure regulation

    Directory of Open Access Journals (Sweden)

    Susan M. Wall

    2017-12-01

    Full Text Available Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl⁻ absorption and HCO₃⁻ secretion largely through pendrin-dependent Cl⁻/HCO₃⁻ exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO₃ administration. In some rodent models, pendrin-mediated HCO₃⁻ secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl⁻ absorption, but also by modulating the aldosterone response for epithelial Na⁺ channel (ENaC-mediated Na⁺ absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.

  13. MA-23-6000: underwater bilateral servo master slave manipulator

    International Nuclear Information System (INIS)

    Vertut, Jean

    The different types of manipulators, recent data on their dexterity and the underwater work possible with servo master slave manipulators are reviewed. The general specifications of the manipulator MA 23-6000 designed for the machine ERIC II are given [fr

  14. Flow-regulated versus differential pressure-regulated shunt valves for adult patients with normal pressure hydrocephalus

    DEFF Research Database (Denmark)

    Ziebell, Morten; Wetterslev, Jørn; Tisell, Magnus

    2013-01-01

    Since 1965 many ventriculo-peritoneal shunt systems have been inserted worldwide to treat hydrocephalus. The most frequent indication in adults is normal pressure hydrocephalus (NPH), a condition that can be difficult to diagnose precisely. Surgical intervention with flow-regulated and differential...

  15. Cloud-based Networked Visual Servo Control

    OpenAIRE

    Wu, Haiyan; Lu, Lei; Chen, Chih-Chung; Hirche, Sandra; Kühnlenz, Kolja

    2013-01-01

    The performance of vision-based control systems, in particular of highly dynamic vision-based motion control systems, is often limited by the low sampling rate of the visual feedback caused by the long image processing time. In order to overcome this problem, the networked visual servo control, which integrates networked computational resources for cloud image processing, is considered in this article. The main contributions of this article are i) a real-time transport protocol for transmitti...

  16. OXYGEN PRESSURE REGULATOR DESIGN AND ANALYSIS THROUGH FINITE ELEMENT MODELING

    Directory of Open Access Journals (Sweden)

    Asterios KOSMARAS

    2017-05-01

    Full Text Available Oxygen production centers produce oxygen in high pressure that needs to be defused. A regulator is designed and analyzed in the current paper for medical use in oxygen production centers. This study aims to design a new oxygen pressure regulator and perform an analysis using Finite Element Modeling in order to evaluate its working principle. In the design procedure,the main elements and the operating principles of a pressure regulator are taking into account. The regulator is designed and simulations take place in order to assessthe proposed design. Stress analysis results are presented for the main body of the regulator, as well as, flow analysis to determine some important flow characteristics in the inlet and outlet of the regulator.

  17. Middle Ear Pressure Regulation - Complementary Action of the Mastoid and Eustachian Tube

    DEFF Research Database (Denmark)

    Gaihede, Michael; Dirckx, Joris J J; Jacobsen, Henrik

    2010-01-01

    , MEP counter-regulation presented as Eustachian tube openings with steep and fast pressure changes toward 0 Pa, whereas in others, gradual and slow pressure changes presented related to the mastoid; these changes sometimes crossed 0 Pa into opposite pressures. In many cases, combinations...... to continuous regulation of smaller pressures, whereas the tube was related to intermittent regulation of higher pressures....

  18. Middle Ear Pressure Regulation - Complementary Action of the Mastoid and Eustachian Tube

    DEFF Research Database (Denmark)

    Gaihede, Michael; Jacobsen, Henrik; Tveterås, Kjell

    , MEP counter-regulation presented as Eustachian tube openings with steep and fast pressure changes toward 0 Pa, whereas in others, gradual and slow pressure changes presented related to the mastoid; these changes sometimes crossed 0 Pa into opposite pressures. In many cases, combinations...... to continuous regulation of smaller pressures, whereas the tube was related to intermittent regulation of higher pressures....

  19. Analysis of the jet pipe electro-hydraulic servo valve with finite element methods

    Directory of Open Access Journals (Sweden)

    Kaiyu Zhao

    2018-01-01

    Full Text Available The dynamic characteristics analysis about the jet pipe electro-hydraulic servo valve based on experience and mathematical derivation was difficult and not so precise. So we have analysed the armature feedback components, torque motor and jet pipe receiver in electrohydraulic servo valve by sophisticated finite element analysis tools respectively and have got physical meaning data on these parts. Then the data were fitted by Matlab and the mathematical relationships among them were calculated. We have done the dynamic multi-physical fields’ Simulink co-simulation using above mathematical relationship, and have got the input-output relationship of the overall valve, the frequency response and step response. This work can show the actual working condition accurately. At the same time, we have considered the materials and the impact of the critical design dimensions in the finite element analysis process. It provides some new ideas to the overall design of jet pipe electro-hydraulic servo valve.

  20. Limit regulation system for pressurized water nuclear reactors

    International Nuclear Information System (INIS)

    Aleite, W.; Bock, H.W.

    1976-01-01

    Described is a limit regulation system for a pressurized water nuclear reactor in combination with a steam generating system connected to a turbine, the nuclear reactor having control rods as well as an operational regulation system and a protective system, which includes reactor power limiting means operatively associated with the control rods for positioning the same and having response values between operating ranges of the operational regulation system, on the one hand, and response values of the protective system, on the other hand, and a live steam-minimal pressure regulation system cooperating with the reactor power limiting means and operatively connected to a steam inlet valve to the turbine for controlling the same

  1. Evaluating transient performance of servo mechanisms by analysing stator current of PMSM

    Science.gov (United States)

    Zhang, Qing; Tan, Luyao; Xu, Guanghua

    2018-02-01

    Smooth running and rapid response are the desired performance goals for the transient motions of servo mechanisms. Because of the uncertain and unobservable transient behaviour of servo mechanisms, it is difficult to evaluate their transient performance. Under the effects of electromechanical coupling, the stator current signals of a permanent-magnet synchronous motor (PMSM) potentially contain the performance information regarding servo mechanisms in use. In this paper, a novel method based on analysing the stator current of the PMSM is proposed for quantifying the transient performance. First, a vector control model is constructed to simulate the stator current behaviour in the transient processes of consecutive speed changes, consecutive load changes, and intermittent start-stops. It is discovered that the amplitude and frequency of the stator current are modulated by the transient load torque and motor speed, respectively. The stator currents under different performance conditions are also simulated and compared. Then, the stator current is processed using a local means decomposition (LMD) algorithm to extract the instantaneous amplitude and instantaneous frequency. The sample entropy of the instantaneous amplitude, which reflects the complexity of the load torque variation, is calculated as a performance indicator of smooth running. The peak-to-peak value of the instantaneous frequency, which defines the range of the motor speed variation, is set as a performance indicator of rapid response. The proposed method is applied to both simulated data in an intermittent start-stops process and experimental data measured for a batch of servo turrets for turning lathes. The results show that the performance evaluations agree with the actual performance.

  2. Active control of residual tool marks for freeform optics functionalization by novel biaxial servo assisted fly cutting.

    Science.gov (United States)

    Zhu, Zhiwei; To, Suet; Zhang, Shaojian

    2015-09-01

    The inherent residual tool marks (RTM) with particular patterns highly affect optical functions of the generated freeform optics in fast tool servo or slow tool servo (FTS/STS) diamond turning. In the present study, a novel biaxial servo assisted fly cutting (BSFC) method is developed for flexible control of the RTM to be a functional micro/nanotexture in freeform optics generation, which is generally hard to achieve in FTS/STS diamond turning. In the BSFC system, biaxial servo motions along the z-axis and side-feeding directions are mainly adopted for primary surface generation and RTM control, respectively. Active control of the RTM from the two aspects, namely, undesired effect elimination or effective functionalization, are experimentally demonstrated by fabricating a typical F-theta freeform surface with scattering homogenization and two functional microstructures with imposition of secondary phase gratings integrating both reflective and diffractive functions.

  3. Robustness-tracking control based on sliding mode and H∞ theory for linear servo system

    Institute of Scientific and Technical Information of China (English)

    TIAN Yan-feng; GUO Qing-ding

    2005-01-01

    A robustness-tracking control scheme based on combining H∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H∞ robustness controller suppresses the disturbances well within the close loop( including the load and the end effect force of linear motor etc. ) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.

  4. Servo-control of water and sodium homeostasis during renal clearance measurements in conscious rats

    DEFF Research Database (Denmark)

    Thomsen, Klaus; Shirley, David G

    2007-01-01

    Servo-controlled fluid and sodium replacement during clearance studies is used in order to prevent loss of body fluid and sodium following diuretic/natriuretic procedures. However, even under control conditions, the use of this technique is sometimes associated with increases in proximal tubular...... fluid output (assessed by lithium clearance) and excretion rates. The present study examined the reason for these increases. The first series of experiments showed that one cause is volume overloading. This can occur if the servo system is activated from the start, i.e., during the establishment...... not seen when blood samples are replaced with the animal's own red blood cells resuspended in isotonic saline. When these pitfalls are avoided, servo-controlled sodium and fluid replacement is a reliable technique that makes it possible to study the effects of natriuretic and/or diuretic stimuli without...

  5. Development of friction welding method by electric servo motors; Dendo servo shiki masatsu assetsuho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H; Onuma, M; Hasegawa, T; Sakamoto, T [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    The standard friction welding has two methods; the brake method and the inertia method. We have developed a new friction welding method with the electric servo motor system. The forming of plastic fluidity layers of interface is evaluated quantitatively with the feedback control characteristics. The new method has enabled to reduce the heat effect and the burr of friction welding. In the method, we could reduce the getting heat energy, from one-third to half less than the previous methods. 6 refs., 16 figs.

  6. Fuzzy control of small servo motors

    Science.gov (United States)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  7. Robust and Stable Disturbance Observer of Servo System for Low-Speed Operation

    DEFF Research Database (Denmark)

    Lee, Kyo Beum; Blaabjerg, Frede

    2007-01-01

    A new scheme to estimate the moment of inertia in the servo motor drive system in very low speed is proposed in this paper. The speed estimation scheme in most servo drive systems for low-speed operation is sensitive to the variation of machine parameter, especially the moment of inertia....... To estimate the motor inertia value, the observer using the Radial Basis Function Network (RBFN) is applied. A control law for stabilizing the system and adaptive laws for updating both of the weights in the RBFN and a bounding constant are established so that the whole closed-loop system is stable...

  8. Performance Improvement of Servo Machine Low Speed Operation Using RBFN Disturbance Observer

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2004-01-01

    A new scheme to estimate the moment of inertia in the servo motor drive system in very low speed is proposed in this paper. The typical speed estimation scheme in most servo system for low speed operation is sensitive to the variation of machine parameters, especially the moment of inertia....... To estimate the motor inertia value, the observer using the Radial Basis Function Networks (RBFN) is applied. The effectiveness of the proposed inertia estimation method is verified by experiments. It is concluded that the speed control performance in the low speed region is improved with the proposed...

  9. Control-structure interaction in precision pointing servo loops

    Science.gov (United States)

    Spanos, John T.

    1989-01-01

    The control-structure interaction problem is addressed via stability analysis of a generic linear servo loop model. With the plant described by the rigid body mode and a single elastic mode, structural flexibility is categorized into one of three types: (1) appendage, (2) in-the-loop minimum phase, and (3) in-the-loop nonminimum phase. Closing the loop with proportional-derivative (PD) control action and introducing sensor roll-off dynamics in the feedback path, stability conditions are obtained. Trade studies are conducted with modal frequency, modal participation, modal damping, loop bandwidth, and sensor bandwidth treated as free parameters. Results indicate that appendage modes are most likely to produce instability if they are near the sensor rolloff, whereas in-the-loop modes are most dangerous near the loop bandwidth. The main goal of this paper is to provide a fundamental understanding of the control-structure interaction problem so that it may benefit the design of complex spacecraft and pointing system servo loops. In this framework, the JPL Pathfinder gimbal pointer is considered as an example.

  10. Visual servoing in medical robotics: a survey. Part I: endoscopic and direct vision imaging - techniques and applications.

    Science.gov (United States)

    Azizian, Mahdi; Khoshnam, Mahta; Najmaei, Nima; Patel, Rajni V

    2014-09-01

    Intra-operative imaging is widely used to provide visual feedback to a clinician when he/she performs a procedure. In visual servoing, surgical instruments and parts of tissue/body are tracked by processing the acquired images. This information is then used within a control loop to manoeuvre a robotic manipulator during a procedure. A comprehensive search of electronic databases was completed for the period 2000-2013 to provide a survey of the visual servoing applications in medical robotics. The focus is on medical applications where image-based tracking is used for closed-loop control of a robotic system. Detailed classification and comparative study of various contributions in visual servoing using endoscopic or direct visual images are presented and summarized in tables and diagrams. The main challenges in using visual servoing for medical robotic applications are identified and potential future directions are suggested. 'Supervised automation of medical robotics' is found to be a major trend in this field. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor

    Science.gov (United States)

    Wang, Yannian; Wu, Peizhi; Liu, Chengtao

    2017-09-01

    To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.

  12. Inherent limitations of fixed time servo-controlled radiometric calorimetry

    International Nuclear Information System (INIS)

    Wetzel, J.R.; Duff, M.F.; Lemming, J.F.

    1987-01-01

    There has been some interest in low precision, short run time calorimetry measurements. This type of calorimetry measurement has been proposed for use when high precision measurements are not required, for example, to screen scrap containers to determine if there is enough material to be measured more accurately of for confirmatory measurements that only require low precision results. The equipment needed to make these measurements is a servo-controlled calorimeter with a sample preequilibration bath. The preequilibration bath temperature is set to the internal temperature of the calorimeter running at a fixed servo-controlled wattage level. The sample power value is determined at a fixed time form the sample loading into the calorimeter. There are some limitations and areas of uncertainties in the use of data obtained by this method. Data collected under controlled conditions demonstrate the limitations. Sample packaging, preequilibration time, and item wattage were chosen as the variables most likely to be encountered in a plant environment

  13. Inherent limitations of fixed-time, servo-controlled radiometric calorimetry

    International Nuclear Information System (INIS)

    Wetzel, J.R.; Lemming, J.F.; Duff, M.F.

    1987-01-01

    Interest has been shown in using fixed-time, servo-controlled calorimetry to shorten the measurement times for certain samples that require low precision values (3 to 5%). This type of calorimeter measurement could be particularly useful for screening scrap samples to determine whether there is a need for a more accurate measurement or for certain confirmatory measurements for which low precision numbers are sufficient. The equipment required for this type of measurement is a servo-controlled calorimeter and a preconditioning unit. Samples to be measured are placed in the preconditioning unit, which is maintained at the internal temperature of the calorimeter. The power value for the sample is determined at a fixed time after loading into the calorimeter, for example, 30 min. When a calorimeter is operated using a fixed cutoff time, there are additional sources of uncertainty that need to be considered. The major factors affecting the uncertainty of the calorimetry power values are discussed. 2 refs., 4 figs

  14. Servo-Drive Amplifier for Micro-Satellite Superconductor-Levitated Flywheels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new servo-drive technology is available to support energy storage and navigation for micro-satellites. Exploiting the ?pinning? effect of high-temperature...

  15. Adaptive Neural Network Control for Nonlinear Hydraulic Servo-System with Time-Varying State Constraints

    Directory of Open Access Journals (Sweden)

    Shu-Min Lu

    2017-01-01

    Full Text Available An adaptive neural network control problem is addressed for a class of nonlinear hydraulic servo-systems with time-varying state constraints. In view of the low precision problem of the traditional hydraulic servo-system which is caused by the tracking errors surpassing appropriate bound, the previous works have shown that the constraint for the system is a good way to solve the low precision problem. Meanwhile, compared with constant constraints, the time-varying state constraints are more general in the actual systems. Therefore, when the states of the system are forced to obey bounded time-varying constraint conditions, the high precision tracking performance of the system can be easily realized. In order to achieve this goal, the time-varying barrier Lyapunov function (TVBLF is used to prevent the states from violating time-varying constraints. By the backstepping design, the adaptive controller will be obtained. A radial basis function neural network (RBFNN is used to estimate the uncertainties. Based on analyzing the stability of the hydraulic servo-system, we show that the error signals are bounded in the compacts sets; the time-varying state constrains are never violated and all singles of the hydraulic servo-system are bounded. The simulation and experimental results show that the tracking accuracy of system is improved and the controller has fast tracking ability and strong robustness.

  16. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation.

    Directory of Open Access Journals (Sweden)

    Takeshi Tohyama

    Full Text Available Lipopolysaccharide (LPS induces acute inflammation, activates sympathetic nerve activity (SNA and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP, examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis.Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg. We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection.In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.. In contrast, AP increased initially (until 75 min, then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP.LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the augmented neural arc and

  17. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation.

    Science.gov (United States)

    Tohyama, Takeshi; Saku, Keita; Kawada, Toru; Kishi, Takuya; Yoshida, Keimei; Nishikawa, Takuya; Mannoji, Hiroshi; Kamada, Kazuhiro; Sunagawa, Kenji; Tsutsui, Hiroyuki

    2018-01-01

    Lipopolysaccharide (LPS) induces acute inflammation, activates sympathetic nerve activity (SNA) and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP), examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis. Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg). We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP) by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection. In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.). In contrast, AP increased initially (until 75 min), then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship) upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship) downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP. LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the augmented neural arc and suppressed

  18. Data-Driven Based Asynchronous Motor Control for Printing Servo Systems

    Science.gov (United States)

    Bian, Min; Guo, Qingyun

    Modern digital printing equipment aims to the environmental-friendly industry with high dynamic performances and control precision and low vibration and abrasion. High performance motion control system of printing servo systems was required. Control system of asynchronous motor based on data acquisition was proposed. Iterative learning control (ILC) algorithm was studied. PID control was widely used in the motion control. However, it was sensitive to the disturbances and model parameters variation. The ILC applied the history error data and present control signals to approximate the control signal directly in order to fully track the expect trajectory without the system models and structures. The motor control algorithm based on the ILC and PID was constructed and simulation results were given. The results show that data-driven control method is effective dealing with bounded disturbances for the motion control of printing servo systems.

  19. Servo-hydraulic actuator in controllable canonical form: Identification and experimental validation

    Science.gov (United States)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-02-01

    Hydraulic actuators have been widely used to experimentally examine structural behavior at multiple scales. Real-time hybrid simulation (RTHS) is one innovative testing method that largely relies on such servo-hydraulic actuators. In RTHS, interface conditions must be enforced in real time, and controllers are often used to achieve tracking of the desired displacements. Thus, neglecting the dynamics of hydraulic transfer system may result either in system instability or sub-optimal performance. Herein, we propose a nonlinear dynamical model for a servo-hydraulic actuator (a.k.a. hydraulic transfer system) coupled with a nonlinear physical specimen. The nonlinear dynamical model is transformed into controllable canonical form for further tracking control design purposes. Through a number of experiments, the controllable canonical model is validated.

  20. The design of a servo system for a Moessbauer spectrometer

    International Nuclear Information System (INIS)

    Cranshaw, T.E.

    1981-06-01

    This report describes the design of a transducer system and servo drive amplifier suitable for Moessbauer spectrometers. Particular attention is paid to low and zero frequency drift. Measurements of the loop gain of a practical system are presented. (author)

  1. Disturbance observer that uses radial basis function networks for the low speed control of a servo motor

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Bae, C.H.; Blaabjerg, Frede

    2005-01-01

    A scheme to estimate the moment of inertia in a servo motor drive system at very low speed is proposed. The typical speed estimation scheme used in most servo systems operated at low speed is highly sensitive to variations in the moment of inertia. An observer that uses a radial basis function...

  2. Improving dynamic performances of PWM-driven servo-pneumatic systems via a novel pneumatic circuit.

    Science.gov (United States)

    Taghizadeh, Mostafa; Ghaffari, Ali; Najafi, Farid

    2009-10-01

    In this paper, the effect of pneumatic circuit design on the input-output behavior of PWM-driven servo-pneumatic systems is investigated and their control performances are improved using linear controllers instead of complex and costly nonlinear ones. Generally, servo-pneumatic systems are well known for their nonlinear behavior. However, PWM-driven servo-pneumatic systems have the advantage of flexibility in the design of pneumatic circuits which affects the input-output linearity of the whole system. A simple pneumatic circuit with only one fast switching valve is designed which leads to a quasi-linear input-output relation. The quasi-linear behavior of the proposed circuit is verified both experimentally and by simulations. Closed loop position control experiments are then carried out using linear P- and PD-controllers. Since the output position is noisy and cannot be directly differentiated, a Kalman filter is designed to estimate the velocity of the cylinder. Highly improved tracking performances are obtained using these linear controllers, compared to previous works with nonlinear controllers.

  3. Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    International Nuclear Information System (INIS)

    Dixon, Warren

    2003-01-01

    The objective of this project is to enable current and future EM robots with an increased ability to perceive and interact with unstructured and unknown environments through the use of camera-based visual servo controllers. The scientific goals of this research are to develop a new visual servo control methodology that: (1) adapts for the unknown camera calibration parameters (e.g., focal length, scaling factors, camera position, and orientation) and the physical parameters of the robotic system (e.g., mass, inertia, friction), (2) compensates for unknown depth information (extract 3D information from the 2D image), and (3) enables multi-uncalibrated cameras to be used as a means to provide a larger field-of-view. Nonlinear Lyapunov-based techniques in conjunction with results from projective geometry are being used to overcome the complex control issues and alleviate many of the restrictive assumptions that impact current visual servo controlled robotic systems. The potential relevance of this control methodology will be a plug-and-play visual servoing control module that can be utilized in conjunction with current technology such as feature extraction and recognition, to enable current EM robotic systems with the capabilities of increased accuracy, autonomy, and robustness, with a larger field of view (and hence a larger workspace). These capabilities will enable EM robots to significantly accelerate D and D operations by providing for improved robot autonomy and increased worker productivity, while also reducing the associated costs, removing the human operator from the hazardous environments, and reducing the burden and skill of the human operators

  4. Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    International Nuclear Information System (INIS)

    Dixon, Warren

    2002-01-01

    The objective of this project is to enable current and future EM robots with an increased ability to perceive and interact with unstructured and unknown environments through the use of camera-based visual servo controlled robots. The scientific goals of this research are to develop a new visual servo control methodology that: (1) adapts for the unknown camera calibration parameters (e.g., focal length, scaling factors, camera position and orientation) and the physical parameters of the robotic system (e.g., mass, inertia, friction), (2) compensates for unknown depth information (extract 3D information from the 2D image), and (3) enables multi-uncalibrated cameras to be used as a means to provide a larger field-of-view. Nonlinear Lyapunov-based techniques are being used to overcome the complex control issues and alleviate many of the restrictive assumptions that impact current visual servo controlled robotic systems. The potential relevance of this control methodology will be a plug-and-play visual servoing control module that can be utilized in conjunction with current technology such as feature extraction and recognition, to enable current EM robotic systems with the capabilities of increased accuracy, autonomy, and robustness, with a larger field of view (and hence a larger workspace). These capabilities will enable EM robots to significantly accelerate D and D operations by providing for improved robot autonomy and increased worker productivity, while also reducing the associated costs, removing the human operator from the hazardous environments, and reducing the burden and skill of the human operators

  5. Stability and servo-control of the crystal pulling process

    International Nuclear Information System (INIS)

    Johansen, T.H.

    1990-11-01

    The paper analyzes why the crystal pulling process needs servo-control, and how it can be implemented. Special emphasis is put on the fundamental question of inherent stability, and how to interpret the signal from a balance when the weighing method is used for cystal diameter detection. 15 refs., 13 figs

  6. A low-cost, FPGA-based servo controller with lock-in amplifier

    International Nuclear Information System (INIS)

    Yang, G; Barry, J F; Shuman, E S; Steinecker, M H; DeMille, D

    2012-01-01

    We describe the design and implementation of a low-cost, FPGA-based servo controller with an integrated waveform synthesizer and lock-in amplifier. This system has been designed with the specific application of laser frequency locking in mind but should be adaptable to a variety of other purposes as well. The system incorporates an onboard waveform synthesizer, a lock-in amplifier, two channels of proportional-integral (PI) servo control, and a ramp generator on a single FPGA chip. The system is based on an inexpensive, off-the-shelf FPGA evaluation board with a wide variety of available accessories, allowing the system to interface with standard laser controllers and detectors while minimizing the use of custom hardware and electronics. Gains, filter constants, and other relevant parameters are adjustable via onboard knobs and switches. These parameters and other information are displayed to the user via an integrated LCD, allowing full operation of the device without an accompanying computer. We demonstrate the performance of the system in a test setup, in which the frequency of a tunable external-cavity diode laser (ECDL) is locked to a resonant optical transmission peak of a Fabry-Perot cavity. In this setup, we achieve a total servo-loop bandwidth of ∼ 7 kHz and achieve locking of the ECDL to the cavity with a full-width-at-half-maximum (FWHM) linewidth of ∼ 200 kHz.

  7. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    Science.gov (United States)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  8. Characteristic Modeling and Control of Servo Systems with Backlash and Friction

    Directory of Open Access Journals (Sweden)

    Yifei Wu

    2014-01-01

    Full Text Available A novel approach for modeling and control of servo systems with backlash and friction is proposed based on the characteristic model. Firstly, to deal with friction-induced nonlinearities, a smooth Stribeck friction model is introduced. The backlash is modeled by a continuous and derivable mathematical function. Secondly, a characteristic model in the form of a second-order slowly time-varying difference equation is established and verified by simulations. Thirdly, a composite controller including the golden-section adaptive control law and the integral control law is designed and the stability of the closed-loop system is analyzed. The simulation and experimental results show that the proposed control scheme is effective and can improve the steady-state precision and the dynamic performance of the servo system with backlash and friction.

  9. Control Servo-Visual de un Robot Manipulador Planar Basado en Pasividad

    Directory of Open Access Journals (Sweden)

    Carlos Soria

    2008-10-01

    Full Text Available Resumen: En este trabajo se diseña un controlador servo visual basado en la propiedad de pasividad del sistema visual. Se propone un regulador con ganancias de control variables, de tal manera que se evita la saturación de los actuadores y al mismo tiempo presenta la capacidad de corregir errores de pequeña magnitud. Asimismo el diseno se hace tenieñdo en cuenta el desempeño L2, a fin de darle capacidad de seguimiento de objetos en movimiento, con un error de control pequeño. Se muestran resultados experimentales realizados en un robot manipulador industrial tipo planar para verificar el cumplimiento de los objetivos del controlador propuesto. Palabras Clave: robot manipulador industrial, control servo visual, control no lineal, pasividad

  10. Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control.

    Science.gov (United States)

    Gorju, G; Jucha, A; Jain, A; Crozatier, V; Lorgeré, I; Le Gouët, J-L; Bretenaker, F; Colice, M

    2007-03-01

    We propose and demonstrate a novel active stabilization scheme for wide and fast frequency chirps. The system measures the laser instantaneous frequency deviation from a perfectly linear chirp, thanks to a digital phase detection process, and provides an error signal that is used to servo-loop control the chirped laser. This way, the frequency errors affecting a laser scan over 10 GHz on the millisecond timescale are drastically reduced below 100 kHz. This active optoelectronic digital servo-loop control opens new and interesting perspectives in fields where rapidly chirped lasers are crucial.

  11. Recent results in visual servoing

    Science.gov (United States)

    Chaumette, François

    2008-06-01

    Visual servoing techniques consist in using the data provided by a vision sensor in order to control the motions of a dynamic system. Such systems are usually robot arms, mobile robots, aerial robots,… but can also be virtual robots for applications in computer animation, or even a virtual camera for applications in computer vision and augmented reality. A large variety of positioning tasks, or mobile target tracking, can be implemented by controlling from one to all the degrees of freedom of the system. Whatever the sensor configuration, which can vary from one on-board camera on the robot end-effector to several free-standing cameras, a set of visual features has to be selected at best from the image measurements available, allowing to control the degrees of freedom desired. A control law has also to be designed so that these visual features reach a desired value, defining a correct realization of the task. With a vision sensor providing 2D measurements, potential visual features are numerous, since as well 2D data (coordinates of feature points in the image, moments, …) as 3D data provided by a localization algorithm exploiting the extracted 2D measurements can be considered. It is also possible to combine 2D and 3D visual features to take the advantages of each approach while avoiding their respective drawbacks. From the selected visual features, the behavior of the system will have particular properties as for stability, robustness with respect to noise or to calibration errors, robot 3D trajectory, etc. The talk will present the main basic aspects of visual servoing, as well as technical advances obtained recently in the field inside the Lagadic group at INRIA/INRISA Rennes. Several application results will be also described.

  12. Fault Diagnosis for Hydraulic Servo System Using Compressed Random Subspace Based ReliefF

    Directory of Open Access Journals (Sweden)

    Yu Ding

    2018-01-01

    Full Text Available Playing an important role in electromechanical systems, hydraulic servo system is crucial to mechanical systems like engineering machinery, metallurgical machinery, ships, and other equipment. Fault diagnosis based on monitoring and sensory signals plays an important role in avoiding catastrophic accidents and enormous economic losses. This study presents a fault diagnosis scheme for hydraulic servo system using compressed random subspace based ReliefF (CRSR method. From the point of view of feature selection, the scheme utilizes CRSR method to determine the most stable feature combination that contains the most adequate information simultaneously. Based on the feature selection structure of ReliefF, CRSR employs feature integration rules in the compressed domain. Meanwhile, CRSR substitutes information entropy and fuzzy membership for traditional distance measurement index. The proposed CRSR method is able to enhance the robustness of the feature information against interference while selecting the feature combination with balanced information expressing ability. To demonstrate the effectiveness of the proposed CRSR method, a hydraulic servo system joint simulation model is constructed by HyPneu and Simulink, and three fault modes are injected to generate the validation data.

  13. Concurrent image-based visual servoing with adaptive zooming for non-cooperative rendezvous maneuvers

    Science.gov (United States)

    Pomares, Jorge; Felicetti, Leonard; Pérez, Javier; Emami, M. Reza

    2018-02-01

    An image-based servo controller for the guidance of a spacecraft during non-cooperative rendezvous is presented in this paper. The controller directly utilizes the visual features from image frames of a target spacecraft for computing both attitude and orbital maneuvers concurrently. The utilization of adaptive optics, such as zooming cameras, is also addressed through developing an invariant-image servo controller. The controller allows for performing rendezvous maneuvers independently from the adjustments of the camera focal length, improving the performance and versatility of maneuvers. The stability of the proposed control scheme is proven analytically in the invariant space, and its viability is explored through numerical simulations.

  14. Image-based visual servo control using the port-Hamiltonian Approach

    NARCIS (Netherlands)

    Muñoz Arias, Mauricio; El Hawwary, Mohamed; Scherpen, Jacquelien M.A.

    2015-01-01

    This work is devoted to an image-based visual servo control strategy for standard mechanical systems in the port-Hamiltonian framework. We utilize a change of variables that transforms the port-Hamiltonian system into one with constant mass-inertia matrix, and we use an interaction matrix that

  15. Smart Rotor Modeling: Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    the trailing edge flap deflection to actively reduce the fatigue loads on the structure. The performance of the smart rotor configuration and its control algorithms are finally quantified by aero-servo-elastic simulations of the smart rotor turbine operating in a standard turbulent wind field.......This book presents the formulation of an aero-servo-elastic model for a wind turbine rotor equipped with Adaptive Trailing Edge Flaps (ATEF), a smart rotor configuration. As the name suggests, an aero-servo-elastic model consists of three main components: an aerodynamic model, a structural model......, and a control model. The book first presents an engineering type of aerodynamic model that accounts for the dynamic effects of flap deflection. The aerodynamic model is implemented in a Blade Element Momentum framework, and coupled with a multi-body structural model in the aero-servoelastic simulation code HAWC...

  16. Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound.

    Science.gov (United States)

    Seo, Joonho; Koizumi, Norihiro; Mitsuishi, Mamoru; Sugita, Naohiko

    2017-12-01

    Although high intensity focused ultrasound (HIFU) is a promising technology for tumor treatment, a moving abdominal target is still a challenge in current HIFU systems. In particular, respiratory-induced organ motion can reduce the treatment efficiency and negatively influence the treatment result. In this research, we present: (1) a methodology for integration of ultrasound (US) image based visual servoing in a HIFU system; and (2) the experimental results obtained using the developed system. In the visual servoing system, target motion is monitored by biplane US imaging and tracked in real time (40 Hz) by registration with a preoperative 3D model. The distance between the target and the current HIFU focal position is calculated in every US frame and a three-axis robot physically compensates for differences. Because simultaneous HIFU irradiation disturbs US target imaging, a sophisticated interlacing strategy was constructed. In the experiments, respiratory-induced organ motion was simulated in a water tank with a linear actuator and kidney-shaped phantom model. Motion compensation with HIFU irradiation was applied to the moving phantom model. Based on the experimental results, visual servoing exhibited a motion compensation accuracy of 1.7 mm (RMS) on average. Moreover, the integrated system could make a spherical HIFU-ablated lesion in the desired position of the respiratory-moving phantom model. We have demonstrated the feasibility of our US image based visual servoing technique in a HIFU system for moving target treatment. © 2016 The Authors The International Journal of Medical Robotics and Computer Assisted Surgery Published by John Wiley & Sons Ltd.

  17. Connectivity analysis of suggestive brain areas involved in middle ear pressure regulation in humans

    DEFF Research Database (Denmark)

    SA, Sami; Gaihede, Michael

    2010-01-01

    , MEP counter-regulation presented as Eustachian tube openings with steep and fast pressure changes toward 0 Pa, whereas in others, gradual and slow pressure changes presented related to the mastoid; these changes sometimes crossed 0 Pa into opposite pressures. In many cases, combinations...... to continuous regulation of smaller pressures, whereas the tube was related to intermittent regulation of higher pressures....

  18. Aero-servo-viscoelasticity theory: Lifting surfaces, plates, velocity transients, flutter, and instability

    Science.gov (United States)

    Merrett, Craig G.

    Modern flight vehicles are fabricated from composite materials resulting in flexible structures that behave differently from the more traditional elastic metal structures. Composite materials offer a number of advantages compared to metals, such as improved strength to mass ratio, and intentional material property anisotropy. Flexible aircraft structures date from the Wright brothers' first aircraft with fabric covered wooden frames. The flexibility of the structure was used to warp the lifting surface for flight control, a concept that has reappeared as aircraft morphing. These early structures occasionally exhibited undesirable characteristics during flight such as interactions between the empennage and the aft fuselage, or control problems with the elevators. The research to discover the cause and correction of these undesirable characteristics formed the first foray into the field of aeroelasticity. Aeroelasticity is the intersection and interaction between aerodynamics, elasticity, and inertia or dynamics. Aeroelasticity is well suited for metal aircraft, but requires expansion to improve its applicability to composite vehicles. The first is a change from elasticity to viscoelasticity to more accurately capture the solid mechanics of the composite material. The second change is to include control systems. While the inclusion of control systems in aeroelasticity lead to aero-servo-elasticity, more control possibilities exist for a viscoelastic composite material. As an example, during the lay-up of carbon-epoxy plies, piezoelectric control patches are inserted between different plies to give a variety of control options. The expanded field is called aero-servo-viscoelasticity. The phenomena of interest in aero-servo-viscoelasticity are best classified according to the type of structure considered, either a lifting surface or a panel, and the type of dynamic stability present. For both types of structures, the governing equations are integral

  19. Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    International Nuclear Information System (INIS)

    Dixon, Warren

    2004-01-01

    There is significant motivation to provide robotic systems with improved autonomy as a means to significantly accelerate deactivation and decommissioning (DandD) operations while also reducing the associated costs, removing human operators from hazardous environments, and reducing the required burden and skill of human operators. To achieve improved autonomy, this project focused on the basic science challenges leading to the development of visual servo controllers. The challenge in developing these controllers is that a camera provides 2-dimensional image information about the 3-dimensional Euclidean-space through a perspective (range dependent) projection that can be corrupted by uncertainty in the camera calibration matrix and by disturbances such as nonlinear radial distortion. Disturbances in this relationship (i.e., corruption in the sensor information) propagate erroneous information to the feedback controller of the robot, leading to potentially unpredictable task execution. This research project focused on the development of a visual servo control methodology that targets compensating for disturbances in the camera model (i.e., camera calibration and the recovery of range information) as a means to achieve predictable response by the robotic system operating in unstructured environments. The fundamental idea is to use nonlinear Lyapunov-based techniques along with photogrammetry methods to overcome the complex control issues and alleviate many of the restrictive assumptions that impact current robotic applications. The outcome of this control methodology is a plug-and-play visual servoing control module that can be utilized in conjunction with current technology such as feature recognition and extraction to enable robotic systems with the capabilities of increased accuracy, autonomy, and robustness, with a larger field of view (and hence a larger workspace). The developed methodology has been reported in numerous peer-reviewed publications and the

  20. A Matlab/Simulink-Based Interactive Module for Servo Systems Learning

    Science.gov (United States)

    Aliane, N.

    2010-01-01

    This paper presents an interactive module for learning both the fundamental and practical issues of servo systems. This module, developed using Simulink in conjunction with the Matlab graphical user interface (Matlab-GUI) tool, is used to supplement conventional lectures in control engineering and robotics subjects. First, the paper introduces the…

  1. Investigation on Superior Performance by Fractional Controller for Cart-Servo Laboratory Set-Up

    Directory of Open Access Journals (Sweden)

    Ameya Anil Kesarkar

    2014-01-01

    Full Text Available In this paper, an investigation is made on the superiority of fractional PID controller (PI^alpha D^beta over conventional PID for the cart-servo laboratory set-up. The designed controllers are optimum in the sense of Integral Absolute Error (IAE and Integral Square Error (ISE. The paper contributes in three aspects: 1 Acquiring nonlinear mathematical model for the cart-servo laboratory set-up, 2 Designing fractional and integer order PID for minimizing IAE, ISE, 3 Analyzing the performance of designed controllers for simulated plant model as well as real plant. The results show a significantly superior performance by PI^alpha D^beta as compared to the conventional PID controller.

  2. Enhancement of tracking performance in electro-optical system based on servo control algorithm

    Science.gov (United States)

    Choi, WooJin; Kim, SungSu; Jung, DaeYoon; Seo, HyoungKyu

    2017-10-01

    Modern electro-optical surveillance and reconnaissance systems require tracking capability to get exact images of target or to accurately direct the line of sight to target which is moving or still. This leads to the tracking system composed of image based tracking algorithm and servo control algorithm. In this study, we focus on the servo control function to minimize the overshoot in the tracking motion and do not miss the target. The scheme is to limit acceleration and velocity parameters in the tracking controller, depending on the target state information in the image. We implement the proposed techniques by creating a system model of DIRCM and simulate the same environment, validate the performance on the actual equipment.

  3. Adaptive Sliding Mode Robust Control for Virtual Compound-Axis Servo System

    Directory of Open Access Journals (Sweden)

    Yan Ren

    2013-01-01

    Full Text Available A structure mode of virtual compound-axis servo system is proposed to improve the tracking accuracy of the ordinary optoelectric tracking platform. It is based on the structure and principles of compound-axis servo system. A hybrid position control scheme combining the PD controller and feed-forward controller is used in subsystem to track the tracking error of the main system. This paper analyzes the influences of the equivalent disturbance in main system and proposes an adaptive sliding mode robust control method based on the improved disturbance observer. The sliding mode technique helps this disturbance observer to deal with the uncompensated disturbance in high frequency by making use of the rapid switching control value, which is based on the subtle error of disturbance estimation. Besides, the high-frequency chattering is alleviated effectively in this proposal. The effectiveness of the proposal is confirmed by experiments on optoelectric tracking platform.

  4. Significant role of the cardiopostural interaction in blood pressure regulation during standing.

    Science.gov (United States)

    Xu, Da; Verma, Ajay K; Garg, Amanmeet; Bruner, Michelle; Fazel-Rezai, Reza; Blaber, Andrew P; Tavakolian, Kouhyar

    2017-09-01

    Cardiovascular and postural control systems have been studied independently despite the increasing evidence showing the importance of cardiopostural interaction in blood pressure regulation. In this study, we aimed to assess the role of the cardiopostural interaction in relation to cardiac baroreflex in blood pressure regulation under orthostatic stress before and after mild exercise. Physiological variables representing cardiovascular control (heart rate and systolic blood pressure), lower limb muscle activation (electromyography), and postural sway (center of pressure derived from force and moment data during sway) were measured from 17 healthy participants (25 ± 2 yr, 9 men and 8 women) during a sit-to-stand test before and after submaximal exercise. The cardiopostural control (characterized by baroreflex-mediated muscle-pump effect in response to blood pressure changes, i.e., muscle-pump baroreflex) was assessed using wavelet transform coherence and causality analyses in relation to the baroreflex control of heart rate. Significant cardiopostural blood pressure control was evident counting for almost half of the interaction time with blood pressure changes that observed in the cardiac baroreflex (36.6-72.5% preexercise and 34.7-53.9% postexercise). Thus, cardiopostural input to blood pressure regulation should be considered when investigating orthostatic intolerance. A reduction of both cardiac and muscle-pump baroreflexes in blood pressure regulation was observed postexercise and was likely due to the absence of excessive venous pooling and a less stressed system after mild exercise. With further studies using more effective protocols evoking venous pooling and muscle-pump activity, the cardiopostural interaction could improve our understanding of the autonomic control system and ultimately lead to a more accurate diagnosis of cardiopostural dysfunctions. NEW & NOTEWORTHY We examined the interaction between cardiovascular and postural control systems during

  5. Servo Reduces Friction In Flexure Bearing

    Science.gov (United States)

    Clingman, W. Dean

    1991-01-01

    Proposed servocontrol device reduces such resistive torques as stiction, friction, ripple, and cogging in flexure bearing described in LAR-14348, "Flexure Bearing Reduces Startup Friction". Reduces frictional "bump" torque encountered when bearing ball runs into buildup of grease on bearing race. Also used as cable follower to reduce torque caused by cable and hoses when they bend because of motion of bearing. New device includes torquer across ball race. Torquer controlled by servo striving to keep flexure at null, removing torque to outer ring. In effect, device is inner control loop reducing friction, but does not control platforms or any outer-control-loop functions.

  6. Servo-control of water and sodium homeostasis during renal clearance measurements in conscious rats.

    Science.gov (United States)

    Thomsen, Klaus; Shirley, David G

    2007-01-01

    Servo-controlled fluid and sodium replacement during clearance studies is used in order to prevent loss of body fluid and sodium following diuretic/natriuretic procedures. However, even under control conditions, the use of this technique is sometimes associated with increases in proximal tubular fluid output (assessed by lithium clearance) and excretion rates. The present study examined the reason for these increases. The first series of experiments showed that one cause is volume overloading. This can occur if the servo system is activated from the start, i.e., during the establishment of a suitably high urine flow rate by constant infusion of hypotonic glucose solution. The second series of experiments showed that replacement of blood samples with donor blood can also lead to increases in fractional lithium excretion and accompanying increases in water and sodium excretion, a problem not seen when blood samples are replaced with the animal's own red blood cells resuspended in isotonic saline. When these pitfalls are avoided, servo-controlled sodium and fluid replacement is a reliable technique that makes it possible to study the effects of natriuretic and/or diuretic stimuli without interference from unwanted changes in extracellular volume. 2007 S. Karger AG, Basel

  7. Model-based specification, analysis and synthesis of servo controllers for lithoscanners

    NARCIS (Netherlands)

    Schiffelers, R.; Alberts, W.; Voeten, J.P.M.

