WorldWideScience

Sample records for serum non-cholesterol sterols

  1. Cholesterol metabolism and serum non-cholesterol sterols: summary of 13 plant stanol ester interventions.

    Science.gov (United States)

    Hallikainen, Maarit; Simonen, Piia; Gylling, Helena

    2014-04-27

    The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas-liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Serum non-cholesterol sterols are valid markers of cholesterol absorption and synthesis even during cholesterol

  2. The role of serum non-cholesterol sterols as surrogate markers of absolute cholesterol synthesis and absorption.

    Science.gov (United States)

    Miettinen, T A; Gylling, H; Nissinen, M J

    2011-10-01

    To study the whole-body cholesterol metabolism in man, cholesterol synthesis and absorption need to be measured. Because of the complicated methods of the measurements, new approaches were developed including the analysis of serum non-cholesterol sterols. In current lipidologic papers and even in intervention studies, serum non-cholesterol sterols are frequently used as surrogate markers of cholesterol metabolism without any validation to the absolute metabolic variables. The present review compares serum non-cholesterol sterols with absolute measurements of cholesterol synthesis and absorption in published papers to find out whether the serum markers are valid indicators of cholesterol metabolism in various conditions. During statin treatment, during interventions of dietary fat, and in type 2 diabetes the relative and absolute variables of cholesterol synthesis and absorption were frequently but not constantly correlated with each other. In some occasions, especially in subjects with apolipoprotein E3/4 and E4/4 phenotypes, the relative metabolic markers were even more sensitive than the absolute ones to reflect changes in cholesterol metabolism during dietary interventions. Even in general population at very high absorption the homeostasis of cholesterol metabolism is disturbed damaging the validity of the serum markers. It is worth using several instead of only one precursor and absorption sterol marker for making conclusions of altered synthesis or absorption of cholesterol, and even then the presence of at least some absolute measurement is valuable. During consumption of plant sterol-enriched diets and in situations of interfered cholesterol homeostasis the relative markers do not adequately reflect cholesterol metabolism. Accordingly, the validity of the relative markers of cholesterol metabolism should not be considered as self-evident. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Plant sterol ester diet supplementation increases serum plant sterols and markers of cholesterol synthesis, but has no effect on total cholesterol levels.

    Science.gov (United States)

    Weingärtner, Oliver; Bogeski, Ivan; Kummerow, Carsten; Schirmer, Stephan H; Husche, Constanze; Vanmierlo, Tim; Wagenpfeil, Gudrun; Hoth, Markus; Böhm, Michael; Lütjohann, Dieter; Laufs, Ulrich

    2017-05-01

    This double-blind, randomized, placebo-controlled, cross-over intervention-study was conducted in healthy volunteers to evaluate the effects of plant sterol ester supplemented margarine on cholesterol, non-cholesterol sterols and oxidative stress in serum and monocytes. Sixteen volunteers, average age 34 years, with no or mild hypercholesterolemia were subjected to a 4 week period of daily intake of 3g plant sterols per day supplied via a supplemented margarine on top of regular eating habits. After a wash-out period of one week, volunteers switched groups. Compared to placebo, a diet supplementation with plant sterols increased serum levels of plant sterols such as campesterol (+0.16±0.19mg/dL, p=0.005) and sitosterol (+0.27±0.18mg/dL, psynthesis such as desmosterol (+0.05±0.07mg/dL, p=0.006) as well as lathosterol (+0.11±0.16mg/dL, p=0.012). Cholesterol serum levels, however, were not changed significantly (+18.68±32.6mg/dL, p=0.052). These findings could not be verified in isolated circulating monocytes. Moreover, there was no effect on monocyte activation and no differences with regard to redox state after plant sterol supplemented diet. Therefore, in a population of healthy volunteers with no or mild hypercholesterolemia, consumption of plant sterol ester supplemented margarine results in increased concentrations of plant sterols and cholesterol synthesis markers without affecting total cholesterol in the serum, activation of circulating monocytes or redox state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of plant sterol esters in skimmed milk and vegetable-fat-enriched milk on serum lipids and non-cholesterol sterols in hypercholesterolaemic subjects: a randomised, placebo-controlled, crossover study.

    Science.gov (United States)

    Casas-Agustench, Patricia; Serra, Mercè; Pérez-Heras, Ana; Cofán, Montserrat; Pintó, Xavier; Trautwein, Elke A; Ros, Emilio

    2012-06-01

    Plant sterol (PS)-supplemented foods are recommended to help in lowering serum LDL-cholesterol (LDL-C). Few studies have examined the efficacy of PS-enriched skimmed milk (SM) or semi-SM enriched with vegetable fat (PS-VFM). There is also insufficient information on factors predictive of LDL-C responses to PS. We examined the effects of PS-SM (0·1 % dairy fat) and PS-VFM (0·1 % dairy fat plus 1·5 % vegetable fat) on serum lipids and non-cholesterol sterols in hypercholesterolaemic individuals. In a placebo-controlled, crossover study, forty-three subjects with LDL-C>1300 mg/l were randomly assigned to three 4-week treatment periods: control SM, PS-SM and PS-VFM, with 500 ml milk with or without 3·4 g PS esters (2 g free PS). Serum concentrations of lipids and non-cholesterol sterols were measured. Compared to control, LDL-C decreased by 8·0 and 7·4 % (P synthesis and high cholesterol absorption predicted improved LDL-C responses to PS.

  5. Non-Cholesterol Sterol Levels Predict Hyperglycemia and Conversion to Type 2 Diabetes in Finnish Men

    Science.gov (United States)

    Cederberg, Henna; Gylling, Helena; Miettinen, Tatu A.; Paananen, Jussi; Vangipurapu, Jagadish; Pihlajamäki, Jussi; Kuulasmaa, Teemu; Stančáková, Alena; Smith, Ulf; Kuusisto, Johanna; Laakso, Markku

    2013-01-01

    We investigated the levels of non-cholesterol sterols as predictors for the development of hyperglycemia (an increase in the glucose area under the curve in an oral glucose tolerance test) and incident type 2 diabetes in a 5-year follow-up study of a population-based cohort of Finnish men (METSIM Study, N = 1,050) having non-cholesterol sterols measured at baseline. Additionally we determined the association of 538,265 single nucleotide polymorphisms (SNP) with non-cholesterol sterol levels in a cross-sectional cohort of non-diabetic offspring of type 2 diabetes (the Kuopio cohort of the EUGENE2 Study, N = 273). We found that in a cross-sectional METSIM Study the levels of sterols indicating cholesterol absorption were reduced as a function of increasing fasting glucose levels, whereas the levels of sterols indicating cholesterol synthesis were increased as a function of increasing 2-hour glucose levels. A cholesterol synthesis marker desmosterol significantly predicted an increase, and two absorption markers (campesterol and avenasterol) a decrease in the risk of hyperglycemia and incident type 2 diabetes in a 5-year follow-up of the METSIM cohort, mainly attributable to insulin sensitivity. A SNP of ABCG8 was associated with fasting plasma glucose levels in a cross-sectional study but did not predict hyperglycemia or incident type 2 diabetes. In conclusion, the levels of some, but not all non-cholesterol sterols are markers of the worsening of hyperglycemia and type 2 diabetes. PMID:23840693

  6. Rapeseed oil, olive oil, plant sterols, and cholesterol metabolism: an ileostomy study.

    Science.gov (United States)

    Ellegård, L; Andersson, H; Bosaeus, I

    2005-12-01

    To study whether olive oil and rapeseed oil have different effects on cholesterol metabolism. Short-term experimental study, with controlled diets. Outpatients at a metabolic-ward kitchen. A total of nine volunteers with conventional ileostomies. Two 3-day diet periods; controlled diet including 75 g of rapeseed oil or olive oil. Cholesterol absorption, ileal excretion of cholesterol, and bile acids. Serum levels of cholesterol and bile acid metabolites. Differences between diets evaluated with Wilcoxon's signed rank sum test. Rapeseed oil diet contained 326 mg more plant sterols than the olive oil diet. Rapeseed oil tended to decrease cholesterol absorption by 11% (P = 0.050), and increased excretion of cholesterol, bile acids, and their sum as sterols by 9% (P = 0.021), 32% (P = 0.038), and 51% (P = 0.011) compared to olive oil. A serum marker for bile acid synthesis (7alpha-hydroxy-4-cholesten-3-one) increased by 28% (P = 0.038) within 10 h of consumption, and serum cholesterol levels decreased by 7% (P = 0.024), whereas a serum marker for cholesterol synthesis (lathosterol) as well as serum levels of plant sterols remained unchanged. Rapeseed oil and olive oil have different effects on cholesterol metabolism. Rapeseed oil, tends to decrease cholesterol absorption, increases excretion of cholesterol and bile acids, increases serum marker of bile acid synthesis, and decreases serum levels of cholesterol compared to olive oil. This could in part be explained by different concentrations of natural plant sterols. Supported by the Göteborg Medical Society, the Swedish Medical Society, the Swedish Board for Agricultural Research (SJFR) grant 50.0444/98 and by University of Göteborg.

  7. Lathosterol to cholesterol ratio in serum predicts cholesterol lowering response to plant sterol consumption in a dual center, randomized, single-blind placebo controlled trial

    Science.gov (United States)

    Benefits of plant sterols (PS) for cholesterol lowering are compromised by large variability in efficacy across individuals. High fractional cholesterol synthesis measured by deuterium incorporation has been associated with non-response to PS consumption; however, prospective studies showing this as...

  8. A Novel Fibrosis Index Comprising a Non-Cholesterol Sterol Accurately Predicts HCV-Related Liver Cirrhosis

    DEFF Research Database (Denmark)

    Ydreborg, Magdalena; Lisovskaja, Vera; Lagging, Martin

    2014-01-01

    of the present study was to create a model for accurate prediction of liver cirrhosis based on patient characteristics and biomarkers of liver fibrosis, including a panel of non-cholesterol sterols reflecting cholesterol synthesis and absorption and secretion. We evaluated variables with potential predictive...

  9. Cholesterol and related sterols autoxidation.

    Science.gov (United States)

    Zerbinati, Chiara; Iuliano, Luigi

    2017-10-01

    Cholesterol is a unique lipid molecule providing the building block for membranes, hormones, vitamin D and bile acid synthesis. Metabolism of cholesterol involves several enzymes acting on the sterol nucleus or the isooctyl tail. In the recent years, research interest has been focused on oxysterols, cholesterol derivatives generated by the addition of oxygen to the cholesterol backbone. Oxysterols can be produced enzymatically or by autoxidation. Autoxidation of cholesterol proceeds through type I or type II mechanisms. Type I autoxidation is initiated by free radical species, such as those arising from the superoxide/hydrogen peroxide/hydroxyl radical system. Type II autoxidation occurs stoichiometrically by non-radical highly reactive oxygen species such as singlet oxygen, HOCl, and ozone. The vulnerability of cholesterol towards high reactive species has raised considerable interest for mechanistic studies and for the potential biological activity of oxysterols, as well as for the use of oxysterols as biomarkers for the non-invasive study of oxidative stress in vivo. Copyright © 2017. Published by Elsevier Inc.

  10. Serum plant sterols as surrogate markers of dietary compliance in familial dyslipidemias.

    Science.gov (United States)

    Mateo-Gallego, Rocío; Baila-Rueda, Lucía; Mouratidou, Theodora; De Castro-Orós, Isabel; Bea, Ana M; Perez-Calahorra, Sofía; Cenarro, Ana; Moreno, Luis A; Civeira, Fernando

    2015-06-01

    A well-balanced diet is the first-line treatment in hyperlipidemia. The objective was to study the association between serum phytosterols and dietary patterns to use them as surrogate markers of dietary compliance in primary dyslipidemias. 288 patients with primary hyperlipidemias (192 autosomal dominant hypercholesterolemia (ADH) and 96 familial combined hyperlipidemia (FCHL)) were included. Principal factor analysis identified 2 major dietary patterns using a 137-item food frequency questionnaire. "Vegetable & Fruits pattern" was characterized by higher intake of fruits, green beans, nuts, tomatoes, roasted or boiled potatoes, lettuce and chard and lower of processed baked goods, pizza and beer. "Western pattern" was positively characterized by hamburgers, pasta, sunflower oil, rice, chickpeas, whole milk, veal, red beans and negatively with white fish. Serum non-cholesterol sterols were determined by HPLC-MS/MS. Plant sterols to-total cholesterol (TC) levels were lower with a higher adherence to a "Vegetable & Fruits pattern" (P = 0.009), mainly in ADH subjects (R(2) = 0.019). Their concentration was greater with higher compliance to "Western pattern" especially in FCHL (P = 0.014). Higher levels of synthesis markers-to-TC with a greater adherence to "Vegetable & Fruits pattern" were found (P = 0.001) (R(2) = 0.033 and R(2) = 0.109 in ADH and FCHL respectively). In subjects with primary dislipidemia, dietary patterns associate with serum absorption and synthesis markers, but no with lipid concentrations. The influence of diet on non-cholesterol sterols levels is not powerful enough to use them as subrogate markers. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  11. Divergent changes in serum sterols during a strict uncooked vegan diet in patients with rheumatoid arthritis.

    Science.gov (United States)

    Agren, J J; Tvrzicka, E; Nenonen, M T; Helve, T; Hänninen, O

    2001-02-01

    The effects of a strict uncooked vegan diet on serum lipid and sterol concentrations were studied in patients with rheumatoid arthritis. The subjects were randomized into a vegan diet group (n 16), who consumed a vegan diet for 2-3 months, or into a control group (n 13), who continued their usual omnivorous diets. Serum total and LDL-cholesterol and -phospholipid concentrations were significantly decreased by the vegan diet. The levels of serum cholestanol and lathosterol also decreased, but serum cholestanol:total cholesterol and lathosterol:total cholesterol did not change. The effect of a vegan diet on serum plant sterols was divergent as the concentration of campesterol decreased while that of sitosterol increased. This effect resulted in a significantly greater sitosterol:campesterol value in the vegan diet group than in the control group (1.48 (SD 0.39) v. 0.72 (SD 0.14); P vegan diet changes the relative absorption rates of these sterols and/or their biliary clearance.

  12. Effect of dietary cholesterol and plant sterol consumption on plasma lipid responsiveness and cholesterol trafficking in healthy individuals.

    Science.gov (United States)

    Alphonse, Peter A S; Ramprasath, Vanu; Jones, Peter J H

    2017-01-01

    Dietary cholesterol and plant sterols differentially modulate cholesterol kinetics and circulating cholesterol. Understanding how healthy individuals with their inherent variabilities in cholesterol trafficking respond to such dietary sterols will aid in improving strategies for effective cholesterol lowering and alleviation of CVD risk. The objectives of this study were to assess plasma lipid responsiveness to dietary cholesterol v. plant sterol consumption, and to determine the response in rates of cholesterol absorption and synthesis to each sterol using stable isotope approaches in healthy individuals. A randomised, double-blinded, crossover, placebo-controlled clinical trial (n 49) with three treatment phases of 4-week duration were conducted in a Manitoba Hutterite population. During each phase, participants consumed one of the three treatments as a milkshake containing 600 mg/d dietary cholesterol, 2 g/d plant sterols or a control after breakfast meal. Plasma lipid profile was determined and cholesterol absorption and synthesis were measured by oral administration of [3, 4-13C] cholesterol and 2H-labelled water, respectively. Dietary cholesterol consumption increased total (0·16 (sem 0·06) mmol/l, P=0·0179) and HDL-cholesterol (0·08 (sem 0·03) mmol/l, P=0·0216) concentrations with no changes in cholesterol absorption or synthesis. Plant sterol consumption failed to reduce LDL-cholesterol concentrations despite showing a reduction (6 %, P=0·0004) in cholesterol absorption. An over-compensatory reciprocal increase in cholesterol synthesis (36 %, P=0·0026) corresponding to a small reduction in absorption was observed with plant sterol consumption, possibly resulting in reduced LDL-cholesterol lowering efficacy of plant sterols. These data suggest that inter-individual variability in cholesterol trafficking mechanisms may profoundly impact plasma lipid responses to dietary sterols in healthy individuals.

  13. Following Intracellular Cholesterol Transport by Linear and Non-Linear Optical Microscopy of Intrinsically Fluorescent Sterols

    DEFF Research Database (Denmark)

    Wustner, D.

    2012-01-01

    Elucidation of intracellular cholesterol transport is important for understanding the molecular basis of several metabolic and neuronal diseases, like atheroclerosis or lysosomal storage disorders. Progress in this field depends crucially on the development of new technical approaches to follow...... is on recent developments in imaging technology to follow the intracellular fate of intrinsically fluorescent sterols as faithful cholesterol markers. In particular, UV-sensitive wide field and multiphoton microscopy of the sterol dehydroergosterol, DHE, is explained and new methods of quantitative image...... analysis like pixel-wise bleach rate fitting and multiphoton image correlation spectroscopy are introduced. Several applications of the new technology including observation of vectorial sterol trafficking in polarized human hepatoma cells for investigation of reverse cholesterol transport are presented....

  14. Competition between ergosterol and cholesterol in sterol uptake and intracellular trafficking in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Valachovic, M.; Hronska, L.; Hapala, I.

    1998-01-01

    The fate of internal cholesterol was evaluated in cells grown under various conditions with respect to the amount and the nature of sterols supplemented to the cells. Steryl esters accumulate in stationary phase-yeast cells and they are rapidly hydrolyzed in cells during exponential growth or ergosterol depletion. Cholesterol and other 'unnatural' sterols are esterified more efficiently that native ergosterol and it was speculated that esterification could protect cellular membranes from accumulation of these less optimal sterols. We tested this idea by monitoring the mobility of 14 C-cholesterol between free and esterified fractions in cell supplemented with cholesterol or ergosterol. It was found that cells grown on cholesterol to the stationary phase accumulated up to 80 % of label in the steryl ester fraction. Subsequent growth in sterol-free media caused sterol-depletion of plasma membrane and induced hydrolysis of 14 C- cholesteryl esters and accumulation of the label in free membranous sterol pool.Supplementation of cells with external sterols resulted in a shift in sterol trafficking and in a new accumulation of 14 C-cholesteryl esters. This indicates that the absence of an efficient proof-reading mechanism in plasma membrane that would be able to remove preferentially cholesterol from the free sterol pool in plasma membrane to steryl esters in lipidic particles. The mobility of cholesterol molecules in non-growing cells wa negligible suggesting that active growth or membrane proliferation are required for shifts of sterol molecules between these pools. (authors)

  15. Serum sterol responses to increasing plant sterol intake from natural foods in the Mediterranean diet.

    Science.gov (United States)

    Escurriol, Verónica; Cofán, Montserrat; Serra, Mercè; Bulló, Mónica; Basora, Josep; Salas-Salvadó, Jordi; Corella, Dolores; Zazpe, Itziar; Martínez-González, Miguel A; Ruiz-Gutiérrez, Valentina; Estruch, Ramón; Ros, Emilio

    2009-09-01

    Phytosterols in natural foods are thought to inhibit cholesterol absorption. The Mediterranean diet is rich in phytosterol-containing plant foods. To assess whether increasing phytosterol intake from natural foods was associated with a cholesterol-lowering effect in a substudy of a randomized trial of nutritional intervention with Mediterranean diets for primary cardiovascular prevention (PREDIMED study). One hundred and six high cardiovascular risk subjects assigned to two Mediterranean diets supplemented with virgin olive oil (VOO) or nuts, which are phytosterol-rich foods, or advice on a low-fat diet. Outcomes were 1-year changes in nutrient intake and serum levels of lipids and non-cholesterol sterols. Average phytosterol intake increased by 76, 158 and 15 mg/day in participants assigned VOO, nuts and low-fat diets, respectively. Compared to participants in the low-fat diet group, changes in outcome variables were observed only in those in the Mediterranean diet with nuts group, with increases in intake of fibre, polyunsaturated fatty acids and phytosterols (P natural foods appear to be bioactive in cholesterol lowering.

  16. Cholesterol lowering effect of a soy drink enriched with plant sterols in a French population with moderate hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Bard Jean-Marie

    2008-10-01

    Full Text Available Abstract Background Plant sterols are an established non-pharmacological means to reduce total and LDL blood cholesterol concentrations and are therefore recommended for cholesterol management by worldwide-renown health care institutions. Their efficacy has been proven in many types of foods with the majority of trials conducted in spreads or dairy products. As an alternative to dairy products, soy based foods are common throughout the world. Yet, there is little evidence supporting the efficacy of plant sterols in soy-based foods. The objective of this study was to investigate the effect of a soy drink enriched with plant sterols on blood lipid profiles in moderately hypercholesterolemic subjects. Methods In a randomized, placebo-controlled double-blind mono-centric study, 50 subjects were assigned to 200 ml of soy drink either enriched with 2.6 g plant sterol esters (1.6 g/d free plant sterol equivalents or without plant sterols (control for 8 weeks. Subjects were instructed to maintain stable diet pattern and physical activity. Plasma concentrations of lipids were measured at initial visit, after 4 weeks and after 8 weeks. The primary measurement was the change in LDL cholesterol (LDL-C. Secondary measurements were changes in total cholesterol (TC, non-HDL cholesterol (non-HDL-C, HDL cholesterol (HDL-C and triglycerides. Results Regular consumption of the soy drink enriched with plant sterols for 8 weeks significantly reduced LDL- C by 0.29 mmol/l or 7% compared to baseline (p 96%, and products were well tolerated. Conclusion Daily consumption of a plant sterol-enriched soy drink significantly decreased total, non-HDL and LDL cholesterol and is therefore an interesting and convenient aid in managing mild to moderate hypercholesterolemia.

  17. The metabolism of plant sterols is disturbed in postmenopausal women with coronary artery disease.

    Science.gov (United States)

    Gylling, Helena; Hallikainen, Maarit; Rajaratnam, Radhakrishnan A; Simonen, Piia; Pihlajamäki, Jussi; Laakso, Markku; Miettinen, Tatu A

    2009-03-01

    In postmenopausal coronary artery disease (CAD) women, serum plant sterols are elevated. Thus, we investigated further whether serum plant sterols reflect absolute cholesterol metabolism in CAD as in other populations and whether the ABCG5 and ABCG8 genes, associated with plant sterol metabolism, were related to the risk of CAD. In free-living postmenopausal women with (n = 47) and without (n = 62) CAD, serum noncholesterol sterols including plant sterols were analyzed with gas-liquid chromatography, cholesterol absorption with peroral isotopes, absolute cholesterol synthesis with sterol balance technique, and bile acid synthesis with quantitating fecal bile acids. In CAD women, serum plant sterol ratios to cholesterol were 21% to 26% (P synthesis were reduced. Only in controls were serum plant sterols related to cholesterol absorption (eg, sitosterol; in controls: r = 0.533, P synthesis marker) and lathosterol-cholestanol (relative synthesis-absorption marker) were related to absolute synthesis and absorption percentage (P range from .05 to sterol metabolism is disturbed in CAD women; so serum plant sterols only tended to reflect absolute cholesterol absorption. Other relative markers of cholesterol metabolism were related to the absolute ones in both groups. ABCG5 and ABCG8 genes were not associated with the risk of CAD.

  18. Fluorescent Sterols and Cholesteryl Esters as Probes for Intracellular Cholesterol Transport

    Science.gov (United States)

    Solanko, Katarzyna A.; Modzel, Maciej; Solanko, Lukasz M.; Wüstner, Daniel

    2015-01-01

    Cholesterol transport between cellular organelles comprised vesicular trafficking and nonvesicular exchange; these processes are often studied by quantitative fluorescence microscopy. A major challenge for using this approach is producing analogs of cholesterol with suitable brightness and structural and chemical properties comparable with those of cholesterol. This review surveys currently used fluorescent sterols with respect to their behavior in model membranes, their photophysical properties, as well as their transport and metabolism in cells. In the first part, several intrinsically fluorescent sterols, such as dehydroergosterol or cholestatrienol, are discussed. These polyene sterols (P-sterols) contain three conjugated double bonds in the steroid ring system, giving them slight fluorescence in ultraviolet light. We discuss the properties of P-sterols relative to cholesterol, outline their chemical synthesis, and explain how to image them in living cells and organisms. In particular, we show that P-sterol esters inserted into low-density lipoprotein can be tracked in the fibroblasts of Niemann–Pick disease using high-resolution deconvolution microscopy. We also describe fluorophore-tagged cholesterol probes, such as BODIPY-, NBD-, Dansyl-, or Pyrene-tagged cholesterol, and eventual esters of these analogs. Finally, we survey the latest developments in the synthesis and use of alkyne cholesterol analogs to be labeled with fluorophores by click chemistry and discuss the potential of all approaches for future applications. PMID:27330304

  19. Effect of different fat-enriched meats on non-cholesterol sterols and oxysterols as markers of cholesterol metabolism: Results of a randomized and cross-over clinical trial.

    Science.gov (United States)

    Baila-Rueda, L; Mateo-Gallego, R; Pérez-Calahorra, S; Lamiquiz-Moneo, I; de Castro-Orós, I; Cenarro, A; Civeira, F

    2015-09-01

    Different kinds of fatty acids can affect the synthesis, absorption, and elimination of cholesterol. This study was carried out to assess the associations of cholesterol metabolism with the intake of two meats with different fatty acid composition in healthy volunteers. The study group was composed of 20 subjects (12 males and eight females; age, 34.4 ± 11.6 years; body mass index (BMI), 23.5 ± 2.3 kg/m(2); low-density lipoprotein (LDL) cholesterol, 2.97 ± 0.55 mmol/l; high-density lipoprotein (HDL) cholesterol, 1.61 ± 0.31 mmol/l; triglycerides (TG), 1.06 ± 0.41 mmol/l) who completed a 30-day randomized and cross-over study to compare the cholesterol metabolism effect of 250 g of low-fat lamb versus 250 g of high-fat lamb per day in their usual diet. Cholesterol absorption, synthesis, and elimination were estimated from the serum non-cholesterol sterol and oxysterol concentrations analyzed by a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). No changes in weight, plasma lipids, or physical activity were observed across the study. Cholesterol intestinal absorption was decreased with both diets. Cholesterol synthesis and elimination decreased during the low-fat lamb dietary intervention (ρ = 0.048 and ρ = 0.005, respectively). Acute changes in the diet fat content modify the synthesis, absorption, and biliary elimination of cholesterol. These changes were observed even in the absence of total and LDL cholesterol changes in plasma. ClinicalTrials.gov PRS, NCT02259153. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effect of parenteral serum plant sterols on liver enzymes and cholesterol metabolism in a patient with short bowel syndrome.

    Science.gov (United States)

    Hallikainen, Maarit; Huikko, Laura; Kontra, Kirsi; Nissinen, Markku; Piironen, Vieno; Miettinen, Tatu; Gylling, Helena

    2008-01-01

    Hepatobiliary complications are common during parenteral nutrition. Lipid moiety in commercially available solutions contains plant sterols. It is not known whether plant sterols in parenteral nutrition interfere with hepatic function in adults. We detected how different amounts of plant sterols in parenteral nutrition solution affected serum plant sterol concentrations and liver enzymes during a 1.5-year follow-up in a patient with short bowel syndrome. Serum lipid, plant sterol, and liver enzyme levels were measured regularly during the transition from Intralipid (100% soy-based intravenous fat emulsion) to ClinOleic (an olive oil-based intravenous fat emulsion with 80% olive oil, 20% soy oil and lower plant sterols); the lipid supply was also gradually increased from 20 to 35 g/d. Plant sterols in parenteral nutrition solution and serum were measured with gas-liquid chromatography. During infusion of soy-based intravenous fat emulsion (30 g/d, total plant sterols 87 mg/d), the concentrations of sitosterol, campesterol, and stigmasterol were 4361, 1387, and 378 microg/dL, respectively, and serum liver enzyme values were >or= 2.5 times above upper limit of normal. After changing to olive oil-based intravenous fat emulsion (20-35 g/d, plant sterols 37-65 mg/d), concentrations decreased to 2148 to 2251 microg/dL for sitosterol, 569-297 microg/dL for campesterol, and 95-55 microg/dL for stigmasterol. Concomitantly, liver enzyme values decreased to 1.4 to 1.8 times above upper limit of normal at the end of follow-up. The nutrition status of the patient improved. The amount of plant sterols in lipid emulsion affects serum liver enzyme levels more than the amount of lipid.

  1. Phytosterol and cholesterol precursor levels indicate increased cholesterol excretion and biosynthesis in gallstone disease.

    Science.gov (United States)

    Krawczyk, Marcin; Lütjohann, Dieter; Schirin-Sokhan, Ramin; Villarroel, Luis; Nervi, Flavio; Pimentel, Fernando; Lammert, Frank; Miquel, Juan Francisco

    2012-05-01

    In hepatocytes and enterocytes sterol uptake and secretion is mediated by Niemann-Pick C1-like 1 (NPC1L1) and ATP-binding cassette (ABC)G5/8 proteins, respectively. Whereas serum levels of phytosterols represent surrogate markers for intestinal cholesterol absorption, cholesterol precursors reflect cholesterol biosynthesis. Here we compare serum and biliary sterol levels in ethnically different populations of patients with gallstone disease (GSD) and stone-free controls to identify differences in cholesterol transport and synthesis between these groups. In this case-control study four cohorts were analyzed: 112 German patients with GSD and 152 controls; two distinct Chilean ethnic groups: Hispanics (100 GSD, 100 controls), and Amerindians (20 GSD, 20 controls); additionally an 8-year follow-up of 70 Hispanics was performed. Serum sterols were measured by gas chromatography / mass spectrometry. Gallbladder bile sterol levels were analyzed in cholesterol GSD and controls. Common ABCG5/8 variants were genotyped. Comparison of serum sterols showed lower levels of phytosterols and higher levels of cholesterol precursors in GSD patients than in controls. The ratios of phytosterols to cholesterol precursors were lower in GSD patients, whereas biliary phytosterol and cholesterol concentrations were elevated as compared with controls. In the follow-up study, serum phytosterol levels were significantly lower even before GSD was detectable by ultrasound. An ethnic gradient in the ratios of phytosterols to cholesterol precursors was apparent (Germans > Hispanics > Amerindians). ABCG5/8 variants did not fully explain the sterol metabolic trait of GSD in any of the cohorts. Individuals predisposed to GSD display increased biliary output of cholesterol in the setting of relatively low intestinal cholesterol absorption, indicating enhanced whole-body sterol clearance. This metabolic trait precedes gallstone formation and is a feature of ethnic groups at higher risk of cholesterol

  2. Isotope dilution/mass spectrometry of serum cholesterol with [3,4-13C]cholesterol: proposed definitive method

    International Nuclear Information System (INIS)

    Pelletier, O.; Wright, L.A.; Breckenridge, W.C.

    1987-01-01

    We describe a new gas-chromatographic/mass-spectrometric (GC/MS) isotope-dilution method for determination of serum cholesterol. The method has been fully optimized and documented to provide the high accuracy and precision expected for a Definitive Method. In the presence of [3,4- 13 C]cholesterol, cholesteryl esters in serum are hydrolyzed under optimum conditions and the entire cholesterol pool is extracted and derivatized to silyl ethers. The cholesterol derivatives are resolved from other sterols by gas-liquid chromatography on a fused silica column, and selected ions characteristic of cholesterol and the [3,4- 13 C]cholesterol are monitored with a GC/MS quandrupole system. We estimated the cholesterol content of samples by bracketing each sample with standards of comparable cholesterol concentration that also contained the [3,4- 13 C]cholesterol. The procedure was highly reproducible (CV less than 0.5%), better accuracy and precision being obtained with [3,4- 13 C]cholesterol than with heptadeuterated cholesterol. Mean values per gram of dry serum for one serum pool assayed by this method and that of the National Bureau of Standards differed by 0.5%. We conclude that the method satisfies the criteria for a Definitive Method

  3. Sterol biosynthesis from acetate and the fate of dietary cholesterol and desmosterol in crabs

    International Nuclear Information System (INIS)

    Teshima, Shin-ichi; Kanazawa, Akio; Okamoto, Haruhito

    1976-01-01

    This paper deals with the sterol-synthesizing ability and the fate of dietary sterols, cholesterol and desmosterol, in the crabs, Sesarma dehaani and Helice tridens. Injected acetate-1- 14 C was not incorporated into either squalene or sterols in the above crabs. This suggested that the sterol-synthesizing ability from acetate is absent or weak in the crabs, S. dehaani and H. tridens. The apparent percentage absorptions of dietary cholesterol and desmosterol from the digestive tracts were 91.9 and 90.9, respectively. The ingested cholesterol and desmosterol were metabolized to steryl esters and polar compounds but only slightly to water-soluble sterols. Also, it was shown that the crab, S. dehaani, is capable of converting desmosterol to cholesterol. (auth.)

  4. Can non-cholesterol sterols and lipoprotein subclasses distribution predict different patterns of cholesterol metabolism and statin therapy response?

    Science.gov (United States)

    Gojkovic, Tamara; Vladimirov, Sandra; Spasojevic-Kalimanovska, Vesna; Zeljkovic, Aleksandra; Vekic, Jelena; Kalimanovska-Ostric, Dimitra; Djuricic, Ivana; Sobajic, Sladjana; Jelic-Ivanovic, Zorana

    2017-03-01

    Cholesterol homeostasis disorders may cause dyslipidemia, atherosclerosis progression and coronary artery disease (CAD) development. Evaluation of non-cholesterol sterols (NCSs) as synthesis and absorption markers, and lipoprotein particles quality may indicate the dyslipidemia early development. This study investigates associations of different cholesterol homeostasis patterns with low-density (LDL) and high-density lipoproteins (HDL) subclasses distribution in statin-treated and statin-untreated CAD patients, and potential use of aforementioned markers for CAD treatment optimization. The study included 78 CAD patients (47 statin-untreated and 31 statin-treated) and 31 controls (CG). NCSs concentrations were quantified using gas chromatography- flame ionization detection (GC-FID). Lipoprotein subclasses were separated by gradient gel electrophoresis. In patients, cholesterol-synthesis markers were significantly higher comparing to CG. Cholesterol-synthesis markers were inversely associated with LDL size in all groups. For cholesterol homeostasis estimation, each group was divided to good and/or poor synthetizers and/or absorbers according to desmosterol and β-sitosterol median values. In CG, participants with reduced cholesterol absorption, the relative proportion of small, dense LDL was higher in those with increased cholesterol synthesis compared to those with reduced synthesis (p<0.01). LDL I fraction was significantly higher in poor synthetizers/poor absorbers subgroup compared to poor synthetizers/good absorbers (p<0.01), and good synthetizers/poor absorbers (p<0.01). Statin-treated patients with increased cholesterol absorption had increased proportion of LDL IVB (p<0.05). The results suggest the existence of different lipoprotein abnormalities according to various patterns of cholesterol homeostasis. Desmosterol/β-sitosterol ratio could be used for estimating individual propensity toward dyslipidemia development and direct the future treatment.

  5. Corn fiber oil lowers plasma cholesterol levels and increases cholesterol excretion greater than corn oil and similar to diets containing soy sterols and soy stanols in hamsters.

    Science.gov (United States)

    Wilson, T A; DeSimone, A P; Romano, C A; Nicolosi, R J

    2000-09-01

    The aims of this study were to compare the cholesterol-lowering properties of corn fiber oil (CFO) to corn oil (CO), whether the addition of soy stanols or soy sterols to CO at similar levels in CFO would increase CO's cholesterol-lowering properties, and the mechanism(s) of action of these dietary ingredients. Fifty male Golden Syrian hamsters were divided into 5 groups of 10 hamsters each, based on similar plasma total cholesterol (TC) levels. The first group of hamsters was fed a chow-based hypercholesterolemic diet containing either 5% coconut oil + 0.24% cholesterol (coconut oil), 5% CO, 5% CFO, 5% CO + 0.6% soy sterols (sterol), or 5% CO + 0.6% soy stanols (stanol) in place of the coconut oil for 4 weeks. The stanol diet significantly inhibited the elevation of plasma TC compared to all other dietary treatments. Also, the CFO and sterol diets significantly inhibited the elevation of plasma TC compared to the CO and coconut oil diets. The CFO, sterol, and stanol diets significantly inhibited the elevation of plasma non-high density lipoprotein cholesterol compared to the CO and coconut oil diets. The stanol diet significantly inhibited the elevation of plasma high density lipoprotein cholesterol (HDL-C) compared to all other dietary treatments. The sterol diet significantly inhibited the elevation of plasma HDL-C compared to the CO and coconut oil diets, whereas the CFO diet significantly inhibited the elevation of plasma HDL-C compared to the coconut oil diet only. No differences were observed between the CFO and CO for plasma HDL-C. There were no differences observed between groups for plasma triglycerides. The CO and CFO diets had significantly less hepatic TC compared to the coconut oil, sterol, and stanol diets. The CO and CFO diets had significantly less hepatic free cholesterol compared to the sterol and stanol diets but not compared to the coconut oil diet; whereas the coconut oil and sterol diets had significantly less hepatic free cholesterol

  6. Plant Sterols: Chemical and Enzymatic Structural Modifications and Effects on Their Cholesterol-Lowering Activity.

    Science.gov (United States)

    He, Wen-Sen; Zhu, Hanyue; Chen, Zhen-Yu

    2018-03-28

    Plant sterols have attracted increasing attention due to their excellent cholesterol-lowering activity. However, free plant sterols have some characteristics of low oil solubility, water insolubility, high melting point, and low bioavailability, which greatly limit their application in foods. Numerous studies have been undertaken to modify their chemical structures to improve their chemical and physical properties in meeting the needs of various applications. The present review is to summarize the literature and update the progress on structural modifications of plant sterols in the following aspects: (i) synthesis of plant sterol esters by esterification and transesterification with hydrophobic fatty acids and triacylglycerols to improve their oil solubility, (ii) synthesis of plant sterol derivatives by coupling with various hydrophilic moieties to enhance their water solubility, and (iii) mechanisms by which plant sterols reduce plasma cholesterol and the effect of structural modifications on plasma cholesterol-lowering activity of plant sterols.

  7. Phytosterol stearate esters elicit similar responses on plasma lipids and cholesterol absorption but different responses on fecal neutral sterol excretion and hepatic free cholesterol in male Syrian hamsters.

    Science.gov (United States)

    Ash, Mark M; Hang, Jiliang; Dussault, Patrick H; Carr, Timothy P

    2011-07-01

    The dietary impact of specific phytosterols incorporated into phytosterol fatty acid esters has not been elucidated. Therefore, we tested the hypothesis that phytosterol esters containing different sterol moieties (sitosterol, sitostanol, or stigmasterol) but the same fatty acid moiety (stearic acid) produce different effects on cholesterol metabolism. Male Syrian hamsters were fed sitosterol, sitostanol, and stigmasterol stearate esters (25 g/kg diet) in an atherogenic diet containing cholesterol (1.2 g/kg) and coconut oil (80 g/kg). The phytosterol stearates produced no decrease in cholesterol absorption or plasma non-high-density lipoprotein cholesterol despite a reduction in liver free cholesterol in hamsters fed both sitosterol and sitostanol stearate diets. In addition, sitosterol stearate significantly increased fecal esterified and total neutral sterol excretion. Stigmasterol stearate did not differ from control in neutral sterol excretion, plasma lipids, or hepatic lipid concentration. Sitosterol stearate demonstrated the highest level of net intestinal hydrolysis, whereas sitostanol and stigmasterol stearate equivalently demonstrated the lowest. The cholesterol-lowering effect in liver-but not plasma-and the limited presence of fecal free sterols indicate that intact (unhydrolyzed) phytosterol stearates may impact cholesterol metabolism by mechanisms unrelated to the role of free phytosterols. The consumption of phytosterol esters at 2.5% of the diet elicited only modest impacts on cholesterol metabolism, although sitosterol stearate had a slightly greater therapeutic impact by lowering liver free cholesterol and increasing esterified and total neutral sterol fecal excretion, possibly due to a greater level of intestinal hydrolysis. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Cholesterol biosynthesis by the cornea. Comparison of rates of sterol synthesis with accumulation during early development

    International Nuclear Information System (INIS)

    Cenedella, R.J.; Fleschner, C.R.

    1989-01-01

    The origin of the cholesterol needed by the cornea for growth and cell turnover was addressed by comparing absolute rates of sterol synthesis with rates of sterol accumulation during early development of the rabbit. Linearity of incorporation of 3 H 2 O and [ 14 C]mevalonate into digitonin-precipitable sterols with time of incubation in vitro and a lack of accumulation of 14 C in intermediates of sterol biosynthesis indicated that tritiated water can validly be used to measure rates of sterol synthesis by the cornea. The rate of sterol synthesis per unit weight of rabbit cornea was constant between 14 and 60 days of age at an average 1.03 nmol of 3 H of 3 H 2 O incorporated/mg dry cornea per 8 h. Essentially all of the synthesized cholesterol and most of the cholesterol mass was present in corneal epithelium. The cumulative sterol synthesized over the 46-day period studied exceeded the observed rate of cholesterol accumulation by sixfold. Cholesterol synthesized in excess of the growth requirement was likely used to support turnover of the epithelium which was estimated at 9 days. Removal of cholesterol from the cornea by excretion into tear fluid and clearance by high density lipoproteins are also considered

  9. The relationships of markers of cholesterol homeostasis with carotid intima-media thickness.

    Directory of Open Access Journals (Sweden)

    Oliver Weingärtner

    Full Text Available BACKGROUND: The relationship of cholesterol homeostasis and carotid intima-media thickness (cIMT is unknown. To address this, we assessed markers of cholesterol homeostasis (serum plant sterols and cholesterol precursor concentrations as surrogate measures of cholesterol absorption and synthesis, respectively and cIMT in a middle-aged, statin-naive population. METHODS: In this prospective study of primary prevention cIMT was measured by ultrasound in 583 hospital employees aged 25-60 years without prevalent cardiovascular disease or lipid-modifying medication. The serum concentrations of plant sterols (as markers of cholesterol absorption were measured by gas-liquid chromatography. Lathosterol serum concentrations were quantitated to assess hepatic cholesterol synthesis. RESULTS: cIMT correlated positively with serum cholesterol (r = 0.22, P<0.0005 and lathosterol-to-cholesterol (r = 0.18, P<0.001. In contrast, plant sterols, as markers of cholesterol absorption, showed a weak negative correlation to cIMT measurements (r = -0.18; P<0.001 for campesterol-to-cholesterol. Stratifying subjects by serum sterol levels, we found that cIMT increased continuously over quintiles of serum cholesterol (P<0.0005 and was positively associated to serum lathosterol-to-cholesterol levels (P = 0.007, on the other hand, plant sterol levels showed a weak negative association to cIMT (P<0.001 for campesterol-to-cholesterol. CONCLUSIONS: In this population without prevalent cardiovascular diseases or lipid-modifying medication, markers of increased endogenous cholesterol synthesis correlated positively with cIMT, while markers of cholesterol absorption showed a weakly negative correlation. These data suggest that not only total serum cholesterol levels but also differences in cholesterol homeostasis are associated with cIMT.

  10. Acute sterol o-acyltransferase 2 (SOAT2 knockdown rapidly mobilizes hepatic cholesterol for fecal excretion.

    Directory of Open Access Journals (Sweden)

    Stephanie M Marshall

    Full Text Available The primary risk factor for atherosclerotic cardiovascular disease is LDL cholesterol, which can be reduced by increasing cholesterol excretion from the body. Fecal cholesterol excretion can be driven by a hepatobiliary as well as a non-biliary pathway known as transintestinal cholesterol efflux (TICE. We previously showed that chronic knockdown of the hepatic cholesterol esterifying enzyme sterol O-acyltransferase 2 (SOAT2 increased fecal cholesterol loss via TICE. To elucidate the initial events that stimulate TICE, C57Bl/6 mice were fed a high cholesterol diet to induce hepatic cholesterol accumulation and were then treated for 1 or 2 weeks with an antisense oligonucleotide targeting SOAT2. Within 2 weeks of hepatic SOAT2 knockdown (SOAT2HKD, the concentration of cholesteryl ester in the liver was reduced by 70% without a reciprocal increase in hepatic free cholesterol. The rapid mobilization of hepatic cholesterol stores resulted in a ∼ 2-fold increase in fecal neutral sterol loss but no change in biliary cholesterol concentration. Acute SOAT2HKD increased plasma cholesterol carried primarily in lipoproteins enriched in apoB and apoE. Collectively, our data suggest that acutely reducing SOAT2 causes hepatic cholesterol to be swiftly mobilized and packaged onto nascent lipoproteins that feed cholesterol into the TICE pathway for fecal excretion.

  11. Plasma sterol evidence for decreased absorption and increased synthesis of cholesterol in insulin resistance and obesity.

    Science.gov (United States)

    Paramsothy, Pathmaja; Knopp, Robert H; Kahn, Steven E; Retzlaff, Barbara M; Fish, Brian; Ma, Lina; Ostlund, Richard E

    2011-11-01

    The rise in LDL with egg feeding in lean insulin-sensitive (LIS) participants is 2- and 3-fold greater than in lean insulin-resistant (LIR) and obese insulin-resistant (OIR) participants, respectively. We determined whether differences in cholesterol absorption, synthesis, or both could be responsible for these differences by measuring plasma sterols as indexes of cholesterol absorption and endogenous synthesis. Plasma sterols were measured by gas chromatography-mass spectrometry in a random subset of 34 LIS, 37 LIR, and 37 OIR participants defined by the insulin sensitivity index (S(I)) and by BMI criteria selected from a parent group of 197 participants. Cholestanol and plant sterols provide a measure of cholesterol absorption, and lathosterol provides a measure of cholesterol synthesis. The mean (±SD) ratio of plasma total absorption biomarker sterols to cholesterol was 4.48 ± 1.74 in LIS, 3.25 ± 1.06 in LIR, and 2.82 ± 1.08 in OIR participants. After adjustment for age and sex, the relations of the absorption sterol-cholesterol ratios were as follows: LIS > OIR (P LIR (P OIR (P = 0.11). Lathosterol-cholesterol ratios were 0.71 ± 0.32 in the LIS participants, 0.95 ± 0.47 in the LIR participants, and 1.29 ± 0.55 in the OIR participants. After adjustment for age and sex, the relations of lathosterol-cholesterol ratios were as follows: LIS sterol concentrations were positively associated with S(I) and negatively associated with obesity, whereas lathosterol correlations were the opposite. Cholesterol absorption was highest in the LIS participants, whereas cholesterol synthesis was highest in the LIR and OIR participants. Therapeutic diets for hyperlipidemia should emphasize low-cholesterol diets in LIS persons and weight loss to improve S(I) and to decrease cholesterol overproduction in LIR and OIR persons.

  12. Inability to fully suppress sterol synthesis rates with exogenous sterol in embryonic and extraembyronic fetal tissues

    OpenAIRE

    Yao, Lihang; Jenkins, Katie; Horn, Paul S.; Lichtenberg, M. Hayden; Woollett, Laura A.

    2007-01-01

    The requirement for cholesterol is greater in developing tissues (fetus, placenta, and yolk sac) as compared to adult tissues. Here, we compared cholesterol-induced suppression of sterol synthesis rates in the adult liver to the fetal liver, fetal body, placenta, and yolk sac of the Golden Syrian hamster. Sterol synthesis rates were suppressed maximally in non-pregnant adult livers when cholesterol concentrations were increased. In contrast, sterol synthesis rates were suppressed only margina...

  13. The effect of plant sterol-enriched turkey meat on cholesterol bio-accessibility during in vitro digestion and Caco-2 cell uptake.

    Science.gov (United States)

    Grasso, S; Harrison, S M; Monahan, F J; Brayden, D; Brunton, N P

    2018-03-01

    This study evaluated the effect of a plant sterol-enriched turkey product on cholesterol bio-accessibility during in vitro digestion and cholesterol uptake by Caco-2 monolayers. Turkey products, one plant sterol-enriched (PS) and one plant sterol-free (C), were produced in an industrial pilot plant. Before simulated digestion, matrices were spiked with cholesterol (1:5 weight ratio of cholesterol to plant sterol). Plant sterols were included at a concentration equivalent to the minimum daily intake recommended by the European Food Safety Authority (EFSA) for cholesterol lowering. After simulated digestion, the percentage of cholesterol micellarization and uptake by Caco-2 cells in the presence of PS meat were measured. Compared to C meat, PS meat significantly inhibited cholesterol micellarization on average by 24% and Caco-2 cell accumulation by 10%. This study suggests that plant sterols in meat can reduce cholesterol uptake by intestinal epithelia and it encourages efforts to make new PS-based functional foods.

  14. Influence of Chitosan Treatment on Surrogate Serum Markers of Cholesterol Metabolism in Obese Subjects

    Directory of Open Access Journals (Sweden)

    Dieter Lütjohann

    2018-01-01

    Full Text Available Chitosan treatment results in significantly lower serum low density lipoprotein (LDL cholesterol concentrations. To assess the working mechanisms of chitosan, we measured serum surrogate markers of cholesterol absorption (campesterol, sitosterol, cholestanol, synthesis (lathosterol, lanosterol, desmosterol, and degradation to bile acids (7α-hydroxy-cholesterol, 27-hydroxy-cholesterol, corrected for cholesterol concentration (R_sterols. Over 12 weeks, 116 obese subjects (Body Mass Index, BMI 31.7, range 28.1–38.9 kg/m2 were studied under chitosan (n = 61 and placebo treatments (n = 55. The participants were briefly educated regarding improvement of nutrition quality and energy expenditure. Daily chitosan intake was 3200 mg. Serum LDL cholesterol concentration decreased significantly more (p = 0.0252 under chitosan (−8.67 ± 18.18 mg/dL, 5.6% than under placebo treatment (−1.00 ± 24.22 mg/dL, 0.9%. This reduction was not associated with the expected greater decreases in markers of cholesterol absorption under chitosan treatment. Also, increases in markers of cholesterol synthesis and bile acid synthesis under chitosan treatment were not any greater than under placebo treatment. In conclusion, a significant selective reduction of serum LDL cholesterol under chitosan treatment is neither associated with a reduction of serum surrogate markers of cholesterol absorption, nor with increases of markers for cholesterol and bile acid synthesis.

  15. Synthesis and live-cell imaging of fluorescent sterols for analysis of intracellular cholesterol transport

    DEFF Research Database (Denmark)

    Modzel, Maciej; Lund, Frederik W.; Wüstner, Daniel

    2017-01-01

    Cellular cholesterol homeostasis relies on precise control of the sterol content of organelle membranes. Obtaining insight into cholesterol trafficking pathways and kinetics by live-cell imaging relies on two conditions. First, one needs to develop suitable analogs that resemble cholesterol...... as closely as possible with respect to their biophysical and biochemical properties. Second, the cholesterol analogs should have good fluorescence properties. This interferes, however, often with the first requirement, such that the imaging instrumentation must be optimized to collect photons from suboptimal...... fluorophores, but good cholesterol mimics, such as the intrinsically fluorescent sterols, cholestatrienol (CTL) or dehydroergosterol (DHE). CTL differs from cholesterol only in having two additional double bonds in the ring system, which is why it is slightly fluorescent in the ultraviolet (UV). In the first...

  16. Significance of sterol structural specificity : desmosterol cannot replace cholesterol in lipid rafts

    NARCIS (Netherlands)

    Vainio, S.; Jansen, Maurice; Koivusalo, M.; Róg, T.; Karttunen, M.E.J.; Vattulainen, I.; Ikonen, E.

    2006-01-01

    Desmosterol is an immediate precursor of cholesterol in the Bloch pathway of sterol synthesis and an abundant membrane lipid in specific cell types. The significance of the difference between the two sterols, an additional double bond at position C24 in the tail of desmosterol, is not known. Here,

  17. Hepatic nuclear sterol regulatory binding element protein 2 abundance is decreased and that of ABCG5 increased in male hamsters fed plant sterols.

    Science.gov (United States)

    Harding, Scott V; Rideout, Todd C; Jones, Peter J H

    2010-07-01

    The effect of dietary plant sterols on cholesterol homeostasis has been well characterized in the intestine, but how plant sterols affect lipid metabolism in other lipid-rich tissues is not known. Changes in hepatic cholesterol homeostasis in response to high dietary intakes of plant sterols were determined in male golden Syrian hamsters fed hypercholesterolemia-inducing diets with and without 2% plant sterols (wt:wt; Reducol, Forbes Meditech) for 28 d. Plasma and hepatic cholesterol concentrations, cholesterol biosynthesis and absorption, and changes in the expression of sterol response element binding protein 2 (SREBP2) and liver X receptor-beta (LXRbeta) and their target genes were measured. Plant sterol feeding reduced plasma total cholesterol, non-HDL cholesterol, and HDL cholesterol concentrations 43% (P 6-fold (P = 0.029) and >2-fold (P sterol-fed hamsters compared with controls. Plant sterol feeding also increased fractional cholesterol synthesis >2-fold (P sterol feeding increased hepatic protein expression of cytosolic (inactive) SREBP2, decreased nuclear (active) SREBP2, and tended to increase LXRbeta (P = 0.06) and ATP binding cassette transporter G5, indicating a differential modulation of the expression of proteins central to cholesterol metabolism. In conclusion, high-dose plant sterol feeding of hamsters changes hepatic protein abundance in favor of cholesterol excretion despite lower hepatic cholesterol concentrations and higher cholesterol fractional synthesis.

  18. Two-photon time-lapse microscopy of BODIPY-cholesterol reveals anomalous sterol diffusion in chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Lund, F. W.; Lomholt, M. A.; Solanko, L. M.

    2012-01-01

    to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog BODIPY-cholesterol (BChol) suggested that the latter...

  19. Plasma sterol evidence for decreased absorption and increased synthesis of cholesterol in insulin resistance and obesity1234

    Science.gov (United States)

    Knopp, Robert H; Kahn, Steven E; Retzlaff, Barbara M; Fish, Brian; Ma, Lina; Ostlund, Richard E

    2011-01-01

    Background: The rise in LDL with egg feeding in lean insulin-sensitive (LIS) participants is 2- and 3-fold greater than in lean insulin-resistant (LIR) and obese insulin-resistant (OIR) participants, respectively. Objective: We determined whether differences in cholesterol absorption, synthesis, or both could be responsible for these differences by measuring plasma sterols as indexes of cholesterol absorption and endogenous synthesis. Design: Plasma sterols were measured by gas chromatography–mass spectrometry in a random subset of 34 LIS, 37 LIR, and 37 OIR participants defined by the insulin sensitivity index (SI) and by BMI criteria selected from a parent group of 197 participants. Cholestanol and plant sterols provide a measure of cholesterol absorption, and lathosterol provides a measure of cholesterol synthesis. Results: The mean (±SD) ratio of plasma total absorption biomarker sterols to cholesterol was 4.48 ± 1.74 in LIS, 3.25 ± 1.06 in LIR, and 2.82 ± 1.08 in OIR participants. After adjustment for age and sex, the relations of the absorption sterol–cholesterol ratios were as follows: LIS > OIR (P LIR (P OIR (P = 0.11). Lathosterol-cholesterol ratios were 0.71 ± 0.32 in the LIS participants, 0.95 ± 0.47 in the LIR participants, and 1.29 ± 0.55 in the OIR participants. After adjustment for age and sex, the relations of lathosterol-cholesterol ratios were as follows: LIS sterol concentrations were positively associated with SI and negatively associated with obesity, whereas lathosterol correlations were the opposite. Conclusions: Cholesterol absorption was highest in the LIS participants, whereas cholesterol synthesis was highest in the LIR and OIR participants. Therapeutic diets for hyperlipidemia should emphasize low-cholesterol diets in LIS persons and weight loss to improve SI and to decrease cholesterol overproduction in LIR and OIR persons. PMID:21940599

  20. Cholesterol-induced conformational changes in the sterol-sensing domain of the Scap protein suggest feedback mechanism to control cholesterol synthesis.

    Science.gov (United States)

    Gao, Yansong; Zhou, Yulian; Goldstein, Joseph L; Brown, Michael S; Radhakrishnan, Arun

    2017-05-26

    Scap is a polytopic protein of endoplasmic reticulum (ER) membranes that transports sterol regulatory element-binding proteins to the Golgi complex for proteolytic activation. Cholesterol accumulation in ER membranes prevents Scap transport and decreases cholesterol synthesis. Previously, we provided evidence that cholesterol inhibition is initiated when cholesterol binds to loop 1 of Scap, which projects into the ER lumen. Within cells, this binding causes loop 1 to dissociate from loop 7, another luminal Scap loop. However, we have been unable to demonstrate this dissociation when we added cholesterol to isolated complexes of loops 1 and 7. We therefore speculated that the dissociation requires a conformational change in the intervening polytopic sequence separating loops 1 and 7. Here we demonstrate such a change using a protease protection assay in sealed membrane vesicles. In the absence of cholesterol, trypsin or proteinase K cleaved cytosolic loop 4, generating a protected fragment that we visualized with a monoclonal antibody against loop 1. When cholesterol was added to these membranes, cleavage in loop 4 was abolished. Because loop 4 is part of the so-called sterol-sensing domain separating loops 1 and 7, these results support the hypothesis that cholesterol binding to loop 1 alters the conformation of the sterol-sensing domain. They also suggest that this conformational change helps transmit the cholesterol signal from loop 1 to loop 7, thereby allowing separation of the loops and facilitating the feedback inhibition of cholesterol synthesis. These insights suggest a new structural model for cholesterol-mediated regulation of Scap activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. A novel fibrosis index comprising a non-cholesterol sterol accurately predicts HCV-related liver cirrhosis.

    Directory of Open Access Journals (Sweden)

    Magdalena Ydreborg

    Full Text Available Diagnosis of liver cirrhosis is essential in the management of chronic hepatitis C virus (HCV infection. Liver biopsy is invasive and thus entails a risk of complications as well as a potential risk of sampling error. Therefore, non-invasive diagnostic tools are preferential. The aim of the present study was to create a model for accurate prediction of liver cirrhosis based on patient characteristics and biomarkers of liver fibrosis, including a panel of non-cholesterol sterols reflecting cholesterol synthesis and absorption and secretion. We evaluated variables with potential predictive significance for liver fibrosis in 278 patients originally included in a multicenter phase III treatment trial for chronic HCV infection. A stepwise multivariate logistic model selection was performed with liver cirrhosis, defined as Ishak fibrosis stage 5-6, as the outcome variable. A new index, referred to as Nordic Liver Index (NoLI in the paper, was based on the model: Log-odds (predicting cirrhosis = -12.17+ (age × 0.11 + (BMI (kg/m(2 × 0.23 + (D7-lathosterol (μg/100 mg cholesterol×(-0.013 + (Platelet count (x10(9/L × (-0.018 + (Prothrombin-INR × 3.69. The area under the ROC curve (AUROC for prediction of cirrhosis was 0.91 (95% CI 0.86-0.96. The index was validated in a separate cohort of 83 patients and the AUROC for this cohort was similar (0.90; 95% CI: 0.82-0.98. In conclusion, the new index may complement other methods in diagnosing cirrhosis in patients with chronic HCV infection.

  2. Sterol-mediated regulation of mevalonic acid synthesis. Accumulation of 4-carboxysterols as the predominant sterols synthesized in a Chinese hamster ovary cell cholesterol auxotroph (mutant 215)

    International Nuclear Information System (INIS)

    Plemenitas, A.; Havel, C.M.; Watson, J.A.

    1990-01-01

    Chinese hamster ovary-215 (CHO-215) mutant cells are auxotrophic for cholesterol. Berry and Chang (Berry, D. J., and Chang, T. Y. (1982) Biochemistry 21, 573-580) suggested that the metabolic lesion was at the level of 4-methyl sterol oxidation. However, the observed cellular accumulation of lanosterol was not consistent with a defect at this metabolic site. With the use of a novel Silica Sep Pak sterol separation procedure, we demonstrated that 60-80% of the acetonesoluble lipid radioactivity in [5-3H]mevalonate-labeled CHO-215 cells was incorporated into acidic sterols. 7(8),Cholesten-4 beta-methyl,4 alpha-carboxy,3 beta-ol was the dominant end product. In addition to this acidic sterol, 7(8),24-cholestadien,4 beta-methyl,4 alpha-carboxy,3 beta-ol and 7(8),24-cholestadien,4 alpha-carboxy,3 beta-ol were also isolated. Incubation of cell-free extracts with [3H]7(8)-cholesten-4 beta-methyl, 4 alpha-carboxy,3 beta-ol and pyridine nucleotides confirmed that CHO-215 4-carboxysterol decarboxylase activity was less than 1% of that for wild type cells. Thus, a correspondence between decreased 4-carboxysterol decarboxylase activity and the spectrum of accumulated sterol products by intact CHO-215 cells was demonstrated. No detectable cholesterol was synthesized by CHO-215 cells. 3H-Product accumulation studies demonstrated that 7(8),24-cholestadien, 4 beta-methyl,4 alpha-carboxy,3 beta-ol increased prior to its subsequent saturation at the delta 24 carbon. Furthermore, the steady state ratio for delta 24-saturated acidic sterols/unsaturated acidic sterols was dependent on media cholesterol source and amount. Finally, the accumulated acidic sterol(s) were not regulatory signal molecules for the modulation of 3-hydroxy-3-methyl-glutaryl coenzyme. A reductase activity in response to cholesterol availability

  3. Two-photon time-lapse microscopy of BODIPY-cholesterol reveals anomalous sterol diffusion in chinese hamster ovary cells

    Directory of Open Access Journals (Sweden)

    Lund Frederik W

    2012-10-01

    Full Text Available Abstract Background Cholesterol is an important membrane component, but our knowledge about its transport in cells is sparse. Previous imaging studies using dehydroergosterol (DHE, an intrinsically fluorescent sterol from yeast, have established that vesicular and non-vesicular transport modes contribute to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog BODIPY-cholesterol (BChol suggested that the latter probe has utility for prolonged live-cell imaging of sterol transport. Results We found that BChol is very photostable under two-photon (2P-excitation allowing the acquisition of several hundred frames without significant photobleaching. Therefore, long-term tracking and diffusion measurements are possible. Two-photon temporal image correlation spectroscopy (2P-TICS provided evidence for spatially heterogeneous diffusion constants of BChol varying over two orders of magnitude from the cell interior towards the plasma membrane, where D ~ 1.3 μm2/s. Number and brightness (N&B analysis together with stochastic simulations suggest that transient partitioning of BChol into convoluted membranes slows local sterol diffusion. We observed sterol endocytosis as well as fusion and fission of sterol-containing endocytic vesicles. The mobility of endocytic vesicles, as studied by particle tracking, is well described by a model for anomalous subdiffusion on short time scales with an anomalous exponent α ~ 0.63 and an anomalous diffusion constant of Dα = 1.95 x 10-3 μm2/sα. On a longer time scale (t > ~5 s, a transition to superdiffusion consistent with slow directed transport with an average velocity of v ~ 6 x 10-3 μm/s was observed. We present an analytical model that bridges the two regimes and fit this model to vesicle

  4. Quantitative assessment of sterol traffic in living cells by dual labeling with dehydroergosterol and BODIPY-cholesterol

    DEFF Research Database (Denmark)

    Wustner, D.; Solanko, L.; Sokol, Olena

    2011-01-01

    Cholesterol with BODIPY at carbon-24 of the side chain (BCh2) has recently been introduced as new cholesterol probe with superior fluorescence properties. We compare BCh2 with the intrinsically fluorescent dehythoergosterol (DHE), a well-established marker for cholesterol, by introducing simultan......Cholesterol with BODIPY at carbon-24 of the side chain (BCh2) has recently been introduced as new cholesterol probe with superior fluorescence properties. We compare BCh2 with the intrinsically fluorescent dehythoergosterol (DHE), a well-established marker for cholesterol, by introducing...... and followed a stretched exponential decay, while the fluorescence lifetime of BCh2 was comparable in various cellular regions. Our results indicate that BCh2 is suitable for analyzing sterol uptake pathways and inter-organelle sterol flux in living cells. The BODIPY-moiety affects lipid phase preference...

  5. Effect of rapeseed oil derived plant sterol and stanol esters on atherosclerosis parameters in cholesterol challenged heterozygous Watanabe Heritable Hyperlipidemic rabbits

    DEFF Research Database (Denmark)

    Schrøder, Malene; Fricke, Christiane; Pilegaard, Kirsten

    2009-01-01

    Watanabe heritable hyperlipidaemic (Hh-WHHL) rabbits. Four groups (n 18 per group) received a cholesterol-added (2 g/kg) standard chow or this diet with added RSO stanol esters (17 g/kg), RSO stanol esters (34 g/kg) or RSO sterol esters (34 g/kg) for 18 weeks. Feeding RSO stanol esters increased plasma...... campestanol (P Feeding RSO sterol esters increased concentrations of plasma campesterol (P ... of the RSO stanol ester groups and in one in the RSO sterol ester group. Aortic cholesterol was decreased in the treated groups (P response to lowering of plasma cholesterol induced by RSO sterol and stanol esters. In conclusion, RSO stanol and sterol esters with a high concentration...

  6. Sterol transfer between cyclodextrin and membranes: similar but not identical mechanism to NPC2-mediated cholesterol transfer.

    Science.gov (United States)

    McCauliff, Leslie A; Xu, Zhi; Storch, Judith

    2011-08-30

    Niemann--Pick C disease is an inherited disorder in which cholesterol and other lipids accumulate in the late endosomal/lysosomal compartment. Recently, cyclodextrins (CD) have been shown to reduce symptoms and extend lifespan in animal models of the disease. In the present studies we examined the mechanism of sterol transport by CD using in vitro model systems and fluorescence spectroscopy and NPC2-deficient fibroblasts. We demonstrate that cholesterol transport from the lysosomal cholesterol-binding protein NPC2 to CD occurs via aqueous diffusional transfer and is very slow; the rate-limiting step appears to be dissociation of cholesterol from NPC2, suggesting that specific interactions between NPC2 and CD do not occur. In contrast, the transfer rate of the fluorescent cholesterol analogue dehydroergosterol (DHE) from CD to phospholipid membranes is very rapid and is directly proportional to the acceptor membrane concentration, as is DHE transfer from membranes to CD. Moreover, CD dramatically increases the rate of sterol transfer between membranes, with rates that can approach those mediated by NPC2. The results suggest that sterol transfer from CD to membranes occurs by a collisional transfer mechanism involving direct interaction of CD with membranes, similar to that shown previously for NPC2. For CD, however, absolute rates are slower compared to NPC2 for a given concentration, and the lysosomal phospholipid lysobisphosphatidic acid (LBPA) does not stimulate rates of sterol transfer between membranes and CD. As expected from the apparent absence of interaction between CD and NPC2, the addition of CD to NPC2-deficient fibroblasts rapidly rescued the cholesterol accumulation phenotype. Thus, the recent observations of CD efficacy in mouse models of NPC disease are likely the result of CD enhancement of cholesterol transport between membranes, with rapid sterol transfer occurring during CD--membrane interactions.

  7. Genomic Influence in the Prevention of Cardiovascular Diseases with a Sterol-Based Treatment

    Directory of Open Access Journals (Sweden)

    Ismael San Mauro Martín

    2018-04-01

    Full Text Available Raised serum cholesterol concentration is a well-established risk factor in cardiovascular disease. In addition, genetic load may have an indirect influence on cardiovascular risk. Plant-based sterol-supplemented foods are recommended to help reduce the serum low-density lipoprotein cholesterol level. The objective was to analyse the influence of different polymorphisms in hypercholesterolemia patients following a dietary treatment with plant sterols. A randomised double-blind cross-over controlled clinical trial was carried out in 45 people (25 women. Commercial milk, containing 2.24 g of sterols, was ingested daily during a 3-week period, and then the same amount of skim milk, without sterols, was consumed daily during the 3-week placebo phase. Both phases were separated by a washout period of 2 weeks. At the beginning and end of each phase, blood draws were performed. Genes LIPC C-514T and APOA5 C56G are Ser19Trp carriers and greatly benefit from sterol intake in the diet. LIPC C-514T TT homozygous carriers had lower low-density lipoprotein cholesterol (LDL-c levels than CC homozygote and CT heterozygote carriers after the ingestion of plant sterols (p = 0.001. These two genes also showed statistically significant changes in total cholesterol levels (p = 0.025; p = 0.005, and no significant changes in high-density lipoprotein (HDL cholesterol levels (p = 0.032; p = 0.003, respectively. No statistically significant differences were observed for other genes. Further studies are needed to establish which genotype combinations would be the most protective against hypercholesterolemia.

  8. Phylogenetic distribution of fungal sterols.

    Directory of Open Access Journals (Sweden)

    John D Weete

    Full Text Available BACKGROUND: Ergosterol has been considered the "fungal sterol" for almost 125 years; however, additional sterol data superimposed on a recent molecular phylogeny of kingdom Fungi reveals a different and more complex situation. METHODOLOGY/PRINCIPAL FINDINGS: The interpretation of sterol distribution data in a modern phylogenetic context indicates that there is a clear trend from cholesterol and other Delta(5 sterols in the earliest diverging fungal species to ergosterol in later diverging fungi. There are, however, deviations from this pattern in certain clades. Sterols of the diverse zoosporic and zygosporic forms exhibit structural diversity with cholesterol and 24-ethyl -Delta(5 sterols in zoosporic taxa, and 24-methyl sterols in zygosporic fungi. For example, each of the three monophyletic lineages of zygosporic fungi has distinctive major sterols, ergosterol in Mucorales, 22-dihydroergosterol in Dimargaritales, Harpellales, and Kickxellales (DHK clade, and 24-methyl cholesterol in Entomophthorales. Other departures from ergosterol as the dominant sterol include: 24-ethyl cholesterol in Glomeromycota, 24-ethyl cholest-7-enol and 24-ethyl-cholesta-7,24(28-dienol in rust fungi, brassicasterol in Taphrinales and hypogeous pezizalean species, and cholesterol in Pneumocystis. CONCLUSIONS/SIGNIFICANCE: Five dominant end products of sterol biosynthesis (cholesterol, ergosterol, 24-methyl cholesterol, 24-ethyl cholesterol, brassicasterol, and intermediates in the formation of 24-ethyl cholesterol, are major sterols in 175 species of Fungi. Although most fungi in the most speciose clades have ergosterol as a major sterol, sterols are more varied than currently understood, and their distribution supports certain clades of Fungi in current fungal phylogenies. In addition to the intellectual importance of understanding evolution of sterol synthesis in fungi, there is practical importance because certain antifungal drugs (e.g., azoles target reactions in

  9. Sterol composition of shellfish species commonly consumed in the United States

    Directory of Open Access Journals (Sweden)

    Katherine M. Phillips

    2012-10-01

    Full Text Available Background: Shellfish can be a component of a healthy diet due to a low fat and high protein content, but the cholesterol content of some species is often cited as a reason to limit their consumption. Data on levels of non-cholesterol sterols in commonly consumed species are lacking. Objective: Shellfish were sampled and analyzed to update sterol data in the United States Department of Agriculture (USDA National Nutrient Database for Standard Reference. Design: Using a nationwide sampling plan, raw shrimp and sea scallops, canned clams, and steamed oysters, blue crab, and lobster were sampled from 12 statistically selected supermarkets across the United States in 2007-08. For each species, four composites were analyzed, each comprised of samples from three locations; shrimp and scallops from six single locations were also analyzed separately. Using validated analytical methodology, 14 sterols were determined in total lipid extracts after saponification and derivatization to trimethylsilyethers, using gas chromatography for quantitation and mass spectrometry for confirmation of components. Results: Crab, lobster, and shrimp contained significant cholesterol (96.2–27 mg/100 g; scallops and clams had the lowest concentrations (23.4–30.1 mg/100 g. Variability in cholesterol among single-location samples of shrimp was low. The major sterols in the mollusks were brassicasterol (12.6–45.6 mg/100 g and 24-methylenecholesterol (16.7–41.9 mg/100 g, with the highest concentrations in oysters. Total non-cholesterol sterols were 46.5–75.6 mg/100 g in five single-location scallops samples, but 107 mg/100 g in the sixth, with cholesterol also higher in that sample. Other prominent non-cholesterol sterols in mollusks were 22-dehydrocholesterol, isofucosterol, clionasterol, campesterol, and 24-norcholesta-5,22-diene-3β-ol (4–21 mg/100 g. Conclusions: The presence of a wide range of sterols, including isomeric forms, in shellfish makes the analysis

  10. Preservation of genes involved in sterol metabolism in cholesterol auxotrophs: facts and hypotheses.

    Directory of Open Access Journals (Sweden)

    Giovanna Vinci

    Full Text Available BACKGROUND: It is known that primary sequences of enzymes involved in sterol biosynthesis are well conserved in organisms that produce sterols de novo. However, we provide evidence for a preservation of the corresponding genes in two animals unable to synthesize cholesterol (auxotrophs: Drosophila melanogaster and Caenorhabditis elegans. PRINCIPAL FINDINGS: We have been able to detect bona fide orthologs of several ERG genes in both organisms using a series of complementary approaches. We have detected strong sequence divergence between the orthologs of the nematode and of the fruitfly; they are also very divergent with respect to the orthologs in organisms able to synthesize sterols de novo (prototrophs. Interestingly, the orthologs in both the nematode and the fruitfly are still under selective pressure. It is possible that these genes, which are not involved in cholesterol synthesis anymore, have been recruited to perform different new functions. We propose a more parsimonious way to explain their accelerated evolution and subsequent stabilization. The products of ERG genes in prototrophs might be involved in several biological roles, in addition to sterol synthesis. In the case of the nematode and the fruitfly, the relevant genes would have lost their ancestral function in cholesterogenesis but would have retained the other function(s, which keep them under pressure. CONCLUSIONS: By exploiting microarray data we have noticed a strong expressional correlation between the orthologs of ERG24 and ERG25 in D. melanogaster and genes encoding factors involved in intracellular protein trafficking and folding and with Start1 involved in ecdysteroid synthesis. These potential functional connections are worth being explored not only in Drosophila, but also in Caenorhabditis as well as in sterol prototrophs.

  11. Lipoprotein cholesterol uptake mediates upregulation of bile acid synthesis by increasing cholesterol 7a-hydroxylase but not sterol 27- hydroxylase gene expression in cultured rat hepatocytes.

    NARCIS (Netherlands)

    Post, S.M.; Twisk, J.W.R.; van der Fits, L.T.E.; Wit, E.C.M.; Hoekman, M.F.M.; Mager, W.H.; Princen, H.M.G.

    1999-01-01

    Lipoproteins may supply substrate for the formation of bile acids, and the amount of hepatic cholesterol can regulate bile-acid synthesis and increase cholesterol 7α-hydroxylase expression. However, the effect of lipoprotein cholesterol on sterol 27-hydroxylase expression and the role of different

  12. Genetic, anatomic, and clinical determinants of human serum sterol and vitamin D levels.

    Science.gov (United States)

    Stiles, Ashlee R; Kozlitina, Julia; Thompson, Bonne M; McDonald, Jeffrey G; King, Kevin S; Russell, David W

    2014-09-23

    An unknown fraction of the genome participates in the metabolism of sterols and vitamin D, two classes of lipids with diverse physiological and pathophysiological roles. Here, we used mass spectrometry to measure the abundance of >60 sterol and vitamin D derivatives in 3,230 serum samples from a well-phenotyped patient population. Twenty-nine of these lipids were detected in a majority of samples at levels that varied over thousands of fold in different individuals. Pairwise correlations between sterol and vitamin D levels revealed evidence for shared metabolic pathways, additional substrates for known enzymes, and transcriptional regulatory networks. Serum levels of multiple sterols and vitamin D metabolites varied significantly by sex, ethnicity, and age. A genome-wide association study identified 16 loci that were associated with levels of 19 sterols and 25-hydroxylated derivatives of vitamin D (P < 10(-7)). Resequencing, expression analysis, and biochemical experiments focused on one such locus (CYP39A1), revealed multiple loss-of-function alleles with additive effects on serum levels of the oxysterol, 24S-hydroxycholesterol, a substrate of the encoded enzyme. Body mass index, serum lipid levels, and hematocrit were strong phenotypic correlates of interindividual variation in multiple sterols and vitamin D metabolites. We conclude that correlating population-based analytical measurements with genotype and phenotype provides productive insight into human intermediary metabolism.

  13. How cholesterol interacts with proteins and lipids during its intracellular transport

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Solanko, Katarzyna

    2015-01-01

    as well as by non-vesicular sterol exchange between organelles. In this article, we will review recent progress in elucidating sterol-lipid and sterol-protein interactions contributing to proper sterol transport in living cells. We outline recent biophysical models of cholesterol distribution and dynamics...... for characterization of sterol-protein interactions and for monitoring intracellular sterol transport. Finally, we review recent work on the molecular mechanisms underlying lipoprotein-mediated cholesterol import into mammalian cells and describe the process of cellular cholesterol efflux. Overall, we emphasize how......Sterols, as cholesterol in mammalian cells and ergosterol in fungi, are indispensable molecules for proper functioning and nanoscale organization of the plasma membrane. Synthesis, uptake and efflux of cholesterol are regulated by a variety of protein-lipid and protein-protein interactions...

  14. Fluorimetric determination of cholesterol in hypercholesterolemia serum

    Science.gov (United States)

    Lan, Xiufeng; Liu, Jiangang; Liu, Ying; Luo, Xiaosen; Lu, Jian; Ni, Xiaowu

    2005-01-01

    With the increase of people"s living standard and the changes of living form, the number of people who suffer from hypercholesterolemia is increasing. It is not only harmful to heart and blood vessel, but also leading to obstruction of cognition. The conventional blood detection technology has weakness such as complex operation, long detecting period, and bad visibility. In order to develop a new detection method that can checkout hypercholesterolemia conveniently, spectroscopy of cholesterol in hypercholesterolemia serum is obtained by the multifunctional grating spectrograph. The experiment results indicate that, under the excitation of light-emitting diode (LED) with the wavelength at 407 nm, the serum from normal human and the hypercholesterolemia serum emit different fluorescence spectra. The former can emit one fluorescence region with the peak locating at 516 nm while the latter can emit two more regions with peaks locating at 560 nm and 588 nm. Moreover, the fluorescence intensity of serum is non-linear increasing with the concentration of cholesterol increases when the concentration of cholesterol is lower than 13.8 mmol/L, and then, with the concentration of cholesterol increase, the fluorescence intensity decreases. However, the fluorescence intensity is still much higher than that of serum from normal human. Conclusions can be educed from the experiments: the intensity and the shape of fluorescence spectra of hypercholesterolemia serum are different of those of normal serum, from which the cholesterol abnormal in blood can be judged. The consequences in this paper may offer an experimental reference for the diagnosis of the hypercholesterolemia.

  15. Preferential campesterol incorporation into various tissues in apolipoprotein E*3-Leiden mice consuming plant sterols or stanols

    NARCIS (Netherlands)

    Plat, J.; Jong, A.de; Volger, O.L.; Princen, H.M.G.; Mensink, R.P.

    2008-01-01

    Intestinal absorption of plant sterols and stanols is much lower as compared with that of cholesterol; and therefore, serum concentrations are low. Circulating plant sterols and stanols are incorporated into tissues. However, hardly any data are available about tissue distributions of individual

  16. Free-cholesterol loading does not trigger phase separation of the fluorescent sterol dehydroergosterol in the plasma membrane of macrophages

    DEFF Research Database (Denmark)

    Wüstner, Daniel

    2008-01-01

    membrane distribution of the fluorescent cholesterol-mimicking sterol dehydroergosterol (DHE) was investigated in FC-loaded J774 macrophages. Wide field fluorescence and deconvolution microscopy were combined with quantitative assessment of sterol distribution in straightened plasma membrane image segments...

  17. Plant sterol or stanol esters retard lesion formation in LDL receptor-deficient mice independent of changes in serum plant sterols

    NARCIS (Netherlands)

    Plat, Jogchum; Beugels, Ilona; Gijbels, Marion J. J.; de Winther, Menno P. J.; Mensink, Ronald P.

    2006-01-01

    Statins do not always decrease coronary heart disease mortality, which was speculated based on increased serum plant sterols observed during statin treatment. To evaluate plant sterol atherogenicity, we fed low density lipoprotein-receptor deficient (LDLr(+/-)) mice for 35 weeks with Western diets

  18. Cholesterol pathways affected by small molecules that decrease sterol levels in Niemann-Pick type C mutant cells.

    Directory of Open Access Journals (Sweden)

    Madalina Rujoi

    2010-09-01

    Full Text Available Niemann-Pick type C (NPC disease is a genetically inherited multi-lipid storage disorder with impaired efflux of cholesterol from lysosomal storage organelles.The effect of screen-selected cholesterol lowering compounds on the major sterol pathways was studied in CT60 mutant CHO cells lacking NPC1 protein. Each of the selected chemicals decreases cholesterol in the lysosomal storage organelles of NPC1 mutant cells through one or more of the following mechanisms: increased cholesterol efflux from the cell, decreased uptake of low-density lipoproteins, and/or increased levels of cholesteryl esters. Several chemicals promote efflux of cholesterol to extracellular acceptors in both non-NPC and NPC1 mutant cells. The uptake of low-density lipoprotein-derived cholesterol is inhibited by some of the studied compounds.Results herein provide the information for prioritized further studies in identifying molecular targets of the chemicals. This approach proved successful in the identification of seven chemicals as novel inhibitors of lysosomal acid lipase (Rosenbaum et al, Biochim. Biophys. Acta. 2009, 1791:1155-1165.

  19. Conversion of Exogenous Cholesterol into Glycoalkaloids in Potato Shoots, Using Two Methods for Sterol Solubilisation

    Science.gov (United States)

    Petersson, Erik V.; Nahar, Nurun; Dahlin, Paul; Broberg, Anders; Tröger, Rikard; Dutta, Paresh C.; Jonsson, Lisbeth; Sitbon, Folke

    2013-01-01

    Steroidal glycoalkaloids (SGA) are toxic secondary metabolites naturally occurring in the potato, as well as in certain other Solanaceous plant species, such as tomato, eggplant and pepper. To investigate the steroidal origin of SGA biosynthesis, cut potato shoots were fed cholesterol labelled with deuterium (D) in the sterol ring structure (D5- or D6-labelled), or side chain (D7-labelled), and analysed after three or five weeks. The labelled cholesterol and presence of D-labelled SGA were analysed by GC-MS and LC-MS/MS, respectively. When feeding D-labelled cholesterol solubilised in Tween-80, labelled cholesterol in free form became present in both leaves and stems, although the major part was recovered as steryl esters. Minor amounts of D-labelled SGA (α-solanine and α-chaconine) were identified in cholesterol-treated shoots, but not in blank controls, or in shoots fed D6-27-hydroxycholesterol. Solubilising the labelled cholesterol in methyl-β-cyclodextrin instead of Tween-80 increased the levels of labelled SGA up to 100-fold, and about 1 mole% of the labelled cholesterol was recovered as labelled SGA in potato leaves. Both side chain and ring structure D labels were retained in SGA, showing that the entire cholesterol molecule is converted to SGA. However, feeding side chain D7-labelled cholesterol resulted in D5-labelled SGA, indicating that two hydrogen atoms were released during formation of the SGA nitrogen-containing ring system. Feeding with D7-sitosterol did not produce any labelled SGA, indicating that cholesterol is a specific SGA precursor. In conclusion, we have demonstrated a superior performance of methyl-β-cyclodextrin for delivery of cholesterol in plant tissue feeding experiments, and given firm evidence for cholesterol as a specific sterol precursor of SGA in potato. PMID:24349406

  20. The effect of a combination of plant sterol-enriched foods in mildly hypercholesterolemic subjects.

    Science.gov (United States)

    Madsen, Martin B; Jensen, Anne-Mette; Schmidt, Erik B

    2007-12-01

    The purpose of this study was to evaluate the effect of low-fat products enriched with plant sterols in addition to a National Cholesterol Education Program step 1 diet on serum lipids and lipoproteins. This study was a double-blind, randomised, placebo-controlled cross-over design with a run-in period and 2 intervention periods, each lasting 4 weeks. A total of 46 mildly hypercholesterolemic subjects (age 50.6+/-9.8) completed the trial. The study products consisted of 20 g low-fat margarine (35% fat) and 250 ml low-fat milk (0.7% fat), in total delivering 2.3g plant sterols/d. Serum total and low-density lipoprotein cholesterol were significantly reduced by 5.5% (pUnilever Denmark A/S.

  1. Tissue sterol composition in Atlantic salmon (Salmo salar L.) depends on the dietary cholesterol content and on the dietary phytosterol:cholesterol ratio, but not on the dietary phytosterol content.

    Science.gov (United States)

    Sissener, Nini H; Rosenlund, Grethe; Stubhaug, Ingunn; Liland, Nina S

    2018-03-01

    The aim of the study was to investigate how the dietary sterol composition, including cholesterol, phytosterol:cholesterol ratio and phytosterols, affect the absorption, biliary excretion, retention, tissue storage and distribution of cholesterol and individual phytosterols in Atlantic salmon (Salmo salar L.). A feeding trial was conducted at two different temperatures (6 and 12°C), using nine different diets with varying contents of phytosterols, cholesterol and phytosterol:cholesterol ratio. Cholesterol retention values were clearly dependent on dietary cholesterol, and showed that fish fed cholesterol levels phytosterol:cholesterol ratio, but not on the dietary phytosterol content in itself. Campesterol and brassicasterol appeared to be the phytosterols with the highest intestinal absorption in Atlantic salmon. There was a high biliary excretion of campesterol, but not of brassicasterol, which accumulated in tissues and particularly in adipose tissue, with 2-fold-higher retention at 12°C compared with 6°C. Campesterol had the second highest retention of the phytosterols in the fish, but with no difference between the two temperatures. Other phytosterols had very low retention. Although brassicasterol retention decreased with increasing dietary phytosterols, campesterol retention decreased with increasing dietary cholesterol, indicating differences in the uptake mechanisms for these two sterols.

  2. Circulating PCSK9 affects serum LDL and cholesterol levels more than SREBP-2 expression.

    Science.gov (United States)

    Mohammadi, Asghar; Shabani, Mohamad; Naseri, Faezeh; Hosseni, Bita; Soltanmohammadi, Elham; Piran, Sadegh; Najafi, Mohammad

    2017-07-01

    Cholesterol homeostasis is dependent upon the sterol regulatory element binding protein 2 (SREBP-2) regulatory system and the functioning of plasma proprotein convertase subtilisin/kexin type 9 (PCSK9). Many studies have also reported that low density lipoprotein receptor (LDLR) levels in cellular membranes are related to the functioning of these proteins. The aim of this study was to investigate the association of lipid profiles with circulating PCSK9 protein values and SREBP-2 expression levels in normal subjects. The study involved 120 randomly chosen healthy subjects. Their lipid profiles were measured using routine laboratory techniques, and the plasma PCSK9 protein and SREBP-2 expression levels were determined by ELISA and real time quantitative PCR methods, respectively. A statistical analysis was carried out using a statistical software package. Linear regression analyses showed a significant correlation between total cholesterol and PCSK9 (3.54 ± 1.31 ng/mL), as well as between total cholesterol and SREBP-2 (0.1-35.38) (p = 0.002 and p = 0.02, respectively). Furthermore, multiple regression analyses showed strict correlations between PCSK9 and cholesterol-related parameters especially the total cholesterol/HDL-C ratio (β = 3.53, p = 0.001). There was no significant correlation between circulating PCSK9 and SREBP-2 expression levels (r = 1.2, p = 0.3). The study results revealed that serum cholesterol-related parameters are strictly associated with plasma PCSK9 values, suggesting that PCSK9 function has a greater effect on serum total cholesterol levels than SREBP-2 expression does. Furthermore, the total cholesterol/HDL-C ratio was a better indicator for evaluating PCSK9 level than total cholesterol.

  3. The dynamin chemical inhibitor dynasore impairs cholesterol trafficking and sterol-sensitive genes transcription in human HeLa cells and macrophages.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Girard

    Full Text Available Intracellular transport of cholesterol contributes to the regulation of cellular cholesterol homeostasis by mechanisms that are yet poorly defined. In this study, we characterized the impact of dynasore, a recently described drug that specifically inhibits the enzymatic activity of dynamin, a GTPase regulating receptor endocytosis and cholesterol trafficking. Dynasore strongly inhibited the uptake of low-density lipoprotein (LDL in HeLa cells, and to a lower extent in human macrophages. In both cell types, dynasore treatment led to the abnormal accumulation of LDL and free cholesterol (FC within the endolysosomal network. The measure of cholesterol esters (CE further showed that the delivery of regulatory cholesterol to the endoplasmic reticulum (ER was deficient. This resulted in the inhibition of the transcriptional control of the three major sterol-sensitive genes, sterol-regulatory element binding protein 2 (SREBP-2, 3-hydroxy-3-methyl-coenzymeA reductase (HMGCoAR, and low-density lipoprotein receptor (LDLR. The sequestration of cholesterol in the endolysosomal compartment impaired both the active and passive cholesterol efflux in HMDM. Our data further illustrate the importance of membrane trafficking in cholesterol homeostasis and validate dynasore as a new pharmacological tool to study the intracellular transport of cholesterol.

  4. Effects of plant sterols and olive oil phenols on serum lipoproteins in humans

    NARCIS (Netherlands)

    Vissers, M.N.

    2001-01-01

    The studies described in this thesis investigated whether minor components from vegetable oils can improve health by decreasing cholesterol concentrations or oxidative modification of low-density-lipoprotein (LDL) particles.

    The plant sterolsβ-sitosterol and sitostanol are

  5. Lead nitrate-induced development of hypercholesterolemia in rats: sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis.

    Science.gov (United States)

    Kojima, Misaki; Masui, Toshimitsu; Nemoto, Kiyomitsu; Degawa, Masakuni

    2004-12-01

    Changes in the gene expressions of hepatic enzymes responsible for cholesterol homeostasis were examined during the process of lead nitrate (LN)-induced development of hypercholesterolemia in male rats. Total cholesterol levels in the liver and serum were significantly increased at 3-72 h and 12-72 h, respectively, after LN-treatment (100 micromol/kg, i.v.). Despite the development of hypercholesterolemia, the genes for hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and other enzymes (FPPS, farnesyl diphosphate synthase; SQS, squalene synthase; CYP51, lanosterol 14alpha-demethylase) responsible for cholesterol biosynthesis were activated at 3-24 h and 12-18 h, respectively. On the other hand, the gene expression of cholesterol 7alpha-hydroxylase (CYP7A1), a catabolic enzyme of cholesterol, was remarkably suppressed at 3-72 h. The gene expression levels of cytokines interleukin-1beta (IL-1beta) and TNF-alpha, which activate the HMGR gene and suppress the CYP7A1 gene, were significantly increased at 1-3 h and 3-24 h, respectively. Furthermore, gene activation of SREBP-2, a gene activator of several cholesterogenic enzymes, occurred before the gene activations of FPPS, SQS and CYP51. This is the first report demonstrating sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis in LN-treated male rats. The mechanisms for the altered-gene expressions of hepatic enzymes in LN-treated rats are discussed.

  6. Serum Lipid Profile: Fasting or Non-fasting?

    OpenAIRE

    Nigam, P. K.

    2010-01-01

    Serum lipid profile has now become almost a routine test. It is usually done in fasting state due to certain limitations in non-fasting serum sample. In the recent past efforts have been made to simplify blood sampling by replacing fasting lipid profile with non-fasting lipid profile. However, fasting specimen is preferred if cardiovascular risk assessment is based on total cholesterol, LDL cholesterol or non-HDL cholesterol. A lot has yet to be done in this area. Till then we have to believe...

  7. Statins attenuate but do not eliminate the reverse epidemiology of total serum cholesterol in patients with non-ischemic chronic heart failure.

    Science.gov (United States)

    Fröhlich, Hanna; Raman, Nandita; Täger, Tobias; Schellberg, Dieter; Goode, Kevin M; Kazmi, Syed; Grundtvig, Morten; Hole, Torstein; Cleland, John G F; Katus, Hugo A; Agewall, Stefan; Clark, Andrew L; Atar, Dan; Frankenstein, Lutz

    2017-07-01

    In patients with chronic heart failure (CHF) increasing levels of total serum cholesterol are associated with improved survival - while statin usage is not. The impact of statin treatment on the "reverse epidemiology" of cholesterol is unclear. 2992 consecutive patients with non-ischemic CHF due to left ventricular systolic dysfunction from the Norwegian CHF Registry and the CHF Registries of the Universities of Hull, UK, and Heidelberg, Germany, were studied. 1736 patients were individually double-matched on both cholesterol levels and the individual propensity scores for statin treatment. All-cause mortality was analyzed as a function of baseline cholesterol and statin use in both the general and the matched sample. 1209 patients (40.4%) received a statin. During a follow-up of 13,740 patient-years, 360 statin users (29.8%) and 573 (32.1%) statin non-users died. When grouped according to total cholesterol levels as low (≤3.6mmol/L), moderate (3.7-4.9mmol/L), high (4.8-6.2mmol/L), and very high (>6.2mmol/L), we found improved survival with very high as compared with low cholesterol levels. This association was present in statin users and non-users in both the general and matched sample (p<0.05 for each group comparison). The negative association of total cholesterol and mortality persisted when cholesterol was treated as a continuous variable (HR 0.83, 95%CI 0.77-0.90, p<0.001 for matched patients), but it was less pronounced in statin users than in non-users (F-test p<0.001). Statins attenuate but do not eliminate the reverse epidemiological association between increasing total serum cholesterol and improved survival in patients with non-ischemic CHF. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cholesterol Metabolism and Weight Reduction in Subjects with Mild Obstructive Sleep Apnoea: A Randomised, Controlled Study

    Directory of Open Access Journals (Sweden)

    Maarit Hallikainen

    2013-01-01

    Full Text Available To evaluate whether parameters of obstructive sleep apnoea (OSA associate with cholesterol metabolism before and after weight reduction, 42 middle-aged overweight subjects with mild OSA were randomised to intensive lifestyle intervention (N=23 or to control group (N=18 with routine lifestyle counselling only. Cholesterol metabolism was evaluated with serum noncholesterol sterol ratios to cholesterol, surrogate markers of cholesterol absorption (cholestanol and plant sterols and synthesis (cholestenol, desmosterol, and lathosterol at baseline and after 1-year intervention. At baseline, arterial oxygen saturation (SaO2 was associated with serum campesterol (P<0.05 and inversely with desmosterol ratios (P<0.001 independently of gender, BMI, and homeostasis model assessment index of insulin resistance (HOMA-IR. Apnoea-hypopnoea index (AHI was not associated with cholesterol metabolism. Weight reduction significantly increased SaO2and serum cholestanol and decreased AHI and serum cholestenol ratios. In the groups combined, the changes in AHI were inversely associated with changes of cholestanol and positively with cholestenol ratios independent of gender and the changes of BMI and HOMA-IR (P<0.05. In conclusion, mild OSA seemed to be associated with cholesterol metabolism independent of BMI and HOMA-IR. Weight reduction increased the markers of cholesterol absorption and decreased those of cholesterol synthesis in the overweight subjects with mild OSA.

  9. The effects of amoxicillin and vancomycin on parameters reflecting cholesterol metabolism.

    Science.gov (United States)

    Baumgartner, S; Reijnders, D; Konings, M C J M; Groen, A K; Lütjohann, D; Goossens, G H; Blaak, E E; Plat, J

    2017-10-01

    Changes in the microbiota composition have been implicated in the development of obesity and type 2 diabetes. However, not much is known on the involvement of gut microbiota in lipid and cholesterol metabolism. In addition, the gut microbiota might also be a potential source of plasma oxyphytosterol and oxycholesterol concentrations (oxidation products of plant sterols and cholesterol). Therefore, the aim of this study was to modulate the gut microbiota by antibiotic therapy to investigate effects on parameters reflecting cholesterol metabolism and oxyphytosterol concentrations. A randomized, double blind, placebo-controlled trial was performed in which 55 obese, pre-diabetic men received oral amoxicillin (broad-spectrum antibiotic), vancomycin (antibiotic directed against Gram-positive bacteria) or placebo (microcrystalline cellulose) capsules for 7days (1500mg/day). Plasma lipid and lipoprotein, non-cholesterol sterol, bile acid and oxy(phyto)sterol concentrations were determined at baseline and after 1-week intervention. Plasma secondary bile acids correlated negatively with cholestanol (marker for cholesterol absorption, r=-0.367; Pcholesterol synthesis, r=0.430; Pcholesterol metabolism, plasma TAG, total cholesterol, LDL-C or HDL-C concentrations as compared to placebo. In addition, both antibiotic treatments did not affect individual isoforms or total plasma oxyphytosterol or oxycholesterol concentrations. Despite strong correlations between plasma bile acid concentrations and cholesterol metabolism (synthesis and absorption), amoxicillin and vancomycin treatment for 7days did not affect plasma lipid and lipoprotein, plasma non-cholesterol sterol and oxy(phyto)sterol concentrations in obese, pre-diabetic men. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Heterogeneous expression of cholesterol 7α-hydroxylase and sterol 27- hydroxylase genes in the rat liver lobulus

    NARCIS (Netherlands)

    Twisk, J.; Hoekman, M.F.M.; Mager, W.H.; Moorman, A.F.M.; Boer, P.A.J. de; Scheja, L.; Princen, H.M.G.; Gebhardt, R.

    1995-01-01

    We investigated the lobular localization and molecular level of expression of cholesterol 7α-hydroxylase and sterol 27-hydroxylase, two key enzymes in bile acid synthesis, in isolated periportal and pericentral hepatocytes and by in situ hybridization of rat liver. Enzyme activity, mRNA, and gene

  11. Cytochrome P450 metabolism of the post-lanosterol intermediates explains enigmas of cholesterol synthesis

    Science.gov (United States)

    Ačimovič, Jure; Goyal, Sandeep; Košir, Rok; Goličnik, Marko; Perše, Martina; Belič, Ales; Urlep, Žiga; Guengerich, F. Peter; Rozman, Damjana

    2016-06-01

    Cholesterol synthesis is among the oldest metabolic pathways, consisting of the Bloch and Kandutch-Russell branches. Following lanosterol, sterols of both branches are proposed to be dedicated to cholesterol. We challenge this dogma by mathematical modeling and with experimental evidence. It was not possible to explain the sterol profile of testis in cAMP responsive element modulator tau (Crem τ) knockout mice with mathematical models based on textbook pathways of cholesterol synthesis. Our model differs in the inclusion of virtual sterol metabolizing enzymes branching from the pathway. We tested the hypothesis that enzymes from the cytochrome P450 (CYP) superfamily can participate in the catalysis of non-classical reactions. We show that CYP enzymes can metabolize multiple sterols in vitro, establishing novel branching points of cholesterol synthesis. In conclusion, sterols of cholesterol synthesis can be oxidized further to metabolites not dedicated to production of cholesterol. Additionally, CYP7A1, CYP11A1, CYP27A1, and CYP46A1 are parts of a broader cholesterol synthesis network.

  12. Correlation of changes in rate of sterol synthesis with changes in HMG CoA reductase activity in cultured lens epithelial cells

    International Nuclear Information System (INIS)

    Cenedella, R.J.; Hitchener, W.R.

    1986-01-01

    In the present study, the authors correlated changes in HMG CoA reductase activity with changes in relative rates of sterol synthesis measured from either 3 H 2 O or 1- 14 C-acetate for bovine lens epithelial cells cultured in the presence or absence of lipoproteins. Enzyme activity and rates of incorporation of 3 H 2 O or 1- 14 C-acetate into digitonin precipitable sterols were measured in cells on the 4th day of subculture in DMEM containing 9% whole calf serum (WM) or 9% lipoprotein deficient serum (LDM). In three experiments, HMG CoA reductase activity (U/10 6 cells) averaged 2.2 +/- 0.1 times greater for cells grown in LDM than WM. Sterol synthesis averaged 3.0 +/- 0.4 times greater when measured with 3 H 2 O and 4.0 +/- 1.1 times greater when measured with 14 C-acetate. Thus, 3 H 2 O and 14 C-acetate appear to be comparable substrates for estimating changes in relative rates of sterol synthesis by cultured cells. The larger increases in rates of sterol synthesis than in reductase activity in response to decreased cholesterol could reflect stimulation at additional metabolic steps in the cholesterol pathway beyond mevalonic acid

  13. Increased plant sterol and stanol levels in brain of Watanabe rabbits fed rapeseed oil derived plant sterol or stanol esters

    DEFF Research Database (Denmark)

    Fricke, Christiane B.; Schrøder, Malene; Poulsen, Morten

    2007-01-01

    . Cholesterol synthesis in brain, indicated by lathosterol, a local surrogate cholesterol synthesis marker, does not seem to be affected by plant sterol or stanol ester feeding. We conclude that high dose intake of plant sterol and stanol esters in Watanabe rabbits results in elevated concentrations...... of these components not only in the periphery but also in the central nervous system....... of these components in brain tissue of homozygous and heterozygous Watanabe rabbits, an animal model for familial hypercholesterolemia. Homozygous animals received either a standard diet, RSO stanol or RSO sterol ester while heterozygous animals were additionally fed with 2 g cholesterol/kg to the respective diet...

  14. Lipid-lowering Activity of Natural and Semi-Synthetic Sterols and Stanols.

    Science.gov (United States)

    Taha, Dhiaa A; Wasan, Ellen K; Wasan, Kishor M; Gershkovich, Pavel

    2015-01-01

    Consumption of plant sterols/ stanols has long been demonstrated to reduce plasma cholesterol levels. The objective of this review is to demonstrate the lipid-lowering activity and anti-atherogenic effects of natural and semi-synthetic plant sterols/ stanols based on evidence from cell-culture studies, animal studies and clinical trials. Additionally, this review highlights certain molecular mechanisms by which plant sterols/ stanols lower plasma cholesterol levels with a special emphasis on factors that affect the cholesterol-lowering activity of plant sterols/stanols. The crystalline nature and the poor oil solubility of these natural products could be important factors that limit their cholesterol-lowering efficiency. Several attempts have been made to improve the cholesterol-lowering activity by enhancing the bioavailability of crystalline sterols and stanols. Approaches involved reduction of the crystal size and/or esterification with fatty acids from vegetable or fish oils. However, the most promising approach in this context is the chemical modification of plant sterols /stanols into water soluble disodium ascorbyl phytostanyl phosphates analogue by esterification with ascorbic acid. This novel semi-synthetic stanol derivative has improved efficacy over natural plant sterols/ stanols and can provide additional benefits by combining the cholesterol-lowering properties of plant stanols with the antioxidant potential of ascorbic acid. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  15. Analysis of Cholesterol Trafficking with Fluorescent Probes

    DEFF Research Database (Denmark)

    Maxfield, Frederick R.; Wustner, Daniel

    2012-01-01

    Cholesterol plays an important role in determining the biophysical properties of biological membranes, and its concentration is tightly controlled by homeostatic processes. The intracellular transport of cholesterol among organelles is a key part of the homeostatic mechanism, but sterol transport...... that can bind to cholesterol to reveal its distribution in cells. We also discuss the use of intrinsically fluorescent sterols that closely mimic cholesterol, as well as some minimally modified fluorophore-labeled sterols. Methods for imaging these sterols by conventional fluorescence microscopy...... and by multiphoton microscopy are described. Some label-free methods for imaging cholesterol itself are also discussed briefly....

  16. DISP3, a sterol-sensing domain-containing protein that links thyroid hormone action and cholesterol metabolism

    Czech Academy of Sciences Publication Activity Database

    Zíková, Martina; Corlett, Alicia; Bendová, Zdeňka; Pajer, Petr; Bartůněk, Petr

    2009-01-01

    Roč. 23, č. 4 (2009), s. 520-528 ISSN 0888-8809 R&D Projects: GA AV ČR IAA500520705 Grant - others:EC(XE) LSHM-CT-2005-018652 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50110509 Keywords : thyroid hormone receptor * cholesterol metabolism * sterol-sensing domain Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.257, year: 2009

  17. Reduced and high molecular weight barley beta-glucans decrease plasma total and non-HDL-cholesterol in hypercholesterolemic Syrian golden hamsters.

    Science.gov (United States)

    Wilson, Thomas A; Nicolosi, Robert J; Delaney, Bryan; Chadwell, Kim; Moolchandani, Vikas; Kotyla, Timothy; Ponduru, Sridevi; Zheng, Guo-Hua; Hess, Richard; Knutson, Nathan; Curry, Leslie; Kolberg, Lore; Goulson, Melanie; Ostergren, Karen

    2004-10-01

    Consumption of concentrated barley beta-glucan lowers plasma cholesterol because of its soluble dietary fiber nature. The role of molecular weight (MW) in lowering serum cholesterol is not well established. Prior studies showed that enzymatic degradation of beta-glucan eliminates the cholesterol-lowering activity; however, these studies did not evaluate the MW of the beta-glucan. The current study was conducted to evaluate whether barley beta-glucan concentrates, partially hydrolyzed to reduce MW, possess cholesterol-lowering and antiatherogenic activities. The reduced MW fraction was compared with a high MW beta-glucan concentrate from the same barley flour. Concentrated beta-glucan preparations were evaluated in Syrian Golden F(1)B hamsters fed a hypercholesterolemic diet (HCD) with cholesterol, hydrogenated coconut oil, and cellulose. After 2 wk, hamsters were fed HCD or diets that contained high or reduced MW beta-glucan at a concentration of 8 g/100 g at the expense of cellulose. Decreases in plasma total cholesterol (TC) and non-HDL-cholesterol (non-HDL-C) concentrations occurred in the hamsters fed reduced MW and high MW beta-glucan diets. Plasma HDL-C concentrations did not differ. HCD-fed hamsters had higher plasma triglyceride concentrations. Liver TC, free cholesterol, and cholesterol ester concentrations did not differ. Aortic cholesterol ester concentrations were lower in the reduced MW beta-glucan-fed hamsters. Consumption of either high or reduced MW beta-glucan increased concentrations of fecal total neutral sterols and coprostanol, a cholesterol derivative. Fecal excretion of cholesterol was greater than in HCD-fed hamsters only in those fed the reduced MW beta-glucan. Study results demonstrate that the cholesterol-lowering activity of barley beta-glucan may occur at both lower and higher MW.

  18. Variation and sources of sterols in Kuala Selangor, Selangor

    International Nuclear Information System (INIS)

    Masni Mohd Ali; Norfariza Humrawali; Mohd Talib Latif

    2010-01-01

    This study explores the role of sterols as lipid bio markers to assess organic matter variations and their sources in surface sediments of Kuala Selangor, Selangor which involved extraction procedures and sterol compounds analyzed using GC-MS. Ten sterol compounds were found in the samples with phytosterols being the principal compounds which accounted 79 % of total sterols. This was followed by cholesterol and fecal sterols, each constitutes 6 % of total sterols while the rest are in the ranged of 1-5 %. Sterol Source Index (SSI) also reflected phytosterols predominant at all sampling stations but in different degree based on phytosterols compounds. Another issue was sewage contamination assessment using coprostanol/ cholesterol, coprostanol/ (coprostanol + cholestanol) and epi coprostanol/ coprostanol ratio. No sewage contamination occurred in the study area even though fecal sterols have been quantified. This analytical study indicates that the sediments in the study area consisted of a mixture of sterols from various sources even though dominated by phytosterols originated from terrestrial plants. (author)

  19. Sterol composition from inflorescences of Hieracium pilosella L.

    Directory of Open Access Journals (Sweden)

    Tadeusz Krzaczek

    2011-01-01

    Full Text Available The fraction of sterol acetates from the inflorescences of Hieracium pilosella has been isolated in the typical way from petroleum ether extract. By means of the weight method the total amount of sterols was determined (0.2659%. The mixtures of sterol acetates and free sterols were investigated using GC-MS techniques. The occurrence of about 18 sterols has been observed. Cholesterol, cholest-8(14-en-3b-ol, cholesta-5.7-dien-3b-ol, cholest-7-en-3b-ol, ergosta-5.24-dien-3b-ol, campesterol, stigmasterol, b-sitosterol, fucosterol, 5a-stigmast-7-en-3a-ol were identified. The probable structures of lophenol, isofucosterol, 5a-stigmasta-7.24-dien-3b-ol, lanosta-9(11.24-dien-3b-ol and 24-ethylidene lophenol were stated on the basis of literature data. The last 4 sterols occur in a vestigial quantity, which made its identification impossible. Sitos erol and cholesterol are remarkably dominating sterols in the fraction.

  20. Low serum cholesterol, serotonin metabolism, and violent death

    NARCIS (Netherlands)

    P.H.A. Steegmans

    1995-01-01

    textabstractA high serum cholesterol level is a well documented risk factor for atherosclerotic cardiovascular disease. Consequently, a low serum cholesterol has in general been viewed as beneficial. However, since the early 70s, results from several cohort studies and randomized trials have

  1. Alterations of serum cholesterol and serum lipoprotein in breast cancer of women

    OpenAIRE

    Hasija, Kiran; Bagga, Hardeep K.

    2005-01-01

    Fasting blood sample of 50 normal subjects (control) and 100 patients of breast cancer were investigated for serum total cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol, very low density lipoprotein, high density lipoprotein cholesterol:low density lipoprotein cholesterol ratio and total cholesterol:high density lipoprotein cholesterol ratio during breast cancer of women. Five cancer stages, types, age groups, parity and menopausal status were undertaken...

  2. The cholesterol-lowering effect of coconut flakes in humans with moderately raised serum cholesterol.

    Science.gov (United States)

    Trinidad, Trinidad P; Loyola, Anacleta S; Mallillin, Aida C; Valdez, Divinagracia H; Askali, Faridah C; Castillo, Joan C; Resaba, Rosario L; Masa, Dina B

    2004-01-01

    This study investigated the effect of coconut flakes on serum cholesterol levels of humans with moderately raised serum cholesterol in 21 subjects. The serum total cholesterol of subjects differed and ranged from 259 to 283 mg/dL. The study was conducted in a double-blind randomized crossover design on a 14-week period, consisting of four 2-week experimental periods, with each experimental period separated by a 2-week washout period. The test foods were as follows: corn flakes as the control food, oat bran flakes as the reference food, and corn flakes with 15% and 25% dietary fiber from coconut flakes (made from coconut flour production). Results showed a significant percent reduction in serum total and low-density lipoprotein (LDL) cholesterol (in mg/dL) for all test foods, except for corn flakes, as follows: oat bran flakes, 8.4 +/- 1.4 and 8.8 +/- 6.0, respectively; 15% coconut flakes, 6.9 +/- 1.1 and 11.0 +/- 4.0, respectively; and 25% coconut flakes, 10.8 +/- 1.3 and 9.2 +/- 5.4, respectively. Serum triglycerides were significantly reduced for all test foods: corn flakes, 14.5 +/- 6.3%; oat bran flakes, 22.7 +/- 2.9%; 15% coconut flakes, 19.3 +/- 5.7%; and 25% coconut flakes, 21.8 +/- 6.0%. Only 60% of the subjects were considered for serum triglycerides reduction (serum triglycerides >170 mg/dL). In conclusion, both 15% and 25% coconut flakes reduced serum total and LDL cholesterol and serum triglycerides of humans with moderately raised serum cholesterol levels. Coconut flour is a good source of both soluble and insoluble dietary fiber, and both types of fiber may have significant role in the reduction of the above lipid biomarker. To our knowledge, this is the first study conducted to show a relationship between dietary fiber from a coconut by-product and a lipid biomarker. Results from this study serves as a good basis in the development of coconut flakes/flour as a functional food, justifying the increased production of coconut and coconut by-products.

  3. Reference intervals for serum total cholesterol, HDL cholesterol and ...

    African Journals Online (AJOL)

    Reference intervals of total cholesterol, HDL cholesterol and non-HDL cholesterol concentrations were determined on 309 blood donors from an urban and peri-urban population of Botswana. Using non-parametric methods to establish 2.5th and 97.5th percentiles of the distribution, the intervals were: total cholesterol 2.16 ...

  4. Increases in plasma plant sterols stabilize within four weeks of plant sterol intake and are independent of cholesterol metabolism.