    2012-01-01

    ASML is the world's leading provider of complex lithography systems for the semiconductor industry. Such systems consist of numerous servo control systems. To design such control systems, a multi-disciplinary model-based development environment has been developed. It is based on a set of domain

  8. Cine-servo lens technology for 4K broadcast and cinematography

    Science.gov (United States)

    Nurishi, Ryuji; Wakazono, Tsuyoshi; Usui, Fumiaki

    2015-09-01

    Central to the rapid evolution of 4K image capture technology in the past few years, deployment of large-format cameras with Super35mm Single Sensors is increasing in TV production for diverse shows such as dramas, documentaries, wildlife, and sports. While large format image capture has been the standard in the cinema world for quite some time, the recent experiences within the broadcast industry have revealed a variety of requirement differences for large format lenses compared to those of the cinema industry. A typical requirement for a broadcast lens is a considerably higher zoom ratio in order to avoid changing lenses in the middle of a live event, which is mostly not the case for traditional cinema productions. Another example is the need for compact size, light weight, and servo operability for a single camera operator shooting in a shoulder-mount ENG style. On the other hand, there are new requirements that are common to both worlds, such as smooth and seamless change in angle of view throughout the long zoom range, which potentially offers new image expression that never existed in the past. This paper will discuss the requirements from the two industries of cinema and broadcast, while at the same time introducing the new technologies and new optical design concepts applied to our latest "CINE-SERVO" lens series which presently consists of two models, CN7x17KAS-S and CN20x50IAS-H. It will further explain how Canon has realized 4K optical performance and fast servo control while simultaneously achieving compact size, light weight and high zoom ratio, by referring to patent-pending technologies such as the optical power layout, lens construction, and glass material combinations.

  9. Dynamic modeling and experiment of a new type of parallel servo press considering gravity counterbalance

    Science.gov (United States)

    He, Jun; Gao, Feng; Bai, Yongjun; Wu, Shengfu

    2013-11-01

    The large capacity servo press is traditionally realized by means of redundant actuation, however there exist the over-constraint problem and interference among actuators, which increases the control difficulty and the product cost. A new type of press mechanism with parallel topology is presented to develop the mechanical servo press with high stamping capacity. The dynamic model considering gravity counterbalance is proposed based on the virtual work principle, and then the effect of counterbalance cylinder on the dynamic performance of the servo press is studied. It is found that the motor torque required to operate the press is a lot less than the others when the ratio of the counterbalance force to the gravity of ram is in the vicinity of 1.0. The stamping force of the real press prototype can reach up to 25 MN on the position of 13 mm away from the bottom dead center. The typical deep-drawing process with 1 200 mm stroke at 8 strokes per minute is proposed by means of five order polynomial. On this process condition, the driving torques are calculated based on the above dynamic model and the torque measuring test is also carried out on the prototype. It is shown that the curve trend of calculation torque is consistent to the measured result and that the average error is less than 15%. The parallel mechanism is introduced into the development of large capacity servo press to avoid the over-constraint and interference of traditional redundant actuation, and its dynamic characteristics with gravity counterbalance are presented.

  10. Efficient control of servo pneumatic actuator system utilizing by-pass ...

    Indian Academy of Sciences (India)

    The issue of energy saving nowadays is very crucial. Pneumatic systems, constituting an important segment of almost every industry, represent large energy consumers. Also, a significant problem with servo pneumatic actuators is achieving accuracy in positioning. The higher the positioning accuracy, the higher the ...

  11. Investigation of the low flux servo-controlled limit of a co-phased interferometer

    Science.gov (United States)

    Damé, Luc; Derrien, Marc; Kozlowski, Mathias; Merdjane, Mohamed

    2018-04-01

    This paper, "Investigation of the low flux servo-controlled limit of a co-phased interferometer," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  12. High precision tracking control of a servo gantry with dynamic friction compensation.

    Science.gov (United States)

    Zhang, Yangming; Yan, Peng; Zhang, Zhen

    2016-05-01

    This paper is concerned with the tracking control problem of a voice coil motor (VCM) actuated servo gantry system. By utilizing an adaptive control technique combined with a sliding mode approach, an adaptive sliding mode control (ASMC) law with friction compensation scheme is proposed in presence of both frictions and external disturbances. Based on the LuGre dynamic friction model, a dual-observer structure is used to estimate the unmeasurable friction state, and an adaptive control law is synthesized to effectively handle the unknown friction model parameters as well as the bound of the disturbances. Moreover, the proposed control law is also implemented on a VCM servo gantry system for motion tracking. Simulations and experimental results demonstrate good tracking performance, which outperform traditional control approaches. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. A Passive Flow-rate Regulator Using Pressure-dependent Autonomous Deflection of Parallel Membrane Valves

    International Nuclear Information System (INIS)

    Il, Doh; Cho, Young-Ho

    2009-01-01

    We present a passive flow-rate regulator, capable to compensate inlet pressure variation and to maintain a constant flow-rate for precise liquid control. Deflection of the parallel membrane valves in the passive flowrate regulator adjusts fluidic resistance according to inlet fluid pressure without any external energy. Compared to previous passive flow-rate regulators, the present device achieves precision flow regulation functions at the lower threshold compensation pressure of 20kPa with the simpler structure. In the experimental study, the fabricated device achieves the constant flow-rate of 6.09±0.32 μl/s over the inlet pressure range of 20∼50 kPa. The present flow-rate regulator having simple structure and lower compensation pressure level demonstrates potentials for use in integrated micropump systems

  14. Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators

    Science.gov (United States)

    Vu, Van Tan; Sename, Olivier; Dugard, Luc; Gaspar, Peter

    2017-09-01

    Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.

  15. Lung function studied by servo-controlled ventilator and respiratory mass spectrometer

    International Nuclear Information System (INIS)

    Piiper, J.

    1987-01-01

    The gas exchange function of lungs is studied. The gas concentration, measured by mass spectrometry and the lung volume and rate of change of lung volume are discussed. A servo-controlled ventilator is presented. Several experimental projects performed on anesthetized paralyzed dogs are reported. (M.A.C.) [pt

  16. PSO-RBF Neural Network PID Control Algorithm of Electric Gas Pressure Regulator

    Directory of Open Access Journals (Sweden)

    Yuanchang Zhong

    2014-01-01

    Full Text Available The current electric gas pressure regulator often adopts the conventional PID control algorithm to take drive control of the core part (micromotor of electric gas pressure regulator. In order to further improve tracking performance and to shorten response time, this paper presents an improved PID intelligent control algorithm which applies to the electric gas pressure regulator. The algorithm uses the improved RBF neural network based on PSO algorithm to make online adjustment on PID parameters. Theoretical analysis and simulation result show that the algorithm shortens the step response time and improves tracking performance.

  17. Strong stabilization servo controller with optimization of performance criteria.

    Science.gov (United States)

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2011-07-01

    Synthesis of a simple robust controller with a pole placement technique and a H(∞) metrics is the method used for control of a servo mechanism with BLDC and BDC electric motors. The method includes solving a polynomial equation on the basis of the chosen characteristic polynomial using the Manabe standard polynomial form and parametric solutions. Parametric solutions are introduced directly into the structure of the servo controller. On the basis of the chosen parametric solutions the robustness of a closed-loop system is assessed through uncertainty models and assessment of the norm ‖•‖(∞). The design procedure and the optimization are performed with a genetic algorithm differential evolution - DE. The DE optimization method determines a suboptimal solution throughout the optimization on the basis of a spectrally square polynomial and Šiljak's absolute stability test. The stability of the designed controller during the optimization is being checked with Lipatov's stability condition. Both utilized approaches: Šiljak's test and Lipatov's condition, check the robustness and stability characteristics on the basis of the polynomial's coefficients, and are very convenient for automated design of closed-loop control and for application in optimization algorithms such as DE. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  18. A new confined high pressure rotary shear apparatus: preliminary results

    Science.gov (United States)

    Faulkner, D.; Coughlan, G.; Bedford, J. D.

    2017-12-01

    The frictional properties of fault zone materials, and their evolution during slip, are of paramount importance for determining the earthquake mechanics of large tectonic faults. Friction is a parameter that is difficult to determine from seismological methods so much of our understanding comes from experiment. Rotary shear apparatuses have been widely used in experimental studies to elucidate the frictional properties of faults under realistic earthquake slip velocities (0.1-10 m/s) and displacements (>20 m). However one technical limitation of rotary shear experiments at seismic slip rates has been the lack of confinement. This has led to a limit on the normal stress (due to the strength of the forcing blocks) and also a lack of control of measurements of the pore fluid pressure. Here we present the first preliminary results from a rotary shear apparatus that has been developed to attempt to address this issue. The new fully confined ring shear apparatus has a fast-acting servo-hydraulic confining pressure system of up to 200 MPa and a servo-controlled upstream and downstream pore pressure system of up to 200 MPa. Displacement rates of 0.01μ/s to 2 m/s can be achieved. Fault gouge samples can therefore be sheared at earthquake speed whilst being subject to pressures typically associated with the depth of earthquake nucleation.

  19. Development of a Control System for PRIDE Remote Servo-manipulator

    International Nuclear Information System (INIS)

    Lee, Jong Kwang; Park, Byung Suk; Lee, Hyo Jik; Kim, Kyung Tae; Kim, Sung Hyun; Park, Hee Sung; Kim, Young Hwan; Jung, Jae Hoo; Kim, Ki Ho; Kim, Ho Dong

    2009-12-01

    KAERI is developing the PRIDE(PyRoprocess Integrated inactive DEmonstration) facility to verify the integrated performance of full Pyroprocess flow. A main process cell in the PRIDE facility will be filled with argon gas which prohibits direct access by human operators. Therefore, all the operation and maintenance of the process equipment is performed remotely through a master-slave manipulation. This research focuses on the design, fabrication, and interface of a control system which integrates several hardware systems such as a dual arm master-slave servo-manipulator, a horizontally moving transporter for a master manipulator, a bridge transporter for a slave manipulator, a chain hoist, camera systems and their display system, a manual console, and a pendant, etc. Also, a bilateral force-reflection controller considering an elasticity and vibration modes of wire cable has been developed for master-slave remote manipulation. The results obtained in this study will be applied for the force-reflection control of the bridge-transported master-slave servo-manipulator system for use in the PRIDE facility. Since this research is an essential work in robotics related fields, the results would be widely used for developing power manipulators and process automation equipment

  20. Development of a Control System for PRIDE Remote Servo-manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Kwang; Park, Byung Suk; Lee, Hyo Jik; Kim, Kyung Tae; Kim, Sung Hyun; Park, Hee Sung; Kim, Young Hwan; Jung, Jae Hoo; Kim, Ki Ho; Kim, Ho Dong

    2009-12-15

    KAERI is developing the PRIDE(PyRoprocess Integrated inactive DEmonstration) facility to verify the integrated performance of full Pyroprocess flow. A main process cell in the PRIDE facility will be filled with argon gas which prohibits direct access by human operators. Therefore, all the operation and maintenance of the process equipment is performed remotely through a master-slave manipulation. This research focuses on the design, fabrication, and interface of a control system which integrates several hardware systems such as a dual arm master-slave servo-manipulator, a horizontally moving transporter for a master manipulator, a bridge transporter for a slave manipulator, a chain hoist, camera systems and their display system, a manual console, and a pendant, etc. Also, a bilateral force-reflection controller considering an elasticity and vibration modes of wire cable has been developed for master-slave remote manipulation. The results obtained in this study will be applied for the force-reflection control of the bridge-transported master-slave servo-manipulator system for use in the PRIDE facility. Since this research is an essential work in robotics related fields, the results would be widely used for developing power manipulators and process automation equipment.

  1. Chiari malformation and central sleep apnea syndrome: efficacy of treatment with adaptive servo-ventilation

    Directory of Open Access Journals (Sweden)

    Jorge Marques do Vale

    2014-10-01

    Full Text Available The Chiari malformation type I (CM-I has been associated with sleep-disordered breathing, especially central sleep apnea syndrome. We report the case of a 44-year-old female with CM-I who was referred to our sleep laboratory for suspected sleep apnea. The patient had undergone decompressive surgery 3 years prior. An arterial blood gas analysis showed hypercapnia. Polysomnography showed a respiratory disturbance index of 108 events/h, and all were central apnea events. Treatment with adaptive servo-ventilation was initiated, and central apnea was resolved. This report demonstrates the efficacy of servo-ventilation in the treatment of central sleep apnea syndrome associated with alveolar hypoventilation in a CM-I patient with a history of decompressive surgery.

  2. Discrete Second-Order Sliding Mode Adaptive Controller Based on Characteristic Model for Servo Systems

    Directory of Open Access Journals (Sweden)

    Zhihong Wang

    2015-01-01

    Full Text Available Considering the varying inertia and load torque in high speed and high accuracy servo systems, a novel discrete second-order sliding mode adaptive controller (DSSMAC based on characteristic model is proposed, and a command observer is also designed. Firstly, the discrete characteristic model of servo systems is established. Secondly, the recursive least square algorithm is adopted to identify time-varying parameters in characteristic model, and the observer is applied to predict the command value of next sample time. Furthermore, the stability of the closed-loop system and the convergence of the observer are analyzed. The experimental results show that the proposed method not only can adapt to varying inertia and load torque, but also has good disturbance rejection ability and robustness to uncertainties.

  3. Novel AC Servo Rotating and Linear Composite Driving Device for Plastic Forming Equipment

    Science.gov (United States)

    Liang, Jin-Tao; Zhao, Sheng-Dun; Li, Yong-Yi; Zhu, Mu-Zhi

    2017-07-01

    The existing plastic forming equipment are mostly driven by traditional AC motors with long transmission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for complicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion without transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on the dynamic test benches are conducted. The results indicate that the output torque can attain to 420 N·m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive. the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accuracy direct driving device in plastic forming equipment.

  4. Piloted Simulator Investigation of Techniques to Achieve Attitude Command Response with Limited Authority Servos

    National Research Council Canada - National Science Library

    Key, David

    2002-01-01

    The purpose of the study was to develop generic design principles for obtaining attitude command response in moderate to aggressive maneuvers without increasing SCAS series servo authority from the existing +/- 10...

  5. Origin of serpin-mediated regulation of coagulation and blood pressure.

    Directory of Open Access Journals (Sweden)

    Yunjie Wang

    Full Text Available Vertebrates evolved an endothelium-lined hemostatic system and a pump-driven pressurized circulation with a finely-balanced coagulation cascade and elaborate blood pressure control over the past 500 million years. Genome analyses have identified principal components of the ancestral coagulation system, however, how this complex trait was originally regulated is largely unknown. Likewise, little is known about the roots of blood pressure control in vertebrates. Here we studied three members of the serpin superfamily that interfere with procoagulant activity and blood pressure of lampreys, a group of basal vertebrates. Angiotensinogen from these jawless fish was found to fulfill a dual role by operating as a highly selective thrombin inhibitor that is activated by heparin-related glycosaminoglycans, and concurrently by serving as source of effector peptides that activate type 1 angiotensin receptors. Lampreys, uniquely among vertebrates, thus use angiotensinogen for interference with both coagulation and osmo- and pressure regulation. Heparin cofactor II from lampreys, in contrast to its paralogue angiotensinogen, is preferentially activated by dermatan sulfate, suggesting that these two serpins affect different facets of thrombin's multiple roles. Lampreys also express a lineage-specific serpin with anti-factor Xa activity, which demonstrates that another important procoagulant enzyme is under inhibitory control. Comparative genomics suggests that orthologues of these three serpins were key components of the ancestral hemostatic system. It appears that, early in vertebrate evolution, coagulation and osmo- and pressure regulation crosstalked through antiproteolytically active angiotensinogen, a feature that was lost during vertebrate radiation, though in gnathostomes interplay between these traits is effective.

  6. Dynamic parameter identification of robot arms with servo-controlled electrical motors

    Science.gov (United States)

    Jiang, Zhao-Hui; Senda, Hiroshi

    2005-12-01

    This paper addresses the issue of dynamic parameter identification of the robot manipulator with servo-controlled electrical motors. An assumption is made that all kinematical parameters, such as link lengths, are known, and only dynamic parameters containing mass, moment of inertia, and their functions need to be identified. First, we derive dynamics of the robot arm with a linear form of the unknown dynamic parameters by taking dynamic characteristics of the motor and servo unit into consideration. Then, we implement the parameter identification approach to identify the unknown parameters with respect to individual link separately. A pseudo-inverse matrix is used for formulation of the parameter identification. The optimal solution is guaranteed in a sense of least-squares of the mean errors. A Direct Drive (DD) SCARA type industrial robot arm AdeptOne is used as an application example of the parameter identification. Simulations and experiments for both open loop and close loop controls are carried out. Comparison of the results confirms the correctness and usefulness of the parameter identification and the derived dynamic model.

  7. Effect of confining pressure on permeability behavior of Beishan granite

    International Nuclear Information System (INIS)

    Ma Like; Li Yunfeng; Zhao Xingguang; Tan Guohuan

    2012-01-01

    By using of the Electro-Hydraulic Servo-controlled Rock Mechanics Testing System (MTS 815.04) in the University of Hong Kong, a series of permeability tests were performed on specimens of Beishan granite at different confining pressures. The result indicates that: (1) there is a decrease of permeability due to progressive closure of initial microcracks and the corresponding volumetric strain is compressive when the confining pressures increase from 2.5 MPa to 15 MPa, (2) when the confining pressures decrease from 15 MPa to 2.5 MPa, there is an increase of permeability in this stage in relation with the volumetric dilation. (authors)

  8. Adaptive control of the radial servo system of a compact disc player

    NARCIS (Netherlands)

    Draijer, W.; Steinbuch, M.; Bosgra, O.H.

    1992-01-01

    The radial servo system of a compact disc player has to cope with large gain variations which are due to disc dependent optical characteristics, tolerances in mechanical and electrical components and nonlinearity in the generation of the position index. In current players this problem has been

  9. Use of a novel drainage flow servo-controlled CPB for mitral valve replacement in a Jehovah's Witness.

    Science.gov (United States)

    Niimi, Yoshinari; Murata, Seiichiro; Mitou, Yumi; Ohno, Yusuke

    2018-03-01

    We developed a novel open cardiopulmonary bypass (CPB) system, a drainage flow servo-controlled CPB system (DS-CPB), in which rotational speed of the main roller pump is servo-controlled to generate the same amount of flow as the systemic venous drainage. It was designed to safely decrease the priming volume while maintaining a constant reservoir level, even during fluctuations of the drainage flow. We report a successful use of a novel DS-CPB system in an elderly Jehovah's Witness patient with dehydration who underwent mitral valve replacement.

  10. Induced hypothermia for infants with hypoxic- ischemic encephalopathy using a servo-controlled fan: an exploratory pilot study.

    Science.gov (United States)

    Horn, Alan; Thompson, Clare; Woods, David; Nel, Alida; Bekker, Adrie; Rhoda, Natasha; Pieper, Clarissa

    2009-06-01

    Several trials suggest that hypothermia is beneficial in selected infants with hypoxic-ischemic encephalopathy. However, the cooling methods used required repeated interventions and were either expensive or reported significant temperature variation. The objective of this pilot study was to describe the use, efficacy, and physiologic impact of an inexpensive servo-controlled cooling fan blowing room-temperature air. A servo-controlled fan was manufactured and used to cool 10 infants with hypoxic-ischemic encephalopathy to a rectal temperature of 33 degrees C to 34 degrees C. The infants were sedated with phenobarbital, but clonidine was administered to some infants if shivering or discomfort occurred. A servo-controlled radiant warmer was used simultaneously with the fan to prevent overcooling. The settings used on the fan and radiant warmer differed slightly between some infants as the technique evolved. A rectal temperature of 34 degrees C was achieved in a median time of 58 minutes. Overcooling did not occur, and the mean temperature during cooling was 33.6 degrees C +/- 0.2 degrees C. Inspired oxygen requirements increased in 6 infants, and 5 infants required inotropic support during cooling, but this was progressively reduced after 1 to 2 days. Dehydration did not occur. Five infants shivered when faster fan speeds were used, but 4 of the 5 infants had hypomagnesemia. Shivering was controlled with clonidine in 4 infants, but 1 infant required morphine. Servo-controlled fan cooling with room-temperature air, combined with servo-controlled radiant warming, was an effective, simple, and safe method of inducing and maintaining rectal temperatures of 33 degrees C to 34 degrees C in sedated infants with hypoxic-ischemic encephalopathy. After induction of hypothermia, a low fan speed facilitated accurate temperature control, and warmer-controlled rewarming at 0.2 degrees C increments every 30 minutes resulted in more appropriate rewarming than when 0.5 degrees C

  11. An Evaluation of Ultra-High Pressure Regulator for Robotic Lunar Landing Spacecraft

    Science.gov (United States)

    Burnside, Christopher; Trinh, Huu; Pedersen, Kevin

    2011-01-01

    The Robotic Lunar Lander Development (RLLD) Project Office at NASA Marshall Space Flight Center (MSFC) has studied several lunar surface science mission concepts. These missions focus on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface. Initial trade studies of launch vehicle options for these mission concepts indicate that the spacecraft design will be significantly mass-constrained. To minimize mass and facilitate efficient packaging, the notional propulsion system for these landers has a baseline of an ultra-high pressure (10,000 psig) helium pressurization system that has been used on Defense missiles. The qualified regulator is capable of short duration use; however, the hardware has not been previously tested at NASA spacecraft requirements with longer duration. Hence, technical risks exist in using this missile-based propulsion component for spacecraft applications. A 10,000-psig helium pressure regulator test activity is being carried out as part of risk reduction testing for MSFC RLLD project. The goal of the test activity is to assess the feasibility of commercial off-the-shelf ultra-high pressure regulator by testing with a representative flight mission profile. Slam-start, gas blowdown, water expulsion, lock-up, and leak tests are also performed on the regulator to assess performance under various operating conditions. The preliminary test results indicated that the regulator can regulate helium to a stable outlet pressure of 740 psig within the +/- 5% tolerance band and maintain a lock-up pressure less than +5% for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for internal seat leakage at lock-up and less than10-5 SCCS for external leakage through the regulator ambient reference cavity. The successful tests have shown the potential for 10,000 psig helium systems in NASA spacecraft and have reduced risk

  12. Visual Servo Tracking Control of a Wheeled Mobile Robot with a Monocular Fixed Camera

    National Research Council Canada - National Science Library

    Chen, J; Dixon, W. E; Dawson, D. M; Chitrakaran, V. K

    2004-01-01

    In this paper, a visual servo tracking controller for a wheeled mobile robot (WMR) is developed that utilizes feedback from a monocular camera system that is mounted with a fixed position and orientation...

  13. [Development of a gait trainer with regulated servo-drive for rehabilitation of locomotor disabled patients].

    Science.gov (United States)

    Uhlenbrock, D; Sarkodie-Gyan, T; Reiter, F; Konrad, M; Hesse, S

    1997-01-01

    The aim of the present study was to develop a new gait trainer for the rehabilitation of non-ambulatory patients. For the simulation of the gait phase, we used a commercially available fitness trainer (Fast Track) with two foot plates moving in an alternating fashion and connected to a servo-controlled propulsion system providing the necessary support for the movement depending on the patient's impairment level. To compensate deficient equilibrium reflexes, the patient was suspended in a harness capable of supporting some of his/her weight. Video analysis of gait and the kinesiological EMG were used to assess the pattern of movement and the corresponding muscle activity, which were then evaluated in healthy subjects, spinal cord injured and stroke patients and compared with walking on the flat or on a treadmill. Walking on the gait trainer was characterised by a symmetrical, sinusoidal movement of lower amplitude than in normal gait. The EMG showed a low activity of the tibialis anterior muscle, while the antigravity muscles were clearly activated by the gait trainer during the stance phase. In summary, the new gait trainer generates a symmetrical gait-like movement, promoting weight acceptance in the stance phase, which is important for the restoration of walking ability.

  14. REGULATION OF BLOOD PRESSURE IN PATIENTS WITH PRIMARY HYPERTENSION WITH SMOOTHIE BANANA (MUSA PARADISIACA

    Directory of Open Access Journals (Sweden)

    Eni Puji Lestari

    2017-04-01

    Full Text Available Introduction: Hypertension is a major problem that often happen in Indonesia. Hypertension can cause many complications. In Indonesia almost patients with hypertension got farmacologic therapy, but there is no difference. Banana smoothie is one of nonfarmacologic therapy that can be used to lower blood pressure. The purpose of this study was to analyze the effect of banana smoothie on regulation in patients with primary hypertension. Method: This study used quasy experimental design. The population in this study were patients with primary hypertension in Kedungturi village Taman Sidoarjo. The sampling technique used nonprobability sampling type of purposive sampling. The total number of sample were 16 respondents who were selected based on inclusion and exclusion criteria. Result:The Result of paired t-test at the systolic blood pressure and diastolic blood pressure in experiment group showed p value = 0.000. Independent t test between experiment group post-test and control group post-test showed p value = 0.000 for systolic blood pressure and p value = 0.002 for diastolic blood pressure. This result showed that there was a difference value of pretest and post-test systolic and diastolic blood pressure. With the result of independen t-test we know that there is a difference value between exsperiment and control blood pressure. Discussion: This study explain that there was significant effect of banana smoothie to regulate blood pressure in patients with primary hypertention. Banana smoothie can regulate the blood pressure because of high kalium substance. The function of kalium is to reduce the effect of natrium so the blood pressure can down. It can be conclude that banana smoothie can regulate the blood pressure in patients with primary hypertention. In further day patients with hypertension can choose banana smoothie to regulate their blood pressure.

  15. Fault detection for discrete-time switched systems with sensor stuck faults and servo inputs.

    Science.gov (United States)

    Zhong, Guang-Xin; Yang, Guang-Hong

    2015-09-01

    This paper addresses the fault detection problem of switched systems with servo inputs and sensor stuck faults. The attention is focused on designing a switching law and its associated fault detection filters (FDFs). The proposed switching law uses only the current states of FDFs, which guarantees the residuals are sensitive to the servo inputs with known frequency ranges in faulty cases and robust against them in fault-free case. Thus, the arbitrarily small sensor stuck faults, including outage faults can be detected in finite-frequency domain. The levels of sensitivity and robustness are measured in terms of the finite-frequency H- index and l2-gain. Finally, the switching law and FDFs are obtained by the solution of a convex optimization problem. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Detection of Surface Defects and Servo Signal Restoration for a Compact Disc Player

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2006-01-01

    Compact disc (CD) players have been on the market for more than two decades, and the involved technologies, including control are very mature. Some problems, however, still remain with respect to playing CDs having to surface defects like scratches and fingerprints. Two servo control loops are used...... to keep the optical pick-up unit (OPU) focused and radially locked to the information track of the CD. The problem is to design servo controllers which are well suited for both handling surface defects and disturbances like mechanical shocks. The handling of surface defects requires a low-controller...... bandwidth which is in conflict with the requirement for the handling of disturbances. This control problem can be solved by the use of a fault tolerant control strategy, where the fault detection is very important. The OPU feeds the controllers with detector signals. Based on these, focus and radial...

  17. Servo-controlling structure of five-axis CNC system for real-time NURBS interpolating

    Science.gov (United States)

    Chen, Liangji; Guo, Guangsong; Li, Huiying

    2017-07-01

    NURBS (Non-Uniform Rational B-Spline) is widely used in CAD/CAM (Computer-Aided Design / Computer-Aided Manufacturing) to represent sculptured curves or surfaces. In this paper, we develop a 5-axis NURBS real-time interpolator and realize it in our developing CNC(Computer Numerical Control) system. At first, we use two NURBS curves to represent tool-tip and tool-axis path respectively. According to feedrate and Taylor series extension, servo-controlling signals of 5 axes are obtained for each interpolating cycle. Then, generation procedure of NC(Numerical Control) code with the presented method is introduced and the method how to integrate the interpolator into our developing CNC system is given. And also, the servo-controlling structure of the CNC system is introduced. Through the illustration, it has been indicated that the proposed method can enhance the machining accuracy and the spline interpolator is feasible for 5-axis CNC system.

  18. A Novel Rotor and Stator Magnetic Fields Direct-Orthogonalized Vector Control Scheme for the PMSM Servo System

    Directory of Open Access Journals (Sweden)

    Shi-Xiong Zhang

    2014-02-01

    Full Text Available Permanent Magnet Synchronous motor (PMSM has received widespread acceptance in recent years. In this paper, a new rotor and stator Magnetic Fields Direct-Orthogonalized Vector Control (MFDOVC scheme is proposed for PMSM servo system. This method simplified the complex calculation of traditional vector control, a part of the system resource is economized. At the same time, through the simulation illustration validation, the performance of PMSM servo system with the proposed MFDOVC scheme can achieve the same with the complex traditional vector control method, but much simpler calculation is implemented using the proposed method.

  19. JPRS Report (Erratum), Science & Technology, Japan, Selections from MITI White Paper on Industrial Technology Trends and Issues

    Science.gov (United States)

    1989-08-30

    10.7 846 1.87 7 Nissan Motor Co. 1,550 4.5 950 1.63 8 Mitsubishi Electric 1,120 6.2 620 1.81 9 Mitsubishi Heavy 870 5.3 707 1.23 10 Mazda Motor ...14. Bore screws 15. Servo motors 16. Hydraulic pressure regulating valves C. Finished Goods and Systems 17. Optical-magnetic disks 18. 1/2-inch...Included in this area are such components as servo motors , semiconductor lasers, CCDs, and hydraulic control valves. B) The development of

  20. A port-Hamiltonian approach to image-based visual servo control for dynamic systems

    NARCIS (Netherlands)

    Mahony, R.; Stramigioli, Stefano

    2012-01-01

    This paper introduces a port-Hamiltonian framework for the design of image-based visual servo control for dynamic mechanical systems. The approach taken introduces the concept of an image effort and provides an interpretation of energy exchange between the dynamics of the physical system and virtual

  1. Design of a Novel Servo-motorized Laser Device for Visual Pathways Diseases Therapy

    Directory of Open Access Journals (Sweden)

    Carlos Ignacio Sarmiento

    2015-12-01

    Full Text Available We discuss a novel servo-motorized laser device and a research protocol for visual pathways diseases therapies. The proposed servo-mechanized laser device can be used for potential rehabilitation of patients with hemianopia, quadrantanopia, scotoma, and some types of cortical damages. The device uses a semi spherical structure where the visual stimulus will be shown inside, according to a previous stimuli therapy designed by an ophthalmologist or neurologist. The device uses a pair of servomotors (with torque=1.5kg, which controls the laser stimuli position for the internal therapy and another pair for external therapy. Using electronic tools such as microcontrollers along with miscellaneous electronic materials, combined with LabVIEW based interface, a control mechanism is developed for the new device. The proposed device is well suited to run various visual stimuli therapies. We outline the major design principles including the physical dimensions, laser device’s kinematical analysis and the corresponding software development.

  2. Study of the regulation of the outlet temperature of Rapsodie end exchangers

    International Nuclear Information System (INIS)

    Fourcade, Christian; Le Bot, Michel

    1969-02-01

    The authors report a study which is part of general tests on end exchangers of the Rapsodie pile and associated servo-devices. They report an open-loop theoretical study of equipment responses, and the development of transfer functions to determine regulator adjustments, a closed-loop practical study to achieve better adjustments, and a hardware control. The authors present Rapsodie, describe the control process and the transfer function, reports the open loop study, the determination of the transfer function, and the closed loop study, report the analogical study (presentation of the simulator, simulation of the electro-pneumatic converter, of the servo-control and of derivatives), and present and discuss the obtained results

  3. Exploiting H infinity sampled-data control theory for high-precision electromechanical servo control design

    NARCIS (Netherlands)

    Oomen, T.A.E.; Wal, van de M.M.J.; Bosgra, O.H.

    2006-01-01

    Optimal design of digital controllers for industrial electromechanical servo systems using an Hinf-criterion is considered. Present industrial practice is to perform the control design in the continuous time domain and to discretize the controller a posteriori. This procedure involves unnecessary

  4. Development of X-Y servo pneumatic-piezoelectric hybrid actuators for position control with high response, large stroke and nanometer accuracy.

    Science.gov (United States)

    Chiang, Mao-Hsiung

    2010-01-01

    This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally.

  5. Development of X-Y Servo Pneumatic-Piezoelectric Hybrid Actuators for Position Control with High Response, Large Stroke and Nanometer Accuracy

    Directory of Open Access Journals (Sweden)

    Mao-Hsiung Chiang

    2010-03-01

    Full Text Available This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm and nanometer accuracy (20 nm. In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally.

  6. Image-Based Visual Servoing for Manipulation Via Predictive Control – A Survey of Some Results

    Directory of Open Access Journals (Sweden)

    Corneliu Lazăr

    2016-09-01

    Full Text Available In this paper, a review of predictive control algorithms developed by the authors for visual servoing of robots in manipulation applications is presented. Using these algorithms, a control predictive framework was created for image-based visual servoing (IBVS systems. Firstly, considering the point features, in the year 2008 we introduced an internal model predictor based on the interaction matrix. Secondly, distinctly from the set-point trajectory, we introduced in 2011 the reference trajectory using the concept from predictive control. Finally, minimizing a sum of squares of predicted errors, the optimal input trajectory was obtained. The new concept of predictive control for IBVS systems was employed to develop a cascade structure for motion control of robot arms. Simulation results obtained with a simulator for predictive IBVS systems are also presented.

  7. Pressure Feedback in Fluid Power Systems--Active Damping Explained and Exemplified

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben O.

    2018-01-01

    Fluid power systems are inherently nonlinear and typically suffer from very poor damping. Despite these characteristics, it is not uncommon that traditional linear type controllers are applied. This typically results in conservative adjustment of the controllers, or when more advanced controllers...... a given system, and how to adjust the parameters of the pressure feedback to obtain the best results. This is done for both a traditional symmetric cylinder servo system and a system with a differential cylinder using both pressure and nonpressure compensated proportional valves. Based on the presented...

  8. Infusion of the solid coal using pressure independent valves to regulate flow

    Energy Technology Data Exchange (ETDEWEB)

    Goretz, H G; Betting, K

    1979-01-01

    In order to improve infusion into the solid coal, attempts were made to effect this through several holes using a single pump; however, the regulation of the quantity of water directed into each hole by a ball-valve tap connected to the injection pump was shown to lack precision - gives the causes of this defect. Satisfactory regulation was obtained by means of pressure- independent flow valves which operate on the principle of hydrodynamic pressure balance; describes method of operation. Underground tests proved satisfactory even with large pressure variations. The problem of dirt penetration during down times was eliminated by installing a check valve. The system proves economical to run.

  9. Device for regulating and controlling of fluid pressure

    International Nuclear Information System (INIS)

    Andrews, H.N.; Singleton, N.R.; Frisch, E.; Stein, P.C.

    1972-01-01

    A pressure regulating valve for high pressures, suitable for PWR pressurisers, is based on controlled leakage. The valve may also function as a safety valve. The valve and seat surfaces are machined such that an annular space is formed towards the inner edge, and into this space cold fluid may be injected, thus preventing crud deposition and hindering steam formation. Fluid also leaks into the annular space between two bellows, which exert a closing force on the valve, in addition to the closing force provided by springs, whose force is adjustable by means of a screw arrangement. (JIW)

  10. The computer-aided design of a servo system as a multiple-criteria decision problem

    NARCIS (Netherlands)

    Udink ten Cate, A.J.

    1986-01-01

    This paper treats the selection of controller gains of a servo system as a multiple-criteria decision problem. In contrast to the usual optimization-based approaches to computer-aided design, inequality constraints are included in the problem as unconstrained objectives. This considerably simplifies

  11. Evaluation of Linear and Non-Linear Control Schemes Applied to a Hydraulic Servo System

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen

    2005-01-01

    Due to the innovation of low-cost electronics such as sensors, microcontrollers etc., the focus on highperformance motion control is increasing. This work focuses on position control of single-input single-output hydraulic servo-systems in general. A hydraulically actuated robotic manipulator...

  12. Optimality based repetitive controller design for track-following servo system of optical disk drives.

    Science.gov (United States)

    Chen, Wentao; Zhang, Weidong

    2009-10-01

    In an optical disk drive servo system, to attenuate the external periodic disturbances induced by inevitable disk eccentricity, repetitive control has been used successfully. The performance of a repetitive controller greatly depends on the bandwidth of the low-pass filter included in the repetitive controller. However, owing to the plant uncertainty and system stability, it is difficult to maximize the bandwidth of the low-pass filter. In this paper, we propose an optimality based repetitive controller design method for the track-following servo system with norm-bounded uncertainties. By embedding a lead compensator in the repetitive controller, both the system gain at periodic signal's harmonics and the bandwidth of the low-pass filter are greatly increased. The optimal values of the repetitive controller's parameters are obtained by solving two optimization problems. Simulation and experimental results are provided to illustrate the effectiveness of the proposed method.

  13. Ego depletion and attention regulation under pressure: is a temporary loss of self-control strength indeed related to impaired attention regulation?

    Science.gov (United States)

    Englert, Chris; Zwemmer, Kris; Bertrams, Alex; Oudejans, Raôul R

    2015-04-01

    In the current study we investigated whether ego depletion negatively affects attention regulation under pressure in sports by assessing participants' dart throwing performance and accompanying gaze behavior. According to the strength model of self-control, the most important aspect of self-control is attention regulation. Because higher levels of state anxiety are associated with impaired attention regulation, we chose a mixed design with ego depletion (yes vs. no) as between-subjects and anxiety level (high vs. low) as within-subjects factor. Participants performed a perceptual-motor task requiring selective attention, namely, dart throwing. In line with our expectations, depleted participants in the high-anxiety condition performed worse and displayed a shorter final fixation on bull's eye, demonstrating that when one's self-control strength is depleted, attention regulation under pressure cannot be maintained. This is the first study that directly supports the general assumption that ego depletion is a major factor in influencing attention regulation under pressure.

  14. Experimental consideration for realizing image based visual servo control system

    International Nuclear Information System (INIS)

    Ishikawa, N.; Suzuki, K.; Fujii, Y.; Usui, H.

    1995-01-01

    In this study, we consider the experimental aspect of image based visual servo control system. The items considered are the following; 1) Inertial parameter estimation, 2) Focal point estimation, 3) Controller performance for the system with delay. From the experimental result of visual control, it is found that the system is very sensitive to the controller gain because of the computational delay of vision. In order to establish a satisfactory delay compensation, more investigations on controller design are required. (author)

  15. Application of the regulations on pressurized components or light water reactor primary coolant circuits

    International Nuclear Information System (INIS)

    Barthelemy, F.; Menjon, G.

    1977-01-01

    This paper describes the philosophy and the provisions of the Order of 26 February 1974 concerning application of the regulations on pressurized components for light water reactor steam supply systems. The aim is to show how these regulations which differ from other regulations on pressurized components and is more detailed on many points, is applied in practice in France in the various stages of the design, construction and operation of PWRs. (NEA) [fr

  16. A Quasiphysics Intelligent Model for a Long Range Fast Tool Servo

    Science.gov (United States)

    Liu, Qiang; Zhou, Xiaoqin; Lin, Jieqiong; Xu, Pengzi; Zhu, Zhiwei

    2013-01-01

    Accurately modeling the dynamic behaviors of fast tool servo (FTS) is one of the key issues in the ultraprecision positioning of the cutting tool. Herein, a quasiphysics intelligent model (QPIM) integrating a linear physics model (LPM) and a radial basis function (RBF) based neural model (NM) is developed to accurately describe the dynamic behaviors of a voice coil motor (VCM) actuated long range fast tool servo (LFTS). To identify the parameters of the LPM, a novel Opposition-based Self-adaptive Replacement Differential Evolution (OSaRDE) algorithm is proposed which has been proved to have a faster convergence mechanism without compromising with the quality of solution and outperform than similar evolution algorithms taken for consideration. The modeling errors of the LPM and the QPIM are investigated by experiments. The modeling error of the LPM presents an obvious trend component which is about ±1.15% of the full span range verifying the efficiency of the proposed OSaRDE algorithm for system identification. As for the QPIM, the trend component in the residual error of LPM can be well suppressed, and the error of the QPIM maintains noise level. All the results verify the efficiency and superiority of the proposed modeling and identification approaches. PMID:24163627

  17. Dynamic Response of Control Servo System Installed in NAES-Equipped SB2C-5 Airplane (BuAer No. 83135)

    Science.gov (United States)

    Smaus, Louis H.; Stewart, Elwood C.

    1950-01-01

    Dynamic--response measurements for various conditions of displacement and rate signal input, sensitivity setting, and simulated hinge moment were made of the three control-surface servo systems of an NAES-equipped remote-controlled airplane while on the ground. The basic components of the servo systems are those of the General Electric Company type G-1 autopilot using electrical signal. sources, solenoid-operated valves, and hydraulic pistons. The test procedures and difficulties are discussed, Both frequency and transient-response data, are presented and comparisons are made. The constants describing the servo system, the undamped natural frequency, and the damping ratio, are determined by several methods. The response of the system with the addition of airframe rate signal is calculated. The transfer function of the elevator surface, linkage, and cable system is obtained. The agreement between various methods of measurement and calculation is considered very good. The data are complete enough and in such form that they may be used directly with the frequency-response data of an airplane to predict the stability of the autopilot-airplane combination.

  18. The effect of natural whey proteins on mechanisms of blood pressure regulation

    Directory of Open Access Journals (Sweden)

    Halina Car

    2014-02-01

    Full Text Available Whey is a rich natural source of peptides and amino acids. It has been reported in numerous studies that biological active peptides isolated from cow’s milk whey may affect blood pressure regulation. Studies on animals and humans have shown that α-lactalbumin and β-lactoglobulin obtained from enzymatically hydrolysed whey inhibit angiotensin converting enzyme (ACE, while lactorphins lower blood pressure by normalizing endothelial function or by opioid receptors dependent mechanism. Whey proteins or their bioactive fragments decrease total cholesterol, LDL fraction and triglycerides, thus reducing the risk factors of cardiovascular diseases. The aim of this review is to discuss the effects of whey proteins on the mechanisms of blood pressure regulation.