    Science.gov (United States)

    Ras, R T; Koppenol, W P; Garczarek, U; Otten-Hofman, A; Fuchs, D; Wagner, F; Trautwein, E A

    2016-04-01

    Plant sterols (PS) lower plasma LDL-cholesterol through partial inhibition of intestinal cholesterol absorption. Although PS themselves are poorly absorbed, increased intakes of PS result in elevated plasma concentrations. In this paper, we report time curves of changes in plasma PS during 12 weeks of PS intake. Furthermore, the impact of cholesterol synthesis and absorption on changes in plasma PS is explored. The study was a double-blind, randomized, placebo-controlled, parallel-group study with the main aim to investigate the effects of PS on vascular function (clinicaltrials.gov: NCT01803178). Hypercholesterolemic but otherwise healthy men and women (n = 240) consumed low-fat spreads without or with added PS (3 g/d) for 12 weeks after a 4-week run-in period. Blood sampling was performed at week 0, 4, 8 and 12. Basal cholesterol-standardized concentrations of lathosterol and sitosterol + campesterol were used as markers of cholesterol synthesis and absorption, respectively. In the PS group, plasma sitosterol and campesterol concentrations increased within the first 4 weeks of intervention by 69% (95%CI: 58; 82) starting at 7.2 μmol/L and by 28% (95%CI: 19; 39) starting at 11.4 μmol/L, respectively, and remained stable during the following 8 weeks. Placebo-corrected increases in plasma PS were not significantly different between high and low cholesterol synthesizers (P-values >0.05). Between high and low cholesterol absorbers, no significant differences were observed, except for the cholesterol-standardized sum of four major plasma PS (sitosterol, campesterol, brassicasterol and stigmasterol) showing larger increases in low absorbers (78.3% (95%CI: 51.7; 109.5)) compared to high absorbers (40.8% (95%CI: 19.9; 65.5)). Increases in plasma PS stabilize within 4 weeks of PS intake and do not seem impacted by basal cholesterol synthesis or absorption efficiency. This study was registered at clinicaltrials.gov (NCT01803178). Copyright © 2015 The Italian Society of

  5. Building synthetic sterols computationally – unlocking the secrets of evolution?

    Directory of Open Access Journals (Sweden)

    Tomasz eRog

    2015-08-01

    Full Text Available Cholesterol is vital in regulating the physical properties of animal cell membranes. While it remains unclear what renders cholesterol so unique, it is known that other sterols are less capable in modulating membrane properties, and there are membrane proteins whose function is dependent on cholesterol. Practical applications of cholesterol include e.g. its use in liposomes in drug delivery and cosmetics, cholesterol-based detergents in membrane protein crystallography, and its fluorescent analogs in studies of cholesterol transport in cells and tissues. Clearly, in spite of their difficult synthesis, producing the synthetic analogs of cholesterol is of great commercial and scientific interest. In this article, we discuss how synthetic sterols nonexistent in nature can be used to elucidate the roles of cholesterol's structural elements. To this end, we discuss recent atomistic molecular dynamics simulation studies that have predicted new synthetic sterols with properties comparable to those of cholesterol. We also discuss more recent experimental studies that have vindicated these predictions. The paper highlights the strength of computational simulations in making predictions for synthetic biology, thereby guiding experiments.

  6. Quantitative charge-tags for sterol and oxysterol analysis.

    Science.gov (United States)

    Crick, Peter J; William Bentley, T; Abdel-Khalik, Jonas; Matthews, Ian; Clayton, Peter T; Morris, Andrew A; Bigger, Brian W; Zerbinati, Chiara; Tritapepe, Luigi; Iuliano, Luigi; Wang, Yuqin; Griffiths, William J

    2015-02-01

    Global sterol analysis is challenging owing to the extreme diversity of sterol natural products, the tendency of cholesterol to dominate in abundance over all other sterols, and the structural lack of a strong chromophore or readily ionized functional group. We developed a method to overcome these challenges by using different isotope-labeled versions of the Girard P reagent (GP) as quantitative charge-tags for the LC-MS analysis of sterols including oxysterols. Sterols/oxysterols in plasma were extracted in ethanol containing deuterated internal standards, separated by C18 solid-phase extraction, and derivatized with GP, with or without prior oxidation of 3β-hydroxy to 3-oxo groups. By use of different isotope-labeled GPs, it was possible to analyze in a single LC-MS analysis both sterols/oxysterols that naturally possess a 3-oxo group and those with a 3β-hydroxy group. Intra- and interassay CVs were sterols/oxysterols in a single analytical run and can be used to identify inborn errors of cholesterol synthesis and metabolism. © 2014 American Association for Clinical Chemistry.

  7. Building Synthetic Sterols Computationally - Unlocking the Secrets of Evolution?

    DEFF Research Database (Denmark)

    Róg, Tomasz; Pöyry, Sanja; Vattulainen, Ilpo

    2015-01-01

    Cholesterol is vital in regulating the physical properties of animal cell membranes. While it remains unclear what renders cholesterol so unique, it is known that other sterols are less capable in modulating membrane properties, and there are membrane proteins whose function is dependent on chole......Cholesterol is vital in regulating the physical properties of animal cell membranes. While it remains unclear what renders cholesterol so unique, it is known that other sterols are less capable in modulating membrane properties, and there are membrane proteins whose function is dependent...

  8. HYPOLIPEMIC THERAPY AND LOW SERUM CHOLESTEROL CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Vladmila Bojanic

    2004-01-01

    Full Text Available Low concentration of plasma lipoproteins (hypolipoproteinemia presents decreasing concentrations of all or particular lipids components. Classification of hypolipoproteinemia (hypoLP divides them into: primary (hereditary and secondary. Primary hipoLP are rare diseases and their main characteristic is disorder of apolipoproteins synthesis, which leads to low serum cholesterol concentration. Secondary hipoLP are presented in many diseases. They have diagnostic, prognostic significance and present good therapeutic marker. However, modern therapeutic approaches for aggressive lipid lowering pointed out many questions about physiological limits for cholesterol lowering. These approaches, also, open many questions about consequences of low serum concentration of total cholesterol and triglicerides.

  9. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-01

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol.

  10. Reduced absorption and enhanced synthesis of cholesterol in patients with cystic fibrosis: a preliminary study of plasma sterols.

    Science.gov (United States)

    Gelzo, Monica; Sica, Concetta; Elce, Ausilia; Dello Russo, Antonio; Iacotucci, Paola; Carnovale, Vincenzo; Raia, Valeria; Salvatore, Donatello; Corso, Gaetano; Castaldo, Giuseppe

    2016-09-01

    Low cholesterol is typically observed in the plasma of patients with cystic fibrosis (CF) contrasting with the subcellular accumulation of cholesterol demonstrated in CF cells and in mice models. However, the homeostasis of cholesterol has not been well investigated in patients with CF. We studied the plasma of 26 patients with CF and 33 unaffected controls campesterol and β-sitosterol as markers of intestinal absorption and lathosterol as a marker of de novo cholesterol biosynthesis by gas chromatography (GC-FID and GC-MS). Plasma campesterol and β-sitosterol results were significantly (p=0.01) lower while plasma lathosterol was significantly higher (p=0.001) in patients with CF as compared to control subjects. Plasma cholesterol results were significantly lower (p=0.01) in CF patients. Our data suggest that the impaired intestinal absorption of exogenous sterols in patients with CF stimulates the endogenous synthesis of cholesterol, but the levels of total cholesterol in plasma remain lower. This may be due to the CFTR dysfunction that reduces cholesterol blood excretion causing the accumulation of cholesterol in liver cells and in other tissues contributing to trigger CF chronic inflammation.

  11. The effect of plant sterols and different low doses of omega-3 fatty acids from fish oil on lipoprotein subclasses

    NARCIS (Netherlands)

    Jacobs, D.M.; Mihaleva, V.V.; Schalkwijk, D.B. van; Graaf, A.A. de; Vervoort, J.; Dorsten, F.A. van; Ras, R.T.; Demonty, I.; Trautwein, E.A.; Duynhoven, J. van

    2015-01-01

    Scope: Consumption of a low-fat spread enriched with plant sterols (PS) and different low doses (<2 g/day) of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil reduces serum triglycerides (TGs) and low-density lipoprotein-cholesterol (LDL-Chol) and thus beneficially affects

  12. Dynamics of sterol synthesis during development of Leishmania spp. parasites to their virulent form.

    Science.gov (United States)

    Yao, Chaoqun; Wilson, Mary E

    2016-04-12

    The Leishmania spp. protozoa, the causative agents of the "neglected" tropical disease leishmaniasis, are transmitted to mammals by sand fly vectors. Within the sand fly, parasites transform from amastigotes to procyclic promastigotes, followed by development of virulent (metacyclic) promastigote forms. The latter are infectious to mammalian hosts. Biochemical components localized in the parasite plasma membrane such as proteins and sterols play a pivotal role in Leishmania pathogenesis. Leishmania spp. lack the enzymes for cholesterol synthesis, and the dynamics of sterol acquisition and biosynthesis in parasite developmental stages are not understood. We hypothesized that dynamic changes in sterol composition during metacyclogenesis contribute to the virulence of metacyclic promastigotes. Sterols were extracted from logarithmic phase or metacyclic promastigotes grown in liquid culture with or without cholesterol, and analyzed qualitatively and quantitatively by gas chromatograph-mass spectrometry (GC-MS). TriTrypDB was searched for identification of genes involved in Leishmania sterol biosynthetic pathways. In total nine sterols were identified. There were dynamic changes in sterols during promastigote metacyclogenesis. Cholesterol in the culture medium affected sterol composition in different parasite stages. There were qualitative and relative quantitative differences between the sterol content of virulent versus avirulent parasite strains. A tentative sterol biosynthetic pathway in Leishmania spp. promastigotes was identified. Significant differences in sterol composition were observed between promastigote stages, and between parasites exposed to different extracellular cholesterol in the environment. These data lay the foundation for further investigating the role of sterols in the pathogenesis of Leishmania spp. infections.

  13. Serum cholesterol levels of Seventh-day Adventists.

    Science.gov (United States)

    Taylor, C B; Allen, E S; Mikkelson, B; Kang-Jey, H

    1976-10-01

    Serum cholesterol levels and dietary habits were surveyed in 27 male and 34 female Seventh-day Adventist. All subjects studied were lacto-ovo-vegetarians and a few consumed some meat products. Their serum cholesterol levels, significantly lower than those of the United States general population, showed no sex difference but increased with age and were higher in overweight males. Their levels, however, were much higher than those of true vegetarians which was most likely attributable to their consumption, even though to a limited acount, of dairy foods.

  14. Serum cholesterol decline and depression in the postpartum period

    NARCIS (Netherlands)

    Dam, van R.M.; Schuit, A.J.; Schouten, E.G.; Vader, H.L.; Pop, V.J.M.

    1999-01-01

    We examined the relation between total serum cholesterol decline and depression in the postpartum period in a prospective study of 266 Dutch women, who were followed until 34 weeks after delivery. The decline in serum cholesterol between week 32 of pregnancy and week 10 postpartum was similar for

  15. Serum cholesterol decline and depression in the postpartum period

    NARCIS (Netherlands)

    van Dam, R M; Schuit, A.J.; Schouten, E G; Vader, H L; Pop, V.J.

    We examined the relation between total serum cholesterol decline and depression in the postpartum period in a prospective study of 266 Dutch women, who were followed until 34 weeks after delivery. The decline in serum cholesterol between week 32 of pregnancy and week 10 postpartum was similar for

  16. Studies on sterol-ester hydrolase from Fusarium oxysporum. I. Partial purification and properties.

    Science.gov (United States)

    Okawa, Y; Yamaguchi, T

    1977-05-01

    1. A search for a long chain fatty acyl sterol-ester hydrolase in microorganisms led to the isolation from soil of five strains belonging to Fusarium sp. which produced strong activity in the culture medium. 2. The cholesterol esterase from Fusarium oxysporum IGH-2 was purified about 270-fold by means of CaCl2 precipitation and Sephadex G-75 column chromatography. 3. The cholesterol esterase was activated by adekatol and Triton X-100. It was inhibited by lecithin and lysolecithin, and completely inactivated by heat treatment (60 degrees C for 30 min, at pH 7.0). 4. The optimum pH of the enzyme was found to be around 7.0. 5. Among various cholesterol esters tested, cholesterol linoleate was the most suitable substrate. 6. Cholesterol esters in serum were also hydrolyzed by this enzyme.

  17. Mutations of the central tyrosines of putative cholesterol recognition amino acid consensus (CRAC) sequences modify folding, activity, and sterol-sensing of the human ABCG2 multidrug transporter.

    Science.gov (United States)

    Gál, Zita; Hegedüs, Csilla; Szakács, Gergely; Váradi, András; Sarkadi, Balázs; Özvegy-Laczka, Csilla

    2015-02-01

    Human ABCG2 is a plasma membrane glycoprotein causing multidrug resistance in cancer. Membrane cholesterol and bile acids are efficient regulators of ABCG2 function, while the molecular nature of the sterol-sensing sites has not been elucidated. The cholesterol recognition amino acid consensus (CRAC, L/V-(X)(1-5)-Y-(X)(1-5)-R/K) sequence is one of the conserved motifs involved in cholesterol binding in several proteins. We have identified five potential CRAC motifs in the transmembrane domain of the human ABCG2 protein. In order to define their roles in sterol-sensing, the central tyrosines of these CRACs (Y413, 459, 469, 570 and 645) were mutated to S or F and the mutants were expressed both in insect and mammalian cells. We found that mutation in Y459 prevented protein expression; the Y469S and Y645S mutants lost their activity; while the Y570S, Y469F, and Y645F mutants retained function as well as cholesterol and bile acid sensitivity. We found that in the case of the Y413S mutant, drug transport was efficient, while modulation of the ATPase activity by cholesterol and bile acids was significantly altered. We suggest that the Y413 residue within a putative CRAC motif has a role in sterol-sensing and the ATPase/drug transport coupling in the ABCG2 multidrug transporter. Copyright © 2014. Published by Elsevier B.V.

  18. Low-Fat Nondairy Minidrink Containing Plant Stanol Ester Effectively Reduces LDL Cholesterol in Subjects with Mild to Moderate Hypercholesterolemia as Part of a Western Diet

    Directory of Open Access Journals (Sweden)

    Maarit Hallikainen

    2013-01-01

    Full Text Available The cholesterol-lowering efficacy of plant stanol ester (STAEST added to fat- or milk-based products is well documented. However, their efficacy when added to nondairy liquid drinks is less certain. Therefore, we have investigated the cholesterol-lowering efficacy of STAEST added to a soymilk-based minidrink in the hypercholesterolemic subjects. In a randomized, double-blind, placebo-controlled parallel study, the intervention group (n=27 consumed 2.7 g/d of plant stanols as the ester in soymilk-based minidrink (65 mL/d with the control group (n=29 receiving the same drink without added plant stanols once a day with a meal for 4 weeks. Serum total, LDL, and non-HDL cholesterol concentrations were reduced by 8.0, 11.1, and 10.2% compared with controls (P<0.05 for all. Serum plant sterol concentrations and their ratios to cholesterol declined by 12–25% from baseline in the STAEST group while the ratio of campesterol to cholesterol was increased by 10% in the controls (P<0.05 for all. Serum precursors of cholesterol remained unchanged in both groups. In conclusion, STAEST-containing soymilk-based low-fat minidrink consumed once a day with a meal lowered LDL and non-HDL cholesterol concentrations without evoking any side effects in subjects consuming normal Western diet. The clinical trial registration number is NCT01716390.

  19. Influences of a-tocopherol on cholesterol metabolism and fatty streak development in apolipoprotein E-deficient mice fed an atherogenic diet

    Directory of Open Access Journals (Sweden)

    Peluzio M.C.G.

    2001-01-01

    Full Text Available Although the role of oxidized lipoproteins is well known in atherogenesis, the role of vitamin E supplementation is still controversial. There is also little information about cholesterol metabolism (hepatic concentration and fecal excretion in the new models of atherosclerosis. In the present study, we evaluated the effect of moderate vitamin E supplementation on cholesterol metabolism and atherogenesis in apolipoprotein E (apo E-deficient mice. Apo E-deficient mice were fed an atherogenic diet containing 40 or 400 mg/kg of alpha-tocopherol acetate for 6 weeks. Total cholesterol in serum and liver and 3-OH-alpha-sterols in feces, and fecal excretion of bile acids were determined and histological analyses of aortic lesion were performed. A vitamin E-rich diet did not affect body weight, food intake or serum cholesterol. Serum and hepatic concentrations of cholesterol as well as sterol concentration in feces were similar in both groups. However, when compared to controls, the alpha-tocopherol-treated mice showed a reduction of about 60% in the atherosclerotic lesions when both the sum of lesion areas and the average of the largest lesion area were considered. These results demonstrate that supplementation of moderate doses of alpha-tocopherol was able to slow atherogenesis in apo E-deficient mice and to reduce atherogenic lipoproteins without modifying the hepatic pool or fecal excretion of cholesterol and bile acids.

  20. Overturning dogma: tolerance of insects to mixed-sterol diets is not universal.

    Science.gov (United States)

    Behmer, Spencer T

    2017-10-01

    Insects cannot synthesize sterols de novo, but like all eukaryotes they use them as cell membrane inserts where they influence membrane fluidity and rigidity. They also use a small amount for metabolic purposes, most notably as essential precursors for steroid hormones. It has been a long-held view that most insects require a small amount of specific sterol (often cholesterol) for metabolic purposes, but for membrane purposes (where the bulk of sterols are used) specificity in sterol structure was less important. Under this model, it was assumed that insects could tolerate mixed-sterol diets as long as a small amount of cholesterol was available. In the current paper this dogma is overturned, using data from plant-feeding insects that were fed mixed-sterol diets with different amounts and ratios of dietary sterols. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Biogenesis of plasma membrane cholesterol

    International Nuclear Information System (INIS)

    Lange, Y.

    1986-01-01

    A striking feature of the molecular organization of eukaryotic cells is the singular enrichment of their plasma membranes in sterols. The authors studies are directed at elucidating the mechanisms underlying this inhomogeneous disposition. Cholesterol oxidase catalyzes the oxidation of plasma membrane cholesterol in intact cells, leaving intracellular cholesterol pools untouched. With this technique, the plasma membrane was shown to contain 95% of the unesterified cholesterol of cultured human fibroblasts. Cholesterol synthesized from [ 3 H] acetate moved to the plasma membrane with a half-time of 1 h at 37 0 C. They used equilibrium gradient centrifugation of homogenates of biosynthetically labeled, cholesterol oxidase treated cells to examine the distribution of newly synthesized sterols among intracellular pools. Surprisingly, lanosterol, a major precursor of cholesterol, and intracellular cholesterol both peaked at much lower buoyant density than did 3-hydroxy-3-methylglutaryl-CoA reductase. This suggests that cholesterol biosynthesis is not taken to completion in the endoplasmic reticulum. The cholesterol in the buoyant fraction eventually moved to the plasma membrane. Digitonin treatment increased the density of the newly synthesized cholesterol fractions, indicating that nascent cholesterol in transit is associated with cholesterol-rich membranes. The authors are testing the hypothesis that the pathway of cholesterol biosynthesis is spatially organized in various intracellular membranes such that the sequence of biosynthetic steps both concentrates the sterol and conveys it to the plasma membrane

  2. Niemann-Pick C1-deficient mice lacking sterol O-acyltransferase 2 have less hepatic cholesterol entrapment and improved liver function.

    Science.gov (United States)

    Lopez, Adam M; Jones, Ryan Dale; Repa, Joyce J; Turley, Stephen D

    2018-06-07

    Cholesteryl esters are generated at multiple sites in the body by sterol O-acyltransferase 1 (SOAT1) or sterol O-acyltransferase 2 (SOAT2) in various cell types, and lecithin cholesterol acyltransferase (LCAT) in plasma. Esterified cholesterol (EC) and triacylglycerol (TAG) contained in lipoproteins cleared from the circulation via receptor-mediated or bulk-phase endocytosis are hydrolyzed by lysosomal acid lipase (LAL) within the late endosomal/lysosomal (E/L) compartment. Then, through the successive actions of Niemann-Pick C2 (NPC2) and Niemann-Pick C1 (NPC1), unesterified cholesterol (UC) is exported from the E/L compartment to the cytosol. Mutations in either NPC1 or NPC2 lead to continuing entrapment of UC in all organs, resulting in multisystem disease which includes hepatic dysfunction and in some cases liver failure. These studies investigated primarily whether elimination of SOAT2 in NPC1-deficient mice impacted hepatic UC sequestration, inflammation, and transaminase activities. Measurements were made in 7 wk-old mice fed a low-cholesterol chow diet or one enriched with cholesterol starting 2 wk before study. In the chow-fed mice, NPC1:SOAT2 double knockouts, compared to their littermates lacking only NPC1, had 20% less liver mass, 28% lower hepatic UC concentrations, and plasma ALT and AST activities that were decreased by 48% and 36%, respectively. mRNA expression levels for several markers of inflammation were all significantly lower in the NPC1 mutants lacking SOAT2. The existence of a new class of potent and selective SOAT2 inhibitors provides an opportunity for exploring if suppression of this enzyme could potentially become an adjunctive therapy for liver disease in NPC1 deficiency.

  3. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis.

    Science.gov (United States)

    Singh, Shefali; Pal, Shaifali; Shanker, Karuna; Chanotiya, Chandan Singh; Gupta, Madan Mohan; Dwivedi, Upendra Nath; Shasany, Ajit Kumar

    2014-12-01

    Withanolides biosynthesis in the plant Withania somnifera (L.) Dunal is hypothesized to be diverged from sterol pathway at the level of 24-methylene cholesterol. The conversion and translocation of intermediates for sterols and withanolides are yet to be characterized in this plant. To understand the influence of mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways on sterols and withanolides biosynthesis in planta, we overexpressed the WsHMGR2 and WsDXR2 in tobacco, analyzed the effect of transient suppression through RNAi, inhibited MVA and MEP pathways and fed the leaf tissue with different sterols. Overexpression of WsHMGR2 increased cycloartenol, sitosterol, stigmasterol and campesterol compared to WsDXR2 transgene lines. Increase in cholesterol was, however, marginally higher in WsDXR2 transgenic lines. This was further validated through transient suppression analysis, and pathway inhibition where cholesterol reduction was found higher due to WsDXR2 suppression and all other sterols were affected predominantly by WsHMGR2 suppression in leaf. The transcript abundance and enzyme analysis data also correlate with sterol accumulation. Cholesterol feeding did not increase the withanolide content compared to cycloartenol, sitosterol, stigmasterol and campesterol. Hence, a preferential translocation of carbon from MVA and MEP pathways was found differentiating the sterols types. Overall results suggested that MVA pathway was predominant in contributing intermediates for withanolides synthesis mainly through the campesterol/stigmasterol route in planta. © 2014 Scandinavian Plant Physiology Society.

  4. Dose-dependent dual effects of cholesterol and desmosterol on J774 macrophage proliferation

    International Nuclear Information System (INIS)

    Rodriguez-Acebes, Sara; Cueva, Paloma de la; Ferruelo, Antonio J.; Fernandez-Hernando, Carlos; Lasuncion, Miguel A.; Martinez-Botas, Javier; Gomez-Coronado, Diego

    2008-01-01

    We addressed the ability of native, oxidized and acetylated low-density lipoproteins (nLDL, oxLDL and acLDL, respectively) and desmosterol to act as sources of sterol for the proliferation of J774A.1 macrophages. Treatment with 0.5 μM lovastatin and lipoprotein-deficient serum suppressed cell proliferation. This inhibition was effectively prevented by nLDL, but only to a lesser extent by oxLDL. AcLDL, despite its ability to deliver a higher amount of cholesterol to J774 macrophages than the other LDLs, was dependent on mevalonate supply to sustain cell proliferation. Similarly, exogenous desmosterol, which is not converted into cholesterol in J774 cells, required the simultaneous addition of mevalonate to support optimal cell growth. Expression of hydroxymethyl glutaryl coenzyme A reductase mRNA was potently down-regulated by acLDL and exogenous desmosterol, but the effect was weaker with other sterol sources. We conclude that nLDL is more efficient than modified LDL in sustaining macrophage proliferation. Despite the requirement of cholesterol or desmosterol for J774 cell proliferation, excessive provision of either sterol limits mevalonate availability, thus suppressing cell proliferation.

  5. Dose-dependent dual effects of cholesterol and desmosterol on J774 macrophage proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Acebes, Sara [Servicio de Bioquimica-Investigacion, Hospital Ramon y Cajal, Carretera de Colmenar, km 9, 28034 Madrid (Spain); CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid (Spain); Cueva, Paloma de la; Ferruelo, Antonio J; Fernandez-Hernando, Carlos [Servicio de Bioquimica-Investigacion, Hospital Ramon y Cajal, Carretera de Colmenar, km 9, 28034 Madrid (Spain); Lasuncion, Miguel A [Servicio de Bioquimica-Investigacion, Hospital Ramon y Cajal, Carretera de Colmenar, km 9, 28034 Madrid (Spain); CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid (Spain); Departamento de Bioquimica y Biologia Molecular, Universidad de Alcala, Alcala de Henares (Spain); Martinez-Botas, Javier [Servicio de Bioquimica-Investigacion, Hospital Ramon y Cajal, Carretera de Colmenar, km 9, 28034 Madrid (Spain); CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid (Spain); Gomez-Coronado, Diego [Servicio de Bioquimica-Investigacion, Hospital Ramon y Cajal, Carretera de Colmenar, km 9, 28034 Madrid (Spain); CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid (Spain)], E-mail: diego.gomez@hrc.es

    2008-12-12

    We addressed the ability of native, oxidized and acetylated low-density lipoproteins (nLDL, oxLDL and acLDL, respectively) and desmosterol to act as sources of sterol for the proliferation of J774A.1 macrophages. Treatment with 0.5 {mu}M lovastatin and lipoprotein-deficient serum suppressed cell proliferation. This inhibition was effectively prevented by nLDL, but only to a lesser extent by oxLDL. AcLDL, despite its ability to deliver a higher amount of cholesterol to J774 macrophages than the other LDLs, was dependent on mevalonate supply to sustain cell proliferation. Similarly, exogenous desmosterol, which is not converted into cholesterol in J774 cells, required the simultaneous addition of mevalonate to support optimal cell growth. Expression of hydroxymethyl glutaryl coenzyme A reductase mRNA was potently down-regulated by acLDL and exogenous desmosterol, but the effect was weaker with other sterol sources. We conclude that nLDL is more efficient than modified LDL in sustaining macrophage proliferation. Despite the requirement of cholesterol or desmosterol for J774 cell proliferation, excessive provision of either sterol limits mevalonate availability, thus suppressing cell proliferation.

  6. Quality of deli-style turkey enriched with plant sterols.

    Science.gov (United States)

    Grasso, S; Brunton, N P; Lyng, J G; Harrison, S M; Monahan, F J

    2016-12-01

    Low-fat meat products could be excellent carriers for plant sterols, known for their cholesterol-lowering properties. In this study, we developed a protocol for the manufacture of a deli-style turkey enriched with plant sterols (S) at a level sufficient to deliver the maximum plant sterols amount recommended for cholesterol reduction by the European Food Safety Authority (3 g of plant sterols per day) in a 70 g portion. We investigated the stability of the plant sterols and the effects of their addition on the product quality. Plant sterols remained stable during the seven-day storage period. The addition of plant sterols significantly affected some texture parameters, shear force, lipid oxidation, L values and water-holding capacity compared with control (C). Sensory analysis was carried out by an untrained panel (32) using the difference-from-control test between C and S samples to evaluate first the extent of the overall sensory difference and then the extent of sensory difference on colour, texture and flavour. Results indicated that panellists considered the intensity of the difference between C and S samples to be 'small'. Plant sterols could be used as a potential health-promoting meat ingredient with no effect on plant sterol stability but with some effects on texture and sensory characteristics. © The Author(s) 2016.

  7. Lecithin intake and serum cholesterol.

    NARCIS (Netherlands)

    Knuiman, J.T.; Beynen, A.C.; Katan, M.B.

    1989-01-01

    To find out whether the consumption of lecithin has a more beneficial effect on serum cholesterol than does the consumption of equivalent amounts of polyunsaturated oils, we scrutinized 24 studies on the effect of supplementary lecithin intakes ranging from 1 to 54 mg/d. Most of the studies lacked

  8. Comparison of serum lipid profile in non alcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Latif, A.; Ain, Q.U.A.; Ahmed, N.; Shafiq, A.M.; Sapna, K.

    2017-01-01

    Objective: To compare serum lipid profile in different ultrasonographic grades of non alcoholic fatty liver disease (NAFLD). Study Design: Cross sectional study. Place and Duration of Study: PNS SHIFA hospital, Karachi, from Oct 2015 to Jul 2016. Material and Methods: Seventy three adults of either gender were consecutively inducted after diagnosis of non alcoholic fatty liver disease (NAFLD) on ultrasonography (USG). These individuals were further classified into grade I, II and III of NAFLD depending on US findings. Fasting blood sample of all the subjects was analyzed for serum fasting lipid profile comprising of total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C). Serum non HDL cholesterol (nonHDL-C) was calculated by subtracting HDL-C from TC. Results: Among 73 subjects with NAFLD, 42.5%, 37% and 20.5% had grade I, II and III NAFLD respectively. All parameters showed significant increase in frequency of abnormal results with increasing grade of NAFLD except TG. Significant difference was found in mean TC (p=0.000), LDL-C (p=0.000), HDL-C (p=0.005) and nonHDL-C (p=0.000) between grades of NAFLD. Post hoc analysis revealed that only mean nonHDL-C was significantly different amongst all the grades of NAFLD. Conclusion: The increasing severity of NAFLD was found associated with increased frequency of dyslipidemia. Though most frequent dyslipidemia in NAFLD was low serum HDL-C followed by hypertriglyceridemia, only serum nonHDL-C was statistically different amongst all the grades of NAFLD. (author)

  9. The Human ABCG1 Transporter Mobilizes Plasma Membrane and Late Endosomal Non-Sphingomyelin-Associated-Cholesterol for Efflux and Esterification

    Directory of Open Access Journals (Sweden)

    Edward B. Neufeld

    2014-12-01

    Full Text Available We have previously shown that GFP-tagged human ABCG1 on the plasma membrane (PM and in late endosomes (LE mobilizes sterol on both sides of the membrane lipid bilayer, thereby increasing cellular cholesterol efflux to lipid surfaces. In the present study, we examined ABCG1-induced changes in membrane cholesterol distribution, organization, and mobility. ABCG1-GFP expression increased the amount of mobile, non-sphingomyelin(SM-associated cholesterol at the PM and LE, but not the amount of SM-associated-cholesterol or SM. ABCG1-mobilized non-SM-associated-cholesterol rapidly cycled between the PM and LE and effluxed from the PM to extracellular acceptors, or, relocated to intracellular sites of esterification. ABCG1 increased detergent-soluble pools of PM and LE cholesterol, generated detergent-resistant, non-SM-associated PM cholesterol, and increased resistance to both amphotericin B-induced (cholesterol-mediated and lysenin-induced (SM-mediated cytolysis, consistent with altered organization of both PM cholesterol and SM. ABCG1 itself resided in detergent-soluble membrane domains. We propose that PM and LE ABCG1 residing at the phase boundary between ordered (Lo and disordered (Ld membrane lipid domains alters SM and cholesterol organization thereby increasing cholesterol flux between Lo and Ld, and hence, the amount of cholesterol available for removal by acceptors on either side of the membrane bilayer for either efflux or esterification.

  10. STEROLS AS BIOMARKERS IN GYMNODINIUM BREVE DISTRIBUTION IN DINOFLAGELLATES

    Science.gov (United States)

    The sterol composition of marine microalgae has been shown to be a chemotaxonomic property potentially of value in distinguishing members of different algal classes. For example, members of the class Dinophyceae display sterol compositions ranging from as few as two (cholesterol ...

  11. Effect of a plant sterol, fish oil and B vitamin combination on cardiovascular risk factors in hypercholesterolemic children and adolescents: a pilot study

    Directory of Open Access Journals (Sweden)

    Garaiova Iveta

    2013-01-01

    Full Text Available Abstract Background Assessment of cardiovascular disease (CVD risk factors can predict clinical manifestations of atherosclerosis in adulthood. In this pilot study with hypercholesterolemic children and adolescents, we investigated the effects of a combination of plant sterols, fish oil and B vitamins on the levels of four independent risk factors for CVD; LDL-cholesterol, triacylglycerols, C-reactive protein and homocysteine. Methods Twenty five participants (mean age 16 y, BMI 23 kg/m2 received daily for a period of 16 weeks an emulsified preparation comprising plant sterols esters (1300 mg, fish oil (providing 1000 mg eicosapentaenoic acid (EPA plus docosahexaenoic acid (DHA and vitamins B12 (50 μg, B6 (2.5 mg, folic acid (800 μg and coenzyme Q10 (3 mg. Atherogenic and inflammatory risk factors, plasma lipophilic vitamins, provitamins and fatty acids were measured at baseline, week 8 and 16. Results The serum total cholesterol, LDL- cholesterol, VLDL-cholesterol, subfractions LDL-2, IDL-1, IDL-2 and plasma homocysteine levels were significantly reduced at the end of the intervention period (pp Conclusions Daily intake of a combination of plant sterols, fish oil and B vitamins may modulate the lipid profile of hypercholesterolemic children and adolescents. Trial registration Current Controlled Trials ISRCTN89549017

  12. Biosynthesis of sterols from mevalonate in a starfish, Coscinasterias acutispina

    International Nuclear Information System (INIS)

    Teshima, Shin-ichi; Kanazawa, Akio

    1976-01-01

    This study deals with the biosynthesis of sterols from mevalonate in a starfish, Coscinasterias acutispina. After injection of mevalonate-2- 14 C, the metabolites were investigated by using thin-layer, column, and gas-liquid chromatographic techniques. The detailed investigation of radioactive desmethylsterols showed that radioactivity was mainly associated with cholest-7-enol. However, there was no evidence for the incorporation of mevalonate-2- 14 C into C 26 -, C 28 -, and C 29 -sterols besides cholestanol and cholesterol. The results indicated that the starfish, C. acutispina, is capable of synthesizing at least cholest-7-enol from mevalonate via probably squalene and lanosterol etc. But not sterols other than C 27 -sterols. Also, it was suggested that the conversion of cholest-7-enol to cholesterol may not proceed in this starfish. (auth.)

  13. Neutral Sterols of Cephalic Glands of Stingless Bees and Their Correlation with Sterols from Pollen

    Directory of Open Access Journals (Sweden)

    Maria Juliana Ferreira-Caliman

    2012-01-01

    de novo and, thus, all phytophagous insects depend on an exogenous source of sterols for growth, development, and reproduction. The sterol requirements of social bees are not fully known due to the fact that there is no well-defined diet available throughout the year with regard to floral resources. Our study aimed to characterize the sterols present in pollen stored in Melipona marginata and Melipona scutellaris colonies, as well as evaluating their presence in the mandibular, hypopharyngeal, and cephalic salivary gland secretions. We analyzed the chemical composition of pollen stored in the colonies and the composition of the cephalic glands of workers in three adult functional phases (newly emerged, nurses, and foragers by gas chromatography and mass spectrometry. The results showed that the pollen analyzed contained campesterol, stigmasterol, sitosterol, isofucosterol, lanosterol, and small amounts of cholesterol. The glands showed the same compounds found in the pollen analyzed, except lanosterol that was not found in M. scutellaris glands. Surprisingly, cholesterol was found in some glands with relative ratios greater than those found in pollen.

  14. Brain Cholesterol Synthesis and Metabolism is Progressively Disturbed in the R6/1 Mouse Model of Huntington's Disease: A Targeted GC-MS/MS Sterol Analysis.

    Science.gov (United States)

    Kreilaus, Fabian; Spiro, Adena S; Hannan, Anthony J; Garner, Brett; Jenner, Andrew M

    2015-01-01

    Cholesterol has essential functions in neurological processes that require tight regulation of synthesis and metabolism. Perturbed cholesterol homeostasis has been demonstrated in Huntington's disease, however the exact role of these changes in disease pathogenesis is not fully understood. This study aimed to comprehensively examine changes in cholesterol biosynthetic precursors, metabolites and oxidation products in the striatum and cortex of the R6/1 transgenic mouse model of Huntington's disease. We also aimed to characterise the progression of the physical phenotype in these mice. GC-MS/MS was used to quantify a broad range of sterols in the striatum and cortex of R6/1 and wild type mice at 6, 12, 20, 24 and 28 weeks of age. Motor dysfunction was assessed over 28 weeks using the RotaRod and the hind-paw clasping tests. 24(S)-Hydroxycholesterol and 27-hydroxycholesterol were the major cholesterol metabolites that significantly changed in R6/1 mice. These changes were specifically localised to the striatum and were detected at the end stages of the disease. Cholesterol synthetic precursors (lathosterol and lanosterol) were significantly reduced in the cortex and striatum by 6 weeks of age, prior to the onset of motor dysfunction, as well as the cognitive and affective abnormalities previously reported. Elevated levels of desmosterol, a substrate of delta(24)-sterol reductase (DHCR24), were also detected in R6/1 mice at the end time-point. Female R6/1 mice exhibited a milder weight loss and hind paw clasping phenotype compared to male R6/1 mice, however, no difference in the brain sterol profile was detected between sexes. Several steps in cholesterol biosynthetic and metabolic pathways are differentially altered in the R6/1 mouse brain as the disease progresses and this is most severe in the striatum. This provides further insights into early molecular mediators of HD onset and disease progression and identifies candidate molecular targets for novel therapeutic

  15. Niemann-Pick type C2 protein supplementation in experimental non-alcoholic fatty liver disease

    DEFF Research Database (Denmark)

    Christensen, Claus Uhrenholt; Glavind, Emilie; Thomsen, Karen Louise

    2018-01-01

    the last two weeks or the entire four weeks. End-points were liver/body- and spleen/body weight ratios, histopathological NASH scores, fibrosis, serum liver enzymes, cholesterol, lipoproteins, cytokines, and quantitative polymerase chain reaction derived hepatic gene expression related to cholesterol...... metabolism, inflammation, and fibrosis. RESULTS: HFHC rats developed hepatomegaly, non-fibrotic NASH histopathology, elevated liver enzymes, serum cholesterol, and pro-inflammatory cytokines. Their sterol regulatory element binding factor 2 (SREBF2) and low-density lipoprotein receptor (LDL-R) mRNAs were...... down-regulated compared with rats on standard chow. NPC2 did not improve liver weight, histopathology, levels of serum liver enzymes or pro-inflammatory tumor necrosis factor-α (TNFα), Interleukin (IL)-6, or IL-1β in HFHC rats. Two weeks of NPC2 treatment lowered hepatic TNFα and COL1A1 mRNA expression...

  16. Multicolor bleach-rate imaging enlightens in vivo sterol transport

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sage, Daniel

    2011-01-01

    , dehydroergosterol (DHE) in the genetically tractable model organism Caenorhabditis elegans (C. elegans). DHE is structurally very similar to cholesterol and ergosterol, two sterols used by the sterol-auxotroph nematode. We developed a new computational method measuring fluorophore bleaching kinetics at every pixel...... with a lysosomal marker, GFP-LMP1. Our new methods hold great promise for further studies on endosomal sterol transport in C. elegans....

  17. SUPLEMENTASI STEROL LEMBAGA GANDUM (Triticum sp. PADA MARGARIN (Supplementation of Margarine with Wheat Germ Sterol

    Directory of Open Access Journals (Sweden)

    Sri Anna Marliyati1*

    2010-06-01

    Full Text Available Margarine is a water in oil (w/o emulsion product which is widely used for household cooking and baking industry. Consuming of margarine, which contains trans fatty acid may cause health problem due to the increase of LDL cholesterol. Since margarine is also a good carrier of phytosterol which prevent the absorption of cholesterol, there is a possibility to formulate a healthier margarine. In this research formulation and characteristics of products was investigated. The research work consisted of two steps: (1 supplementation of wheat germ sterol into margarine (two methods and (2 analysis of physical, chemical characteristics and hedonic score. Parameters of physical characteristics were melting point and emulsion stability, whereas chemical characteristics were water and oil contents. The hedonic test was carried out based on product’s color, odor, taste, texture, and spreadability. Results showed that method II of supplementation produced better margarine than method I, in which the concentration of sterol in the margarine was higher with a melting point similar to that of control, better emulsion stability, and higher hedonic score. Supplementation process was carried out by mixing sterol into fat phase melted at 50 0C, followed by mixing with aqueous phase at 4 0C. Sterol used for method II was extracted using mixed solvent of hexane and ethanol at the ratio of 1:2 (v/v, which was resulted from previous experimentation.

  18. Changes in the serum profiles of lipids and cholesterol in sheep ...

    African Journals Online (AJOL)

    The samples were used for haematological and parasitological analyses and determination of serum concentrations of total cholesterol, triglycerides, high density lipoprotein-cholesterol (HDL-cholesterol) and low density lipoproteincholesterol (LDL-cholesterol). All animals in the infected group showed parasitaemia by day ...

  19. Composition and Sources of Sterols in Pulau Tinggi, Johor, Malaysia

    International Nuclear Information System (INIS)

    Masni Mohd Ali; Norfariza Humrawali; Mohd Talib Latif; Mohamad Pauzi Zakaria

    2011-01-01

    This study explores the role of sterols as lipid bio markers to indicate their input which originates from various sources in the marine environment. Sterols and their ratios were investigated in sediments taken from sixteen sampling stations at Pulau Tinggi, Johor in order to assess the sources of organic matter. The compounds extracted from the sediments were quantified using a gas chromatography-mass spectrometry (GC-MS). The distributions of sterols indicated that organic matter at all sampling stations originated from a mixture of marine source and terrestrial origins at different proportions. A total of eleven sterols were quantified, with the major compounds being phytosterols (44 % of total sterols), cholesterol (11 %), brassica sterol (11 %) and fecal sterols (12 %). (author)

  20. Effects of seaweed sterols fucosterol and desmosterol on lipid membranes

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Bagatolli, Luis A.; Duelund, Lars

    2017-01-01

    Higher sterols are universally present in large amounts (20–30%) in the plasma membranes of all eukaryotes whereas they are universally absent in prokaryotes. It is remarkable that each kingdom of the eukaryotes has chosen, during the course of evolution, its preferred sterol: cholesterol...

  1. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease.

    Science.gov (United States)

    Gylling, Helena; Plat, Jogchum; Turley, Stephen; Ginsberg, Henry N; Ellegård, Lars; Jessup, Wendy; Jones, Peter J; Lütjohann, Dieter; Maerz, Winfried; Masana, Luis; Silbernagel, Günther; Staels, Bart; Borén, Jan; Catapano, Alberico L; De Backer, Guy; Deanfield, John; Descamps, Olivier S; Kovanen, Petri T; Riccardi, Gabriele; Tokgözoglu, Lale; Chapman, M John

    2014-02-01

    This EAS Consensus Panel critically appraised evidence relevant to the benefit to risk relationship of functional foods with added plant sterols and/or plant stanols, as components of a healthy lifestyle, to reduce plasma low-density lipoprotein-cholesterol (LDL-C) levels, and thereby lower cardiovascular risk. Plant sterols/stanols (when taken at 2 g/day) cause significant inhibition of cholesterol absorption and lower LDL-C levels by between 8 and 10%. The relative proportions of cholesterol versus sterol/stanol levels are similar in both plasma and tissue, with levels of sterols/stanols being 500-/10,000-fold lower than those of cholesterol, suggesting they are handled similarly to cholesterol in most cells. Despite possible atherogenicity of marked elevations in circulating levels of plant sterols/stanols, protective effects have been observed in some animal models of atherosclerosis. Higher plasma levels of plant sterols/stanols associated with intakes of 2 g/day in man have not been linked to adverse effects on health in long-term human studies. Importantly, at this dose, plant sterol/stanol-mediated LDL-C lowering is additive to that of statins in dyslipidaemic subjects, equivalent to doubling the dose of statin. The reported 6-9% lowering of plasma triglyceride by 2 g/day in hypertriglyceridaemic patients warrants further evaluation. Based on LDL-C lowering and the absence of adverse signals, this EAS Consensus Panel concludes that functional foods with plant sterols/stanols may be considered 1) in individuals with high cholesterol levels at intermediate or low global cardiovascular risk who do not qualify for pharmacotherapy, 2) as an adjunct to pharmacologic therapy in high and very high risk patients who fail to achieve LDL-C targets on statins or are statin- intolerant, 3) and in adults and children (>6 years) with familial hypercholesterolaemia, in line with current guidance. However, it must be acknowledged that there are no randomised, controlled

  2. Serum cholesterol and triglyceride concentrations in diabetic patients with subclinical hypothyroidism.

    Science.gov (United States)

    Díez, Juan J; Iglesias, Pedro

    2014-10-01

    To assess whether subclinical hypothyroidism is associated to elevations in serum cholesterol and triglyceride levels in patients with type 2 diabetes. From a total population of 1,112 patients with type 2 diabetes screened for thyroid dysfunction (thyrotropin measurement), a group of 325 patients with normal thyroid function and another group of 29 patients with subclinical hypothyroidism were selected. No patient had known dyslipidemia or was taking lipid lowering medication. Patients with subclinical hypothyroidism had serum levels of total cholesterol (4.88 ± 0.74 mmol/L), HDL cholesterol (1.37 ± 0.34 mmol/L), LDL cholesterol (2.94 ± 0.58 mmol/L), and triglycerides (1.05 [0.88-1.41] mmol/L) that did not significantly differ from those found in euthyroid patients (4.79 ± 0.83, 1.33 ± 0.36, 2.87 ± 0.76, and 1.11 [0.81-1.43] mmol/L, respectively). Multiple regression analysis showed no association between TSH and serum lipid levels. These results suggest that, in our population, there are no significant differences in serum cholesterol and triglyceride levels between diabetic patients with normal and reduced thyroid function. Copyright © 2013 SEEN. Published by Elsevier Espana. All rights reserved.

  3. A Cholesterol-Sensitive Regulator of the Androgen Receptor

    Science.gov (United States)

    2010-07-01

    Oncogene (2010) 29, 3745–3747; doi:10.1038/onc.2010.132; published online 3 May 2010 Cholesterol is a sterol that serves as a metabolic precursor to other...bioactive sterols , such as nuclear receptor ligands, and also has a major role in plasma membrane structure. Cholesterol and long- chain...cholesterol synthesis (these drugs are generically termed ‘statins’), have been reported to inhibit cancer incidence or progres- sion in some studies. Although

  4. Serum concentrations of cholesterol, apolipoprotein A-I and apolipoprotein B in a total of 1694 meat-eaters, fish-eaters, vegetarians and vegans.

    Science.gov (United States)

    Bradbury, K E; Crowe, F L; Appleby, P N; Schmidt, J A; Travis, R C; Key, T J

    2014-02-01

    The objective of this study was to describe serum lipid concentrations, including apolipoproteins A-I and B, in different diet groups. A cross-sectional analysis of a sample of 424 meat-eaters, 425 fish-eaters, 423 vegetarians and 422 vegans, matched on sex and age, from the European Prospective Investigation into Cancer and Nutrition-Oxford cohort. Serum concentrations of total, and high-density lipoprotein (HDL) cholesterol, as well as apolipoproteins A-I and B were measured, and serum non-HDL cholesterol was calculated. Vegans had the lowest body mass index (BMI) and the highest and lowest intakes of polyunsaturated and saturated fat, respectively. After adjustment for age, alcohol and physical activity, compared with meat-eaters, fish-eaters and vegetarians, serum concentrations of total and non-HDL cholesterol and apolipoprotein B were significantly lower in vegans. Serum apolipoprotein A-I concentrations did not differ between the diet groups. In males, the mean serum total cholesterol concentration was 0.87 mmol/l lower in vegans than in meat-eaters; after further adjustment for BMI this difference was 0.76 mmol/l. In females, the difference in total cholesterol between these two groups was 0.6 mmol/l, and after further adjustment for BMI was 0.55 mmol/l. [corrected]. In this study, which included a large number of vegans, serum total cholesterol and apolipoprotein B concentrations were lower in vegans compared with meat-eaters, fish-eaters and vegetarians. A small proportion of the observed differences in serum lipid concentrations was explained by differences in BMI, but a large proportion is most likely due to diet.

  5. Freshwater Clam Extract Ameliorates Triglyceride and Cholesterol Metabolism through the Expression of Genes Involved in Hepatic Lipogenesis and Cholesterol Degradation in Rats

    Directory of Open Access Journals (Sweden)

    Thomas Laurent

    2013-01-01

    Full Text Available The freshwater clam (Corbicula spp. is a popular edible bivalve and has been used as a folk remedy for liver disease in Asia. As a Chinese traditional medicine, it is said that freshwater clam ameliorates alcoholic intoxication and cholestasis. In this study, to estimate the practical benefit of freshwater clam extract (FCE, we compared the effects of FCE and soy protein isolate (SPI on triglyceride and cholesterol metabolism in rats. FCE and SPI lowered serum cholesterol, and FCE tended to reduce serum triglycerides. FCE enhanced fecal sterol excretion and hepatic mRNA levels of CYP7A1 and ABCG5 more substantially than SPI; however, both diets reduced hepatic cholesterol. Both of the diets similarly suppressed liver lipids improved Δ9-desaturated fatty acid profile, and FCE was associated with a reduction in FAS and SCD1 mRNA levels. Hepatic transcriptome analysis revealed that inhibition of lipogenesis-related gene expression may contribute to downregulation of hepatic triglycerides by FCE. FCE would have better potential benefits for preventing metabolic disorders, through greater improvement of metabolism of triglycerides and cholesterol, likely through a mechanism similar to SPI.

  6. Synthesis of hydroxylated sterols in transgenic Arabidopsis plants alters growth and steroid metabolism.

    Science.gov (United States)

    Beste, Lisa; Nahar, Nurun; Dalman, Kerstin; Fujioka, Shozo; Jonsson, Lisbeth; Dutta, Paresh C; Sitbon, Folke

    2011-09-01

    To explore mechanisms in plant sterol homeostasis, we have here increased the turnover of sterols in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum) plants by overexpressing four mouse cDNA encoding cholesterol hydroxylases (CHs), hydroxylating cholesterol at the C-7, C-24, C-25, or C-27 positions. Compared to the wild type, the four types of Arabidopsis transformant showed varying degrees of phenotypic alteration, the strongest one being in CH25 lines, which were dark-green dwarfs resembling brassinosteroid-related mutants. Gas chromatography-mass spectrometry analysis of extracts from wild-type Arabidopsis plants revealed trace levels of α and β forms of 7-hydroxycholesterol, 7-hydroxycampesterol, and 7-hydroxysitosterol. The expected hydroxycholesterol metabolites in CH7-, CH24-, and CH25 transformants were identified and quantified using gas chromatography-mass spectrometry. Additional hydroxysterol forms were also observed, particularly in CH25 plants. In CH24 and CH25 lines, but not in CH7 ones, the presence of hydroxysterols was correlated with a considerable alteration of the sterol profile and an increased sterol methyltransferase activity in microsomes. Moreover, CH25 lines contained clearly reduced levels of brassinosteroids, and displayed an enhanced drought tolerance. Equivalent transformations of potato plants with the CH25 construct increased hydroxysterol levels, but without the concomitant alteration of growth and sterol profiles observed in Arabidopsis. The results suggest that an increased hydroxylation of cholesterol and/or other sterols in Arabidopsis triggers compensatory processes, acting to maintain sterols at adequate levels.

  7. Identification of ergosterol and inhibition of sterol synthesis by Δ5-sterols in GL7, an auxotrophic mutant of yeast

    International Nuclear Information System (INIS)

    Dhanuka, I.C.

    1988-01-01

    Synthesis of ergosterol was demonstrated in the GL7 mutant of Saccharomyces cerevisiae. This sterol auxotroph has been thought to lack the ability to synthesize sterols due both to the absence of 2,3-oxidosqualene cyclase and to a heme deficiency eliminating cytochrome P-450 which is required in demethylation at C-14. However, when the exogenous sterol was 5α-cholestan-3β-ol, 5α-cholest-8(14)-en-3β-ol, or 24β-methyl-5α-cholest-8(14)-en-3β-ol, sterol synthesis was found to proceed yielding 1-3 fg/cell of ergosterol. Ergosterol was identified by mass spectroscopy, gas and high performance liquid chromatography, ultraviolet spectroscopy, and radioactive labelling from [ 3 H]acetate. Except for some cholest-5-en-3β-ol (cholesterol) which was derived from the 5α-cholestan-3β-ol, the stanol and the two 8(14)-stenols were not significantly metabolized confirming the absence of an isomerase for migration of the double bond from C-8(14) to C-7. Drastic reduction of ergosterol synthesis to not more than 0.06 fg/cell was observed when the exogenous sterol either had a double bond at C-5, as in the case of cholesterol, or could be metabolized to a sterol with such a bond. Thus, both 5α-cholest-8(9)-en-3β-ol and 5α-cholest-7-en-3β-ol (lathosterol) were converted to cholesta-5,7-dien-3β-ol (7-dehydrocholesterol), and the presence of the latter dienol depressed the level of ergosterol

  8. Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation

    International Nuclear Information System (INIS)

    Fernandez, Carlos; Lobo, Maria del Val T.; Gomez-Coronado, Diego; Lasuncion, Miguel A.

    2004-01-01

    As an essential component of mammalian cell membranes, cells require cholesterol for proliferation, which is either obtained from plasma lipoproteins or synthesized intracellularly from acetyl-CoA. In addition to cholesterol, other non-sterol mevalonate derivatives are necessary for DNA synthesis, such as the phosphorylated forms of isopentane, farnesol, geranylgeraniol, and dolichol. The aim of the present study was to elucidate the role of cholesterol in mitosis. For this, human leukemia cells (HL-60) were incubated in a cholesterol-free medium and treated with SKF 104976, which inhibits cholesterol biosynthesis by blocking sterol 14α-demethylase, and the expression of relevant cyclins in the different phases of the cell cycle was analyzed by flow cytometry. Prolonged cholesterol starvation induced the inhibition of cytokinesis and the formation of polyploid cells, which were multinucleated and had mitotic aberrations. Supplementing the medium with cholesterol completely abolished these effects, demonstrating they were specifically due to cholesterol deficiency. This is the first evidence that cholesterol is essential for mitosis completion and that, in the absence of cholesterol, the cells fail to undergo cytokinesis, entered G1 phase at higher DNA ploidy (tetraploidy), and then progressed through S (rereplication) into G2, generating polyploid cells

  9. Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Rowat, Amy C.; Ipsen, John H.

    2004-01-01

    Sterols are regulators of both biological function and structure. The role of cholesterol in promoting the structural and mechanical stability of membranes is widely recognized. Knowledge of how the related sterols, lanosterol and ergosterol, affect membrane mechanical properties is sparse. This ...... on vesicle behaviour are also discussed. These recent modifications render vesicle fluctuation analysis an efficient and accurate method for determining how cholesterol, lanosterol, and ergosterol increase membrane bending rigidity....

  10. Transition diseases in grazing dairy cows are related to serum cholesterol and other analytes.

    Directory of Open Access Journals (Sweden)

    Pilar Sepúlveda-Varas

    Full Text Available The objectives of this study were to describe the incidence of postpartum disease and to evaluate the association with serum cholesterol concentrations during the first 3 weeks after calving in grazing dairy cows. The association between non-esterified fatty acids (NEFA, β-hydroxybutyrate (BHBA, calcium and postpartum diseases was also evaluated. A total of 307 Holstein dairy cows from 6 commercial grazing herds in Osorno, Chile, were monitored from calving until 21 days in milk. Cases of retained placenta, clinical hypocalcemia and clinical mastitis were recorded by the farmer using established definitions. Twice weekly, cows were evaluated for metritis by the same veterinarian based on vaginal discharge and body temperature. Postpartum blood samples were collected weekly and analyzed for serum concentrations of cholesterol, NEFA, BHBA and calcium. Cows were considered as having subclinical ketosis if BHBA >1.2 mmol/L, and subclinical hypocalcemia if calcium <2.0 mmol/L in any of the 3 weekly samples. Overall, 56% of the cows studied developed at least one clinical or subclinical disease after calving. Incidence of individual diseases was 8.8% for retained placenta, 4.2% for clinical hypocalcemia, 11.7% for clinical mastitis, 41.1% for metritis, 19.9% for subclinical hypocalcemia and 16.6% for subclinical ketosis. Lower postpartum cholesterol in cows was associated with developing severe metritis or having more than one clinical disease after calving. For every 0.4 mmol/L decrease in serum cholesterol cows were nearly twice as likely to be diagnosed with multiple clinical diseases after calving. Higher BHBA concentrations and lower calcium concentrations during week 1 were associated with severe cases of metritis. Low serum calcium concentration during week 1 was also associated with developing more than one clinical disorder after calving. In conclusion, the incidence of postpartum diseases can be high even in grazing herds and lower serum

  11. Niemann-Pick C2 protein regulates sterol transport between plasma membrane and late endosomes in human fibroblasts

    DEFF Research Database (Denmark)

    Berzina, Zane; Solanko, Lukasz M; Mehadi, Ahmed S

    2018-01-01

    /LYSs is currently unknown. We show that the close cholesterol analog dehydroergosterol (DHE), when delivered to the plasma membrane (PM) accumulates in LE/LYSs of human fibroblasts lacking functional NPC2. We measured two different time scales of sterol diffusion; while DHE rich LE/LYSs moved by slow anomalous...... but not of DHE is reduced 10-fold in disease fibroblasts compared to control cells. Internalized NPC2 rescued the sterol storage phenotype and strongly expanded the dynamic sterol pool seen in FRAP experiments. Together, our study shows that cholesterol esterification and trafficking of sterols between the PM...