  19. A new approach to control of xenon spatial oscillation during load follow operation via robust servo systems

    International Nuclear Information System (INIS)

    Ukai, Hiroyuki; Iwazumi, Tetsuo

    1994-01-01

    The control problem of xenon-induced spatial oscillations of PWR in the axial direction during a load following operation is investigated. The system models are described by a one-group diffusion equation with xenon and temperature feed-backs, iodine and xenon dynamic equations, and heat conductions processes. Control is implemented by the full-length and the part-length control rods and the boron concentration. In order to achieve the control purpose, control models are formulated as the design problem of robust servo systems for distributed parameter reactor systems. The total thermal power and the axial offset are chosen as outputs to be controlled. The control systems consist of servo compensators and stabilizing compensators. They are designed based on the finite-dimensional systems which are constructed by linearizing around steady states, approximately by the Galerkin method, and reducing dimensions via the singular perturbation method. A new and simple computational algorithm to obtain an approximate solution of a steady-state neutron balance is developed via the perturbation method. Some results of numerical simulations are shown in order to discuss the effectiveness of the theory developed in this paper. In particular, it is shown that the designed servo systems are robust against model errors with linearization and modal truncation

  20. A Port-Hamiltonian Approach to Visual Servo Control of a Pick and Place System

    NARCIS (Netherlands)

    Dirksz, Daniel A.; Scherpen, Jacquelien M. A.; Steinbuch, Maarten

    In this paper, we take a port-Hamiltonian approach to address the problem of image-based visual servo control of a pick and place system. Through a coordinate transformation and a passive interconnection between mechanical system and camera dynamics we realize a closed-loop system that is

  1. Influence of Forming Conditions on Springback in V-bending Process Using Servo Press

    Science.gov (United States)

    Abe, Shinya; Takahashi, Susumu

    To improve fuel efficiency, aluminum alloys and high tensile steel sheets are increasingly being applied to automotive body parts. However, it is difficult to obtain accurate dimensions of formed parts. Therefore, technologies for reducing springback for the part formed by press are strongly demanded. It is said that the die holding time at the bottom dead center of a servo press slide can affect springback. To clarify the forming mechanisms of this phenomenon, a V bending test with a servo press was performed. Aluminum alloys sheets are applied as specimens. The location of press slide was measured by linear scales. It was found that the movement of the slide in a slide motion program differs from the actual movement of the slide. It is important to confirm if the slide is located in the position specified in the program. In addition, a springback angle measurement system is proposed that uses laser displacement measurement apparatus. Because it avoids human error, the proposed measurement system is more accurate than the image processing method.

  2. Adaptive servo ventilation for central sleep apnoea in heart failure : SERVE-HF on-treatment analysis

    NARCIS (Netherlands)

    Woehrle, Holger; Cowie, Martin R.; Eulenburg, Christine; Suling, Anna; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K.; Somers, Virend K.; Zannad, Faiez; Teschler, Helmut; Wegscheider, Karl

    2017-01-01

    This on-treatment analysis was conducted to facilitate understanding of mechanisms underlying the increased risk of all-cause and cardiovascular mortality in heart failure patients with reduced ejection fraction and predominant central sleep apnoea randomised to adaptive servo ventilation versus the

  3. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors.

    Science.gov (United States)

    Cornelissen, Véronique A; Fagard, Robert H

    2005-10-01

    Previous meta-analyses of randomized controlled trials on the effects of chronic dynamic aerobic endurance training on blood pressure reported on resting blood pressure only. Our aim was to perform a comprehensive meta-analysis including resting and ambulatory blood pressure, blood pressure-regulating mechanisms, and concomitant cardiovascular risk factors. Inclusion criteria of studies were: random allocation to intervention and control; endurance training as the sole intervention; inclusion of healthy sedentary normotensive or hypertensive adults; intervention duration of > or =4 weeks; availability of systolic or diastolic blood pressure; and publication in a peer-reviewed journal up to December 2003. The meta-analysis involved 72 trials, 105 study groups, and 3936 participants. After weighting for the number of trained participants and using a random-effects model, training induced significant net reductions of resting and daytime ambulatory blood pressure of, respectively, 3.0/2.4 mm Hg (Phypertensive study groups (-6.9/-4.9) than in the others (-1.9/-1.6; Pendurance training decreases blood pressure through a reduction of vascular resistance, in which the sympathetic nervous system and the renin-angiotensin system appear to be involved, and favorably affects concomitant cardiovascular risk factors.

  4. A port-Hamiltonian approach to visual servo control of a pick and place system

    NARCIS (Netherlands)

    Dirksz, Daniel A.; Scherpen, Jacquelien M.A.

    2012-01-01

    In this paper we take a port-Hamiltonian approach to address the problem of image-based visual servo control of a pick and place system. We realize a closed-loop system, including the nonlinear camera dynamics, which is port-Hamiltonian. Although the closed-loop system is nonlinear, the resulting

  5. The analysis and compensation of errors of precise simple harmonic motion control under high speed and large load conditions based on servo electric cylinder

    Science.gov (United States)

    Ma, Chen-xi; Ding, Guo-qing

    2017-10-01

    Simple harmonic waves and synthesized simple harmonic waves are widely used in the test of instruments. However, because of the errors caused by clearance of gear and time-delay error of FPGA, it is difficult to control servo electric cylinder in precise simple harmonic motion under high speed, high frequency and large load conditions. To solve the problem, a method of error compensation is proposed in this paper. In the method, a displacement sensor is fitted on the piston rod of the electric cylinder. By using the displacement sensor, the real-time displacement of the piston rod is obtained and fed back to the input of servo motor, then a closed loop control is realized. There is compensation of pulses in the next period of the synthetic waves. This paper uses FPGA as the processing core. The software mainly comprises a waveform generator, an Ethernet module, a memory module, a pulse generator, a pulse selector, a protection module, an error compensation module. A durability of shock absorbers is used as the testing platform. The durability mainly comprises a single electric cylinder, a servo motor for driving the electric cylinder, and the servo motor driver.

  6. Fault Detection and Severity Analysis of Servo Valves Using Recurrence Quantification Analysis

    Science.gov (United States)

    2014-10-02

    method of false nearest neighbors, we found that the minimum embedding dimension for the system is d=2. Figure 3 shows the recurrence plots of the...manufacturing process planning method for the components of a complex mechatronic system . Applied Mathematical Modelling, 37(24), 9829–9845. Samadani, M...diagnostics of nonlinear systems . A detailed nonlinear math- ematical model of a servo electro-hydraulic system has been used to demonstrate the procedure

  7. New mode switching algorithm for the JPL 70-meter antenna servo controller

    Science.gov (United States)

    Nickerson, J. A.

    1988-01-01

    The design of control mode switching algorithms and logic for JPL's 70 m antenna servo controller are described. The old control mode switching logic was reviewed and perturbation problems were identified. Design approaches for mode switching are presented and the final design is described. Simulations used to compare old and new mode switching algorithms and logic show that the new mode switching techniques will significantly reduce perturbation problems.

  8. Self-regulation and social pressure reduce prejudiced responding and increase the motivation to be non-prejudiced.

    Science.gov (United States)

    Buzinski, Steven G; Kitchens, Michael B

    2017-01-01

    Self-regulation constrains the expression of prejudice, but when self-regulation falters, the immediate environment can act as an external source of prejudice regulation. This hypothesis derives from work demonstrating that external controls and internal self-regulation can prompt goal pursuit in the absence of self-imposed controls. Across four studies, we found support for this complementary model of prejudice regulation. In Study 1, self-regulatory fatigue resulted in less motivation to be non-prejudiced, compared to a non-fatigued control. In Study 2, strong (vs. weak) perceived social pressure was related to greater motivation to be non-prejudiced. In Study 3, dispositional self-regulation predicted non-prejudice motivation when perceived social pressure was weak or moderate, but not when it was strong. Finally, in Study 4 self-regulatory fatigue increased prejudice when social pressure was weak but not when it was strong.

  9. An Evaluation of a High Pressure Regulator for NASA's Robotic Lunar Lander Spacecraft

    Science.gov (United States)

    Burnside, Christopher G.; Trinh, Huu P.; Pedersen, Kevin W.

    2013-01-01

    The Robotic Lunar Lander (RLL) development project office at NASA Marshall Space Flight Center is currently studying several lunar surface science mission concepts. The focus is on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface or other air-less bodies in the solar system. Initial trade studies of launch vehicle options indicate the spacecraft will be significantly mass and volume constrained. Because of the investment by the DOD in low mass, highly volume efficient components, NASA has investigated the potential integration of some of these technologies in space science applications. A 10,000 psig helium pressure regulator test activity has been conducted as part of the overall risk reduction testing for the RLL spacecraft. The regulator was subjected to typical NASA acceptance testing to assess the regulator response to the expected RLL mission requirements. The test results show the regulator can supply helium at a stable outlet pressure of 740 psig within a +/- 5% tolerance band and maintain a lock-up pressure less than the +5% above nominal outlet pressure for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for the internal seat leakage at lock-up and less than 10-5 SCCS for external leakage through the regulator body. The successful test has shown the potential for 10,000 psig helium systems in NASA spacecraft and has reduced risk associated with hardware availability and hardware ability to meet RLL mission requirements.

  10. Apparatus producing constant cable tension for intermittent demand

    Science.gov (United States)

    Lauritzen, Ted

    1985-01-01

    The disclosed apparatus produces constant tension in superconducting electrical cable, or some other strand, under conditions of intermittent demand, as the cable is unreeled from a reel or reeled thereon. The apparatus comprises a pivotally supported swing frame on which the reel is rotatably supported, a rotary motor, a drive train connected between the motor and the reel and including an electrically controllable variable torque slip clutch, a servo transducer connected to the swing frame for producing servo input signals corresponding to the position thereof, a servo control system connected between the transducer and the clutch for regulating the torque transmitted by the clutch to maintain the swing frame in a predetermined position, at least one air cylinder connected to the swing frame for counteracting the tension in the cable, and pressure regulating means for supplying a constant air pressure to the cylinder to establish the constant tension in the cable, the servo system and the clutch being effective to produce torque on the reel in an amount sufficient to provide tension in the cable corresponding to the constant force exerted by the air cylinder. The drive train also preferably includes a fail-safe brake operable to its released position by electrical power in common with the servo system, for preventing rotation of the reel if there is a power failure. A shock absorber and biasing springs may also be connected to the swing frame, such springs biasing the frame toward its predetermined position. The tension in the cable may be measured by force measuring devices engageable with the bearings for the reel shaft, such bearings being supported for slight lateral movement. The reel shaft is driven by a Shmidt coupler which accommodates such movement.

  11. Apparatus producing constant cable tension for intermittent demand

    International Nuclear Information System (INIS)

    Lauritzen, T.

    1985-01-01

    The disclosed apparatus produces constant tension in superconducting electrical cable, or some other strand, under conditions of intermittent demand, as the cable is unreeled from a reel or reeled thereon. The apparatus comprises a pivotally supported swing frame on which the reel is rotatably supported, a rotary motor, a drive train connected between the motor and the reel and including an electrically controllable variable torque slip clutch, a servo transducer connected to the swing frame for producing servo input signals corresponding to the position thereof, a servo control system connected between the transducer and the clutch for regulating the torque transmitted by the clutch to maintain the swing frame in a predetermined position, at least one air cylinder connected to the swing frame for counteracting the tension in the cable, and pressure regulating means for supplying a constant air pressure to the cylinder to establish the constant tension in the cable, the servo system and the clutch being effective to produce torque on the reel in an amount sufficient to provide tension in the cable corresponding to the constant force exerted by the air cylinder. The drive train also preferably includes a fail-safe brake operable to its released position by electrical power in common with the servo system, for preventing rotation of the reel if there is a power failure. A shock absorber and biasing springs may also be connected to the swing frame, such springs biasing the frame toward its predetermined position. The tension in the cable may be measured by force measuring devices engageable with the bearings for the reel shaft, such bearings being supported for slight lateral movement. The reel shaft is driven by a Shmidt coupler which accommodates such movement

  12. Regulation of Blood Pressure by Targeting CaV1.2-Galectin-1 Protein Interaction.

    Science.gov (United States)

    Hu, Zhenyu; Li, Guang; Wang, Jiong-Wei; Chong, Suet Yen; Yu, Dejie; Wang, Xiaoyuan; Soon, Jia Lin; Liang, Mui Cheng; Wong, Yuk Peng; Huang, Na; Colecraft, Henry M; Liao, Ping; Soong, Tuck Wah

    2018-04-12

    Background -L-type Ca V 1.2 channels play crucial roles in regulation of blood pressure. Galectin-1 (Gal-1), has been reported to bind to the I-II loop of Ca V 1.2 channels to reduce their current density. However, the mechanistic understanding for the down-regulation of Ca V 1.2 channels by Gal-1, and whether Gal-1 plays a direct role in blood pressure regulation remain unclear. Methods - In vitro experiments involving co-IP, western blot, patch-clamp recordings, immunohistochemistry and pressure myography were used to evaluate the molecular mechanisms by which Gal-1 down-regulates Ca V 1.2 channel in transfected HEK 293 cells, smooth muscle cells, arteries from Lgasl1 -/- mice, rat and human patients. In vivo experiments involving delivery of Tat-e9c peptide and AAV5-Gal-1 into rats were performed to investigate the effect of targeting Ca V 1.2-Gal-1 interaction on blood pressure monitored by tail cuff or telemetry methods. Results -Our study reveals that Gal-1 is a key regulator for proteasomal degradation of Ca V 1.2 channels. Gal-1 competed allosterically with Ca V β subunit for binding to the I-II loop of Ca V 1.2 channel. This competitive disruption of Ca V β binding led to Ca V 1.2 degradation by exposing the channels to poly-ubiquitination. Notably, we demonstrated that the inverse relationship of reduced Gal-1 and increased Ca V 1.2 protein levels in arteries was associated with hypertension in hypertensive rats and patients, and Gal-1 deficiency induces higher blood pressure in mice due to up-regulated Ca V 1.2 protein level in arteries. To directly regulate blood pressure by targeting the Ca V 1.2-Gal-1 interaction, we administered Tat-e9c, a peptide that competed for binding of Gal-1, by a mini-osmotic pump and this specific disruption of Ca V 1.2-Gal-1 coupling increased smooth muscle Ca V 1.2 currents, induced larger arterial contraction and caused hypertension in rats. In contrasting experiments, over-expression of Gal-1 in smooth muscle by a

  13. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.

    Science.gov (United States)

    Chen, Tien-Chi; Yu, Chih-Hsien

    2009-07-01

    A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.

  14. Modeling and Parameter Identification of the Vibration Characteristics of Armature Assembly in a Torque Motor of Hydraulic Servo Valves under Electromagnetic Excitations

    Directory of Open Access Journals (Sweden)

    Jinghui Peng

    2014-07-01

    Full Text Available The resonance of the armature assembly is the main problem leading to the fatigue of the spring pipe in a torque motor of hydraulic servo valves, which can cause the failure of servo valves. To predict the vibration characteristics of the armature assembly, this paper focuses on the mathematical modeling of the vibration characteristics of armature assembly in a hydraulic servo valve and the identification of parameters in the models. To build models more accurately, the effect of the magnetic spring is taken into account. Vibration modal analysis is performed to obtain the mode shapes and natural frequencies, which are necessary to implement the identification of damping ratios in the mathematical models. Based on the mathematical models for the vibration characteristics, the harmonic responses of the armature assembly are analyzed using the finite element method and measured under electromagnetic excitations. The simulation results agree well with the experimental studies.

  15. Measuring the photodetector frequency response for ultrasonic applications by a heterodyne system with difference- frequency servo control.

    Science.gov (United States)

    Koch, Christian

    2010-05-01

    A technique for the calibration of photodiodes in ultrasonic measurement systems using standard and cost-effective optical and electronic components is presented. A heterodyne system was realized using two commercially available distributed feedback lasers, and the required frequency stability and resolution were ensured by a difference-frequency servo control scheme. The frequency-sensitive element generating the error signal for the servo loop comprised a delay-line discriminator constructed from electronic elements. Measurements were carried out at up to 450 MHz, and the uncertainties of about 5% (k = 2) can be further reduced by improved radio frequency power measurement without losing the feature of using only simple elements. The technique initially dedicated to the determination of the frequency response of photodetectors applied in ultrasonic applications can be transferred to other application fields of optical measurements.

  16. Beyond gut feelings: how the gut microbiota regulates blood pressure.

    Science.gov (United States)

    Marques, Francine Z; Mackay, Charles R; Kaye, David M

    2018-01-01

    Hypertension is the leading risk factor for heart disease and stroke, and is estimated to cause 9.4 million deaths globally every year. The pathogenesis of hypertension is complex, but lifestyle factors such as diet are important contributors to the disease. High dietary intake of fruit and vegetables is associated with reduced blood pressure and lower cardiovascular mortality. A critical relationship between dietary intake and the composition of the gut microbiota has been described in the literature, and a growing body of evidence supports the role of the gut microbiota in the regulation of blood pressure. In this Review, we describe the mechanisms by which the gut microbiota and its metabolites, including short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides, act on downstream cellular targets to prevent or contribute to the pathogenesis of hypertension. These effects have a direct influence on tissues such as the kidney, the endothelium, and the heart. Finally, we consider the role of the gut microbiota in resistant hypertension, the possible intergenerational effect of the gut microbiota on blood pressure regulation, and the promising therapeutic potential of gut microbiota modification to improve health and prevent disease.

  17. Finite-time tracking control for multiple non-holonomic mobile robots based on visual servoing

    Science.gov (United States)

    Ou, Meiying; Li, Shihua; Wang, Chaoli

    2013-12-01

    This paper investigates finite-time tracking control problem of multiple non-holonomic mobile robots via visual servoing. It is assumed that the pinhole camera is fixed to the ceiling, and camera parameters are unknown. The desired reference trajectory is represented by a virtual leader whose states are available to only a subset of the followers, and the followers have only interaction. First, the camera-objective visual kinematic model is introduced by utilising the pinhole camera model for each mobile robot. Second, a unified tracking error system between camera-objective visual servoing model and desired reference trajectory is introduced. Third, based on the neighbour rule and by using finite-time control method, continuous distributed cooperative finite-time tracking control laws are designed for each mobile robot with unknown camera parameters, where the communication topology among the multiple mobile robots is assumed to be a directed graph. Rigorous proof shows that the group of mobile robots converges to the desired reference trajectory in finite time. Simulation example illustrates the effectiveness of our method.

  18. Antenna servo control system characterization: Rate loop analysis for 34-m antenna at DSS 15

    Science.gov (United States)

    Nickerson, J. A.; Cox, D. G.; Smith, H. K.; Engel, J. H.; Ahlstrom, H. G.

    1986-01-01

    The elevation and azimuth servo rate loops at the 34-m High Efficiency Deep Space Station 15 (DSS 15) are described. Time and frequency response performance criteria were measured. The results are compared to theoretically deduced performance criteria. Unexpected anomalies in the frequency response are observed and identified.

  19. Development of the maintenance process by the servo manipulator for the parts of the equipment outside the MSM's workspace in a hot cell

    International Nuclear Information System (INIS)

    Lee, J. Y.; Kim, S. H.; Song, D. K.; Park, B. S.; Yun, G. S.

    2003-01-01

    In this study, the maintenance process by the servo manipulator for the parts of the equipment that cannot be reached by MSM in the hot cell was developed. To do this, the virtual mock up is implemented using virtual prototyping technology. And, Using this mock-up, the workspace of the manipulators in the hot cell and the operator's view through the wall-mounted lead glass are analyzed. And the path planning of the servo manipulator using the collision detection of the virtual mockup is established. Also, the maintenance process for the parts of the equipment that are located out area of the MSM's workspace by the servo manipulator is proposed and verified through the graphic simulation. The proposed remote maintenance process of the equipment can be effectively used in the real hot cell operation. Also, the implemented virtual mock-up of the hot cell can be effecively used in analyzing the various hot cell operation and in enhancing the reliability and safety of the spent fuel manaement

  20. Progress in understanding the mechanical behavior of pressure-vessel materials at elevated temperatures

    International Nuclear Information System (INIS)

    Swindeman, R.W.; Brinkman, C.R.

    1981-01-01

    Progress during the 1970's on the production of high-temperature mechanical properties data for pressure vessel materials was reviewed. The direction of the research was toward satisfying new data requirements to implement advances in high-temperature inelastic design methods. To meet these needs, servo-controlled testing machines and high-resolution extensometry were developed to gain more information on the essential behavioral features of high-temperature alloys. The similarities and differences in the mechanical response of various pressure vessel materials were identified. High-temperature pressure vessel materials that have received the most attention included Type 304 stainless steel, Type 316 stainless steel, 2 1/4 Cr-1 Mo steel, alloy 800H, and Hastelloy X

  1. Servo-driven piezo common rail diesel injection system; Servogetriebene Piezo-Common-Rail-Dieseleinspritzung

    Energy Technology Data Exchange (ETDEWEB)

    Schoeppe, Detlev; Stahl, Christian; Krueger, Grit; Dian, Vincent [Continental Automotive GmbH, Regensburg (Germany). Geschaeftsbereich Engine Systems

    2012-03-15

    The requirements to be met by future diesel engines represent major challenges for fuel injection technology: Fuel consumption, emissions and noise development are to be further reduced without impairing driving enjoyment. To address these challenges, Continental has developed a new fuel injection system that features a high level of precision and accuracy. The key component is a servo-driven injector that is operated in a closed control circuit. (orig.)

  2. Forward Models Applied in Visual Servoing for a Reaching Task in the iCub Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Daniel Fernando Tello Gamarra

    2009-01-01

    Full Text Available This paper details the application of a forward model to improve a reaching task. The reaching task must be accomplished by a humanoid robot with 53 degrees of freedom (d.o.f. and a stereo-vision system. We have explored via simulations a new way of constructing and utilizing a forward model that encodes eye–hand relationships. We constructed a forward model using the data obtained from only a single reaching attempt. ANFIS neural networks are used to construct the forward model, but the forward model is updated online with new information that comes from each reaching attempt. Using the obtained forward model, an initial image Jacobian is estimated and is used with a visual servoing controller. Simulation results demonstrate that errors are lower when the initial image Jacobian is derived from the forward model. This paper is one of the few attempts at applying visual servoing in a complete humanoid robot.

  3. Liquid Hydrogen Regulated Low Pressure High Flow Pneumatic Panel AFT Arrow Analysis

    Science.gov (United States)

    Jones, Kelley, M.

    2013-01-01

    Project Definition: Design a high flow pneumatic regulation panel to be used with helium and hydrogen. The panel will have two circuits, one for gaseous helium (GHe) supplied from the GHe Movable Storage Units (MSUs) and one for gaseous hydrogen (GH2) supplied from an existing GH2 Fill Panel. The helium will supply three legs; to existing panels and on the higher pressure leg and Simulated Flight Tanks (SFTs) for the lower pressure legs. The hydrogen line will pressurize a 33,000 gallon vacuum jacketed vessel.

  4. iSERVO: Implementing the International Solid Earth Research Virtual Observatory by Integrating Computational Grid and Geographical Information Web Services

    Science.gov (United States)

    Aktas, Mehmet; Aydin, Galip; Donnellan, Andrea; Fox, Geoffrey; Granat, Robert; Grant, Lisa; Lyzenga, Greg; McLeod, Dennis; Pallickara, Shrideep; Parker, Jay; Pierce, Marlon; Rundle, John; Sayar, Ahmet; Tullis, Terry

    2006-12-01

    We describe the goals and initial implementation of the International Solid Earth Virtual Observatory (iSERVO). This system is built using a Web Services approach to Grid computing infrastructure and is accessed via a component-based Web portal user interface. We describe our implementations of services used by this system, including Geographical Information System (GIS)-based data grid services for accessing remote data repositories and job management services for controlling multiple execution steps. iSERVO is an example of a larger trend to build globally scalable scientific computing infrastructures using the Service Oriented Architecture approach. Adoption of this approach raises a number of research challenges in millisecond-latency message systems suitable for internet-enabled scientific applications. We review our research in these areas.

  5. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller.

    Science.gov (United States)

    Lopez-Franco, Carlos; Gomez-Avila, Javier; Alanis, Alma Y; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-08-12

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results.

  6. High mechanical advantage design of six-bar Stephenson mechanism for servo mechanical presses

    Directory of Open Access Journals (Sweden)

    Jianguo Hu

    2016-06-01

    Full Text Available This article proposed a two-phase design scheme of Stephenson six-bar working mechanisms for servo mechanical presses with high mechanical advantage. In the qualitative design phase, first, a Stephenson six-bar mechanism with a slide was derived from Stephenson six-bar kinematic chains. Second, based on the instant center analysis method, the relationship between mechanical advantage and some special instant centers was founded, and accordingly a primary mechanism configuration with high mechanical advantage was designed qualitatively. Then, a parameterized prototype model was established, and the influences of design parameters toward slide kinematical characteristics were analyzed. In the quantitative design phase, a multi-objective optimization model, aiming at high mechanical advantage and dwelling characteristics, was built, and a case design was done to find optimal dimensions. Finally, simulations based on the software ADAMS were conducted to compare the transmission characteristics of the optimized working mechanism with that of slide-crank mechanism and symmetrical toggle mechanism, and an experimental press was made to validate the design scheme. The simulation and experiment results show that, compared with general working mechanisms, the Stephenson six-bar working mechanism has higher mechanical advantage and better dwelling characteristics, reducing capacities and costs of servo motors effectively.

  7. Re-evaluation of the technical basis for the regulation of pressurized thermal shock in U.S. pressurized water reactor vessels

    Energy Technology Data Exchange (ETDEWEB)

    Malik, S.N.; Kirk, M.T.; Jackson, D.A.; Hackett, E.M.; Chokshi, N.C.; Siu, N.O.; Woods, H.W.; Bessette, D.E. [Office of Nuclear Regulatory Research, U.S. nuclear Regulatory Commission, Washington, D.C. (United States); Dickson, T.L. [Oak Ridge National Lab., Computational Physics and Engineering Div., Oak Ridge, TN (United States)

    2001-07-01

    The current federal regulation to insure that pressurized-water nuclear reactor pressure vessels (RPVs) maintain their structural integrity when subjected to potential pressurized thermal shock (PTS) events during the life of the plant were derived from computational models and technologies that were developed in the early-to-mid 1980's. Since that time, there have been several advancements and refinements to the relevant fracture technology, materials characterization methods, probabilistic risk assessment (PRA) and thermal-hydraulics (TH) computational methods. Preliminary studies performed in 1998 (that applied this new technology) indicated the potential that technical bases can be established to support a relaxation of the current federal regulation (10 CFR 50.61) for PTS. A revision of PTS regulation could have significant implications for plants reaching their end-of-license periods and future plant license-extension considerations. Based on the above, in 1999, the United States Nuclear Regulatory Commission initiated a comprehensive project, with the nuclear industry as a participant, to revisit the technical bases for the current regulations on PTS. This paper provides an overview and status of the methodology that has evolved over the last two years through interactions between experts in relevant disciplines (TH, PRA, materials and fracture mechanics, and non-destructive and destructive examination to predict distribution of fabrication induced flaws in the belt-line region of the PWR vessels) from the NRC staff, their contractors, and representatives from the nuclear industry. This updated methodology is currently being implemented into the FAVOR (Fracture Analysis of Vessels: Oak Ridge) computer code for application to re-examine the adequacy of the current regulations and to determine if technical basis can be established for relaxing the current regulation. It is anticipated that the effort will be completed in 2002. (authors)

  8. Re-evaluation of the technical basis for the regulation of pressurized thermal shock in U.S. pressurized water reactor vessels

    International Nuclear Information System (INIS)

    Malik, S.N.; Kirk, M.T.; Jackson, D.A.; Hackett, E.M.; Chokshi, N.C.; Siu, N.O.; Woods, H.W.; Bessette, D.E.; Dickson, T.L.

    2001-01-01

    The current federal regulation to insure that pressurized-water nuclear reactor pressure vessels (RPVs) maintain their structural integrity when subjected to potential pressurized thermal shock (PTS) events during the life of the plant were derived from computational models and technologies that were developed in the early-to-mid 1980's. Since that time, there have been several advancements and refinements to the relevant fracture technology, materials characterization methods, probabilistic risk assessment (PRA) and thermal-hydraulics (TH) computational methods. Preliminary studies performed in 1998 (that applied this new technology) indicated the potential that technical bases can be established to support a relaxation of the current federal regulation (10 CFR 50.61) for PTS. A revision of PTS regulation could have significant implications for plants reaching their end-of-license periods and future plant license-extension considerations. Based on the above, in 1999, the United States Nuclear Regulatory Commission initiated a comprehensive project, with the nuclear industry as a participant, to revisit the technical bases for the current regulations on PTS. This paper provides an overview and status of the methodology that has evolved over the last two years through interactions between experts in relevant disciplines (TH, PRA, materials and fracture mechanics, and non-destructive and destructive examination to predict distribution of fabrication induced flaws in the belt-line region of the PWR vessels) from the NRC staff, their contractors, and representatives from the nuclear industry. This updated methodology is currently being implemented into the FAVOR (Fracture Analysis of Vessels: Oak Ridge) computer code for application to re-examine the adequacy of the current regulations and to determine if technical basis can be established for relaxing the current regulation. It is anticipated that the effort will be completed in 2002. (authors)

  9. Analysis of Dead Time and Implementation of Smith Predictor Compensation in Tracking Servo Systems for Small Unmanned Aerial Vehicles

    National Research Council Canada - National Science Library

    Brashear , Jr, Thomas J

    2005-01-01

    .... Gimbaled video camera systems, designed at NPS, use two servo actuators to command line of sight orientation via serial controller while tracking a target and is termed Visual Based Target Tracking (VBTT...

  10. Fluid Micro-Reservoirs Array Design with Auto-Pressure Regulation for High-Speed 3D Printers

    Directory of Open Access Journals (Sweden)

    Moshe Einat

    2016-11-01

    Full Text Available Three dimensional (3D printing technology is rapidly evolving such that printing speed is now a crucial factor in technological developments and future applications. For printing heads based on the inkjet concept, the number of nozzles on the print head is a limiting factor of printing speed. This paper offers a method to practically increase the number of nozzles unlimitedly, and thus to dramatically ramp up printing speed. Fluid reservoirs are used in inkjet print heads to supply fluid through a manifold to the jetting chambers. The pressure in the reservoir’s outlet is important and influences device performance. Many efforts have been made to regulate pressure inside the fluid reservoirs so as to obtain a constant pressure in the chambers. When the number of nozzles is increased too much, the regulation of uniform pressure among all the nozzles becomes too complicated. In this paper, a different approach is taken. The reservoir is divided into an array of many micro-reservoirs. Each micro-reservoir supports one or a few chambers, and has a unique structure with auto-pressure regulation, where the outlet pressure is independent of the fluid level. The regulation is based on auto-compensation of the gravity force and a capillary force having the same dependence on the fluid level; this feature is obtained by adding a wedge in the reservoir with a unique shape. When the fluid level drops, the gravitational force and the capillary force decrease with it, but at similar rates. Terms for the force balance are derived and, consequently, a constant pressure in the fluid micro-reservoir segment is obtained automatically, with each segment being autonomous. This micro reservoir array is suggested for the enlargement of an inkjet print head and the achievement of high-speed 3D printing.

  11. Nonlinear control for a class of hydraulic servo system.

    Science.gov (United States)

    Yu, Hong; Feng, Zheng-jin; Wang, Xu-yong

    2004-11-01

    The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.

  12. A study about critical flow characteristics and the pipeline network modeling of a pressure regulator (II) : the influence of a opening ratio

    International Nuclear Information System (INIS)

    Shin, Chang Hoon; Ha, Jong Man; Lee, Cheol Gu; Her, Jae Young; Im, Ji Hyun; Joo, Won Gu

    2005-01-01

    The suitable pressure regulator modeling at each opening ratio and pressure ratio is very important to obtain reliable results, especially in small scale pipeline network analysis such as a pressure regulator system. And it is needed to confirm both whether temperature recovery is achieved after passing by the pressure regulator's narrow neck and how much amount of low temperature area that can cause condensate accumulation is distributed by various PCV models and driving conditions. In this research, the numerical model resembling P company pressure regulator that is used widely for high pressure range in commercial, is adopted as the base model of CFD analysis to investigate pressure regulator's flow characteristics at each pressure ratio and opening ratio. And it is also introduced to examine pressure regulator's critical flow characteristics and possibility of condensation or freezing at each pressure ratio and opening ratio. Additionally, the comparison between the results of CFD analysis and the results of analytic solution obtained by compressible fluid-dynamics theory is attempted to validate the results of CFD modeling in this study and to estimate the accuracy of theoretical approach at each pressure ratio and opening ratio too

  13. Fiber-linked interferometric pressure sensor

    Science.gov (United States)

    Beheim, G.; Fritsch, K.; Poorman, R. N.

    1987-01-01

    A fiber-optic pressure sensor is described which uses a diaphragm to modulate the mirror separation of a Fabry-Perot cavity (the sensing cavity). A multimode optical fiber delivers broadband light to the sensing cavity and returns the spectrally modulated light which the cavity reflects. The sensor's output spectrum is analyzed using a tunable Fabry-Perot cavity (the reference cavity) to determine the mismatch in the mirror separations of the two cavities. An electronic servo control uses this result to cause the mirror separation of the reference cavity to equal that of the sensing cavity. The displacement of the pressure-sensing diaphragm is then obtained by measuring the capacitance of the reference cavity's metal-coated mirrors. Relative to other fiber-optic sensors, an important advantage of this instrument is its high immunity to the effects of variations in both the transmissivity of the fiber link and the wavelength of the optical source.

  14. Real Time Implementation of PID and Fuzzy PD Controllers for DC-Servo Motor Based on Lab View Environment

    Directory of Open Access Journals (Sweden)

    Safaa M. Z. Al-Ubaidi

    2012-06-01

    Full Text Available This paper presents an implementation of conventional PID (CPID controller using Ziegler-Nichols rules and fuzzy PD (FPD controller for position servo motor control based on Lab View (Laboratory Virtual Instrument Engineering Workbench Environment through Data Acquisition (DAQ Device PCI- 6521 of National Instrument's and Data Acquisition Accessory Board Model (CB-68LP.CPID controller is perhaps the most well-known and most widely used in industrial applications. However, it has been known that CPID controller generally don’t work well for non-linear systems, higher order and time-delayed linear system and particularly complex and vague system. To overcome these difficulties, this paper proposes to use the FPD controller for a servo motor system instead of CPID. The parameters of servo motor used are completely unknown. The FPD structure has two-input single-output and fairly similar characteristic to its conventional counterpart and provides good performance. Simple rules base are used for FPD (nine rules only. Performance evaluation was carried out via a comparison study for the proposed control scheme and other existing control scheme, such as CPID controller. The critical point for this experiment on position system is a steady state error and settling time.  The performance showing that the FPD has less settling time and zero steady state error over its CPID. The algorithms of FPD and CPID controllers are implemented using PID, Fuzzy Logic and simulation toolkits of the Lab View environment.

  15. Robust and Stable Disturbance Observer of Servo System for Low Speed Operation Using the Radial Basis Function Network

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2005-01-01

    A new scheme to estimate the moment of inertia in the servo motor drive system in very low speed is proposed in this paper. The speed estimation scheme in most servo drive systems for low speed operation is sensitive to the variation of machine parameter, especially the moment of inertia....... To estimate the motor inertia value, the observer using the Radial Basis Function Network (RBFN) is applied. A control law for stabilizing the system and adaptive laws for updating both of the weights in the RBFN and a bounding constant are established so that the whole closed-loop system is stable...... in the sense of Lyapunov. The effectiveness of the proposed inertia estimation is verified by simulations and experiments. It is concluded that the speed control performance in low speed region is improved with the proposed disturbance observer using RBFN....

  16. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    Science.gov (United States)

    Hill, P.R.

    1994-12-27

    A boiling water reactor is described having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit. 4 figures.

  17. Fabrication and Characterization of Device Pressure Regulation System Orifice of Manufacturing Process Gel Uranium Column Gelation External

    International Nuclear Information System (INIS)

    Triyono; Sutarni; Indra Suryawan

    2009-01-01

    The device pressure regulation orifice system of manufacturing process gel uranium on external column gelation has been made and characterized. The device consists : compressor 5.75-6.75 kg / cm 2 , air container tank, power supply 24 volts dc, solenoid valve 24 volts dc, pressure indicator 0-100 mbar, pressure indicator 0-250 mbar, mechanical valve and power electric 380 volts 50 Hz. The activity includes: installation device system and characterization with pressure variation orifice 5-75 mbar on the compressor 5.75-6.5 kg/cm 2 continuously for 1 minute. The method of installation i.e: wiring and piping to first component and support component (compressor and pressure air indicator, air container tank and pressure air indicator, solenoid valve, power supply 220 volts / 24 volts dc and orifice). After apparatus installed has been tested by the characterization without feed under air pressure varied to orifice of 5-75 mbar and device characterization with variation diameter orifice of 0.5-1 mm and orifice pressure of 5-75 mbar. The result in the characterization an every component good function, can be operation by input pressure range of 15-185 mbar orifice pressure range of 5-75 mbar. The characterization result device pressure regulation orifice system showed that: the system can be good operation of air pressure regulation orifice between 5-75 mbar with diameter orifice 0.5 mm to result gelation range of 10-25 piece / minute with variation air pressure input between 15-185 mbar of air pressure compressor 5.75-6.5 kg cm 2 . (author)

  18. SRC-1 regulates blood pressure and aortic stiffness in female mice

    Science.gov (United States)

    Framingham Heart Study suggests that dysfunction of steroid receptor coactivator-1 may be involved in the development of hypertension. However, there is no functional evidence linking steroid receptor coactivator-1 to the regulation of blood pressure. We used immunohistochemistry to map the expressi...

  19. Application of a support vector machine algorithm to the safety precaution technique of medium-low pressure gas regulators

    Science.gov (United States)

    Hao, Xuejun; An, Xaioran; Wu, Bo; He, Shaoping

    2018-02-01

    In the gas pipeline system, safe operation of a gas regulator determines the stability of the fuel gas supply, and the medium-low pressure gas regulator of the safety precaution system is not perfect at the present stage in the Beijing Gas Group; therefore, safety precaution technique optimization has important social and economic significance. In this paper, according to the running status of the medium-low pressure gas regulator in the SCADA system, a new method for gas regulator safety precaution based on the support vector machine (SVM) is presented. This method takes the gas regulator outlet pressure data as input variables of the SVM model, the fault categories and degree as output variables, which will effectively enhance the precaution accuracy as well as save significant manpower and material resources.

  20. An advanced regulator for the helium pressurization systems of the Space Shuttle OMS and RCS

    Science.gov (United States)

    Wichmann, H.

    1973-01-01

    The Space Shuttle Orbit Maneuvering System and Reaction Control System are pressure-fed rocket propulsion systems utilizing earth storable hypergolic propellants and featuring engines of 6000 lbs and 900 lbs thrust, respectively. The helium pressurization system requirements for these propulsion systems are defined and the current baseline pressurization systems are described. An advanced helium pressure regulator capable of meeting both OMS and RCS helium pressurization system requirements is presented and its operating characteristics and predicted performance characteristics are discussed.

  1. Myoelectric hand prosthesis force control through servo motor current feedback.

    Science.gov (United States)

    Sono, Tálita Saemi Payossim; Menegaldo, Luciano Luporini

    2009-10-01

    This paper presents the prehension force closed-loop control design of a mechanical finger commanded by electromyographic signal (EMG) from a patient's arm. The control scheme was implemented and tested in a mechanical finger prototype with three degrees of freedom and one actuator, driven by arm muscles EMG of normal volunteers. Real-time indirect estimation of prehension force was assessed by measuring the DC servo motor actuator current. A model of the plant comprising finger, motor, and grasped object was proposed. Model parameters were identified experimentally and a classical feedback phase-lead compensator was designed. The controlled mechanical finger was able to provide a more accurate prehension force modulation of a compliant object when compared to open-loop control.

  2. Comparison of US and European codes and regulations for the construction of LWR pressure components

    International Nuclear Information System (INIS)

    Maurer, H.A.

    1983-01-01

    The study was intended as a contribution to a stepwise harmonization of European Regulations. The same safety related principles are applied in Europe and in US to assure the quality of all primary system components. Divergencies exist primarily in the organisation of quality assurance. US and European codes and regulations admit only approved materials for the fabrication of pressure components. The German and French requirements ask, however, more restrictive limits as far as trace elements are concerned which, during operation, may contribute to the embrittlement of the material. A further difference results from the considerably larger scope of materials examinations in European countries. A comparative list of the numbers of test specimens required under the different codes was prepared. Also for the hydrostatic test, differences were found. In European countries the test pressure for primary system components vary from 1.1 to 2.0 times the design pressure, while in the US the test pressure of the components is dependent on the design pressure of the entire system, 1.25 times design pressure. (orig./HP)

  3. Bifurcation analysis of nephron pressure and flow regulation

    DEFF Research Database (Denmark)

    Barfred, Mikael; Mosekilde, Erik; Holstein-Rathlou, N.-H.

    1996-01-01

    One- and two-dimensional continuation techniques are applied to study the bifurcation structure of a model of renal flow and pressure control. Integrating the main physiological mechanisms by which the individual nephron regulates the incoming blood flow, the model describes the interaction between...... the tubuloglomerular feedback and the response of the afferent arteriole. It is shown how a Hopf bifurcation leads the system to perform self-sustained oscillations if the feedback gain becomes sufficiently strong, and how a further increase of this parameter produces a folded structure of overlapping period...

  4. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller

    Science.gov (United States)

    Lopez-Franco, Carlos; Alanis, Alma Y.; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-01-01

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results. PMID:28805689

  5. A compound control strategy combining velocity compensation with ADRC of electro-hydraulic position servo control system.

    Science.gov (United States)

    Gao, Bingwei; Shao, Junpeng; Yang, Xiaodong

    2014-11-01

    In order to enhance the anti-jamming ability of electro-hydraulic position servo control system at the same time improve the control precision of the system, a compound control strategy that combines velocity compensation with Active Disturbance Rejection Controller (ADRC) is proposed, and the working principle of the compound control strategy is given. ADRC controller is designed, and the extended state observer is used for observing internal parameters uncertainties and external disturbances, so that the disturbances of the system are suppressed effectively. Velocity compensation controller is designed and the compensation model is derived to further improve the positioning accuracy of the system and to achieve the velocity compensation without disturbance. The compound control strategy is verified by the simulation and experiment respectively, and the simulation and experimental results show that the electro-hydraulic position servo control system with ADRC controller can effectively inhibit the external disturbances, the precise positioning control is realized after introducing the velocity compensation controller, and verify that the compound control strategy is effective. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Autonomic Functions Associated with Blood Pressure Regulation and Orthostatic Performance in Women

    National Research Council Canada - National Science Library

    Convertino, Victor

    1997-01-01

    ... in men and women to test the hypothesis that greater orthostatic intolerance in women would be associated with impairment of specific mechanisms of blood pressure regulation. Heart rate (HR), stroke volume (SV), cardiac output (Q...

  7. Control of xenon spatial oscillations during load follow of nuclear reactor via robust servo systems

    International Nuclear Information System (INIS)

    Ukai, Hiroyuki; Yada, Yukihiro; Iwazumi, Tetsuo; Morita, Yoshifumi.

    1990-01-01

    This paper investigates the control problem of xenon spatial oscillations in the axial direction during load following operations of a nuclear reactor. The system model is described by a one-group diffusion equation with xenon and power feedbacks and iodine-xenon dynamic equations and controlled by full-length and part-length control rods. In order to achieve the control purpose we formulate the control model as the design problem of robust servo systems for distributed parameter reactor systems. Hence the total thermal power and the axial offset are chosen as outputs to be controlled. The control law is designed based upon finite-dimensional systems which are constructed by linearizing around steady states, approximating by the Galerkin approximate method and reducing dimensions via the singular perturbation method. From a computational point of view a simple computational algorithm to obtain an approximate solution of the steady state neutron balance is developed via the perturbation method. Some results of numerical simulations are represented to show effectiveness of the theory developed in this paper. Particularly it is shown that the designed servo systems are robust against model errors with the linearization and the model truncation. (author)

  8. A six-degree-of-freedom magnetic levitation fine stage for a high-precision and high-acceleration dual-servo stage

    International Nuclear Information System (INIS)

    Kim, MyeongHyeon; Jeong, Jae-heon; Gweon, DaeGab; Kim, HyoYoung

    2015-01-01

    This paper presents a novel six-degree-of-freedom magnetic levitation fine stage for a dual-servo stage. The proposed fine stage is levitated and actuated, using a voice coil motor actuator with a Halbach magnet array. For a dual-servo stage, fine stage performance is deeply intertwined with coarse stage performance. Because the fine stage is installed over the coarse stage, the overall size of the fine stage can be limited by the moving plate of the coarse stage. Therefore, magnetic flux modeling and optimization are performed to manufacture optimal fine stages. To control the fine stage, actuator kinetics and sensor kinematics are proposed. Homing control is implemented by using linear variable differential transformers, whereas fine control is implemented by capacitance sensors and laser interferometers. Finally, experimental results of in-position stability, moving range, and repeatability are presented. (paper)

  9. Development And Evaluation Of A Low Cost Servo-valve For Liquid Inputs Application [desenvolvimento E Avaliação De Uma Servoválvula De Baixo Custo Para A Aplicação De Insumos Líquidos

    OpenAIRE

    Johann A.L.; Russo E.; Cappelli N.L.; Umezu C.K.

    2006-01-01

    The present work aimed the development of a low cost servo-valve that answers to an electronic control signal, for variable rates liquid inputs application. A literature research to define which valve type should be used was made. A mechanically activated proportional valve with an electronically controlled servo-engine was designed and evaluated. Since developed the servo-valve, the system was submited to a number of tests .The evaluation of its behavior was obtained in terms of repeatabilit...

  10. Analysis of barosensitive mechanisms in yeast for Pressure Regulated Fermentation

    Science.gov (United States)

    Nomura, Kazuki; Iwahashi, Hitoshi; Iguchi, Akinori; Shigematsu, Toru

    2013-06-01

    Introduction: We are intending to develop a novel food processing technology, Pressure Regulated Fermentation (PReF), using pressure sensitive (barosensitive) fermentation microorganisms. Objectives of our study are to clarify barosensitive mechanisms for application to PReF technology. We isolated Saccharomyces cerevisiae barosensitive mutant a924E1 that was derived from the parent KA31a. Methods: Gene expression levels were analyzed by DNA microarray. The altered genes of expression levels were classified according to the gene function. Mutated genes were estimated by mating and producing diploid strains and confirmed by PCR of mitochondrial DNA (mtDNA). Results and Discussion: Gene expression profiles showed that genes of `Energy' function and that of encoding protein localized in ``Mitochondria'' were significantly down regulated in the mutant. These results suggest the respiratory deficiency and relationship between barosensitivity and respiratory deficiency. Since the respiratory functions of diploids showed non Mendelian inheritance, the respiratory deficiency was indicated to be due to mtDNA mutation. PCR analysis showed that the region of COX1 locus was deleted. COX1 gene encodes the subunit 1 of cytochrome c oxidase. For this reason, barosensitivity is strongly correlated with mitochondrial functions.

  11. The difference in endolymphatic hydrostatic pressure elevation induced by isoproterenol between the ampulla and the cochlea.

    Science.gov (United States)

    Inamoto, Ryuhei; Miyashita, Takenori; Matsubara, Ai; Hoshikawa, Hiroshi; Mori, Nozomu

    2017-06-01

    The purpose of the study was to investigate the difference in the responses of endolymphatic hydrostatic pressure to isoproterenol, β-adrenergic receptor agonist, between pars superior and pars inferior. The hydrostatic pressure of endolymph and perilymph and endolymphatic potential in the ampulla and the cochlea during the intravenous administration of isoproterenol were recorded using a servo-null system in guinea pigs. The hydrostatic pressure of endolymph and perilymph in the ampulla and cochlea was similar in magnitude. Isoproterenol significantly increased hydrostatic pressure of ampullar and cochlear endolymph and perilymph with no change in the ampullar endolymphatic potential and endocochlear potential, respectively. The isoproterenol-induced maximum change of endolymphatic hydrostatic pressure in ampulla was significantly (phydrostatic pressure in the ampulla disappeared like that in the cochlea. Isoproterenol elevates endolymphatic hydrostatic pressure in different manner between the vestibule and the cochlea. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Using Feedback Error Learning for Control of Electro Hydraulic Servo System by Laguerre

    Directory of Open Access Journals (Sweden)

    Amir Reza Zare Bidaki

    2014-01-01

    Full Text Available In this paper, a new Laguerre controller is proposed to control the electro hydraulic servo system. The proposed controller uses feedback error learning method and leads to significantly improve performance in terms of settling time and amplitude of control signal rather than other controllers. All derived results are validated by simulation of nonlinear mathematical model of the system. The simulation results show the advantages of the proposed method for improved control in terms of both settling time and amplitude of control signal.

  13. Decommissioning of hot cells using a hydraulically powered servo manipulator

    International Nuclear Information System (INIS)

    Asquith, J.D.; Loughborough, D.

    1993-01-01

    This paper describes the preparations and initial trials involved in remotely dismantling the containment boxes within two concrete shielded hot cells at Harwell Laboratory using a hydraulically powered servo manipulator, ARTISAN. The manipulator deploys a variety of tools for cutting operations. The modular design has enabled it to be specifically configured for this application by adjusting the link lengths using spacers between the joints. In addition to the remote handling requirements, a new posting and ventilation system for the facility is outlined. Trials with ARTISAN in an in-active mock-up have now been successfully completed, and the manipulator is installed in the active facility. The considerations and approach adopted in this project are typical of many situations where remote techniques are required for decommissioning activities. (author)

  14. A computational analysis of the long-term regulation of arterial pressure.

    Science.gov (United States)

    Beard, Daniel A; Pettersen, Klas H; Carlson, Brian E; Omholt, Stig W; Bugenhagen, Scott M

    2013-01-01

    The asserted dominant role of the kidneys in the chronic regulation of blood pressure and in the etiology of hypertension has been debated since the 1970s. At the center of the theory is the observation that the acute relationships between arterial pressure and urine production-the acute pressure-diuresis and pressure-natriuresis curves-physiologically adapt to perturbations in pressure and/or changes in the rate of salt and volume intake. These adaptations, modulated by various interacting neurohumoral mechanisms, result in chronic relationships between water and salt excretion and pressure that are much steeper than the acute relationships. While the view that renal function is the dominant controller of arterial pressure has been supported by computer models of the cardiovascular system known as the "Guyton-Coleman model", no unambiguous description of a computer model capturing chronic adaptation of acute renal function in blood pressure control has been presented. Here, such a model is developed with the goals of: 1. representing the relevant mechanisms in an identifiable mathematical model; 2. identifying model parameters using appropriate data; 3. validating model predictions in comparison to data; and 4. probing hypotheses regarding the long-term control of arterial pressure and the etiology of primary hypertension. The developed model reveals: long-term control of arterial blood pressure is primarily through the baroreflex arc and the renin-angiotensin system; and arterial stiffening provides a sufficient explanation for the etiology of primary hypertension associated with ageing. Furthermore, the model provides the first consistent explanation of the physiological response to chronic stimulation of the baroreflex.

  15. A new state space model for the NASA/JPL 70-meter antenna servo controls

    Science.gov (United States)

    Hill, R. E.

    1987-01-01

    A control axis referenced model of the NASA/JPL 70-m antenna structure is combined with the dynamic equations of servo components to produce a comprehansive state variable (matrix) model of the coupled system. An interactive Fortran program for generating the linear system model and computing its salient parameters is described. Results are produced in a state variable, block diagram, and in factored transfer function forms to facilitate design and analysis by classical as well as modern control methods.

  16. AeroPropulsoServoElasticity: Dynamic Modeling of the Variable Cycle Propulsion System

    Science.gov (United States)

    Kopasakis, George

    2012-01-01

    This presentation was made at the 2012 Fundamental Aeronautics Program Technical Conference and it covers research work for the Dynamic Modeling of the Variable cycle Propulsion System that was done under the Supersonics Project, in the area of AeroPropulsoServoElasticity. The presentation covers the objective for the propulsion system dynamic modeling work, followed by the work that has been done so far to model the variable Cycle Engine, modeling of the inlet, the nozzle, the modeling that has been done to model the affects of flow distortion, and finally presenting some concluding remarks and future plans.

  17. Data-driven adaptive fractional order PI control for PMSM servo system with measurement noise and data dropouts.

    Science.gov (United States)

    Xie, Yuanlong; Tang, Xiaoqi; Song, Bao; Zhou, Xiangdong; Guo, Yixuan

    2018-04-01

    In this paper, data-driven adaptive fractional order proportional integral (AFOPI) control is presented for permanent magnet synchronous motor (PMSM) servo system perturbed by measurement noise and data dropouts. The proposed method directly exploits the closed-loop process data for the AFOPI controller design under unknown noise distribution and data missing probability. Firstly, the proposed method constructs the AFOPI controller tuning problem as a parameter identification problem using the modified l p norm virtual reference feedback tuning (VRFT). Then, iteratively reweighted least squares is integrated into the l p norm VRFT to give a consistent compensation solution for the AFOPI controller. The measurement noise and data dropouts are estimated and eliminated by feedback compensation periodically, so that the AFOPI controller is updated online to accommodate the time-varying operating conditions. Moreover, the convergence and stability are guaranteed by mathematical analysis. Finally, the effectiveness of the proposed method is demonstrated both on simulations and experiments implemented on a practical PMSM servo system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Effects of external pressure loading on human skin blood flow measured by 133Xe clearance

    International Nuclear Information System (INIS)

    Holloway, G.A. Jr.; Daly, C.H.; Kennedy, D.; Chimoskey, J.

    1976-01-01

    Forearm skin blood flow was measured during external pressure loading in normal human subjects using 133 Xe washout from intracutaneous injection sites. Pressures ranging between 5 and 150 mmHg were applied through a 3-cm-diameter disc placed over the site of flow determination. The pressure was maintained constant by a servo-controlled loading mechanism. Flow decreased with pressures from 5 to 10 and 30 to 150 mmHg, but remained constant with pressures from 10 to 30 mmHg. Reactive hyperemia occurred following removal of pressures of 90 mmHg or greater, but did not occur following removal of lower pressures. The pressure-flow curve for parasacral skin of paraplegic subjects closely paralleled the pressure-flow curve of normal skin at pressures tested: 5 to 15 mmHg. These data are interpreted to demonstrate autoregulation of skin blood flow. Autoregulation in parasacral skin of paraplegic subjects suggests a peripheral mechanism. The occurrence of hyperemia at pressures which exceed the ability of skin to autoregulate suggests that both autoregulation and post occlusion hyperemia may have the same mechanism

  19. A numerical study of cavitation phenomenon in a flapper-nozzle pilot stage of an electrohydraulic servo-valve with an innovative flapper shape

    International Nuclear Information System (INIS)

    Aung, Nay Zar; Li, Songjing

    2014-01-01

    Highlights: • The flapper with curved edge develops a significant cavitation in pilot stage. • The rectangular shape flapper significantly reduces cavitation in pilot stage. • The innovative flapper eliminates undesired transverse lateral force. • The innovative flapper maintains the same flow control capability and construction. - Abstract: The flapper-nozzle pilot stage, whose performance can be deteriorated by the generated flow cavitation phenomenon, is a vital segment in achieving precise control of electrohydraulic servo-valves. Aiming to find out a reasonable flapper shape to reduce cavitation, this paper presents a numerical study of cavitation phenomenon in a flapper-nozzle pilot stage with different flapper shapes. A simple rectangular shape, carefully designed without disturbing the flow control characteristics of the pilot stage, is set as an innovative flapper shape in this work. Cavitation phenomena in the pilot stage are simulated for both of the traditionally used flapper shape and the innovative flapper shape at flow conditions with various nozzle inlet pressures, 1 MPa to 7 MPa. Then, systematic comparison of resulted cavitation phenomena for the two different flapper shapes is carried out. The results confirm that, for both flapper shapes, cavitation commonly occurs along the nozzle tip wall beyond stagnation region. The curved edge in traditionally used flapper shape is a massive contributor of cavitation in the pilot stage and the selected innovative shape shows a significant reduction of cavitation on its surface. From the flow structure, it is also noticeable that undesired transverse lateral force of sheded vortices is eliminated by using the innovative flapper shape. Meanwhile, the innovative flapper shape highlights the same effectiveness on the performance of flow control as the traditionally used flapper shape. Thus, a simple and effective flapper shape is proposed for cavitation reduction in the flapper-nozzle pilot stage of an

  20. Association between ambient temperature and blood pressure and blood pressure regulators: 1831 hypertensive patients followed up for three years.

    Directory of Open Access Journals (Sweden)

    Qing Chen

    Full Text Available Several studies have suggested an association between ambient air temperature and blood pressure. However, this has not been reliably confirmed by longitudinal studies. Also, whether the reaction to temperature stimulation is modified by other factors such as antihypertensive medication is rarely investigated. The present study explores the relationship between ambient temperature and blood pressure, without and with antihypertensive medication, in a study of 1,831 hypertensive patients followed up for three years, in two or four weekly check ups, accumulating 62,452 follow-up records. Both baseline and follow-up blood pressure showed an inverse association with ambient temperature, which explained 32.4% and 65.6% of variation of systolic blood pressure and diastolic blood pressure (P<0.05 respectively. The amplitude of individual blood pressure fluctuation with temperature throughout a year (a 29 degrees centigrade range was 9.4/7.3 mmHg. Medication with angiotensin converting enzyme inhibitor benazepril attenuated the blood pressure fluctuation by 2.4/1.3 mmHg each year, though the inverse association of temperature and blood pressure remained. Gender, drinking behavior and body mass index were also found to modify the association between temperature and diastolic blood pressure. The results indicate that ambient temperature may negatively regulate blood pressure. Hypertensive patients should monitor and treat blood pressure more carefully in cold days, and it could be especially important for the males, thinner people and drinkers.

  1. Development of an EtherCAT enabled digital servo controller for the Green Bank Telescope

    Science.gov (United States)

    Whiteis, Peter G.; Mello, Melinda J.

    2012-09-01

    EtherCAT (Ethernet for Control Automation Technology) is gaining wide spread popularity in the automation industry as a real time field bus based on low cost, Ethernet hardware. EtherCAT maximizes use of 100Mbps Ethernet hardware by using a collision free ring topology, efficient Ethernet frame utilization (> 95%), and data exchange "on the fly". These characteristics enable EtherCAT to achieve Master to Slave node data exchange rates of > 1000 Hz. The Green Bank Telescope, commissioned in 2000, utilizes an analog control system for motion control of 8 elevation and 16 azimuth motors. This architecture, while sufficient for observations at frequencies up to 50GHz, has significant limitations for the current scientific goals of observing at 115GHz. Accordingly, the Green Bank staff has embarked on a servo upgrade project to develop a digital servo system which accommodates development and implementation of advanced control algorithms. This paper describes how the new control system requirements, use of existing infrastructure and budget constraints led us to define a distributed motion control architecture where EtherCAT real-time Ethernet was selected as the communication bus. Finally, design details are provided that describe how NRAO developed a custom EtherCAT-enabled motor controller interface for the GBT's legacy motor drives in order to provide technical benefits and flexibility not available in commercial products.

  2. Enhanced control of a flexure-jointed micromanipulation system using a vision-based servoing approach

    Science.gov (United States)

    Chuthai, T.; Cole, M. O. T.; Wongratanaphisan, T.; Puangmali, P.

    2018-01-01

    This paper describes a high-precision motion control implementation for a flexure-jointed micromanipulator. A desktop experimental motion platform has been created based on a 3RUU parallel kinematic mechanism, driven by rotary voice coil actuators. The three arms supporting the platform have rigid links with compact flexure joints as integrated parts and are made by single-process 3D printing. The mechanism overall size is approximately 250x250x100 mm. The workspace is relatively large for a flexure-jointed mechanism, being approximately 20x20x6 mm. A servo-control implementation based on pseudo-rigid-body models (PRBM) of kinematic behavior combined with nonlinear-PID control has been developed. This is shown to achieve fast response with good noise-rejection and platform stability. However, large errors in absolute positioning occur due to deficiencies in the PRBM kinematics, which cannot accurately capture flexure compliance behavior. To overcome this problem, visual servoing is employed, where a digital microscopy system is used to directly measure the platform position by image processing. By adopting nonlinear PID feedback of measured angles for the actuated joints as inner control loops, combined with auxiliary feedback of vision-based measurements, the absolute positioning error can be eliminated. With controller gain tuning, fast dynamic response and low residual vibration of the end platform can be achieved with absolute positioning accuracy within ±1 micron.

  3. Micro-vision servo control of a multi-axis alignment system for optical fiber assembly

    International Nuclear Information System (INIS)

    Chen, Weihai; Yu, Fei; Qu, Jianliang; Chen, Wenjie; Zhang, Jianbin

    2017-01-01

    This paper describes a novel optical fiber assembly system featuring a multi-axis alignment function based on micro-vision feedback control. It consists of an active parallel alignment mechanism, a passive compensation mechanism, a micro-gripper and a micro-vision servo control system. The active parallel alignment part is a parallelogram-based design with remote-center-of-motion (RCM) function to achieve precise rotation without fatal lateral motion. The passive mechanism, with five degrees of freedom (5-DOF), is used to implement passive compensation for multi-axis errors. A specially designed 1-DOF micro-gripper mounted onto the active parallel alignment platform is adopted to grasp and rotate the optical fiber. A micro-vision system equipped with two charge-coupled device (CCD) cameras is introduced to observe the small field of view and obtain multi-axis errors for servo feedback control. The two CCD cameras are installed in an orthogonal arrangement—thus the errors can be easily measured via the captured images. Meanwhile, a series of tracking and measurement algorithms based on specific features of the target objects are developed. Details of the force and displacement sensor information acquisition in the assembly experiment are also provided. An experiment demonstrates the validity of the proposed visual algorithm by achieving the task of eliminating errors and inserting an optical fiber to the U-groove accurately. (paper)

  4. Trpv4 involvement in the sex differences in blood pressure regulation in spontaneously hypertensive rats.

    Science.gov (United States)

    Onishi, Makiko; Yamanaka, Ko; Miyamoto, Yasunori; Waki, Hidefumi; Gouraud, Sabine

    2018-04-01

    Arterial pressure (AP) is lower in premenopausal women than in men of a similar age. Premenopausal women exhibit a lower sympathetic activity and a greater baroreceptor reflex; however, mechanisms controlling sex differences in blood pressure regulation are not well understood. We hypothesized that different neuronal functions in the cardiovascular centers of the brains of men and women may contribute to the sex difference in cardiovascular homeostasis. Our previous studies on male spontaneously hypertensive rats (SHRs) and their normotensive counterparts, Wistar Kyoto (WKY) rats, revealed that the gene-expression profile of the nucleus tractus solitarius (NTS), a region of the medulla oblongata that is pivotal for regulating the set point of AP, is strongly associated with AP. Thus, we hypothesized that gene-expression profiles in the rat NTS are related to sex differences in AP regulation. Because female SHRs clearly exhibit lower AP than their male counterparts of a similar age, we investigated whether SHR NTS exhibits sex differences in gene expression by using microarray and RT-qPCR experiments. The transcript for transient receptor potential cation channel subfamily V member 4 ( Trpv4) was found to be upregulated in SHR NTS in females compared with that in males. The channel was expressed in neurons and glial cells within NTS. The TRPV4 agonist 4-alpha-phorbol-12,13-didecanoate (4α-PDD) decreased blood pressure when injected into NTS of rats. These findings suggest that altered TRPV4 expression might be involved in the sex differences in blood pressure regulation.

  5. Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics

    Directory of Open Access Journals (Sweden)

    Dvořák Lukáš

    2015-01-01

    Full Text Available Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.

  6. Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics

    Science.gov (United States)

    Dvořák, Lukáš; Fojtášek, Kamil

    2015-05-01

    Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.

  7. Velocity control of servo systems using an integral retarded algorithm.

    Science.gov (United States)

    Ramírez, Adrián; Garrido, Rubén; Mondié, Sabine

    2015-09-01

    This paper presents a design technique for the delay-based controller called Integral Retarded (IR), and its applications to velocity control of servo systems. Using spectral analysis, the technique yields a tuning strategy for the IR by assigning a triple real dominant root for the closed-loop system. This result ultimately guarantees a desired exponential decay rate σ(d) while achieving the IR tuning as explicit function of σ(d) and system parameters. The intentional introduction of delay allows using noisy velocity measurements without additional filtering. The structure of the controller is also able to avoid velocity measurements by using instead position information. The IR is compared to a classical PI, both tested in a laboratory prototype. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; White, Thomas W.; Delamere, Nicholas A.; Mathias, Richard T.

    2015-01-01

    In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from ∼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity. PMID:26536260

  9. Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System

    Directory of Open Access Journals (Sweden)

    Ruihong Xie

    2017-05-01

    Full Text Available This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square error is 1.253 mrad when tracking 10° 0.2 Hz signal.

  10. Blood pressure regulation V: in vivo mechanical properties of precapillary vessels as affected by long-term pressure loading and unloading.

    Science.gov (United States)

    Eiken, Ola; Mekjavic, Igor B; Kölegård, Roger

    2014-03-01

    Recent studies are reviewed, concerning the in vivo wall stiffness of arteries and arterioles in healthy humans, and how these properties adapt to iterative increments or sustained reductions in local intravascular pressure. A novel technique was used, by which arterial and arteriolar stiffness was determined as changes in arterial diameter and flow, respectively, during graded increments in distending pressure in the blood vessels of an arm or a leg. Pressure-induced increases in diameter and flow were smaller in the lower leg than in the arm, indicating greater stiffness in the arteries/arterioles of the leg. A 5-week period of intermittent intravascular pressure elevations in one arm reduced pressure distension and pressure-induced flow in the brachial artery by about 50%. Conversely, prolonged reduction of arterial/arteriolar pressure in the lower body by 5 weeks of sustained horizontal bedrest, induced threefold increases of the pressure-distension and pressure-flow responses in a tibial artery. Thus, the wall stiffness of arteries and arterioles are plastic properties that readily adapt to changes in the prevailing local intravascular pressure. The discussion concerns mechanisms underlying changes in local arterial/arteriolar stiffness as well as whether stiffness is altered by changes in myogenic tone and/or wall structure. As regards implications, regulation of local arterial/arteriolar stiffness may facilitate control of arterial pressure in erect posture and conditions of exaggerated intravascular pressure gradients. That increased intravascular pressure leads to increased arteriolar wall stiffness also supports the notion that local pressure loading may constitute a prime mover in the development of vascular changes in hypertension.

  11. Variable friction device for structural control based on duo-servo vehicle brake: Modeling and experimental validation

    Science.gov (United States)

    Cao, Liang; Downey, Austin; Laflamme, Simon; Taylor, Douglas; Ricles, James

    2015-07-01

    Supplemental damping can be used as a cost-effective method to reduce structural vibrations. In particular, passive systems are now widely accepted and have numerous applications in the field. However, they are typically tuned to specific excitations and their performances are bandwidth-limited. A solution is to use semi-active devices, which have shown to be capable of substantially enhanced mitigation performance. The authors have recently proposed a new type of semi-active device, which consists of a variable friction mechanism based on a vehicle duo-servo drum brake, a mechanically robust and reliable technology. The theoretical performance of the proposed device has been previously demonstrated via numerical simulations. In this paper, we further the understanding of the device, termed Modified Friction Device (MFD) by fabricating a small scale prototype and characterizing its dynamic behavior. While the dynamics of friction is well understood for automotive braking technology, we investigate for the first time the dynamic behavior of this friction mechanism at low displacements and velocities, in both forward and backward directions, under various hydraulic pressures. A modified 3-stage dynamic model is introduced. A LuGre friction model is used to characterize the friction zone (Stage 1), and two pure stiffness regions to characterize the dynamics of the MFD once the rotation is reversed and the braking shoes are sticking to the drum (Stage 2) and the rapid build up of forces once the shoes are held by the anchor pin (Stage 3). The proposed model is identified experimentally by subjecting the prototype to harmonic excitations. It is found that the proposed model can be used to characterize the dynamics of the MFD, and that the largest fitting error arises at low velocity under low pressure input. The model is then verified by subjecting the MFD to two different earthquake excitations under different pressure inputs. The model is capable of tracking the

  12. Serotonin and Blood Pressure Regulation

    Science.gov (United States)

    Morrison, Shaun F.; Davis, Robert Patrick; Barman, Susan M.

    2012-01-01

    5-Hydroxytryptamine (5-HT; serotonin) was discovered more than 60 years ago as a substance isolated from blood. The neural effects of 5-HT have been well investigated and understood, thanks in part to the pharmacological tools available to dissect the serotonergic system and the development of the frequently prescribed selective serotonin-reuptake inhibitors. By contrast, our understanding of the role of 5-HT in the control and modification of blood pressure pales in comparison. Here we focus on the role of 5-HT in systemic blood pressure control. This review provides an in-depth study of the function and pharmacology of 5-HT in those tissues that can modify blood pressure (blood, vasculature, heart, adrenal gland, kidney, brain), with a focus on the autonomic nervous system that includes mechanisms of action and pharmacology of 5-HT within each system. We compare the change in blood pressure produced in different species by short- and long-term administration of 5-HT or selective serotonin receptor agonists. To further our understanding of the mechanisms through which 5-HT modifies blood pressure, we also describe the blood pressure effects of commonly used drugs that modify the actions of 5-HT. The pharmacology and physiological actions of 5-HT in modifying blood pressure are important, given its involvement in circulatory shock, orthostatic hypotension, serotonin syndrome and hypertension. PMID:22407614

  13. Servo-elastic dynamics of a hydraulic actuator pitching a blade with large deflections

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Kallesøe, Bjarne Skovmose

    2007-01-01

    This paper deals with the servo-elastic dynamics of a hydraulic pitch actuator acting on a largely bend wind turbine blade. The compressibility of the oil and flexibility of the hoses introduce a dynamic mode in the pitch bearing degree of freedom. This mode may obtain negative damping...... if the proportional gain on the actuator position error is defined too large relative to the viscous forces in the hydraulic system and the total rotational inertia of the pitch bearing degree of freedom. A simple expression for the stability limit of this proportional gain is derived for tuning the gain based...

  14. Pressure regulation in the dry-boxes. Argon purification

    International Nuclear Information System (INIS)

    Pascard, R.; Fabre, R.

    1958-01-01

    Each dry-box is equipped with an autonomous installation for circulation and purification of argon and for pressure regulation. This installation consists essentially of a ballast tank, a compressor and two valves electromagnetically controlled by a contact manometer. The compressor and the valves are enclosed in the tank to form a system as compact as possible. The argon is purified by passing it over a furnace filled with titanium-zirconium turnings brought to about 800 deg. C, branching off the main system. With this set-up as well as the automatic maintenance of a constant depression in the box, a quality of argon is obtained whose oxygen contact is undetectable by the manganous hydroxide method. (author) [fr

  15. A new linearized equation for servo valve in hydraulic control systems

    International Nuclear Information System (INIS)

    Kim, Tae Hyung; Lee, Ill Yeong

    2002-01-01

    In the procedure of the hydraulic control system analysis, a linearized approximate equation described by the first order term of Taylor's series has been widely used. Such a linearized equation is effective just near the operating point. And, as of now, there are no general standards on how to determine the operating point of a servo valve in the process of applying the linearized equation. So, in this study, a new linearized equation for valve characteristics is proposed as a modified form of the existing linearized equation. And, a method for selecting an optimal operating point is proposed for the new linearized equation. The effectiveness of the new linearized equation is confirmed through numerical simulations and experiments for a model hydraulic control system

  16. Visual servo simulation of EAST articulated maintenance arm robot

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang, E-mail: yangyang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Song, Yuntao; Pan, Hongtao; Cheng, Yong; Feng, Hansheng [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Wu, Huapeng [Lappeenranta University of Technology, Skinnarilankatu 34, Lappeenranta (Finland)

    2016-03-15

    For the inspection and light-duty maintenance of the vacuum vessel in the EAST tokamak, a serial robot arm, called EAST articulated maintenance arm, is developed. Due to the 9-m-long cantilever arm, the large flexibility of the EAMA robot introduces a problem in the accurate positioning. This article presents an autonomous robot control to cope with the robot positioning problem, which is a visual servo approach in context of tile grasping for the EAMA robot. In the experiments, the proposed method was implemented in a simulation environment to position and track a target graphite tile with the EAMA robot. As a result, the proposed visual control scheme can successfully drive the EAMA robot to approach and track the target tile until the robot reaches the desired position. Furthermore, the functionality of the simulation software presented in this paper is proved to be suitable for the development of the robotic and computer vision application.

  17. Visual servo simulation of EAST articulated maintenance arm robot

    International Nuclear Information System (INIS)

    Yang, Yang; Song, Yuntao; Pan, Hongtao; Cheng, Yong; Feng, Hansheng; Wu, Huapeng

    2016-01-01

    For the inspection and light-duty maintenance of the vacuum vessel in the EAST tokamak, a serial robot arm, called EAST articulated maintenance arm, is developed. Due to the 9-m-long cantilever arm, the large flexibility of the EAMA robot introduces a problem in the accurate positioning. This article presents an autonomous robot control to cope with the robot positioning problem, which is a visual servo approach in context of tile grasping for the EAMA robot. In the experiments, the proposed method was implemented in a simulation environment to position and track a target graphite tile with the EAMA robot. As a result, the proposed visual control scheme can successfully drive the EAMA robot to approach and track the target tile until the robot reaches the desired position. Furthermore, the functionality of the simulation software presented in this paper is proved to be suitable for the development of the robotic and computer vision application.

  18. Servo scanning 3D micro EDM for array micro cavities using on-machine fabricated tool electrodes

    Science.gov (United States)

    Tong, Hao; Li, Yong; Zhang, Long

    2018-02-01

    Array micro cavities are useful in many fields including in micro molds, optical devices, biochips and so on. Array servo scanning micro electro discharge machining (EDM), using array micro electrodes with simple cross-sectional shape, has the advantage of machining complex 3D micro cavities in batches. In this paper, the machining errors caused by offline-fabricated array micro electrodes are analyzed in particular, and then a machining process of array servo scanning micro EDM is proposed by using on-machine fabricated array micro electrodes. The array micro electrodes are fabricated on-machine by combined procedures including wire electro discharge grinding, array reverse copying and electrode end trimming. Nine-array tool electrodes with Φ80 µm diameter and 600 µm length are obtained. Furthermore, the proposed process is verified by several machining experiments for achieving nine-array hexagonal micro cavities with top side length of 300 µm, bottom side length of 150 µm, and depth of 112 µm or 120 µm. In the experiments, a chip hump accumulates on the electrode tips like the built-up edge in mechanical machining under the conditions of brass workpieces, copper electrodes and the dielectric of deionized water. The accumulated hump can be avoided by replacing the water dielectric by an oil dielectric.

  19. Design of Servo Scheme and Drive Electronics for the Integrated Electrohydraulic Actuation System of RLV-TD

    Science.gov (United States)

    Kurian, Priya C.; Gopinath, Anish; Shinoy, K. S.; Santhi, P.; Sundaramoorthy, K.; Sebastian, Baby; Jaya, B.; Namboodiripad, M. N.; Mookiah, T.

    2017-12-01

    Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) is a system which has the ability to carry a payload from the earth's surface to the outer space more than once. The control actuation forms the major component of the control system and it actuates the control surfaces of the RLV-TD based on the control commands. Eight electro hydraulic actuators were used in RLV-TD for vectoring the control surfaces about their axes. A centralised Hydraulic Power Generating Unit (HPU) was used for powering the eight actuators located in two stages. The actuation system had to work for the longest ever duration of about 850 s for an Indian launch vehicle. High bandwidth requirement from autopilot was met by the servo design using the nonlinear mathematical model. Single Control Electronics which drive four electrohydraulic actuators was developed for each stage. High power electronics with soft start scheme was realized for driving the BLDC motor which is the prime mover for hydraulic pump. Many challenges arose due to single HPU for two stages, uncertainty of aero load, higher bandwidth requirements etc. and provisions were incorporated in the design to successfully overcome them. This paper describes the servo design and control electronics architecture of control actuation system.

  20. Speed tracking control of pneumatic motor servo systems using observation-based adaptive dynamic sliding-mode control

    Science.gov (United States)

    Chen, Syuan-Yi; Gong, Sheng-Sian

    2017-09-01

    This study aims to develop an adaptive high-precision control system for controlling the speed of a vane-type air motor (VAM) pneumatic servo system. In practice, the rotor speed of a VAM depends on the input mass air flow, which can be controlled by the effective orifice area (EOA) of an electronic throttle valve (ETV). As the control variable of a second-order pneumatic system is the integral of the EOA, an observation-based adaptive dynamic sliding-mode control (ADSMC) system is proposed to derive the differential of the control variable, namely, the EOA control signal. In the ADSMC system, a proportional-integral-derivative fuzzy neural network (PIDFNN) observer is used to achieve an ideal dynamic sliding-mode control (DSMC), and a supervisor compensator is designed to eliminate the approximation error. As a result, the ADSMC incorporates the robustness of a DSMC and the online learning ability of a PIDFNN. To ensure the convergence of the tracking error, a Lyapunov-based analytical method is employed to obtain the adaptive algorithms required to tune the control parameters of the online ADSMC system. Finally, our experimental results demonstrate the precision and robustness of the ADSMC system for highly nonlinear and time-varying VAM pneumatic servo systems.

  1. Improved wound management by regulated negative pressure-assisted wound therapy and regulated, oxygen- enriched negative pressure-assisted wound therapy through basic science research and clinical assessment

    Directory of Open Access Journals (Sweden)

    Moris Topaz

    2012-01-01

    Full Text Available Regulated negative pressure-assisted wound therapy (RNPT should be regarded as a state-of-the-art technology in wound treatment and the most important physical, nonpharmaceutical, platform technology developed and applied for wound healing in the last two decades. RNPT systems maintain the treated wound′s environment as a semi-closed, semi-isolated system applying external physical stimulations to the wound, leading to biological and biochemical effects, with the potential to substantially influence wound-host interactions, and when properly applied may enhance wound healing. RNPT is a simple, safe, and affordable tool that can be utilized in a wide range of acute and chronic conditions, with reduced need for complicated surgical procedures, and antibiotic treatment. This technology has been shown to be effective and safe, saving limbs and lives on a global scale. Regulated, oxygen-enriched negative pressure-assisted wound therapy (RO-NPT is an innovative technology, whereby supplemental oxygen is concurrently administered with RNPT for their synergistic effect on treatment and prophylaxis of anaerobic wound infection and promotion of wound healing. Understanding the basic science, modes of operation and the associated risks of these technologies through their fundamental clinical mechanisms is the main objective of this review.

  2. Extended state observer–based fractional order proportional–integral–derivative controller for a novel electro-hydraulic servo system with iso-actuation balancing and positioning

    Directory of Open Access Journals (Sweden)

    Qiang Gao

    2015-12-01

    Full Text Available Aiming at balancing and positioning of a new electro-hydraulic servo system with iso-actuation configuration, an extended state observer–based fractional order proportional–integral–derivative controller is proposed in this study. To meet the lightweight requirements of heavy barrel weapons with large diameters, an electro-hydraulic servo system with a three-chamber hydraulic cylinder is especially designed. In the electro-hydraulic servo system, the balance chamber of the hydraulic cylinder is used to realize active balancing of the unbalanced forces, while the driving chambers consisting of the upper and lower chambers are adopted for barrel positioning and dynamic compensation of external disturbances. Compared with conventional proportional–integral–derivative controllers, the fractional order proportional–integral–derivative possesses another two adjustable parameters by expanding integer order to arbitrary order calculus, resulting in more flexibility and stronger robustness of the control system. To better compensate for strong external disturbances and system nonlinearities, the extended state observer strategy is further introduced to the fractional order proportional–integral–derivative control system. Numerical simulation and bench test indicate that the extended state observer–based fractional order proportional–integral–derivative significantly outperforms proportional–integral–derivative and fractional order proportional–integral–derivative control systems with better control accuracy and higher system robustness, well demonstrating the feasibility and effectiveness of the proposed extended state observer–based fractional order proportional–integral–derivative control strategy.

  3. A reliability analysis of a natural-gas pressure-regulating installation

    International Nuclear Information System (INIS)

    Gerbec, Marko

    2010-01-01

    A case study involving analyses of the operability, reliability and availability was made for a selected, typical, high-pressure, natural-gas, pressure-regulating installation (PRI). The study was commissioned by the national operator of the natural-gas, transmission-pipeline network for the purpose of validating the existing operability and maintenance practices and policies. The study involved a failure-risk analysis (HAZOP) of the selected typical installation, retrieval and analysis of the available corrective maintenance data for the PRI's equipment at the network level in order to obtain the failure rates followed by an elaboration of the quantitative fault trees. Thus, both operator-specific and generic literature data on equipment failure rates were used. The results obtained show that two failure scenarios need to be considered: the first is related to the PRI's failure to provide gas to the consumer(s) due to a low-pressure state and the second is related to a failure of the gas pre-heating at the high-pressure reduction stage, leading to a low temperature (a non-critical, but unfavorable, PRI state). Related to the first scenario, the most important cause of failure was found to be a transient pressure disturbance back from the consumer side. The network's average PRI failure frequency was assessed to be about once per 32 years, and the average unavailability to be about 4 minutes per year (the confidence intervals were also assessed). Based on the results obtained, some improvements to the monitoring of the PRI are proposed.

  4. A reliability analysis of a natural-gas pressure-regulating installation

    Energy Technology Data Exchange (ETDEWEB)

    Gerbec, Marko, E-mail: marko.gerbec@ijs.s [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2010-11-15

    A case study involving analyses of the operability, reliability and availability was made for a selected, typical, high-pressure, natural-gas, pressure-regulating installation (PRI). The study was commissioned by the national operator of the natural-gas, transmission-pipeline network for the purpose of validating the existing operability and maintenance practices and policies. The study involved a failure-risk analysis (HAZOP) of the selected typical installation, retrieval and analysis of the available corrective maintenance data for the PRI's equipment at the network level in order to obtain the failure rates followed by an elaboration of the quantitative fault trees. Thus, both operator-specific and generic literature data on equipment failure rates were used. The results obtained show that two failure scenarios need to be considered: the first is related to the PRI's failure to provide gas to the consumer(s) due to a low-pressure state and the second is related to a failure of the gas pre-heating at the high-pressure reduction stage, leading to a low temperature (a non-critical, but unfavorable, PRI state). Related to the first scenario, the most important cause of failure was found to be a transient pressure disturbance back from the consumer side. The network's average PRI failure frequency was assessed to be about once per 32 years, and the average unavailability to be about 4 minutes per year (the confidence intervals were also assessed). Based on the results obtained, some improvements to the monitoring of the PRI are proposed.

  5. Development of Servo Motor Trainer for Basic Control System in Laboratory of Electrical Engineering Control System Faculty of Engineering Universitas Negeri Surabaya

    Science.gov (United States)

    Endryansyah; Wanarti Rusimamto, Puput; Ridianto, Adam; Sugiarto, Hariyadi

    2018-04-01

    In the Department of Electrical Engineering FT Unesa, there are 3 majors: S1 Electrical Engineering Education, S1 Electrical Engineering, and D3 Electrical Engineering. Courses the Basic System Settings go to in the curriculum of the three programs. Team lecturer college of basic system settings seek learning innovation, focused on the development of trainer to student practicum at the laboratory of systems control. Trainer developed is a servo motor along with the lab module that contains a wide variety of theories about the servo motor and guide the practicum. This research type is development research using methods Research & development (R & D). In which the steps are applied in this study is as follows: pay attention to the potential and existing problems, gather information and study the literature, design the product, validate the design, revise the design, a limited trial. The results of the validation of learning device in the form of modules and trainer obtained as follows: score validation of learning device is 3,64; score validation lab module Servo Motor is 3,47; and questionnaire responses of students is 3,73. The result of the whole validation value is located in the interval >of 3.25 s/d 4 with the category of “Very Valid”, so it can be concluded that all instruments have a level of validity “Very Valid” and worthy of use for further learning.

  6. An ultrasonic sensor controller for mapping and servo control in robotic systems

    International Nuclear Information System (INIS)

    Drotning, W.D.; Garcia, P. Jr.

    1993-03-01

    An ultrasonic sensor controller has been developed and applied in a variety of robotic systems for operation in hazardous environments. The controller consists of hardware and software that control multiple ultrasonic range sensors and provide workspace information to robot controllers for rapid, safe, and reliable operation in hazardous and remote environments. The hardware consists of a programmable multichannel controller that resides on a VMEbus for high speed communication to a multiprocessor architecture. The sensor controller has been used in a number of applications, which include providing high precision range information for proximity servo control of robots, and performing surface and obstacle mapping functions for safe path planning of robots in unstructured environments

  7. A model reference and sensitivity model-based self-learning fuzzy logic controller as a solution for control of nonlinear servo systems

    NARCIS (Netherlands)

    Kovacic, Z.; Bogdan, S.; Balenovic, M.

    1999-01-01

    In this paper, the design, simulation and experimental verification of a self-learning fuzzy logic controller (SLFLC) suitable for the control of nonlinear servo systems are described. The SLFLC contains a learning algorithm that utilizes a second-order reference model and a sensitivity model

  8. Circulating Blood eNOS Contributes to the Regulation of Systemic Blood Pressure and Nitrite Homeostasis

    Science.gov (United States)

    Wood, Katherine C.; Cortese-Krott, Miriam M.; Kovacic, Jason C.; Noguchi, Audrey; Liu, Virginia B.; Wang, Xunde; Raghavachari, Nalini; Boehm, Manfred; Kato, Gregory J.; Kelm, Malte; Gladwin, Mark T.