  12. Reduced biliary sterol output with no change in total faecal excretion in mice expressing a human apolipoprotein A-I variant.

    Science.gov (United States)

    Parolini, Cinzia; Caligari, Silvia; Gilio, Donatella; Manzini, Stefano; Busnelli, Marco; Montagnani, Marco; Locatelli, Marcello; Diani, Erika; Giavarini, Flavio; Caruso, Donatella; Roda, Enrico; Roda, Aldo; Sirtori, Cesare R; Chiesa, Giulia

    2012-10-01

    Apolipoprotein (apo)A-I(M) (ilano), is a molecular variant of apoA-I(wild-type), associated with dramatically low HDL-cholesterol levels, but no increased risk for cardiovascular disease. In view of the present uncertainties on the role of apoA-I in liver cholesterol removal by way of bile acids and neutral sterols, and of the greater capacity of apoA-I(M) (ilano) to remove arterial cholesterol, biliary sterol metabolism was evaluated in transgenic mice expressing apoA-I(M) (ilano). ApoA-I(M) (ilano) mice were fed a high-cholesterol/high-fat diet, and compared with human apoA-I(wild-type) mice. Plasma lipid levels, hepatic bile flow and composition, hepatic and intestinal cholesterol and bile acid content, and faecal sterol content were measured. Moreover, the expression of hepatic ABCA1, SR-B1 and that of hepatic and intestinal genes involved in bile acid metabolism were evaluated. The dietary treatment led to a strong elevation in HDL-cholesterol levels in A-I(M) (ilano) mice, associated with an increased expression of hepatic ABCA1. ApoA-I(M) (ilano) mice showed lower cholesterol output from the liver compared with apoA-I(wild-type) mice, in the absence of liver sterol accumulation. Faecal excretion of neutral sterols and bile acids was similar in the two mouse lines. In spite of a different response to the dietary challenge, with an increased ABCA1 expression and a lower hepatic cholesterol output in apoA-I(M) (ilano) mice, the net sterol excretion is comparable in the two transgenic lines. © 2012 John Wiley & Sons A/S.

  13. Sterols regulate 3β-hydroxysterol Δ24-reductase (DHCR24) via dual sterol regulatory elements: cooperative induction of key enzymes in lipid synthesis by Sterol Regulatory Element Binding Proteins.

    Science.gov (United States)

    Zerenturk, Eser J; Sharpe, Laura J; Brown, Andrew J

    2012-10-01

    3β-Hydroxysterol Δ24-reductase (DHCR24) catalyzes a final step in cholesterol synthesis, and has been ascribed diverse functions, such as being anti-apoptotic and anti-inflammatory. How this enzyme is regulated transcriptionally by sterols is currently unclear. Some studies have suggested that its expression is regulated by Sterol Regulatory Element Binding Proteins (SREBPs) while another suggests it is through the Liver X Receptor (LXR). However, these transcription factors have opposing effects on cellular sterol levels, so it is likely that one predominates. Here we establish that sterol regulation of DHCR24 occurs predominantly through SREBP-2, and identify the particular region of the DHCR24 promoter to which SREBP-2 binds. We demonstrate that sterol regulation is mediated by two sterol regulatory elements (SREs) in the promoter of the gene, assisted by two nearby NF-Y binding sites. Moreover, we present evidence that the dual SREs work cooperatively to regulate DHCR24 expression by comparison to two known SREBP target genes, the LDL receptor with one SRE, and farnesyl-diphosphate farnesyltransferase 1, with two SREs. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The effect of hyperthyroidism on serum cholesterol in Sudanese females

    International Nuclear Information System (INIS)

    Hussien, A.E.

    2006-03-01

    This study was done, essentially to assess the effect of hyperthyroidism on lipid metabolism, respectively on total cholesterol in Sudanese females. Samples were collected from the referred patients to RIA lab in Sudan Atomic Energy Commission (SAEC). Ninety eight subjects were selected as study group. 48 hyperthyroid females age range (18-60) years in addition 50 euthyroid specimens were collected from females (of the same ages range) and used as control. Thyroid hormones, thyroxine (T4) and Triiodothyronine (T3), the thyroid stimulating hormone (TSH), and serum total cholestrol were measured for all subjects. Statistical analysis was done using SPSS computer program to compare the mean of cholesterol levels the control with the study group. The result showed that the significantly (P < 0.01). High levels of thyroid hormones in patients were accompanied by significantly (P< 0.01) decreased cholesterol levels. When this finding was compared in the control group serum total cholesterol levels kept the normal rang with the normal thyroid function.(Author)

  15. The effect of hyperthyroidism on serum cholesterol in Sudanese females

    Energy Technology Data Exchange (ETDEWEB)

    Hussien, A E [Coordination Council of Sudan Atomic Energy Commission, Sudan Academy of Sciences, Khartoum (Sudan)

    2006-03-15

    This study was done, essentially to assess the effect of hyperthyroidism on lipid metabolism, respectively on total cholesterol in Sudanese females. Samples were collected from the referred patients to RIA lab in Sudan Atomic Energy Commission (SAEC). Ninety eight subjects were selected as study group. 48 hyperthyroid females age range (18-60) years in addition 50 euthyroid specimens were collected from females (of the same ages range) and used as control. Thyroid hormones, thyroxine (T4) and Triiodothyronine (T3), the thyroid stimulating hormone (TSH), and serum total cholestrol were measured for all subjects. Statistical analysis was done using SPSS computer program to compare the mean of cholesterol levels the control with the study group. The result showed that the significantly (P < 0.01). High levels of thyroid hormones in patients were accompanied by significantly (P< 0.01) decreased cholesterol levels. When this finding was compared in the control group serum total cholesterol levels kept the normal rang with the normal thyroid function.(Author)

  16. Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters

    Directory of Open Access Journals (Sweden)

    Yuguang Lin

    2011-01-01

    Full Text Available Hawthorn (Crataegus pinnatifida is an edible fruit used in traditional Chinese medicine to lower plasma lipids. This study explored lipid-lowering compounds and underlying mechanisms of action of hawthorn. Hawthorn powder extracts inhibited acylCoA:cholesterol acyltransferase (ACAT activity in Caco-2 cells. The inhibitory activity was positively associated with triterpenic acid (i.e., oleanolic acid (OA and ursolic acid (UA contents in the extracts. Cholesterol lowering effects of hawthorn and its potential additive effect in combination with plant sterol esters (PSE were further studied in hamsters. Animals were fed a semi-synthetic diet containing 0.08% (w/w cholesterol (control or the same diet supplemented with (i 0.37% hawthorn dichloromethane extract, (ii 0.24% PSE, (iii hawthorn dichloromethane extract (0.37% plus PSE (0.24% or (iv OA/UA mixture (0.01% for 4 weeks. Compared to the control diet, hawthorn, PSE, hawthorn plus PSE and OA/UA significantly lowered plasma non-HDL (VLDL + LDL cholesterol concentrations by 8%, 9%, 21% and 6% and decreased hepatic cholesterol ester content by 9%, 23%, 46% and 22%, respectively. The cholesterol lowering effects of these ingredients were conversely associated with their capacities in increasing fecal neutral sterol excretion. In conclusion, OA and UA are responsible for the cholesterol lowering effect of hawthorn by inhibiting intestinal ACAT activity. In addition, hawthorn and particularly its bioactive compounds (OA and UA enhanced the cholesterol lowering effect of plant sterols.

  17. Effects of host cell sterol composition upon internalization of Yersinia pseudotuberculosis and clustered β1 integrin.

    Science.gov (United States)

    Kim, JiHyun; Fukuto, Hana S; Brown, Deborah A; Bliska, James B; London, Erwin

    2018-01-26

    Yersinia pseudotuberculosis is a foodborne pathogenic bacterium that causes acute gastrointestinal illness, but its mechanisms of infection are incompletely described. We examined how host cell sterol composition affected Y. pseudotuberculosis uptake. To do this, we depleted or substituted cholesterol in human MDA-MB-231 epithelial cells with various alternative sterols. Decreasing host cell cholesterol significantly reduced pathogen internalization. When host cell cholesterol was substituted with various sterols, only desmosterol and 7-dehydrocholesterol supported internalization. This specificity was not due to sterol dependence of bacterial attachment to host cells, which was similar with all sterols studied. Because a key step in Y. pseudotuberculosis internalization is interaction of the bacterial adhesins invasin and YadA with host cell β1 integrin, we compared the sterol dependence of wildtype Y. pseudotuberculosis internalization with that of Δ inv , Δ yadA , and Δ inv Δ yadA mutant strains. YadA deletion decreased bacterial adherence to host cells, whereas invasin deletion had no effect. Nevertheless, host cell sterol substitution had a similar effect on internalization of these bacterial deletion strains as on the wildtype bacteria. The Δ inv Δ yadA double mutant adhered least to cells and so was not significantly internalized. The sterol structure dependence of Y. pseudotuberculosis internalization differed from that of endocytosis, as monitored using antibody-clustered β1 integrin and previous studies on other proteins, which had a more permissive sterol dependence. This study suggests that agents could be designed to interfere with internalization of Yersinia without disturbing endocytosis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Plant Sterols as Anticancer Nutrients: Evidence for Their Role in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Bruce J. Grattan

    2013-01-01

    Full Text Available While many factors are involved in the etiology of cancer, it has been clearly established that diet significantly impacts one’s risk for this disease. More recently, specific food components have been identified which are uniquely beneficial in mitigating the risk of specific cancer subtypes. Plant sterols are well known for their effects on blood cholesterol levels, however research into their potential role in mitigating cancer risk remains in its infancy. As outlined in this review, the cholesterol modulating actions of plant sterols may overlap with their anti-cancer actions. Breast cancer is the most common malignancy affecting women and there remains a need for effective adjuvant therapies for this disease, for which plant sterols may play a distinctive role.

  19. Examining confounding by diet in the association between perfluoroalkyl acids and serum cholesterol in pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Skuladottir, Margret; Ramel, Alfons [Faculty of Food Science and Nutrition, University of Iceland, Reykjavik (Iceland); Unit for Nutrition Research, Landspitali National University Hospital, Reykjavik (Iceland); Rytter, Dorte [Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus (Denmark); Haug, Line Småstuen; Sabaredzovic, Azemira [Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo (Norway); Bech, Bodil Hammer [Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus (Denmark); Henriksen, Tine Brink [Pediatric Department, Aarhus University Hospital, Aarhus (Denmark); Olsen, Sjurdur F. [Center for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, Copenhagen (Denmark); Department of Nutrition, Harvard School of Public Health, Boston, MA (United States); Halldorsson, Thorhallur I., E-mail: tih@hi.is [Faculty of Food Science and Nutrition, University of Iceland, Reykjavik (Iceland); Unit for Nutrition Research, Landspitali National University Hospital, Reykjavik (Iceland); Center for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, Copenhagen (Denmark)

    2015-11-15

    Background: Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have consistently been associated with higher cholesterol levels in cross sectional studies. Concerns have, however, been raised about potential confounding by diet and clinical relevance. Objective: To examine the association between concentrations of PFOS and PFOA and total cholesterol in serum during pregnancy taking into considerations confounding by diet. Methods: 854 Danish women who gave birth in 1988–89 and provided a blood sample and reported their diet in week 30 of gestation. Results: Mean serum PFOS, PFOA and total cholesterol concentrations were 22.3 ng/mL, 4.1 ng/mL and 7.3 mmol/L, respectively. Maternal diet was a significant predictor of serum PFOS and PFOA concentrations. In particular intake of meat and meat products was positively associated while intake of vegetables was inversely associated (P for trend <0.01) with relative difference between the highest and lowest quartile in PFOS and PFOA concentrations ranging between 6% and 25% of mean values. After adjustment for dietary factors both PFOA and PFOS were positively and similarly associated with serum cholesterol (P for trend ≤0.01). For example, the mean increase in serum cholesterol was 0.39 mmol/L (95%CI: 0.09, 0.68) when comparing women in the highest to lowest quintile of PFOA concentrations. In comparison the mean increase in serum cholesterol was 0.61 mmol/L (95%CI: 0.17, 1.05) when comparing women in the highest to lowest quintile of saturated fat intake. Conclusion: In this study associations between PFOS and PFOA with serum cholesterol appeared unrelated to dietary intake and were similar in magnitude as the associations between saturated fat intake and serum cholesterol. - Highlights: • PFOS and PFOA have consistently been linked with raised serum cholesterol • Clinical relevance remains uncertain and confounding by diet has been suggested • The aim of this study was to address these issues in

  20. Examining confounding by diet in the association between perfluoroalkyl acids and serum cholesterol in pregnancy

    International Nuclear Information System (INIS)

    Skuladottir, Margret; Ramel, Alfons; Rytter, Dorte; Haug, Line Småstuen; Sabaredzovic, Azemira; Bech, Bodil Hammer; Henriksen, Tine Brink; Olsen, Sjurdur F.; Halldorsson, Thorhallur I.

    2015-01-01

    Background: Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have consistently been associated with higher cholesterol levels in cross sectional studies. Concerns have, however, been raised about potential confounding by diet and clinical relevance. Objective: To examine the association between concentrations of PFOS and PFOA and total cholesterol in serum during pregnancy taking into considerations confounding by diet. Methods: 854 Danish women who gave birth in 1988–89 and provided a blood sample and reported their diet in week 30 of gestation. Results: Mean serum PFOS, PFOA and total cholesterol concentrations were 22.3 ng/mL, 4.1 ng/mL and 7.3 mmol/L, respectively. Maternal diet was a significant predictor of serum PFOS and PFOA concentrations. In particular intake of meat and meat products was positively associated while intake of vegetables was inversely associated (P for trend <0.01) with relative difference between the highest and lowest quartile in PFOS and PFOA concentrations ranging between 6% and 25% of mean values. After adjustment for dietary factors both PFOA and PFOS were positively and similarly associated with serum cholesterol (P for trend ≤0.01). For example, the mean increase in serum cholesterol was 0.39 mmol/L (95%CI: 0.09, 0.68) when comparing women in the highest to lowest quintile of PFOA concentrations. In comparison the mean increase in serum cholesterol was 0.61 mmol/L (95%CI: 0.17, 1.05) when comparing women in the highest to lowest quintile of saturated fat intake. Conclusion: In this study associations between PFOS and PFOA with serum cholesterol appeared unrelated to dietary intake and were similar in magnitude as the associations between saturated fat intake and serum cholesterol. - Highlights: • PFOS and PFOA have consistently been linked with raised serum cholesterol • Clinical relevance remains uncertain and confounding by diet has been suggested • The aim of this study was to address these issues in

  1. Co-Administration of Cholesterol-Lowering Probiotics and Anthraquinone from Cassia obtusifolia L. Ameliorate Non-Alcoholic Fatty Liver.

    Directory of Open Access Journals (Sweden)

    Lu Mei

    Full Text Available Non-alcoholic fatty liver disease (NAFLD has become a common liver disease in recent decades. No effective treatment is currently available. Probiotics and natural functional food may be promising therapeutic approaches to this disease. The present study aims to investigate the efficiency of the anthraquinone from Cassia obtusifolia L. (AC together with cholesterol-lowering probiotics (P to improve high-fat diet (HFD-induced NAFLD in rat models and elucidate the underlying mechanism. Cholesterol-lowering probiotics were screened out by MRS-cholesterol broth with ammonium ferric sulfate method. Male Sprague-Dawley rats were fed with HFD and subsequently administered with AC and/or P. Lipid metabolism parameters and fat synthesis related genes in rat liver, as well as the diversity of gut microbiota were evaluated. The results demonstrated that, compared with the NAFLD rat, the serum lipid levels of treated rats were reduced effectively. Besides, cholesterol 7α-hydroxylase (CYP7A1, low density lipoprotein receptor (LDL-R and farnesoid X receptor (FXR were up-regulated while the expression of 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR was reduced. The expression of peroxisome proliferator activated receptor (PPAR-α protein was significantly increased while the expression of PPAR-γ and sterol regulatory element binding protein-1c (SREBP-1c was down-regulated. In addition, compared with HFD group, in AC, P and AC+P group, the expression of intestinal tight-junction protein occludin and zonula occluden-1 (ZO-1 were up-regulated. Furthermore, altered gut microbiota diversity after the treatment of probiotics and AC were analysed. The combination of cholesterol-lowering probiotics and AC possesses a therapeutic effect on NAFLD in rats by up-regulating CYP7A1, LDL-R, FXR mRNA and PPAR-α protein produced in the process of fat metabolism while down-regulating the expression of HMGCR, PPAR-γ and SREBP-1c, and through normalizing the

  2. Inhaled tobacco sterols: uptake by the lungs and disposition to selected organs of rats

    International Nuclear Information System (INIS)

    Holden, W.E.; Maier, J.M.; Liebler, J.M.; Malinow, M.R.

    1988-01-01

    Tobacco sterols (cholesterol, beta-sitosterol, campesterol, and stigmasterol) are present in tobacco smoke and appear in plasma of mammals exposed to cigarette smoke. Because tobacco sterols may be important in the pathogenesis of smoking-induced lung and vascular diseases, we studied the pattern of deposition of cigarette sterols in the lungs and appearance of cigarette sterols in plasma and body organs of rats. After exposure to twenty 5 ml puffs of smoke from tobacco labeled with [4- 14 C]cholesterol or beta-[4- 14 C]sitosterol, rats were killed just after exposure (day 0) and on days 2, 5, 8, 11, 15, and 30, and the lungs and selected body organs analyzed for activity. We found that cigarette sterols are associated with particulates in cigarette smoke, deposited mostly in distal airspaces and parenchyma of the lungs, and appear in plasma and several body organs for more than 30 days after this single exposure to cigarette smoke. Bronchoalveolar lavage fluid contained relatively small amounts of radiolabel for only the first few days, suggesting that most of the sterols were rapidly incorporated in lung parenchyma. Because disorders of sterol metabolism have been implicated in a variety of diseases including atherosclerosis and cancer, the significance of tobacco sterols to human smoking-induced diseases deserves further study

  3. Tritium Suicide Selection Identifies Proteins Involved in the Uptake and Intracellular Transport of Sterols in Saccharomyces cerevisiae▿

    Science.gov (United States)

    Sullivan, David P.; Georgiev, Alexander; Menon, Anant K.

    2009-01-01

    Sterol transport between the plasma membrane (PM) and the endoplasmic reticulum (ER) occurs by a nonvesicular mechanism that is poorly understood. To identify proteins required for this process, we isolated Saccharomyces cerevisiae mutants with defects in sterol transport. We used Upc2-1 cells that have the ability to take up sterols under aerobic conditions and exploited the observation that intracellular accumulation of exogenously supplied [3H]cholesterol in the form of [3H]cholesteryl ester requires an intact PM-ER sterol transport pathway. Upc2-1 cells were mutagenized using a transposon library, incubated with [3H]cholesterol, and subjected to tritium suicide selection to isolate mutants with a decreased ability to accumulate [3H]cholesterol. Many of the mutants had defects in the expression and trafficking of Aus1 and Pdr11, PM-localized ABC transporters that are required for sterol uptake. Through characterization of one of the mutants, a new role was uncovered for the transcription factor Mot3 in controlling expression of Aus1 and Pdr11. A number of mutants had transposon insertions in the uncharacterized Ydr051c gene, which we now refer to as DET1 (decreased ergosterol transport). These mutants expressed Aus1 and Pdr11 normally but were severely defective in the ability to accumulate exogenously supplied cholesterol. The transport of newly synthesized sterols from the ER to the PM was also defective in det1Δ cells. These data indicate that the cytoplasmic protein encoded by DET1 is involved in intracellular sterol transport. PMID:19060182

  4. The liver plays a key role in whole body sterol accretion of the neonatal Golden Syrian hamster

    OpenAIRE

    Yao, Lihang; Horn, Paul S.; Heubi, James E.; Woollett, Laura A.

    2007-01-01

    Neonates have a significant requirement for cholesterol. From −1 to 25 days of age, the liver accrues 6.9 mg cholesterol and the extra-hepatic tissues accrue 107.7 mg cholesterol in the hamster. It is currently unknown if each of these body compartments synthesizes their own cholesterol or if they have alternative source(s) of sterol. Using 3H2O, in vivo hepatic sterol synthesis rates (per g liver per animal) increased between −1 and 5 days of age, decreased by 10 days of age, and increased a...

  5. marital status and occupation versus serum total cholesterol and hdl

    African Journals Online (AJOL)

    DR. AMIN

    ABSTRACT. The influence of marital status and occupation on serum total cholesterol (TC) and high density lipoprotein cholesterol (HDL – CH) concentrations was studied in sixty one (61) adult male and female Hausa subjects aged 20 – 50 years. Irrespective of marital status and occupation, female subjects had higher ...

  6. Effect of feeding garlic (allium sativum) on body weight and serum cholesterol levels in rats

    International Nuclear Information System (INIS)

    Farnaz, S.; Qamar, M.Z.; Karim, S.

    2011-01-01

    Background: Oral garlic supplementation may be effective in decreasing serum cholesterol levels as much as 15% to 20%. Garlic indirectly effect atherosclerosis by reduction of hyperlipidaemia, hypertension and probably diabetes mellitus and prevents thrombus formation. This study was undertaken to test the hypothesis that garlic powder with a prolonged mode of action promises potent biological effects into hypercholesterolaemia. Methods: Fifty albino rats were randomly divided into 5 equal groups (n=10). All rats were initially fed normal diet for at least 7 days. Then Group A was control and was fed a normal diet + 0.5% cholesterol, Group B was fed normal diet and 3 mg garlic per 10 g of feed and Group C was fed normal diet and 10 mg garlic per 10 g of feed. The experiment lasted for 12 weeks. Body weight and serum cholesterol were noted before and after giving garlic + cholesterol. Results: Effect of serum cholesterol level was significantly decreased after taking 3 and 10 mg of garlic. However it was observed that the body weight was increased after taking garlic. Conclusion: Garlic consumption although can decrease the level of serum cholesterol but it increases the body weight. Garlic consumption alone can decrease serum cholesterol level, but it cannot be used as the main therapeutic agent for hyperlipidaemia. (author)

  7. Live-cell imaging of new polyene sterols for improved analysis of intracellular cholesterol transport

    DEFF Research Database (Denmark)

    Modzel, M.; Solanko, K. A.; Szomek, M.

    2018-01-01

    brightness, significant photobleaching and excitation/emission in the ultraviolet region. Thus, special equipment is required to image such sterols. Here, we describe synthesis, characterization and intracellular imaging of new polyene sterols containing four conjugated double bonds in the sterol ring system....... We show that such analogues have red-shifted excitation and emission by ∼20 nm compared to DHE or CTL. The red shift was even more pronounced when preventing keto-enol tautomer equilibration by protecting the 3'-hydroxy group with acetate. We show that the latter analogue can be imaged...... on a conventional wide field microscope with a DAPI/filipin filter cube. The new polyene sterols show reduced photobleaching compared to DHE or CTL allowing for improved deconvolution microscopy of sterol containing cellular membranes....

  8. CUP-1 Is a Novel Protein Involved in Dietary Cholesterol Uptake in Caenorhabditis elegans

    Science.gov (United States)

    Valdes, Victor J.; Athie, Alejandro; Salinas, Laura S.; Navarro, Rosa E.; Vaca, Luis

    2012-01-01

    Sterols transport and distribution are essential processes in all multicellular organisms. Survival of the nematode Caenorhabditis elegans depends on dietary absorption of sterols present in the environment. However the general mechanisms associated to sterol uptake in nematodes are poorly understood. In the present work we provide evidence showing that a previously uncharacterized transmembrane protein, designated Cholesterol Uptake Protein-1 (CUP-1), is involved in dietary cholesterol uptake in C. elegans. Animals lacking CUP-1 showed hypersensitivity to cholesterol limitation and were unable to uptake cholesterol. A CUP-1-GFP fusion protein colocalized with cholesterol-rich vesicles, endosomes and lysosomes as well as the plasma membrane. Additionally, by FRET imaging, a direct interaction was found between the cholesterol analog DHE and the transmembrane “cholesterol recognition/interaction amino acid consensus” (CRAC) motif present in C. elegans CUP-1. In-silico analysis identified two mammalian homologues of CUP-1. Most interestingly, CRAC motifs are conserved in mammalian CUP-1 homologous. Our results suggest a role of CUP-1 in cholesterol uptake in C. elegans and open up the possibility for the existence of a new class of proteins involved in sterol absorption in mammals. PMID:22479487

  9. Cholesterol metabolism as a prognostic marker in patients with mildly symptomatic nonischemic dilated cardiomyopathy.

    Science.gov (United States)

    Sawamura, Akinori; Okumura, Takahiro; Hiraiwa, Hiroaki; Aoki, Soichiro; Kondo, Toru; Ichii, Takeo; Furusawa, Kenji; Watanabe, Naoki; Kano, Naoaki; Fukaya, Kenji; Morimoto, Ryota; Bando, Yasuko K; Murohara, Toyoaki

    2017-06-01

    Little is known about whether the alteration of cholesterol metabolism reflects abdominal organ impairments due to heart failure. Therefore, we investigated the prognostic value of cholesterol metabolism by evaluating serum campesterol and lathosterol levels in patients with early-stage nonischemic dilated cardiomyopathy (NIDCM). We enrolled 64 patients with NIDCM (median age 57.5 years, 31% female) with New York Heart Association functional class I/II. Serum campesterol and lathosterol levels were measured in all patients. The patients were then divided into four subsets based on the median non-cholesterol sterol levels (campesterol 3.6μg/mL, lathosterol 1.4μg/mL): reference (R-subset), high-campesterol/high-lathosterol; absorption-reduced (A-subset), low-campesterol/high-lathosterol; synthesis-reduced (S-subset), high-campesterol/low-lathosterol; double-reduced (D-subset), low-campesterol/low-lathosterol. Endpoint was a composite of cardiac events, including cardiac-related death, hospitalization for worsening heart failure, and lethal arrhythmia. Median brain natriuretic peptide (BNP) level was 114pg/mL. Mean left ventricular ejection fraction was 31.4%. D-subset had the lowest total cholesterol level and cardiac index and the highest BNP level and pulmonary capillary wedge pressure. D-subset also had the highest cardiac event rate during the mean 3.8 years of follow-up (log-rank p=0.001). Multivariate regression analysis showed that D-subset was an independent determinant of cardiac events. The receiver operating characteristic curve analysis revealed that total cholesterol cholesterol absorption and liver synthesis predicts future cardiac events in patients with mildly symptomatic NIDCM. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  10. Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance

    International Nuclear Information System (INIS)

    Lee, Eun-Young; Shim, Yhong-Hee; Chitwood, David J.; Hwang, Soon Baek; Lee, Junho; Paik, Young-Ki

    2005-01-01

    Because Caenorhabditis elegans lacks several components of the de novo sterol biosynthetic pathway, it requires sterol as an essential nutrient. Supplemented cholesterol undergoes extensive enzymatic modification in C. elegans to form other sterols of unknown function. 7-Dehydrocholesterol reductase (DHCR) catalyzes the reduction of the Δ 7 double bond of sterols and is suspected to be defective in C. elegans, in which the major endogenous sterol is 7-dehydrocholesterol (7DHC). We microinjected a human DHCR expression vector into C. elegans, which was then incorporated into chromosome by γ-radiation. This transgenic C. elegans was named cholegans, i.e., cholesterol-producing C. elegans, because it was able to convert 7DHC into cholesterol. We investigated the effects of changes in sterol composition on longevity and stress resistance by examining brood size, mean life span, UV resistance, and thermotolerance. Cholegans contained 80% more cholesterol than the wild-type control. The brood size of cholegans was reduced by 40% compared to the wild-type control, although the growth rate was not significantly changed. The mean life span of cholegans was increased up to 131% in sterol-deficient medium as compared to wild-type. The biochemical basis for life span extension of cholegans appears to partly result from its acquired resistance against both UV irradiation and thermal stress

  11. Binding of 7-dehydrocholesterol to sterol carrier protein and vitamin D3 effect

    International Nuclear Information System (INIS)

    Takase, Sachiko; Oizumi, Kumiko; Moriuchi, Sachiko; Hosoya, Norimasa

    1975-01-01

    It was confirmed that deltasup(5,7)-sterol delta 7 -reductase activity was suppressed by cholecalciferol (vitamin D 3 ) in the enzyme system consisted of microsomes and sterol carrier protein (SCP). The enzyme activity was significantly decreased in the combination with microsomes obtained from either vitamin D-deficient or vitamin D 3 -treated rat liver and with SCP obtained from vitamin D 3 -treated rat. It was also demonstrated by the binding assay of the dextran-charcoal technique that 7-dehydrocholesterol binding to SCP could be specifically displaced by vitamin D 3 . The inhibition of cholecalciferol on 7-dehydro-cholesterol binding to liver SCP was confirmed to be non-competitive inhibition. (auth.)

  12. Estimation of Serum Triglycerides, Serum Cholesterol, Total Protein, IgG Levels in Chronic Periodontitis Affected Elderly Patients: A Cross-Sectional Study.

    Science.gov (United States)

    Saravanan, A V; Ravishankar, P L; Kumar, Pradeep; Rajapandian, K; Kalaivani, V; Rajula, M Prem Blaisie

    2017-01-01

    The present study was conducted to evaluate the serum triglycerides, serum cholesterol, total protein, and IgG levels in elderly patients who were affected by periodontal disease. This study was conducted at the Rajah Muthiah Dental College and Hospital in the periodontics division. The study was conducted for a period of 3 months. This study is a prospective analytical study. Sixty individuals who were systemically healthy in the age group of 50 and above were included in this study. Control and experimental groups of 30 participants each were included. Plaque index, gingival index, probing pocket depth, and clinical attachment loss were recorded. Biochemical parameters such as serum cholesterol, serum triglycerides, total protein, and IgG levels were also evaluated and correlated with the periodontal parameters. Data was analyzed using SPSS version 16.0 (IBM Corp., Armonk, NY). The relationship between periodontal status and the biochemical parameters such as serum cholesterol, serum triglycerides, total protein, and IgG levels were evaluated by Student's t-test. There was no significant difference in the plaque and gingival scores between the experimental and control group. It was observed that serum cholesterol level and total protein level was lower in participants suffering from chronic periodontitis. Triglycerides level was significantly elevated in the experimental group. IgG, a level which is not significant, concluded that there is no difference in control and experimental group. It was concluded from the results obtained from the study that there is an association between serum triglycerides, serum cholesterol, total protein, and periodontal disease. However, further longitudinal and well-controlled studies are required to evaluate the relationship between these biochemical parameters and periodontal disease.

  13. Cholesterol-lowering effects of dietary pomegranate extract and inulin in mice fed an obesogenic diet.

    Science.gov (United States)

    Yang, Jieping; Zhang, Song; Henning, Susanne M; Lee, Rupo; Hsu, Mark; Grojean, Emma; Pisegna, Rita; Ly, Austin; Heber, David; Li, Zhaoping

    2018-02-01

    It has been demonstrated in animal studies that both polyphenol-rich pomegranate extract (PomX) and the polysaccharide inulin, ameliorate metabolic changes induced by a high-fat diet, but little is known about the specific mechanisms. This study evaluated the effect of PomX (0.25%) and inulin (9%) alone or in combination on cholesterol and lipid metabolism in mice. Male C57BL/6 J mice were fed high-fat/high-sucrose [HF/HS (32% energy from fat, 25% energy from sucrose)] diets supplemented with PomX (0.25%) and inulin (9%) alone or in combination for 4 weeks. At the end of intervention, serum and hepatic cholesterol, triglyceride levels, hepatic gene expression of key regulators of cholesterol and lipid metabolism as well as fecal cholesterol and bile acid excretion were determined. Dietary supplementation of the HF/HS diet with PomX and inulin decreased hepatic and serum total cholesterol. Supplementation with PomX and inulin together resulted in lower hepatic and serum total cholesterol compared to individual treatments. Compared to HF/HS control, PomX increased gene expression of Cyp7a1 and Cyp7b1, key regulators of bile acid synthesis pathways. Inulin decreased gene expression of key regulators of cholesterol de novo synthesis Srebf2 and Hmgcr and significantly increased fecal elimination of total bile acids and neutral sterols. Only PomX in combination with inulin reduced liver and lipid weight significantly compared to the HF/HS control group. PomX showed a trend to decrease liver triglyceride (TG) levels, while inulin or PomX-inulin combination had no effect on either serum or liver TG levels. Dietary PomX and inulin supplementation decreased hepatic and serum total cholesterol by different mechanisms and the combination leading to a significant enhancement of the cholesterol-lowering effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Plasma sterols and depressive symptom severity in a population-based cohort.

    Directory of Open Access Journals (Sweden)

    Basar Cenik

    Full Text Available Convergent evidence strongly suggests major depressive disorder is heterogeneous in its etiology and clinical characteristics. Depression biomarkers hold potential for identifying etiological subtypes, improving diagnostic accuracy, predicting treatment response, and personalization of treatment. Human plasma contains numerous sterols that have not been systematically studied. Changes in cholesterol concentrations have been implicated in suicide and depression, suggesting plasma sterols may be depression biomarkers. Here, we investigated associations between plasma levels of 34 sterols (measured by mass spectrometry and scores on the Quick Inventory of Depressive Symptomatology-Self Report (QIDS-SR16 scale in 3117 adult participants in the Dallas Heart Study, an ethnically diverse, population-based cohort. We built a random forest model using feature selection from a pool of 43 variables including demographics, general health indicators, and sterol concentrations. This model comprised 19 variables, 13 of which were sterol concentrations, and explained 15.5% of the variation in depressive symptoms. Desmosterol concentrations below the fifth percentile (1.9 ng/mL, OR 1.9, 95% CI 1.2-2.9 were significantly associated with depressive symptoms of at least moderate severity (QIDS-SR16 score ≥10.5. This is the first study reporting a novel association between plasma concentrations cholesterol precursors and depressive symptom severity.

  15. DIETARY-CHOLESTEROL INDUCED DOWN-REGULATION OF INTESTINAL 3-HYDROXY-3-METHYLGLUTARYL COENZYME-A REDUCTASE-ACTIVITY IS DIMINISHED IN RABBITS WITH HYPERRESPONSE OF SERUM-CHOLESTEROL TO DIETARY-CHOLESTEROL

    NARCIS (Netherlands)

    MEIJER, GW; SMIT, MJ; VANDERPALEN, JGP; KUIPERS, F; VONK, RJ; VANZUTPHEN, BFM; BEYNEN, AC

    Key enzymes of cholesterol metabolism were studied in two inbred strains of rabbits with hyper- or hyporesponse of serum cholesterol to dietary cholesterol. Baseline 3-hydroxy-3-methylglutaryl (HMG)CoA reductase activity in liver was similar in hypo- and hyperresponders, but that in intestine was

  16. High serum total cholesterol is a long-term cause of osteoporotic fracture.

    Science.gov (United States)

    Trimpou, P; Odén, A; Simonsson, T; Wilhelmsen, L; Landin-Wilhelmsen, K

    2011-05-01

    Risk factors for osteoporotic fractures were evaluated in 1,396 men and women for a period of 20 years. Serum total cholesterol was found to be an independent osteoporotic fracture risk factor whose predictive power improves with time. The purpose of this study was to evaluate long-term risk factors for osteoporotic fracture. A population random sample of men and women aged 25-64 years (the Gothenburg WHO MONICA project, N = 1,396, 53% women) was studied prospectively. The 1985 baseline examination recorded physical activity at work and during leisure time, psychological stress, smoking habits, coffee consumption, BMI, waist/hip ratio, blood pressure, total, HDL and LDL cholesterol, triglycerides, and fibrinogen. Osteoporotic fractures over a period of 20 years were retrieved from the Gothenburg hospital registers. Poisson regression was used to analyze the predictive power for osteoporotic fracture of each risk factor. A total number of 258 osteoporotic fractures occurred in 143 participants (10.2%). As expected, we found that previous fracture, smoking, coffee consumption, and lower BMI each increase the risk for osteoporotic fracture independently of age and sex. More unexpectedly, we found that the gradient of risk of serum total cholesterol to predict osteoporotic fracture significantly increases over time (p = 0.0377). Serum total cholesterol is an independent osteoporotic fracture risk factor whose predictive power improves with time. High serum total cholesterol is a long-term cause of osteoporotic fracture.

  17. No association between serum cholesterol and death by suicide in patients with schizophrenia, bipolar affective disorder, or major depressive disorder.

    Science.gov (United States)

    Park, Subin; Yi, Ki Kyoung; Na, Riji; Lim, Ahyoung; Hong, Jin Pyo

    2013-12-05

    Previous research on serum total cholesterol and suicidality has yielded conflicting results. Several studies have reported a link between low serum total cholesterol and suicidality, whereas others have failed to replicate these findings, particularly in patients with major affective disorders. These discordant findings may reflect the fact that studies often do not distinguish between patients with bipolar and unipolar depression; moreover, definitions and classification schemes for suicide attempts in the literature vary widely. Subjects were patients with one of the three major psychiatric disorders commonly associated with suicide: schizophrenia, bipolar affective disorder, and major depressive disorder (MDD). We compared serum lipid levels in patients who died by suicide (82 schizophrenia, 23 bipolar affective disorder, and 67 MDD) and non-suicide controls (200 schizophrenia, 49 bipolar affective disorder, and 175 MDD). Serum lipid profiles did not differ between patients who died by suicide and control patients in any diagnostic group. Our results do not support the use of biological indicators such as serum total cholesterol to predict suicide risk among patients with a major psychiatric disorder.

  18. Plasma HDL-cholesterol and triglycerides, but not LDL-cholesterol, are associated with insulin secretion in non-diabetic subjects.

    Science.gov (United States)

    Natali, Andrea; Baldi, Simona; Bonnet, Fabrice; Petrie, John; Trifirò, Silvia; Tricò, Domenico; Mari, Andrea

    2017-04-01

    Experimental data support the notion that lipoproteins might directly affect beta cell function, however clinical data are sparse and inconsistent. We aimed at verifying whether, independently of major confounders, serum lipids are associated with alterations in insulin secretion or clearance non-diabetic subjects. Cross sectional and observational prospective (3.5yrs), multicentre study in which 1016 non-diabetic volunteers aged 30-60yrs. and with a wide range of BMI (20.0-39.9kg/m 2 ) were recruited in a setting of University hospital ambulatory care (RISC study). baseline fasting lipids, fasting and OGTT-induced insulin secretion and clearance (measured by glucose and C-peptide modeling), peripheral insulin sensitivity (by the euglycemic clamp). Lipids and OGTT were repeated in 980 subjects after 3.5years. LDL-cholesterol did not show independent associations with fasting or stimulated insulin secretion or clearance. After accounting for potential confounders, HDL-cholesterol displayed negative and triglycerides positive independent associations with fasting and OGTT insulin secretion; neither with insulin clearance. Low HDL-cholesterol and high triglycerides were associated with an increase in glucose-dependent and a decrease in non-glucose-dependent insulin secretion. Over 3.5years both an HDL-cholesterol decline and a triglycerides rise were associated with an increase in fasting insulin secretion independent of changes in body weight or plasma glucose. LDL-cholesterol does not seem to influence any major determinant of insulin bioavailability while low HDL-cholesterol and high triglycerides might contribute to sustain the abnormalities in insulin secretion that characterize the pre-diabetic state. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Association between total serum cholesterol and suicide attempts in subjects with major depressive disorder: Exploring the role of clinical and biochemical confounding factors.

    Science.gov (United States)

    Bartoli, Francesco; Crocamo, Cristina; Dakanalis, Antonios; Riboldi, Ilaria; Miotto, Alessio; Brosio, Enrico; Clerici, Massimo; Carrà, Giuseppe

    2017-04-01

    We tested whether serum total cholesterol levels might be associated with recent suicide attempts in subjects with major depressive disorder, after controlling for relevant individual characteristics. We conducted a comparative cross-sectional study including consecutive inpatients with major depressive disorder. We differentiated subjects admitted for a recent serious (violent or non-violent) suicide attempt and those without such recent history. Total cholesterol was measured from fasting blood tests. At univariate analyses, suicide attempters had levels of total cholesterol (174.0±45.7mg/dL) lower than non-attempters (193.9±42.6mg/dL) (p=0.004). This was confirmed among both violent (174.1±46.2mg/dL) and non-violent (173.8±46.1mg/dL) suicide attempters (p=0.035 and 0.016, respectively). However, logistic regression analyses, sequentially including demographic, clinical (comorbid alcohol and personality disorders), and biochemical factors, did not show any association between serum cholesterol and recent suicide attempts (p=0.172). Similar findings were observed in multinomial logistic regression analyses, for both violent (p=0.512) and non-violent (p=0.157) suicide attempts. Our findings do not support the hypothesis that serum cholesterol and suicide attempts are associated among subjects with major depressive disorder. The identification of valid and accessible biological markers of suicidal behaviors still represents a challenge for future research. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  20. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    2009-01-01

    Full Text Available Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS, which catalyzes the first committed step in sterol biosynthesis, (d allylamines, inhibitors of squalene epoxidase, (e azoles, which inhibit C14α-demethylase, and (f azasterols, which inhibit Δ24(25-sterol methyltransferase (SMT. Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures, and their effects on protozoan structural organization (as evaluted by light and electron microscopy and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take

  1. Novel Synthesis of Phytosterol Ester from Soybean Sterol and Acetic Anhydride.

    Science.gov (United States)

    Yang, Fuming; Oyeyinka, Samson A; Ma, Ying

    2016-07-01

    Phytosterols are important bioactive compounds which have several health benefits including reduction of serum cholesterol and preventing cardiovascular diseases. The most widely used method in the synthesis of its ester analogous form is the use of catalysts and solvents. These methods have been found to present some safety and health concern. In this paper, an alternative method of synthesizing phytosterol ester from soybean sterol and acetic anhydride was investigated. Process parameters such as mole ratio, temperature and time were optimized. The structure and physicochemical properties of phytosterol acetic ester were analyzed. By the use of gas chromatography, the mole ratio of soybean sterol and acetic anhydride needed for optimum esterification rate of 99.4% was 1:1 at 135 °C for 1.5 h. FTIR spectra confirmed the formation of phytosterol ester with strong absorption peaks at 1732 and 1250 cm(-1) , which corresponds to the stretching vibration of C=O and C-O-C, respectively. These peaks could be attributed to the formation of ester links which resulted from the reaction between the hydroxyl group of soybean sterol and the carbonyl group of acetic anhydride. This paper provides a better alternative to the synthesis of phytosterol ester without catalyst and solvent residues, which may have potential application in the food, health-care food, and pharmaceutical industries. © 2016 Institute of Food Technologists®

  2. Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast

    DEFF Research Database (Denmark)

    Marek, Magdalena; Silvestro, Daniele; Fredslund, Maria D.

    2014-01-01

    Sterol uptake in fungi is a multistep process that involves interaction between external sterols and the cell wall, incorporation of sterol molecules into the plasma membrane, and subsequent integration into intracellular membranes for turnover. ATP-binding cassette (ABC) transporters have been...

  3. Association of Serum LDL Cholesterol Level with Periodontitis among Patients Visiting a Tertiary-care Hospital

    Directory of Open Access Journals (Sweden)

    S Sharma

    2011-09-01

    Full Text Available Introduction: High low-density lipoproteins (LDL cholesterol is one of the major risk factors for cardiovascular disease. In recent years, some evidence has been presented that periodontitis,an infectious inflammatory condition of the periodontium, is associated with an increased risk of cardiovascular disease. To further elucidate this association, we have studied the levels of LDL cholesterol, a known risk marker for cardiovascular disease, in a periodontally-diseased group. Methods: The levels of serum LDL cholesterol in 47 subjects with mild to severe (clinical attachment loss equal to or greater than 1 mm chronic generalized (at least 30% of teeth affected periodontitis with the mean age of 42.21 ± 1.46 years were measured and compared with those obtained from 42 age (39.83 ± 0.94 and sex matched controls. Both groups were free from systemic illnesses. Results: The mean serum LDL cholesterol in periodontitis patients was found to be signifi cantly higher (P < 0.001 as compared to that of the controls. The mean clinical attachment loss was positively correlated with serum LDL cholesterol (P < 0.01 and gingival index (P<0.05. The frequency of persons with pathologic values of LDL cholesterol was signifi cantly higher in periodontitis patients compared with that of the controls. Conclusions: These results showed that high serum LDL cholesterol may be associated with periodontitis in healthy people. However, it is unclear whether periodontitis causes an increase in the levels of serum LDL or an increased LDL is a risk factor for both periodontitis and cardiovascular disease. Keywords: Cardiovascular disease, LDL cholesterol, periodontitis.

  4. Effect of a hypocaloric diet on serum visfatin in obese non-diabetic patients.

    Science.gov (United States)

    de Luis, Daniel A; Gonzalez Sagrado, Manuel; Conde, Rosa; Aller, Rocio; Izaola, Olatz; Romero, Enrique

    2008-06-01

    Obesity and insulin resistance are associated with classic and new cardiovascular risk factors, such as inflammatory markers and adipocytokines. The aim of this study was to examine whether weight reduction could change visfatin serum concentrations in obese patients. This was an interventional longitudinal study analyzing a population of 80 obese non-diabetic outpatients. Weight, blood pressure, fasting serum glucose, C-reactive protein, plasma insulin, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triacylglycerols, and insulin resistance (homeostatic model assessment) were measured before and after 3 mo on a hypocaloric diet. Eighty patients were enrolled. The mean age was 46.7 +/- 16.7 y, the mean body mass index was 34.1 +/- 4.8 kg/m(2), with 20 men (25%) and 60 women (75%). After 3 mo on a hypocaloric diet, body mass index, fat mass, waist circumference, systolic blood pressure, fasting serum glucose, total cholesterol, and low-density lipoprotein cholesterol decreased. The serum concentration of visfatin decreased with weight loss (112.14 +/- 70.2 versus 99.4 +/- 58.1 ng/mL, P hypocaloric diet is associated with a significant decrease in circulating serum concentrations of the novel adipokine visfatin in obese subjects. Visfatin is inversely correlated with age.

  5. Cholesterol Absorption and Synthesis in Vegetarians and Omnivores.

    Science.gov (United States)

    Lütjohann, Dieter; Meyer, Sven; von Bergmann, Klaus; Stellaard, Frans

    2018-03-01

    Vegetarian diets are considered health-promoting; however, a plasma cholesterol lowering effect is not always observed. We investigate the link between vegetarian-diet-induced alterations in cholesterol metabolism. We study male and female omnivores, lacto-ovo vegetarians, lacto vegetarians, and vegans. Cholesterol intake, absorption, and fecal sterol excretion are measured as well as plasma concentrations of cholesterol and noncholesterol sterols. These serve as markers for cholesterol absorption, synthesis, and catabolism. The biliary cholesterol secretion rate is estimated. Flux data are related to body weight. Individual vegetarian diet groups are statistically compared to the omnivore group. Lacto vegetarians absorb 44% less dietary cholesterol, synthesized 22% more cholesterol, and show no differences in plasma total and LDL cholesterol. Vegan subjects absorb 90% less dietary cholesterol, synthesized 35% more cholesterol, and have a similar plasma total cholesterol, but a 13% lower plasma LDL cholesterol. No diet-related differences in biliary cholesterol secretion and absorption are observed. Total cholesterol absorption is lower only in vegans. Total cholesterol input is similar under all vegetarian diets. Unaltered biliary cholesterol secretion and higher cholesterol synthesis blunt the lowered dietary cholesterol intake in vegetarians. LDL cholesterol is significantly lower only in vegans. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Estimation of Serum Triglycerides, Serum Cholesterol, Total Protein, IgG Levels in Chronic Periodontitis Affected Elderly Patients: A Cross-Sectional Study

    Science.gov (United States)

    Saravanan, A. V.; Ravishankar, P. L.; Kumar, Pradeep; Rajapandian, K.; Kalaivani, V.; Rajula, M. Prem Blaisie

    2017-01-01

    Aim: The present study was conducted to evaluate the serum triglycerides, serum cholesterol, total protein, and IgG levels in elderly patients who were affected by periodontal disease. Materials and Methods: This study was conducted at the Rajah Muthiah Dental College and Hospital in the periodontics division. The study was conducted for a period of 3 months. This study is a prospective analytical study. Sixty individuals who were systemically healthy in the age group of 50 and above were included in this study. Control and experimental groups of 30 participants each were included. Plaque index, gingival index, probing pocket depth, and clinical attachment loss were recorded. Biochemical parameters such as serum cholesterol, serum triglycerides, total protein, and IgG levels were also evaluated and correlated with the periodontal parameters. Data was analyzed using SPSS version 16.0 (IBM Corp., Armonk, NY). The relationship between periodontal status and the biochemical parameters such as serum cholesterol, serum triglycerides, total protein, and IgG levels were evaluated by Student's t-test. Results: There was no significant difference in the plaque and gingival scores between the experimental and control group. It was observed that serum cholesterol level and total protein level was lower in participants suffering from chronic periodontitis. Triglycerides level was significantly elevated in the experimental group. IgG, a level which is not significant, concluded that there is no difference in control and experimental group. Conclusion: It was concluded from the results obtained from the study that there is an association between serum triglycerides, serum cholesterol, total protein, and periodontal disease. However, further longitudinal and well-controlled studies are required to evaluate the relationship between these biochemical parameters and periodontal disease. PMID:28462181

  7. Plant sterols for adults with hypercholesterolemia treated with or without medication (statins

    Directory of Open Access Journals (Sweden)

    Raquel Bernácer

    2015-07-01

    Full Text Available Hypercholesterolemia is the most common coronary risk factor among the Spanish population; 37.4% of the Spanish adult population have cholesterol levels between 190 and 240 mg/dl. Foods enriched with plant sterols (PS can effectively reduce plasma cholesterol in patients with high levels. However, its effectiveness and safety in adults with moderate hypercholesterolemia who are on medication (statins or not has been less studied. The aim of this review is to establish the possible role of plant sterols in the control of hypercholesterolemia, as well as how safe they are for people with moderate hypercholesterolemia treated with statins. The main studies were looked at, regardless of design, language or publication date which studied the connection between “plant sterols” and “hypercholesterolemia”, using Pubmed/Medline, SCOPUS and Google Scholar databases. The studies brought together in this review show that an intake of between 2 and 3g/day of plant sterols effectively reduces plasma cholesterol levels in patients with hypercholesterolemia. Both clinical studies and available meta-analyses do not indicate any problems related to the drug-nutrient interaction associated with the use of plant sterol-enriched foods. In patients with moderate hypercholesterolemia where the use of statins is not justified a healthy diet, exercise and foods high in PS can provide the best therapeutic approach.

  8. Synthesis of Hydroxylated Sterols in Transgenic Arabidopsis Plants Alters Growth and Steroid Metabolism1[C][W][OA

    Science.gov (United States)

    Beste, Lisa; Nahar, Nurun; Dalman, Kerstin; Fujioka, Shozo; Jonsson, Lisbeth; Dutta, Paresh C.; Sitbon, Folke

    2011-01-01

    To explore mechanisms in plant sterol homeostasis, we have here increased the turnover of sterols in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum) plants by overexpressing four mouse cDNA encoding cholesterol hydroxylases (CHs), hydroxylating cholesterol at the C-7, C-24, C-25, or C-27 positions. Compared to the wild type, the four types of Arabidopsis transformant showed varying degrees of phenotypic alteration, the strongest one being in CH25 lines, which were dark-green dwarfs resembling brassinosteroid-related mutants. Gas chromatography-mass spectrometry analysis of extracts from wild-type Arabidopsis plants revealed trace levels of α and β forms of 7-hydroxycholesterol, 7-hydroxycampesterol, and 7-hydroxysitosterol. The expected hydroxycholesterol metabolites in CH7-, CH24-, and CH25 transformants were identified and quantified using gas chromatography-mass spectrometry. Additional hydroxysterol forms were also observed, particularly in CH25 plants. In CH24 and CH25 lines, but not in CH7 ones, the presence of hydroxysterols was correlated with a considerable alteration of the sterol profile and an increased sterol methyltransferase activity in microsomes. Moreover, CH25 lines contained clearly reduced levels of brassinosteroids, and displayed an enhanced drought tolerance. Equivalent transformations of potato plants with the CH25 construct increased hydroxysterol levels, but without the concomitant alteration of growth and sterol profiles observed in Arabidopsis. The results suggest that an increased hydroxylation of cholesterol and/or other sterols in Arabidopsis triggers compensatory processes, acting to maintain sterols at adequate levels. PMID:21746809

  9. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake

    Science.gov (United States)

    Yang, Muhua; Liu, Weidong; Pellicane, Christina; Sahyoun, Christine; Joseph, Biny K.; Gallo-Ebert, Christina; Donigan, Melissa; Pandya, Devanshi; Giordano, Caroline; Bata, Adam; Nickels, Joseph T.

    2014-01-01

    Dysregulation of cholesterol homeostasis is associated with various metabolic diseases, including atherosclerosis and type 2 diabetes. The sterol response element binding protein (SREBP)-2 transcription factor induces the expression of genes involved in de novo cholesterol biosynthesis and low density lipoprotein (LDL) uptake, thus it plays a crucial role in maintaining cholesterol homeostasis. Here, we found that overexpressing microRNA (miR)-185 in HepG2 cells repressed SREBP-2 expression and protein level. miR-185-directed inhibition caused decreased SREBP-2-dependent gene expression, LDL uptake, and HMG-CoA reductase activity. In addition, we found that miR-185 expression was tightly regulated by SREBP-1c, through its binding to a single sterol response element in the miR-185 promoter. Moreover, we found that miR-185 expression levels were elevated in mice fed a high-fat diet, and this increase correlated with an increase in total cholesterol level and a decrease in SREBP-2 expression and protein. Finally, we found that individuals with high cholesterol had a 5-fold increase in serum miR-185 expression compared with control individuals. Thus, miR-185 controls cholesterol homeostasis through regulating SREBP-2 expression and activity. In turn, SREBP-1c regulates miR-185 expression through a complex cholesterol-responsive feedback loop. Thus, a novel axis regulating cholesterol homeostasis exists that exploits miR-185-dependent regulation of SREBP-2 and requires SREBP-1c for function. PMID:24296663

  10. Preliminary evaluation of serum total cholesterol concentrations in dogs with osteosarcoma.

    Science.gov (United States)

    Leeper, H; Viall, A; Ruaux, C; Bracha, S

    2017-10-01

    To determine if total serum cholesterol concentrations were altered in dogs with osteosarcoma. To evaluate association of total serum cholesterol concentration with clinical outcomes in dogs with appendicular osteosarcoma. Retrospective, multi-institutional study on 64 dogs with osteosarcoma. Control population consisted of dogs with traumatic bone fractures (n=30) and healthy patients of similar age and weight as those of the osteosarcoma cases (n=31). Survival analysis was done on 35 appendicular osteosarcoma patients that received the current standard of care. Statistical associations were assessed by univariable and multi-variable analysis. Information about age, sex, primary tumour location, total cholesterol concentration, monocytes and lymphocyte counts and alkaline phosphatase were also included. Total cholesterol was elevated above the reference interval (3·89 to 7·12 mmol/L) (150 to 275 mg/dL) in 29 of 64 (45·3%) osteosarcoma-bearing dogs, whereas similar elevations were found in only 3 of 30 (10%) fracture controls (Posteosarcoma. These results suggest that elevated total cholesterol is associated with canine osteosarcoma and may have prognostic significance. © 2017 British Small Animal Veterinary Association.