    2013-01-01

    Objective Mice genetically deficient in endothelial nitric oxide synthase (eNOS−/−) are hypertensive with lower circulating nitrite levels, indicating the importance of constitutively produced nitric oxide (NO•) to blood pressure regulation and vascular homeostasis. While the current paradigm holds that this bioactivity derives specifically from expression of eNOS in endothelium, circulating blood cells also express eNOS protein. A functional red cell eNOS that modulates vascular NO• signaling has been proposed. Approach and Results To test the hypothesis that blood cells contribute to mammalian blood pressure regulation via eNOS-dependent NO• generation, we cross-transplanted WT and eNOS−/− mice, producing chimeras competent or deficient for eNOS expression in circulating blood cells. Surprisingly, we observed a significant contribution of both endothelial and circulating blood cell eNOS to blood pressure and systemic nitrite levels, the latter being a major component of the circulating NO• reservoir. These effects were abolished by the NOS inhibitor L-NAME and repristinated by the NOS substrate L-Arginine, and were independent of platelet or leukocyte depletion. Mouse erythrocytes were also found to carry an eNOS protein and convert 14C-Arginine into 14C-Citrulline in a NOS-dependent fashion. Conclusions These are the first studies to definitively establish a role for a blood borne eNOS, using cross transplant chimera models, that contributes to the regulation of blood pressure and nitrite homeostasis. This work provides evidence suggesting that erythrocyte eNOS may mediate this effect. PMID:23702660

  9. Intrathoracic pressure regulation during cardiopulmonary resuscitation: a feasibility case-series.

    Science.gov (United States)

    Segal, Nicolas; Parquette, Brent; Ziehr, Jonathon; Yannopoulos, Demetris; Lindstrom, David

    2013-04-01

    Intrathoracic pressure regulation (IPR) is a novel, noninvasive therapy intended to increase cardiac output and blood pressure in hypotensive states by generating a negative end expiratory pressure of -12 cm H2O between positive pressure ventilations. In this first feasibility case-series, we tested the hypothesis that IPR improves End tidal (ET) CO2 during cardiopulmonary resuscitation (CPR). ETCO2 was used as a surrogate measure for circulation. All patients were treated initially with manual CPR and an impedance threshold device (ITD). When IPR-trained medics arrived on scene the ITD was removed and an IPR device (CirQLATOR™) was attached to the patient's advanced airway (intervention group). The IPR device lowered airway pressures to -9 mmHg after each positive pressure ventilation for the duration of the expiratory phase. ETCO2, was measured using a capnometer incorporated into the defibrillator system (LifePak™). Values are expressed as mean ± SEM. Results were compared using paired and unpaired Student's t test. p values of <0.05 were considered statistically significant. ETCO2 values in 11 patients in the case series were compared pre and during IPR therapy and also compared to 74 patients in the control group not treated with the new IPR device. ETCO2 values increased from an average of 21 ± 1 mmHg immediately before IPR application to an average value of 32 ± 5 mmHg and to a maximum value of 45 ± 5mmHg during IPR treatment (p<0.001). In the control group ETCO2 values did not change significantly. Return of spontaneous circulation (ROSC) rates were 46% (34/74) with standard CPR and ITD versus 73% (8/11) with standard CPR and the IPR device (p<0.001). ETCO2 levels and ROSC rates were significantly higher in the study intervention group. These findings demonstrate that during CPR circulation may be significantly augmented by generation of a negative end expiratory pressure between each breath. Copyright © 2012 Elsevier Ireland Ltd. All rights

  10. Regulations for pressurized equipment in the European Single Market - construction of steam boilers, containers and pipelines

    International Nuclear Information System (INIS)

    Grassmuck, J.

    1992-01-01

    The impulses produced by the data of the standardized EC Single Market have now reached pressurized equipment in the field of EC Guidelines and European standardisation. This must be regarded as a great challenge to the interested and concerned parties. All efforts to represent the interested parties in European Committees must be made. In order to reach the goal quickly and successfully, a considerable readiness to compromise is, however, necessary. At the end of the development process, a comprehensible, standardized set of regulations will be available for pressurized equipment throughout Europe. The regulations will consist of national ones converted into European Guidelines and Standards. (orig.) [de

  11. Ego depletion and attention regulation under pressure: Is a temporary loss of self-control strength indeed related to impaired attention regulation?

    NARCIS (Netherlands)

    Englert, C.; Zwemmer, K.; Bertrams, A.; Oudejans, R.R.D.

    2015-01-01

    In the current study we investigated whether ego depletion negatively affects attention regulation under pressure in sports by assessing participants' dart throwing performance and accompanying gaze behavior. According to the strength model of self-control, the most important aspect of self-control

  12. L1 adaptive control of uncertain gear transmission servo systems with deadzone nonlinearity.

    Science.gov (United States)

    Zuo, Zongyu; Li, Xiao; Shi, Zhiguang

    2015-09-01

    This paper deals with the adaptive control problem of Gear Transmission Servo (GTS) systems in the presence of unknown deadzone nonlinearity and viscous friction. A global differential homeomorphism based on a novel differentiable deadzone model is proposed first. Since there exist both matched and unmatched state-dependent unknown nonlinearities, a full-state feedback L1 adaptive controller is constructed to achieve uniformly bounded transient response in addition to steady-state performance. Finally, simulation results are included to show the elimination of limit cycles, in addition to demonstrating the main results in this paper. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Transmission Characteristics on Wire-Driven Links of a Bridge Transported Servo Manipulator for the ACP Equipment Maintenance

    International Nuclear Information System (INIS)

    Park, Byung Suk; Jin, Jae Hyun; Song, Tae Gil; Kim, Sung Hyun; Yoon, Ji Sup

    2004-01-01

    A bridge transported servo manipulator (BTSM) system for the advanced spent fuel conditioning process (ACP) has been developed to overcome the limitation of access, which is a drawback of mechanical master-slave manipulators (MSM) for the equipment maintenance. The servo manipulator is composed of a slave manipulator attached to the telescoping tube sets equipped with the overhead bridge installed at a hot cell and a master manipulator installed at an out-of-hot cell. Each manipulator has 7 degrees-of-freedom (DOF): a body rotation, an upper-arm tilt, a lower-arm tilt, a lower-arm rotation, a wrist pan and tilt, and a grasp motion. A wire-driven mechanism for a lower-arm rotation, a wrist pan and tilt, and a grasp motion of the manipulator has been adopted to increase the handling capacity compared to the manipulator weight and decrease the friction. The main disadvantage of the wire-driven mechanism is that if one link is in motion, other links can be affected. In this paper, the transmission characteristics among the wire-driven links have been formulated to overcome this drawback. The unexpected behaviors are confirmed by analyses of transmission characteristics as well as experiments. Also, the experimental results show that the unexpected behaviors are greatly decreased by the proposed compensation equations

  14. Theoretical Design and First Test in Laboratory of a Composite Visual Servo-Based Target Spray Robotic System

    Directory of Open Access Journals (Sweden)

    Dongjie Zhao

    2016-01-01

    Full Text Available In order to spray onto the canopy of interval planting crop, an approach of using a target spray robot with a composite vision servo system based on monocular scene vision and monocular eye-in-hand vision was proposed. Scene camera was used to roughly locate target crop, and then the image-processing methods for background segmentation, crop canopy centroid extraction, and 3D positioning were studied. Eye-in-hand camera was used to precisely determine spray position of each crop. Based on the center and area of 2D minimum-enclosing-circle (MEC of crop canopy, a method to calculate spray position and spray time was determined. In addition, locating algorithm for the MEC center in nozzle reference frame and the hand-eye calibration matrix were studied. The processing of a mechanical arm guiding nozzle to spray was divided into three stages: reset, alignment, and hovering spray, and servo method of each stage was investigated. For preliminary verification of the theoretical studies on the approach, a simplified experimental prototype containing one spray mechanical arm was built and some performance tests were carried out under controlled environment in laboratory. The results showed that the prototype could achieve the effect of “spraying while moving and accurately spraying on target.”

  15. Design of an Image-Servo Mask Alignment System Using Dual CCDs with an XXY Stage

    Directory of Open Access Journals (Sweden)

    Chih-Jer Lin

    2016-02-01

    Full Text Available Mask alignment of photolithography technology is used in many applications, such as micro electro mechanical systems’ semiconductor process, printed circuits board, and flat panel display. As the dimensions of the product are getting smaller and smaller, the automatic mask alignment of photolithography is becoming more and more important. The traditional stacked XY-Θz stage is heavy and it has cumulative flatness errors due to its stacked assembly mechanism. The XXY stage has smaller cumulative error due to its coplanar design and it can move faster than the traditional XY-Θz stage. However, the relationship between the XXY stage’s movement and the commands of the three motors is difficult to compute, because the movements of the three motors on the same plane are coupling. Therefore, an artificial neural network is studied to establish a nonlinear mapping from the desired position and orientation of the stage to three motors’ commands. Further, this paper proposes an image-servo automatic mask alignment system, which consists of a coplanar XXY stage, dual GIGA-E CCDs with lens and a programmable automatic controller (PAC. Before preforming the compensation, a self-developed visual-servo provides the positioning information which is obtained from the image processing and pattern recognition according to the specified fiducial marks. To obtain better precision, two methods including the center of gravity method and the generalize Hough Transformation are studied to correct the shift positioning error.

  16. A system for regulating the pressure of resuperheated steam in high temperature gas-cooled reactor power stations

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegines, K.O.

    1975-01-01

    The invention relates to a system for regulating steam-pressure in the re-superheating portion of a steam-boiler receiving heat from a gas-cooled high temperature nuclear reactor, provided with gas distributing pumps driven by steam-turbines. The system comprises means for generating a pressure signal of desired magnitude for the re-superheating portion, and means for providing a real pressure in the re-superheating portion, means (including a by-passing device) for generating steam-flow rate signal of desired magnitude, a turbine by-pass device comprising a by-pass tapping means for regulating the steam-flow-rate in said turbine according to the desired steam-flow rate signal and means for controlling said by-pass tapping means according to said desired steam-flow-rate signal [fr

  17. Vision Servo Motion Control and Error Analysis of a Coplanar XXY Stage for Image Alignment Motion

    Directory of Open Access Journals (Sweden)

    Hau-Wei Lee

    2013-01-01

    Full Text Available In recent years, as there is demand for smart mobile phones with touch panels, the alignment/compensation system of alignment stage with vision servo control has also increased. Due to the fact that the traditional stacked-type XYθ stage has cumulative errors of assembly and it is heavy, it has been gradually replaced by the coplanar stage characterized by three actuators on the same plane with three degrees of freedom. The simplest image alignment mode uses two cameras as the equipments for feedback control, and the work piece is placed on the working stage. The work piece is usually engraved/marked. After the cameras capture images and when the position of the mark in the camera is obtained by image processing, the mark can be moved to the designated position in the camera by moving the stage and using alignment algorithm. This study used a coplanar XXY stage with 1 μm positioning resolution. Due to the fact that the resolution of the camera is about 3.75 μm per pixel, thus a subpixel technology is used, and the linear and angular alignment repeatability of the alignment system can achieve 1 μm and 5 arcsec, respectively. The visual servo motion control for alignment motion is completed within 1 second using the coplanar XXY stage.

  18. Development of BLDC Electric Motor Control System In Hydraulic Servo Drive Based on Variable Hydrostatic Transmission

    Directory of Open Access Journals (Sweden)

    O. I. Tarasov

    2014-01-01

    Full Text Available Modern robotic systems require the use of servo drives. Owing to encoder and negative feedback these drives ensure highly accurate motion parameters. In case of autonomous systems drives must also have high power characteristics. Moreover, in most cases, it was impossible to select the motor so that the speed and torque on its shaft were in compliance with those of required by the actuator. To match these parameters different types of reducers are used. The article justifies and considers a selection criterion of the gear ratios for such transmission. For clarity, there is an example of selecting a motor and a gear for above transmission, taking into account the proposed criterion. In addition, the article discusses the advantages of using hydrostatic transmission in the drive, which monitors the angular position of the output level, in comparison with a mechanical gearbox. Due to the fact that, at the moment, BLDC motors have the best power characteristics, such a servo drive requires a special control system that will take into account the features of variable hydrostatic transmission and electric BLDC motor. Therefore, the paper proposes a structure of such a system and set out the principles of its construction. Various embodiments of sensor types that may be used in this system and their installation scheme explained.

  19. Desenvolvimento e avaliação de uma servoválvula de baixo custo para a aplicação de insumos líquidos Development and evaluation of a low cost servo-valve for liquid inputs application

    Directory of Open Access Journals (Sweden)

    André L. Johann

    2006-04-01

    Full Text Available O presente trabalho teve o objetivo de desenvolver uma servoválvula de baixo custo, que respondesse a um sinal eletrônico de controle, para a aplicação de insumos líquidos a taxas variáveis. Depois de realizada pesquisa na literatura das opções de válvulas existentes para a dosagem de líquidos a baixas pressões, partiu-se para o desenvolvimento de uma válvula proporcional com acionamento mecânico por intermédio de um servomotor controlado eletronicamente. Uma vez desenvolvida a servoválvula, o sistema foi submetido a um conjunto de testes, realizados em bancada desenvolvida especificamente para esse fim, onde se procurou avaliar seu comportamento em termos de repetitividade, histerese e linearidade. Como resultados, obtiveram-se três curvas de vazão em função do percentual de abertura, descrevendo três incrementos de abertura e fechamento em duas pressões diferentes de trabalho. A servoválvula apresentou boa repetitividade, razoável histerese e curva tipicamente quadrática, bem como manteve a proposta de baixo custo. Esses resultados apresentaram-se bastante satisfatórios, uma vez que a não-linearidade e a histerese podem ser facilmente corrigidas por meio de software.The present work aimed the development of a low cost servo-valve that answers to an electronic control signal, for variable rates liquid inputs application. A literature research to define which valve type should be used was made. A mechanically activated proportional valve with an electronically controlled servo-engine was designed and evaluated. Since developed the servo-valve, the system was submited to a number of tests .The evaluation of its behavior was obtained in terms of repeatability, hystheresis and linearity. The test was accomplished in a bench, specially developed for this aim. As a result, were obtained three curves of opening percentage as function of flow rate, describing three opening and closing increments in two different work pressures

  20. Improved servo-controlled inertial clock for laboratory tests of general relativity

    International Nuclear Information System (INIS)

    Leyh, C.H.

    1984-01-01

    An inertial clock, consisting of a protected macroscopic rotor as the time base, was developed and tested preliminarily and partially by Cheung. This research offers considerable refinement of the equipment and the operating software, and includes serious testing of the experimental behavior. The inertial clock uses magnetic suspension to levitate a capped hollow cylindrical rotor (called the shroud rotor) within a vacuum chamber. A second rotor (called the proof rotor) is magnetically suspended within the shroud rotor. The shroud rotor is caused to corotate precisely with the rotating proof rotor by a microcomputer-controlled eddy current drive feedback servo loop. This produces a drag-free environment for the proof rotor which becomes the inertial timekeeper. In this way corotation effectively eliminates the residual gas drag on the proof rotor and the magnetic suspension bearing reduces bearing drag

  1. Predictive IP controller for robust position control of linear servo system.

    Science.gov (United States)

    Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi

    2016-07-01

    Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Adaptive integral robust control and application to electromechanical servo systems.

    Science.gov (United States)

    Deng, Wenxiang; Yao, Jianyong

    2017-03-01

    This paper proposes a continuous adaptive integral robust control with robust integral of the sign of the error (RISE) feedback for a class of uncertain nonlinear systems, in which the RISE feedback gain is adapted online to ensure the robustness against disturbances without the prior bound knowledge of the additive disturbances. In addition, an adaptive compensation integrated with the proposed adaptive RISE feedback term is also constructed to further reduce design conservatism when the system also exists parametric uncertainties. Lyapunov analysis reveals the proposed controllers could guarantee the tracking errors are asymptotically converging to zero with continuous control efforts. To illustrate the high performance nature of the developed controllers, numerical simulations are provided. At the end, an application case of an actual electromechanical servo system driven by motor is also studied, with some specific design consideration, and comparative experimental results are obtained to verify the effectiveness of the proposed controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. All-Coefficient Adaptive Control of Dual-Motor Driving Servo System

    Directory of Open Access Journals (Sweden)

    Zhao Haibo

    2017-01-01

    Full Text Available Backlash nonlinearity and friction nonlinearity exist in dual-motor driving servo system, which reducing system response speed, steady accuracy and anti-interference ability. In order to diminish the adverse effects of backlash and friction nonlinearity to system, we proposed a new all-coefficient adaptive control method. Firstly, we introduced the dynamic model of backlash and friction nonlinearity respectively. Then on this basis, we established the characteristic model when backlash and friction nonlinearity coexist. We used recursive least square method for parameter estimation. Finally we designed the all-coefficient adaptive controller. On the basis of simplex all-coefficient adaptive controller, we designed a feedforward all-coefficient adaptive controller. The simulations of feedforward all-coefficient adaptive control and simplex all-coefficient adaptive control were compared. The results show that the former has quicker response speed, higher steady accuracy, stronger anti-interference performance and better robustness, which validating the efficacy of the proposed control strategy.

  4. Blood borne hormones in a cross-talk between peripheral and brain mechanisms regulating blood pressure, the role of circumventricular organs.

    Science.gov (United States)

    Ufnal, Marcin; Skrzypecki, Janusz

    2014-04-01

    Accumulating evidence suggests that blood borne hormones modulate brain mechanisms regulating blood pressure. This appears to be mediated by the circumventricular organs which are located in the walls of the brain ventricular system and lack the blood-brain barrier. Recent evidence shows that neurons of the circumventricular organs express receptors for the majority of cardiovascular hormones. Intracerebroventricular infusions of hormones and their antagonists is one approach to evaluate the influence of blood borne hormones on the neural mechanisms regulating arterial blood pressure. Interestingly, there is no clear correlation between peripheral and central effects of cardiovascular hormones. For example, angiotensin II increases blood pressure acting peripherally and centrally, whereas peripherally acting pressor catecholamines decrease blood pressure when infused intracerebroventricularly. The physiological role of such dual hemodynamic responses has not yet been clarified. In the paper we review studies on hemodynamic effects of catecholamines, neuropeptide Y, angiotensin II, aldosterone, natriuretic peptides, endothelins, histamine and bradykinin in the context of their role in a cross-talk between peripheral and brain mechanisms involved in the regulation of arterial blood pressure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Influence of safety vlave pressure on gelled electrolyte valve-regulated lead/acid batteries under deep cycling applications

    International Nuclear Information System (INIS)

    Oh, Sang Hyub; Kim, Myung Soo; Lee, Jin Bok; Lee, Heung Lark

    2002-01-01

    Cycle life tests have been carried out to evaluate the influence of safety valve pressure on vlave regulated lead/acid batteries under deep cycling applications. Batteries were cycled at 5 hour rates at 100 % DOD, and safety valve pressure was set to 1.08 and 2.00 bar, respectively. The batteries lost 248.3 g of water for each case after about 1,200 cycles, but the cyclic performances of the batteries were comparable. Most of the gas of the battery during discharging was hydrogen, and the oxygen concentration increased to 18 % after 3 hours of charging. The micro structure of the positive active materials was completely changed and the corrosion layer of the positive grid was less than 50 μm, regardless of the pressure of the safety valve after cycle life tests. The cause of discharge capacity decrease was found to water loss and the shedding of the positive active materials. The pressure of safety valve does not give little effect to the cyclic performance and the failure modes of the gelled electrolyte valve-regulated lead acid batteries

  6. An Automated Mouse Tail Vascular Access System by Vision and Pressure Feedback.

    Science.gov (United States)

    Chang, Yen-Chi; Berry-Pusey, Brittany; Yasin, Rashid; Vu, Nam; Maraglia, Brandon; Chatziioannou, Arion X; Tsao, Tsu-Chin

    2015-08-01

    This paper develops an automated vascular access system (A-VAS) with novel vision-based vein and needle detection methods and real-time pressure feedback for murine drug delivery. Mouse tail vein injection is a routine but critical step for preclinical imaging applications. Due to the small vein diameter and external disturbances such as tail hair, pigmentation, and scales, identifying vein location is difficult and manual injections usually result in poor repeatability. To improve the injection accuracy, consistency, safety, and processing time, A-VAS was developed to overcome difficulties in vein detection noise rejection, robustness in needle tracking, and visual servoing integration with the mechatronics system.

  7. Regulation of circadian blood pressure: from mice to astronauts.

    Science.gov (United States)

    Agarwal, Rajiv

    2010-01-01

    Circadian variation is commonly seen in healthy people; aberration in these biological rhythms is an early sign of disease. Impaired circadian variation of blood pressure (BP) has been shown to be associated with greater target organ damage and with an elevated risk of cardiovascular events independent of the BP load. The purpose of this review is to examine the physiology of circadian BP variation and propose a tripartite model that explains the regulation of circadian BP. The time-keeper in mammals resides centrally in the suprachiasmatic nucleus. Apart from this central clock, molecular clocks exist in most peripheral tissues including vascular tissue and the kidney. These molecular clocks regulate sodium balance, sympathetic function and vascular tone. A physiological model is proposed that integrates our understanding of molecular clocks in mice with the circadian BP variation among humans. The master regulator in this proposed model is the sleep-activity cycle. The equivalents of peripheral clocks are endothelial and adrenergic functions. Thus, in the proposed model, the variation in circadian BP is dependent upon three major factors: physical activity, autonomic function, and sodium sensitivity. The integrated consideration of physical activity, autonomic function, and sodium sensitivity appears to explain the physiology of circadian BP variation and the pathophysiology of disrupted BP rhythms in various conditions and disease states. Our understanding of molecular clocks in mice may help to explain the provenance of blunted circadian BP variation even among astronauts.

  8. Hankel Matrix Correlation Function-Based Subspace Identification Method for UAV Servo System

    Directory of Open Access Journals (Sweden)

    Minghong She

    2018-01-01

    Full Text Available For the identification problem of closed-loop subspace model, we propose a zero space projection method based on the estimation of correlation function to fill the block Hankel matrix of identification model by combining the linear algebra with geometry. By using the same projection of related data in time offset set and LQ decomposition, the multiplication operation of projection is achieved and dynamics estimation of the unknown equipment system model is obtained. Consequently, we have solved the problem of biased estimation caused when the open-loop subspace identification algorithm is applied to the closed-loop identification. A simulation example is given to show the effectiveness of the proposed approach. In final, the practicability of the identification algorithm is verified by hardware test of UAV servo system in real environment.

  9. Autonomous Cargo Transport System for an Unmanned Aerial Vehicle, using Visual Servoing

    Directory of Open Access Journals (Sweden)

    Noah Kuntz

    2009-12-01

    Full Text Available This paper presents the design and testing of a system for autonomous tracking, pickup, and delivery of cargo via an unmanned helicopter. The tracking system uses a visual servoing algorithm and is tested using open loop velocity control of a six degree of freedom gantry system with a camera mounted via a pan-tilt unit on the end effecter. The pickup system uses vision to direct the camera pan tilt unit to track the target, and uses a hook attached to a second pan tilt unit to pick up the cargo. The ability of the pickup system to hook a target is tested by mounting it on the Systems Integrated Sensor Test Rig gantry system while recorded helicopter velocities are played back by the test rig.

  10. Optimization of Smart Structure for Improving Servo Performance of Hard Disk Drive

    Science.gov (United States)

    Kajiwara, Itsuro; Takahashi, Masafumi; Arisaka, Toshihiro

    Head positioning accuracy of the hard disk drive should be improved to meet today's increasing performance demands. Vibration suppression of the arm in the hard disk drive is very important to enhance the servo bandwidth of the head positioning system. In this study, smart structure technology is introduced into the hard disk drive to suppress the vibration of the head actuator. It has been expected that the smart structure technology will contribute to the development of small and light-weight mechatronics devices with the required performance. First, modeling of the system is conducted with finite element method and modal analysis. Next, the actuator location and the control system are simultaneously optimized using genetic algorithm. Vibration control effect with the proposed vibration control mechanisms has been evaluated by some simulations.

  11. Stiff mutant genes of Phycomyces target turgor pressure and wall mechanical properties to regulate elongation growth rate

    Directory of Open Access Journals (Sweden)

    Joseph K. E. Ortega

    2012-05-01

    Full Text Available Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses and differential elongation growth rate (tropic responses. Stiff mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least four genes; madD, madE, madF and madG. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the growth zone. Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type. A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (- and C216 geo- (-. Experimental results demonstrate that turgor pressure is larger but irreversible deformation rates of the wall within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to wild type. These findings explain the diminished tropic responses of the stiff mutant sporangiophores and suggest that the defective genes affect the amount of wall-building material delivered to the inner

  12. Panoramic optical-servoing for industrial inspection and repair

    Science.gov (United States)

    Sallinger, Christian; O'Leary, Paul; Retschnig, Alexander; Kammerhofer, Martin

    2004-05-01

    Recently specialized robots were introduced to perform the task of inspection and repair in large cylindrical structures such as ladles, melting furnaces and converters. This paper reports on the image processing system and optical servoing for one such a robot. A panoramic image of the vessels inner surface is produced by performing a coordinated robot motion and image acquisition. The level of projective distortion is minimized by acquiring a high density of images. Normalized phase correlation calculated via the 2D Fourier transform is used to calculate the shift between the single images. The narrow strips from the dense image map are then stitched together to build the panorama. The mapping between the panoramic image and the positioning of the robot is established during the stitching of the images. This enables optical feedback. The robots operator can locate a defect on the surface by selecting the area of the image. Calculation of the forward and inverse kinematics enable the robot to automatically move to the location on the surface requiring repair. Experimental results using a standard 6R industrial robot have shown the full functionality of the system concept. Finally, were test measurements carried out successfully, in a ladle at a temperature of 1100° C.

  13. Analysis of expediency to set regulators of high-pressure emergency core cooling system of WWER 1000 (B-320)

    International Nuclear Information System (INIS)

    Skalozubov, V.I.; Komarov, Yu.A.; Tikhonova, G.G.; Nikiforov, S.N.; Bogodist, V.V.; Fol'tov, I.M.; Khadzh Faradzhallakh Dabbakh, A.

    2011-01-01

    The work shows that setting regulative valves in high-pressure emergency core cooling system of WWER 1000/B-320 can be effective only involving the additional tuning to account traverse speed of operating elements of regulator and configuration of the systems providing cooling of primary loop.

  14. Pneumatic Rotary Actuator Position Servo System Based on ADE-PD Control

    Directory of Open Access Journals (Sweden)

    Yeming Zhang

    2018-03-01

    Full Text Available In order to accurately control the rotation position of a pneumatic rotary actuator, the flow state of the gas and the motion state of the pneumatic rotary actuator in the pneumatic rotary actuator position servo system are analyzed in this paper. The mathematical model of the system and the experiment platform are established after that. An Adaptive Differential Evolution (ADE algorithm which adaptively ameliorates the scaling factor and crossover probability in the process of individual evolution is proposed and applied to the parameter optimization of PD controller. The experimental platform is used to compare the controller with Differential Evolution (DE algorithm and NCD-PID controller. Finally, the characteristics of the system are tested by increasing the inertial load. The experimental results illustrate that system using ADE-PD control strategy has greater position precision and faster response than using DE-PD and NCD-PID strategies, and shows great robustness.

  15. Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps

    CERN Document Server

    Bergami, Leonardo

    2014-01-01

    A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam

  16. Effect of Negative Pressure on Proliferation, Virulence Factor Secretion, Biofilm Formation, and Virulence-Regulated Gene Expression of Pseudomonas aeruginosa In Vitro

    Directory of Open Access Journals (Sweden)

    Guo-Qi Wang

    2016-01-01

    Full Text Available Objective. To investigate the effect of negative pressure conditions induced by NPWT on P. aeruginosa. Methods. P. aeruginosa was cultured in a Luria–Bertani medium at negative pressure of −125 mmHg for 24 h in the experimental group and at atmospheric pressure in the control group. The diameters of the colonies of P. aeruginosa were measured after 24 h. ELISA kit, orcinol method, and elastin-Congo red assay were used to quantify the virulence factors. Biofilm formation was observed by staining with Alexa Fluor® 647 conjugate of concanavalin A (Con A. Virulence-regulated genes were determined by quantitative RT-PCR. Results. As compared with the control group, growth of P. aeruginosa was inhibited by negative pressure. The colony size under negative pressure was significantly smaller in the experimental group than that in the controls (p<0.01. Besides, reductions in the total amount of virulence factors were observed in the negative pressure group, including exotoxin A, rhamnolipid, and elastase. RT-PCR results revealed a significant inhibition in the expression level of virulence-regulated genes. Conclusion. Negative pressure could significantly inhibit the growth of P. aeruginosa. It led to a decrease in the virulence factor secretion, biofilm formation, and a reduction in the expression level of virulence-regulated genes.

  17. Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility

    OpenAIRE

    Chintalapudi, Sumana R.; Maria, Doaa; Di Wang, Xiang; Bailey, Jessica N. Cooke; Hysi, Pirro G.; Wiggs, Janey L.; Williams, Robert W.; Jablonski, Monica M.

    2017-01-01

    textabstractGlaucoma is a multi-factorial blinding disease in which genetic factors play an important role. Elevated intraocular pressure is a highly heritable risk factor for primary open angle glaucoma and currently the only target for glaucoma therapy. Our study helps to better understand underlying genetic and molecular mechanisms that regulate intraocular pressure, and identifies a new candidate gene, Cacna2d1, that modulates intraocular pressure and a promising therapeutic, pregabalin, ...

  18. Music improves dopaminergic neurotransmission: demonstration based on the effect of music on blood pressure regulation.

    Science.gov (United States)

    Sutoo, Den'etsu; Akiyama, Kayo

    2004-08-06

    The mechanism by which music modifies brain function is not clear. Clinical findings indicate that music reduces blood pressure in various patients. We investigated the effect of music on blood pressure in spontaneously hypertensive rats (SHR). Previous studies indicated that calcium increases brain dopamine (DA) synthesis through a calmodulin (CaM)-dependent system. Increased DA levels reduce blood pressure in SHR. In this study, we examined the effects of music on this pathway. Systolic blood pressure in SHR was reduced by exposure to Mozart's music (K.205), and the effect vanished when this pathway was inhibited. Exposure to music also significantly increased serum calcium levels and neostriatal DA levels. These results suggest that music leads to increased calcium/CaM-dependent DA synthesis in the brain, thus causing a reduction in blood pressure. Music might regulate and/or affect various brain functions through dopaminergic neurotransmission, and might therefore be effective for rectification of symptoms in various diseases that involve DA dysfunction.

  19. Electromagnetic servoing-a new tracking paradigm.

    Science.gov (United States)

    Reichl, Tobias; Gardiazabal, José; Navab, Nassir

    2013-08-01

    Electromagnetic (EM) tracking is highly relevant for many computer assisted interventions. This is in particular due to the fact that the scientific community has not yet developed a general solution for tracking of flexible instruments within the human body. Electromagnetic tracking solutions are highly attractive for minimally invasive procedures, since they do not require line of sight. However, a major problem with EM tracking solutions is that they do not provide uniform accuracy throughout the tracking volume and the desired, highest accuracy is often only achieved close to the center of tracking volume. In this paper, we present a solution to the tracking problem, by mounting an EM field generator onto a robot arm. Proposing a new tracking paradigm, we take advantage of the electromagnetic tracking to detect the sensor within a specific sub-volume, with known and optimal accuracy. We then use the more accurate and robust robot positioning for obtaining uniform accuracy throughout the tracking volume. Such an EM servoing methodology guarantees optimal and uniform accuracy, by allowing us to always keep the tracked sensor close to the center of the tracking volume. In this paper, both dynamic accuracy and accuracy distribution within the tracking volume are evaluated using optical tracking as ground truth. In repeated evaluations, the proposed method was able to reduce the overall error from 6.64±7.86 mm to a significantly improved accuracy of 3.83±6.43 mm. In addition, the combined system provides a larger tracking volume, which is only limited by the reach of the robot and not the much smaller tracking volume defined by the magnetic field generator.

  20. Research on natural gas fuel injection system. Development of high-performance pressure regulator; Tennen gas yo nenryo funsha system no kenkyu kaihatsu. 1. Tennen gas nenryo funshayo no koseino regulator kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S; Ishii, M; Takigawa, B; Makabe, K; Harada, S; Ono, H [Nippon Carburetor Co. Ltd., Tokyo (Japan)

    1997-10-01

    With the aim of further reducing the exhaust emissions of natural-gas vehicles, vigorous research and development work is under way today on multi point gas injection (MPGI) system. In this studies, a high-performance pressure regulator, which is one of the main components of this MPGI system, has been newly developed. The results showed that a significantly better accuracy of the regulated pressure level using this regulator was obtained under the wide range of operating conditions, including instantaneously greater changes of fuel flow rate. In addition, the advanced studies of gaseous fuel injectors (GFIs) would be also conducted. 4 refs., 8 figs.

  1. Resistance calculation of un-fully developed two-phase flow through high differential pressure regulating valves

    International Nuclear Information System (INIS)

    Xu Mingyang; Wang Wenran; Wang Jiaying

    1999-01-01

    To reduce the flow velocity in the high differential pressure regulating valve with labyrinth. A type of complicated valve core structure were designed with tortuous flow path made from reversal double elbows. It is very difficult to calculate the pressure-drop of the un-fully developed two-phase flow under high temperature and pressure which flow through the valve core. A calculation method called 'constant (varing) pressure-drop progressing step by step design method' was developed. The complicated flow path was disintegrated into a series of independent resistance units and with the valve stem end progressing step by step the dimensions of the flow path were designed in accordance with the principle that in every position the total pressure-drop of the valve should amount to that required by the design goal curve. In the course of calculating the total pressure-drop, the valve flow path was also divided into a series of independent resistance units. The experiment results show that design flow characteristics are approximately consistent with the flow characteristics measured in the test

  2. Time-dependent rheoforging of A6061 aluminum alloy on a mechanical servo press and the effects of forming conditions on homogeneity of rheoforged samples

    Directory of Open Access Journals (Sweden)

    Meng Yi

    2015-01-01

    Full Text Available The solid and liquid phases in semisolid metal slurry exhibited different forming behaviours during deformation result in products with inhomogeneous quality. A6061 aluminum alloy was forged in the semisolid state on a mechanical servo press with the capability of multistage compression. To improve the homogeneity of rheoforged samples a time-dependent rheoforging strategy was designed. The distributions of the microstructure and mechanical properties the samples manufactured under various experimental conditions were investigated. The A6061 samples forged in the temperature range from 625 to 628 ∘C with a short holding time of 4 s and the upper die preheated to 300 ∘C exhibited a homogeneous microstructure and mechanical properties. The homogeneity of rheoforged samples resulted from the controllable free motion capability of the mechanical servo press and the adjustable fluidity and viscosity of the semisolid slurry.

  3. Renal blood flow regulation and arterial pressure fluctuations: a case study in nonlinear dynamics

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Marsh, D J

    1994-01-01

    in which the kidney is obliged to operate. Were it not for renal blood flow autoregulation, it would be difficult to regulate renal excretory processes so as to maintain whole body variables within narrow bounds. Autoregulation is the noise filter on which other renal processes depend for maintaining...... a relatively noise-free environment in which to work. Because of the time-varying nature of the blood pressure, we have concentrated in this review on the now substantial body of work on the dynamics of renal blood flow regulation and the underlying mechanisms. Renal vascular control mechanisms are not simply....... The significance of deterministic chaos in the context of renal blood flow regulation is that the system regulating blood flow undergoes a physical change to a different dynamical state, and because the change is deterministic, there is every expectation that the critical change will yield itself to experimental...

  4. A Visual Servoing-Based Method for ProCam Systems Calibration

    Directory of Open Access Journals (Sweden)

    Jeremie Mosnier

    2013-10-01

    Full Text Available Projector-camera systems are currently used in a wide field of applications, such as 3D reconstruction and augmented reality, and can provide accurate measurements, depending on the configuration and calibration. Frequently, the calibration task is divided into two steps: camera calibration followed by projector calibration. The latter still poses certain problems that are not easy to solve, such as the difficulty in obtaining a set of 2D–3D points to compute the projection matrix between the projector and the world. Existing methods are either not sufficiently accurate or not flexible. We propose an easy and automatic method to calibrate such systems that consists in projecting a calibration pattern and superimposing it automatically on a known printed pattern. The projected pattern is provided by a virtual camera observing a virtual pattern in an OpenGL model. The projector displays what the virtual camera visualizes. Thus, the projected pattern can be controlled and superimposed on the printed one with the aid of visual servoing. Our experimental results compare favorably with those of other methods considering both usability and accuracy.

  5. The Improved SVM Multi Objects' Identification For the Uncalibrated Visual Servoing

    Directory of Open Access Journals (Sweden)

    Min Wang

    2009-03-01

    Full Text Available For the assembly of multi micro objects in micromanipulation, the first task is to identify multi micro parts. We present an improved support vector machine algorithm, which employs invariant moments based edge extraction to obtain feature attribute and then presents a heuristic attribute reduction algorithm based on rough set's discernibility matrix to obtain attribute reduction, with using support vector machine to identify and classify the targets. The visual servoing is the second task. For avoiding the complicated calibration of intrinsic parameter of camera, We apply an improved broyden's method to estimate the image jacobian matrix online, which employs chebyshev polynomial to construct a cost function to approximate the optimization value, obtaining a fast convergence for online estimation. Last, a two DOF visual controller based fuzzy adaptive PD control law for micro-manipulation is presented. The experiments of micro-assembly of micro parts in microscopes confirm that the proposed methods are effective and feasible.

  6. The Improved SVM Multi Objects's Identification for the Uncalibrated Visual Servoing

    Directory of Open Access Journals (Sweden)

    Xiangjin Zeng

    2009-03-01

    Full Text Available For the assembly of multi micro objects in micromanipulation, the first task is to identify multi micro parts. We present an improved support vector machine algorithm, which employs invariant moments based edge extraction to obtain feature attribute and then presents a heuristic attribute reduction algorithm based on rough set's discernibility matrix to obtain attribute reduction, with using support vector machine to identify and classify the targets. The visual servoing is the second task. For avoiding the complicated calibration of intrinsic parameter of camera, We apply an improved broyden's method to estimate the image jacobian matrix online, which employs chebyshev polynomial to construct a cost function to approximate the optimization value, obtaining a fast convergence for online estimation. Last, a two DOF visual controller based fuzzy adaptive PD control law for micro-manipulation is presented. The experiments of micro-assembly of micro parts in microscopes confirm that the proposed methods are effective and feasible.

  7. A Simulation Model of Focus and Radial Servos in Compact Disc Players with Disc Surface Defects

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2004-01-01

    Compact Disc players have been on the market in more than two decades.As a consequence most of the control servo problems have been solved. A large remaining problem to solve is the handling of Compact Discs with severe surface defects like scratches and fingerprints. This paper introduces a method...... for making the design of controllers handling surface defects easier. A simulation model of Compact Disc players playing discs with surface defects is presented. The main novel element in the model is a model of the surface defects. That model is based on data from discs with surface defects. This model...

  8. Modelling and simulation of the steam line, the high and low pressure turbines and the pressure regulator for the SUN-RAH nucleo electric university simulator

    International Nuclear Information System (INIS)

    Lopez R, A.

    2003-01-01

    In the following article the development of a simulator that allows to represent the dynamics of the following systems: steam line, nozzle, vapor separator, reheater, high pressure turbine, low pressure turbine, power generator and the pressure regulator of a nucleo electric power station. We start from the supposition that this plant will be modeled from a nuclear reactor type BWR (Boiling Water Reactor), using models of reduced order that represent the more important dynamic variables of the physical processes that happen along the steam line until the one generator. To be able to carry out the simulation in real time the Mat lab mathematical modeling software is used, as well as the specific simulation tool Simulink. It is necessary to point out that the platform on which the one is executed the simulator is the Windows operating system, to allow the intuitive use that only this operating system offers. The above-mentioned obeys to that the objective of the simulator it is to help the user to understand some of the dynamic phenomena that are present in the systems of a nuclear plant, and to provide a tool of analysis and measurement of variables to predict the desirable behavior of the same ones. The model of a pressure controller for the steam lines, the high pressure turbine and the low pressure turbine is also presented that it will be the one in charge of regulating the demand of the system according to the characteristics and critic restrictions of safety and control, assigned according to those wanted parameters of performance of this system inside the nucleo electric plant. This simulator is totally well defined and it is part of the University student nucleo electric simulator with Boiling Water Reactor (SUN-RAH), an integral project and of greater capacity. (Author)

  9. Application to the field of medical and welfare with fluid power; Fluid power servo no iryo fukushi bun`ya eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Y. [Nara Technical Coll., Nara (Japan)

    1999-05-15

    Reported herein are medical and welfare apparatuses activated by fluid power servos. Reference is also made to equipment now undergoing research and development. Numerous fluid power-driven welfare and caring apparatuses have been developed, some of which are named below. In an externally powered prosthetic leg, a rocking type hydraulic servo actuator is attached on the knee section. In this device, switching is performed between an active operation in which much torque is required for instance going up and down a stairway and a passive operation in which less torque is required for instance walking on a flat place, this for increased energy efficiency. In an externally powered orthosisis, an exoskeleton is installed on the lower extremities of a patient suffering from the paralysis of both legs, and enables physical exercises for rehabilitation. Such devices are controlled by one of the two methods, the master-slave method or the manual method. Devices for the transfer of patients include an in-home bathing assist system, powered assist suit for caring, powered assist chair, movable lift for transfer, pneumatic Rubbertuator-driven rehabilitation equipment, walk training device, and wavy motion pneumatic vibrator. (NEDO)

  10. Miniaturization of a Quasi-Servo Valve and Its Application to Positon Control of a Rubber Artificial Muscle with Built-in Sensor

    Directory of Open Access Journals (Sweden)

    Moriwake Yoshinori

    2016-01-01

    Full Text Available Nowadays, the care and welfare pneumatic devices to support a nursing care and a self-reliance of the elderly and the disabled are actively researched and developed by many researchers. These wearable devices require many actuators and control valves for multi degrees of freedom. The total weight and volume of the wearable devices increases according to the degree of freedom. Our final goal is to develop a compact wearable actuator with built-in sensor, controller and control valve and to apply it to a wearable assisted device. In our previous study, a small-sized quasi-servo valve which consists of two on/off control valves and an embedded controller was developed. In this study, the quasi-servo valve composing of much smaller-sized (40% in mass, 42% in volume on/off valves is proposed and tested. In addition, the rubber artificial muscle with an ultrasonic sensor as a built-in displacement sensor is proposed and a position control of the muscle is carried out using the tested tiny valve and built-in sensor. As a result, it was confirmed that the position control of the muscle can be realized using the tested ultrasonic sensor.

  11. A Design Method for Fault Reconfiguration and Fault-Tolerant Control of a Servo Motor

    Directory of Open Access Journals (Sweden)

    Jing He

    2013-01-01

    Full Text Available A design scheme that integrates fault reconfiguration and fault-tolerant position control is proposed for a nonlinear servo system with friction. Analysis of the non-linear friction torque and fault in the system is used to guide design of a sliding mode position controller. A sliding mode observer is designed to achieve fault reconfiguration based on the equivalence principle. Thus, active fault-tolerant position control of the system can be realized. A real-time simulation experiment is performed on a hardware-in-loop simulation platform. The results show that the system reconfigures well for both incipient and abrupt faults. Under the fault-tolerant control mechanism, the output signal for the system position can rapidly track given values without being influenced by faults.