  11. Normal Non-HDL Cholesterol, Low Total Cholesterol, and HDL Cholesterol Levels in Sickle Cell Disease Patients in the Steady State: A Case-Control Study of Tema Metropolis.

    Science.gov (United States)

    Ephraim, Richard K D; Adu, Patrick; Ake, Edem; Agbodzakey, Hope; Adoba, Prince; Cudjoe, Obed; Agoni, Clement

    2016-01-01

    Background. Abnormal lipid homeostasis in sickle cell disease (SCD) is characterized by defects in plasma and erythrocyte lipids and may increase the risk of cardiovascular disease. This study assessed the lipid profile and non-HDL cholesterol level of SCD patients. Methods. A hospital-based cross-sectional study was conducted in 50 SCD patients, in the steady state, aged 8-28 years, attending the SCD clinic, and 50 healthy volunteers between the ages of 8-38 years. Serum lipids were determined by enzymatic methods and non-HDL cholesterol calculated by this formula: non-HDL-C = TC-HDL-C. Results. Total cholesterol (TC) ( p = 0.001) and high-density lipoprotein cholesterol (HDL-C) ( p < 0.0001) were significantly decreased in cases compared to controls. The levels of non-HDL-C, low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) were similar among the participants. The levels of decrease in TC and HDL were associated with whether a patient was SCD-SS or SCD-SC. Systolic blood pressure and diastolic blood pressure were each significantly associated with increased VLDL [SBP, p = 0.01, OR: 0.74 (CI: 0.6-0.93); DBP, p = 0.023, OR: 1.45 (CI: 1.05-2.0)]. Conclusion. Dyslipidemia is common among participants in this study. It was more pronounced in the SCD-SS than in SCD-SC. This dyslipidemia was associated with high VLDL as well as increased SBP and DBP.

  12. Synthesis and characterization of a novel rhodamine labeled cholesterol reporter.

    Science.gov (United States)

    Maiwald, Alexander; Bauer, Olivia; Gimpl, Gerald

    2017-06-01

    We introduce the novel fluorescent cholesterol probe RChol in which a sulforhodamine group is linked to the sixth carbon atom of the steroid backbone of cholesterol. The same position has recently been selected to generate the fluorescent reporter 6-dansyl-cholestanol (DChol) and the photoreactive 6-azi-cholestanol. In comparison with DChol, RChol is brighter, much more photostable, and requires less energy for excitation, i.e. favorable conditions for microscopical imaging. RChol easily incorporates into methyl-β-cyclodextrin forming a water-soluble inclusion complex that acts as an efficient sterol donor for cells and membranes. Like cholesterol, RChol possesses a free 3'OH group, a prerequisite to undergo intracellular esterification. RChol was also able to support the growth of cholesterol auxotrophic cells and can therefore substitute for cholesterol as a major component of the plasma membrane. According to subcellular fractionation, slight amounts of RChol (~12%) were determined in low-density Triton-insoluble fractions whereas the majority of RChol was localized in non-rafts fractions. In phase-separated giant unilamellar vesicles, RChol preferentially partitions in liquid-disordered membrane domains. Intracellular RChol was transferred to extracellular sterol acceptors such as high density lipoproteins in a dose-dependent manner. Unlike DChol, RChol was not delivered to the cholesterol storage pathway. Instead, it translocated to endosomes/lysosomes with some transient contacts to peroxisomes. Thus, RChol is considered as a useful probe to study the endosomal/lysosomal pathway of cholesterol. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Mass fragmentographic analysis of total cholesterol in serum using a heptadeuterated internal standard

    International Nuclear Information System (INIS)

    Wolthers, B.G.; Hindriks, F.R.; Muskiet, F.A.J.; Groen, A.

    1980-01-01

    A mass fragmentographic method for the determination of total cholesterol in serum using heptadeuterated [25,26,26,26,27,27,27- 2 H] cholesterol as internal standard is presented. The results obtained are compared with a colorimetric and gas chromatographic method which were previously proposed as reference methods. Criteria for the development of absolute measurement by means of mass fragmentography and stable isotopically labelled internal standards are given. The conclusion is drawn that, at present, mass fragmentographic methods for the determination of total cholesterol in serum do not fulfil the criteria required for absolute methods. (Auth.)

  14. Steryl ester synthesis, storage and hydrolysis: A contribution to sterol homeostasis.

    Science.gov (United States)

    Korber, Martina; Klein, Isabella; Daum, Günther

    2017-12-01

    Sterols are essential lipids of all eukaryotic cells, appearing either as free sterols or steryl esters. Besides other regulatory mechanisms, esterification of sterols and hydrolysis of steryl esters serve to buffer both an excess and a lack of free sterols. In this review, the esterification process, the storage of steryl esters and their mobilization will be described. Several model organisms are discussed but the focus was set on mammals and the yeast Saccharomyces cerevisiae. The contribution of imbalanced cholesterol homeostasis to several human diseases, namely Wolman disease, cholesteryl ester storage disease, atherosclerosis and Alzheimer's disease, Niemann-Pick type C and Tangier disease is described. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Non-high-density lipoprotein cholesterol on the risks of stroke: a result from the Kailuan study.

    Directory of Open Access Journals (Sweden)

    Jianwei Wu

    Full Text Available AIMS: To prospectively explore the association between non-high-density lipoprotein cholesterol (non-HDLC and the risks of stroke and its subtypes. METHODS: A total of 95,916 participants (18-98 years old; 76,354 men and 19,562 women from a Chinese urban community who were free of myocardial infarction and stroke at baseline time point (2006-2007 were eligible and enrolled in the study. The serum non-HDLC levels of participants were determined by subtracting the high-density lipoprotein cholesterol (HDLC from total serum cholesterol. The primary outcome was the first occurrence of stroke, which was diagnosed according to the World Health Organization criteria and classified into three subtypes: ischemic stroke, intracerebral hemorrhage, or subarachnoid hemorrhage. The Cox proportional hazards models were used to estimate risk of stroke and its subtypes. RESULTS: During the four-year follow-up, we identified 1614 stroke events (1,156 ischemic, 416 intracerebral hemorrhagic and 42 subarachnoid hemorrhagic. Statistical analyses showed that hazard ratios (HR (95% Confidence Interval: CI of serum Non-HDLC level for total and subtypes of stroke were: 1.08 (1.03-1.12 (total, 1.10 (1.05-1.16 (ischemic, 1.03 (0.96-1.10 (intracerebral hemorrhage and 0.83 (0.66-1.05 (subarachnoid hemorrhage. HR for non-HDLC refers to the increase per each 20 mg/dl. For total and ischemic stroke, the risks were significantly higher in the fourth and fifth quintiles of non-HDLC concentrations compared to the first quintile after adjusting the confounding factors (total stroke: 4(th quintile HR=1.33 (1.12-1.59; 5(th quintile HR = 1.36 (1.15-1.62; ischemic stroke: 4(th quintile HR =1.34 (1.09-1.66; 5(th quintile HR = 1.53 (1.24-1.88. CONCLUSIONS: Our data suggest that serum non-HDLC level is an independent risk factor for total and ischemic stroke, and that higher serum non-HDLC concentrations are associated with increased risks for total stroke and ischemic stroke, but not

  16. Inhibition of serum cholesterol oxidation by dietary vitamin C and selenium intake in high fat fed rats.

    Science.gov (United States)

    Menéndez-Carreño, M; Ansorena, D; Milagro, F I; Campión, J; Martínez, J A; Astiasarán, I

    2008-04-01

    Cholesterol oxidation products (COPs) have been considered as specific in vivo markers of oxidative stress. In this study, an increased oxidative status was induced in Wistar rats by feeding them a high-fat diet (cafeteria diet). Another group of animals received the same diet supplemented with a combination of two different antioxidants, ascorbic acid (100 mg/kg rat/day) and sodium selenite (200 microg/kg rat/day) and a third group fed on a control diet. Total and individual COPs analysis of the different diets showed no differences among them. At the end of the experimental trial, rats were sacrificed and serum cholesterol, triglycerides and COPs were measured. None of the diets induced changes in rats body weight, total cholesterol and triglycerides levels. Serum total COPs in rats fed on the high-fat diet were 1.01 microg/ml, two times the amount of the control rats (0.47 microg/ml). When dietary antioxidant supplementation was given, serum total COPs concentration (0.44 microg/ml) showed the same levels than those of the rats on control diet. 7beta-hydroxycholesterol, formed non-enzymatically via cholesterol peroxidation in the presence of reactive oxygen species, showed slightly lower values in the antioxidant-supplemented animals compared to the control ones. This study confirms the importance of dietary antioxidants as protective factors against the formation of oxysterols.

  17. Total cholesterol in serum determined by isotope dilution/mass spectrometry, with liquid-chromatographic separation

    International Nuclear Information System (INIS)

    Takatsu, Akiko; Nishi, Sueo

    1988-01-01

    We describe an accurate, precise method for determination of total serum cholesterol by isotope dilution/mass spectrometry (IDMS) with liquid chromatographic separation. After adding [3,4- 13 C] cholesterol to serum and hydrolyzing the cholesterol esters, we extract the total cholesterol. High-performance liquid chromatography (HPLC) is used to separate the extracted cholesterol for measurement by electron-impact mass spectrometry with use of a direct-insertion device. To evaluate the specificity and the accuracy of this method, we also studied the conventional IDMS method, which involves converting cholesterol to the trimethylsilyl ether and assay by gas chromatography-mass spectrometry with use of a capillary column. The coefficient of variation for the HPLC method was a little larger than for the conventional method, but mean values by each method agreed within 1% for all sera tested. (author)

  18. Effect of Ascorbic Acid on Serum Cholesterol Levels and on Die ...

    African Journals Online (AJOL)

    1974-06-12

    Jun 12, 1974 ... Myasnikova' was the first to show that vitamin Chad the ability to influence ~erum cholesterol levels of patients. She observed that the intravenous administration of high doses of vitamin C to patients with high levels of serum cholesterol resulted in a distinct decrease, whereas in patients with low values it ...

  19. Higher Total Serum Cholesterol Levels Are Associated With Less Severe Strokes and Lower All-Cause Mortality

    DEFF Research Database (Denmark)

    Olsen, Tom Skyhøj; Christensen, Rune Haubo Bojesen; Kammersgaard, Lars

    2007-01-01

    Background and Purpose - Evidence of a causal relation between serum cholesterol and stroke is inconsistent. We investigated the relation between total serum cholesterol and both stroke severity and poststroke mortality to test the hypothesis that hyperch....

  20. Cholesterol homeostasis in two commonly used human prostate cancer cell-lines, LNCaP and PC-3.

    Directory of Open Access Journals (Sweden)

    James Robert Krycer

    2009-12-01

    Full Text Available Recently, there has been renewed interest in the link between cholesterol and prostate cancer. It has been previously reported that in vitro, prostate cancer cells lack sterol-mediated feedback regulation of the major transcription factor in cholesterol homeostasis, sterol-regulatory element binding protein 2 (SREBP-2. This could explain the accumulation of cholesterol observed in clinical prostate cancers. Consequently, perturbed feedback regulation to increased sterol levels has become a pervasive concept in the prostate cancer setting. Here, we aimed to explore this in greater depth.After altering the cellular cholesterol status in LNCaP and PC-3 prostate cancer cells, we examined SREBP-2 processing, downstream effects on promoter activity and expression of SREBP-2 target genes, and functional activity (low-density lipoprotein uptake, cholesterol synthesis. In doing so, we observed that LNCaP and PC-3 cells were sensitive to increased sterol levels. In contrast, lowering cholesterol levels via statin treatment generated a greater response in LNCaP cells than PC-3 cells. This highlighted an important difference between these cell-lines: basal SREBP-2 activity appeared to be higher in PC-3 cells, reducing sensitivity to decreased cholesterol levels.Thus, prostate cancer cells are sensitive to changing sterol levels in vitro, but the extent of this regulation differs between prostate cancer cell-lines. These results shed new light on the regulation of cholesterol metabolism in two commonly used prostate cancer cell-lines, and emphasize the importance of establishing whether or not cholesterol homeostasis is perturbed in prostate cancer in vivo.

  1. Structural requirements of cholesterol for binding to Vibrio cholerae hemolysin.

    Science.gov (United States)

    Ikigai, Hajime; Otsuru, Hiroshi; Yamamoto, Koichiro; Shimamura, Tadakatsu

    2006-01-01

    Cholesterol is necessary for the conversion of Vibrio cholerae hemolysin (VCH) monomers into oligomers in liposome membranes. Using different sterols, we determined the stereochemical structures of the VCH-binding active groups present in cholesterol. The VCH monomers are bound to cholesterol, diosgenin, campesterol, and ergosterol, which have a hydroxyl group at position C-3 (3betaOH) in the A ring and a C-C double bond between positions C-5 and C-6 (C-C Delta(5)) in the B ring. They are not bound to epicholesterol and dihydrocholesterol, which form a covalent link with a 3alphaOH group and a C-C single bond between positions C-5 and C-6, respectively. This result suggests that the 3betaOH group and the C-CDelta(5) bond in cholesterol are required for VCH monomer binding. We further examined VCH oligomer binding to cholesterol. However, this oligomer did not bind to cholesterol, suggesting that the disappearance of the cholesterol-binding potential of the VCH oligomer might be a result of the conformational change caused by the conversion of the monomer into the oligomer. VCH oligomer formation was observed in liposomes containing sterols with the 3betaOH group and the C-C Delta(5) bond, and it correlated with the binding affinity of the monomer to each sterol. Therefore, it seems likely that monomer binding to membrane sterol leads to the assembly of the monomer. However, since oligomer formation was induced by liposomes containing either epicholesterol or dihydrocholesterol, the 3betaOH group and the C-C Delta(5) bond were not essential for conversion into the oligomer.

  2. The origin of fetal sterols in second-trimester amniotic fluid : endogenous synthesis or maternal-fetal transport?

    NARCIS (Netherlands)

    Baardman, Maria E.; Erwich, Jan Jaap H. M.; Berger, Rolf M. F.; Hofstra, Robert M. W.; Kerstjens-Frederikse, Wilhelmina S.; Luetjohann, Dieter; Plosch, Torsten; Lutjohann, D.

    OBJECTIVE: Cholesterol is crucial for fetal development. To gain more insight into the origin of the fetal cholesterol pool in early human pregnancy, we determined cholesterol and its precursors in the amniotic fluid of uncomplicated, singleton human pregnancies. STUDY DESIGN: Total sterols were

  3. Changes in cholesterol content and fatty acid composition of serum lipid in irradiated rat

    International Nuclear Information System (INIS)

    Ohashi, Shigeru

    1979-01-01

    The effect of a single dose of whole body irradiation on the serum cholesterol content and fatty acid composition of serum lipids in rats was investigated. A change in the fatty acid composition of liver lipids was also observed. After 600 rad of irradiation, the cholesterol content increased, reached a maximum 3 days after irradiation, and then decreased. After irradiation, an increase in cholesterol content and a marked decrease in triglyceride content were observed, bringing about a change in the amount of total serum lipids. The fatty acid compositions of normal and irradiated rat sera were compared. The relative percentages of palmitic and oleic acids in total lipids decreased while those of stearic and arachidonic acids increased. Serum triglyceride had trace amounts of arachidonic acid and the unsaturated fatty acid component decreased after irradiation. On the other hand, unsaturated fatty acid in cholesterol ester increased after irradiation, while linoleic and arachidonic acids made up 29% and 22% in the controls and 17% and 61% after irradiation, respectively. The fatty acid composition of total liver lipids after irradiation showed a decrease in palmitic and oleic acids and an increase in stearic and arachidonic acids, the same trend as observed in serum lipid fatty acid. Liver cholesterol ester showed trace amounts of linoleic and arachidonic acids and an increase in short-chain fatty acid after irradiation. The major component of serum phospholipids was phosphatidylcholine while palmitostearyl lecithine and unsaturated fatty acid were minor components. Moreover, phosphatidylcholine and phosphatidylethanolamine were the major components of liver phospholipids, having highly unsaturated fatty acids. The changes in fatty acid composition were similar to the changes in total phospholipids. (J.P.N.)

  4. Evaluation of Cholesterol-lowering Activity of Standardized Extract of Mangifera indica in Albino Wistar Rats.

    Science.gov (United States)

    Gururaja, G M; Mundkinajeddu, Deepak; Kumar, A Senthil; Dethe, Shekhar Michael; Allan, J Joshua; Agarwal, Amit

    2017-01-01

    Cholesterol lowering activity of Mangifera indica L. has been determined by earlier researchers and kernel, leaf and bark have shown significant activity. However, the specific cholesterol lowering activity of leaf methanol extract has not been determined. The present study involved evaluation of cholesterol lowering potential of methanol extract of M. indica leaves using high cholesterol diet model in albino Wistar rats. The acute oral toxicity at a dose of 5000 mg/ kg body weight was also determined in female albino Wistar rats. Phytoconstituents Iriflophenone 3-C-β-D-glucoside and mangiferin were quantified in methanol extracts of different varieties of mango leaves using high performance liquid chromatography. Significant cholesterol lowering activity was observed with methanol extract of M. indica leaves, at dose of 90 mg/kg body weight in rats and it was also found to be safe at dose of 5000 mg/kg rat body. Iriflophenone 3-C-β-D-glucoside and mangiferin were found to be in the range of 1.2 to 2.8% w/w and 3.9 to 4.6% w/w, respectively which along with 3 β taraxerol and other sterols could be contributing to the cholesterol lowering activity of mango leaves extract. The phytosterols rich extract of Mangifera indica leaves is a good source of nutraceutical ingredient that have the potential to lower serum cholesterol levels. The Mangifera indica leaves methanolic extract showed significant cholesterol lowering activity in high cholesterol diet induced hypercholesterolaemia model in rats when evaluated at a dose of 90 mg/kg rat body weight. The extract was found to contain Iriflophenone 3-C-β-D-glucoside and mangiferin which along with 3 β taraxerol and other sterols could be contributing to the cholesterol lowering activity.

  5. Evaluation of Sample Handling Effects on Serum Vitamin E and Cholesterol Concentrations in Alpacas

    Directory of Open Access Journals (Sweden)

    Andrea S. Lear

    2014-01-01

    Full Text Available Clinical cases of vitamin E deficiencies have been diagnosed in camelids and may indicate that these species are more sensitive to inadequate vitamin E in hay-based diets compared to other ruminant and equine species. In bovine, cholesterol has been reported to affect vitamin E concentrations. In order to evaluate vitamin E deficiencies in camelids, the effects of collection and storage of the blood samples prior to processing were necessary. Reports vary as to factors affecting vitamin E and cholesterol in blood samples, and diagnostic laboratories vary in instructions regarding sample handling. Blood was collected from healthy alpacas and processed under conditions including exposure to fluorescent light, serum and red blood cell contact, tube stopper contact, temperature, and hemolysis. Serum vitamin E and cholesterol concentrations were then measured. Statistical analyses found that the vitamin E concentrations decreased with prolonged contact with the tube stopper and with increasing hemolysis. Vitamin E concentration variations were seen with other factors but were not significant. Time prior to serum separation and individual animal variation was found to alter cholesterol concentrations within the sample, yet this finding was clinically unremarkable. No correlation was seen between vitamin E and cholesterol concentration, possibly due to lack of variation of cholesterol.

  6. Astragalus polysaccharides lowers plasma cholesterol through mechanisms distinct from statins.

    Directory of Open Access Journals (Sweden)

    Yunjiu Cheng

    Full Text Available To determine the efficacy and underlying mechanism of Astragalus polysaccharides (APS on plasma lipids in hypercholesterolemia hamsters. The effect of APS (0.25 g/kg/d on plasma and liver lipids, fecal bile acids and neutral sterol, cholesterol absorption and synthesis, HMG-CoA reductase activity, and gene and protein expressions in the liver and small intestine was investigated in twenty-four hypercholesterolemia hamsters. Treatment periods lasted for three months. APS significantly lowered plasma total cholesterol by 45.8%, triglycerides by 30%, and low-density lipoprotein-cholesterol by 47.4%, comparable to simvastatin. Further examinations revealed that APS reduced total cholesterol and triglycerides in the liver, increased fecal bile acid and neutral sterol excretion, inhibited cholesterol absorption, and by contrast, increased hepatic cholesterol synthesis and HMG-CoA reductase activity. Plasma total cholesterol or low-density lipoprotein-cholesterol levels were significantly correlated with cholesterol absorption rates. APS up-regulated cholesterol-7α-hydroxylase and LDL-receptor gene expressions. These new findings identify APS as a potential natural cholesterol lowering agent, working through mechanisms distinct from statins.

  7. Sex specific response in cholesterol level in zebrafish (Danio rerio) after long-term exposure of difenoconazole

    International Nuclear Information System (INIS)

    Mu, Xiyan; Wang, Kai; Chai, Tingting; Zhu, Lizhen; Yang, Yang; Zhang, Jie; Pang, Sen; Wang, Chengju; Li, Xuefeng

    2015-01-01

    Difenoconazole is a widely used triazole fungicide, its extensive application may potentially cause toxic effects on non-target organisms. To investigate the effect of difenoconazole on cholesterol content and related mechanism, adult zebrafish were exposed to environmental related dosage (0.1, 10 and 500 μg/L) difenoconazole. The body weight and hepatic total cholesterol (TCHO) level was tested at 7, 15 and 30 days post exposure (dpe). The expressions of eight cholesterol synthesis genes and one cholesterol metabolism gene were assessed via Quantitative PCR method. The significant decrease of TCHO level in male zebrafish liver was observed at 15 and 30 dpe, which was accompanied by apparent hepatic cholesterol-genesis genes expression decline. In comparison with males, female zebrafish showed different transcription modification of tested genes, and the cholesterol content maintain normal level during the whole exposure. - Highlights: • Difenoconazle could reduce TCHO level in male zebrafish liver. • Difenoconazole could inhibit sterol-genesis genes expression in male zebrafish. • Female zebrafish didn't show obvious change of TCHO level after exposure. • Difenoconazole could inhibit body weight of both male and female zebrafish. - Difenoconazle could reduce cholesterol level and sterol-genesis genes expression in male zebrafish. While female zebrafish showed no obvious cholesterol content change during exposure

  8. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells.

    Science.gov (United States)

    Rimmerman, Neta; Juknat, Ana; Kozela, Ewa; Levy, Rivka; Bradshaw, Heather B; Vogel, Zvi

    2011-08-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ(9)-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling. Here we proceeded to investigate the effects of CBD on the modulation of lipid-related genes in microglial cells. Cell viability was tested using FACS analysis, AEA levels were measured using LC/MS/MS, gene array analysis was validated with real-time qPCR, and cytokine release was measured using ELISA. We report that CBD significantly upregulated the mRNAs of the enzymes sterol-O-acyl transferase (Soat2), which synthesizes cholesteryl esters, and of sterol 27-hydroxylase (Cyp27a1). In addition, CBD increased the mRNA of the lipid droplet-associated protein, perilipin2 (Plin2). Moreover, we found that pretreatment of the cells with the cholesterol chelating agent, methyl-β-cyclodextrin (MBCD), reversed the CBD-induced increase in Soat2 mRNA but not in Plin2 mRNA. Incubation with AEA increased the level of Plin2, but not of Soat2 mRNA. Furthermore, MBCD treatment did not affect the reduction by CBD of the LPS-induced release of the proinflammatory cytokine IL-1β. CBD treatment modulates cholesterol homeostasis in microglial cells, and pretreatment with MBCD reverses this effect without interfering with CBD's anti-inflammatory effects. The effects of the CBD-induced increase in AEA accumulation on lipid-gene expression are discussed.

  9. The influence of sterol metabolism upon radiation-induced aneuploidy of Drosophila melanogaster in the yeast-drosophila system

    International Nuclear Information System (INIS)

    Savitsij, V.V.; Luchnikova, E.M.; Inge-Vechtomov, S.I.

    1985-01-01

    The influence of sterol metabolism upon induced Drosophila melanogaster mutagenesis in an ecology-genetic yeast-drosophila system has been studied. The sterol deficit in fly organism has been created for account of using as food substrate for fremales of biomass of saccharomyces cerevisiae living cells of 9-2-PZ12 train with nyssup(r1) locus mutation which blocks the ergosterol synthesis. It has been found that the Drosophila females content on mutant yeast increases the frequency of losses and non discrepancy of X-chromosomes induced by X-radiation (1000 R). Addition into yeast biomass of 0.1 % cholesterol solution in 10 %-ethanol reduces the oocytes resistance to X-radiation up to control level. Possible hormonal and membrane mechanisms of increasing radiation-induced aneuploidy of Drosophila and the role of sterol metabolism in organism resistance to damaging factors are discussed

  10. The major cellular sterol regulatory pathway is required for Andes virus infection.

    Directory of Open Access Journals (Sweden)

    Josiah Petersen

    2014-02-01

    Full Text Available The Bunyaviridae comprise a large family of RNA viruses with worldwide distribution and includes the pathogenic New World hantavirus, Andes virus (ANDV. Host factors needed for hantavirus entry remain largely enigmatic and therapeutics are unavailable. To identify cellular requirements for ANDV infection, we performed two parallel genetic screens. Analysis of a large library of insertionally mutagenized human haploid cells and a siRNA genomic screen converged on components (SREBP-2, SCAP, S1P and S2P of the sterol regulatory pathway as critically important for infection by ANDV. The significance of this pathway was confirmed using functionally deficient cells, TALEN-mediated gene disruption, RNA interference and pharmacologic inhibition. Disruption of sterol regulatory complex function impaired ANDV internalization without affecting virus binding. Pharmacologic manipulation of cholesterol levels demonstrated that ANDV entry is sensitive to changes in cellular cholesterol and raises the possibility that clinically approved regulators of sterol synthesis may prove useful for combating ANDV infection.

  11. Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-Ay mice

    Directory of Open Access Journals (Sweden)

    Beppu Fumiaki

    2012-09-01

    Full Text Available Abstract Background Fucoxanthin is a xanthophyll present in brown seaweeds and has several beneficial effects, including anti-obesity and anti-diabetic effects. However, we and another group previously observed that fucoxanthin increases serum cholesterol levels in rodents. Cholesterol is an important component of cell membranes and biosynthesis of bile acids. Serum cholesterol levels are also closely associated with atherosclerosis. Therefore, we sought to identify the mechanism underlying the increase in serum cholesterol levels by fucoxanthin. Methods Diabetic/obese KK-Ay mice were fed a diet containing 0.2% fucoxanthin for 4 weeks. The mice were sacrificed, and total blood samples were collected for the measurement of serum total cholesterol, HDL-cholesterol and non-HDL-cholesterol levels. Cholesterol content in tissues was also analyzed. Real-time PCR and Western blotting were performed to determine hepatic mRNA and protein expression of genes involved in cholesterol metabolism, respectively. Results Dietary fucoxanthin significantly increased serum HDL and non-HDL cholesterol levels, and reduced hepatic cholesterol content. In liver, the expression of SREBP1, SREBP2 and their target genes involved in cholesterol biosynthesis significantly increased and tended to increase in the fucoxanthin-fed mice, respectively. In contrast, hepatic levels of LDLR and SR-B1 proteins which is important factors for LDL-cholesterol and HDL-cholesterol uptake in the liver from serum, decreased to 60% and 80% in the fucoxanthin-fed mice, respectively, compared with the control mice. Further, we found that dietary fucoxanthin significantly increased the mRNA expression of proprotein convertase subtilisin/kexin type 9 (PCSK9, which enhances intracellular degradation of LDLR in lysosomes. Conclusions Fucoxanthin increased HDL-cholesterol and non-HDL-cholesterol levels in KK-Ay mice by inducing SREBP expression and reduced cholesterol uptake in the liver via

  12. Molecular interactions between bile salts, phospholipids and cholesterol : relevance to bile formation, cholesterol crystallization and bile salt toxicity

    NARCIS (Netherlands)

    Moschetta, Antonio

    2001-01-01

    Cholesterol is a nonpolar lipid dietary constituent, absorbed from the small intestine, transported in blood and taken up by the liver. In bile, the sterol is solubilized in mixed micelles by bile salts and phospholipids. In case of supersaturation, cholesterol is kept in vesicles with phospholipid

  13. Insig proteins mediate feedback inhibition of cholesterol synthesis in the intestine.

    Science.gov (United States)

    McFarlane, Matthew R; Liang, Guosheng; Engelking, Luke J

    2014-01-24

    Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes.

  14. Insig Proteins Mediate Feedback Inhibition of Cholesterol Synthesis in the Intestine*

    Science.gov (United States)

    McFarlane, Matthew R.; Liang, Guosheng; Engelking, Luke J.

    2014-01-01

    Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes. PMID:24337570

  15. Use of stable isotopes in the study of human cholesterol metabolism

    International Nuclear Information System (INIS)

    Virelizier, H.; Hagemann, R.

    1979-01-01

    An experimental procedure based on the use of stable isotopes spiked molecules of cholesterol, allows the measurement in faecal cholesterol of the relative parts coming from the plasma by transfer (deuterium spiked molecules), from the non absorbed alimentary cholesterol ( 13 C spiked molecules) and from the external intestinal secretion (not labelled way). The patient receive a dose of D 8 (2, 2', 3, 4, 4', 6, 7, 7') cholesterol intravenously and an oral dose of 3,4 13 C cholesterol. The plasmatic cholesterol transfer is calculated from the ratio of the measured dilutions of the faecal and plasmatic D 8 cholesterol. The non absorbed cholesterol is estimated from the percentage of 13 C cholesterol measured in the faecal sterols within the six days following the oral dose ingestion. The D 8 cholesterol dilutions are measured using the GC-MS technique on the trimethylsilyl derivatives of cholesterol. Dilutions up to 1/4000 can be measured. The 13 C enriched faecal cholesterol is converted into CO 2 and the 13 C/ 12 C ratios are measured on a dual collector mass spectrometer. Dilutions up to 1/5000 of the 3,4 13 C cholesterol can be detected. The details of the analytical procedure are given

  16. Sterols from the Lakshadweep sponge, Ircinia ramosa (Killer)

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Naik, C.G.; Das, B.; Kamat, S.Y.

    Four monohydroxy sterols, viz, (22E,24S)-24-methylcholest-5,22-dien-3(beta)-ol (3), cholesterol (4), 24(Xi)-ethylcholesterol (8) and the corresponding Delta super(4)-3 ketones, viz. (22E,24S)-24-methylcholest-4,22-dien-3-one (1), cholest-4-en-3-one...

  17. Expression and Chloroplast Targeting of Cholesterol Oxidase in Transgenic Tobacco Plants

    Science.gov (United States)

    Corbin, David R.; Grebenok, Robert J.; Ohnmeiss, Thomas E.; Greenplate, John T.; Purcell, John P.

    2001-01-01

    Cholesterol oxidase represents a novel type of insecticidal protein with potent activity against the cotton boll weevil (Anthonomus grandis grandis Boheman). We transformed tobacco (Nicotiana tabacum) plants with the cholesterol oxidase choM gene and expressed cytosolic and chloroplast-targeted versions of the ChoM protein. Transgenic leaf tissues expressing cholesterol oxidase exerted insecticidal activity against boll weevil larvae. Our results indicate that cholesterol oxidase can metabolize phytosterols in vivo when produced cytosolically or when targeted to chloroplasts. The transgenic plants exhibiting cytosolic expression accumulated low levels of saturated sterols known as stanols, and displayed severe developmental aberrations. In contrast, the transgenic plants expressing chloroplast-targeted cholesterol oxidase maintained a greater accumulation of stanols, and appeared phenotypically and developmentally normal. These results are discussed within the context of plant sterol distribution and metabolism. PMID:11457962

  18. Minor sterols from the sponge Ircinia ramosa (Killer)

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Naik, C.G.; Das, B.; Kamat, S.Y.

    Three sterols, isolated from the lipid fraction of the sponge Ircinia ramosa were characterised as cholest-5-en-3 beta-ol-7-one (7-oxo cholesterol, 1), cholest 5-23-dien-b beta ol-7-one (7-oxo demosterol, 2) and 24E-ethyl cholest-5-en-3 beta -ol-7...

  19. The mevalonate pathway in neurons: It's not just about cholesterol.

    Science.gov (United States)

    Moutinho, Miguel; Nunes, Maria João; Rodrigues, Elsa

    2017-11-01

    Cholesterol homeostasis greatly impacts neuronal function due to the essential role of this sterol in the brain. The mevalonate (MVA) pathway leads to the synthesis of cholesterol, but also supplies cells with many other intermediary molecules crucial for neuronal function. Compelling evidence point to a model in which neurons shutdown cholesterol synthesis, and rely on a shuttle derived from astrocytes to meet their cholesterol needs. Nevertheless, several reports suggest that neurons maintain the MVA pathway active, even with sustained cholesterol supply by astrocytes. Hence, in this review we focus not on cholesterol production, but rather on the role of the MVA pathway in the synthesis of particular intermediaries, namely isoprenoids, and on their role on neuronal function. Isoprenoids act as anchors for membrane association, after being covalently bound to proteins, such as most of the small guanosine triphosphate-binding proteins, which are critical to neuronal cell function. Based on literature, on our own results, and on the analysis of public transcriptomics databases, we raise the idea that in neurons there is a shift of the MVA pathway towards the non-sterol branch, responsible for isoprenoid synthesis, in detriment to post-squalene branch, and that this is ultimately essential for synaptic activity. Nevertheless new tools that facilitate imaging and the biochemical characterization and quantification of the prenylome in neurons and astrocytes are needed to understand the regulation of isoprenoid production and protein prenylation in the brain, and to analyze its differences on diverse physiological or pathological conditions, such as aging and neurodegenerative states. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Plasma-Serum Cholesterol Differences in Children and Use of Measurements from Different Specimens

    NARCIS (Netherlands)

    Berentzen, N.E.; Wijga, A.H.; Rossem, van L.; Jongste, de J.C.; Boshuizen, H.C.; Smit, H.A.

    2013-01-01

    Background: We aimed to assess absolute plasma-serum differences and differences in ranking of total cholesterol (TC), high-density lipoprotein cholesterol (HDLC), and TC/HDLC ratio in children. Methods: We analysed data of 412 children participating in a Dutch birth cohort. TC, HDLC, and TC/HDLC

  1. Modulation by geraniol of gene expression involved in lipid metabolism leading to a reduction of serum-cholesterol and triglyceride levels.

    Science.gov (United States)

    Galle, Marianela; Kladniew, Boris Rodenak; Castro, María Agustina; Villegas, Sandra Montero; Lacunza, Ezequiel; Polo, Mónica; de Bravo, Margarita García; Crespo, Rosana

    2015-07-15

    Geraniol (G) is a natural isoprenoid present in the essential oils of several aromatic plants, with various biochemical and pharmacologic properties. Nevertheless, the mechanisms of action of G on cellular metabolism are largely unknown. We propose that G could be a potential agent for the treatment of hyperlipidemia that could contribute to the prevention of cardiovascular disease. The aim of the present study was to advance our understanding of its mechanism of action on cholesterol and TG metabolism. NIH mice received supplemented diets containing 25, 50, and 75 mmol G/kg chow. After a 3-week treatment, serum total-cholesterol and triglyceride levels were measured by commercial kits and lipid biosynthesis determined by the [(14)C] acetate incorporated into fatty acids plus nonsaponifiable and total hepatic lipids of the mice. The activity of the mRNA encoding HMGCR-the rate-limiting step in cholesterol biosynthesis-along with the enzyme levels and catalysis were assessed by real-time RT-PCR, Western blotting, and HMG-CoA-conversion assays, respectively. In-silico analysis of several genes involved in lipid metabolism and regulated by G in cultured cells was also performed. Finally, the mRNA levels encoded by the genes for the low-density-lipoprotein receptor (LDLR), the sterol-regulatory-element-binding transcription factor (SREBF2), the very-low-density-lipoprotein receptor (VLDLR), and the acetyl-CoA carboxylase (ACACA) were determined by real-time RT-PCR. Plasma total-cholesterol and triglyceride levels plus hepatic fatty-acid, total-lipid, and nonsaponifiable-lipid biosynthesis were significantly reduced by feeding with G. Even though an up-regulation of the mRNA encoding HMGCR occurred in the G treated mouse livers, the protein levels and specific activity of the enzyme were both inhibited. G also enhanced the mRNAs encoding the LDL and VLDL receptors and reduced ACACA mRNA, without altering the transcription of the mRNA encoding the SREBF2. The following

  2. The intracellular cholesterol landscape: dynamic integrator of the immune response

    Science.gov (United States)

    Fessler, Michael B.

    2016-01-01

    Cholesterol has typically been considered an exogenous, disease-related factor in immunity; however, recent literature suggests that a paradigm shift is in order. Sterols are now recognized to ligate several immune receptors. Altered flux through the mevalonic acid synthesis pathway also appears to be a required event in the antiviral interferon response of macrophages and in the activation, proliferation, and differentiation of T cells. In this review, evidence is discussed that suggests an intrinsic, ‘professional’ role for sterols and oxysterols in macrophage and T cell immunity. Host defense may have been the original selection pressure behind the development of mechanisms for intracellular cholesterol homeostasis. Functional coupling between sterol metabolism and immunity has fundamental implications for health and disease. PMID:27692616

  3. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes.

    Science.gov (United States)

    Storey, Stephen M; McIntosh, Avery L; Huang, Huan; Landrock, Kerstin K; Martin, Gregory G; Landrock, Danilo; Payne, H Ross; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2012-04-15

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2/SCP-x/L-FABP null

  4. Quantification of sterol-specific response in human macrophages using automated imaged-based analysis.

    Science.gov (United States)

    Gater, Deborah L; Widatalla, Namareq; Islam, Kinza; AlRaeesi, Maryam; Teo, Jeremy C M; Pearson, Yanthe E

    2017-12-13

    The transformation of normal macrophage cells into lipid-laden foam cells is an important step in the progression of atherosclerosis. One major contributor to foam cell formation in vivo is the intracellular accumulation of cholesterol. Here, we report the effects of various combinations of low-density lipoprotein, sterols, lipids and other factors on human macrophages, using an automated image analysis program to quantitatively compare single cell properties, such as cell size and lipid content, in different conditions. We observed that the addition of cholesterol caused an increase in average cell lipid content across a range of conditions. All of the sterol-lipid mixtures examined were capable of inducing increases in average cell lipid content, with variations in the distribution of the response, in cytotoxicity and in how the sterol-lipid combination interacted with other activating factors. For example, cholesterol and lipopolysaccharide acted synergistically to increase cell lipid content while also increasing cell survival compared with the addition of lipopolysaccharide alone. Additionally, ergosterol and cholesteryl hemisuccinate caused similar increases in lipid content but also exhibited considerably greater cytotoxicity than cholesterol. The use of automated image analysis enables us to assess not only changes in average cell size and content, but also to rapidly and automatically compare population distributions based on simple fluorescence images. Our observations add to increasing understanding of the complex and multifactorial nature of foam-cell formation and provide a novel approach to assessing the heterogeneity of macrophage response to a variety of factors.

  5. Role of ATP in the regulation of cholesterol biogenesis

    International Nuclear Information System (INIS)

    Subba Rao, G.; Ramasarma, T.

    1974-01-01

    Intraperitoneal administration of glucose (4oomg/rat) stimulated the biogenesis of sterols in starved rats while citrate or pyruvate (20mg/rat) did not have any effect. ATP (10mg/ rat) administered intraperitoneally stimulated the incorporation of acetate-1- 14 C into sterols but not of mevalonate-2- 14 C into sterols in starved rats. The results indicate that ATP may play a role in regulating cholesterol biogenesis and it is not acting merely as an energy source. (author)

  6. Measurement of hepatic sterol synthesis in the Mongolian gerbil in vivo using [3H]water: diurnal variation and effect of type of dietary fat

    International Nuclear Information System (INIS)

    Mercer, N.J.; Holub, B.J.

    1981-01-01

    The hepatic synthesis of sterol was measured in the male Mongolian gerbil (Meriones unguiculatus) in vivo following the administration of [ 3 H]water by monitoring the incorporation of radioactivity into digitonin-precipitable sterol. A diurnal rhythm in cholesterol synthesis was exhibited under conditions of ad libitum feeding with alternating 12-hour periods of light (0200 to 1400 hr) and dark (1400 to 0200 hr). The zenith was reached between 1500 and 2100 hr and the nadir approximately 10-12 hours later between 0200 and 0400 hr, which provided a zenith/nadir ratio of 9.6 to 1.0. The in vivo rates of hepatic sterol synthesis and plasma cholesterol levels were measured in gerbils fed semi-purified diets containing either 19.5% beef tallow + 0.5% safflower, 20% lard, or 20% safflower oil and widely differing ratios of polyunsaturated: saturated fatty acids. All diets were equalized to contain 0.01% cholesterol and 0.05% plant sterol. After 3 days on the experimental diets, the mean rates of cholesterol synthesis (nmol/g liver per hr) were 41.5, 26.6, and 13.8 for animals fed the diets containing beef tallow, lard, and safflower oil, respectively. After 7 and 14 days, synthetic rates were lowest in the gerbils fed safflower oil as were also the plasma cholesterol levels. These results indicate that the type of dietary lipid can significantly influence the in vivo rate of sterol biosynthesis in gerbil liver. This response may contribute, at least in part, to the observed differences in plasma cholesterol levels

  7. Serum triglycerides and cholesterol status in patients with and without gestational diabetes mellitus

    International Nuclear Information System (INIS)

    Khan, S.H.; Tabassum, H.; Shahzad, S.

    2017-01-01

    To measure the differences of lipids including total cholesterol and triglycerides among subjects with or without GDM. Study Design: Cross sectional comparative study. Place and duration of study: This study was carried out between Dec 2010 to Jun 2012 at the department of gynecology and obstetrics Pakistan Naval Ship (PNS) Shifa and department of pathology, PNS Rahat. Material and Methods: Pregnant women who presented in outpatient department of gynaecology between 24-34 weeks of gestation were randomly selected, and were requested to undergo 100 Gm oral glucose tolerance test for diagnosis of gestational diabetes mellitus (GDM). A total of 93 pregnant women were included in the study. Afterwards they were divided in 2 groups on basis of presence and absence of GDM. Later all the patients were analyzed for total cholesterol and triglycerides. Results of triglycerides and total cholesterol were compared among subjects with or without GDM. Results: The differences for serum triglycerides and total cholesterol were not found to be significant among subject with or without gestational diabetes mellitus, where 0.05 was considered significant. Conclusion: There was no difference between serum triglyceride and total cholesterol levels among subjects with or without gestational diabetes mellitus. (author)

  8. Comparison of Serum Concentrations of Total Cholesterol and Total ...

    African Journals Online (AJOL)

    Tuberculosis (TB) is one of the most dangerous tropical diseases that complicates HIV infection in Nigeria to date. Over two million Nigerians are known to be infected with TB and many more are at risk of the infection. Serum concentrations of total cholesterol and total lipid of 117 female TB patients attending chest clinic at ...

  9. Activation of the human complement system by cholesterol-rich and pegylated liposomes - Modulation of cholesterol-rich liposome-mediated complement activation by elevated serum LDL and HDL levels

    DEFF Research Database (Denmark)

    Moghimi, S.M.; Hamad, I.; Bunger, R.

    2006-01-01

    level of S-protein-bound form of the terminal complex (SC5b-9). However, liposome-induced rise of SC5b-9 was significantly suppressed when serum HDL cholesterol levels increased by 30%. Increase of serum LDL to levels similar to that observed in heterozygous familial hypercholesterolemia also suppressed......Intravenously infused liposomes may induce cardiopulmonary distress in some human subjects, which is a manifestation of "complement activation-related pseudoallergy." We have now examined liposome-mediated complement activation in human sera with elevated lipoprotein (LDL and HDL) levels, since...... abnormal or racial differences in serum lipid profiles seem to modulate the extent of complement activation and associated adverse responses. In accordance with our earlier observations, cholesterol-rich (45 mol% cholesterol) liposomes activated human complement, as reflected by a significant rise in serum...

  10. Changes in Intestinal Gene Expression of Zebrafish (Danio rerio Related to Sterol Uptake and Excretion upon β-Sitosterol Administration

    Directory of Open Access Journals (Sweden)

    Mai Takase

    2018-01-01

    Full Text Available Replacement of fishmeal with plant ingredients will introduce not only plant oil and protein but also phytosterol to the fish diet. Mammals strictly restrict the uptake of phytosterol at intestinal epithelial cells by regulating the gene expressions of sterol uptake and excretion proteins; however, phytosterol is found in the fish muscle and other organs. In order to assess the ability of phytosterol uptake by the intestinal epithelial cells of fish, no-sterol diet, cholesterol-, and β-sitosterol-containing diet was separately administered to zebrafish, and the relative mRNA expressions related to sterol uptake and excretion were evaluated. Gene expression of Niemann-Pick C1-like protein 1 in the sitosterol-fed group was significantly higher than that of the cholesterol-fed group (p < 0.05. The expression of apolipoprotein A-I gene was also higher in the sitosterol-fed group than that in the no-sterol and cholesterol-fed groups. The expressions of ATP-binding cassette, sub-family G, member 5 and 8, were significantly higher in the sitosterol-fed group, compared to the no-sterol group. Regarding the gene expression of ATP-binding cassette sub-family A, member 1, the sitosterol-fed group showed higher expression level compared to the other groups (p < 0.01. These results suggest that fish should be tolerant to phytosterols in contrast to mammals.

  11. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor

    NARCIS (Netherlands)

    Zelcer, Noam; Hong, Cynthia; Boyadjian, Rima; Tontonoz, Peter

    2009-01-01

    Cellular cholesterol levels reflect a balance between uptake, efflux, and endogenous synthesis. Here we show that the sterol-responsive nuclear liver X receptor (LXR) helps maintain cholesterol homeostasis, not only through promotion of cholesterol efflux but also through suppression of low-density

  12. Cholesterol oxidation products and their biological importance

    DEFF Research Database (Denmark)

    Kulig, Waldemar; Cwiklik, Lukasz; Jurkiewicz, Piotr

    2016-01-01

    The main biological cause of oxysterols is the oxidation of cholesterol. They differ from cholesterol by the presence of additional polar groups that are typically hydroxyl, keto, hydroperoxy, epoxy, or carboxyl moieties. Under typical conditions, oxysterol concentration is maintained at a very low...... and precisely regulated level, with an excess of cholesterol. Like cholesterol, many oxysterols are hydrophobic and hence confined to cell membranes. However, small chemical differences between the sterols can significantly affect how they interact with other membrane components, and this in turn can have...

  13. Nanoscale Membrane Domain Formation Driven by Cholesterol

    DEFF Research Database (Denmark)

    Javanainen, Matti; Martinez-Seara, Hector; Vattulainen, Ilpo

    2017-01-01

    Biological membranes generate specific functions through compartmentalized regions such as cholesterol-enriched membrane nanodomains that host selected proteins. Despite the biological significance of nanodomains, details on their structure remain elusive. They cannot be observed via microscopic...... dipalmitoylphosphatidylcholine and cholesterol - the "minimal standard" for nanodomain formation. The simulations reveal how cholesterol drives the formation of fluid cholesterol-rich nanodomains hosting hexagonally packed cholesterol-poor lipid nanoclusters, both of which show registration between the membrane leaflets....... The complex nanodomain substructure forms when cholesterol positions itself in the domain boundary region. Here cholesterol can also readily flip-flop across the membrane. Most importantly, replacing cholesterol with a sterol characterized by a less asymmetric ring region impairs the emergence of nanodomains...

  14. Cafestol, the cholesterol-raising factor in boiled coffee, suppresses bile acid synthesis by downregulation of cholesterol 7α-hydroxylase and sterol 27-hydroxylase in rat hepatocytes

    NARCIS (Netherlands)

    Post, S.M.; Wit, E.C.M. de; Princen, H.M.G.

    1997-01-01

    Consumption of boiled coffee raises serum cholesterol levels in humans. The diterpenes cafestol and kahweol in boiled coffee have been found to be responsible for the increase. To investigate the biochemical background of this effect, we studied the effects of cafestol and a mixture of

  15. Biochemical characterization of cholesterol-reducing Eubacterium.

    OpenAIRE

    Mott, G E; Brinkley, A W; Mersinger, C L

    1980-01-01

    We characterized two isolates of cholesterol-reducing Eubacterium by conducting conventional biochemical tests and by testing various sterols and glycerolipids as potential growth factors. In media containing cholesterol and plasmenylethanolamine, the tests for nitrate reduction, indole production, and gelatin and starch hydrolyses were negative, and no acid was produced from any of 22 carbohydrates. Both isolates hydrolyzed esculin to esculetin, indicating beta-glycosidase activity. In addit...

  16. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    Directory of Open Access Journals (Sweden)

    Su-Myat Khine K

    2010-06-01

    Full Text Available Abstract Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD, Alzheimer's disease (AD, and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4 and plasmalogen sufficient (HEK293 cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA-containing ethanolamine plasmalogen (PlsEtn present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1 levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells.

  17. The photo biological effect of low level laser therapy on serum level of leptin, cholesterol and triglycerides in overweight and obese females

    International Nuclear Information System (INIS)

    Salem, E.S.; Tawfik, M.S.; Youssef, S.S.; Serry, Z.M.; Aboel magd, H.F.

    2013-01-01

    The use of low level laser for body contouring and weight reduction depends on the photochemical non thermal effect of laser light on the adipose tissue. LLLT was reported to liquefy or release stored fat in adipocytes by the opening of specialized yet not identified cell membrane-associated pores after a brief treatment The concentration of leptin in adipose tissue and serum closely parallel the mass of adipose tissue and adipocyte size and triglycerides content. Thus, leptin increases in obesity and falls with weight loss. The current study was conducted to evaluate the effect of the low level laser therapy (LLLT) on leptin hormone, Cholesterol and triglyceride in both overweight and obese females. Twenty women were included in this study. Their ages ranged from 30-40 years. They were divided into two equal groups. Group A (Overweight group): included 10 females with BMI between 25 and 29.9 Kg/m2 -Group B (Obese group): included 10 females with BMI . 30. Both groups received LLL to the abdomen using laser scanner for uniform distribution of the beam above and below the umbilicus. Duration of treatment was 30 minutes, 2 times per week for 8 weeks as a total period of treatment. Serum level of leptin was estimated by radioimmunoassay (RIA). As regards serum cholesterol and triglyceride they were determined by enzymatic colorimetric test. Biochemical assessments were done before and after treatment. Results of the present study showed that in the overweight group laser treatment resulted in highly significant reduction in leptin serum level accompanied by highly significant increase in serum triglycerides level. Meanwhile, the increase in cholesterol level was insignificant. As regards the obese group, alteration in serum leptin level caused by laser treatment was not significant. In this group the increase in triglycerides and cholesterol serum levels after treatment were highly significant

  18. Serum cholesterol, apolipoprotein E genotype and depressive symptoms in elderly European men: The FINE study

    NARCIS (Netherlands)

    Giltay, E.J.; Dortland, A.K.B.V.R.; Nissinen, A.; Giampaoli, S.; Veen, T.; Zitman, F.G.; Bots, S.; Kromhout, D.

    2009-01-01

    Background Cohort and case-control studies found that lower serum total cholesterol is associated with depression. It is, however, unclear whether low cholesterol or its lipoprotein fractions are causally related to depression. Using a Mendelian randomization design, the potential association

  19. Beneficial effect of low dose Amlodipine vs Nifedipine on serum cholesterol profile of rabbits receiving standard diet.

    Directory of Open Access Journals (Sweden)

    Bavane DS, Rajesh CS, Gurudatta Moharir, Bharatha Ambadasu

    2013-01-01

    Full Text Available To investigate the effect of low dose amlodipine v/s nifedipine on serum cholesterol profile of rabbits receiving standard diet. Methods: Fourty Newzealand rabbits were selected for the study. Their cholesterol profile was estimated at the beginning of the study. Rabbits were grouped into 4 groups receiving standard diet (control group, standard diet + vehicle propylene glycol, standard diet + nifedipine dissolved in propylene glycol and standard diet + amlodipine dissolved in propylene glycol. Along with standard diet they were treated with respective drugs for ten weeks. At the end of ten weeks serum cholesterol profile was estimated. Results: The cholesterol profile was estimated at the beginning and at the end of ten weeks. Total cholesterol in the amlodipine group decreased from 97±4.06 mg/dl to 90±4.2 mg/dl and HDL-Cholesterol increased from 32.01±4.40 mg/dl to 37±4.60 mg/dl after 10 week treatment but these changes were not significant. LDL cholesterol decreased significantly in rabbits with low dose of amlodipine from 55.42±3.32 mg/dl to 32.40±3.22 mg/dl and. In the nifedipine group there was a slight increase in total cholesterol from 102.49±5.16 mg/dl to 106±5.39 mg/dl, HDL cholesterol from 34.10±2.80 to 35.16±2.82 mg/dl and LDL cholesterol also increased from 56.20±2.20 mg/dl to 59.00±2.20 mg/dl after 10 week treatment. Conclusion: The study shows amlodipine produces favorable alterations in serum cholesterol profile

  20. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to 3 g/day plant sterols/stanols and lowering blood LDL-cholesterol and reduced risk of (coronary) heart disease pursuant to Article 19 of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    /2010 (yellow fat spreads, dairy products, mayonnaise and salad dressings) have a similar efficacy on blood LDL-cholesterol lowering, that plant sterols and stanol esters at a daily intake of 3 g (range 2.6 g to 3.4 g) plant sterols/stanols in matrices approved by Regulation (EC) No 376/2010 lower LDL...

  1. Oxidative demethylation of lanosterol in cholesterol biosynthesis: accumulation of sterol intermediates

    International Nuclear Information System (INIS)

    Shafiee, A.; Trzaskos, J.M.; Paik, Y.K.; Gaylor, J.L.

    1986-01-01

    With [ 3 H-24,25]-dihydrolanosterol as substrate, large-scale metabolic formation of intermediates of lanosterol demethylation was carried out to identify all compounds in the metabolic process. Utilizing knowledge of electron transport of lanosterol demethylation, we interrupted the demethylation reaction allowing accumulation and confirmation of the structure of the oxygenated intermediates lanost-8-en-3 beta,32-diol and 3 beta-hydroxylanost-8-en-32-al, as well as the demethylation product 4,4-dimethyl-cholesta-8,14-dien-3 beta-ol. Further metabolism of the delta 8.14-diene intermediate to a single product 4,4-dimethyl-cholest-8-en-3 beta-ol occurs under interruption conditions in the presence of 0.5 mM CN-1. With authentic compounds, each intermediate has been rigorously characterized by high performance liquid chromatography and gas-liquid chromatography plus mass spectral analysis of isolated and derivatized sterols. Intermediates that accumulated in greater abundance were further characterized by ultraviolet, 1 H-NMR, and infrared spectroscopy of the isolated sterols

  2. Measurement of rates of cholesterol synthesis using tritiated water

    International Nuclear Information System (INIS)

    Dietschy, J.M.; Spady, D.K.

    1984-01-01

    Rates of sterol synthesis in various tissues commonly are assessed by assaying levels of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase on isolated microsomes or by measuring the rates of incorporation of various 14 C-labeled substrates or [ 3 H]water into cholesterol by whole cell preparations in vitro or by the tissues of the whole animal in vivo. While measurement of activities of HMG-CoA reductase or rates of incorporation of 14 C-labeled substrates into cholesterol give useful relative rates of sterol production, neither method yields absolute rates of cholesterol synthesis. The use of [ 3 H]water circumvents the problem of variable and unknown dilution of the specific activity of the precursor pool encountered when 14 C-labeled substrates are used and does yield absolute rates of cholesterol synthesis provided that the 3 H/C incorporation ratio is known for a particular tissue. In 12 different experimental situations it has been found that from 21 to 27 micrograms atoms of 3 H are incorporated into cholesterol from [ 3 H]water in different tissues of several animal species, so that the 3 H/C incorporation ratio is similar under nearly all experimental conditions and varies from 0.78 to 1.00. When administered in vivo, [ 3 H]water rapidly equilibrates with intracellular water and is incorporated into sterols within the various organs at rates that are linear with respect to time. From such data it is possible to obtain absolute rates of cholesterol synthesis in the whole animal and in the various organs of the animal. Current data suggest, therefore, that use of [ 3 H]water yields the most accurate rates of cholesterol synthesis both in vitro and in vivo

  3. Sterol Regulation of Voltage-Gated K+ Channels.

    Science.gov (United States)

    Balajthy, Andras; Hajdu, Peter; Panyi, Gyorgy; Varga, Zoltan

    2017-01-01

    Cholesterol is an essential lipid building block of the cellular plasma membrane. In addition to its structural role, it regulates the fluidity and raft structure of the membrane and influences the course of numerous membrane-linked signaling pathways and the function of transmembrane proteins, including ion channels. This is supported by a vast body of scientific data, which demonstrates the modulation of ion channels with a great variety of ion selectivity, gating, and tissue distribution by changes in membrane cholesterol. Here, we review what is currently known about the modulation of voltage-gated K + (Kv) channels by changes in membrane cholesterol content, considering raft association of the channels, the roles of cholesterol recognition sites, and those of adaptor proteins in cholesterol-Kv channel interactions. We specifically focus on Kv1.3, the dominant K + channel of human T cells. Effects of cholesterol depletion and enrichment and 7-dehydrocholesterol enrichment on Kv1.3 gating are discussed in the context of the immunological synapse and the comparison of the in vitro effects of sterol modifications on Kv1.3 function with ex vivo effects on cells from hypercholesterolemic and Smith-Lemli-Opitz patients. © 2017 Elsevier Inc. All rights reserved.

  4. CYP7A1-rs3808607 and APOE isoform associate with LDL cholesterol lowering after plant sterol consumption in a randomized clinical trial.

    Science.gov (United States)

    MacKay, Dylan S; Eck, Peter K; Gebauer, Sarah K; Baer, David J; Jones, Peter Jh

    2015-10-01

    The benefits of plant sterols (PSs) for cholesterol lowering are hampered by large heterogeneity across individuals, potentially because of genetic polymorphisms. We investigated the impact of candidate genetic variations on cholesterol response to PSs in a trial that recruited individuals with high or low endogenous cholesterol synthesis, estimated by lathosterol to cholesterol (L:C) ratio. Mildly hypercholesterolemic adults preselected as possessing either high endogenous cholesterol synthesis (n = 24; mean ± SEM: L:C ratio = 2.03 ± 0.39 μmol/mmol) or low endogenous cholesterol synthesis (n = 39; mean ± SEM: L:C ratio = 0.99 ± 0.28 μmol/mmol) consumed 2 g PS/d or a placebo for 28 d by using a dual-center, single-blind, randomized crossover design. Cholesterol synthesis and change in cholesterol absorption were measured with stable isotopic tracers. Candidate single-nucleotide polymorphisms and apolipoprotein E (APOE) isoform were assessed by TaqMan genotyping assay. The cholesterol fractional synthesis rate was higher (P cholesterol synthesis (mean ± SEM: placebo: 9.16% ± 0.47%; PSs: 9.74% ± 0.47%) than in participants with low endogenous cholesterol synthesis (mean ± SEM placebo: 5.72% ± 0.43%; PS: 7.10% ± 0.43%). Low-density lipoprotein (LDL) cholesterol lowering in response to PSs was associated with individuals' genotypes. Cholesterol 7 alpha-hydroxylase (CYP7A1-rs3808607) T/T homozygotes showed no LDL cholesterol lowering (mean ± SEM: -0.05 ± 0.07 mmol/L, P = 0.9999, n = 20), whereas the presence of the G-allele associated with LDL cholesterol response in a dose-dependent fashion (mean ± SEM G/T: -0.22 ± 0.06 mmol/L, P = 0.0006, n = 35; G/G: -0.46 ± 0.12 mmol/L, P = 0.0009, n = 8). Similarly, APOE ɛ3 carriers (mean ± SEM: -0.13 ± 0.05 mmol/L, P = 0.0370, n = 40) responded less than APOE ɛ4 carriers (mean ± SEM: -0.31 ± 0.07 mmol/L, P LDL cholesterol lowering. Cholesterol absorption decreased as a result of PS consumption, but this

  5. Dose-dependent LDL-cholesterol lowering effect by plant stanol ester consumption: clinical evidence

    Directory of Open Access Journals (Sweden)

    Laitinen Kirsi

    2012-10-01

    Full Text Available Abstract Elevated serum lipids are linked to cardiovascular diseases calling for effective therapeutic means to reduce particularly LDL-cholesterol (LDL-C levels. Plant stanols reduce levels of LDL-C by partly blocking cholesterol absorption. Accordingly the consumption of foods with added plant stanols, typically esterified with vegetable oil fatty acids in commercial food products, are recommended for lowering serum cholesterol levels. A daily intake of 1.5 to 2.4 g of plant stanols has been scientifically evaluated to lower LDL-C by 7 to 10% in different populations, ages and with different diseases. Based on earlier studies, a general understanding is that no further reduction may be achieved in intakes in excess of approximately 2.5 g/day. Recent studies however suggest that plant stanols show a continuous dose–response effect in serum LDL-C lowering. This review discusses the evidence for a dose-effect relationship between plant stanol ester consumption and reduction of LDL-C concentrations with daily intakes of plant stanols of 4 g/day or more. We identified five such studies and the overall data demonstrate a linear dose-effect relationship with the most pertinent LDL-Cholesterol lowering outcome, 18%, achieved by a daily intake of 9 to 10 g of plant stanols. Along with reduction in LDL-C, the studies demonstrated a decrease in cholesterol absorption markers, the serum plant sterol to cholesterol ratios, by increasing the dose of plant stanol intake. None of the studies with daily intakes up to 10 g of plant stanols reported adverse clinical or biochemical effects from plant stanols. In a like manner, the magnitude of decrease in serum antioxidant vitamins was not related to the dose of plant stanols consumed and the differences between plant stanol ester consumers and controls were minor and insignificant or nonexisting. Consumption of plant stanols in high doses is feasible as a range of food products are commercially available for

  6. Sterol biosynthesis is required for heat resistance but not extracellular survival in leishmania.

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2014-10-01

    Full Text Available Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14α-demethylase (C14DM in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm(- were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm(- mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm(- causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance.

  7. Sterol biosynthesis is required for heat resistance but not extracellular survival in leishmania.

    Science.gov (United States)

    Xu, Wei; Hsu, Fong-Fu; Baykal, Eda; Huang, Juyang; Zhang, Kai

    2014-10-01

    Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols) in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14α-demethylase (C14DM) in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm(-)) were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm(-) mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm(-) causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance.

  8. Multicomponent synthesis of 4,4-dimethyl sterol analogues and their effect on eukaryotic cells.

    Science.gov (United States)

    Alonso, Fernando; Cirigliano, Adriana M; Dávola, María Eugenia; Cabrera, Gabriela M; García Liñares, Guadalupe E; Labriola, Carlos; Barquero, Andrea A; Ramírez, Javier A

    2014-06-01

    Most sterols, such as cholesterol and ergosterol, become functional only after the removal of the two methyl groups at C-4 from their biosynthetic precursors. Nevertheless, some findings suggest that 4,4-dimethyl sterols might be involved in specific physiological processes. In this paper we present the synthesis of a collection of analogues of 4,4-dimethyl sterols with a diamide side chain and a preliminary analysis of their in vitro activity on selected biological systems. The key step for the synthesis involves an Ugi condensation, a versatile multicomponent reaction. Some of the new compounds showed antifungal and cytotoxic activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Cholesterol impairment contributes to neuroserpin aggregation

    Science.gov (United States)

    Giampietro, Costanza; Lionetti, Maria Chiara; Costantini, Giulio; Mutti, Federico; Zapperi, Stefano; La Porta, Caterina A. M.

    2017-03-01

    Intraneural accumulation of misfolded proteins is a common feature of several neurodegenerative pathologies including Alzheimer’s and Parkinson’s diseases, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is a rare disease due to a point mutation in neuroserpin which accelerates protein aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol depletion induced either by prolonged exposure to statins or by inhibiting the sterol reg-ulatory binding-element protein (SREBP) pathway also enhances aggregation of neuroserpin proteins. These findings can be explained considering a computational model of protein aggregation under non-equilibrium conditions, where a decrease in the rate of protein clearance improves aggregation. Decreasing cholesterol in cell membranes affects their biophysical properties, including their ability to form the vesicles needed for protein clearance, as we illustrate by a simple mathematical model. Taken together, these results suggest that cholesterol reduction induces neuroserpin aggregation, even in absence of specific neuroserpin mutations. The new mechanism we uncover could be relevant also for other neurodegenerative diseases associated with protein aggregation.

  10. Cholesterol Contributes to Diabetic Nephropathy through SCAP-SREBP-2 Pathway

    Directory of Open Access Journals (Sweden)

    Hong Sun

    2013-01-01

    Full Text Available Diabetic nephropathy (DN has been associated with the presence of lipid deposition. We hypothesized that the disruption of intracellular cholesterol feedback may contribute to DN. Diabetes was induced by high fat/sucrose diet and low-dose intraperitoneal injection of streptozocin (STZ in male Sprague-Dawley rats. Then diabetic rats were randomly divided into two groups: untreated diabetic group (DM and atorvastatin-treated group (DM + AT. We found that the levels of serum blood urea nitrogen and creatinine, as well as 24-hour urine protein and urinary neutrophil gelatinase-associated lipocalin, were significantly increased in diabetic rats. This result indicated that the diabetic rats suffered from functional renal damage. We also observed lipid droplet accumulation and increase in 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR, low density lipoprotein receptor (LDLr, sterol regulatory element binding protein-2 (SREBP-2, and SREBP-cleavage activating protein (SCAP in the kidneys of diabetic rats. However, atorvastatin ameliorated renal lipid accumulation and improved the renal function of diabetic rats despite an increase in mRNA and protein expressions of HMG-CoAR, LDLr, and SREBP-2. These results demonstrated that intracellular cholesterol feedback regulation is disrupted in rats with type 2 diabetes, thereby causing renal cholesterol accumulation. Atorvastatin ameliorated renal cholesterol accumulation by reducing renal cholesterol synthesis.

  11. Simplified procedure for the in vitro assay of the initial linear rate of the reaction of lecithin-cholesterol acyltransferase in human serum

    International Nuclear Information System (INIS)

    Mahadevan, V.; Soloff, L.A.

    1985-01-01

    A simple sensitive method for the determination of the initial rate of the reaction of lecithin-cholesterol acyltransferase by equilibrating [ 3 H]cholesterol with unesterified cholesterol of human serum is described. The resulting serum is incubated for various time periods at 37 degrees C and the increase of the label in the cholesterol ester fraction is measured. The labeling is effected by a fids at 37 degrees C and the increase of the label in the cholesterol ester fraction is measured. The labeling is effected by a filter paper method in which a paper strip containing the labeled cholesterol is placed in serum at 4 degrees C, thereby preventing the formation of labeled cholesterol esters by the action of the enzyme. The rate of the reaction was linear up to 30 min

  12. The effect of indigestible dextrin and phytosterol on serum LDL-cholesterol level on hypercholesterolemic subjects

    Directory of Open Access Journals (Sweden)

    Anna H. Then

    2009-06-01

    Full Text Available Aim To investigate the effects of indigestible dextrin 2x2.3g/day and phytosterol 2x0.6g/day provided for 6 weeks in lowering serum LDL-cholesterol levels amongs hypercholesterolemic subjects.Methods A randomized clinical trial, two pararel groups, double blinded and randomly assigned to each different group was done in 16 subjects per-group.Results Before the, intervention the level of LDL cholesterol of both ID and FS group were 158.81 ± 17.74 mg/dL and 176.18 ± 25.31 mg/dL, respectively. After the intervention there was a significant reduction in LDL cholesterol level in both groups, i.e. among the ID group by 20.93 ± 12.65 mg/dL (13.24% with p value of <0.001, while the reduction of LDL cholesterol level among the PS group was 21.87 ± 28.76 mg/dL (11.21% with p value of 0.008. However, the reduction of cholesterol level between the two groups did not show any significant difference.Conclusion Consuming indigestible dextrin 2x2.3g/day and 2x0.6g/day phytosterol (PS for 6 weeks will have the same ability to decrease the serum cholesterol level in hypercholesterolemic subjects. (Med J Indones 2009; 18: 114-9Key words: indigestible dextrin, phytosterol, cholesterol

  13. Reversible mode of binding of serum proteins to DOTAP/cholesterol Lipoplexes: a possible explanation for intravenous lipofection efficiency.

    Science.gov (United States)

    Simberg, Dmitri; Weiss, Aryeh; Barenholz, Yechezkel

    2005-09-01

    There are many indications that interaction of serum proteins with intravenously injected cationic lipoplexes disturbs lipofection in vitro and in vivo. However, transfection with certain lipid compositions such as N-[1- (2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP)/cholesterol appears to be more resistant to serum and more efficacious. We investigated the mechanism of interaction between fluorescently labeled lipoplexes of the above composition and fluorescently labeled serum proteins. Fluorescence resonance energy transfer measurements in vitro indicate that serum proteins interact instantly and closely with the DOTAP/cholesterol lipoplexes. In accord with this, preinjection of fluorescently labeled serum into mice before injection of lipoplexes showed an immediate association of proteins with lipoplexes. Serum proteins colocalized with the lipoplexes in the lung vasculature; however, they dissociated from the cationic lipid as soon as 1 hr postinjection, probably because of displacement of serum proteins from lipoplexes by extracellular proteoglycans. Indeed, this displacement was imitated by heparin, a typical glycosaminoglycan, and could be explained by the inability of weakly acidic serum proteins to neutralize the DOTAP/cholesterol electrical surface potential psi0. The stability of the cationic lipid psi0 in serum could be a key reason for the high lung association and transfection efficiency with this formulation.

  14. Niemann-pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis.

    Science.gov (United States)

    Millard, E E; Srivastava, K; Traub, L M; Schaffer, J E; Ory, D S

    2000-12-08

    The Niemann-Pick type C1 (NPC1) protein is a key participant in intracellular trafficking of low density lipoprotein cholesterol, but its role in regulation of sterol homeostasis is not well understood. To characterize further the function of NPC1, we generated stable Chinese hamster ovary (CHO) cell lines overexpressing the human NPC1 protein (CHO/NPC1). NPC1 overexpression increases the rate of trafficking of low density lipoprotein cholesterol to the endoplasmic reticulum and the rate of delivery of endosomal cholesterol to the plasma membrane (PM). CHO/NPC1 cells exhibit a 1.5-fold increase in total cellular cholesterol and up to a 2.9-fold increase in PM cholesterol. This increase in PM cholesterol is closely paralleled by a 3-fold increase in de novo cholesterol synthesis. Inhibition of cholesterol synthesis results in marked redistribution of PM cholesterol to intracellular sites, suggesting an unsuspected role for NPC1 in internalization of PM cholesterol. Despite elevated total cellular cholesterol, CHO/NPC1 cells exhibit increased cholesterol synthesis, which may be attributable to both resistance to oxysterol suppression of sterol-regulated gene expression and to reduced endoplasmic reticulum cholesterol levels under basal conditions. Taken together, these studies provide important new insights into the role of NPC1 in the determination of the levels and distribution of cellular cholesterol.

  15. Comparative milk and serum cholesterol content in dairy cow and camel

    Directory of Open Access Journals (Sweden)

    Bernard Faye

    2015-04-01

    Full Text Available In order to compare cholesterol contents in cow and camel milk in similar farming conditions, milk and blood of seven cows and seven camels maintained at normal diet at the middle of lactation were sampled at morning and evening, then after two weeks of keeping them at low protein diet. The cholesterol content in camel milk (5.64 ± 3.18 mg/100 g, SD was not significantly lower than in cow milk (8.51 ± 9.07 mg/100 g, SD. Fat contents in cow milk were higher. Cholesterol/fat ratios were similar in the two species (camel: 225 ± 125 mg/100 g fat; cow: 211 ± 142 mg/100 g fat. The serum cholesterol concentration was significantly higher in cow (227.8 ± 60.5 mg/100 ml than in camel (106.4 ± 28.9 mg/100 ml. There was a significant difference between morning and evening milking in milk fat compositions and concentrations in cholesterol. Fat levels increased in cow after two-week low energy-protein diet.

  16. Comparative evaluation of the hypolipidemic effects of coconut water and lovastatin in rats fed fat-cholesterol enriched diet.

    Science.gov (United States)

    Sandhya, V G; Rajamohan, T

    2008-12-01

    The coconut water presents a series of nutritional and therapeutic properties, being a natural, acid and sterile solution, which contains several biologically active components, l-arginine, ascorbic acid, minerals such as calcium, magnesium and potassium, which have beneficial effects on lipid levels. Recent studies in our laboratory showed that both tender and mature coconut water feeding significantly (Pcholesterol fed rats [Sandhya, V.G., Rajamohan, T., 2006. Beneficial effects of coconut water feeding on lipid metabolism in cholesterol fed rats. J. Med. Food 9, 400-407]. The current study evaluated the hypolipidemic effect of coconut water (4ml/100g body weight) with a lipid lowering drug, lovastatin (0.1/100g diet) in rats fed fat-cholesterol enriched diet ad libitum for 45 days. Coconut water or lovastatin supplementation lowered the levels of serum total cholesterol, VLDL+LDL cholesterol, triglycerides and increased HDL cholesterol in experimental rats (Pcholesterol in the liver were higher in coconut water treated rats. Coconut water supplementation increased hepatic bile acid and fecal bile acids and neutral sterols (Pcholesterol enriched diet.

  17. The food matrix and sterol characteristics affect the plasma cholesterol lowering of phytosterol/phytostanol.

    Science.gov (United States)

    Cusack, Laura Kells; Fernandez, Maria Luz; Volek, Jeff S

    2013-11-01

    Foods with added phytosterols/phytostanols (PS) are recommended to lower LDL cholesterol (LDL-c) concentrations. Manufacturers have incorporated PS into a variety of common foods. Understanding the cholesterol-lowering impact of the food matrix and the PS characteristics would maximize their success and increase the benefit to consumers. This review systematically examines whether the PS characteristics and the fatty acid composition of foods with added PS affects serum LDL-c. A total of 33 studies published between the years 1998 and 2011 inclusive of 66 individual primary variables (strata) were evaluated. The functional food matrices included margarine, mayonnaise, yogurt, milk, cheese, meat, grain, juice, and chocolate. Consistently, ≥10% reductions in LDL-c were reported when the characteristics of the food matrix included poly- and monounsaturated fatty acids known to lower LDL-c. Also, >10% mean reductions in LDL-c were reported when β-sitostanol and campestanol as well as stanol esters were used. These characteristics allow both low-fat and high-fat foods to successfully incorporate PS and significantly lower LDL-c.

  18. Parameters for Martini sterols and hopanoids based on a virtual-site description

    NARCIS (Netherlands)

    Melo, M. N.; Ingolfsson, H. I.; Marrink, S. J.

    2015-01-01

    Sterols play an essential role in modulating bilayer structure and dynamics. Coarse-grained molecular dynamics parameters for cholesterol and related molecules are available for the Martini force field and have been successfully used in multiple lipid bilayer studies. In this work, we focus on the

  19. Optimizing the effect of plant sterols on cholesterol absorption in man.

    Science.gov (United States)

    Mattson, F H; Grundy, S M; Crouse, J R

    1982-04-01

    During three experimental periods, nine adults were hospitalized on a metabolic ward and fed a meal containing 500 mg of cholesterol as a component of scrambled eggs. In addition, the meal contained: 1) no additive, 2) 1 g beta-sitosterol, or 3) 2 g beta-sitosteryl oleate. Stools for the succeeding 5 days were analyzed to determine the percentage of the cholesterol in the test meal that was absorbed. The addition of beta-sitosterol resulted in a 42% decrease in cholesterol absorption; the beta-sitosteryl oleate caused a 33% reduction. These results indicate that the judicious addition of beta-sitosterol or beta-sitosteryl oleate to meals containing cholesterol-rich foods will result in a significant decrease in cholesterol absorption, with a consequent decrease in plasma cholesterol.

  20. Possible regulation of sterol biosynthesis by phenolic acids

    International Nuclear Information System (INIS)

    Ranganathan, S.; Ramasarma, T.

    1974-01-01

    To test whether the phenolic acids, metabolites of tyrosine, regulate the biosynthesis of cholesterol, influence of phenolic acids on the incorporation of mevalonate-2- 14 C into sterols by rat liver and brain homogenate systems has been investigated in vitro. Results show that the combined presence of the aromatic ring and the carboxyl group in the compound under investigation inhibited the incorporation of labelled mevalonate. (M.G.B.)

  1. Review of 5 years of a combined dietary and physical fitness intervention for control of serum cholesterol

    Science.gov (United States)

    Angotti, C. M.; Levine, M. S.

    1994-01-01

    A chart review covering the first 5 years of clinical experience with a combined dietary and exercise intervention program for the reduction of hypercholesterolemia at the National Aeronautics and Space Administration headquarters demonstrated the program's success in maintaining high-density lipoprotein cholesterol (HDL-C) levels while significantly lowering total serum cholesterol levels. This combined program also resulted in improved ratios of total serum cholesterol to HDL-C and lowered levels of low-density lipoprotein cholesterol, thus further reducing the risk for cardiovascular disease. The National Aeronautics and Space Administration Cardiovascular Risk Reduction Program was developed after it was determined that although dietary intervention alone improved total cholesterol levels, it often resulted in a more than proportionate decrease in HDL-C and a worsening of the ratio of cholesterol to HDL-C. An approach was needed that would positively affect all factors of the lipid profile. The findings from the program indicate that reduction of cardiovascular risk can be accomplished easily and effectively at the worksite through dietary intervention, personal monitoring, and a reasonable exercise program.

  2. In Vitro and In Vivo Anticancer Effects of Sterol Fraction from Red Algae Porphyra dentata

    Directory of Open Access Journals (Sweden)

    Katarzyna Kazłowska

    2013-01-01

    Full Text Available Porphyra dentata, an edible red macroalgae, is used as a folk medicine in Asia. This study evaluated in vitro and in vivo the protective effect of a sterol fraction from P. dentata against breast cancer linked to tumor-induced myeloid derived-suppressor cells (MDSCs. A sterol fraction containing cholesterol, β-sitosterol, and campesterol was prepared by solvent fractionation of methanol extract of P. dentata  in silica gel column chromatography. This sterol fraction in vitro significantly inhibited cell growth and induced apoptosis in 4T1 cancer cells. Intraperitoneal injection of this sterol fraction at 10 and 25 mg/kg body weight into 4T1 cell-implanted tumor BALB/c mice significantly inhibited the growth of tumor nodules and increased the survival rate of mice. This sterol fraction significantly decreased the reactive oxygen species (ROS and arginase activity of MDSCs in tumor-bearing mice. Therefore, the sterol fraction from P. dentata showed potential for protecting an organism from 4T1 cell-based tumor genesis.

  3. Changes in levels of serum beta-carotene, vitamin A and cholesterol ...

    African Journals Online (AJOL)

    Twenty newly diagnosed breast cancer patients were assessed for serum vitamin A, β - carotene and total cholesterol levels with their matched control (n = 20). The mean age and standard deviation of pre-menopausal breast cancer patients was 34.75± 6.57 while the mean age and standard deviation for controls was ...

  4. Molecular View of Cholesterol Flip-Flop and Chemical Potential in Different Membrane Environments

    NARCIS (Netherlands)

    Bennett, W. F. Drew; MacCallum, Justin L.; Hinner, Marlon J.; Marrink, Siewert J.; Tieleman, D. Peter

    2009-01-01

    The relative stability of cholesterol in cellular membranes and the thermodynamics of fluctuations from equilibrium have important consequences for sterol trafficking and lateral domain formation. We used molecular dynamics computer simulations to investigate the partitioning of cholesterol in a

  5. Inhibitory effects of various oxygenated sterols on the differentiation and function of tumor-specific cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Spangrude, G.J.; Sherris, D.; Daynes, R.A.

    1982-01-01

    Irradiation of skin with ultraviolet light (UVL) is capable of causing many biological and biochemical changes in this complex organ. One early consequence is the oxidation of epidermal plasma membrane cholesterol, causing the induction of a wide variety of photoproducts. It is well recognized that some oxygenated sterols possess potent biological activity on mammalian cells by their ability to inhibit endogeneous mevalonate and cholesterol biosynthesis. In the few immunological systems that have been studied, there is general agreement that lymphocyte function is lacking, as both afferent and efferent blockades have been suggested. These studies were undertaken to determine the effect of various oxygenated sterols (representing a number of known cholesterol-derived photoproducts) on the generation (afferent) and function (efferent) of cytotoxic T lymphocytes (CTLs). Cell-mediated immune responses which result in the generation of both alloantigen-specific and syngeneic tumor-specific CTLs were evaluated

  6. Genome profiling of sterol synthesis shows convergent evolution in parasites and guides chemotherapeutic attack.

    Science.gov (United States)

    Fügi, Matthias A; Gunasekera, Kapila; Ochsenreiter, Torsten; Guan, Xueli; Wenk, Markus R; Mäser, Pascal

    2014-05-01

    Sterols are an essential class of lipids in eukaryotes, where they serve as structural components of membranes and play important roles as signaling molecules. Sterols are also of high pharmacological significance: cholesterol-lowering drugs are blockbusters in human health, and inhibitors of ergosterol biosynthesis are widely used as antifungals. Inhibitors of ergosterol synthesis are also being developed for Chagas's disease, caused by Trypanosoma cruzi. Here we develop an in silico pipeline to globally evaluate sterol metabolism and perform comparative genomics. We generate a library of hidden Markov model-based profiles for 42 sterol biosynthetic enzymes, which allows expressing the genomic makeup of a given species as a numerical vector. Hierarchical clustering of these vectors functionally groups eukaryote proteomes and reveals convergent evolution, in particular metabolic reduction in obligate endoparasites. We experimentally explore sterol metabolism by testing a set of sterol biosynthesis inhibitors against trypanosomatids, Plasmodium falciparum, Giardia, and mammalian cells, and by quantifying the expression levels of sterol biosynthetic genes during the different life stages of T. cruzi and Trypanosoma brucei. The phenotypic data correlate with genomic makeup for simvastatin, which showed activity against trypanosomatids. Other findings, such as the activity of terbinafine against Giardia, are not in agreement with the genotypic profile.

  7. Inclusion of Almonds in a Cholesterol-Lowering Diet Improves Plasma HDL Subspecies and Cholesterol Efflux to Serum in Normal-Weight Individuals with Elevated LDL Cholesterol.

    Science.gov (United States)

    Berryman, Claire E; Fleming, Jennifer A; Kris-Etherton, Penny M

    2017-08-01

    Background : Almonds may increase circulating HDL cholesterol when substituted for a high-carbohydrate snack in an isocaloric diet, yet little is known about the effects on HDL biology and function. Objective: The objective was to determine whether incorporating 43 g almonds/d in a cholesterol-lowering diet would improve HDL subspecies and function, which were secondary study outcomes. Methods: In a randomized, 2-period, crossover, controlled-feeding study, a diet with 43 g almonds/d (percentage of total energy: 51% carbohydrate, 16% protein, and 32% total and 8% saturated fat) was compared with a similar diet with an isocaloric muffin substitution (58% carbohydrate, 15% protein, and 26% total and 8% saturated fat) in men and women with elevated LDL cholesterol. Plasma HDL subspecies and cholesterol efflux from J774 macrophages to human serum were measured at baseline and after each diet period. Diet effects were examined in all participants ( n = 48) and in normal-weight (body mass index: almond diet, compared with the control diet, increased α-1 HDL [mean ± SEM: 26.7 ± 1.5 compared with 24.3 ± 1.3 mg apolipoprotein A-I (apoA-I)/dL; P = 0.001]. In normal-weight participants, the almond diet, relative to the control diet, increased α-1 HDL (33.7 ± 3.2 compared with 28.4 ± 2.6 mg apoA-I/dL), the α-1 to pre-β-1 ratio [geometric mean (95% CI): 4.3 (3.3, 5.7) compared with 3.1 (2.4, 4.0)], and non-ATP-binding cassette transporter A1 cholesterol efflux (8.3% ± 0.4% compared with 7.8% ± 0.3%) and decreased pre-β-2 (3.8 ± 0.4 compared with 4.6 ± 0.4 mg apoA-I/dL) and α-3 (23.5 ± 0.9 compared with 26.9 ± 1.1 mg apoA-I/dL) HDL ( P almonds for a carbohydrate-rich snack within a lower-saturated-fat diet may be a simple strategy to maintain a favorable circulating HDL subpopulation distribution and improve cholesterol efflux in normal-weight individuals with elevated LDL cholesterol. This trial was registered at clinicaltrials.gov as NCT01101230. © 2017

  8. Anthocyanin-Rich Juice Lowers Serum Cholesterol, Leptin, and Resistin and Improves Plasma Fatty Acid Composition in Fischer Rats.

    Directory of Open Access Journals (Sweden)

    Daniela Graf

    Full Text Available Obesity and obesity-associated diseases e.g. cardiovascular diseases and type 2 diabetes are spread worldwide. Anthocyanins are supposed to have health-promoting properties, although convincing evidence is lacking. The aim of the present study was to investigate the effect of anthocyanins on several risk factors for obesity-associated diseases. Therefore, Fischer rats were fed anthocyanin-rich grape-bilberry juice or an anthocyanin-depleted control juice for 10 weeks. Intervention with anthocyanin-rich grape-bilberry juice reduced serum cholesterol and tended to decrease serum triglycerides. No effects were seen for serum non-esterified fatty acids, glucose, and insulin. Anthocyanin-rich grape-bilberry juice intervention reduced serum leptin and resistin, but showed no influence on serum adiponectin and secretion of adipokines from mesenteric adipose tissue. Furthermore, anthocyanin-rich grape-bilberry juice increased the proportion of polyunsaturated fatty acids and decreased the amount of saturated fatty acids in plasma. These results indicate that anthocyanins possess a preventive potential for obesity-associated diseases.

  9. The cellular origin of the hepatic cholesterol synthesis (1961); Origine cellulaire du cholesterol hepatique de synthese (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    If rats are sacrificed within minutes after an injection of acetate 1 - {sup 14}C the specific radioactivities of sterols precipitable with digitonine, extracted from liver parenchyma cells and from Kupffer cells are very close to each other, whatever the duration of the experiment may be. It follows that cholesterol synthesis probably occurs in both types of cells. A validation of this conclusion requires that the validity of certain assumptions be established. (authors) [French] Si l'on sacrifie des rats dans les minutes qui suivent une injection d'acetate 1- {sup 14}C, les valeurs des radioactivites specifiques des sterols, precipitables par la digitonine, extraits des cellules parenchymateuses du foie et des cellules de Kupffer sont tres proches l'une de l'autre quelle que soit la duree de l'experience. On en deduit que la synthese du cholesterol s'effectue probablement dans les deux types de cellules. Cette conclusion pour etre valable, exige que le bien fonde de certaines hypotheses soit verifie. (auteurs)

  10. Consumption of a dietary portfolio of cholesterol lowering foods improves blood lipids without affecting concentrations of fat soluble compounds.

    Science.gov (United States)

    Ramprasath, Vanu R; Jenkins, David J A; Lamarche, Benoit; Kendall, Cyril W C; Faulkner, Dorothea; Cermakova, Luba; Couture, Patrick; Ireland, Chris; Abdulnour, Shahad; Patel, Darshna; Bashyam, Balachandran; Srichaikul, Korbua; de Souza, Russell J; Vidgen, Edward; Josse, Robert G; Leiter, Lawrence A; Connelly, Philip W; Frohlich, Jiri; Jones, Peter J H

    2014-10-18

    Consumption of a cholesterol lowering dietary portfolio including plant sterols (PS), viscous fibre, soy proteins and nuts for 6 months improves blood lipid profile. Plant sterols reduce blood cholesterol by inhibiting intestinal cholesterol absorption and concerns have been raised whether PS consumption reduces fat soluble vitamin absorption. The objective was to determine effects of consumption of a cholesterol lowering dietary portfolio on circulating concentrations of PS and fat soluble vitamins. Using a parallel design study, 351 hyperlipidemic participants from 4 centres across Canada were randomized to 1 of 3 groups. Participants followed dietary advice with control or portfolio diet. Participants on routine and intensive portfolio involved 2 and 7 clinic visits, respectively, over 6 months. No changes in plasma concentrations of α and γ tocopherol, lutein, lycopene and retinol, but decreased β-carotene concentrations were observed with intensive (week 12: p = 0.045; week 24: p = 0.039) and routine (week 12: p = 0.031; week 24: p = 0.078) portfolio groups compared to control. However, cholesterol adjusted β-carotene and fat soluble compound concentrations were not different compared to control. Plasma PS concentrations were increased with intensive (campesterol:p = 0.012; β-sitosterol:p = 0.035) and routine (campesterol: p = 0.034; β-sitosterol: p = 0.080) portfolio groups compared to control. Plasma cholesterol-adjusted campesterol and β-sitosterol concentrations were negatively correlated (p portfolio diet reduces serum total and LDL-C levels while increasing PS values, without altering fat soluble compounds concentrations. The extent of increments of PS with the current study are not deleterious and also maintaining optimum levels of fat soluble vitamins are of paramount necessity to maintain overall metabolism and health. Results indicate portfolio diet as one of the best options for CVD risk reduction

  11. Lower Squalene Epoxidase and Higher Scavenger Receptor Class B Type 1 Protein Levels Are Involved in Reduced Serum Cholesterol Levels in Stroke-Prone Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Michihara, Akihiro; Mido, Mayuko; Matsuoka, Hiroshi; Mizutani, Yurika

    2015-01-01

    A lower serum cholesterol level was recently shown to be one of the causes of stroke in an epidemiological study. Spontaneously hypertensive rats stroke-prone (SHRSP) have lower serum cholesterol levels than normotensive Wistar-Kyoto rats (WKY). To elucidate the mechanisms responsible for the lower serum cholesterol levels in SHRSP, we determined whether the amounts of cholesterol biosynthetic enzymes or the receptor and transporter involved in cholesterol uptake and efflux in the liver were altered in SHRSP. When the mRNA levels of seven cholesterol biosynthetic enzymes were measured using real-time polymerase chain reaction (PCR), farnesyl pyrophosphate synthase and squalene epoxidase (SQE) levels in the liver of SHRSP were significantly lower than those in WKY. SQE protein levels were significantly reduced in tissues other than the brain of SHRSP. No significant differences were observed in low-density lipoprotein (LDL) receptor (uptake of serum LDL-cholesterol) or ATP-binding cassette transporter A1 (efflux of cholesterol from the liver/formation of high-density lipoprotein (HDL)) protein levels in the liver and testis between SHRSP and WKY, whereas scavenger receptor class B type 1 (SRB1: uptake of serum HDL-cholesterol) protein levels were higher in the livers of SHRSP. These results indicated that the lower protein levels of SQE and higher protein levels of SRB1 in the liver were involved in the reduced serum cholesterol levels in SHRSP.

  12. Impact of ice melting on distribution of particulate sterols in glacial fjords of Chilean Patagonia

    Science.gov (United States)

    Gutiérrez, Marcelo H.; Riquelme, Pablo; Pantoja, Silvio

    2016-04-01

    We analyzed variability in abundance and composition of sterols in waters of the fjord adjacent to glacier Jorge Montt, one of the fastest retreated glaciers in Patagonian Icefields. The study was carried out between August 2012 and November 2013 under different meltwater scenarios. Distribution of sterols in surface and bottom waters was determined by Gas Chromatography coupled to Mass Spectrometry. Sterol concentration ranged from 18 to 1726 ng/L in surface and bottom waters and was positive correlated with chlorophyll-a concentration. Under high melting conditions in austral summer, surface meltwaters showed high concentrations of sterols and were dominated by methylene-cholesterol, a representative sterol of centric diatoms. In the area near open ocean and in austral autumn, winter and spring in proglacial fjord, lower sterol concentrations in surface waters were accompanied by other microalgae sterols and an increase in relative abundance of plant sterols, evidencing a different source of organic matter. In autumn, when high meltwater flux was also evidenced, presence of stanols and an uncommon tri-unsaturated sterol suggests influence of meltwaters in composition of sterols in the downstream fjord. We conclude that ice melting can modify sterol composition by setting conditions for development of a singular phytoplankton population able to thrive in surface meltwater and by carrying glacier organic matter into Patagonian glacial fjords. In projected ice melting scenario, these changes in organic matter quantity and quality can potentially affect availability of organic substrates for heterotrophic activity and trophic status of glacial fjords. This research was funded by COPAS Sur-Austral (PFB-31)

  13. Endogenous cholesterol synthesis, fecal steroid excretion and serum lanosterol in subjects with high or low response of serum cholesterol to dietary cholesterol

    NARCIS (Netherlands)

    Beynen, A.C.; Katan, M.B.; Gent, van C.M.

    1986-01-01

    In this study we addressed the question whether hypo- and hyper-responders to dietary cholesterol differ with regard to the flexibility of endogenous cholesterol synthesis after changes in cholesterol intake. Whole-body cholesterol synthesis was measured as faecal excretion of neutral steroids and

  14. Clinical relevance of non-fasting and postprandial hypertriglyceridemia and remnant cholesterol

    DEFF Research Database (Denmark)

    Nordestgaard, Børge G; Freiberg, Jacob J

    2011-01-01

    Non-fasting triglycerides are measured at any time within up to 8 h (14 h) after any normal meal, while postprandial triglycerides are measured at a fixed time point within up to 8 h (14 h) of a standardised fat tolerance test. The simplest possible way of evaluating remnant cholesterol is non......-fasting/postprandial total cholesterol minus low-density lipoprotein (LDL) cholesterol minus high-density lipoprotein (HDL) cholesterol. Elevated levels of non-fasting/postprandial triglycerides directly correlate with elevated remnant cholesterol. In the general population, 38% of men have non......-fasting/postprandial triglycerides > 2mmol/L (>176 mg/dL) while 45% of men have non-fasting/postprandial triglyceride levels of 1-2 mmol/L (89-176 mg/dL); corresponding fractions in women are 20% and 47%. Also, 31% of men have remnant cholesterol levels > 1mmol/L (>39 mg/dL) while 46% of men have remnant cholesterol levels of 0...

  15. Exopolysaccharide-producing probiotic Lactobacilli reduce serum cholesterol and modify enteric microbiota in ApoE-deficient mice.

    Science.gov (United States)

    London, Lis E E; Kumar, Arun H S; Wall, Rebecca; Casey, Pat G; O'Sullivan, Orla; Shanahan, Fergus; Hill, Colin; Cotter, Paul D; Fitzgerald, Gerald F; Ross, R Paul; Caplice, Noel M; Stanton, Catherine

    2014-12-01

    Probiotic bacteria have been associated with a reduction in cardiovascular disease risk, a leading cause of death and disability. The aim of this study was to assess the impact of dietary administration of exopolysaccharide-producing probiotic Lactobacillus cultures on lipid metabolism and gut microbiota in apolipoprotein E (apoE)-deficient mice. First, we examined lipid metabolism in response to dietary supplementation with recombinant β-glucan-producing Lactobacillus paracasei National Food Biotechnology Centre (NFBC) 338 expressing the glycosyltransferase (Gtf) gene from Pediococcus parvulus 2.6 (GTF), and naturally exopolysaccharide-producing Lactobacillus mucosae Dairy Product Culture Collection (DPC) 6426 (DPC 6426) compared with the non-β-glucan-producing isogenic control strain Lactobacillus paracasei NFBC 338 (PNZ) and placebo (15% wt:vol trehalose). Second, we examined the effects on the gut microbiota of dietary administration of DPC 6426 compared with placebo. Probiotic Lactobacillus strains at 1 × 10(9) colony-forming units/d per animal were administered to apoE(-/-) mice fed a high-fat (60% fat)/high-cholesterol (2% wt:wt) diet for 12 wk. At the end of the study, aortic plaque development and serum, liver, and fecal variables involved in lipid metabolism were analyzed, and culture-independent microbial analyses of cecal content were performed. Total cholesterol was reduced in serum (P mice supplemented with GTF or DPC 6426 compared with the PNZ or placebo group, respectively. In addition, dietary intervention with GTF led to increased amounts of fecal cholesterol excretion (P mice. © 2014 American Society for Nutrition.

  16. Oxysterol-Binding Protein-Related Protein 1L Regulates Cholesterol Egress from the Endo-Lysosomal System

    Directory of Open Access Journals (Sweden)

    Kexin Zhao

    2017-05-01

    Full Text Available Lipoprotein cholesterol is delivered to the limiting membrane of late endosomes/lysosomes (LELs by Niemann-Pick C1 (NPC1. However, the mechanism of cholesterol transport from LELs to the endoplasmic reticulum (ER is poorly characterized. We report that oxysterol-binding protein-related protein 1L (ORP1L is necessary for this stage of cholesterol export. CRISPR-mediated knockout of ORP1L in HeLa and HEK293 cells reduced esterification of cholesterol to the level in NPC1 knockout cells, and it increased the expression of sterol-regulated genes and de novo cholesterol synthesis, indicative of a block in cholesterol transport to the ER. In the absence of this transport pathway, cholesterol-enriched LELs accumulated in the Golgi/perinuclear region. Cholesterol delivery to the ER required the sterol-, phosphatidylinositol 4-phosphate-, and vesicle-associated membrane protein-associated protein (VAP-binding activities of ORP1L, as well as NPC1 expression. These results suggest that ORP1L-dependent membrane contacts between LELs and the ER coordinate cholesterol transfer with the retrograde movement of endo-lysosomal vesicles.

  17. Superiority of dietary safflower oil over olive oil in lowering serum cholesterol and increasing hepatic mRnas for the LDL receptor and cholesterol 7alpha-hydroxylase in exogenously hypercholesterolemic (exHC) rats.

    Science.gov (United States)

    Sato, M; Yoshida, S; Nagao, K; Imaizumi, K

    2000-06-01

    The exogenously hypercholesterolemic (ExHC) rat is a strain segregated from SD rats with a high response to dietary cholesterol. To understand the underlying mechanism(s) for this hypercholesterolemia, the interactive effects of dietary fatty acid and the susceptibility of rats to dietary cholesterol on the serum cholesterol concentration and hepatic mRNA abundance of the low-density lipoprotein (LDL) receptor, cholesterol 7alpha-hydroxylase (7alpha-hydroxylase) and 3-hydroxyl-3methylglutaryl (HMG) CoA reductase were examined. Both strains were fed on a diet supplemented with 10% each of olive, safflower or coconut oil with or without the addition of 1% cholesterol for one week. The ExHC rats fed on olive, safflower and coconut oil in combination with cholesterol respectively resulted in a 3.5-, 2.0- and 2.1-fold higher serum cholesterol concentration than that in the animals fed on the corresponding dietary fats without any supplementation of cholesterol (p safflower oil-containing diet supplemented with cholesterol resulted in a higher mRNA abundance of the LDL receptor and 7alpha-hydroxylase than in the corresponding fat-fed rats without cholesterol (p<0.05). There was no dietary cholesterol-dependent change of mRNA abundance in either strain fed on olive or coconut oil, except for a decreased abundance of HMG CoA reductase mRNA in the olive oil-fed ExHC rats and coconut oil-fed Sprague-Dawley (SD) rats (p<0.05). These results indicate that the hepatic mRNA abundance of the LDL receptor and of 7alpha-hydroxylase depended on the dietary combination of cholesterol and a fatty acid and suggest that a linoleic acid-rich diet may alleviate exogenous hypercholesterolemia by activating the process involved in the hepatic uptake and biliary excretion of serum cholesterol.

  18. The Food Matrix and Sterol Characteristics Affect the Plasma Cholesterol Lowering of Phytosterol/Phytostanol1

    Science.gov (United States)

    Cusack, Laura Kells; Fernandez, Maria Luz; Volek, Jeff S.

    2013-01-01

    Foods with added phytosterols/phytostanols (PS) are recommended to lower LDL cholesterol (LDL-c) concentrations. Manufacturers have incorporated PS into a variety of common foods. Understanding the cholesterol-lowering impact of the food matrix and the PS characteristics would maximize their success and increase the benefit to consumers. This review systematically examines whether the PS characteristics and the fatty acid composition of foods with added PS affects serum LDL-c. A total of 33 studies published between the years 1998 and 2011 inclusive of 66 individual primary variables (strata) were evaluated. The functional food matrices included margarine, mayonnaise, yogurt, milk, cheese, meat, grain, juice, and chocolate. Consistently, ≥10% reductions in LDL-c were reported when the characteristics of the food matrix included poly- and monounsaturated fatty acids known to lower LDL-c. Also, >10% mean reductions in LDL-c were reported when β-sitostanol and campestanol as well as stanol esters were used. These characteristics allow both low-fat and high-fat foods to successfully incorporate PS and significantly lower LDL-c. PMID:24228192

  19. Sterol glycosyltransferases--the enzymes that modify sterols.

    Science.gov (United States)

    Chaturvedi, Pankaj; Misra, Pratibha; Tuli, Rakesh

    2011-09-01

    Sterols are important components of cell membranes, hormones, signalling molecules and defense-related biotic and abiotic chemicals. Sterol glycosyltransferases (SGTs) are enzymes involved in sterol modifications and play an important role in metabolic plasticity during adaptive responses. The enzymes are classified as a subset of family 1 glycosyltransferases due to the presence of a signature motif in their primary sequence. These enzymes follow a compulsory order sequential mechanism forming a ternary complex. The diverse applications of sterol glycosides, like cytotoxic and apoptotic activity, anticancer activity, medicinal values, anti-stress roles and anti-insect and antibacterial properties, draws attention towards their synthesis mechanisms. Many secondary metabolites are derived from sterol pathways, which are important in defense mechanisms against pathogens. SGTs in plants are involved in changed sensitivity to stress hormones and their agrochemical analogs and changed tolerance to biotic and abiotic stresses. SGTs that glycosylate steroidal hormones, such as brassinosteroids, function as growth and development regulators in plants. In terms of metabolic roles, it can be said that SGTs occupy important position in plant metabolism and may offer future tools for crop improvement.

  20. Effect of aubergine (Solanum melongena on serum and hepatic cholesterol and triglycerides in rats

    Directory of Open Access Journals (Sweden)

    Marcelo E Silva

    1999-01-01

    Full Text Available The present work reports the effect of aubergine extract on serum and hepatic cholesterol and triglycerides levels in adult rats. Fisher rats were divided into three groups: the first one received a normolipidic diet and water , serving as a control; the other two received a hypercholesterolaemic diet with 30% vegetable oil and 1% cholesterol, one of these being given water while the other was given an aubergine extract. After 28 days the animals were sacrificed and serum and hepatic cholesterol and triglycerides levels were assessed. The obtained results indicated that under the experimental conditions employed, the aubergine extract increased serum and decreased hepatic cholesterol and had little or no effect on both serum and hepatic triglycerides.A beringela (Solanum melongena tem sido apontada como possuidora da capacidade de reduzir o colesterol sérico. O chá do vegetal vem sendo utilizado com este propósito, devido ao interesse na descoberta de formas alternativas para o controle da hipercolesterolemia. No presente trabalho testou-se o efeito do chá de beringela nos níveis séricos e hepáticos de colesterol e triglicerídeos em ratos adultos. Ratos Fisher foram divididos em três grupos: o primeiro recebeu dieta normolipídica ad libitum e água para beber, funcionando como controle; os outros dois receberam dieta hipercolesterolêmica com 30% de óleo vegetal e 1% de colesterol, sendo dada a um destes grupos água para beber, enquanto que o outro recebeu apenas chá de beringela. Após 28 dias os animais foram sacrificados e dosaram-se os níveis de colesterol e triglicerídeos séricos e hepáticos. Os resultados obtidos indicam que, nas condições experimentais utilizadas, o chá de beringela eleva o colesterol sérico, reduz o hepático e tem pouco ou nenhum efeito sobre os triglicerídeos, tanto séricos quanto hepáticos.

  1. Density profile and cholesterol concentration of serum lipoproteins in experimental animals and human subjects on hypercholesterolaemic diets

    NARCIS (Netherlands)

    Beynen, A.C.; Terpstra, A.H.M.

    1984-01-01

    1. 1. The density profile of Sudan black stained serum lipoproteins was studied in human subjects and various animal species on diets supplemented with cholesterol. 2. 2. In the animals studied (rabbits, calves, mice, chickens, rats and guinea-pigs), the feeding of cholesterol resulted in an

  2. Serum starvation of ARPE-19 changes the cellular distribution of cholesterol and Fibulin3 in patterns reminiscent of age-related macular degeneration.

    Science.gov (United States)

    Rajapakse, Dinusha; Peterson, Katherine; Mishra, Sanghamitra; Wistow, Graeme

    2017-12-15

    Retinal pigment epithelium (RPE) has been implicated as key source of cholesterol-rich deposits at Bruch's membrane (BrM) and in drusen in aging human eye. We have shown that serum-deprivation of confluent RPE cells is associated with upregulation of cholesterol synthesis and accumulation of unesterified cholesterol (UC). Here we investigate the cellular processes involved in this response. We compared the distribution and localization of UC and esterified cholesterol (EC); the age-related macular degeneration (AMD) associated EFEMP1/Fibulin3 (Fib3); and levels of acyl-coenzyme A (CoA): cholesterol acyltransferases (ACAT) ACAT1, ACAT2 and Apolipoprotein B (ApoB) in ARPE-19 cells cultured in serum-supplemented and serum-free media. The results were compared with distributions of these lipids and proteins in human donor eyes with AMD. Serum deprivation of ARPE-19 was associated with increased formation of FM dye-positive membrane vesicles, many of which co-labeled for UC. Additionally, UC colocalized with Fib3 in distinct granules. By day 5, serum-deprived cells grown on transwells secreted Fib3 basally into the matrix. While mRNA and protein levels of ACTA1 were constant over several days of serum-deprivation, ACAT2 levels increased significantly after serum-deprivation, suggesting increased formation of EC. The lower levels of intracellular EC observed under serum-deprivation were associated with increased formation and secretion of ApoB. The responses to serum-deprivation in RPE-derived cells: accumulation and secretion of lipids, lipoproteins, and Fib3 are very similar to patterns seen in human donor eyes with AMD and suggest that this model mimics processes relevant to disease progression. Published by Elsevier Inc.

  3. Dietary Almonds Increase Serum HDL Cholesterol in Coronary Artery Disease Patients in a Randomized Controlled Trial.

    Science.gov (United States)

    Jamshed, Humaira; Sultan, Fateh Ali Tipoo; Iqbal, Romaina; Gilani, Anwar Hassan

    2015-10-01

    More than one-half of coronary artery disease (CAD) patients have low HDL cholesterol despite having well-managed LDL cholesterol. Almond supplementation has not been shown to elevate circulating HDL cholesterol concentrations in clinical trials, perhaps because the baseline HDL cholesterol of trial subjects was not low. This clinical trial was designed to test the effect of almond supplementation on low HDL cholesterol in CAD patients. A total of 150 CAD patients (50 per group), with serum LDL cholesterol ≤100 mg/dL and HDL cholesterol ≤40 mg/dL in men and ≤50 mg/dL in women, were recruited from the Aga Khan University Hospital. After recording vital signs and completing a dietary and physical activity questionnaire, patients were randomly assigned to 1 of the following 3 groups: the no-intervention group (NI), the Pakistani almonds group (PA), and the American almonds group (AA). The respective almond varieties (10 g/d) were given to patients with instructions to soak them overnight, remove the skin, and eat them before breakfast. Blood samples for lipid profiling, body weight, and blood pressure were collected, and assessment of dietary patterns was done at baseline, week 6, and week 12. Almonds significantly increased HDL cholesterol. At weeks 6 and 12, HDL cholesterol was 12-14% and 14-16% higher, respectively, in the PA and AA than their respective baselines. In line with previous reports, serum concentrations of total cholesterol, triglycerides, LDL cholesterol, and VLDL cholesterol; total-to-HDL and LDL-to-HDL cholesterol ratios, and the atherogenic index were reduced in both the PA and AA at weeks 6 and 12 compared with baseline (P almond groups. Dietary patterns, body weight, and blood pressure did not change in any of the 3 groups during the trial. A low dose of almonds (10 g/d) consumed before breakfast can increase HDL cholesterol, in addition to improving other markers of abnormal lipid metabolism in CAD patients with low initial HDL cholesterol

  4. Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei.

    Science.gov (United States)

    Pérez-Moreno, Guiomar; Sealey-Cardona, Marco; Rodrigues-Poveda, Carlos; Gelb, Michael H; Ruiz-Pérez, Luis Miguel; Castillo-Acosta, Víctor; Urbina, Julio A; González-Pacanowska, Dolores

    2012-10-01

    Sterol biosynthesis inhibitors are promising entities for the treatment of trypanosomal diseases. Insect forms of Trypanosoma brucei, the causative agent of sleeping sickness, synthesize ergosterol and other 24-alkylated sterols, yet also incorporate cholesterol from the medium. While sterol function has been investigated by pharmacological manipulation of sterol biosynthesis, molecular mechanisms by which endogenous sterols influence cellular processes remain largely unknown in trypanosomes. Here we analyse by RNA interference, the effects of a perturbation of three specific steps of endogenous sterol biosynthesis in order to dissect the role of specific intermediates in proliferation, mitochondrial function and cellular morphology in procyclic cells. A decrease in the levels of squalene synthase and squalene epoxidase resulted in a depletion of cellular sterol intermediates and end products, impaired cell growth and led to aberrant morphologies, DNA fragmentation and a profound modification of mitochondrial structure and function. In contrast, cells deficient in sterol methyl transferase, the enzyme involved in 24-alkylation, exhibited a normal growth phenotype in spite of a complete abolition of the synthesis and content of 24-alkyl sterols. Thus, the data provided indicates that while the depletion of squalene and post-squalene endogenous sterol metabolites results in profound cellular defects, bulk 24-alkyl sterols are not strictly required to support growth in insect forms of T. brucei in vitro. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  5. Associations between apolipoprotein E genotypes and serum levels of glucose, cholesterol, and triglycerides in a cognitively normal aging Han Chinese population.

    Science.gov (United States)

    Tao, Qing-Qing; Chen, Yan; Liu, Zhi-Jun; Sun, Yi-Min; Yang, Ping; Lu, Shen-Ji; Xu, Miao; Dong, Qin-Yun; Yang, Jia-Jun; Wu, Zhi-Ying

    2014-01-01

    To determine the associations between apolipoprotein E (APOE) genotypes and serum levels of glucose, total cholesterol, and triglycerides in a cognitively normal aging Han Chinese population. There were 1,003 cognitively normal aging subjects included in this study. APOE genotypes were analyzed and biochemical parameters were tested. All the subjects were divided into three groups according to APOE genotypes: (1) E2/2 or E2/3 (APOE E2); (2) E3/3 (APOE E3); and (3) E2/4, E3/4, or E4/4 (APOE E4). Correlations of serum levels of glucose, total cholesterol, and triglycerides with APOE genotypes were assessed. E2, E3, and E4 allele frequencies were found to be 6.2%, 82.1%, and 11.7%, respectively. Serum levels of total cholesterol were higher in the APOE E4 group (Ptriglycerides (adjusted odds ratio 1.042, 95% confidence interval 0.759-1.429, P=0.800). A higher serum level of total cholesterol was significantly correlated with APOE E4 status in a cognitively normal, nondiabetic aging population. However, there was no correlation between APOE genotypes and serum levels of glucose or total triglycerides.

  6. Effect of Effective Microorganisms on Growth Parameters and Serum Cholesterol Levels in Broilers

    NARCIS (Netherlands)

    Wondmeneh, E.; Adey, S.; Tadelle, D.