  12. Identification and Modeling of Electrohydraulic Force Control of the Material Test System (MTS)

    International Nuclear Information System (INIS)

    Ruan, J; Pei, X; Zhu, F M

    2006-01-01

    In the heavy-duty material test device, an electrohydraulic force servo system is usually utilized to load the tested samples. The signal from the pressure sensor is compared with the instruction and the difference between them is then fed to a digital servo valve to form a closed loop control to the target force. The performance of the electrohydraulic force servo system is not only closely related to how accurate to feed the flow rate to the hydraulic cylinder, but also the stiffness of the system which is dominated by the compressibility of oil. Thus the clarification of the characteristic parameters becomes the key of the solution to optimal force control. To identify the electrohydraulic force servo system various step signals are input to excite the dynamic response of the system. From the relationship between the step magnitude and the force response, the system model and the key control parameters are determined. The electrohydraulic force servo system is identified as a first order system with time constant varied with the pressure. Based on the identification of the system optimal control parameters are finally obtained and force rate error is reduced to 0.2% from original 3%

  13. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals

    Science.gov (United States)

    Chasman, Daniel I.; Jackson, Anne U.; Schmidt, Ellen M.; Johnson, Toby; Thorleifsson, Gudmar; Luan, Jian'an; Donnelly, Lousie A.; Kanoni, Stavroula; Petersen, Ann-Kristin; Pihur, Vasyl; Strawbridge, Rona J.; Shungin, Dmitry; Hughes, Maria F.; Meirelles, Osorio; Kaakinen, Marika; Bouatia-Naji, Nabila; Kristiansson, Kati; Shah, Sonia; Kleber, Marcus E.; Guo, Xiuqing; Lyytikäinen, Leo-Pekka; Fava, Cristiano; Eriksson, Niclas; Nolte, Ilja M.; Magnusson, Patrik K.; Salfati, Elias L.; Rallidis, Loukianos S.; Theusch, Elizabeth; Smith, Andrew J.P.; Folkersen, Lasse; Witkowska, Kate; Pers, Tune H.; Joehanes, Roby; Kim, Stuart K.; Lataniotis, Lazaros; Jansen, Rick; Johnson, Andrew D.; Warren, Helen; Kim, Young Jin; Zhao, Wei; Wu, Ying; Tayo, Bamidele O.; Bochud, Murielle; Absher, Devin; Adair, Linda S.; Amin, Najaf; Arking, Dan E.; Axelsson, Tomas; Baldassarre, Damiano; Balkau, Beverley; Bandinelli, Stefania; Barnes, Michael R.; Barroso, Inês; Bevan, Stephen; Bis, Joshua C.; Bjornsdottir, Gyda; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L.; Boomsma, Dorret I.; Bornstein, Stefan R.; Brown, Morris J.; Burnier, Michel; Cabrera, Claudia P.; Chambers, John C.; Chang, I-Shou; Cheng, Ching-Yu; Chines, Peter S.; Chung, Ren-Hua; Collins, Francis S.; Connell, John M.; Döring, Angela; Dallongeville, Jean; Danesh, John; de Faire, Ulf; Delgado, Graciela; Dominiczak, Anna F.; Doney, Alex S.F.; Drenos, Fotios; Edkins, Sarah; Eicher, John D.; Elosua, Roberto; Enroth, Stefan; Erdmann, Jeanette; Eriksson, Per; Esko, Tonu; Evangelou, Evangelos; Evans, Alun; Fall, Tove; Farrall, Martin; Felix, Janine F.; Ferrières, Jean; Ferrucci, Luigi; Fornage, Myriam; Forrester, Terrence; Franceschini, Nora; Duran, Oscar H. Franco; Franco-Cereceda, Anders; Fraser, Ross M.; Ganesh, Santhi K.; Gao, He; Gertow, Karl; Gianfagna, Francesco; Gigante, Bruna; Giulianini, Franco; Goel, Anuj; Goodall, Alison H.; Goodarzi, Mark O.; Gorski, Mathias; Gräßler, Jürgen; Groves, Christopher; Gudnason, Vilmundur; Gyllensten, Ulf; Hallmans, Göran; Hartikainen, Anna-Liisa; Hassinen, Maija; Havulinna, Aki S.; Hayward, Caroline; Hercberg, Serge; Herzig, Karl-Heinz; Hicks, Andrew A.; Hingorani, Aroon D.; Hirschhorn, Joel N.; Hofman, Albert; Holmen, Jostein; Holmen, Oddgeir Lingaas; Hottenga, Jouke-Jan; Howard, Phil; Hsiung, Chao A.; Hunt, Steven C.; Ikram, M. Arfan; Illig, Thomas; Iribarren, Carlos; Jensen, Richard A.; Kähönen, Mika; Kang, Hyun; Kathiresan, Sekar; Keating, Brendan J.; Khaw, Kay-Tee; Kim, Yun Kyoung; Kim, Eric; Kivimaki, Mika; Klopp, Norman; Kolovou, Genovefa; Komulainen, Pirjo; Kooner, Jaspal S.; Kosova, Gulum; Krauss, Ronald M.; Kuh, Diana; Kutalik, Zoltan; Kuusisto, Johanna; Kvaløy, Kirsti; Lakka, Timo A; Lee, Nanette R.; Lee, I-Te; Lee, Wen-Jane; Levy, Daniel; Li, Xiaohui; Liang, Kae-Woei; Lin, Honghuang; Lin, Li; Lindström, Jaana; Lobbens, Stéphane; Männistö, Satu; Müller, Gabriele; Müller-Nurasyid, Martina; Mach, François; Markus, Hugh S.; Marouli, Eirini; McCarthy, Mark I.; McKenzie, Colin A.; Meneton, Pierre; Menni, Cristina; Metspalu, Andres; Mijatovic, Vladan; Moilanen, Leena; Montasser, May E.; Morris, Andrew D.; Morrison, Alanna C.; Mulas, Antonella; Nagaraja, Ramaiah; Narisu, Narisu; Nikus, Kjell; O'Donnell, Christopher J.; O'Reilly, Paul F.; Ong, Ken K.; Paccaud, Fred; Palmer, Cameron D.; Parsa, Afshin; Pedersen, Nancy L.; Penninx, Brenda W.; Perola, Markus; Peters, Annette; Poulter, Neil; Pramstaller, Peter P.; Psaty, Bruce M.; Quertermous, Thomas; Rao, Dabeeru C.; Rasheed, Asif; Rayner, N William N.W.R.; Renström, Frida; Rettig, Rainer; Rice, Kenneth M.; Roberts, Robert; Rose, Lynda M.; Rossouw, Jacques; Samani, Nilesh J.; Sanna, Serena; Saramies, Jouko; Schunkert, Heribert; Sebert, Sylvain; Sheu, Wayne H.-H.; Shin, Young-Ah; Sim, Xueling; Smit, Johannes H.; Smith, Albert V.; Sosa, Maria X.; Spector, Tim D.; Stančáková, Alena; Stanton, Alice; Stirrups, Kathleen E.; Stringham, Heather M.; Sundstrom, Johan; Swift, Amy J.; Syvänen, Ann-Christine; Tai, E-Shyong; Tanaka, Toshiko; Tarasov, Kirill V.; Teumer, Alexander; Thorsteinsdottir, Unnur; Tobin, Martin D.; Tremoli, Elena; Uitterlinden, Andre G.; Uusitupa, Matti; Vaez, Ahmad; Vaidya, Dhananjay; van Duijn, Cornelia M.; van Iperen, Erik P.A.; Vasan, Ramachandran S.; Verwoert, Germaine C.; Virtamo, Jarmo; Vitart, Veronique; Voight, Benjamin F.; Vollenweider, Peter; Wagner, Aline; Wain, Louise V.; Wareham, Nicholas J.; Watkins, Hugh; Weder, Alan B.; Westra, Harm-Jan; Wilks, Rainford; Wilsgaard, Tom; Wilson, James F.; Wong, Tien Y.; Yang, Tsun-Po; Yao, Jie; Yengo, Loic; Zhang, Weihua; Zhao, Jing Hua; Zhu, Xiaofeng; Bovet, Pascal; Cooper, Richard S.; Mohlke, Karen L.; Saleheen, Danish; Lee, Jong-Young; Elliott, Paul; Gierman, Hinco J.; Willer, Cristen J.; Franke, Lude; Hovingh, G Kees; Taylor, Kent D.; Dedoussis, George; Sever, Peter; Wong, Andrew; Lind, Lars; Assimes, Themistocles L.; Njølstad, Inger; Schwarz, Peter EH.; Langenberg, Claudia; Snieder, Harold; Caulfield, Mark J.; Melander, Olle; Laakso, Markku; Saltevo, Juha; Rauramaa, Rainer; Tuomilehto, Jaakko; Ingelsson, Erik; Lehtimäki, Terho; Hveem, Kristian; Palmas, Walter; März, Winfried; Kumari, Meena; Salomaa, Veikko; Chen, Yii-Der I.; Rotter, Jerome I.; Froguel, Philippe; Jarvelin, Marjo-Riitta; Lakatta, Edward G.; Kuulasmaa, Kari; Franks, Paul W.; Hamsten, Anders; Wichmann, H.-Erich; Palmer, Colin N.A.; Stefansson, Kari; Ridker, Paul M; Loos, Ruth J.F.; Chakravarti, Aravinda; Deloukas, Panos; Morris, Andrew P.; Newton-Cheh, Christopher; Munroe, Patricia B.

    2016-01-01

    To dissect the genetic architecture of blood pressure and assess effects on target-organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure loci, of which 17 were novel and 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target-organ damage in multiple tissues, with minor effects in the kidney. Our findings expand current knowledge of blood pressure pathways and highlight tissues beyond the classic renal system in blood pressure regulation. PMID:27618452

  14. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals.

    Science.gov (United States)

    Ehret, Georg B; Ferreira, Teresa; Chasman, Daniel I; Jackson, Anne U; Schmidt, Ellen M; Johnson, Toby; Thorleifsson, Gudmar; Luan, Jian'an; Donnelly, Lousie A; Kanoni, Stavroula; Petersen, Ann-Kristin; Pihur, Vasyl; Strawbridge, Rona J; Shungin, Dmitry; Hughes, Maria F; Meirelles, Osorio; Kaakinen, Marika; Bouatia-Naji, Nabila; Kristiansson, Kati; Shah, Sonia; Kleber, Marcus E; Guo, Xiuqing; Lyytikäinen, Leo-Pekka; Fava, Cristiano; Eriksson, Niclas; Nolte, Ilja M; Magnusson, Patrik K; Salfati, Elias L; Rallidis, Loukianos S; Theusch, Elizabeth; Smith, Andrew J P; Folkersen, Lasse; Witkowska, Kate; Pers, Tune H; Joehanes, Roby; Kim, Stuart K; Lataniotis, Lazaros; Jansen, Rick; Johnson, Andrew D; Warren, Helen; Kim, Young Jin; Zhao, Wei; Wu, Ying; Tayo, Bamidele O; Bochud, Murielle; Absher, Devin; Adair, Linda S; Amin, Najaf; Arking, Dan E; Axelsson, Tomas; Baldassarre, Damiano; Balkau, Beverley; Bandinelli, Stefania; Barnes, Michael R; Barroso, Inês; Bevan, Stephen; Bis, Joshua C; Bjornsdottir, Gyda; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L; Boomsma, Dorret I; Bornstein, Stefan R; Brown, Morris J; Burnier, Michel; Cabrera, Claudia P; Chambers, John C; Chang, I-Shou; Cheng, Ching-Yu; Chines, Peter S; Chung, Ren-Hua; Collins, Francis S; Connell, John M; Döring, Angela; Dallongeville, Jean; Danesh, John; de Faire, Ulf; Delgado, Graciela; Dominiczak, Anna F; Doney, Alex S F; Drenos, Fotios; Edkins, Sarah; Eicher, John D; Elosua, Roberto; Enroth, Stefan; Erdmann, Jeanette; Eriksson, Per; Esko, Tonu; Evangelou, Evangelos; Evans, Alun; Fall, Tove; Farrall, Martin; Felix, Janine F; Ferrières, Jean; Ferrucci, Luigi; Fornage, Myriam; Forrester, Terrence; Franceschini, Nora; Duran, Oscar H Franco; Franco-Cereceda, Anders; Fraser, Ross M; Ganesh, Santhi K; Gao, He; Gertow, Karl; Gianfagna, Francesco; Gigante, Bruna; Giulianini, Franco; Goel, Anuj; Goodall, Alison H; Goodarzi, Mark O; Gorski, Mathias; Gräßler, Jürgen; Groves, Christopher; Gudnason, Vilmundur; Gyllensten, Ulf; Hallmans, Göran; Hartikainen, Anna-Liisa; Hassinen, Maija; Havulinna, Aki S; Hayward, Caroline; Hercberg, Serge; Herzig, Karl-Heinz; Hicks, Andrew A; Hingorani, Aroon D; Hirschhorn, Joel N; Hofman, Albert; Holmen, Jostein; Holmen, Oddgeir Lingaas; Hottenga, Jouke-Jan; Howard, Phil; Hsiung, Chao A; Hunt, Steven C; Ikram, M Arfan; Illig, Thomas; Iribarren, Carlos; Jensen, Richard A; Kähönen, Mika; Kang, Hyun; Kathiresan, Sekar; Keating, Brendan J; Khaw, Kay-Tee; Kim, Yun Kyoung; Kim, Eric; Kivimaki, Mika; Klopp, Norman; Kolovou, Genovefa; Komulainen, Pirjo; Kooner, Jaspal S; Kosova, Gulum; Krauss, Ronald M; Kuh, Diana; Kutalik, Zoltan; Kuusisto, Johanna; Kvaløy, Kirsti; Lakka, Timo A; Lee, Nanette R; Lee, I-Te; Lee, Wen-Jane; Levy, Daniel; Li, Xiaohui; Liang, Kae-Woei; Lin, Honghuang; Lin, Li; Lindström, Jaana; Lobbens, Stéphane; Männistö, Satu; Müller, Gabriele; Müller-Nurasyid, Martina; Mach, François; Markus, Hugh S; Marouli, Eirini; McCarthy, Mark I; McKenzie, Colin A; Meneton, Pierre; Menni, Cristina; Metspalu, Andres; Mijatovic, Vladan; Moilanen, Leena; Montasser, May E; Morris, Andrew D; Morrison, Alanna C; Mulas, Antonella; Nagaraja, Ramaiah; Narisu, Narisu; Nikus, Kjell; O'Donnell, Christopher J; O'Reilly, Paul F; Ong, Ken K; Paccaud, Fred; Palmer, Cameron D; Parsa, Afshin; Pedersen, Nancy L; Penninx, Brenda W; Perola, Markus; Peters, Annette; Poulter, Neil; Pramstaller, Peter P; Psaty, Bruce M; Quertermous, Thomas; Rao, Dabeeru C; Rasheed, Asif; Rayner, N William N W R; Renström, Frida; Rettig, Rainer; Rice, Kenneth M; Roberts, Robert; Rose, Lynda M; Rossouw, Jacques; Samani, Nilesh J; Sanna, Serena; Saramies, Jouko; Schunkert, Heribert; Sebert, Sylvain; Sheu, Wayne H-H; Shin, Young-Ah; Sim, Xueling; Smit, Johannes H; Smith, Albert V; Sosa, Maria X; Spector, Tim D; Stančáková, Alena; Stanton, Alice; Stirrups, Kathleen E; Stringham, Heather M; Sundstrom, Johan; Swift, Amy J; Syvänen, Ann-Christine; Tai, E-Shyong; Tanaka, Toshiko; Tarasov, Kirill V; Teumer, Alexander; Thorsteinsdottir, Unnur; Tobin, Martin D; Tremoli, Elena; Uitterlinden, Andre G; Uusitupa, Matti; Vaez, Ahmad; Vaidya, Dhananjay; van Duijn, Cornelia M; van Iperen, Erik P A; Vasan, Ramachandran S; Verwoert, Germaine C; Virtamo, Jarmo; Vitart, Veronique; Voight, Benjamin F; Vollenweider, Peter; Wagner, Aline; Wain, Louise V; Wareham, Nicholas J; Watkins, Hugh; Weder, Alan B; Westra, Harm-Jan; Wilks, Rainford; Wilsgaard, Tom; Wilson, James F; Wong, Tien Y; Yang, Tsun-Po; Yao, Jie; Yengo, Loic; Zhang, Weihua; Zhao, Jing Hua; Zhu, Xiaofeng; Bovet, Pascal; Cooper, Richard S; Mohlke, Karen L; Saleheen, Danish; Lee, Jong-Young; Elliott, Paul; Gierman, Hinco J; Willer, Cristen J; Franke, Lude; Hovingh, G Kees; Taylor, Kent D; Dedoussis, George; Sever, Peter; Wong, Andrew; Lind, Lars; Assimes, Themistocles L; Njølstad, Inger; Schwarz, Peter Eh; Langenberg, Claudia; Snieder, Harold; Caulfield, Mark J; Melander, Olle; Laakso, Markku; Saltevo, Juha; Rauramaa, Rainer; Tuomilehto, Jaakko; Ingelsson, Erik; Lehtimäki, Terho; Hveem, Kristian; Palmas, Walter; März, Winfried; Kumari, Meena; Salomaa, Veikko; Chen, Yii-Der I; Rotter, Jerome I; Froguel, Philippe; Jarvelin, Marjo-Riitta; Lakatta, Edward G; Kuulasmaa, Kari; Franks, Paul W; Hamsten, Anders; Wichmann, H-Erich; Palmer, Colin N A; Stefansson, Kari; Ridker, Paul M; Loos, Ruth J F; Chakravarti, Aravinda; Deloukas, Panos; Morris, Andrew P; Newton-Cheh, Christopher; Munroe, Patricia B

    2016-10-01

    To dissect the genetic architecture of blood pressure and assess effects on target organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry, and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure-associated loci, of which 17 were new; 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target organ damage in multiple tissues but with minor effects in the kidney. Our findings expand current knowledge of blood pressure-related pathways and highlight tissues beyond the classical renal system in blood pressure regulation.

  15. Identification and real-time position control of a servo-hydraulic rotary actuator by means of a neurobiologically motivated algorithm.

    Science.gov (United States)

    Sadeghieh, Ali; Sazgar, Hadi; Goodarzi, Kamyar; Lucas, Caro

    2012-01-01

    This paper presents a new intelligent approach for adaptive control of a nonlinear dynamic system. A modified version of the brain emotional learning based intelligent controller (BELBIC), a bio-inspired algorithm based upon a computational model of emotional learning which occurs in the amygdala, is utilized for position controlling a real laboratorial rotary electro-hydraulic servo (EHS) system. EHS systems are known to be nonlinear and non-smooth due to many factors such as leakage, friction, hysteresis, null shift, saturation, dead zone, and especially fluid flow expression through the servo valve. The large value of these factors can easily influence the control performance in the presence of a poor design. In this paper, a mathematical model of the EHS system is derived, and then the parameters of the model are identified using the recursive least squares method. In the next step, a BELBIC is designed based on this dynamic model and utilized to control the real laboratorial EHS system. To prove the effectiveness of the modified BELBIC's online learning ability in reducing the overall tracking error, results have been compared to those obtained from an optimal PID controller, an auto-tuned fuzzy PI controller (ATFPIC), and a neural network predictive controller (NNPC) under similar circumstances. The results demonstrate not only excellent improvement in control action, but also less energy consumption. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Elastin Is Differentially Regulated by Pressure Therapy in a Porcine Model of Hypertrophic Scar.

    Science.gov (United States)

    Carney, Bonnie C; Liu, Zekun; Alkhalil, Abdulnaser; Travis, Taryn E; Ramella-Roman, Jessica; Moffatt, Lauren T; Shupp, Jeffrey W

    Beneficial effects of pressure therapy for hypertrophic scars have been reported, but the mechanisms of action are not fully understood. This study evaluated elastin and its contribution to scar pliability. The relationship between changes in Vancouver Scar Scale (VSS) scores of pressure-treated scars and differential regulation of elastin was assessed. Hypertrophic scars were created and assessed weekly using VSS and biopsy procurement. Pressure treatment began on day 70 postinjury. Treated scars were compared with untreated shams. Treatment lasted 2 weeks, through day 84, and scars were assessed weekly through day 126. Transcript and protein levels of elastin were quantified. Pressure treatment resulted in lower VSS scores compared with sham-treated scars. Pliability (VSSP) was a key contributor to this difference. At day 70 pretreatment, VSSP = 2. Without treatment, sham-treated scars became less pliable, while pressure-treated scars became more pliable. The percentage of elastin in scars at day 70 was higher than in uninjured skin. Following treatment, the percentage of elastin increased and continued to increase through day 126. Untreated sham scars did not show a similar increase. Quantification of Verhoeff-Van Gieson staining corroborated the findings and immunofluorescence revealed the alignment of elastin fibers. Pressure treatment results in increased protein level expression of elastin compared with sham-untreated scars. These findings further characterize the extracellular matrix's response to the application of pressure as a scar treatment, which will contribute to the refinement of rehabilitation practices and ultimately improvements in functional and psychosocial outcomes for patients.

  17. Reconsidering the relevance of social license pressure and government regulation for environmental performance of European SMEs

    NARCIS (Netherlands)

    Graafland, Johan; Smid, Hugo

    Whereas social license pressure is held as a strong motive for the corporate social performance (CSP) of large enterprises, it is argued in literature that it will not sufficiently motivate small and medium-sized enterprises (SMEs). In this view, government regulation is the most effective way to

  18. Hypothesis: the regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia.

    Science.gov (United States)

    Devereux, Diana; Ikomi-Kumm, Julie

    2013-03-01

    The regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia is a hypothesis, which proposes an inherent operative system in homo sapiens that allows central nervous system and endocrine-mediated vascular system adaption to variables in partial pressure of oxygen, pH and body composition, while maintaining sufficient oxygen saturation for the immune system and ensuring protection of major organs in hypoxic and suboptimal conditions. While acknowledging the importance of the Henderson-Hasselbalch equation in the regulation of acid base balance, the hypothesis seeks to define the specific neuroendocrine/vascular mechanisms at work in regulating acid base balance in hypoxia and infection. The SIA (serotonin-immune-adrenergic) system is proposed as a working model, which allows central nervous system and endocrine-mediated macro- and micro vascular 'fine tuning'. The neurotransmitter serotonin serves as a 'hypoxic sensor' in concert with other operators to orchestrate homeostatic balance in normal and pathological states. The SIA system finely regulates oxygen, fuel and metabolic buffering systems at local sites to ensure optimum conditions for the immune response. The SIA system is fragile and its operation may be affected by infection, stress, diet, environmental toxins and lack of exercise. The hypothesis provides new insight in the area of neuro-gastroenterology, and emphasizes the importance of diet and nutrition as a complement in the treatment of infection, as well as the normalization of intestinal flora following antibiotic therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Towards an Aero-Propulso-Servo-Elasticity Analysis of a Commercial Supersonic Transport

    Science.gov (United States)

    Connolly, Joseph W.; Kopasakis, George; Chwalowski, Pawel; Sanetrik, Mark D.; Carlson, Jan-Renee; Silva, Walt A.; McNamara, Jack

    2016-01-01

    This paper covers the development of an aero-propulso-servo-elastic (APSE) model using computational fluid dynamics (CFD) and linear structural deformations. The APSE model provides the integration of the following two previously developed nonlinear dynamic simulations: a variable cycle turbofan engine and an elastic supersonic commercial transport vehicle. The primary focus of this study is to provide a means to include relevant dynamics of a turbomachinery propulsion system into the aeroelastic studies conducted during a vehicle design, which have historically neglected propulsion effects. A high fidelity CFD tool is used here for the integration platform. The elastic vehicle neglecting the propulsion system serves as a comparison of traditional approaches to the APSE results. An overview of the methodology is presented for integrating the propulsion system and elastic vehicle. Static aeroelastic analysis comparisons between the traditional and developed APSE models for a wing tip detection indicate that the propulsion system impact on the vehicle elastic response could increase the detection by approximately ten percent.

  20. Factors associated with blood oxygen partial pressure and carbon dioxide partial pressure regulation during respiratory extracorporeal membrane oxygenation support: data from a swine model.

    Science.gov (United States)

    Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes

    2016-01-01

    The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin.

  1. Fiscal 2000 achievement report on the research and development of transfer standard gage for oil flowmeter (final assessment); 2000 nendo sekiyu ryuryokei no iten hyojunki no kenkyu kaihatsu seika hokokusho (saishu hyoka hokokusho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In a servo PD (positive displacement) flowmeter for oil, a differential pressure transmitter detects difference in pressure between the PD flowmeter input and output ports and a rotor is driven by a servo motor so that the pressure difference between before and after the PD flowmeter rotor will be zero. The design enables high-accuracy measurement across a wide range of flow rates and is not easily affected by the surrounding physical conditions such as viscosity and density. For the development of such a flowmeter, it is necessary to develop a rotor that rotates smoothly free of locking in a steady and uniform flow, to build a visualized model that enables the analysis of flow inside the flowmeter which in turn will enable the determination of optimum differential pressure detecting ports, and to connect a newly developed servo mechanism to the thus determined ports. As the result of the research, a servo PD flowmeter is developed, which is a 50mm diameter prototype employing the Invoflex tooth form which is the waveform for a rotor suitable for a high performance flowmeter. Placed in a generally used oil flow calibration liquid, which is gasoline, kerosene, or the like, it covers a flow rate range of 1:10 and reads with an accuracy of {+-}0.1%. It remains stable in performance and suffers but a little change with the passage of time. (NEDO)

  2. Positive airway pressure adherence and subthreshold adherence in posttraumatic stress disorder patients with comorbid sleep apnea

    Directory of Open Access Journals (Sweden)

    Krakow BJ

    2017-11-01

    Full Text Available Barry J Krakow,1–3 Jessica J Obando,2 Victor A Ulibarri,1,2 Natalia D McIver1,2 1Sleep & Human Health Institute, 2Maimonides Sleep Arts & Sciences, Albuquerque, 3Los Alamos Medical Center, Los Alamos, NM, USA Study objectives: Patients with comorbid posttraumatic stress disorder (PTSD and obstructive sleep apnea (OSA manifest low adherence to continuous positive airway pressure (CPAP due to fixed, pressure-induced expiratory pressure intolerance (EPI, a subjective symptom and objective sign aggravated by anxiety sensitivity and somatosensory amplification. As advanced PAP therapy modes (ie, auto-bilevel PAP [ABPAP] or adaptive servo-ventilation [ASV] may address these side effects, we hypothesized such treatment would be associated with decreased expiratory intolerance and increased adherence in posttraumatic stress patients with co-occurring OSA.Methods: We reviewed charts of 147 consecutive adult patients with moderately severe posttraumatic stress symptoms and objectively diagnosed OSA. All patients failed or rejected CPAP and were manually titrated on auto-adjusting, dual-pressure ABPAP or ASV modes in the sleep laboratory, a technique to eliminate flow limitation breathing events while resolving EPI. Patients were then prescribed either mode of therapy. Follow-up encounters assessed patient use, and objective data downloads (ODDs measured adherence.Results: Of 147 charts reviewed, 130 patients were deemed current PAP users, and 102 provided ODDs: 64 used ASV and 38 used ABPAP. ODDs yielded three groups: 59 adherent per insurance conventions, 19 subthreshold compliant partial users, and 24 noncompliant. Compliance based on available downloads was 58%, notably higher than recently reported rates in PTSD patients with OSA. Among the 19 partial users, 17 patients were minutes of PAP use or small percentages of nights removed from meeting insurance compliance criteria for PAP devices.Conclusion: Research is warranted on advanced PAP modes in

  3. Active Lubrication: Feasibility and Limitations on Reducing Vibration in Rotating Machinery

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2004-01-01

    of increasing their operational range. As a result, one achieves intelligent machines that are more flexible to operate in a fast-changing demand environment. Some limitations of the active lubrication are also discussed based on experimental data, where the response of the servo valves and the supply pressure...... play an important role: the eigenfrequency of the servo valves establishes the operational frequency range of the active lubrication, whereas the supply pressure establishes the amplitude of vibration reduction achieved with the active lubrication....

  4. Position Based Visual Servoing control of a Wheelchair Mounter Robotic Arm using Parallel Tracking and Mapping of task objects

    Directory of Open Access Journals (Sweden)

    Alessandro Palla

    2017-05-01

    Full Text Available In the last few years power wheelchairs have been becoming the only device able to provide autonomy and independence to people with motor skill impairments. In particular, many power wheelchairs feature robotic arms for gesture emulation, like the interaction with objects. However, complex robotic arms often require a joystic to be controlled; this feature make the arm hard to be controlled by impaired users. Paradoxically, if the user were able to proficiently control such devices, he would not need them. For that reason, this paper presents a highly autonomous robotic arm, designed in order to minimize the effort necessary for the control of the arm. In order to do that, the arm feature an easy to use human - machine interface and is controlled by Computer Vison algorithm, implementing a Position Based Visual Servoing (PBVS control. It was realized by extracting features by the camera and fusing them with the distance from the target, obtained by a proximity sensor. The Parallel Tracking and Mapping (PTAM algorithm was used to find the 3D position of the task object in the camera reference system. The visual servoing algorithm was implemented in an embedded platform, in real time. Each part of the control loop was developed in Robotic Operative System (ROS Environment, which allows to implement the previous algorithms as different nodes. Theoretical analysis, simulations and in system measurements proved the effectiveness of the proposed solution.

  5. Technology and control for hydraulic manipulators

    International Nuclear Information System (INIS)

    Measson, Y.; David, O.; Louveau, F.; Friconneau, J.P.

    2003-01-01

    Hydraulic manipulators are candidate for fusion reactor maintenance. Their main advantages are their large payload with respect to volume and mass, their reliability and their robustness. However, due to their force control limitations, they are disqualified for precise manipulation and are dangerous for the environment and themselves in case of unexpected collision. CEA, in collaboration with CYBERNETIX and IFREMER has developed the advanced hydraulic robot MAESTRO. Force and hybrid control has been developed in order to avoid the previous problems. Using 'pressure' control servo-valve instead of the standard 'flow' control servo-valve (standard configuration of the MAESTRO) makes a real simplification of the control loop. No more pressure sensors are needed for monitoring the hydraulic joint in force control mode and using this kind of valves makes big safety improvements. The French company IN-LHC, designed and manufactured a prototype of servo-valve that fits the performances and space constraints of the Maestro arm. A characterisation of this new product was made on a mock-up and a set of these prototypes integrated in the Maestro slave-arm. A comparison between the two actuating technologies was made and showed that the performances of the pressure servo-valves make it applicable to general application

  6. Back-pressure Forging Using a Servo Press

    OpenAIRE

    河本, 基一郎; Kawamoto, Kiichiro

    2015-01-01

    博士論文要旨Abstract 以下に掲載:International Journal of Automation Technology 9(2) pp.184-192 2015. Fuji Technology Press Ltd. 共著者:Kiichiro Kawamoto, Takeshi Yoneyama, Masato Okada

  7. Development and performance tests of the bridge-transported servo manipulator system for remote maintenance jobs in a hot cell

    International Nuclear Information System (INIS)

    Jin, Jae Hyun; Park, Byung Suk; Ko, Byung Seung; Yoon, Ji Sup; Jung, Ki Jung

    2005-01-01

    In this paper, a prototype of the Bridge-Transported Servo Manipulator (BTSM) system introduced, which has been developed to do operation and maintenance jobs remotely in a hot cell. The system consists of a telescopic transporter, a slave arm, a master arm, and a control system. Several tests such as a positional tracking, a weight handling, reliability, and operability have been performed and test results are presented. Based on the test results, an upgraded system which will be used during demonstrations of the advanced spent fuel conditioning process (ACP) has been designed.

  8. New pre-heating system for natural gas pressure regulating stations

    International Nuclear Information System (INIS)

    Zullo, G.; Vertuani, C.; Borghesani, O.; Vignoli, F.

    1999-01-01

    Costs for running natural gas pressure regulating stations are mainly due to operation and maintenance of a natural gas preheating system, usually equipment with a hot water boiler or an armour-plated electric resistance immersed in a fluid. The article describe a system, considering a natural circulation boiler which uses steam/condensate (at 100 degrees C and 0,5 bar) as a thermal conductor, in thermodynamic balance and in absence of un condensable. This new boiler, already operating with satisfactory results in heating system for industrial buildings, does not require testing, notifications, periodical inspections by the competent authorities, constant monitoring by trained or patented staff. Besides, it allows easier installations procedures and running cost savings. The system, to be considered as static because it has no moving parts, is a good alternative to conventional forced hot water circulation or electric heating system [it

  9. SMART MONITORING AND DECISION MAKING FOR REGULATING ANNULUS BOTTOM HOLE PRESSURE WHILE DRILLING OIL WELLS

    Directory of Open Access Journals (Sweden)

    M. P. Vega

    Full Text Available Abstract Real time measurements and development of sensor technology are research issues associated with robustness and safety during oil well drilling operations, making feasible the diagnosis of problems and the development of a regulatory strategy. The major objective of this paper is to use an experimental plant and also field data, collected from a basin operation, offshore Brazil, for implementing smart monitoring and decision making, in order to assure drilling inside operational window, despite the commonly observed disturbances that produce fluctuations in the well annulus bottom hole pressure. Using real time measurements, the performance of a continuous automated drilling unit is analyzed under a scenario of varying levels of rate of penetration; aiming pressure set point tracking (inside the operational drilling window and also rejecting kick, a phenomenon that occurs when the annulus bottom hole pressure is inferior to the porous pressure, producing the migration of reservoir fluids into the annulus region. Finally, an empirical model was built, using real experimental data from offshore Brazil basins, enabling diagnosing and regulating a real drilling site by employing classic and advanced control strategies.

  10. Effects of Pressure Support Ventilation May Be Lost at High Exercise Intensities in People with COPD.

    Science.gov (United States)

    Anekwe, David; de Marchie, Michel; Spahija, Jadranka

    2017-06-01

    Pressure support ventilation (PSV) may be used for exercise training in chronic obstructive pulmonary disease (COPD), but its acute effect on maximum exercise capacity is not fully known. The objective of this study was to evaluate the effect of 10 cm H 2 O PSV and a fixed PSV level titrated to patient comfort at rest on maximum exercise workload (WLmax), breathing pattern and metabolic parameters during a symptom-limited incremental bicycle test in individuals with COPD. Eleven individuals with COPD (forced expiratory volume in one second: 49 ± 16%; age: 64 ± 7 years) performed three exercise tests: without a ventilator, with 10 cm H 2 O of PSV and with a fixed level titrated to comfort at rest, using a SERVO-i ventilator. Tests were performed in randomized order and at least 48 hours apart. The WLmax, breathing pattern, metabolic parameters, and mouth pressure (Pmo) were compared using repeated measures analysis of variance. Mean PSV during titration was 8.2 ± 4.5 cm H 2 O. There was no difference in the WLmax achieved during the three tests. At rest, PSV increased the tidal volume, minute ventilation, and mean inspiratory flow with a lower end-tidal CO 2 ; this was not sustained at peak exercise. Pmo decreased progressively (decreased unloading) with PSV at workloads close to peak, suggesting the ventilator was unable to keep up with the increased ventilatory demand at high workloads. In conclusion, with a Servo-i ventilator, 10 cm H 2 O of PSV and a fixed level of PSV established by titration to comfort at rest, is ineffective for the purpose of achieving higher exercise workloads as the acute physiological effects may not be sustained at peak exercise.

  11. Role of proopiomelanocortin neuron Stat3 in regulating arterial pressure and mediating the chronic effects of leptin.

    Science.gov (United States)

    Dubinion, John H; do Carmo, Jussara M; Adi, Ahmad; Hamza, Shereen; da Silva, Alexandre A; Hall, John E

    2013-05-01

    Although signal transducer and activator of transcription 3 (Stat3) is a key second messenger by which leptin regulates appetite and body weight, its role in specific neuronal populations in metabolic regulation and in mediating the chronic effects of leptin on blood pressure is unknown. The current study tested the hypothesis that Stat3 signaling in proopiomelanocortin (POMC) neurons mediates the chronic effects of leptin on mean arterial pressure (MAP), as well as on glucose regulation, energy expenditure, and food intake. Stat3(flox/flox) mice were crossed with POMC-Cre mice to generate mice with Stat3 deletion specifically in POMC neurons (Stat3(flox/flox)/POMC-Cre). Oxygen consumption (Vo2), carbon dioxide respiration (Vco2), motor activity, heat production, food intake, and MAP were measured 24 hours/d. After baseline measurements, leptin was infused (4 μg/kg per min, IP) for 7 days. Stat3(flox/flox)/POMC-Cre mice were hyperphagic, heavier, and had increased respiratory quotients compared with control Stat3(flox/flox) mice. Baseline MAP was not different between the groups, and chronic leptin infusion reduced food intake similarly in both groups (27 versus 29%). Vo2, Vco2, and heat production responses to leptin were not significantly different in control and Stat3(flox/flox)/POMC-Cre mice. However, leptin-mediated increases in MAP were completely abolished, and blood pressure responses to acute air-jet stress were attenuated in male Stat3(flox/flox)/POMC-Cre mice. These results indicate that Stat3 signaling in POMC neurons is essential for leptin-mediated increases in MAP, but not for anorexic or thermogenic effects of leptin.

  12. An investigation into the regulation of intra-cranial pressure and its influence upon the surrounding cranial bones.

    Science.gov (United States)

    Gard, Graham

    2009-07-01

    The aim of this study is to present a rational coherent hypothesis to explain the palpable involuntary movements of the cranium. The arterial and venous anatomy inside and around the skull and spinal column presents a complete vascular system with the capacity to regulate intra-cranial pressure to a level of equilibrium slightly higher than atmospheric pressure. Variations in cerebrospinal fluid (csf) pressure control the volume of blood draining through the cavernous sinus and hence into the inter-vertebral venous plexus in relation to the jugular vein. Stable intra-cranial pressure is maintained by a controlled release of venous blood through the inter-vertebral venous plexus (slow) and the jugular vein (fast) in the cavernous sinus. Any distortion of the skull from its healthy state will lead to reduced intra-cranial volume. The process of release from the state of compression has been interpreted as "cranial rhythm" but may be a mechanical adjustment increasing the internal volume of the skull, aided by the continual maintenance of stable intracranial pressure. This involuntary movement is capable of being assisted manually.

  13. Gender differences in blood pressure regulation following artificial gravity exposure

    Science.gov (United States)

    Evans, Joyce; Goswami, Nandu; Kostas, Vladimir; Zhang, Qingguang; Ferguson, Connor; Moore, Fritz; Stenger, Michael, , Dr; Serrador, Jorge; W, Siqi

    study, men and women demonstrated significantly different strategies for regulating blood pressure and cerebral flow both at rest and during orthostatic stress on the day in which they had undergone exposure to AG. Since, in both men and women, a single, acute bout of AG exposure improved orthostatic tolerance, the feasibility of short exposures to AG during longer spaceflights or prior to entry into a gravitational (Earth or Mars) environment, should be explored. Given the known beneficial effects of AG on other organ systems, the present study indicates that the positive effect of artificial gravity on cardiac output make AG a likely candidate for sustaining cardiovascular conditioning upon return to gravity. Supported by KY NASA EPSCoR Grant #NNX07AT58A, KY State Matching Grants, NASA JSC Human Research Program and NASA Ames Research Center.

  14. A comparison of volume control and pressure-regulated volume control ventilation in acute respiratory failure

    OpenAIRE

    Guldager, Henrik; Nielsen, Soeren L; Carl, Peder; Soerensen, Mogens B

    1997-01-01

    Background: The aim of this study was to test the hypothesis that a new mode of ventilation (pressure-regulated volume control; PRVC) is associated with improvements in respiratory mechanics and outcome when compared with conventional volume control (VC) ventilation in patients with acute respiratory failure. We conducted a randomised, prospective, open, cross over trial on 44 patients with acute respiratory failure in the general intensive care unit of a university hospital. After a stabiliz...

  15. The crosstalk between the kidney and the central nervous system: the role of renal nerves in blood pressure regulation.

    Science.gov (United States)

    Nishi, Erika E; Bergamaschi, Cássia T; Campos, Ruy R

    2015-04-20

    What is the topic of this review? This review describes the role of renal nerves as the key carrier of signals from the kidneys to the CNS and vice versa; the brain and kidneys communicate through this carrier to maintain homeostasis in the body. What advances does it highlight? Whether renal or autonomic dysfunction is the predominant contributor to systemic hypertension is still debated. In this review, we focus on the role of the renal nerves in a model of renovascular hypertension. The sympathetic nervous system influences the renal regulation of arterial pressure and body fluid composition. Anatomical and physiological evidence has shown that sympathetic nerves mediate changes in urinary sodium and water excretion by regulating the renal tubular water and sodium reabsorption throughout the nephron, changes in the renal blood flow and the glomerular filtration rate by regulating the constriction of renal vasculature, and changes in the activity of the renin-angiotensin system by regulating the renin release from juxtaglomerular cells. Additionally, renal sensory afferent fibres project to the autonomic central nuclei that regulate blood pressure. Hence, renal nerves play a key role in the crosstalk between the kidneys and the CNS to maintain homeostasis in the body. Therefore, the increased sympathetic nerve activity to the kidney and the renal afferent nerve activity to the CNS may contribute to the outcome of diseases, such as hypertension. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  16. A comparison of volume control and pressure-regulated volume control ventilation in acute respiratory failure

    Science.gov (United States)

    Guldager, Henrik; Nielsen, Soeren L; Carl, Peder; Soerensen, Mogens B

    1997-01-01

    Background: The aim of this study was to test the hypothesis that a new mode of ventilation (pressure-regulated volume control; PRVC) is associated with improvements in respiratory mechanics and outcome when compared with conventional volume control (VC) ventilation in patients with acute respiratory failure. We conducted a randomised, prospective, open, cross over trial on 44 patients with acute respiratory failure in the general intensive care unit of a university hospital. After a stabilization period of 8 h, a cross over trial of 2 × 2 h was conducted. Apart from the PRVC/VC mode, ventilator settings were comparable. The following parameters were recorded for each patient: days on ventilator, failure in the assigned mode of ventilation (peak inspiratory pressure > 50 cmH2O) and survival. Results: In the crossover trial, peak inspiratory pressure was significantly lower using PRVC than with VC (20 cmH2O vs 24 cmH2O, P < 0.0001). No other statistically significant differences were found. Conclusions: Peak inspiratory pressure was significantly lower during PRVC ventilation than during VC ventilation, and thus PRVC may be superior to VC in certain patients. However, in this small group of patients, we could not demonstrate that PRVC improved outcome. PMID:11056699

  17. PID-Controller Tuning Optimization with Genetic Algorithms in Servo Systems

    Directory of Open Access Journals (Sweden)

    Arturo Y. Jaen-Cuellar

    2013-09-01

    Full Text Available Performance improvement is the main goal of the study of PID control and much research has been conducted for this purpose. The PID filter is implemented in almost all industrial processes because of its well-known beneficial features. In general, the whole system's performance strongly depends on the controller's efficiency and hence the tuning process plays a key role in the system's behaviour. In this work, the servo systems will be analysed, specifically the positioning control systems. Among the existent tuning methods, the Gain-Phase Margin method based on Frequency Response analysis is the most adequate for controller tuning in positioning control systems. Nevertheless, this method can be improved by integrating an optimization technique. The novelty of this work is the development of a new methodology for PID control tuning by coupling the Gain-Phase Margin method with the Genetic Algorithms in which the micro-population concept and adaptive mutation probability are applied. Simulations using a positioning system model in MATLAB and experimental tests in two CNC machines and an industrial robot are carried out in order to show the effectiveness of the proposal. The obtained results are compared with both the classical Gain-Phase Margin tuning and with a recent PID controller optimization using Genetic Algorithms based on real codification. The three methodologies are implemented using software.