    2011-01-01

    This study was conducted to evaluate the effect of different administration methods of effective microorganisms (EM®) on the performance and serum cholesterol level of broilers at Debre Zeit Agricultural Research Center, Ethiopia. Uniform weight of mixed sex day-old-broilers of cobb-500 strain (n =

  7. Cholesterol and phytosterols differentially regulate the expression of caveolin 1 and a downstream prostate cell growth-suppressor gene

    Science.gov (United States)

    Ifere, Godwin O.; Equan, Anita; Gordon, Kereen; Nagappan, Peri; Igietseme, Joseph U.; Ananaba, Godwin A.

    2010-01-01

    Background The purpose of our study was to show the distinction between the apoptotic and anti-proliferative signaling of phytosterols and cholesterol enrichment in prostate cancer cell lines, mediated by the differential transcription of caveolin-1, and N-myc downstream regulated gene1 (NDRG1), a pro-apoptotic androgen-regulated tumor suppressor. Methods PC-3 and DU145 cells were treated with sterols (cholesterol and phytosterols) for 72 h, followed by trypan blue dye exclusion measurement of necrosis and cell growth measured with a Coulter counter. Sterol induction of cell growth-suppressor gene expression was evaluated by mRNA transcription using RT-PCR, while cell cycle analysis was performed by FACS analysis. Altered expression of Ndrg1 protein was confirmed by Western blot analysis. Apoptosis was evaluated by real time RT-PCR amplification of P53, Bcl-2 gene and its related pro- and anti-apoptotic family members. Results Physiological doses (16 µM) of cholesterol and phytosterols were not cytotoxic in these cells. Cholesterol enrichment promoted cell growth (Pphytosterols significantly induced growth-suppression (Pphytosterols decreased mitotic subpopulations. We demonstrated for the first time that cholesterols concertedly attenuated the expression of caveolin-1(cav-1) and NDRG1 genes in both prostate cancer cell lines. Phytosterols had the opposite effect by inducing overexpression of cav-1, a known mediator of androgen-dependent signals that presumably control cell growth or apoptosis. Conclusions Cholesterol and phytosterol treatment differentially regulated the growth of prostate cancer cells and the expression of p53 and cav-1, a gene that regulates androgen-regulated signals. These sterols also differentially regulated cell cycle arrest, downstream pro-apoptotic androgen-regulated tumor-suppressor, NDRG1 suggesting that cav-1 may mediate pro-apoptotic NDRG1 signals. Elucidation of the mechanism for sterol modulation of growth and apoptosis signaling

  8. Dietary determinants of serum total cholesterol among middle-aged and older adults: a population-based cross-sectional study in Dar es Salaam, Tanzania.

    Science.gov (United States)

    Kakarmath, Sujay S; Zack, Rachel M; Leyna, Germana H; Fahimi, Saman; Liu, Enju; Fawzi, Wafaie W; Lukmanji, Zohra; Killewo, Japhet; Sacks, Frank; Danaei, Goodarz

    2017-06-06

    To assess the dietary determinants of serum total cholesterol. Cross-sectional population-based study. Peri-urban region of Dar es Salaam, Tanzania. 347 adults aged 40 years and older from the Dar es Salaam Urban Cohort Hypertension Study. Serum total cholesterol measured using a point-of-care device. Mean serum total cholesterol level was 204 mg/dL (IQR 169-236 mg/dL) in women and 185 mg/dL (IQR 152-216 mg/dL) in men. After adjusting for demographic, socioeconomic, lifestyle and dietary factors, participants who reported using palm oil as the major cooking oil had serum total cholesterol higher by 15 mg/dL (95% CI 1 to 29 mg/dL) compared with those who reported using sunflower oil. Consumption of one or more servings of meat per day (p for trend=0.017) and less than five servings of fruits and vegetables per day (p for trend=0.024) were also associated with higher serum total cholesterol. A combination of using palm oil for cooking, eating more than one serving of meat per day and fewer than five servings of fruits and vegetables per day, was associated with 46 mg/dL (95% CI 16 to 76 mg/dL) higher serum total cholesterol. Using palm oil for cooking was associated with higher serum total cholesterol levels in this peri-urban population in Dar es Salaam. Reduction of saturated fat content of edible oil may be considered as a population-based strategy for primary prevention of cardiovascular diseases. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Changes during hibernation in different phospholipid and free and esterified cholesterol serum levels in black bears

    Science.gov (United States)

    Chauhan, V.; Sheikh, A.; Chauhan, A.; Tsiouris, J.; Malik, M.; Vaughan, M.

    2002-01-01

    During hibernation, fat is known to be the preferred source of energy. A detailed analysis of different phospholipids, as well as free and esterified cholesterol, was conducted to investigate lipid abnormalities during hibernation. The levels of total phospholipids and total cholesterol in the serum of black bears were found to increase significantly in hibernation as compared with the active state. Both free and esterified cholesterol were increased in the hibernating state in comparison with the active state (P biologie mole??culaire. All rights reserved.

  10. 7-Dehydrocholesterol (7-DHC), But Not Cholesterol, Causes Suppression of Canonical TGF-β Signaling and Is Likely Involved in the Development of Atherosclerotic Cardiovascular Disease (ASCVD).

    Science.gov (United States)

    Huang, Shuan Shian; Liu, I-Hua; Chen, Chun-Lin; Chang, Jia-Ming; Johnson, Frank E; Huang, Jung San

    2017-06-01

    For several decades, cholesterol has been thought to cause ASCVD. Limiting dietary cholesterol intake has been recommended to reduce the risk of the disease. However, several recent epidemiological studies do not support a relationship between dietary cholesterol and/or blood cholesterol and ASCVD. Consequently, the role of cholesterol in atherogenesis is now uncertain. Much evidence indicates that TGF-β, an anti-inflammatory cytokine, protects against ASCVD and that suppression of canonical TGF-β signaling (Smad2-dependent) is involved in atherogenesis. We had hypothesized that cholesterol causes ASCVD by suppressing canonical TGF-β signaling in vascular endothelium. To test this hypothesis, we determine the effects of cholesterol, 7-dehydrocholesterol (7-DHC; the biosynthetic precursor of cholesterol), and other sterols on canonical TGF-β signaling. We use Mv1Lu cells (a model cell system for studying TGF-β activity) stably expressing the Smad2-dependent luciferase reporter gene. We demonstrate that 7-DHC (but not cholesterol or other sterols) effectively suppresses the TGF-β-stimulated luciferase activity. We also demonstrate that 7-DHC suppresses TGF-β-stimulated luciferase activity by promoting lipid raft/caveolae formation and subsequently recruiting cell-surface TGF-β receptors from non-lipid raft microdomains to lipid rafts/caveolae where TGF-β receptors become inactive in transducing canonical signaling and undergo rapid degradation upon TGF-β binding. We determine this by cell-surface 125 I-TGF-β-cross-linking and sucrose density gradient ultracentrifugation. We further demonstrate that methyl-β-cyclodextrin (MβCD), a sterol-chelating agent, reverses 7-DHC-induced suppression of TGF-β-stimulated luciferase activity by extrusion of 7-DHC from resident lipid rafts/caveolae. These results suggest that 7-DHC, but not cholesterol, promotes lipid raft/caveolae formation, leading to suppression of canonical TGF-β signaling and atherogenesis. J

  11. Ethnicity influences BMI as evaluated from reported serum lipid values in Inuit and non-Inuit: raised upper limit of BMI in Inuit?

    Science.gov (United States)

    Noahsen, Paneeraq; Andersen, Stig

    2013-01-01

    To identify thresholds of BMI at which similar levels of serum lipids occur in Inuit and in non-Inuit as the impact of obesity on metabolic risk factors differ in Inuit compared to other ethnic groups. Published comparative data among Inuit and non-Inuit whites on BMI and HDL-cholesterol and triglyceride were identified for analysis. A literature search was done for BMI, lipids, Inuit and Greenland or Canada. Studies with data on triglycerides and HDL-cholesterol in Inuit and non-Inuit Caucasians were selected and data were retrieved. Regression equations were computed for BMI and HDL-cholesterol and BMI and triglycerides. BMI for similar levels of lipids in Inuit and non-Inuit and ratios of Inuit/non-Inuit BMI's were calculated. At BMI 25 kg/m2 HDL-cholesterol was 1.7/1.6 mM in Greenland Inuit/non-Inuit women and 1.7/1.5 mM in men in a major comparative study. HDL cholesterol decreased by 0.09 for each 1 kg/m2 increase in BMI. Serum triglycerides were 1.0/1.1 mM for Greenland Inuit/non-Inuit women and 0.9/ 1.4 mM for men at BMI 25 kg/m2. Slopes were around 0.1. A comparative study in Canadian Inuit/non-Inuit gave similar results. The BMI levels required for similar HDL-cholesterol or triglycerides were around 27.5 kg/m2, and Inuit/non-Inuit BMI-ratios were around 1.1. The same degree of dyslipidaemia was seen when Inuit had a 10% higher BMI compared to non-Inuit. This may support the establishment of Inuit-specific BMI cut-offs for the purposes of health screening and population health surveillance.

  12. Concentrated oat β-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Fulcher R Gary

    2007-03-01

    Full Text Available Abstract Background Soluble fibers lower serum lipids, but are difficult to incorporate into products acceptable to consumers. We investigated the physiological effects of a concentrated oat β-glucan on cardiovascular disease (CVD endpoints in human subjects. We also compared the fermentability of concentrated oat β-glucan with inulin and guar gum in a model intestinal fermentation system. Methods Seventy-five hypercholesterolemic men and women were randomly assigned to one of two treatments: 6 grams/day concentrated oat β-glucan or 6 grams/day dextrose (control. Fasting blood samples were collected at baseline, week 3, and week 6 and analyzed for total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, glucose, insulin, homocysteine and C-reactive protein (CRP. To estimate colonic fermentability, 0.5 g concentrated oat β-glucan was incubated in a batch model intestinal fermentation system, using human fecal inoculum to provide representative microflora. Fecal donors were not involved with the β-glucan feeding trial. Inulin and guar gum were also incubated in separate serum bottles for comparison. Results Oat β-glucan produced significant reduction from baseline in total cholesterol (-0.3 ± 0.1 mmol/L and LDL cholesterol (-0.3 ± 0.1 mmol/L, and the reduction in LDL cholesterol were significantly greater than in the control group (p = 0.03. Concentrated oat β-glucan was a fermentable fiber and produced total SCFA and acetate concentrations similar to inulin and guar gum. Concentrated oat β-glucan produced the highest concentrations of butyrate at 4, 8, and 12 hours. Conclusion Six grams concentrated oat β-glucan per day for six weeks significantly reduced total and LDL cholesterol in subjects with elevated cholesterol, and the LDL cholesterol reduction was greater than the change in the control group. Based on a model intestinal fermentation, this oat β-glucan was fermentable, producing higher amounts of butyrate than other

  13. Status of non-HDL-cholesterol and LDL-cholesterol among subjects with and without metabolic syndrome.

    Science.gov (United States)

    Khan, Sikandar Hayat; Asif, Naveed; Ijaz, Aamir; Manzoor, Syed Mohsin; Niazi, Najumusaquib Khan; Fazal, Nadeem

    2018-04-01

    To to compare non-high-density lipoprotein and low-density lipoprotein cholesterol among subjects with or without metabolic syndrome, glycation status and nephropathic changes. The comparative cross-sectional study was carried out from Dec 21, 2015, to Nov 15, 2016, at the department of pathology and medicine PNS HAFEEZ and department of chemical pathology and clinical endocrinology (AFIP), and comprised patients of either gender visiting the out-patient department for routine screening. They were evaluated for anthropometric indices, blood pressure and sampled for lipid profile, fasting plasma glucose, glycated haemoglobin, insulin, and urine albumin-to-creatinine ratio. Subjects were segregated based upon presence (Group1) or absence (Group2) of metabolic syndrome based upon criteria of National Cholesterol Education Programme and the International Diabetes Federation. Differences in high and low density lipoprotein cholesterols were calculated between the groups. Of the 229 subjects, 120(52.4%) were women and 109(47.6%) were men. Overall, there were 107(46.7%) subjects in Group 1, and 122(53.3%) in Group 2. Non-high-density lipoprotein cholesterol was significantly different between subjects with and without metabolic syndrome as per both the study criteria (p<0.05 each). . Non-high-density lipoprotein cholesterol levels were higher in subjects with metabolic syndrome.

  14. Serum triglycerides, but not cholesterol or leptin, are decreased in suicide attempters with mood disorders.

    Science.gov (United States)

    da Graça Cantarelli, Maria; Nardin, Patrícia; Buffon, Andréia; Eidt, Murilo Castilhos; Antônio Godoy, Luiz; Fernandes, Brisa S; Gonçalves, Carlos-Alberto

    2015-02-01

    Many peripheral biomarkers, including low cholesterol and its fractions, have been examined to identify suicidal behavior. Herein, we assessed serum lipid profile and some proteins putatively associated with suicidal behavior in subjects with mood disorder (bipolar disorder or major depressive disorder) with a recent suicide attempt and with no lifetime history of suicide attempts. Fifty subjects had presented an episode of attempted suicide during the last 15 days, and 36 subjects had no history of any suicide attempt. We measured total cholesterol, HDL, LDL and triglycerides as well as serum leptin, brain-derived neurotrophic factor (BDNF), S100B and C-reactive protein (CRP). Individuals that had attempted suicide presented decreased body mass index (BMI) and waist circumference. After adjusting for these confounders, we found that triglycerides were decreased in attempted suicide subjects. We found no differences among total cholesterol, LDL, and HDL or leptin, S100B, CRP and BDNF. This is a cross-sectional study, and we cannot therefore assess whether a decrease in triglycerides caused a mood episode with suicidal ideation that led to a suicide attempt or if the presence of a mood episode originated a loss of appetite and consequent loss of weight, therefore decreasing triglyceride levels. These results do not support the hypothesis that lower levels of cholesterol are associated with suicidal behavior in a mood disorder sample. However, our data support the idea that adiposity is differentiated in these patients (reduced BMI, waist circumference and serum triglycerides), which could lead to an altered communication between the adipose tissue and brain. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Serum Cholesterol Reduction Efficacy of Biscuits with Added Plant Stanol Ester

    Directory of Open Access Journals (Sweden)

    Wantanee Kriengsinyos

    2015-01-01

    Full Text Available This study’s aim was to test the low-density lipoprotein cholesterol- (LDL-c- lowering efficacy of biscuits containing 2 g of plant stanols, which corresponded to 3.4 g of plant stanol esters. The biscuit is a new food format that can be consumed as a snack. In a double-blind, placebo-controlled parallel design study, 119 mildly to moderately hypercholesterolemic volunteers were randomized to plant stanol or control groups. Subjects were comparable in age, gender, lipid profiles, and body mass index. They consumed a control biscuit once a day for a two-week period, followed by a four-week intervention period that either had a plant stanol ester biscuit or a control. During the habitual diet, one biscuit per day was consumed at any time that subjects wished. Serum lipid profiles were measured at the first day of run-in, at baseline, and at the study’s end. Compared to the control, the total cholesterol (TC, LDL-c, and the LDL-to-high-density lipoprotein (LDL/HDL ratio had serum reductions of 4.9%, 6.1%, and 4.3%, respectively, and were observed after 4 weeks of biscuit consumption with added plant stanols (P < 0.05. A significantly higher reduction in LDL-c (8.9% and LDL/HDL ratio (11.4% was measured in those taking a plant stanol biscuit with a meal compared to those who consumed a plant stanol biscuit without other food. In conclusion, incorporating plant stanols into a biscuit is an attractive, convenient, and acceptable way to modestly lower elevated cholesterol concentrations. For optimal efficacy, biscuits should be consumed with a meal as part of a healthy diet.

  16. Relationships between serum resistin and fat intake, serum lipid concentrations and adiposity in the general population.

    Science.gov (United States)

    Cabrera de León, Antonio; Almeida González, Delia; González Hernández, Ana; Domínguez Coello, Santiago; Marrugat, Jaume; Juan Alemán Sánchez, José; Brito Díaz, Buenaventura; Marcelino Rodríguez, Itahisa; Pérez, María del Cristo Rodríguez

    2014-01-01

    The serum resistin level is associated with the incidence of ischemic heart disease in the general population. We analyzed the associations between serum resistin and fat intake, serum lipid concentrations and adiposity in the general population. A cross-sectional study of 6,637 randomly recruited adults was conducted. The resistin levels were measured in thawed aliquots of serum using an enzyme immunoanalysis technique. The resistin level exhibited a positive nonparametric correlation with saturated fat intake(p correlation with adherence to the Mediterranean diet(p HDL cholesterol(p body mass index(p HDL cholesterol level(OR=0.84 CI95%= 0.76-0.93), a high non-HDL cholesterol level(OR=0.84 CI95%=0.72-0.99), a high LDL cholesterol level(OR=0.82 CI95%=0.70-0.97) and a waist/height ratio of ≥0.55(OR=0.76 CI95%=0.67-0.85). The multivariate models corroborated the positive associations between the resistin level and saturated fat intake(p adiposity.

  17. Cholesterol and ocular pathologies: focus on the role of cholesterol-24S-hydroxylase in cholesterol homeostasis

    Directory of Open Access Journals (Sweden)

    Fourgeux Cynthia

    2015-03-01

    Full Text Available The retina is responsible for coding the light stimulus into a nervous signal that is transferred to the brain via the optic nerve. The retina is formed by the association of the neurosensory retina and the retinal pigment epithelium that is supported by Bruch’s membrane. Both the physical and metabolic associations between these partners are crucial for the functioning of the retina, by means of nutrient intake and removal of the cell and metabolic debris from the retina. Dysequilibrium are involved in the aging processes and pathologies such as age-related macular degeneration, the leading cause of visual loss after the age of 50 years in Western countries. The retina is composed of several populations of cells including glia that is involved in cholesterol biosynthesis. Cholesterol is the main sterol in the retina. It is present as free form in cells and as esters in Bruch’s membrane. Accumulation of cholesteryl esters has been associated with aging of the retina and impairment of the retinal function. Under dietary influence and in situ synthesized, the metabolism of cholesterol is regulated by cell interactions, including neurons and glia via cholesterol-24S-hydroxylase. Several pathophysiological associations with cholesterol and its metabolism can be suggested, especially in relation to glaucoma and age-related macular degeneration.

  18. A Statistical Study of Serum Cholesterol Level by Gender and Race.

    Science.gov (United States)

    Tharu, Bhikhari Prasad; Tsokos, Chris P

    2017-07-25

    Cholesterol level (CL) is growing concerned as health issue in human health since it is considered one of the causes in heart diseases. A study of cholesterol level can provide insight about its nature and characteristics. A cross-sectional study. National Health and Nutrition Examination Survey (NHANS) II was conducted on a probability sample of approximately 28,000 persons in the USA and cholesterol level is obtained from laboratory results. Samples were selected so that certain population groups thought to be at high risk of malnutrition. Study included 11,864 persons for CL cases with 9,602 males and 2,262 females with races: whites, blacks, and others. Non-parametric statistical tests and goodness of fit test have been used to identify probability distributions. The study concludes that the cholesterol level exhibits significant racial and gender differences in terms of probability distributions. The study has concluded that white people are relatively higher at risk than black people to have risk line and high risk cholesterol. The study clearly indicates that black males normally have higher cholesterol. Females have lower variation in cholesterol than males. There exists gender and racial discrepancies in cholesterol which has been identified as lognormal and gamma probability distributions. White individuals seem to be at a higher risk of having high risk cholesterol level than blacks. Females tend to have higher variation in cholesterol level than males.

  19. Cellular Cholesterol Regulates Ubiquitination and Degradation of the Cholesterol Export Proteins ABCA1 and ABCG1*

    Science.gov (United States)

    Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C.; Brown, Andrew J.; Sandoval, Cecilia; Hallab, Jeannette C.; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard

    2014-01-01

    The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes. PMID:24500716

  20. Sterol Synthesis in Diverse Bacteria.

    Science.gov (United States)

    Wei, Jeremy H; Yin, Xinchi; Welander, Paula V

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  1. The good and the bad: what researchers have learned about dietary cholesterol, lipid management and cardiovascular disease risk since the Harvard Egg Study.

    Science.gov (United States)

    Constance, C

    2009-10-01

    The prevalence of cardiovascular diseases, while lower than it once was, remains a significant health consideration. To review the evolving evidence with respect to what role various factors play in the aetiology of coronary heart disease (CHD). While total cholesterol and low-density lipoprotein cholesterol (LDL-C) were previously believed to play central roles, it has now become clear that neither in isolation is highly significant. For example, some people with very high LDL-C levels do not develop CHD, while others with very low LDL-C levels do. Furthermore, there is a difference between dietary cholesterol and serum cholesterol. Dietary cholesterol, which is found in animal-based foods, raises blood cholesterol in only approximately one-third of people. Conversely, intake of saturated fatty acids and trans fatty acids can result in dyslipidaemia. Furthermore, obesity--particularly abdominal obesity--and metabolic syndrome both are strong independent risk factors for development of cardiovascular disease. Statin therapy and a diet comprising a portfolio of plant sterols and viscous fibres can both significantly reduce LDL-C levels and C-reactive protein. The latter is a key marker of inflammation and of elevated risk for cardiovascular disease.

  2. ANALYSIS OF BILIARY CHOLESTEROL LEVELS IN IRON-DEFICIENT PATIENTS OPERATED FOR GALLSTONE DISEASE

    Directory of Open Access Journals (Sweden)

    R. Kannan

    2017-01-01

    Full Text Available BACKGROUND Gallstone disease is a common gastrointestinal problem in day-to-day practice. The old concept that a typical gallstone sufferer is fat, fertile, flatulent female of 50. This is partially true as the disease has been found in women soon after their first delivery who are thin and underweight and in males also. Conditions that favour the formation of cholesterol gallstones are super saturation of bile with cholesterol, kinetically favourable nucleation and presence of cholesterol crystals in the gallbladder long enough to agglomerate into a stone. Recent studies have defined the role of trace elements (Fe, Ca, Zn and Cu and defective pH in the formation of gallstones. The aim of the study is to determine the association of iron deficiency in super saturation of bile. This cross-sectional study of 50 patients was conducted over a period of 12 months in the Department of General Surgery, Kilpauk Medical College, Chennai, India. Biliary cholesterol and serum cholesterol were compared in iron deficient and non-iron deficient patients having gallstones. A low serum iron level is a factor in bile super saturation with respect to cholesterol leading to gallstone formation. MATERIALS AND METHODS This study was conducted over a period of 12 months in the Department of General Surgery, Kilpauk Medical College, Chennai, India. 50 patients suffering from cholelithiasis confirmed by USG were divided into two groups based on serum iron values. Group A consists of patients with normal serum iron (non-anaemic and Group B of patients with less than normal serum iron (anaemic. RESULTS Serum total cholesterol of the patients of cholelithiasis was not different among groups categorised based on serum iron levels. There were no significant variations in the serum cholesterol contents of both the groups. Also, there was no significant variation of the above parameter in the male and female patients. CONCLUSION Though, it is difficult to draw a causal

  3. EFFECT OF DIETARY OLIVE OIL/CHOLESTEROL ON SERUM LIPOPROTEINS, LIPID PEROXIDATION, AND ATHEROSCLEROSIS IN RABBITS

    Directory of Open Access Journals (Sweden)

    R MAHDAVI

    2003-03-01

    Full Text Available Introduction: High plasma cholesterol levels, mainly LDL are a widely recognized major risk factor for Coronary Heart Disease (CHD. According to the epidemiologic studies findings, people from the Mediterranean countries, have lower CHD rats than other countries, in these countries usual diet is high in olive oil. The present study compares the effects of cholesterol enriched diet with or without adding olive oil on serum Lipoproteins, lipid per oxidation, and atherosclerosis development. Method: Twenty Dutch male rabbits were Categorized to four groups (one group as Control, and others as Experimental. They received one of standard, cholesterol - rich, olive oil rich and combined (cholesterol + olive oil diet for Twelve weeks. Fasting blood samples from heart were collected at the beginning, and the end of Experimental period. Means of total cholesterol, HDL-Ctriglycerides, MDA and antioxidant caperimental period, significant differences were showed in total cholesterol, HDL-C, triglyceride and MDA between groups. Results: The comparison of cholesterol rich diet with cholesterol + olive oil showed a higher mean of MDA in cholesterol rich group (P < 0.001. Biochemical factors and aortic lesion degree showed no significant difference between standard and olive oil group. Aortic lesions in cholesterol + olive oil showed nonsignificant lower degree than cholesterol group. Discussion: This findings showed preventive effect of olive oil against atherosclerosis which is independent of plasma lipoprotein effect, and suggested that probably olive oil acts on arteries directly.

  4. Cholesterol in myelin biogenesis and hypomyelinating disorders.

    Science.gov (United States)

    Saher, Gesine; Stumpf, Sina Kristin

    2015-08-01

    The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. CCQM K6.2 determination of total cholesterol in human serum

    Science.gov (United States)

    Wise, Stephen A.; Phinney, Karen W.; Duewer, David L.; Sniegoski, Lorna T.; Welch, Michael J.; Pabello, Guiomar; Avila Caldero, Marco A.; Qinde, Liu; Kooi, Lee Tong; Rego, Eliane; Garrido, Bruno; Allegri, Gabriella; de La Cruz, Marcia; Barrabin, Juliana; Puglisi, Celia; Lopez, Eduardo; Lee, Hwashim; Kim, Byungjoo; Delatour, Vincent; Heuillet, Maud; Nammoonnoy, Jintana; Ceyhan Gören, Ahmet; Bilsel, Gokhan; Konopelko, L.; Krylov, A.; Lopushanskaya, E.

    2018-01-01

    Cholesterol is one of the most frequently measured substances in human blood/serum to assist in assessing the health status of individuals. Because of its clinical significance, CCQM-K6 determination of cholesterol in serum was completed in 2000 as one of the first key comparison (KC) studies performed within the Organic Analysis Working Group (OAWG). The first subsequent KC for cholesterol, CCQM-K6.1, was completed in 2001. Measurements for this second subsequent, CCQM-K6.2, were completed in 2012. These subsequent comparisons were conducted to enable CCQM members that had not participated in earlier studies to demonstrate their capabilities to measure a nonpolar (pKow mass (100 g/mol to 500 g/mol) metabolite in human serum at relatively high concentrations (1 mg/g to 3 mg/g) found in normal populations. Successful participation in CCQM-K6.2 demonstrated capabilities in analysis of complex biological matrices including sample preparation (extraction, derivatization), LC or GC separation, and quantification using an isotope dilution mass spectrometry approach. Normally in a subsequent KC, no key comparison reference value (KCRV) would be established and assessment of performance would be via the deviation of participants' results to the anchor institute's results, adjusted to account for the anchor's performance in the original comparison versus its KCRV. Due to the very long-time period since the original key comparison, the OAWG decided that this did not represent the best approach to assess performance in what is a relatively complex measurement. Given the excellent agreement between the anchor institute's results and robust consensus summary of the participants' values, the reference value for this study was taken as the anchor institute's result and treated as a 'KCRV'. Seven of the nine participants demonstrated agreement with the reference value. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears

  6. The Biological Activity of alpha-Mangostin, a Larvicidal Botanic Mosquito Sterol Carrier Protein-2 Inhibitor

    Science.gov (United States)

    2010-01-01

    it is known that esterase aids in the detoxiÞcation of or- ganophosphates ( Hemingway and Ransom 2000). In- terestingly, we found that -mangostin...Disruption of the sterol carrier protein 2 gene in mice impairs biliary lipid and hepatic cholesterol metabolism. J. Biol. Chem. 276: 48058Ð48065. Hemingway

  7. Double-Blind Randomized Placebo Controlled Trial Demonstrating Serum Cholesterol Lowering Efficacy of a Smoothie Drink with Added Plant Stanol Esters in an Indonesian Population

    Directory of Open Access Journals (Sweden)

    Lanny Lestiani

    2018-01-01

    Full Text Available Indonesians have a high intake of saturated fats, a key contributing dietary factor to elevated blood cholesterol concentrations. We investigated the cholesterol lowering efficacy of a smoothie drink with 2 grams of plant stanols as esters to lower serum total and LDL-cholesterol concentrations in hypercholesterolemic Indonesian adults. The double-blind randomized placebo controlled parallel design study involved 99 subjects. Fifty subjects received control drink and dietary advice, and 49 subjects received intervention drink (Nutrive Benecol® and dietary advice. Baseline, midline (week 2, and endline (week 4 assessments were undertaken for clinical, anthropometric, and biochemical variables. Compared to control, the smoothie drink with plant stanols reduced serum LDL-cholesterol concentration by 7.6% (p<0.05 and 9.0% (p<0.05 in two and four weeks, respectively. Serum total cholesterol was reduced by 5.7% (p<0.05 compared to control in two weeks, and no further reduction was detected after four weeks (5.6%. Compared to baseline habitual diet, LDL-cholesterol was reduced by 9.3% (p<0.05 and 9.8% (p<0.05 in the plant stanol ester group in two and four weeks, respectively. We conclude that consumption of smoothie drink with added plant stanol esters effectively reduces serum total and LDL-cholesterol of hypercholesterolemic Indonesian subjects already in two weeks. Trial is registered as NCT02316808.

  8. Effect of a multivitamin preparation supplemented with phytosterol on serum lipids and infarct size in rats fed with normal and high cholesterol diet

    Science.gov (United States)

    2013-01-01

    Background Although complex multivitamin products are widely used as dietary supplements to maintain health or as special medical food in certain diseases, the effects of these products were not investigated in hyperlipidemia which is a major risk factor for cardiovascular diseases. Therefore, here we investigated if a preparation developed for human use containing different vitamins, minerals and trace elements enriched with phytosterol (VMTP) affects the severity of experimental hyperlipidemia as well as myocardial ischemia/reperfusion injury. Methods Male Wistar rats were fed a normal or cholesterol-enriched (2% cholesterol + 0.25% cholate) diet for 12 weeks to induce hyperlipidemia. From week 8, rats in both groups were fed with a VMTP preparation or placebo for 4 weeks. Serum triglyceride and cholesterol levels were measured at week 0, 8 and 12. At week 12, hearts were isolated, perfused according to Langendorff and subjected to a 30-min coronary occlusion followed by 120 min reperfusion to measure infarct size. Results At week 8, cholesterol-fed rats showed significantly higher serum cholesterol level as compared to normal animals, however, serum triglyceride level did not change. VMTP treatment significantly decreased serum cholesterol level in the hyperlipidemic group by week 12 without affecting triglyceride levels. However, VMTP did not show beneficial effect on infarct size. The inflammatory marker hs-CRP and the antioxidant uric acid were also not significantly different. Conclusions This is the first demonstration that treatment of hyperlipidemic subjects with a VMTP preparation reduces serum cholesterol, the major risk factor for cardiovascular disease; however, it does not provide cardioprotection. PMID:24063587

  9. Studies on the Utilization, Metabolism and Function of Sterols in the House-Fly, Musca Domestica; Utilisation. Metabolisme et fonctions des sterols chez la mouche domestique (Musca Domestica); Izuchenie usvoeniya, metabolizma i funktsii sterinov v organizme domashnej mukhi Musca Domestica; Estudios sobre la asimilacion, el metabolismo y la funcion de los esteroles in la mosca comun (Musca Domestica)

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, W. E. [United States Department of Agriculture, Agricultural Research Service, Entomology Research Division, Beltsville, MD (United States)

    1963-09-15

    Insects generally have been found to require a dietary source of sterol for normal larval growth and metamorphosis. Our work has pointed to two additional physiological roles for sterols in the housefly, Musca domestica L.: (1) A dietary source of sterol is essential for sustained viable egg production in the female fly; on a sterol-deficient diet eggs are produced but hatch and viability are low. (2) Cholesterol is also involved in the mobilization and utilization of nutrient reserves associated with the initiation of ovarian maturation in the female fly. The quantitative sterol requirements for the above physiological processes and the metabolic conversions that occur during growth, metamorphosis and reproduction have been studied in this insect, using C{sup 14}- and H{sup 3}-labelled sterols in conjunction with a variety of analytical tools, including reverse isotope dilution, gasliquid chromatography and spectroscopy, and employing aseptic rearing techniques and semi-defined larval and Adult diets. Both C{sup 14}-cholesterol and H{sup 3}-{beta}- sitosterol have been used as a source df sterol in either the larval or the adult diet of the house fly, and the pattern of utilization and metabolism was found to be almost identical for these two sterols. However, there was no detectable conversion of {beta}-sitosterol to cholesterol. Sub-minimal quantities of cholesterol have also been used in the larval diet in combination with ''sparing sterols'' such as choies tanol, which will fulfill in part but not entirely the sterol requirement of this insect. The utilization and fate of the 'sparing sterol' has been investigated using C{sup 14} cholestanol, and the metabolism of the minute quantity of essential cholesterol is currently under study using high-specific-activity C{sup 14} cholesterol. - Other species of insects, including the German cockroach (Blattella germanica), have been examined in relation to the patterns of utilization and the metabolic pathways for

  10. The Impairment of Macrophage-to-Feces Reverse Cholesterol Transport during Inflammation Does Not Depend on Serum Amyloid A.

    Science.gov (United States)

    de Beer, Maria C; Wroblewski, Joanne M; Noffsinger, Victoria P; Ji, Ailing; Meyer, Jason M; van der Westhuyzen, Deneys R; de Beer, Frederick C; Webb, Nancy R

    2013-01-01

    Studies suggest that inflammation impairs reverse cholesterol transport (RCT). We investigated whether serum amyloid A (SAA) contributes to this impairment using an established macrophage-to-feces RCT model. Wild-type (WT) mice and mice deficient in SAA1.1 and SAA2.1 (SAAKO) were injected intraperitoneally with (3)H-cholesterol-labeled J774 macrophages 4 hr after administration of LPS or buffered saline. (3)H-cholesterol in plasma 4 hr after macrophage injection was significantly reduced in both WT and SAAKO mice injected with LPS, but this was not associated with a reduced capacity of serum from LPS-injected mice to promote macrophage cholesterol efflux in vitro. Hepatic accumulation of (3)H-cholesterol was unaltered in either WT or SAAKO mice by LPS treatment. Radioactivity present in bile and feces of LPS-injected WT mice 24 hr after macrophage injection was reduced by 36% (P < 0.05) and 80% (P < 0.001), respectively. In contrast, in SAAKO mice, LPS did not significantly reduce macrophage-derived (3)H-cholesterol in bile, and fecal excretion was reduced by only 45% (P < 0.05). Injection of cholesterol-loaded allogeneic J774 cells, but not syngeneic bone-marrow-derived macrophages, transiently induced SAA in C57BL/6 mice. Our study confirms reports that acute inflammation impairs steps in the RCT pathway and establishes that SAA plays only a minor role in this impairment.

  11. The Impairment of Macrophage-to-Feces Reverse Cholesterol Transport during Inflammation Does Not Depend on Serum Amyloid A

    Directory of Open Access Journals (Sweden)

    Maria C. de Beer

    2013-01-01

    Full Text Available Studies suggest that inflammation impairs reverse cholesterol transport (RCT. We investigated whether serum amyloid A (SAA contributes to this impairment using an established macrophage-to-feces RCT model. Wild-type (WT mice and mice deficient in SAA1.1 and SAA2.1 (SAAKO were injected intraperitoneally with 3H-cholesterol-labeled J774 macrophages 4 hr after administration of LPS or buffered saline. 3H-cholesterol in plasma 4 hr after macrophage injection was significantly reduced in both WT and SAAKO mice injected with LPS, but this was not associated with a reduced capacity of serum from LPS-injected mice to promote macrophage cholesterol efflux in vitro. Hepatic accumulation of 3H-cholesterol was unaltered in either WT or SAAKO mice by LPS treatment. Radioactivity present in bile and feces of LPS-injected WT mice 24 hr after macrophage injection was reduced by 36%   (P<0.05 and 80%   (P<0.001, respectively. In contrast, in SAAKO mice, LPS did not significantly reduce macrophage-derived 3H-cholesterol in bile, and fecal excretion was reduced by only 45%   (P<0.05. Injection of cholesterol-loaded allogeneic J774 cells, but not syngeneic bone-marrow-derived macrophages, transiently induced SAA in C57BL/6 mice. Our study confirms reports that acute inflammation impairs steps in the RCT pathway and establishes that SAA plays only a minor role in this impairment.

  12. Consumer attitudes and understanding of cholesterol-lowering claims on food: randomize mock-package experiments with plant sterol and oat fibre claims.

    Science.gov (United States)

    Wong, C L; Mendoza, J; Henson, S J; Qi, Y; Lou, W; L'Abbé, M R

    2014-08-01

    Few studies have examined consumer acceptability or comprehension of cholesterol-lowering claims on food labels. Our objective was to assess consumer attitudes and understanding of cholesterol-lowering claims regarding plant sterols (PS) and oat fibre (OF). We conducted two studies on: (1) PS claims and (2) OF claims. Both studies involved a randomized mock-packaged experiment within an online survey administered to Canadian consumers. In the PS study (n=721), we tested three PS-related claims (disease risk reduction claim, function claim and nutrient content claim) and a 'tastes great' claim (control) on identical margarine containers. Similarly, in the OF study (n=710), we tested three claims related to OF and a 'taste great' claim on identical cereal boxes. In both studies, participants answered the same set of questions on attitudes and understanding of claims after seeing each mock package. All claims that mentioned either PS or OF resulted in more positive attitudes than the taste control claim (Pprofile. How consumers responded to the nutrition claims between the two studies was influenced by contextual factors such as familiarity with the functional food/component and the food product that carried the claim. Permitted nutrition claims are approved based on physiological evidence and are allowed on any food product as long as it meets the associated nutrient criteria. However, it is difficult to generalize attitudes and understanding of claims when they are so highly dependent on contextual factors.

  13. Increased serum triglycerides and reduced HDL cholesterol in male rats after intake of ammonium chloride for 3 weeks

    Science.gov (United States)

    2013-01-01

    Background Previous data suggested that intake of sodas and other acid beverages might be associated with increased levels of serum triglycerides, lowered HDL cholesterol, and increased formation of mono unsaturated fatty acids, which are the preferred ones for triglyceride synthesis. The present work is an extension of these studies. Methods Thirty male rats were divided into 3 groups. All groups were given the same food, but various beverages: water (W), ammonium chloride, 200 mmol/L (AC), or sodium bicarbonate, 200 mmol/L (SB). Serum triglycerides, HDL cholesterol, and the fatty acid distribution in total serum lipids were determined. Delta9-desaturase in serum lipids was estimated by the ratio of palmitoleic to palmitic acid, and by the oleic/stearic acid ratio. Correlation and ANOVA were used to study associations and group differences. Results After 3 weeks, the AC group had higher triglyceride concentration and higher Delta9 desaturase indexes, but lower serum HDL and body weight as compared with the SB and W groups. In each of the groups, the oleic acid/stearic acid ratio correlated positively with serum triglycerides; in the pooled group the correlation coefficient was r = 0.963, ptriglycerides, and lowered HDL cholesterol concentration, thereby possibly contributing to explain the increased triglyceride concentration previously observed in subjects with a frequent intake of acid beverages, such as sodas containing carbonic acid, citric acid, and phosphoric acid. PMID:23800210

  14. Triazoles inhibit cholesterol export from lysosomes by binding to NPC1.

    Science.gov (United States)

    Trinh, Michael N; Lu, Feiran; Li, Xiaochun; Das, Akash; Liang, Qiren; De Brabander, Jef K; Brown, Michael S; Goldstein, Joseph L

    2017-01-03

    Niemann-Pick C1 (NPC1), a membrane protein of lysosomes, is required for the export of cholesterol derived from receptor-mediated endocytosis of LDL. Lysosomal cholesterol export is reportedly inhibited by itraconazole, a triazole that is used as an antifungal drug [Xu et al. (2010) Proc Natl Acad Sci USA 107:4764-4769]. Here we show that posaconazole, another triazole, also blocks cholesterol export from lysosomes. We prepared P-X, a photoactivatable cross-linking derivative of posaconazole. P-X cross-linked to NPC1 when added to intact cells. Cross-linking was inhibited by itraconazole but not by ketoconazole, an imidazole that does not block cholesterol export. Cross-linking of P-X was also blocked by U18666A, a compound that has been shown to bind to NPC1 and inhibit cholesterol export. P-X also cross-linked to purified NPC1 that was incorporated into lipid bilayer nanodiscs. In this in vitro system, cross-linking of P-X was inhibited by itraconazole, but not by U18666A. P-X cross-linking was not prevented by deletion of the N-terminal domain of NPC1, which contains the initial binding site for cholesterol. In contrast, P-X cross-linking was reduced when NPC1 contained a point mutation (P691S) in its putative sterol-sensing domain. We hypothesize that the sterol-sensing domain has a binding site that can accommodate structurally different ligands.

  15. Fractionation of human serum lipoproteins and simultaneous enzymatic determination of cholesterol and triglycerides

    International Nuclear Information System (INIS)

    Qureshi, Rashid Nazir; Kok, Wim Th.; Schoenmakers, Peter J.

    2009-01-01

    A method based on Asymmetric Flow Field-Flow Fractionation (AF4) was developed to separate different types of lipoproteins from human serum. The emphasis in the method optimization was on the possibilities to characterize the largest lipoprotein fractions (LDL and VLDL), which is usually not possible with the size-exclusion chromatography methods applied in routine analysis. Different channel geometries and flow programs were tested and compared. The use of a short fractionation channel was shown to give less sample dilution at the same fractionation power compared to a conventional, long channel. Different size selectivities were obtained with an exponential decay and a linear cross flow program. The ratio of the UV absorption signal to the light scattering signal was used to validate the relation between retention time and size of the fractionated particles. An experimental setup was developed for the simultaneous determination of the cholesterol and triglycerides distribution over the lipoprotein fractions, based on enzymatic reactions followed by UV detection at 500 nm. Coiled and knitted PTFE tubing reactors were compared. An improved peak sharpness and sensitivity were observed with the knitted tubing reactor. After optimization of the experimental conditions a satisfactory linearity and precision (2-3% rsd for cholesterol and 5-6% rsd for triglycerides) were obtained. Finally, serum samples, a pooled sample from healthy volunteers and samples of sepsis patients, were analyzed with the method developed. Lipoprotein fractionation and cholesterol and triglyceride distributions could be correlated with the clinical background of the samples.

  16. Fractionation of human serum lipoproteins and simultaneous enzymatic determination of cholesterol and triglycerides

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Rashid Nazir [Polymer-Analysis Group, van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam (Netherlands); Kok, Wim Th., E-mail: W.Th.Kok@uva.nl [Polymer-Analysis Group, van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam (Netherlands); Schoenmakers, Peter J. [Polymer-Analysis Group, van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam (Netherlands)

    2009-11-03

    A method based on Asymmetric Flow Field-Flow Fractionation (AF4) was developed to separate different types of lipoproteins from human serum. The emphasis in the method optimization was on the possibilities to characterize the largest lipoprotein fractions (LDL and VLDL), which is usually not possible with the size-exclusion chromatography methods applied in routine analysis. Different channel geometries and flow programs were tested and compared. The use of a short fractionation channel was shown to give less sample dilution at the same fractionation power compared to a conventional, long channel. Different size selectivities were obtained with an exponential decay and a linear cross flow program. The ratio of the UV absorption signal to the light scattering signal was used to validate the relation between retention time and size of the fractionated particles. An experimental setup was developed for the simultaneous determination of the cholesterol and triglycerides distribution over the lipoprotein fractions, based on enzymatic reactions followed by UV detection at 500 nm. Coiled and knitted PTFE tubing reactors were compared. An improved peak sharpness and sensitivity were observed with the knitted tubing reactor. After optimization of the experimental conditions a satisfactory linearity and precision (2-3% rsd for cholesterol and 5-6% rsd for triglycerides) were obtained. Finally, serum samples, a pooled sample from healthy volunteers and samples of sepsis patients, were analyzed with the method developed. Lipoprotein fractionation and cholesterol and triglyceride distributions could be correlated with the clinical background of the samples.

  17. Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism.

    OpenAIRE

    Zinser, E; Paltauf, F; Daum, G

    1993-01-01

    Organelles of the yeast Saccharomyces cerevisiae were isolated and analyzed for sterol composition and the activity of three enzymes involved in sterol metabolism. The plasma membrane and secretory vesicles, the fractions with the highest sterol contents, contain ergosterol as the major sterol. In other subcellular membranes, which exhibit lower sterol contents, intermediates of the sterol biosynthetic pathway were found at higher percentages. Lipid particles contain, in addition to ergostero...

  18. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content.

    Science.gov (United States)

    Lee, Do Kyung; Jang, Seok; Baek, Eun Hye; Kim, Mi Jin; Lee, Kyung Soon; Shin, Hea Soon; Chung, Myung Jun; Kim, Jin Eung; Lee, Kang Oh; Ha, Nam Joo

    2009-06-11

    Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20 approximately 30 years old) to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108 approximately 109 CFU/ml) were orally administered to SD rats (fed a high-cholesterol diet) every day for 2 weeks. B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p water content, and reduced body weight and harmful intestinal enzyme activities. Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation.

  19. Differential Effects of Cholesterol, Ergosterol and Lanosterol on a Dipalmitoyl Phosphatidylcholine (DPPC) membrane: A Molecular Dynamics Simulations Study

    Energy Technology Data Exchange (ETDEWEB)

    Cournia, Zoe [Yale University; Ullmann, G. Matthias [University of Bayreuth; Smith, Jeremy C [ORNL

    2007-02-01

    Lipid raft/domain formation may arise as a result of the effects of specific sterols on the physical properties of membranes. Here, using molecular dynamics simulation, we examine the effects of three closely-related sterols, ergosterol, cholesterol, and lanosterol, at a biologically relevant concentration (40 mol %) on the structural properties of a model dipalmitoyl phosphatidylcholine (DPPC) membrane at 309 and 323 K. All three sterols are found to order the DPPC acyl tails and condense the membrane relative to the DPPC liquid-phase membrane, but each one does this to a significantly different degree. The smooth {alpha}-face of ergosterol, together with the presence of tail unsaturation in this sterol, leads to closer interaction of ergosterol with the lipids and closer packing of the lipids with each other, so ergosterol has a higher condensing effect on the membrane, as reflected by the area per lipid. Moreover, ergosterol induces a higher proportion of trans lipid conformers, a thicker membrane, and higher lipid order parameters and is aligned more closely with the membrane normal. Ergosterol also positions itself closer to the bilayer/water interface. In contrast, the rough {alpha}-face of lanosterol leads to a less close interaction of the steroid ring system with the phospholipid acyl chains, and so lanosterol orders, straightens, and packs the lipid acyl chains less well and is less closely aligned with the membrane normal. Furthermore, lanosterol lies closer to the relatively disordered membrane center than do the other sterols. The behavior of cholesterol in all the above respects is intermediate between that of lanosterol and ergosterol. The findings here may explain why ergosterol is the most efficient of the three sterols at promoting the liquid-ordered phase and lipid domain formation and may also furnish part of the explanation as to why cholesterol is evolutionarily preferred over lanosterol in higher-vertebrate plasma membranes.

  20. Effective reduction of LDL cholesterol by indigenous plant product.

    Science.gov (United States)

    Bhardwaj, P K; Dasgupta, D J; Prashar, B S; Kaushal, S S

    1994-03-01

    A herbal powder containing guar gum, methi, tundika and meshasringi was administered to 30 control and 30 type 2 (non-insulin dependent) diabetes mellitus patients for a month. Total serum cholesterol and its fractions eg, high density lipoprotein, low density lipoproteins, very low density lipoproteins and serum triglyceride were determined before and after the trial period. Total and low density lipoprotein (LDL) cholesterols were reduced significantly after the therapy. There were no significant changes in high density lipoproteins (HDL), very low density lipoproteins (VLDL) or triglyceride levels. Side-effects eg, mild flatulence and looseness of bowel were noticed in less than 40% cases.

  1. [Phytosterols: another way to reduce LDL cholesterol levels].

    Science.gov (United States)

    Bitzur, Rafael; Cohen, Hofit; Kamari, Yehuda; Harats, Dror

    2013-12-01

    Phytosterols are sterols found naturally in various oils from plants. Phytosterols compete with cholesterol for a place in the mixed micelles, needed for cholesterol absorption by the small intestine. As a result, cholesterol absorption, either from food or from bile salts is lowered by about 50%, leading to a towering of about 10% of blood cholesterol level, despite an increase in hepatic cholesterol synthesis. This reduction is achieved when phytosterols are given both as monotherapy, and in addition to statin therapy. The average Western diet contains about 400-800 mg of phytosterols per day, while the dose needed for lowering the blood cholesterol level is about 2-3 grams per day. Therefore, for the purpose of reducing blood cholesterol, they should be given either as phytosterol-enriched food or as supplements. The reduction in the level of LDL-choLesterol achieved with phytosterols may reduce the risk of coronary disease by about 25%. Hence, the American Heart Association recommended the consumption of phytosterols, as part of a balanced diet, for towering blood cholesterol levels.

  2. Facultative Sterol Uptake in an Ergosterol-Deficient Clinical Isolate of Candida glabrata Harboring a Missense Mutation in ERG11 and Exhibiting Cross-Resistance to Azoles and Amphotericin B

    Science.gov (United States)

    Hull, Claire M.; Parker, Josie E.; Bader, Oliver; Weig, Michael; Gross, Uwe; Warrilow, Andrew G. S.; Kelly, Diane E.

    2012-01-01

    We identified a clinical isolate of Candida glabrata (CG156) exhibiting flocculent growth and cross-resistance to fluconazole (FLC), voriconazole (VRC), and amphotericin B (AMB), with MICs of >256, >256, and 32 μg ml−1, respectively. Sterol analysis using gas chromatography-mass spectrometry (GC-MS) revealed that CG156 was a sterol 14α-demethylase (Erg11p) mutant, wherein 14α-methylated intermediates (lanosterol was >80% of the total) were the only detectable sterols. ERG11 sequencing indicated that CG156 harbored a single-amino-acid substitution (G315D) which nullified the function of native Erg11p. In heterologous expression studies using a doxycycline-regulatable Saccharomyces cerevisiae erg11 strain, wild-type C. glabrata Erg11p fully complemented the function of S. cerevisiae sterol 14α-demethylase, restoring growth and ergosterol synthesis in recombinant yeast; mutated CG156 Erg11p did not. CG156 was culturable using sterol-free, glucose-containing yeast minimal medium (glcYM). However, when grown on sterol-supplemented glcYM (with ergosta 7,22-dienol, ergosterol, cholestanol, cholesterol, Δ7-cholestenol, or desmosterol), CG156 cultures exhibited shorter lag phases, reached higher cell densities, and showed alterations in cellular sterol composition. Unlike comparator isolates (harboring wild-type ERG11) that became less sensitive to FLC and VRC when cultured on sterol-supplemented glcYM, facultative sterol uptake by CG156 did not affect its azole-resistant phenotype. Conversely, CG156 grown using glcYM with ergosterol (or with ergosta 7,22-dienol) showed increased sensitivity to AMB; CG156 grown using glcYM with cholesterol (or with cholestanol) became more resistant (MICs of 2 and >64 μg AMB ml−1, respectively). Our results provide insights into the consequences of sterol uptake and metabolism on growth and antifungal resistance in C. glabrata. PMID:22615281

  3. Contamination of pine and birch wood dust with microscopic fungi and determination of its sterol contents.

    Science.gov (United States)

    Stuper-Szablewska, Kinga; Rogoziński, Tomasz; Perkowski, Juliusz

    2017-06-27

    Wood compounds, especially sterols, are connected with the level of contamination with microscopic fungi. Within this study, tests were conducted on wood dust samples collected at various work stations in a pine and birch timber conversion plant. Their contamination with mycobiota was measured as the concentration of ergosterol (ERG) by ultra performance liquid chromatography (UPLC). Another aim of this study was to assess the effect of contamination with microscopic fungi on the sterol contents in wood dusts. Analyses were conducted on five sterols: desmosterol, cholesterol, lanosterol, stigmasterol, and β-sitosterol using UPLC and their presence was confirmed using gas chromatography/mass spectrometry (GC/MS). The results of chemical analyses showed the greatest contamination with mycobiota in birch wood dust. We also observed varied contents of individual sterols depending on the wood dust type. Their highest concentration was detected in birch dust. The discriminant analysis covering all tested compounds as predictors showed complete separation of all tested wood dust types. The greatest discriminatory power was found for stigmasterol, desmosterol, and ergosterol.

  4. Characteristics of human hypo- and hyperresponders to dietary cholesterol.

    Science.gov (United States)

    Katan, M B; Beynen, A C

    1987-03-01

    The characteristics of people whose serum cholesterol level is unusually susceptible to consumption of cholesterol were investigated. Thirty-two volunteers from the general population of Wageningen, the Netherlands, each participated in three controlled dietary trials in 1982. A low-cholesterol diet was fed during the first half and a high-cholesterol diet during the second half of each trial, and the change (response) of serum cholesterol was measured. The responses in the three trials were averaged to give each subject's mean responsiveness. Fecal excretion of cholesterol and its metabolites were measured in the second trial, and body cholesterol synthesis was calculated. Responsiveness showed a positive correlation with serum high density lipoprotein2 (HDL2) cholesterol (r = 0.41, p less than 0.05) and with serum total cholesterol level on a high-cholesterol diet (r = 0.31, p = 0.09). A negative relation was found with habitual cholesterol consumption (r = -0.62, p less than 0.01), with body mass index (r = -0.50, p less than 0.01), and with the rate of endogenous cholesterol synthesis (r = -0.40, p less than 0.05), but not with the reaction of endogenous cholesterol synthesis rate to an increased intake of cholesterol. No relation was found with age, sex, total caloric needs, or the ratio of primary to secondary fecal steroids. Upon multiple regression analysis, only habitual cholesterol intake and serum total and HDL2 cholesterol levels contributed significantly to the explanation of variance in responsiveness. Thus, a low habitual cholesterol intake, a high serum HDL2 cholesterol level, or a low body weight do not make one less susceptible to dietary cholesterol-induced hypercholesterolemia.

  5. Diosgenin a phytosterol substitute for cholesterol, prolongs the lifespan and mitigates glucose toxicity via DAF-16/FOXO and GST-4 in Caenorhabditis elegans.

    Science.gov (United States)

    Shanmugam, Govindan; Mohankumar, Amirthalingam; Kalaiselvi, Duraisamy; Nivitha, Sundararaj; Murugesh, Easwaran; Shanmughavel, Piramanayagam; Sundararaj, Palanisamy

    2017-11-01

    Caenorhabditis elegans is a sterol auxotroph requires minute amount of exogenous sterol for their growth and development. To culture the C. elegans, cholesterol was given as sterol molecule to maintain the optimum survival of worms. Diosgenin (DG), a plant derived steroidal saponin, structurally similar to cholesterol has been used as a precursor for the synthesis of steroidal hormones. In this study, worms were cultured with cholesterol (Cho + ) and cholesterol-free (Cho - ) medium with DG (5, 10 and 50μg/mL) at 20°C. It was observed that worms cultured in (Cho - ) exhibits late egg production, reduced lipid level and short lifespan, while addition of DG overcomes all defective facts. Combinations of both cholesterol and DG further extend the lifespan (20.8%), hinder lipid level and resistance to oxidative, thermal and high glucose stress. The intracellular ROS quantification was done by flouroscenic probe H2DCF-DA and confirmed that DG had significantly reduced ROS level (35.85%). Increased lifespan of worms were observed in the medium treated with DG which activates the nuclear translocation of DAF-16/FOXO transcription factor, followed by downstream antioxidant gene sod-3 as evidenced by GFP tagged strain. The expression of Phase II detoxification enzyme GST-4 significantly (pdaf-16, skn-1, and eat-2. These studies have proved that DG is a sterol source to worms and modulate the DAF-16, SOD-3 and GST-4 expression levels to extend the lifespan of worms. The present study has also highlighted the use of phytosterols as an alternative to cholesterol. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Kinetic imaging of NPC1L1 and sterol trafficking between plasma membrane and recycling endosomes in hepatoma cells

    DEFF Research Database (Denmark)

    Hartwig Petersen, Nicole; Færgeman, Nils J; Yu, Liqing

    2008-01-01

    fluorescent protein (NPC1L1-EGFP) and cholesterol analogues in hepatoma cells. At steady state about 42% of NPC1L1 resided in the transferrin (Tf) positive, sterol enriched endocytic recycling compartment (ERC), while time-lapse microscopy demonstrated NPC1L1 traffic between plasma membrane and ERC...... the ERC to the plasma membrane. NPC1L1-EGFP facilitated transport of fluorescent sterols from the plasma membrane to the ERC. Insulin induced translocation of vesicles containing NPC1L1 and fluorescent sterol from the ERC to the cell membrane. Upon polarization of hepatoma cells NPC1L1 resided almost...... exclusively in the canalicular membrane, where the protein is highly mobile. Our study demonstrates dynamic trafficking of NPC1L1 between cell surface and intracellular compartments and suggests that this transport is involved in NPC1L1 mediated cellular sterol uptake....