  18. Evaluation of the Argonne National Laboratory servo-controlled calorimeter system

    International Nuclear Information System (INIS)

    Foster, L.A.

    1997-01-01

    The control system of a replacement mode, twin-bridge, water-bath calorimeter originally built by Mound EG ampersand G Applied Technologies was modified by Argonne National Laboratory. The calorimeter was upgraded with a PC-based computer control and data acquisition system. The system was redesigned to operate in a servo-control mode, and a preheater was constructed to allow pre-equilibration of samples. The instrument was sent to the Plutonium Facility at Los Alamos National Laboratory for testing and evaluation of its performance in the field using heat source standards and plutonium process materials. The important parameters for calorimeter operation necessary to satisfy the nuclear materials control and accountability requirements of the Plutonium Facility were evaluated over a period of several months. These parameters include calorimeter stability, measurement precision and accuracy, and average measurement time. The observed measurement precision and accuracy were found to be acceptable for most accountability measurements, although they were slightly larger than the values for calorimeters in routine use at the Plutonium Facility. Average measurement times were significantly shorter than measurement times for identical items in the Plutonium Facility calorimeters. Unexplained shifts in the baseline measurements were observed on numerous occasions. These shifts could lead to substantial measurement errors if they are not very carefully monitored by the operating facility. Detailed results of the experimental evaluation are presented in this report

  19. Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility.

    Science.gov (United States)

    Chintalapudi, Sumana R; Maria, Doaa; Di Wang, Xiang; Bailey, Jessica N Cooke; Hysi, Pirro G; Wiggs, Janey L; Williams, Robert W; Jablonski, Monica M

    2017-11-24

    Glaucoma is a multi-factorial blinding disease in which genetic factors play an important role. Elevated intraocular pressure is a highly heritable risk factor for primary open angle glaucoma and currently the only target for glaucoma therapy. Our study helps to better understand underlying genetic and molecular mechanisms that regulate intraocular pressure, and identifies a new candidate gene, Cacna2d1, that modulates intraocular pressure and a promising therapeutic, pregabalin, which binds to CACNA2D1 protein and lowers intraocular pressure significantly. Because our study utilizes a genetically diverse population of mice with known sequence variants, we are able to determine that the intraocular pressure-lowering effect of pregabalin is dependent on the Cacna2d1 haplotype. Using human genome-wide association study (GWAS) data, evidence for association of a CACNA2D1 single-nucleotide polymorphism and primary open angle glaucoma is found. Importantly, these results demonstrate that our systems genetics approach represents an efficient method to identify genetic variation that can guide the selection of therapeutic targets.

  20. Fracture toughness of irradiated Zr-2.5Nb pressure tube from KAPS-2 evaluated using disk compact tension specimens

    International Nuclear Information System (INIS)

    Shah, Priti Kotak; Dubey, J.S.; Balakrishnan, K.S.; Shriwastaw, R.S.; Dhotre, M.P.; Bhandekar, A.; Pandit, K.M.; Anantharaman, S.

    2013-12-01

    The report gives the results of the fracture toughness tests carried out over the range of temperatures on specimens prepared from the irradiated S-07Zr-2.5Nb pressure tube removed from Kakrapar Atomic Power Station-2 (KAPS-2) as a part of materials surveillance programme. The pressure tube had experienced ∼ 8 effective full power years (EFPY) of reactor operation and had hydrogen equivalent (H eq ) content less than 20 ppm along the tube length. The fracture toughness tests have been carried out using 30 mm Disk Compact Tension (DCT) specimens, that were punched out of the irradiated pressure tube. The disk punching was carried out using specially made shielded enclosure and hydraulic press. Fatigue pre-cracking and fracture toughness tests were performed using servo-hydraulic universal testing machine with Direct Current Potential Drop (DCPD) equipment to monitor the crack length. The tests were carried out at different test temperature from ambient to 300℃. The fracture toughness values have been used to estimate the critical pressure for the tube. The fracture properties indicate that such tubes have sufficient toughness to satisfy the Leak-Before-Break (LBB) criterion for in-reactor operation. (author)

  1. Propulsion System Dynamic Modeling for the NASA Supersonic Concept Vehicle: AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.propulsion system dynamics, the structural dynamics, and aerodynamics.

  2. Adaptive GSA-based optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness.

    Science.gov (United States)

    Precup, Radu-Emil; David, Radu-Codrut; Petriu, Emil M; Radac, Mircea-Bogdan; Preitl, Stefan

    2014-11-01

    This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices. An original back-calculation and tracking anti-windup scheme is proposed in order to prevent the integrator wind-up and to compensate for the dead zone nonlinearity of the process. The minimization of the objective functions is carried out in the framework of optimization problems with inequality constraints which guarantee the robust stability with respect to the process parametric variations and the controller robustness. An adaptive gravitational search algorithm (GSA) solves the optimization problems focused on the optimal tuning of the design parameter specific to the ESO method and of the anti-windup tracking gain. A tuning method for PI controllers is proposed as an efficient approach to the design of resilient control systems. The tuning method and the PI controllers are experimentally validated by the adaptive GSA-based tuning of PI controllers for the angular position control of a laboratory servo system.

  3. Sinusoidal visuomotor tracking: intermittent servo-control or coupled oscillations?

    Science.gov (United States)

    Russell, D M; Sternad, D

    2001-12-01

    In visuomotor tasks that involve accuracy demands, small directional changes in the trajectories have been taken as evidence of feedback-based error corrections. In the present study variability, or intermittency, in visuomanual tracking of sinusoidal targets was investigated. Two lines of analyses were pursued: First, the hypothesis that humans fundamentally act as intermittent servo-controllers was re-examined, probing the question of whether discontinuities in the movement trajectory directly imply intermittent control. Second, an alternative hypothesis was evaluated: that rhythmic tracking movements are generated by entrainment between the oscillations of the target and the actor, such that intermittency expresses the degree of stability. In 2 experiments, participants (N = 6 in each experiment) swung 1 of 2 different hand-held pendulums, tracking a rhythmic target that oscillated at different frequencies with a constant amplitude. In 1 line of analyses, the authors tested the intermittency hypothesis by using the typical kinematic error measures and spectral analysis. In a 2nd line, they examined relative phase and its variability, following analyses of rhythmic interlimb coordination. The results showed that visually guided corrective processes play a role, especially for slow movements. Intermittency, assessed as frequency and power components of the movement trajectory, was found to change as a function of both target frequency and the manipulandum's inertia. Support for entrainment was found in conditions in which task frequency was identical to or higher than the effector's eigenfrequency. The results suggest that it is the symmetry between task and effector that determines which behavioral regime is dominant.

  4. Modal space three-state feedback control for electro-hydraulic servo plane redundant driving mechanism with eccentric load decoupling.

    Science.gov (United States)

    Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining

    2018-06-01

    The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Comparison of nasal continuous positive airway pressure delivered by seven ventilators using simulated neonatal breathing.

    Science.gov (United States)

    Drevhammar, Thomas; Nilsson, Kjell; Zetterström, Henrik; Jonsson, Baldvin

    2013-05-01

    Nasal continuous positive airway pressure (NCPAP) is an established treatment for respiratory distress in neonates. Most modern ventilators are able to provide NCPAP. There have been no large studies examining the properties of NCPAP delivered by ventilators. The aim of this study was to compare pressure stability and imposed work of breathing (iWOB) for NCPAP delivered by ventilators using simulated neonatal breathing. Experimental in vitro study. Research laboratory in Sweden. None. Neonatal breathing was simulated using a mechanical lung simulator. Seven ventilators were tested at different CPAP levels using two breath profiles. Pressure stability and iWOB were determined. Results from three ventilators revealed that they provided a slight pressure support. For these ventilators, iWOB could not be calculated. There were large differences in pressure stability and iWOB between the tested ventilators. For simulations using the 3.4-kg breath profile, the pressure swings around the mean pressure were more than five times greater, and iWOB more than four times higher, for the system with the highest measured values compared with the system with the lowest. Overall, the Fabian ventilator was the most pressure stable system. Evita XL and SERVO-i were found more pressure stable than Fabian in some simulations. The results for iWOB were in accordance with pressure stability for systems that allowed determination of this variable. Some of the tested ventilators unexpectedly provided a minor degree of pressure support. In terms of pressure stability, we have not found any advantages of ventilators as a group compared with Bubble CPAP, Neopuff, and variable flow generators that were tested in our previous study. The variation between individual systems is great within both categories. The clinical importance of these findings needs further investigation.

  6. Linking Self-Regulation and Risk Proneness to Risky Sexual Behavior: Pathways through Peer Pressure and Early Substance Use

    Science.gov (United States)

    Crockett, Lisa J.; Raffaelli, Marcela; Shen, Yuh-Ling

    2006-01-01

    The linkages between self-regulation in childhood, risk proneness in early adolescence, and risky sexual behavior in mid-adolescence were examined in a cohort of children (N=518) from the National Longitudinal Survey of Youth. The possible mediating role of two early adolescent variables (substance use and negative peer pressure) was also…

  7. An energy-saving nonlinear position control strategy for electro-hydraulic servo systems.

    Science.gov (United States)

    Baghestan, Keivan; Rezaei, Seyed Mehdi; Talebi, Heidar Ali; Zareinejad, Mohammad

    2015-11-01

    The electro-hydraulic servo system (EHSS) demonstrates numerous advantages in size and performance compared to other actuation methods. Oftentimes, its utilization in industrial and machinery settings is limited by its inferior efficiency. In this paper, a nonlinear backstepping control algorithm with an energy-saving approach is proposed for position control in the EHSS. To achieve improved efficiency, two control valves including a proportional directional valve (PDV) and a proportional relief valve (PRV) are used to achieve the control objectives. To design the control algorithm, the state space model equations of the system are transformed to their normal form and the control law through the PDV is designed using a backstepping approach for position tracking. Then, another nonlinear set of laws is derived to achieve energy-saving through the PRV input. This control design method, based on the normal form representation, imposes internal dynamics on the closed-loop system. The stability of the internal dynamics is analyzed in special cases of operation. Experimental results verify that both tracking and energy-saving objectives are satisfied for the closed-loop system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. A versatile hydraulically operated respiratory servo system for ventilation and lung function testing.

    Science.gov (United States)

    Meyer, M; Slama, H

    1983-09-01

    A description is given of the design and performance of a microcomputer-controlled respiratory servo system that incorporates the characteristics of a mechanical ventilator and also allows the performance of a multitude of test procedures required for assessment of pulmonary function in paralyzed animals. The device consists of a hydraulically operated cylinder-piston assembly and solenoid valves that direct inspiratory and expiratory gas flow and also enable switching to different test gas sources. The system operates as a volume-flow-preset ventilator but may be switched to other operational cycling modes. Gas flow rates may be constant or variable. The system operates as an assister-controller and, combined with a gas analyzer, can function as a "demand" ventilator allowing for set-point control of end-tidal PCO2 and PO2. Complex breathing maneuvers for a variety of single- and multiple-breath lung function tests are automatically performed. Because of the flexibility in selection and timing of respiratory parameters, the system is particularly suitable for respiratory gas studies.

  9. A discrete time-varying internal model-based approach for high precision tracking of a multi-axis servo gantry.

    Science.gov (United States)

    Zhang, Zhen; Yan, Peng; Jiang, Huan; Ye, Peiqing

    2014-09-01

    In this paper, we consider the discrete time-varying internal model-based control design for high precision tracking of complicated reference trajectories generated by time-varying systems. Based on a novel parallel time-varying internal model structure, asymptotic tracking conditions for the design of internal model units are developed, and a low order robust time-varying stabilizer is further synthesized. In a discrete time setting, the high precision tracking control architecture is deployed on a Voice Coil Motor (VCM) actuated servo gantry system, where numerical simulations and real time experimental results are provided, achieving the tracking errors around 3.5‰ for frequency-varying signals. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Pulmonary NO and C18O2 uptake during pressure-induced lung expansion in rabbits.

    Science.gov (United States)

    Heller, Hartmut; Schuster, Klaus-Dieter

    2007-01-01

    In artificially ventilated animals we investigated the dependence of the pulmonary diffusing capacities of nitric oxide (NO) and doubly 18O-labeled carbon dioxide (DLNO, DLC18O2) on lung expansion with respect to ventilator-driven increases in intrapulmonary pressure. For this purpose we applied computerized single-breath experiments to 11 anesthetized paralyzed rabbits (weight 2.8-3.8 kg) at various alveolar volumes (45-72 ml) by studying the almost entire inspiratory limb of the respective pressure/volume curves (intrapulmonary pressure: 6-27 cmH2O). The animals were ventilated with room air, employing a computerized ventilatory servo-system that we designed to maintain mechanical ventilation and to execute the particular lung function tests automatically. Each single-breath maneuver was started from residual volume (13.5+/-2 ml, mean+/-SD) by inflating the rabbit lungs with 35-55 ml indicator gas mixture containing 0.05% NO in N2 or 0.9% C18O2 in N2. Alveolar partial pressures of NO and C18O2 were measured by respiratory mass spectrometry. Values of DLNO and DLC18O2 ranged between 1.55 and 2.49 ml/(mmHg min) and 11.7 and 16.6 ml/(mmHg min), respectively. Linear regression analyses yielded a significant increase in DLNO with simultaneous increase in alveolar volume (Pvolume on DLC18O2 values.

  11. Use of servo controlled weld head for end closure welding

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, S.K.; Setty, D.S.; Rameswara Rao, A.; Hemantha Rao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2010-07-01

    In the PHWR fuel fabrication line resistance welding processes are used for joining various zirconium based alloy components to fuel tube of similar material. The quality requirement of these welding processes is very stringent and has to meet all the product requirements. At present these welding processes are being carried out by using standard resistance welding machines. In the resistance welding process in addition to current and time, force is one of the critical and important parameter, which influences the weld quality. At present advanced feed back type fast response medium frequency weld controllers are being used. This has upslope/down slope, constant and repetitive weld pattern selection features makes this critical welding process more reliable. Compared to weld controllers, squeeze force application devices are limited and normally standard high response pneumatic cylinders are used in the welding process. With this type of devices the force is constant during welding process and cannot be varied during welding process as per the material deformation characteristics. Similarly due to non-availability of feed back systems in the squeeze force application systems restricts the accuracy and quality of the welding process. In the present paper the influence of squeeze force pattern on the weld quality using advanced feed back type servo based force control system was studied. Different squeeze forces were used during pre and post weld heat periods along with constant force and compared with the weld quality. (author)

  12. HAWC2 and BeamDyn: Comparison Between Beam Structural Models for Aero-Servo-Elastic Frameworks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pavese, Christian; Kim, Taeseong; Wang, Qi; Jonkman, Jason; Sprague, Michael A.

    2016-08-01

    This work presents a comparison of two beam codes for aero-servo-elastic frameworks: a new structural model for the aeroelastic code HAWC2 and a new nonlinear beam model, BeamDyn, for the aeroelastic modularization framework FAST v8. The main goal is to establish the suitability of the two approaches to model the structural behaviour of modern wind turbine blades in operation. Through a series of benchmarking structural cases of increasing complexity, the capability of the two codes to simulate highly nonlinear effects is investigated and analyzed. Results show that even though the geometrically exact beam theory can better model effects such as very large deflections, rotations, and structural couplings, an approach based on a multi-body formulation assembled through linear elements is capable of computing accurate solutions for typical nonlinear beam theory benchmarking cases.

  13. Robust H(∞) positional control of 2-DOF robotic arm driven by electro-hydraulic servo system.

    Science.gov (United States)

    Guo, Qing; Yu, Tian; Jiang, Dan

    2015-11-01

    In this paper an H∞ positional feedback controller is developed to improve the robust performance under structural and parametric uncertainty disturbance in electro-hydraulic servo system (EHSS). The robust control model is described as the linear state-space equation by upper linear fractional transformation. According to the solution of H∞ sub-optimal control problem, the robust controller is designed and simplified to lower order linear model which is easily realized in EHSS. The simulation and experimental results can validate the robustness of this proposed method. The comparison result with PI control shows that the robust controller is suitable for this EHSS under the critical condition where the desired system bandwidth is higher and the external load of the hydraulic actuator is closed to its limited capability. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. How group-buying servicescape affect consumers’ purchase intention, the regulating effects of price discount and time pressure

    Directory of Open Access Journals (Sweden)

    Zhang Lingying

    2017-01-01

    Full Text Available This paper constructs a conceptual model of how group-buying servicescape affect consumers’ purchase intention and discusses the regulating effects of price discount and time pressure. This research uses a survey approach to collect data, as a result, we collected 506 valid questionnaires. The results show that aesthetic appeal, information exchange, interpersonal interaction and perceived security have a positive effect on positive emotion; layout and functionality, information exchange and interpersonal interaction have a positive effect on virtual touch. Positive emotion and virtual touch can promote the consumer’s purchase intention, and time pressure and price discount play a regulatory function. The results of this study have an important reference value for group-buying operators to use servicescape to attract and retain consumers.

  15. Development of an interface for an ultrareliable fault-tolerant control system and an electronic servo-control unit

    Science.gov (United States)

    Shaver, Charles; Williamson, Michael

    1986-01-01

    The NASA Ames Research Center sponsors a research program for the investigation of Intelligent Flight Control Actuation systems. The use of artificial intelligence techniques in conjunction with algorithmic techniques for autonomous, decentralized fault management of flight-control actuation systems is explored under this program. The design, development, and operation of the interface for laboratory investigation of this program is documented. The interface, architecturally based on the Intel 8751 microcontroller, is an interrupt-driven system designed to receive a digital message from an ultrareliable fault-tolerant control system (UFTCS). The interface links the UFTCS to an electronic servo-control unit, which controls a set of hydraulic actuators. It was necessary to build a UFTCS emulator (also based on the Intel 8751) to provide signal sources for testing the equipment.

  16. Application of Automatic Zooming and Autofocusing in Microassembly using Visual Servoing

    International Nuclear Information System (INIS)

    Jang, Kyung-Nam; Kim, Jong-Seog

    2006-01-01

    In recent years, many industrial products and their components are evolving toward miniaturization. To have more functionalities within less dimensional volume, they are usually made of various materials with different characteristics, and they are manufactured using incompatible manufacturing processes with complex geometrical shapes. For these reasons, the assembly technique for mating micro-parts so called microassembly has become important for advanced manufacturing and drawn extensive research interest. Currently, due to various difficulties arising from handling of extremely small size parts, manual assembly method has been widely used. Since this manual method is somehow timeconsuming and not productive enough, automation of micro-assembly has become an essential part for micro parts manufacturing. As an alternative, the vision sensor is widely used in microassembly. The vision sensor has a wide field of view, and it can obtain the wide range data with high speed without contact. In the previous research works, the orientation of the mating parts has not been considered for corrective motion, and, furthermore, the developed vision systems are not adaptive to accommodate various sizes of the mated parts to avoid such criticism, we propose a visual feedback system that accommodates micro parts of various sizes and parts arbitrarily oriented. In this paper, the system that employs adaptive zooming and auto focusing techniques during visual servoing is described

  17. Design and motion control of bioinspired humanoid robot head from servo motors toward artificial muscles

    Science.gov (United States)

    Almubarak, Yara; Tadesse, Yonas

    2017-04-01

    The potential applications of humanoid robots in social environments, motivates researchers to design, and control biomimetic humanoid robots. Generally, people are more interested to interact with robots that have similar attributes and movements to humans. The head is one of most important part of any social robot. Currently, most humanoid heads use electrical motors, pneumatic actuators, and shape memory alloy (SMA) actuators for actuation. Electrical and pneumatic actuators take most of the space and would cause unsmooth motions. SMAs are expensive to use in humanoids. Recently, in many robotic projects, Twisted and Coiled Polymer (TCP) artificial muscles are used as linear actuators which take up little space compared to the motors. In this paper, we will demonstrate the designing process and motion control of a robotic head with TCP muscles. Servo motors and artificial muscles are used for actuating the head motion, which have been controlled by a cost efficient ARM Cortex-M7 based development board. A complete comparison between the two actuators is presented.

  18. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan

    2016-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report

  19. Indirect adaptive fuzzy wavelet neural network with self- recurrent consequent part for AC servo system.

    Science.gov (United States)

    Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao

    2017-09-01

    This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.

  20. Visual Servoing Tracking Control of a Ball and Plate System: Design, Implementation and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Ming-Tzu Ho

    2013-07-01

    Full Text Available This paper presents the design, implementation and validation of real-time visual servoing tracking control for a ball and plate system. The position of the ball is measured with a machine vision system. The image processing algorithms of the machine vision system are pipelined and implemented on a field programmable gate array (FPGA device to meet real-time constraints. A detailed dynamic model of the system is derived for the simulation study. By neglecting the high-order coupling terms, the ball and plate system model is simplified into two decoupled ball and beam systems, and an approximate input-output feedback linearization approach is then used to design the controller for trajectory tracking. The designed control law is implemented on a digital signal processor (DSP. The validity of the performance of the developed control system is investigated through simulation and experimental studies. Experimental results show that the designed system functions well with reasonable agreement with simulations.

  1. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    Science.gov (United States)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  2. Intrathoracic Pressure Regulator for Blood Loss

    Science.gov (United States)

    2016-05-24

    hepatitis A antibody, and human immunodeficiency virus antibody), urine tests (drug screen I-abuse, marijuana, and a pregnancy test), and a 12-lead... sodium chloride; 250 mL over 2.5 minutes) were administered if systolic BP < 85 mmHg. Blood pressure, other hemodynamics, UO, and total amount of

  3. Real-time markerless tracking for augmented reality: the virtual visual servoing framework.

    Science.gov (United States)

    Comport, Andrew I; Marchand, Eric; Pressigout, Muriel; Chaumette, François

    2006-01-01

    Tracking is a very important research subject in a real-time augmented reality context. The main requirements for trackers are high accuracy and little latency at a reasonable cost. In order to address these issues, a real-time, robust, and efficient 3D model-based tracking algorithm is proposed for a "video see through" monocular vision system. The tracking of objects in the scene amounts to calculating the pose between the camera and the objects. Virtual objects can then be projected into the scene using the pose. Here, nonlinear pose estimation is formulated by means of a virtual visual servoing approach. In this context, the derivation of point-to-curves interaction matrices are given for different 3D geometrical primitives including straight lines, circles, cylinders, and spheres. A local moving edges tracker is used in order to provide real-time tracking of points normal to the object contours. Robustness is obtained by integrating an M-estimator into the visual control law via an iteratively reweighted least squares implementation. This approach is then extended to address the 3D model-free augmented reality problem. The method presented in this paper has been validated on several complex image sequences including outdoor environments. Results show the method to be robust to occlusion, changes in illumination, and mistracking.

  4. Plataforma de desarrollo para el control en tiempo real de estructuras cinemáticas con realimentación visual//Platform to develop real time visual servoing control in kinematics systems

    Directory of Open Access Journals (Sweden)

    René González-Rodríguez

    2012-09-01

    Full Text Available En este trabajo se presenta una plataforma de desarrollo para el control en tiempo real de estructuras cinemáticas con realimentación visual. Se ha diseñado una configuración genérica que permite la implementación de cualquier variante de control visual. Para el procesamiento de la imagen se ha propuesto una estrategia que permite el uso de diferentes herramientas comerciales o algoritmos propiospara la captura y extracción de características de la imagen. El uso de Real Time Work Shop y Real Time Windows Target en el lazo de control interno brinda la posibilidad de implementar algoritmos de control servovisual en tiempo real. Al final del trabajo se presentan los resultados de un esquema de controlservovisual aplicado en un manipulador industrial. La plataforma propuesta constituye una herramienta de desarrollo para aplicaciones industriales de control servovisual y sirve de apoyo a la enseñanza de la mecatrónica en pregrado y postgrado.Palabras claves: control servovisual, control en tiempo real, estructuras cinemáticas._______________________________________________________________________________AbstractIn this work we propose a platform to develop visual servoing control systems. The platform has a generic design with the possibility to implement direct or look and move visual servoing systems. For the image processing we present a generic design allowing the use of any image processing library like Matrox MIL,Intel IPP, OpenCV or any algorithms for image capture and target characteristics extraction. The uses of Real Time Work Shop and Real Time Windows Target in the internal loop permits modify the control structure in SIMULINK very easy.Key words: visual servoing, real time control, kinematics systems.

  5. Fabrication and correction of freeform surface based on Zernike polynomials by slow tool servo

    Science.gov (United States)

    Cheng, Yuan-Chieh; Hsu, Ming-Ying; Peng, Wei-Jei; Hsu, Wei-Yao

    2017-10-01

    Recently, freeform surface widely using to the optical system; because it is have advance of optical image and freedom available to improve the optical performance. For freeform optical fabrication by integrating freeform optical design, precision freeform manufacture, metrology freeform optics and freeform compensate method, to modify the form deviation of surface, due to production process of freeform lens ,compared and provides more flexibilities and better performance. This paper focuses on the fabrication and correction of the free-form surface. In this study, optical freeform surface using multi-axis ultra-precision manufacturing could be upgrading the quality of freeform. It is a machine equipped with a positioning C-axis and has the CXZ machining function which is also called slow tool servo (STS) function. The freeform compensate method of Zernike polynomials results successfully verified; it is correction the form deviation of freeform surface. Finally, the freeform surface are measured experimentally by Ultrahigh Accurate 3D Profilometer (UA3P), compensate the freeform form error with Zernike polynomial fitting to improve the form accuracy of freeform.

  6. Fracture tolerance analysis of the solid rocket booster servo-actuator for the space shuttle

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.H.; Ghadiali, N.D.; Zahoor, A.; Wilson, M.R.

    1982-01-01

    The results of an evaluation of the fracture tolerance of three components of the thrust vector control servo-actuator for the solid rocket booster of the space shuttle are described. These components were considered as being potentially fracture critical and therefore having the potential to fall short of a desired service life of 80 missions (that is, a service life factor of 4.0 on a basic service life of 20 missions). Detailed stress analysis of the rod end, cylinder, and feedback link components was accomplished by three-dimensional finite-element stress analysis methods. A dynamic structural model of the feedback system was used to determine the dynamic inertia loads and reactions to apply to the finite-element model of the feedback link. Twenty mission stress spectra consisting of lift-off, boost, re-entry, and water impact mission segments were developed for each component based on dynamic loadings. Most components were determined to have the potential of reaching a service life of 80 missions or service life factor of 4.0. 22 refs.

  7. A TSR Visual Servoing System Based on a Novel Dynamic Template Matching Method

    Directory of Open Access Journals (Sweden)

    Jia Cai

    2015-12-01

    Full Text Available The so-called Tethered Space Robot (TSR is a novel active space debris removal system. To solve its problem of non-cooperative target recognition during short-distance rendezvous events, this paper presents a framework for a real-time visual servoing system using non-calibrated monocular-CMOS (Complementary Metal Oxide Semiconductor. When a small template is used for matching with a large scene, it always leads to mismatches, so a novel template matching algorithm to solve the problem is presented. Firstly, the novel matching algorithm uses a hollow annulus structure according to a FAST (Features from Accelerated Segment algorithm and makes the method be rotation-invariant. Furthermore, the accumulative deviation can be decreased by the hollow structure. The matching function is composed of grey and gradient differences between template and object image, which help it reduce the effects of illumination and noises. Then, a dynamic template update strategy is designed to avoid tracking failures brought about by wrong matching or occlusion. Finally, the system synthesizes the least square integrated predictor, realizing tracking online in complex circumstances. The results of ground experiments show that the proposed algorithm can decrease the need for sophisticated computation and improves matching accuracy.

  8. High Strain Rate Characterisation of Composite Materials

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Normann Wilken

    -reinforced polymers, were considered, and it was first shown that the loading history controls equilibrium process. Then the High-speed servo-hydraulic test machine was analysed in terms its ability to create a state of constant strain rate in the specimen. The invertible inertial forces in the load train prevented...... from designing and constructing a high-speed servo-hydraulic test machine and by performing a comprehensive test series. The difficulties encountered in the test work could be addressed with the developed analysis. The conclusion was that the High-speed servo-hydraulic test machine is less suited...... for testing fibre-reinforced polymers due to their elastic behaviour and low strain to failure. This is problematic as the High-speed servo-hydraulic test machine closes the gap between quasi-static tests rates and lower strain rates, which are achievable with the Split Hopkinson Pressure Bar. The Split...

  9. Faulting of rocks in three-dimensional strain fields I. Failure of rocks in polyaxial, servo-control experiments

    Science.gov (United States)

    Reches, Ze'ev; Dieterich, James H.

    1983-05-01

    The dependence of the number of sets of faults and their orientation on the intermediate strain axis is investigated through polyaxial tests, reported here, and theoretical analysis, reported in an accompanying paper. In the experiments, cubic samples of Berea sandstone, Sierra-White and Westerly granites, and Candoro and Solnhofen limestones were loaded on their three pairs of faces by three independent, mutually perpendicular presses at room temperature. Two of the presses were servo-controlled and applied constant displacement rates throughout the experiment. Most samples display three or four sets of faults in orthorhombic symmetry. These faults form in several yielding events that follow a stage of elastic deformation. In many experiments, the maximum and the intermediate compressive stresses interchange orientations during the yielding events, where the corresponding strains are constant. The final stage of most experiments is characterized by slip along the faults.

  10. Treatment of sleep apnea in chronic heart failure patients with auto-servo ventilation improves sleep fragmentation: a randomized controlled trial.

    Science.gov (United States)

    Hetzenecker, Andrea; Escourrou, Pierre; Kuna, Samuel T; Series, Frederic; Lewis, Keir; Birner, Christoph; Pfeifer, Michael; Arzt, Michael

    2016-01-01

    Impaired sleep efficiency is independently associated with worse prognosis in patients with chronic heart failure (CHF). Therefore, a test was conducted on whether auto-servo ventilation (ASV, biphasic positive airway pressure [BiPAP]-ASV, Philips Respironics) reduces sleep fragmentation and improves sleep efficiency in CHF patients with central sleep apnea (CSA) or obstructive sleep apnea (OSA). In this multicenter, randomized, parallel group trial, a study was conducted on 63 CHF patients (age 64 ± 10 years; left ventricular ejection fraction 29 ± 7%) with CSA or OSA (apnea-hypopnea Index, AHI 47 ± 18/h; 46% CSA) referred to sleep laboratories of the four participating centers. Participants were randomized to either ASV (n = 32) or optimal medical treatment alone (control, n = 31). Polysomnography (PSG) and actigraphy at home (home) with centralized blinded scoring were obtained at baseline and 12 weeks. ASV significantly reduced sleep fragmentation (total arousal indexPSG: -16.4 ± 20.6 vs. -0.6 ± 13.2/h, p = 0.001; sleep fragmentation indexhome: -7.6 ± 15.6 versus 4.3 ± 13.9/h, p = 0.003, respectively) and significantly increased sleep efficiency assessed by actigraphy (SEhome) compared to controls (2.3 ± 10.1 vs. -2.1 ± 6.9%, p = 0.002). Effects of ASV on sleep fragmentation and efficiency were similar in patients suffering from OSA and CSA. At home, ASV treatment modestly improves sleep fragmentation as well as sleep efficiency in CHF patients having either CSA or OSA. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Actively lubricated bearings applied as calibrated shakers to aid parameter identification in rotordynamics

    DEFF Research Database (Denmark)

    Santos, Ilmar; Cerda Varela, Alejandro Javier

    2013-01-01

    The servo valve input signal and the radial injection pressure are the two main parameters responsible for dynamically modifying the journal oil film pressure and generating active fluid film forces in controllable fluid film bearings. Such fluid film forces, resulting from a strong coupling...... domain and the application of such a controllable bearing as a calibrated shaker aiming at determining the frequency response function (FRF) of rotordynamic systems; b) experimental quantification of the influence of the supply pressure and servo valve input signal on the FRF of rotor-journal bearing...... between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. An accurate characterization of the active oil film forces is of fundamental importance to elucidate the feasibility of applying the active lubrication as non...

  12. Experience with a servo-hydraulic mechanical testing machine installed in a new shielded active facility at Windscale Nuclear Power Development Laboratories

    International Nuclear Information System (INIS)

    Garlick, A.; Hindmarch, P.; Gravenor, J.G.; Rhodes, D.

    1982-03-01

    An Instron model 1273 servo-hydraulic machine has been installed within a lead-shielded cell at Windscale in order to provide a facility capable of performing a wide range of mechanical tests on nuclear reactor structural materials and fuel assembly components. This particular type of machine was chosen because it has design features associated with the load frame, location of the actuator and adjustment and clamping of the cross-head that are especially well suited to remote operation within a shielded cell. The design of the testing facility is described and the programmes of work that have been completed over the past 11/2 years of operation are reviewed. (author)

  13. Macroglia-derived thrombospondin 2 regulates alterations of presynaptic proteins of retinal neurons following elevated hydrostatic pressure.

    Science.gov (United States)

    Wang, Shuchao; Hu, Tu; Wang, Zhen; Li, Na; Zhou, Lihong; Liao, Lvshuang; Wang, Mi; Liao, Libin; Wang, Hui; Zeng, Leping; Fan, Chunling; Zhou, Hongkang; Xiong, Kun; Huang, Jufang; Chen, Dan

    2017-01-01

    Many studies on retinal injury and repair following elevated intraocular pressure suggest that the survival ratio of retinal neurons has been improved by various measures. However, the visual function recovery is far lower than expected. The homeostasis of retinal synapses in the visual signal pathway is the key structural basis for the delivery of visual signals. Our previous studies found that complicated changes in the synaptic structure between retinal neurons occurred much earlier than obvious degeneration of retinal ganglion cells in rat retinae. The lack of consideration of these earlier retinal synaptic changes in the rescue strategy may be partly responsible for the limited visual function recovery with the types of protective methods for retinal neurons used following elevated intraocular pressure. Thus, research on the modulatory mechanisms of the synaptic changes after elevated intraocular pressure injury may give new light to visual function rescue. In this study, we found that thrombospondin 2, an important regulator of synaptogenesis in central nervous system development, was distributed in retinal macroglia cells, and its receptor α2δ-1 was in retinal neurons. Cell cultures including mixed retinal macroglia cells/neuron cultures and retinal neuron cultures were exposed to elevated hydrostatic pressure for 2 h. The expression levels of glial fibrillary acidic protein (the marker of activated macroglia cells), thrombospondin 2, α2δ-1 and presynaptic proteins were increased following elevated hydrostatic pressure in mixed cultures, but the expression levels of postsynaptic proteins were not changed. SiRNA targeting thrombospondin 2 could decrease the upregulation of presynaptic proteins induced by the elevated hydrostatic pressure. However, in retinal neuron cultures, elevated hydrostatic pressure did not affect the expression of presynaptic or postsynaptic proteins. Rather, the retinal neuron cultures with added recombinant thrombospondin 2

  14. Synchronization of tubular pressure oscillations in interacting nephrons

    International Nuclear Information System (INIS)

    Sosnovtseva, O.V.; Postnov, D.E.; Mosekilde, E.; Holstein-Rathlou, N.-H.

    2003-01-01

    The pressure and flow regulation in the individual functional unit of the kidney (the nephron) tends to operate in an unstable regime. For normal rats, the regulation displays regular self-sustained oscillations, but for rats with high blood pressure the oscillations become chaotic. We explain the mechanisms responsible for this behavior and discuss the involved bifurcations. Experimental data show that neighboring nephrons adjust their pressure and flow regulation in accordance with one another. For rats with normal blood pressure, in-phase as well as anti-phase synchronization can be observed. For spontaneously hypertensive rats, indications of chaotic phase synchronization are found. Accounting for a hermodynamics as well as for a vascular coupling between nephrons that share a common interlobular artery, we present a model of the interaction of the pressure and flow regulations between adjacent nephrons. It is shown that this model, with physiologically realistic parameter values, can reproduce the different types of experimentally observed synchronization, including multistability and partial phase synchronization with respect to the slow and fast dynamics

  15. Synchronization of tubular pressure oscillations in interacting nephrons

    Energy Technology Data Exchange (ETDEWEB)

    Sosnovtseva, O.V. E-mail: olga@fysik.dtu.dk; Postnov, D.E.; Mosekilde, E.; Holstein-Rathlou, N.-H

    2003-01-01

    The pressure and flow regulation in the individual functional unit of the kidney (the nephron) tends to operate in an unstable regime. For normal rats, the regulation displays regular self-sustained oscillations, but for rats with high blood pressure the oscillations become chaotic. We explain the mechanisms responsible for this behavior and discuss the involved bifurcations. Experimental data show that neighboring nephrons adjust their pressure and flow regulation in accordance with one another. For rats with normal blood pressure, in-phase as well as anti-phase synchronization can be observed. For spontaneously hypertensive rats, indications of chaotic phase synchronization are found. Accounting for a hermodynamics as well as for a vascular coupling between nephrons that share a common interlobular artery, we present a model of the interaction of the pressure and flow regulations between adjacent nephrons. It is shown that this model, with physiologically realistic parameter values, can reproduce the different types of experimentally observed synchronization, including multistability and partial phase synchronization with respect to the slow and fast dynamics.

  16. Practical Stabilization of Uncertain Nonholonomic Mobile Robots Based on Visual Servoing Model with Uncalibrated Camera Parameters

    Directory of Open Access Journals (Sweden)

    Hua Chen

    2013-01-01

    Full Text Available The practical stabilization problem is addressed for a class of uncertain nonholonomic mobile robots with uncalibrated visual parameters. Based on the visual servoing kinematic model, a new switching controller is presented in the presence of parametric uncertainties associated with the camera system. In comparison with existing methods, the new design method is directly used to control the original system without any state or input transformation, which is effective to avoid singularity. Under the proposed control law, it is rigorously proved that all the states of closed-loop system can be stabilized to a prescribed arbitrarily small neighborhood of the zero equilibrium point. Furthermore, this switching control technique can be applied to solve the practical stabilization problem of a kind of mobile robots with uncertain parameters (and angle measurement disturbance which appeared in some literatures such as Morin et al. (1998, Hespanha et al. (1999, Jiang (2000, and Hong et al. (2005. Finally, the simulation results show the effectiveness of the proposed controller design approach.

  17. State feedback integral control for a rotary direct drive servo valve using a Lyapunov function approach.

    Science.gov (United States)

    Yu, Jue; Zhuang, Jian; Yu, Dehong

    2015-01-01

    This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Simulation of proportional control of hydraulic actuator using digital hydraulic valves

    Science.gov (United States)

    Raghuraman, D. R. S.; Senthil Kumar, S.; Kalaiarasan, G.

    2017-11-01

    Fluid power systems using oil hydraulics in earth moving and construction equipment have been using proportional and servo control valves for a long time to achieve precise and accurate position control backed by system performance. Such valves are having feedback control in them and exhibit good response, sensitivity and fine control of the actuators. Servo valves and proportional valves are possessing less hysteresis when compared to on-off type valves, but when the servo valve spools get stuck in one position, a high frequency called as jitter is employed to bring the spool back, whereas in on-off type valves it requires lesser technology to retract the spool. Hence on-off type valves are used in a technology known as digital valve technology, which caters to precise control on slow moving loads with fast switching times and with good flow and pressure control mimicking the performance of an equivalent “proportional valve” or “servo valve”.

  19. Pressure transmitters: Addressing post-Fukushima regulations and requirements with Bibloc technology by Rolls-Royce

    International Nuclear Information System (INIS)

    Fabbro, Herve; Desgeorge, Romain; Chowanek, Michel

    2013-06-01

    Nuclear power stations are designed to withstand substantial seismic activity and as such represent some of the most robust buildings in the world. However The Fukushima nuclear incident highlighted the potential vulnerability of nuclear power plants when multiple natural events of historic proportions happen simultaneously. Following the incident, the worldwide nuclear industry quite rightly called for an immediate review and a targeted reassessment of the safety margins of nuclear reactors. Several recommendations have been given by international safety authorities, including a significant toughening of the already stringent regulations and requirements, with respect to earthquakes, extreme temperatures, pressure and radiation resistance. In the event of an accident, a quick response is imperative and to act efficiently, a correct knowledge of the situation as well as an accurate estimation of its severity are required. Thus, it is essential to be able to rely on the most reliable sensors possible, in particular for the 50 to 100 classified pressure transmitters. Equipment used in nuclear plants all over the world, such pressure transmitters, are implemented following one of two different types of design: - The Monobloc design where almost all the equipment or system is installed very close to the reactor, within the reactor building. - The Bibloc design where the most sensitive parts (in particular the electronics) are removed from the harsh environment present in the vicinity of the reactor to be placed outside of the reactor building. The paper will present the advantages of the Bibloc technology and will show how this technology meets the 'Post Fukushima' requirements. (authors)

  20. Synchronization of Tubular Pressure Oscillations in Interacting Nephrons

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Postnov, D.E.; Mosekilde, Erik

    2003-01-01

    The pressure and flow regulation in the individual functional unit of the kidney (the nephron) tends to operate in an unstable regime. For normal rats, the regulation displays regular self-sustained oscillations, but for rats with high blood pressure the oscillations become chaotic. We explain...

  1. 49 CFR 192.197 - Control of the pressure of gas delivered from high-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Control of the pressure of gas delivered from high-pressure distribution systems. 192.197 Section 192.197 Transportation Other Regulations Relating to... STANDARDS Design of Pipeline Components § 192.197 Control of the pressure of gas delivered from high...

  2. Influence of loading and unloading velocity of confining pressure on strength and permeability characteristics of crystalline sandstone

    Science.gov (United States)

    Zhang, Dong-ming; Yang, Yu-shun; Chu, Ya-pei; Zhang, Xiang; Xue, Yan-guang

    2018-06-01

    The triaxial compression test of crystalline sandstone under different loading and unloading velocity of confining pressure is carried out by using the self-made "THM coupled with servo-controlled seepage apparatus for containing-gas coal", analyzed the strength, deformation and permeability characteristics of the sample, the results show that: with the increase of confining pressures loading-unloading velocity, Mohr's stress circle center of the specimen shift to the right, and the ultimate intensity, peak strain and residual stress of the specimens increase gradually. With the decrease of unloading velocity of confining pressure, the axial strain, the radial strain and the volumetric strain of the sample decrease first and then increases, but the radial strain decreases more greatly. The loading and unloading of confining pressure has greater influence on axial strain of specimens. The deformation modulus decreases rapidly with the increase of axial strain and the Poisson's ratio decreases gradually at the initial stage of loading. When the confining pressure is loaded, the deformation modulus decrease gradually, and the Poisson's ratio increases gradually. When the confining pressure is unloaded, the deformation modulus increase gradually, and the Poisson's ratio decreases gradually. When the specimen reaches the ultimate intensity, the deformation modulus decreases rapidly, while the Poisson's ratio increases rapidly. The fitting curve of the confining pressure and the deformation modulus and the Poisson's ratio in accordance with the distribution of quadratic polynomial function in the loading-unloading confining pressure. There is a corresponding relationship between the evolution of rock permeability and damage deformation during the process of loading and unloading. In the late stage of yielding, the permeability increases slowly, and the permeability increases sharply after the rock sample is destroyed. Fitting the permeability and confining pressure

  3. Electrical Pressurization Concept for the Orion MPCV European Service Module Propulsion System

    Science.gov (United States)

    Meiss, Jan-Hendrik; Weber, Jorg; Ierardo, Nicola; Quinn, Frank D.; Paisley, Jonathan

    2015-01-01

    The paper presents the design of the pressurization system of the European Service Module (ESM) of the Orion Multi-Purpose Crew Vehicle (MPCV). Being part of the propulsion subsystem, an electrical pressurization concept is implemented to condition propellants according to the engine needs via a bang-bang regulation system. Separate pressurization for the oxidizer and the fuel tank permits mixture ratio adjustments and prevents vapor mixing of the two hypergolic propellants during nominal operation. In case of loss of pressurization capability of a single side, the system can be converted into a common pressurization system. The regulation concept is based on evaluation of a set of tank pressure sensors and according activation of regulation valves, based on a single-failure tolerant weighting of three pressure signals. While regulation is performed on ESM level, commanding of regulation parameters as well as failure detection, isolation and recovery is performed from within the Crew Module, developed by Lockheed Martin Space System Company. The overall design and development maturity presented is post Preliminary Design Review (PDR) and reflects the current status of the MPCV ESM pressurization system.

  4. A comparative design view for accurate control of servos using a field programmable gate array

    International Nuclear Information System (INIS)

    Tickle, A J; Harvey, P K; Smith, J S; Wu, F; Buckle, J R

    2009-01-01

    An embedded system is a special-purpose computer system designed to perform one or a few dedicated functions. Altera DSP Builder presents designers and users with an alternate approach when creating their systems by employing a blockset similar to that already used in Simulink. The application considered in this paper is the design of a Pulse Width Modulation (PWM) system for use in stereo vision. PWM can replace a digital-to-analogue converter to control audio speakers, LED intensity, motor speed, and servo position. Rather than the conventional HDL coding approach this Simulink approach provides an easy understanding platform to the PWM design. This paper includes a comparison between two approaches regarding resource usage and flexibility etc. Included is how DSP Builder manipulates an onboard clock signal, in order to create the control pulses to the 'raw' coding of a PWM generator in VHDL. Both methods were shown to a selection of people and their views on which version they would subsequently use in their relative fields is discussed.

  5. Faulting of rocks in three-dimensional strain fields I. Failure of rocks in polyaxial, servo-control experiments

    Science.gov (United States)

    Reches, Z.; Dieterich, J.H.

    1983-01-01

    The dependence of the number of sets of faults and their orientation on the intermediate strain axis is investigated through polyaxial tests, reported here, and theoretical analysis, reported in an accompanying paper. In the experiments, cubic samples of Berea sandstone, Sierra-White and Westerly granites, and Candoro and Solnhofen limestones were loaded on their three pairs of faces by three independent, mutually perpendicular presses at room temperature. Two of the presses were servo-controlled and applied constant displacement rates throughout the experiment. Most samples display three or four sets of faults in orthorhombic symmetry. These faults form in several yielding events that follow a stage of elastic deformation. In many experiments, the maximum and the intermediate compressive stresses interchange orientations during the yielding events, where the corresponding strains are constant. The final stage of most experiments is characterized by slip along the faults. ?? 1983.

  6. Reduced-order model based active disturbance rejection control of hydraulic servo system with singular value perturbation theory.

    Science.gov (United States)

    Wang, Chengwen; Quan, Long; Zhang, Shijie; Meng, Hongjun; Lan, Yuan

    2017-03-01

    Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Servo-Elastic Dynamics of a Hydraulic Actuator Pitching a Blade with Large Deflections

    International Nuclear Information System (INIS)

    Hansen, M H; Kallesoee, B S

    2007-01-01

    This paper deals with the servo-elastic dynamics of a hydraulic pitch actuator acting on a largely bend wind turbine blade. The compressibility of the oil and flexibility of the hoses introduce a dynamic mode in the pitch bearing degree of freedom. This mode may obtain negative damping if the proportional gain on the actuator position error is defined too large relative to the viscous forces in the hydraulic system and the total rotational inertia of the pitch bearing degree of freedom. A simple expression for the stability limit of this proportional gain is derived for tuning the gain based on the Ziegler-Nichols method. Computed transfer functions from reference to actual pitch angles indicate that the actuator can be approximated as a low-pass filter with some appropriate limitations on pitching speed and acceleration. The structural blade model includes the geometrical coupling of edgewise bending and torsion for large flapwise deflections. This coupling is shown to introduce edgewise bending response for pitch reference oscillations around the natural frequency of the edgewise bending mode, in which frequency range the transfer function from reference to actual pitch angle cannot be modeled as a simple low-pass filter. The pitch bearing is assumed to be frictionless as a first approximation

  8. Pressure regulation in the dry-boxes. Argon purification; Regulation de pression dans les boites a gants. Purification d'argon

    Energy Technology Data Exchange (ETDEWEB)

    Pascard, R; Fabre, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Each dry-box is equipped with an autonomous installation for circulation and purification of argon and for pressure regulation. This installation consists essentially of a ballast tank, a compressor and two valves electromagnetically controlled by a contact manometer. The compressor and the valves are enclosed in the tank to form a system as compact as possible. The argon is purified by passing it over a furnace filled with titanium-zirconium turnings brought to about 800 deg. C, branching off the main system. With this set-up as well as the automatic maintenance of a constant depression in the box, a quality of argon is obtained whose oxygen contact is undetectable by the manganous hydroxide method. (author) [French] Chaque boite a gants est munie d'une installation autonome de circulation purification d'argon et de regulation de pression. Cette installation comprend essentiellement un reservoir tampon, un compresseur et deux vannes electromagnetiques commandees par un manometre a contact. Le compresseur et les vannes sont enfermes dans le reservoir de maniere a realiser un ensemble aussi compact que possible. L'argon est purifie par passage dans un four en derivation charge de tournure de titane-zirconium, porte a environ 800 deg. C. Avec ce dispositif, on obtient, outre le maintien automatique d'une depression constante dans la boite, un argon dont la teneur en oxygene est indecelable par la methode a l'hydrate manganeux. (auteur)

  9. Design of decoupled dual servo stage with voice coil motor and linear motor for XY long stroke ultra-precision scanning system

    Science.gov (United States)

    Kim, Ki-Hyun; Choi, Young-Man; Gweon, Dae-Gab; Hong, Dong-Pyo; Kim, Koung-Suk; Lee, Suk-Won; Lee, Moon-Gu

    2005-12-01

    A decoupled dual servo (DDS) stage for ultra-precision scanning system is introduced in this paper. The proposed DDS consists of a 3 axis fine stage for handling and carrying workpieces and a XY coarse stage. Especially, the DDS uses three voice coil motors (VCM) as a planar actuation system of the fine stage to reduce the disturbances due to any mechanical connections with its coarse stage. VCMs are governed by Lorentz law. According to the law and its structure, there are no mechanical connections between coils and magnetic circuits. Moreover, the VCM doesn't have force ripples due to imperfections of commutation components of linear motor systems - currents and flux densities. However, due to the VCM's mechanical constraints the working range of the fine is about 5mm2. To break that hurdle, the coarse stage with linear motors is used for the fine stage to move about 200mm2. Because of the above reasons, the proposed DDS can achieve higher precision scanning than other stages with only one servo. Using MATLAB's Sequential Quadratic Programming (SQP), the VCMs are optimally designed for the highest force under conditions and constraints such as thermal dissipations due to its coil, its size, and so on. For linear motors, Halbach magnet linear motor is proposed and optimally designed in this paper. In addition, for their smooth movements without any frictions, guide systems of the DDS are composed of air bearings. And then, precisely to get their positions, linear scales with 0.1um resolution are used for the coarse's XY motions and plane mirror laser interferometers with 20nm for the fine's XYθz. On scanning, the two stages have same trajectories and are controlled. The control algorithm is Parallel method. The embodied ultra-precision scanning system has about 100nm tracking error and in-positioning stability.

  10. Role of the medulla oblongata in normal and high arterial blood pressure regulation: the contribution of Escola Paulista de Medicina - UNIFESP.

    Science.gov (United States)

    Cravo, Sergio L; Campos, Ruy R; Colombari, Eduardo; Sato, Mônica A; Bergamaschi, Cássia M; Pedrino, Gustavo R; Ferreira-Neto, Marcos L; Lopes, Oswaldo U

    2009-09-01

    Several forms of experimental evidence gathered in the last 37 years have unequivocally established that the medulla oblongata harbors the main neural circuits responsible for generating the vasomotor tone and regulating arterial blood pressure. Our current understanding of this circuitry derives mainly from the studies of Pedro Guertzenstein, a former student who became Professor of Physiology at UNIFESP later, and his colleagues. In this review, we have summarized the main findings as well as our collaboration to a further understanding of the ventrolateral medulla and the control of arterial blood pressure under normal and pathological conditions.

  11. [Experimental evaluation of the role of the coronary sinus pressure in the regulation of coronary return volume via the coronary sinus. Surgical considerations in atrio-pulmonary diversion procedures].

    Science.gov (United States)

    Fantidis, P; Fernández Ruiz, M A; Madero Jarabo, R; Moreno Granados, F; Cordovilla Zurdo, G; Sanz Galeote, E

    1990-11-01

    In order to find out the validity of the vascular waterfall mechanism in coronary venous circulation, the role of coronary sinus pressure in the regulation of coronary return volume via the coronary sinus is studied in healthy animals. An experimental model of pressure regulation in the coronary sinus was prepared, and aortic pressure, EKG and the cardiac output (measured by thermodilution) were recorded. The return volume via the coronary sinus was measured at coronary sinus pressure of 10 or less, 15, 20, and 25 mmHg or more, for a total of 36 determinations. Increased coronary sinus pressure did not produce significant changes in aortic pressure, heart rate, cardiac index or coronary return volume via coronary sinus. When coronary sinus pressure was 25 mmHg or more, there was a significant decline in the average of coronary return volume via coronary sinus. Nevertheless, stepwise variant regression showed that the coronary sinus pressure per se does not condition the volume of coronary return via the coronary sinus. Our results suggest that in the healthy animals, the vascular waterfall mechanism in coronary venous circulation is not valid. Our results suggest that in the correction of congenital cardiac malformations using atriopulmonary anastomosis procedures, employing techniques that ensure coronary sinus drainage into the left atrium, in order to avoid the hemodynamic repercussions attributable to the vascular waterfall mechanism, is not justified.

  12. Novel Round Energy Director for Use with Servo-driven Ultrasonic Welder

    Science.gov (United States)

    Savitski, Alex; Klinstein, Leo; Holt, Kenneth

    Increasingly stringent process repeatability and precision of assembly requirements are common for high-volume manufacturing for electronic, automotive and especially medical device industries, in which components for disposable medication delivery devices are produced in hundreds of millions annually. Ultrasonic welding, one of the most efficient of plastic welding processes often joins these small plastic parts together, and quite possibly, the one most broadly adopted for high volume assembly. The very fundamental factor in ultrasonic welding process performance is a proper joint design, the most common of which is a design utilizing an energy director. Keeping the energy director size and shape consistent on a part-to-part basis in high volume, multi-cavity operations presents a constant challenge to molded part vendors, as dimensional variations from cavity to cavity and variations in the molding process are always present. A newly developed concept of energy director design, when the tip of the energy director is round, addresses these problems, as the round energy director is significantly easier to mold and maintain its dimensional consistency. It also eliminates a major source of process variability for assembly operations. Materializing the benefits of new type of joint design became possible with the introduction of servo-driven ultrasonic welders, which allow an unprecedented control of material flow during the welding cycle and results in significantly improved process repeatability. This article summarizes results of recent studies focused on evaluating performance of round energy director and investigating the main factors responsible for the joint quality.

  13. Modeling, Parameters Identification, and Control of High Pressure Fuel Cell Back-Pressure Valve

    Directory of Open Access Journals (Sweden)

    Fengxiang Chen

    2014-01-01

    Full Text Available The reactant pressure is crucial to the efficiency and lifespan of a high pressure PEMFC engine. This paper analyses a regulated back-pressure valve (BPV for the cathode outlet flow in a high pressure PEMFC engine, which can achieve precisely pressure control. The modeling, parameters identification, and nonlinear controller design of a BPV system are considered. The identified parameters are used in designing active disturbance rejection controller (ADRC. Simulations and extensive experiments are conducted with the xPC Target and show that the proposed controller can not only achieve good dynamic and static performance but also have strong robustness against parameters’ disturbance and external disturbance.

  14. Transportable, small high-pressure preservation vessel for cells

    International Nuclear Information System (INIS)

    Kamimura, N; Sotome, S; Shimizu, A; Nakajima, K; Yoshimura, Y

    2010-01-01

    We have previously reported that the survival rate of astrocytes increases under high-pressure conditions at 4 0 C. However, pressure vessels generally have numerous problems for use in cell preservation and transportation: (1) they cannot be readily separated from the pressurizing pump in the pressurized state; (2) they are typically heavy and expensive due the use of materials such as stainless steel; and (3) it is difficult to regulate pressurization rate with hand pumps. Therefore, we developed a transportable high-pressure system suitable for cell preservation under high-pressure conditions. This high-pressure vessel has the following characteristics: (1) it can be easily separated from the pressurizing pump due to the use of a cock-type stop valve; (2) it is small and compact, is made of PEEK and weighs less than 200 g; and (3) pressurization rate is regulated by an electric pump instead of a hand pump. Using this transportable high-pressure vessel for cell preservation, we found that astrocytes can survive for 4 days at 1.6 MPa and 4 0 C.

  15. Research on the influence of institutional pressures on green innovation strategy

    Science.gov (United States)

    Zewen, Chen; xin, Li; Hongjun, Cao

    2017-11-01

    Based on the new Institutional theory and the sample of 116 enterprises, this paper explores the influencing factors of green innovation strategy from the perspective of forced pressure, normative pressure and imitation pressure. The results show that the mandatory regulation, the incentive regulation, the supply chain pressure, and the competitive pressure all have a significant and positive impact on the green innovation strategy. Therefore, the government should take steps to stimulate enterprises to choose the green innovation strategy.

  16. Development of a Rotation Drickamer Apparatus for Deformation Studies Under High Pressure and High Temperature: Applications to magnesiowustite and Wadsleyite

    Science.gov (United States)

    Xu, Y.; Karato, S.

    2002-12-01

    Well-controlled high-pressure deformation experiments are critical for understanding the dynamics of Earth's interior. Most of the previous works on ultrahigh-pressure (P>10 GPa) deformation experiments have two limitations. (1) The mode of deformation is "stress-relaxation", in which stress changes with time in a given experiment, and (2) the magnitude of stress is limited (press combined with a rotation actuator involving an ac servo-motor. After the desired pressure and temperature are reached, torsional stress can be applied to a sample with a constant rotation rate. The advantage of this design is that the direction of shear deformation is normal to that of compression and therefore compression and deformation can be separated. A sample (typically ~1.8 mm diameter and ~0.2 mm thickness) is sandwiched between two zirconia plates and two heater plates made of TiC + diamond. Thin foils of W3%Re and W25%Re are inserted between two halves of samples which act as a thermocouple as well as strain markers. We have conducted a preliminary test on MgO at ~12 GPa and ~1470 K to the strain up to ~3. Deformation experiments on wadsleyite are underway to investigate the fabric development and rheology in this mineral.

  17. Constructing regulation and regulating for energy efficient construction

    Energy Technology Data Exchange (ETDEWEB)

    Shove, Elizabeth [Lancaster University (United Kingdom). Centre for the Study of Environmental Change

    1998-07-01

    This project considers the process of formulating energy-related building regulation in the light of the revisions to Part L (Conservation of Fuel and Power) of the Building Regulations for England and Wales. Details are given of the main objectives of the research, namely, the examination of the roles of the UK government, local government and pressure groups in shaping energy efficiency standards, the impacts of environmental regulations, the limits of energy-related regulation, environmental regulation of the building sector, and the features of energy related building control. This control is compared with current practice in other European countries. The methodology of the project involving the review of governmental documents and interviews is described. (UK)

  18. Simple and robust phase-locking of optical cavities with > 200 KHz servo-bandwidth using a piezo-actuated mirror mounted in soft materials.

    Science.gov (United States)

    Goldovsky, David; Jouravsky, Valery; Pe'er, Avi

    2016-12-12

    We present an approach to locking of optical cavities with piezoelectric actuated mirrors based on a simple and effective mechanical decoupling of the mirror and actuator from the surrounding mount. Using simple elastic materials (e.g. rubber or soft silicone gel pads) as mechanical dampers between the piezo-mirror compound and the surrounding mount, a firm and stable mounting of a relatively large mirror (8mm diameter) can be maintained that is isolated from external mechanical resonances, and is limited only by the internal piezo-mirror resonance of > 330 KHz. Our piezo lock showed positive servo gain up to 208 KHz, and a temporal response to a step interference within < 3 μs.

  19. Engine control system having pressure-based timing

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2011-10-04

    A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.

  20. Precision Force Control for an Electro-Hydraulic Press Machine

    Directory of Open Access Journals (Sweden)

    Hong-Ming Chen

    2014-08-01

    Full Text Available This thesis is primarily intended to design a PC-based control system to control the force of an electro-hydraulic servo press system for implementing precision force control. The main feature is to develop a composite control by using the relief valve and the flow servo valve. Using feedback from a force sensor, a fuzzy controller was designed with LabVIEW software as the system control core for achieving a precision force control for the hydraulic cylinder on its travel and output. The weakness of hydraulic systems is that hydraulic oil is compressible and prone to leaking, and its characteristics can vary with oil temperature, thus making it difficult for a general linear controller to achieve accurate control. Therefore, a fuzzy controller was designed with LabVIEW along with a NI-PCI_6221 interface card and a load cell to control the servo valve flow and the relief valve to control the pressure source. The testing results indicate that accurate force control output of an electro-hydraulic servo press system can be obtained.

  1. Optimal design of a main driving mechanism for servo punch press based on performance atlases

    Science.gov (United States)

    Zhou, Yanhua; Xie, Fugui; Liu, Xinjun

    2013-09-01

    The servomotor drive turret punch press is attracting more attentions and being developed more intensively due to the advantages of high speed, high accuracy, high flexibility, high productivity, low noise, cleaning and energy saving. To effectively improve the performance and lower the cost, it is necessary to develop new mechanisms and establish corresponding optimal design method with uniform performance indices. A new patented main driving mechanism and a new optimal design method are proposed. In the optimal design, the performance indices, i.e., the local motion/force transmission indices ITI, OTI, good transmission workspace good transmission workspace(GTW) and the global transmission indices GTIs are defined. The non-dimensional normalization method is used to get all feasible solutions in dimensional synthesis. Thereafter, the performance atlases, which can present all possible design solutions, are depicted. As a result, the feasible solution of the mechanism with good motion/force transmission performance is obtained. And the solution can be flexibly adjusted by designer according to the practical design requirements. The proposed mechanism is original, and the presented design method provides a feasible solution to the optimal design of the main driving mechanism for servo punch press.

  2. Multi-objective optimum design of fast tool servo based on improved differential evolution algorithm

    International Nuclear Information System (INIS)

    Zhu, Zhiwei; Zhou, Xiaoqin; Liu, Qiang; Zhao, Shaoxin

    2011-01-01

    The flexure-based mechanism is a promising realization of fast tool servo (FTS), and the optimum determination of flexure hinge parameters is one of the most important elements in the FTS design. This paper presents a multi-objective optimization approach to optimizing the dimension and position parameters of the flexure-based mechanism, which is based on the improved differential evolution algorithm embedding chaos and nonlinear simulated anneal algorithm. The results of optimum design show that the proposed algorithm has excellent performance and a well-balanced compromise is made between two conflicting objectives, the stroke and natural frequency of the FTS mechanism. The validation tests based on finite element analysis (FEA) show good agreement with the results obtained by using the proposed theoretical algorithm of this paper. Finally, a series of experimental tests are conducted to validate the design process and assess the performance of the FTS mechanism. The designed FTS reaches up to a stroke of 10.25 μm with at least 2 kHz bandwidth. Both of the FEA and experimental results demonstrate that the parameters of the flexure-based mechanism determined by the proposed approaches can achieve the specified performance and the proposed approach is suitable for the optimum design of FTS mechanism and of excellent performances

  3. Curvas de desempenho de válvulas reguladoras de pressão novas e com diferentes tempos de utilização Performance curves of new and used pressure regulating valves

    Directory of Open Access Journals (Sweden)

    Sílvio C. R. V. Lima

    2003-08-01

    Full Text Available O desempenho de uma válvula reguladora de pressão, fabricada pela Fabrimar, Modelo Exact-20-Ref. RP-3-20-3/4"FF, utilizada em pivô central, foi avaliado em laboratório, conforme as normas ISO (1993. Este trabalho foi desenvolvido no Laboratório de Irrigação do Departamento de Engenharia Rural, ESALQ/USP, utilizando-se reguladores de pressão novos e com diferentes tempos de emprego no campo. As curvas de desempenho das válvulas novas satisfizeram as condições exigidas pela norma, caracterizando o regulador como do tipo A, para as velocidades de referência de 0,5 m s-1 (vazão de 0,57 m³ h-1 até 4,0 m s-1 (vazão de 4,50 m³ h-1 e várias pressões de entrada, sendo também elaborado um modelo estatístico para a pressão de saída do regulador novo, com uma vazão e uma pressão de entrada. Foram coletadas, de diversos sistemas tipo pivô central e de diferentes vãos, válvulas reguladoras de pressão do mesmo modelo, que possuíam tempos de uso de 2000, 2500, 6000, 8500, 9000 e 10000 h e, também, com diferentes qualidades de água utilizadas. Os ensaios seguiram os mesmos padrões dos novos, realizando-se uma análise estatística dos dados. Apesar dos desgastes provocados pela água de má qualidade e dos vazamentos apresentados, o desempenho hidráulico das válvulas com tempo de uso até 6000 h, não diferiu do desempenho das novas, para pressões de entrada até 826,3 kPa e velocidades de referência até 2,5 m s-1. O desempenho dos reguladores de pressão com tempos de uso iguais ou superiores a 8500 h, não se manteve semelhante ao do regulador novo, especialmente para pressões de entrada superiores a 481,7 kPa.The performance of a pressure regulator valve, manufactured by Fabrimar (Model Exact-20-Ref. RP-3-20-3/4"FF, for central pivot applications, was evaluated in the laboratory following the ISO 1993 norms. The tests were conducted in the Laboratory of Irrigation of the Department of Rural Engineering, ESALQ/USP. The

  4. Construction of System for Seismic Observation in Deep Borehole (SODB) - Development of Multi-depth, High-temperature/pressure resistance seismometer

    International Nuclear Information System (INIS)

    Mamada, Yutaka

    2014-01-01

    The development of a high quality system for seismic observation in deep boreholes, the installation process at the NIIT site, and the data sharing plan for this observation were explained. The key points of the development were high temperature resistance (150 degrees Celsius), high pressure resistance (30 MPa), and a high dynamic/wide frequency range seismometer which allows for observation of micro-tremor to strong motions as well as a cascade-connection-type borehole seismometer, which allows multiple probes to be set at several depths in a single borehole. The developed system consists of broadband (0.1-50 Hz) and high dynamic range (up to 1000 gal) seismometer with electronic parts on the ground and only the pendulum part in the borehole (it became a servo-type seismometer). Durability and maintenance may be issues in the future. (author)

  5. Programmable Digital Controller

    Science.gov (United States)

    Wassick, Gregory J.

    2012-01-01

    An existing three-channel analog servo loop controller has been redesigned for piezoelectric-transducer-based (PZT-based) etalon control applications to a digital servo loop controller. This change offers several improvements over the previous analog controller, including software control over proportional-integral-derivative (PID) parameters, inclusion of other data of interest such as temperature and pressure in the control laws, improved ability to compensate for PZT hysteresis and mechanical mount fluctuations, ability to provide pre-programmed scanning and stepping routines, improved user interface, expanded data acquisition, and reduced size, weight, and power.

  6. Regulation of Arterial Pressure By The Paraventricular Nucleus in Conscious Rats: Interactions Among Glutamate, GABA, and Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Marli Cardoso Martins-Pinge

    2013-01-01

    Full Text Available The paraventricular nucleus (PVN of the hypothalamus is an important site for autonomic and neuroendocrine regulation. Experiments in anesthetized animals and in vitro indicate an interaction among gamma-aminobutyric acid (GABA, nitric oxide (NO and glutamate in the PVN. The cardiovascular role of the PVN and interactions of these neurotransmitters in conscious animals have not been evaluated fully. In chronically instrumented conscious rats, mean arterial pressure (MAP and heart rate (HR responses to microinjections (100 nl in the region of the PVN were tested. Bilateral blockade of ionotropic excitatory amino acid (EAA receptors (kynurenic acid, Kyn in the PVN produced small but significant decreases in MAP and HR. GABAA receptor blockade (bicuculline, Bic, and inhibition of NO synthase (N-(G-monomethyl-L-arginine, L-NMMA each increased MAP and HR. The NO donor sodium nitroprusside (SNP produced depressor responses that were attenuated by Bic. NO synthase inhibition potentiated both pressor responses to the selective EAA agonist, N-methyl-D-aspartic acid (NMDA, and depressor responses to Kyn. Increases in MAP and HR due to Bic were blunted by prior blockade of EAA receptors. Thus, pressor responses to GABA blockade require EAA receptors and GABA neurotransmission contributes to NO inhibition. Tonic excitatory effects of glutamate in the PVN are tonically attenuated by NO. These data demonstrate that, in the PVN of conscious rats, GABA, glutamate and NO interact in a complex fashion to regulate arterial pressure and heart rate under normal conditions.

  7. Pressure vessel design manual

    CERN Document Server

    Moss, Dennis R

    2013-01-01

    Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. * Covers almost all problems that a working pressure vessel designer can expect to face, with ...

  8. DC switching regulated power supply for driving an inductive load

    Science.gov (United States)

    Dyer, George R.

    1986-01-01

    A power supply for driving an inductive load current from a dc power supply hrough a regulator circuit including a bridge arrangement of diodes and switching transistors controlled by a servo controller which regulates switching in response to the load current to maintain a selected load current. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. The regulator may be operated in three "stages" or modes: (1) For current runup in the load, both first and second transistor switch arrays are turned "on" and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned "off", and load current "flywheels" through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays "off", allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load. The three operating states are controlled automatically by the controller.

  9. Pressure Safety Program Implementation at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Mark [ORNL; Etheridge, Tom [ORNL; Oland, C. Barry [XCEL Engineering, Inc.

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) is a US Department of Energy (DOE) facility that is managed by UT-Battelle, LLC. In February 2006, DOE promulgated worker safety and health regulations to govern contractor activities at DOE sites. These regulations, which are provided in 10 CFR 851, Worker Safety and Health Program, establish requirements for worker safety and health program that reduce or prevent occupational injuries, illnesses, and accidental losses by providing DOE contractors and their workers with safe and healthful workplaces at DOE sites. The regulations state that contractors must achieve compliance no later than May 25, 2007. According to 10 CFR 851, Subpart C, Specific Program Requirements, contractors must have a structured approach to their worker safety and health programs that at a minimum includes provisions for pressure safety. In implementing the structured approach for pressure safety, contractors must establish safety policies and procedures to ensure that pressure systems are designed, fabricated, tested, inspected, maintained, repaired, and operated by trained, qualified personnel in accordance with applicable sound engineering principles. In addition, contractors must ensure that all pressure vessels, boilers, air receivers, and supporting piping systems conform to (1) applicable American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (2004) Sections I through XII, including applicable code cases; (2) applicable ASME B31 piping codes; and (3) the strictest applicable state and local codes. When national consensus codes are not applicable because of pressure range, vessel geometry, use of special materials, etc., contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local codes. This report documents the work performed to address legacy pressure vessel deficiencies and comply

  10. Circadian mechanisms of 24-hour blood pressure regulation and patterning.

    Science.gov (United States)

    Smolensky, Michael H; Hermida, Ramón C; Portaluppi, Francesco

    2017-06-01

    In most persons, blood pressure (BP) rises slowly during late sleep, increases rapidly upon morning awakening and commencement of diurnal activity, exhibits two - morning and afternoon/early evening - daytime peaks, shows a minor midday nadir, and undergoes a decline during nighttime sleep by 10-20% in systolic BP and somewhat lesser amount in diastolic BP relative to wake-time means. Nyctohemeral cycles of ambient temperature, light, noise and behaviorally driven temporal patterns in food, liquid, salt, and stimulant consumption, mental/emotional stress, posture, and physical activity intensity plus circadian rhythms of wake/sleep, pineal gland melatonin synthesis, autonomic and central nervous, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-thyroid, renin-angiotensin-aldosterone, renal hemodynamic, endothelial, vasoactive peptide, and opioid systems constitute the key regulators and determinants of the BP 24 h profile. Environmental and behavioral cycles are believed to be far more influential than circadian ones. However, the facts that the: i) BP 24 h pattern of secondary hypertension, e.g., diabetes and renal disease, is characterized by absence of BP fall during sleep, and ii) scheduling of conventional long-acting medications at bedtime, rather than morning, results in much better hypertension control and vascular risk reduction, presumably because highest drug concentration coincides closely with the peak of most key circadian determinants of the BP 24 h profile, indicate endogenous rhythmic influences are of greater importance than previously appreciated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Cardiovascular regulation during body unweighting by lower body positive pressure.

    Science.gov (United States)

    Evans, Joyce M; Mohney, Lindsay; Wang, Siqi; Moore, Rachel K; Elayi, Samy-Claude; Stenger, Michael B; Moore, Fritz B; Knapp, Charles F

    2013-11-01

    We hypothesized that human cardiovascular responses to standing in reduced gravity environments, as on the Moon or Mars, could be modeled using a lower body positive pressure (LBPP) chamber. Heart rate, blood pressure, body segment fluid shifts, ECG, indexes of sympathetic, parasympathetic balance, and baroreflex control of the heart and periphery plus echocardiographic measures of cardiac function were recorded from seven men and seven women supine and standing at 100% (Earth), 40% (-Mars), and 20% (-Moon) bodyweights (BW). The fluid shifted from the chest was greater when standing at 100% BW than at 20% and 40% BW, while fluid pooled in the abdomen was similar at all BWs. Compared to moving from supine to standing at 100% BW, moving to 20% and 40% BW resulted in smaller decreases in stroke volume and pulse pressure, smaller increases in heart rate and smaller decreases in parasympathetic control of heart rate, baroreflex slope, numbers of blood pressure ramps, and much reduced indexes of sympathetic drive to the heart and periphery. However, peripheral vascular resistance, systolic pressure, and baroreflex effectiveness were elevated during 20% and 40% BW, compared to supine and standing at 100% BW. Standing at reduced bodyweight suppressed indexes of sympathetic control of heart rate and peripheral vasomotion. Regulatory responses indicated a combination of arterial and cardiopulmonary baroreflex control: mean heart rate, vasomotion, and baroreflex sensitivity appeared to be more under cardiopulmonary control while baroreflex effectiveness appeared to be driven more by the arterial baroreflex.

  12. Reactor vessel pressure transient protection for pressurized water reactors

    International Nuclear Information System (INIS)

    Zech, G.

    1978-09-01

    During the past few years the NRC has been studying the issue of protection of the reactor pressure vessels at Pressurized Water Reactors (PWRs) from transients when the vessels are at a relatively low temperature. This effort was prompted by concerns related to the safety margins available to vessel damage as a result of such events. Nuclear Reactor Regulation Category A Technical Activity No. A-26 was established to set forth the NRC plan for resolution of the generic aspects of this safety issue. The purpose of the report is to document the completion of this generic technical activity

  13. Acute Effects of Positive Airway Pressure on Functional Mitral Regurgitation in Patients with Systolic Heart Failure

    Directory of Open Access Journals (Sweden)

    Takao Kato

    2017-11-01

    Full Text Available Background: Acute effects of positive airway pressure (PAP [including continuous PAP (CPAP and adaptive servo-ventilation, an advanced form of bi-level PAP] on functional mitral regurgitation (fMR in patients with heart failure (HF with left ventricular (LV systolic dysfunction remain unclear. Thus, whether PAP therapy reduces fMR in such patients with HF was investigated.Methods and Results: Twenty patients with HF and LV systolic dysfunction defined as LV ejection fraction (LVEF <50% (14 men; mean LVEF, 35.0 ± 11.5% with fMR underwent echocardiography during 10-min CPAP (4 and 8 cm H2O and adaptive servo-ventilation. For fMR assessment, MR jet area fraction, defined as the ratio of MR jet on color Doppler to the left atrial area, was measured. The forward stroke volume (SV index (fSVI was calculated from the time-velocity integral, cross-sectional area of the aortic annulus, and body surface area. fMR significantly reduced on CPAP at 8 cm H2O (0.30 ± 0.12 and adaptive servo-ventilation (0.29 ± 0.12, compared with the baseline phase (0.37 ± 0.12 and CPAP at 4 cm H2O (0.34 ± 0.12 (P < 0.001. The fSVI did not change in any of the PAP sessions (P = 0.888. However, significant differences in fSVI responses to PAP were found between sexes (P for interaction, 0.006, with a significant reduction in fSVI in women (P = 0.041 and between patients with baseline fSVI ≥ and < the median value (27.8 ml/m2, P for interaction, 0.018, with a significant fSVI reduction in patients with high baseline fSVI (P = 0.028. In addition, significant differences were found in fSVI responses to PAP between patients with LV end-systolic volume (LVESV index ≥ and < the median value (62.0 ml/m2, P for interaction, 0.034, with a significant fSVI increase in patients with a high LVESV index (P = 0.023.Conclusion: In patients with HF, LV systolic dysfunction, and fMR, PAP can alleviate fMR without any overall changes in forward SV. However, MR alleviation due to PAP

  14. A computational analysis of the long-term regulation of arterial pressure [v1; ref status: indexed, http://f1000r.es/1xq

    Directory of Open Access Journals (Sweden)

    Daniel A. Beard

    2013-10-01

    Full Text Available The asserted dominant role of the kidneys in the chronic regulation of blood pressure and in the etiology of hypertension has been debated since the 1970s. At the center of the theory is the observation that the acute relationships between arterial pressure and urine production—the acute pressure-diuresis and pressure-natriuresis curves—physiologically adapt to perturbations in pressure and/or changes in the rate of salt and volume intake. These adaptations, modulated by various interacting neurohumoral mechanisms, result in chronic relationships between water and salt excretion and pressure that are much steeper than the acute relationships. While the view that renal function is the dominant controller of arterial pressure has been supported by computer models of the cardiovascular system known as the “Guyton-Coleman model”, no unambiguous description of a computer model capturing chronic adaptation of acute renal function in blood pressure control has been presented. Here, such a model is developed with the goals of: 1. capturing the relevant mechanisms in an identifiable mathematical model; 2. identifying model parameters using appropriate data; 3. validating model predictions in comparison to data; and 4. probing hypotheses regarding the long-term control of arterial pressure and the etiology of primary hypertension. The developed model reveals: long-term control of arterial blood pressure is primarily through the baroreflex arc and the renin-angiotensin system; and arterial stiffening provides a sufficient explanation for the etiology of primary hypertension associated with ageing. Furthermore, the model provides the first consistent explanation of the physiological response to chronic stimulation of the baroreflex.

  15. Safety surveillance of activities on nuclear pressure components in China

    International Nuclear Information System (INIS)

    Li Ganjie; Li Tianshu; Yan Tianwen

    2005-01-01

    The nuclear pressure components, which perform the nuclear safety functions, are one of the key physical barriers for nuclear safety. For the national strategy on further development of nuclear power and localization of nuclear pressure components, there still exist some problems in preparedness on the localization. As for the technical basis, what can not be overlooked is the management. Aiming at the current problems, National Nuclear Safety Administration (NNSA) has taken measures to strengthen the propagation and popularization of nuclear safety culture, adjust the review and approval policies for nuclear pressure components qualification license, establish more stringent management requirements, and enhance the surveillance of activities on nuclear pressure equipment. Meanwhile, NNSA has improved the internal management and the regulation efficiency on nuclear pressure components. At the same time, with the development and implementation of 'Rules on the Safety Regulation for Nuclear Safety Important Components' to be promulgated by the State Council of China, NNSA will complete and improve the regulation on nuclear pressure components and other nuclear equipment. (authors)

  16. An experimental randomized study of six different ventilatory modes in a piglet model with normal lungs

    DEFF Research Database (Denmark)

    Nielsen, J B; Sjöstrand, U H; Henneberg, S W

    1991-01-01

    A randomized study of 6 ventilatory modes was made in 7 piglets with normal lungs. Using a Servo HFV 970 (prototype system) and a Servo ventilator 900 C the ventilatory modes examined were as follows: SV-20V, i.e. volume-controlled intermittent positive-pressure ventilation (IPPV); SV-20VIosc, i...... ventilatory modes. Also the mean airway pressures were lower with the HFV modes 8-9 cm H2O compared to 11-14 cm H2O for the other modes. The gas distribution was evaluated by N2 wash-out and a modified lung clearance index. All modes showed N2 wash-out according to a two-compartment model. The SV-20P mode had.......e. volume-controlled ventilation (IPPV) with superimposed inspiratory oscillations; and SV-20VEf, i.e. volume-controlled ventilation (IPPV) with expiratory flush of fresh gas; HFV-60 denotes low-compressive high-frequency positive-pressure ventilation (HFPPV) and HVF-20 denotes low-compressive volume...

  17. Adaptive servo-ventilation therapy for patients with chronic heart failure in a confirmatory, multicenter, randomized, controlled study.

    Science.gov (United States)

    Momomura, Shin-Ichi; Seino, Yoshihiko; Kihara, Yasuki; Adachi, Hitoshi; Yasumura, Yoshio; Yokoyama, Hiroyuki; Wada, Hiroshi; Ise, Takayuki; Tanaka, Koichi

    2015-01-01

    Adaptive servo-ventilation (ASV) therapy is expected to be novel nonpharmacotherapy with hemodynamic effects on patients with chronic heart failure (CHF), but sufficient evidence has not been obtained. A 24-week, open-label, randomized, controlled study was performed to confirm the cardiac function-improving effect of ASV therapy on CHF patients. At 39 institutions, 213 outpatients with CHF, whose left ventricular ejection fraction (LVEF) was control group], respectively. The primary endpoint was LVEF, and the secondary endpoints were HF deterioration, B-type natriuretic peptide (BNP), and clinical composite response (CCR: NYHA class+HF deterioration). LVEF and BNP improved significantly at completion against the baseline values in the 2 groups. However, no significant difference was found between these groups. HF deterioration tended to be suppressed. The ASV group showed a significant improvement in CCR corroborated by significant improvements in NYHA class and ADL against the control group. Under the present study's conditions, ASV therapy was not superior to GDMT in the cardiac function-improving effect but showed a clinical status-improving effect, thus indicating a given level of clinical benefit.

  18. On-machine measurement of a slow slide servo diamond-machined 3D microstructure with a curved substrate

    International Nuclear Information System (INIS)

    Zhu, Wu-Le; Yang, Shunyao; Ju, Bing-Feng; Jiang, Jiacheng; Sun, Anyu

    2015-01-01

    A scanning tunneling microscope-based multi-axis measuring system is specially developed for the on-machine measurement of three-dimensional (3D) microstructures, to address the quality control difficulty with the traditional off-line measurement process. A typical 3D microstructure of the curved compound eye was diamond-machined by the slow slide servo technique, and then the whole surface was on-machine scanned three-dimensionally based on the tip-tracking strategy by utilizing a spindle, two linear motion stages, and an additional rotary stage. The machined surface profile and its shape deviation were accurately measured on-machine. The distortion of imaged ommatidia on the curved substrate was distinctively evaluated based on the characterized points extracted from the measured surface. Furthermore, the machining errors were investigated in connection with the on-machine measured surface and its characteristic parameters. Through experiments, the proposed measurement system is demonstrated to feature versatile on-machine measurement of 3D microstructures with a curved substrate, which is highly meaningful for quality control in the fabrication field. (paper)

  19. Destructive distillation under pressure

    Energy Technology Data Exchange (ETDEWEB)

    1932-09-08

    A process of destructive distillation of distillable carbonaceous material under pressure is described, consisting of regulating the temperature by introducing the carbonaceous materials to a point where the reaction of hydrogenation has begun but has not stopped, by placing it in indirect heat-exchange with a cooling agent at a critical temperature below the reaction temperature, the agent being under pressure and introduced in the liquid state. Water is used as the cooling agent.

  20. High pressure-sensitive gene expression in Lactobacillus sanfranciscensis

    Directory of Open Access Journals (Sweden)

    R.F. Vogel

    2005-08-01

    Full Text Available Lactobacillus sanfranciscensis is a Gram-positive lactic acid bacterium used in food biotechnology. It is necessary to investigate many aspects of a model organism to elucidate mechanisms of stress response, to facilitate preparation, application and performance in food fermentation, to understand mechanisms of inactivation, and to identify novel tools for high pressure biotechnology. To investigate the mechanisms of the complex bacterial response to high pressure we have analyzed changes in the proteome and transcriptome by 2-D electrophoresis, and by microarrays and real time PCR, respectively. More than 16 proteins were found to be differentially expressed upon high pressure stress and were compared to those sensitive to other stresses. Except for one apparently high pressure-specific stress protein, no pressure-specific stress proteins were found, and the proteome response to pressure was found to differ from that induced by other stresses. Selected pressure-sensitive proteins were partially sequenced and their genes were identified by reverse genetics. In a transcriptome analysis of a redundancy cleared shot gun library, about 7% of the genes investigated were found to be affected. Most of them appeared to be up-regulated 2- to 4-fold and these results were confirmed by real time PCR. Gene induction was shown for some genes up-regulated at the proteome level (clpL/groEL/rbsK, while the response of others to high hydrostatic pressure at the transcriptome level seemed to differ from that observed at the proteome level. The up-regulation of selected genes supports the view that the cell tries to compensate for pressure-induced impairment of translation and membrane transport.