  7. Studies on the mechanism of cholesterol uptake and on the effects of bile salts on this uptake by brush-border membranes isolated from rabbit small intestine.

    Science.gov (United States)

    Proulx, P; Aubry, H; Brglez, I; Williamson, D G

    1984-12-19

    The effect of bile salts and other surfactants on the rate of incorporation of cholesterol into isolated brush-border membranes was tested. At constant cholesterol concentration, a stimulatory effect of taurocholate was noticed which increased as the bile salt concentration was raised to 20 mM. Taurodeoxycholate was as effective as taurocholate at concentrations of up to 5 mM and inhibited at higher concentrations. Glycocholate was only moderately stimulatory whereas cholate was nearly as effective as taurocholate at concentrations above 5 mM. Other surfactants such as sodium lauryl sulfate and Triton X-100 were very inhibitory at all concentrations tried whereas cetyltrimethyl ammonium chloride was stimulatory only at a very low range of concentrations. These micellizing agents all caused some disruption of the membranes and the greater effectiveness of taurocholate in stimulating sterol uptake was partly relatable to the weaker membrane solubilizing action of this bile salt. Preincubation of membranes with 20 mM taurocholate followed by washing and exposure to cholesterol-containing lipid suspensions lacking bile salt, did not enhance the incorporation of the sterol. In the absence of bile salt the incorporation of cholesterol was unaffected by stirring of the incubation mixtures. Increasing the cholesterol concentration in the mixed micelle while keeping the concentration of bile salt constant caused an increase in rate of sterol incorporation. This increased rate was seen whether the cholesterol suspension was turbid, i.e., contained non-micellized cholesterol, or whether it was optically-clear and contained only monomers and micelles. When the concentration of taurocholate and cholesterol were increased simultaneously such that the concentration ratio of these two components was kept constant, there resulted a corresponding increase in rate of cholesterol uptake. The initial rates of cholesterol incorporation from suspensions containing micellar and monomer

  8. Quantification of Endogenous Cholesterol in Human Serum on Paper Using Direct Analysis in Real Time Mass Spectrometry.

    Science.gov (United States)

    Hsieh, Hua-Yi; Li, Li-Hua; Hsu, Ren-Yu; Kao, Wei-Fong; Huang, Ying-Chen; Hsu, Cheng-Chih

    2017-06-06

    Blood testing for endogenous small metabolites to determine physiological and biochemical states is routine for laboratory analysis. Here we demonstrate that by combining the commercial direct analysis in real time (DART) ion source with an ion trap mass spectrometer, native cholesterol in its free alcohol form is readily detected from a few hundred nanoliters of human serum loaded onto chromatography paper. Deuterium-labeled cholesterol was used as the internal standard to obtain the absolute quantity of the endogenous cholesterol. The amount of the cholesterol measured by this paper-loaded DART mass spectrometry (pDART-MS) is statistically comparable with that obtained by using commercially available fluorometric-enzymatic assay and liquid chromatography/mass spectrometry. Furthermore, sera from 21 participants at three different time points in an ultramarathon were collected to obtain their cholesterol levels. The test requires only very minimal sample preparation, and the concentrations of cholesterol in each sample were acquired within a minute.

  9. The ABCG5 ABCG8 sterol transporter and phytosterols: implications for cardiometabolic disease

    Science.gov (United States)

    Sabeva, Nadezhda S.; Liu, Jingjing; Graf, Gregory A.

    2014-01-01

    Purpose of review This review summarizes recent developments in the activity, regulation, and physiology of the ABCG5 ABCG8 (G5G8) transporter and the use of its xenobiotic substrates, phytosterols, as cholesterol lowering agents in the treatment of cardiovascular disease. Recent progress has significant implications for the role of G5G8 and its substrates in complications associated with features of the metabolic syndrome. Recent findings Recent reports expand the clinical presentation of sitosterolemia to include platelet and adrenal dysfunction. The G5G8 sterol transporter is critical to hepatobiliary excretion of cholesterol under nonpathological conditions and has been linked to the cholesterol gallstone susceptibility. Finally, the cardiovascular benefits of cholesterol lowering through the use of phytosterol supplements were offset by vascular dysfunction, suggesting that alternative strategies to reduced cholesterol absorption offer greater benefit. Summary Insulin resistance elevates G5G8 and increases susceptibility to cholesterol gallstones. However, this transporter is critical for the exclusion of phytosterols from the absorptive pathways in the intestine. Challenging the limits of this protective mechanism through phytosterol supplementation diminishes the cardioprotective benefits of cholesterol lowering in mouse models of cardiovascular disease. PMID:19306529

  10. Contribution of education level and dairy fat sources to serum cholesterol in Russian and Finnish Karelia: results from four cross-sectional risk factor surveys in 1992-2007.

    Science.gov (United States)

    Paalanen, Laura; Prättälä, Ritva; Laatikainen, Tiina

    2012-10-26

    Food habits vary by socio-economic group and geographic area. Data on socio-economic differences in food habits and in serum total cholesterol concentration from Russia are scarce. Our aim was to examine changes and educational differences in serum total cholesterol and in the consumption of major sources of saturated fat in two geographically neighbouring areas, Russian and Finnish Karelia, and to examine whether the foods associated with serum total cholesterol are different in the two areas. Data from cross-sectional risk factor surveys from years 1992, 1997, 2002 and 2007 in the district of Pitkäranta, the Republic of Karelia, Russia (n = 2672), and North Karelia, Finland (n = 5437), were used. The analyses included two phases. 1) To examine the differences in cholesterol by education, the means and 95% confidence intervals for education groups were calculated for each study year. 2) Multivariate linear regression analysis was employed to examine the role of butter in cooking, butter on bread, fat-containing milk and cheese in explaining serum total cholesterol. In these analyses, the data for all four study years were combined. In Pitkäranta, serum total cholesterol fluctuated during the study period (1992-2007), whereas in North Karelia cholesterol levels declined consistently. No apparent differences in cholesterol levels by education were observed in Pitkäranta. In North Karelia, cholesterol was lower among subjects in the highest education tertile compared to the lowest education tertile in 1992 and 2002. In Pitkäranta, consumption of fat-containing milk was most strongly associated with cholesterol (β=0.19, 95% CI 0.10, 0.28) adjusted for sex, age, education and study year. In North Karelia, using butter in cooking (β=0.09, 95% CI 0.04, 0.15) and using butter on bread (β=0.09, 95% CI 0.02, 0.15) had a significant positive association with cholesterol. In the two geographically neighbouring areas, the key foods influencing serum cholesterol levels

  11. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux

    NARCIS (Netherlands)

    Vrins, Carlos L. J.; van der Velde, Astrid E.; van den Oever, Karin; Levels, Johannes H. M.; Huet, Stephane; Oude Elferink, Ronald P. J.; Kuipers, Folkert; Groen, Albert K.

    2009-01-01

    Peroxisome proliferator-activated receptor delta (PPARdelta) is involved in regulation of energy homeostasis. Activation of PPARdelta markedly increases fecal neutral sterol secretion, the last step in reverse cholesterol transport. This phenomenon can neither be explained by increased hepatobiliary

  12. Pharmacological LXR activation reduces presence of SR-B1 in liver membranes contributing to LXR-mediated induction of HDL-cholesterol

    NARCIS (Netherlands)

    A. Grefhorst (Aldo); D.M. Oosterveer (Daniella); G. Brufau (Gemma); M. Boesjes (Marije); F. Kuipers (Folkert); A. Groen (Albert)

    2012-01-01

    textabstractObjective: Pharmacological LXR activation has anti-atherosclerotic actions in animal models. Part of these beneficial effects may be explained by accelerated reverse cholesterol transport since both plasma high density lipoprotein (HDL) cholesterol and fecal neutral sterol secretion are

  13. Effect of a dietary portfolio of cholesterol-lowering foods given at 2 levels of intensity of dietary advice on serum lipids in hyperlipidemia: a randomized controlled trial.

    Science.gov (United States)

    Jenkins, David J A; Jones, Peter J H; Lamarche, Benoit; Kendall, Cyril W C; Faulkner, Dorothea; Cermakova, Luba; Gigleux, Iris; Ramprasath, Vanu; de Souza, Russell; Ireland, Chris; Patel, Darshna; Srichaikul, Korbua; Abdulnour, Shahad; Bashyam, Balachandran; Collier, Cheryl; Hoshizaki, Sandy; Josse, Robert G; Leiter, Lawrence A; Connelly, Philip W; Frohlich, Jiri

    2011-08-24

    Combining foods with recognized cholesterol-lowering properties (dietary portfolio) has proven highly effective in lowering serum cholesterol under metabolically controlled conditions. To assess the effect of a dietary portfolio administered at 2 levels of intensity on percentage change in low-density lipoprotein cholesterol (LDL-C) among participants following self-selected diets. A parallel-design study of 351 participants with hyperlipidemia from 4 participating academic centers across Canada (Quebec City, Toronto, Winnipeg, and Vancouver) randomized between June 25, 2007, and February 19, 2009, to 1 of 3 treatments lasting 6 months. Participants received dietary advice for 6 months on either a low-saturated fat therapeutic diet (control) or a dietary portfolio, for which counseling was delivered at different frequencies, that emphasized dietary incorporation of plant sterols, soy protein, viscous fibers, and nuts. Routine dietary portfolio involved 2 clinic visits over 6 months and intensive dietary portfolio involved 7 clinic visits over 6 months. Percentage change in serum LDL-C. In the modified intention-to-treat analysis of 345 participants, the overall attrition rate was not significantly different between treatments (18% for intensive dietary portfolio, 23% for routine dietary portfolio, and 26% for control; Fisher exact test, P = .33). The LDL-C reductions from an overall mean of 171 mg/dL (95% confidence interval [CI], 168-174 mg/dL) were -13.8% (95% CI, -17.2% to -10.3%; P portfolio; -13.1% (95% CI, -16.7% to -9.5%; P portfolio; and -3.0% (95% CI, -6.1% to 0.1%; P = .06) or -8 mg/dL (95% CI, -13 to -3 mg/dL; P = .002) for the control diet. Percentage LDL-C reductions for each dietary portfolio were significantly more than the control diet (P portfolio interventions did not differ significantly (P = .66). Among participants randomized to one of the dietary portfolio interventions, percentage reduction in LDL-C on the dietary portfolio was associated

  14. Quantitative Analysis of Serum Lipid Profile in Gallstone Patients and Controls

    International Nuclear Information System (INIS)

    Channa, N.A.; Ghanghro, A.B.; Soomro, A.M.

    2010-01-01

    The present study was undertaken to explore the possible role of serum lipid profile in gallstone formation. For this serum lipid profile such as total, free and bound cholesterol, LDL cholesterol, HDL cholesterol, triacylglycerols and total lipids were determined in 109 gallstone patients and 100 controls (matched for age, sex and with negative personal or family history of gallstones) treated at Liaquat University Hospital, Jamshoro, Pakistan. Comparison for serum lipid profile between different groups of gallstone patients and controls revealed no significant variation except for the triacylglycerols and total lipids, which were differed significantly between females of up to 45 and above 45 years age. Comparison for serum lipid profile between pure cholesterol and mixed composition gallstone formers showed no significant difference (p>0.05) between the two groups. The serum lipid profile significantly varied between gallstone patients and controls except bound cholesterol level. Comparison of total cholesterol, free cholesterol, LDL cholesterol, HDL cholesterol, triacylglycerols and total lipids between gallstone patients and controls revealed that there was a significant difference between gallstone patients and controls for (a) females with or without gallstones, (b) females of up to 45 years age and (c) females having more than 3 children. HDL cholesterol is significantly decreased in all the groups of gallstone patients as compared to controls, whereas, bound cholesterol remained non significant in all the groups of gallstone patients when compared with controls. In conclusion, elevated serum total cholesterol, free cholesterol, LDL cholesterol, triacylglycerols and decreased levels of HDL cholesterol seem to play major contributing role in the pathogenesis of gallstones in females of up to 45 years age with more than three children. (author)

  15. Pharmacological LXR activation reduces presence of SR-B1 in liver membranes contributing to LXR-mediated induction of HDL-cholesterol

    NARCIS (Netherlands)

    Grefhorst, Aldo; Oosterveer, Maaike H.; Brufau, Gemma; Boesjes, Marije; Kuipers, Folkert; Groen, Albert K.

    Objective: Pharmacological LXR activation has anti-atherosclerotic actions in animal models. Part of these beneficial effects may be explained by accelerated reverse cholesterol transport since both plasma high density lipoprotein (HDL) cholesterol and fecal neutral sterol secretion are higher upon

  16. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux

    NARCIS (Netherlands)

    Vrins, Carlos L. J.; van der Velde, Astrid E.; van den Oever, Karin; Levels, Johannes H. M.; Huet, Stephane; Elferink, Ronald P. J. Oude; Kuipers, Folkert; Groen, Albert K.

    2009-01-01

    Peroxisome proliferator-activated receptor delta (PPAR delta) is involved in regulation of energy homeostasis. Activation of PPAR delta markedly increases fecal neutral sterol secretion, the last step in reverse cholesterol transport. This phenomenon can neither be explained by increased

  17. Fecal bulk, energy intake, and serum cholesterol: regression response of serum cholesterol to apparent digestibility of dry matter and suboptimal energy intake in rats on fiber-fat diet.

    Science.gov (United States)

    Normani, M Z; Hussain, S S; Lim, J K; Albrink, M J; Gunnells, C K; Davis, G K

    1981-10-01

    Two experiments were conducted in the rat to determine the relationships of serum cholesterol (SC, mg/dl), apparent digestibility of dry matter (DDM, %), and digested energy intake (DE, kcal/day) at suboptimal level of energy. The energies in diet and feces were determined by calorimetry. DE as percentage of the National Research Council requirement (DE%) was suboptimal (70 to 85%). The experiments had four to five isofibrous diets, and no fiber diets, supplemented with 0.2% crystalline cholesterol (CChol). Animals in experiment 1 were fed varying amounts of feed with 18% coconut oil in the diets where as these in experiment 2 were given fixed amounts of feed with either 6 or 18% oil. The following regressions (p less than 0.001) for SC were found: experiment 1: -1157.7 -5.97 DDM +105.5 CCI -1.48 CCI2 (r2 0.35), where CCI = CChol, mg/day; -1888.4 -2.66 DE +120.97 CCI -1.62 CCI2 (r2 0.37). Experiment 2: 762.99 -6.15 DDM -0.8 fat cal % -0.87DE% (r2 0.31), where fat cal % = fat calories % of DE. Data indicate that at suboptimal energy intake, SC was inversely related to (1) DDM, (2) fat cal, and (3) total energy intake. Liver cholesterol lowering effect of the dietary fiber was also observed. The above findings help to elucidate various conflicting reports related to diet and blood cholesterol.

  18. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content

    Directory of Open Access Journals (Sweden)

    Chung Myung

    2009-06-01

    Full Text Available Abstract Background Lactic acid bacteria (LAB are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. Methods In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20~30 years old to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108~109 CFU/ml were orally administered to SD rats (fed a high-cholesterol diet every day for 2 weeks. Results B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p B. longum SPM1207 also increased fecal LAB levels and fecal water content, and reduced body weight and harmful intestinal enzyme activities. Conclusion Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation.

  19. Dietary fat content modulates the hypolipidemic effect of dietary inulin in rats.

    Science.gov (United States)

    Han, Kyu-Ho; Yamamoto, Aiko; Shimada, Ken-Ichiro; Kikuchi, Hiroto; Fukushima, Michihiro

    2017-08-01

    Dietary fat content (low versus high fat) may modulate the serum lipid-lowering effect of high-performance (HP)-inulin. This study investigated the effect of dietary HP-inulin on metabolism in rats fed a low- or high-fat diet. Rats were fed a diet of 5% fat with 5% cellulose or 5% HP-inulin (average degree of polymerization = 24) (low-fat diet) or of 20% fat with 5% cellulose or 5% HP-inulin (high-fat diet) for 28 days. Total, HDL, and non-HDL cholesterols, and triglyceride concentrations in the serum were measured along with total lipid content of liver and feces. Hepatic triglyceride and cholesterol, and fecal neutral and acidic sterol concentrations in total lipid were assessed. In addition, cecum SCFA levels and bacterial profiles were determined. The hypolipidemic effect of HP-inulin differed depending on dietary fat content (5% versus 20%). Specifically, 5% inulin instead of cellulose in a semi-purified diet significantly reduced serum lipid levels in rats fed a high-fat diet, which was strongly associated with increased total lipid and neutral sterol excretion. Dietary fat content modulates the hypolipidemic effect of dietary inulin. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Modulation of cholesterol transport by maternal hypercholesterolemia in human full-term placenta.

    Directory of Open Access Journals (Sweden)

    Ran Zhang

    Full Text Available The significance of maternal cholesterol transporting to the fetus under normal as well as pathological circumstances is less understood. The objective of this study was to observe the effects of maternal hypercholesterolemia on placental cholesterol transportation. Human full-time placenta, maternal and venous cord blood were sampled at delivery from the pregnant women with serum total cholesterol (TC concentrations at third trimester higher than 7.25 mM (n = 19 and the pregnant women with normal TC concentrations (n = 19. Serum lipids and expression of genes related to cholesterol transportation were measured by western blot or real-time PCR. The results indicated that serum TC, high density lipoprotein cholesterol (HDL-C, and low density lipoprotein cholesterol (LDL-C levels were significantly increased, in pregnancies, but decreased in cord blood in hypercholesterolemic group compared to the matched control group. All the subjects were no-drinking, non-smoker, and gestational disease free. The mRNA expression of lipoprotein receptors, including LDLR and VLDLR were significantly increased, while the protein expression of PCSK9 was significantly increased in hypercholesterolemic placenta. In conclusion, maternal hypercholesterolemia might decrease the transportation of cholesterol from mother to fetus because of the high levels of PCSK9 protein expression.

  1. Monocytes of patients with familial hypercholesterolemia show alterations in cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Soufi Muhidien

    2008-11-01

    Full Text Available Abstract Background Elevated plasma cholesterol promotes the formation of atherosclerotic lesions in which monocyte-derived lipid-laden macrophages are frequently found. To analyze, if circulating monocytes already show increased lipid content and differences in lipoprotein metabolism, we compared monocytes from patients with Familial Hypercholesterolemia (FH with those from healthy individuals. Methods Cholesterol and oxidized cholesterol metabolite serum levels of FH and of healthy, gender/age matched control subjects were measured by combined gas chromatography – mass spectroscopy. Monocytes from patients with FH and from healthy subjects were isolated by antibody-assisted density centrifugation. Gene expression profiles of isolated monocytes were measured using Affymetrix HG-U 133 Plus 2.0 microarrays. We compared monocyte gene expression profiles from FH patients with healthy controls using a Welch T-test with correction for multiple testing (p Results Using microarray analysis we found in FH patients a significant up-regulation of 1,617 genes and a down-regulation of 701 genes compared to monocytes from healthy individuals. These include genes of proteins that are involved in the uptake, biosynthesis, disposition, and cellular efflux of cholesterol. In addition, plasma from FH patients contains elevated amounts of sterols and oxysterols. An increased uptake of oxidized as well as of native LDL by FH monocytes combined with a down-regulation of NPC1 and ABCA1 explains the lipid accumulation observed in these cells. Conclusion Our data demonstrate that circulating FH monocytes show differences in cell physiology that may contribute to the early onset of atherosclerosis in this disease.

  2. Cholesterol asymmetry in synaptic plasma membranes.

    Science.gov (United States)

    Wood, W Gibson; Igbavboa, Urule; Müller, Walter E; Eckert, Gunter P

    2011-03-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  3. LRP5 and plasma cholesterol levels modulate the canonical Wnt pathway in peripheral blood leukocytes.

    Science.gov (United States)

    Borrell-Pages, Maria; Carolina Romero, July; Badimon, Lina

    2015-08-01

    Inflammation is triggered after invasion or injury to restore homeostasis. Although the activation of Wnt/β-catenin signaling is one of the first molecular responses to cellular damage, its role in inflammation is still unclear. It was our hypothesis that the low-density lipoprotein (LDL) receptor-related protein 5 (LRP5) and the canonical Wnt signaling pathway are modulators of inflammatory mechanisms. Wild-type (WT) and LRP5(-/-) mice were fed a hypercholesterolemic (HC) diet to trigger dislipidemia and chronic inflammation. Diets were supplemented with plant sterol esters (PSEs) to induce LDL cholesterol lowering and the reduction of inflammation. HC WT mice showed increased serum cholesterol levels that correlated with increased Lrp5 and Wnt/β-catenin gene expression while in the HC LRP5(-/-) mice Wnt/β-catenin pathway was shut down. Functionally, HC induced pro-inflammatory gene expression in LRP5(-/-) mice, suggesting an inhibitory role of the Wnt pathway in inflammation. Dietary PSE administration downregulated serum cholesterol levels in WT and LRP5(-/-) mice. Furthermore, in WT mice PSE increased anti-inflammatory genes expression and inhibited Wnt/β-catenin activation. Hepatic gene expression of Vldlr, Lrp2 and Lrp6 was increased after HC feeding in WT mice but not in LRP5(-/-) mice, suggesting a role for these receptors in the clearance of plasmatic lipoproteins. Finally, an antiatherogenic role for LRP5 was demonstrated as HC LRP5(-/-) mice developed larger aortic atherosclerotic lesions than WT mice. Our results show an anti-inflammatory, pro-survival role for LRP5 and the Wnt signaling pathway in peripheral blood leukocytes.

  4. Depot sterols in comparisons with structural sterols in Cancer pagurus and Eriocheir sinensis

    NARCIS (Netherlands)

    Zandee, D.I.; Kruitwagen, E.C.J.

    The differences in sterol content and sterol composition between the midgut gland and remaining parts (structural lipids) of male and female specimens of Cancer pagurus and Eriocheir sinensis are investigated. There are no differences in sterol content in the structural lipids between male and

  5. Distribution of sterol carrier protein2 (SCP2) in rat tissues and evidence for slow turnover in liver and adrenal cortex

    International Nuclear Information System (INIS)

    Kharroubi, A.; Chanderbhan, R.; Fiskum, G.; Noland, B.J.; Scallen, T.J.; Vahouny, G.V.

    1986-01-01

    Sterol carrier protein 2 (SCP 2 ) has been implicated in the regulation of the terminal stages of hepatic cholesterol biosynthesis, and in sterol utilization for adrenal steroid hormone and hepatic bile acid synthesis. In the present studies, a highly sensitive radioimmunoassay, using [ 125 I] SCP 2 , has been developed. Highest levels of SCP 2 were found in rat liver with progressively lower levels in intestinal mucosa, adrenal, kidney, lung and testis. SCP 2 levels were low or absent in heart, brain, skeletal muscle and serum. Liver SCP 2 was largely (44%) associated with the microsomal fraction, while in adrenal, 46% was associated with mitochondria, a distribution which is consistent with the proposed roles for SCP 2 in these tissues. Levels of SCP 2 in AS 30D hepatoma cells were only 5% of those in normal liver. In liver there was no indication of diurnal rhythm of SCP 2 in the cytosol and only slight variation of the microsomal SCP 2 levels. Fasting has only slight effects on SCP 2 concentration of rat liver microsomes and cytosol. Neither ACTH nor cycloheximide treatment of rats had a significant effect on SCP 2 distribution in the adrenal. In general, these findings indicate that SCP 2 has a low turn-over rate

  6. rHDL administration increases reverse cholesterol transport in mice, but is not additive on top of ezetimibe or cholestyramine treatment

    NARCIS (Netherlands)

    Maugeais, Cyrille; Annema, Wijtske; Blum, Denise; Mary, Jean-Luc; Tietge, Uwe J. F.

    Objective: Promoting reverse cholesterol transport (RCT) is a major atheroprotective property of HDL. The present study explored the effect of stimulating the first step of RCT (cholesterol efflux from macrophages) alone or in combination with stimulating the last step of RCT (fecal sterol

  7. The cholesterol space of the rat; L'espace cholesterol du rat

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, F [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The experiments consisted in feeding daily to rats the same mass of radioactive cholesterol, over variable time intervals. From the evolution of the specific radioactivity of cholesterol carbon-14 in the organs as a function of time, information relative to the transport of cholesterol in the organism may be obtained. 1) The cholesterol space, defined as the group of molecules capable of being transferred from the organs into the serum and vice versa, represents at the most 50 per cent of the total cholesterol of the adult rat. 2) The incessant interchange between the tissual and the serum cholesterol renews entirely or for the most part the cholesterol molecules contained in the following organs: spleen, heart, adipose tissue, suprarenal glands, lungs, bone marrow, liver, erythrocytes. For a second group of organs: skin, testicles, kidneys, colon, bones, muscles, only a fraction of their cholesterol is renewable by this process. No transfer can be detected at the level of the brain. 3) The relative speeds of the various means of appearance (absorption, synthesis) and disappearance (excretion, transformation) of the cholesterol from its space are such that a stationary isotopic state is established around the eighth day, when the animal absorbs 5 milligrams of radioactive cholesterol daily. (author) [French] Les experiences ont consiste a faire ingerer quotidiennement une meme masse de cholesterol radioactif a des rats, durant des laps de temps variables. L'evolution de la radioactivite specifique du carbone-14 du cholesterol des organes en fonction du temps permet d'obtenir des renseignements relatifs au transport du cholesterol dans l'organisme. 1) L'espace cholesterol defini comme l'ensemble des molecules susceptibles d'etre transferees des organes dans le serum, et vice-versa, represente au plus 50 pour cent du cholesterol total du rat adulte. 2) Le va et vient incessant entre le cholesterol tissulaire et le cholesterol serique renouvelle en totalite ou en

  8. Scap is required for sterol synthesis and crypt growth in intestinal mucosa.

    Science.gov (United States)

    McFarlane, Matthew R; Cantoria, Mary Jo; Linden, Albert G; January, Brandon A; Liang, Guosheng; Engelking, Luke J

    2015-08-01

    SREBP cleavage-activating protein (Scap) is an endoplasmic reticulum membrane protein required for cleavage and activation of sterol regulatory element-binding proteins (SREBPs), which activate the transcription of genes in sterol and fatty acid biosynthesis. Liver-specific loss of Scap is well tolerated; hepatic synthesis of sterols and fatty acids is reduced, but mice are otherwise healthy. To determine whether Scap loss is tolerated in the intestine, we generated a mouse model (Vil-Scap(-)) in which tamoxifen-inducible Cre-ER(T2), a fusion protein of Cre recombinase with a mutated ligand binding domain of the human estrogen receptor, ablates Scap in intestinal mucosa. After 4 days of tamoxifen, Vil-Scap(-) mice succumb with a severe enteropathy and near-complete collapse of intestinal mucosa. Organoids grown ex vivo from intestinal crypts of Vil-Scap(-) mice are readily killed when Scap is deleted by 4-hydroxytamoxifen. Death is prevented when culture medium is supplemented with cholesterol and oleate. These data show that, unlike the liver, the intestine requires Scap to sustain tissue integrity by maintaining the high levels of lipid synthesis necessary for proliferation of intestinal crypts. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  9. Sterol Binding by the Tombusviral Replication Proteins Is Essential for Replication in Yeast and Plants.

    Science.gov (United States)

    Xu, Kai; Nagy, Peter D

    2017-04-01

    Membranous structures derived from various organelles are important for replication of plus-stranded RNA viruses. Although the important roles of co-opted host proteins in RNA virus replication have been appreciated for a decade, the equally important functions of cellular lipids in virus replication have been gaining full attention only recently. Previous work with Tomato bushy stunt tombusvirus (TBSV) in model host yeast has revealed essential roles for phosphatidylethanolamine and sterols in viral replication. To further our understanding of the role of sterols in tombusvirus replication, in this work we showed that the TBSV p33 and p92 replication proteins could bind to sterols in vitro The sterol binding by p33 is supported by cholesterol recognition/interaction amino acid consensus (CRAC) and CARC-like sequences within the two transmembrane domains of p33. Mutagenesis of the critical Y amino acids within the CRAC and CARC sequences blocked TBSV replication in yeast and plant cells. We also showed the enrichment of sterols in the detergent-resistant membrane (DRM) fractions obtained from yeast and plant cells replicating TBSV. The DRMs could support viral RNA synthesis on both the endogenous and exogenous templates. A lipidomic approach showed the lack of enhancement of sterol levels in yeast and plant cells replicating TBSV. The data support the notion that the TBSV replication proteins are associated with sterol-rich detergent-resistant membranes in yeast and plant cells. Together, the results obtained in this study and the previously published results support the local enrichment of sterols around the viral replication proteins that is critical for TBSV replication. IMPORTANCE One intriguing aspect of viral infections is their dependence on efficient subcellular assembly platforms serving replication, virion assembly, or virus egress via budding out of infected cells. These assembly platforms might involve sterol-rich membrane microdomains, which are

  10. Clinical Usefulness of serum total cholesterol as an index of hypothyroidism in patients after cervical radiation

    International Nuclear Information System (INIS)

    Iguma, Yoko; Iwai, Chikako; Okuyama, Masako; Futami, Takahiro; Inui, Ken-ichi; Asato, Ryo

    2003-01-01

    Cervical radiation therapy is often applied to patients with head and neck cancers because radiation has a high sensitivity to these cancers and permits the preservation of functions and physical form. However, it has been shown that various complications can result from radiation therapy. We have encountered some patients who showed hypercholesterolemia resulting from cervical radiation. Therefore, we have paid close attention to the relationship between hypercholesterolemia after cervical radiation and hypothyroidism. Thyroid hormone tests in these patients with hypercholesterolemia after cervical radiation showed high thyroid stimulating hormone (TSH) and low free thyroxine (fT 4 ), indicating the presence of hypothyroidism. After administration of levothyroxine Na, their fT 4 levels increased and both TSH levels and serum total cholesterol levels decreased. In conclusion, in patients who have received cervical radiation, we recommend monitoring serum total cholesterol periodically to detect hypothyroidism easily before the appearance of its symptoms. (author)

  11. Clinical Usefulness of serum total cholesterol as an index of hypothyroidism in patients after cervical radiation

    Energy Technology Data Exchange (ETDEWEB)

    Iguma, Yoko; Iwai, Chikako; Okuyama, Masako; Futami, Takahiro; Inui, Ken-ichi [Kyoto Univ. (Japan). Hospital; Asato, Ryo [Kyoto Univ. (Japan). Graduate School of Medicine

    2003-02-01

    Cervical radiation therapy is often applied to patients with head and neck cancers because radiation has a high sensitivity to these cancers and permits the preservation of functions and physical form. However, it has been shown that various complications can result from radiation therapy. We have encountered some patients who showed hypercholesterolemia resulting from cervical radiation. Therefore, we have paid close attention to the relationship between hypercholesterolemia after cervical radiation and hypothyroidism. Thyroid hormone tests in these patients with hypercholesterolemia after cervical radiation showed high thyroid stimulating hormone (TSH) and low free thyroxine (fT{sub 4}), indicating the presence of hypothyroidism. After administration of levothyroxine Na, their fT{sub 4} levels increased and both TSH levels and serum total cholesterol levels decreased. In conclusion, in patients who have received cervical radiation, we recommend monitoring serum total cholesterol periodically to detect hypothyroidism easily before the appearance of its symptoms. (author)

  12. Evidence that the intra-amoebal Legionella drancourtii acquired a sterol reductase gene from eukaryotes

    Directory of Open Access Journals (Sweden)

    Fournier Pierre-Edouard

    2009-03-01

    Full Text Available Abstract Background Free-living amoebae serve as a natural reservoir for some bacteria that have evolved into «amoeba-resistant» bacteria. Among these, some are strictly intra-amoebal, such as Candidatus "Protochlamydia amoebophila" (Candidatus "P. amoebophila", whose genomic sequence is available. We sequenced the genome of Legionella drancourtii (L. drancourtii, another recently described intra-amoebal bacterium. By comparing these two genomes with those of their closely related species, we were able to study the genetic characteristics specific to their amoebal lifestyle. Findings We identified a sterol delta-7 reductase-encoding gene common to these two bacteria and absent in their relatives. This gene encodes an enzyme which catalyses the last step of cholesterol biosynthesis in eukaryotes, and is probably functional within L. drancourtii since it is transcribed. The phylogenetic analysis of this protein suggests that it was acquired horizontally by a few bacteria from viridiplantae. This gene was also found in the Acanthamoeba polyphaga Mimivirus genome, a virus that grows in amoebae and possesses the largest viral genome known to date. Conclusion L. drancourtii acquired a sterol delta-7 reductase-encoding gene of viridiplantae origin. The most parsimonious hypothesis is that this gene was initially acquired by a Chlamydiales ancestor parasite of plants. Subsequently, its descendents transmitted this gene in amoebae to other intra-amoebal microorganisms, including L. drancourtii and Coxiella burnetii. The role of the sterol delta-7 reductase in prokaryotes is as yet unknown but we speculate that it is involved in host cholesterol parasitism.

  13. A new rapid method to measure human platelet cholesterol: a pilot study.

    Science.gov (United States)

    Jagroop, I Anita; Persaud, Jahm Want; Mikhailidis, Dimitri P

    2011-01-01

    Platelet cholesterol (PC) could be used to assess "tissue" cholesterol of patients with vascular disease. However, the methods available so far to measure PC involve a complex extraction process. We developed a rapid method to measure PC and assessed its correlation with serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), LDL-C/HDL-C ratio, triglycerides (TG), and non-HDL-C. We assessed repeatability (20 times, 3 participants) and reproducibility (8 times, 2 participants). A group of 47 healthy participants was studied. Blood was collected to analyze serum TC, LDL-C, HDL-C, and TG. Citrated blood was used to prepare a platelet pellet. A "clear soup" was produced (by disrupting this pellet using freeze-thaw and sonication cycles) and used to measure PC. Repeatability of PC showed a coefficient of variation (CV) of 4.8%. The reproducibility of PC over a period of 2 months was CV 7.5% and 8.1% (8 measurements for 2 participants). The PC of participants with serum LDL-C >2.6 mmol/L (treatment goal recommended by the National Cholesterol Education Program Adult Treatment Panel III) was 377 ± 120 μmol/10(12) platelets (n = 25). There was a significant correlation (Spearman, correlation coefficient) of PC (n = 25) with serum LDL-C (r(s) = 0.45, P = .02), LDL-C/HDL-C (r(s) = 0.45, P = .02), TG (r(s) = 0.43, P = .03), and non-HDL-C (r(s) = 0.53, P = .007). This technique of measuring PC has the advantage of being reproducible, fast, and simpler than previous methods. Thus, it may be useful for multiple sampling when investigating changes in PC in hypercholesterolemic patients. More extensive evaluation is necessary.

  14. [Serum total cholesterol levels and eligibility for long-term care insurance: a prospective cohort study of the Tsurugaya project].

    Science.gov (United States)

    Hoshi, Rena; Tomata, Yasutake; Kakizaki, Masako; Tsuboya, Toru; Nagai, Masato; Watanabe, Ikue; Hozawa, Atsushi; Tsuji, Ichiro

    2013-08-01

    The purpose of this study was to examine the relationship between serum total cholesterol levels and certification eligibility for long-term care insurance in elderly Japanese individuals. The Tsurugaya Project was a comprehensive geriatric assessment conducted for community-dwelling elderly individuals aged ≥70 years in the Tsurugaya area, Sendai, Japan. Of the 2,925 inhabitants, 958 subjects participated in the Tsurugaya Project. For this analysis, we used 827 subjects who gave informed consent and were not qualified for long-term care insurance at the time of the baseline survey. Subjects were followed up for 6 years. We classified the subjects into 4 quintiles and used the fourth quintile (212-230 mg/dL) as a reference for statistical analysis. We used Cox proportional hazards model to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) of certification eligibility for long-term care insurance according to total cholesterol levels in serum. During 6 years of follow-up, a total of 214 subjects were qualified for long-term care insurance certification. The lowest serum total cholesterol level (care insurance certification. Compared with the fourth quintile, multivariate HRs (95%CIs) of long-term care insurance certification were 1.91 (1.23-2.98), 1.36 (0.85-2.18), 0.99 (0.62-1.56), 1.38 (0.88-2.17), for total cholesterol levels were significantly associated with increased eligibility for long-term care insurance certification even after adjusting for a variety of confounding factors.

  15. Importance of measuring Non-HDL cholesterol in type 2 diabetes patients

    International Nuclear Information System (INIS)

    Ram, N.; Hashmi, F.; Jabbar, A

    2014-01-01

    Objective: To study the correlation between Non-high-density lipoprotein and low-density lipoprotein cholesterol in patients with Type 2 diabetes mellitus and the proportion of patients achieving Adult Treatment Panel III recommended goals. Methods: The cross sectional study was conducted at the Diabetic Clinic, Aga Khan University Hospital, Karachi. Data of Type 2 diabetes mellitus patients who attended the clinic between 2007 and 2011 was reviewed. All Type 2 diabetic patients of either gender with fasting lipid profile irrespective of taking lipid lowering therapy were included. Type-1 DM, gestational diabetes, type 2 diabetes patients with pregnancy and those with incomplete data were excluded. Correlation between the low-density lipoprotein and Non- high-density lipoprotein was assessed by applying Cramer V and phi. Proportion of patients achieving Adult Treatment Panel III recommended goals was checked. Multivariable regression was done to identify common factors associated with elevated Non- high-density lipoprotein cholesterol. Results: A total of 1352 patients fulfilling the eligibility criteria were included in the study. Mean age of the patients was 54.5+-11.3 years; 797 (59%) were males; 1122 (83%) had Body Mass Index above 25; and 1016 (75%) had HbA1c >7%. Mean Non-high-density lipoprotein cholesterol was 129+-42mg/dl. Mean low-density lipoprotein cholesterol was 100+-37mg/dl. Both low-density lipoprotein 130mg/dl (p 100mg/dl was independently associated with having Non-high-density lipoprotein cholesterol >130mg/dl (Adjusted Odds Ratio 38.6; 95% Confidance Interval 28.1-53.1). Similarly, age 130 mg/dl (Adjusted Odds Ratio 1.6; 95% Confidance Interval = 1.01 - 2.3). Whereas having obesity Body Mass Index >25 was 3.6 times more associated to have Non-high-density lipoprotein >130mg/dl (Adjusted Odds Ratio 3.6; 95% Confidance Interval = 1.6-7.7). In patients with coronary artery disease, combined goal achievement of low-density lipoprotein 100mg/dl (p <0

  16. Biochemical characterization of cholesterol-reducing Eubacterium.

    Science.gov (United States)

    Mott, G E; Brinkley, A W; Mersinger, C L

    1980-12-01

    We characterized two isolates of cholesterol-reducing Eubacterium by conducting conventional biochemical tests and by testing various sterols and glycerolipids as potential growth factors. In media containing cholesterol and plasmenylethanolamine, the tests for nitrate reduction, indole production, and gelatin and starch hydrolyses were negative, and no acid was produced from any of 22 carbohydrates. Both isolates hydrolyzed esculin to esculetin, indicating beta-glycosidase activity. In addition to plasmenylethanolamine, five other lipids which contain an alkenyl ether residue supported growth of Eubacterium strain 403 in a lecithin-cholesterol base medium. Of six steroids tested, cholesterol, cholest-4-en-3-one, cholest-4-en-3 beta-ol (allocholesterol), and androst-5-en-3 beta-ol-17-one supported growth of Eubacterium strain 403. All four steroids were reduced to the 3 beta-ol, 5 beta-H products. The delta 5 steroids cholest-5-en-3 alpha-ol (epicholesterol) and 22,23-bisnor-5-cholenic acid-3-beta-ol were not reduced and did not support growth of the Eubacterium strain.

  17. Forward genetic screening for regulators involved in cholesterol synthesis using validation-based insertional mutagenesis.

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    Full Text Available Somatic cell genetics is a powerful approach for unraveling the regulatory mechanism of cholesterol metabolism. However, it is difficult to identify the mutant gene(s due to cells are usually mutagenized chemically or physically. To identify important genes controlling cholesterol biosynthesis, an unbiased forward genetics approach named validation-based insertional mutagenesis (VBIM system was used to isolate and characterize the 25-hydroxycholesterol (25-HC-resistant and SR-12813-resistant mutants. Here we report that five mutant cell lines were isolated. Among which, four sterol-resistant mutants either contain a truncated NH2-terminal domain of sterol regulatory element-binding protein (SREBP-2 terminating at amino acids (aa 400, or harbor an overexpressed SREBP cleavage-activating protein (SCAP. Besides, one SR-12813 resistant mutant was identified to contain a truncated COOH-terminal catalytic domain of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase. This study demonstrates that the VBIM system can be a powerful tool to screen novel regulatory genes in cholesterol biosynthesis.

  18. Mevinolin-induced changes in cholesterol synthesis and protein glycosylation in lymphocytes of hypercholesterolemics

    International Nuclear Information System (INIS)

    Goel, V.; Premkumar, N.D.; Ramachandran, C.K.; Melnykovych, G.; Dujovne, C.A.

    1987-01-01

    Mevinolin (lovastatin, MVN), a potent competitive inhibitor of HMG CoA reductase (HMGR), has proven to be an effective hypolipidemic agent in patients with non-homozygous primary hypercholesterolemia. Since inhibition of HMGR can also reduce the synthesis of non-sterol mevalonate products such as dolichols, it was of interest to examine the dolichol-mediated cellular reactions in MVN-treated patients. Blood was collected from patients after various durations of MVN therapy. Peripheral lymphocytes were isolated using Ficoll-Paque gradient. The cells were suspended in RPMI-1640 medium and pulsed in the presence of 14 C-2-acetate or 3 H-mannose for 30 min. At the end of incubation the radioactivity recovered in non-saponifiable fraction ( 14 C) or TCA precipitable protein ( 3 H) was measured. Cholesterol synthesis continued to fall gradually and remained low throughout, in direct correlation with falls in plasma LDL cholesterol levels. Incorporation of mannose into protein fraction was reduced by the 1st month of therapy, remained low until the 7th month and recovered by the 10th month while on MVN. In summary, MVN appears to reduce cholesterol synthesis continuously but its inhibitory effect on glycosylation seems to be overcome after prolonged therapy. This escape effect could result from a rebound increase in HMGR in response to its competitive inhibition by MVN

  19. Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates

    DEFF Research Database (Denmark)

    Straarup, Ellen Marie; Fisker, Niels; Hedtjärn, Maj

    2010-01-01

    -life as longer oligonucleotides. Pharmacology studies in both mice and non-human primates were conducted with a 13-mer LNA oligonucleotide against apoB, and the data showed that repeated dosing of the 13-mer at 1-2 mg/kg/week was sufficient to provide a significant and long lasting lowering of non...... using the LNA chemistry. Conclusively, we present a 13-mer LNA oligonucleotide with therapeutic potential that produce beneficial cholesterol lowering effect in non-human primates....

  20. Sterol-derived hormone(s controls entry into diapause in Caenorhabditis elegans by consecutive activation of DAF-12 and DAF-16.

    Directory of Open Access Journals (Sweden)

    Vitali Matyash

    2004-10-01

    Full Text Available Upon starvation or overcrowding, Caenorhabditis elegans interrupts its reproductive cycle and forms a specialised larva called dauer (enduring. This process is regulated by TGF-beta and insulin-signalling pathways and is connected with the control of life span through the insulin pathway components DAF-2 and DAF-16. We found that replacing cholesterol with its methylated metabolite lophenol induced worms to form dauer larvae in the presence of food and low population density. Our data indicate that methylated sterols do not actively induce the dauer formation but rather that the reproductive growth requires a cholesterol-derived hormone that cannot be produced from methylated sterols. Using the effect of lophenol on growth, we have partially purified activity, named gamravali, which promotes the reproduction. In addition, the effect of lophenol allowed us to determine the role of sterols during dauer larva formation and longevity. In the absence of gamravali, the nuclear hormone receptor DAF-12 is activated and thereby initiates the dauer formation program. Active DAF-12 triggers in neurons the nuclear import of DAF-16, a forkhead domain transcription factor that contributes to dauer differentiation. This hormonal control of DAF-16 activation is, however, independent of insulin signalling and has no influence on life span.

  1. Comparison of soymilk and probiotic soymilk effects on serum high-density lipoprotein cholesterol and low-density lipoprotein cholesterol in diabetic Wistar rats

    Directory of Open Access Journals (Sweden)

    Mina Babashahi

    2015-04-01

    Full Text Available BACKGROUND: Soy milk (SM and its fermented products are identified as rich sources of bioactive compounds helping to manage and to reduce the risk of chronic disease. This study aimed to compare the effects of SM and probiotic SM (PSM consumption on serum low-density lipoprotein cholesterol (LDL-C and high-density lipoprotein cholesterol (HDL-C in diabetic Wistar rats. METHODS: Probiotic SM was prepared by fermentation of the plain SM with a native strain of Lactobacillus plantarum. 20 streptozotocin-nicotinamide-induced diabetic Wistar rats were divided into two groups based on the type of administered SM (SM group and PSM group. The animals were fed with 1 ml/day of either soy or PSM for 21 days. The serum lipoprotein levels were analyzed at baseline and the end of the intervention period. RESULTS: HDL-C increased significantly in PSM group. Furthermore, this group showed more percent of change in increased HDL-C in compression with SM group (P < 0.050. Regarding LDL-C level, rats fed with SM was not significantly different from the PSM group (P < 0.050; though, this biomarker was reduced in both group. CONCLUSION: Probiotic SM could modulate blood lipoprotein levels. Thus, it may be considered in managing diabetes complications and atherosclerotic risks. 

  2. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on the modification of the authorisation of a health claim related to plant sterol esters and lowering blood LDL-cholesterol; high blood LDL-cholesterol is a risk factor in the development of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006, following a request in accordance with Article 19 of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    2014-01-01

    such as margarine-type spreads, mayonnaise, salad dressings, and dairy products have been shown consistently to lower blood LDL-cholesterol concentrations in a large number of studies, the effective dose of plant sterols (as powder diluted in water) needed to achieve a given magnitude of effect in a given timeframe...

  3. 13-week oral toxicity study with stanol esters in rats

    NARCIS (Netherlands)

    Turnbull, D.; Whittaker, M.H.; Frankos, V.H.; Jonker, D.

    1999-01-01

    Plant sterols and their saturated derivatives, known as stanols, reduce serum cholesterol when consumed in amounts of approximately 2 g per day. Stanol fatty acid esters have been developed as a highly fat-soluble form that may lower cholesterol more effectively than stanols. Stanol esters occur

  4. Comparison of serum leptin, glucose, total cholesterol and total protein levels in fertile and repeat breeder cows

    Directory of Open Access Journals (Sweden)

    Saime Guzel

    2014-12-01

    Full Text Available In the present study we measured serum glucose, leptin, total cholesterol and total protein concentrations in repeat breeder cows and compared them with fertile cows. For this aim, 20 repeat breeder cows and 20 fertile cows were used as material. Repeat breeder cows were found to have lower levels of leptin and glucose as compared with fertile ones. No significant differences in total cholesterol and total protein levels were observed between the two groups. No significant correlation of leptin with glucose, total cholesterol and total protein was observed in fertile and repeat breeder cows. Low concentrations of glucose and leptin can have some effects on reproductive problems as repeat breeder and help to understand potential mechanisms impairing fertility in repeat breeder cows.

  5. Plasma cholesterol and endogenous cholesterol synthesis during refeeding in anorexia nervosa.

    Science.gov (United States)

    Feillet, F; Feillet-Coudray, C; Bard, J M; Parra, H J; Favre, E; Kabuth, B; Fruchart, J C; Vidailhet, M

    2000-04-01

    Normal or high levels of cholesterol have been measured in patients with anorexia nervosa (AN). Given that cholesterol intake in AN is usually very low, the reasons for this anomaly are not clearly understood. We studied lipid and lipoprotein profiles and endogenous cholesterol synthesis, estimated by serum lathosterol, in a population of 14 girls with AN, before and during a period of 30 days refeeding. The initial body mass index (BMI) of the patients was 13.41+/-1.62 kg/m(2). No changes were observed during refeeding in endocrine parameters (ACTH, cortisol and estradiol). At Day 0 the lipids data measured here showed normal levels of triglycerides, and total cholesterol at the upper limits of the normal range (5.44+/-1 mmol/l). At this time, total and LDL cholesterol were negatively correlated with transthyretin and BMI. Serum lathosterol (a precursor in cholesterol synthesis pathway) increased significantly (5.99+/-1.75 (Day 0) vs. 8.39+/-2.96 (Day 30); P=0.02) while there was a significant decrease in apo B (0.79+/-0.33 (Day 0) vs. 0. 60+/-0.17 g/l (Day 30), P=0.02) with refeeding. Thus, patients with initial high cholesterol levels have the worst nutritional status and high cholesterol levels are not related to a de novo synthesis. This profile returns to normal with refeeding. An increase of cellular cholesterol uptake may be responsible for this apparently paradoxical evolution with increase of cholesterol synthesis and decrease of apo B during renutrition.

  6. Plant sterol metabolism. Δ7-Sterol-C5-Desaturase (STE1/DWARF7), Δ5,7-Sterol-Δ7-Reductase (DWARF5) and Δ24-Sterol-Δ24-Reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L

    DEFF Research Database (Denmark)

    Silvestro, Daniele; Andersen, Tonni Grube; Schaller, Hubert

    2013-01-01

    in the corresponding enzymes. All fusion proteins were found to localize in the endoplasmic reticulum in functionally complemented plants. The results show that both ¿(5,7)-sterol-¿(7)-reductase and ¿(24)-sterol-¿(24)-reductase are in addition localized to the plasma membrane, whereas ¿(7)-sterol-C(5)-desaturase......Sterols are crucial lipid components that regulate membrane permeability and fluidity and are the precursors of bioactive steroids. The plant sterols exist as three major forms, free sterols, steryl glycosides and steryl esters. The storage of steryl esters in lipid droplets has been shown...... to contribute to cellular sterol homeostasis. To further document cellular aspects of sterol biosynthesis in plants, we addressed the question of the subcellular localization of the enzymes implicated in the final steps of the post-squalene biosynthetic pathway. In order to create a clear localization map...

  7. Nutritional value of the marine invertebrates Anemonia viridis and Haliothis tuberculata and effects on serum cholesterol concentration in ratsopen star

    Science.gov (United States)

    Gonzalez, M; Caride, B; Lamas, A; Taboada, C

    2001-09-01

    The purpose of this study was to determine the nutritional value of diets with protein from two marine species (Haliotis tuberculata and Anemonia viridis) as compared to a high-quality protein reference based on casein or casein supplemented with olive oil. We also investigated the effects of these diets on serum lipid levels. Male rats were fed these diets for 23 days. Protein quality indicators (true digestibility, net protein utilization, biological value) were similar to those obtained for casein-based feeds except for lower true digestibility and net protein utilization values for the Anemonia viridis feed. HDL-cholesterol level was significantly higher (p < 0.05) in the groups fed marine species or casein supplemented with olive oil than in the casein group. Total-cholesterol level was higher in the group fed Haliotis tuberculata fed than in the other groups. These results suggest that these marine species are a good protein source, and that they may have positive effects on serum cholesterol level.

  8. Sitosterol and cholesterol metabolism in a patient with coexisting phytosterolemia and cholestanolemia

    International Nuclear Information System (INIS)

    Lin, H.J.; Wang, C.; Salen, G.; Lam, K.C.; Chan, T.K.

    1983-01-01

    Sitosterol and cholesterol metabolism were studied in a patient with coexisting phytosterolemia and cholestanolemia, and in a control subject, both on similar diets containing about 170 mg cholesterol and 135 mg phytosterols per day. The turnover of 22,23-3H-sitosterol and 4-14C-cholesterol, given intravenously, were followed for up to 372 days. The specific activity-time curves for both sterols were resolved into two exponentials and fitted into a two-pool model. The half-lives of both exponential curves for sitosterol, in the patient, were abnormally long. Equilibration of the tracer between the two pools, in the patient, occurred at about 30 days as compared to 10-15 days in the control subject. The daily turnover of sitosterol in the patient was estimated to be 10 times greater than that in the control subject. The patient's total body exchangeable pool of sitosterol was 9.6 g or about 80 times the amount found in the control. The patient's plasma phytosterol levels fell by 25% when he went on a diet containing only 10 mg phytosterols per day. During this period the specific activity of his plasma sitosterol with respect to an equilibrated dose of 3H-labeled tracer remained constant; this was compatible with the absence of endogenous synthesis. Cholesterol turnover in the patient showed prolonged half-lives for both exponential curves and reduced fractional daily loss from the fast-exchanging pool. The patient's xanthoma sterols underwent 16% and 55% exchange with plasma sitosterol and cholesterol, respectively, on day 60, indicating the presence of a third exchangeable pool

  9. Bilirubin Increases Insulin Sensitivity by Regulating Cholesterol Metabolism, Adipokines and PPARγ Levels

    Science.gov (United States)

    Liu, Jinfeng; Dong, Huansheng; Zhang, Yong; Cao, Mingjun; Song, Lili; Pan, Qingjie; Bulmer, Andrew; Adams, David B.; Dong, Xiao; Wang, Hongjun

    2015-01-01

    Obesity can cause insulin resistance and type 2 diabetes. Moderate elevations in bilirubin levels have anti-diabetic effects. This study is aimed at determining the mechanisms by which bilirubin treatment reduces obesity and insulin resistance in a diet-induced obesity (DIO) mouse model. DIO mice were treated with bilirubin or vehicle for 14 days. Body weights, plasma glucose, and insulin tolerance tests were performed prior to, immediately, and 7 weeks post-treatment. Serum lipid, leptin, adiponectin, insulin, total and direct bilirubin levels were measured. Expression of factors involved in adipose metabolism including sterol regulatory element-binding protein (SREBP-1), insulin receptor (IR), and PPARγ in liver were measured by RT-PCR and Western blot. Compared to controls, bilirubin-treated mice exhibited reductions in body weight, blood glucose levels, total cholesterol (TC), leptin, total and direct bilirubin, and increases in adiponectin and expression of SREBP-1, IR, and PPARγ mRNA. The improved metabolic control achieved by bilirubin-treated mice was persistent: at two months after treatment termination, bilirubin-treated DIO mice remained insulin sensitive with lower leptin and higher adiponectin levels, together with increased PPARγ expression. These results indicate that bilirubin regulates cholesterol metabolism, adipokines and PPARγ levels, which likely contribute to increased insulin sensitivity and glucose tolerance in DIO mice. PMID:26017184

  10. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR.

    Science.gov (United States)

    Sun, Chuanzheng; Huang, Feizhou; Liu, Xunyang; Xiao, Xuefei; Yang, Mingshi; Hu, Gui; Liu, Huaizheng; Liao, Liangkan

    2015-03-01

    Non-alcoholic fatty liver disease (NAFLD) has emerged as a public health issue with a prevalence of 15-30% in Western populations and 6-25% in Asian populations. Certain studies have revealed the alteration of microRNA (miRNA or miR) profiles in NAFLD and it has been suggested that miR-21 is associated with NAFLD. In the present study, we measured the serum levels of miR-21 in patients with NAFLD and also performed in vitro experiments using a cellular model of NAFLD to further investigate the effects of miR-21 on triglyceride and cholesterol metabolism. Furthermore, a novel target through which miR-21 exerts its effects on NAFLD was identified. The results revealed that the serum levels of miR-21 were lower in patients with NAFLD compared with the healthy controls. In addition, 3-hydroxy-3-methylglutaryl-co-enzyme A reductase (HMGCR) expression was increased in the serum of patients with NAFLD both at the mRNA and protein level. To mimic the NAFLD condition in vitro, HepG2 cells were treated with palmitic acid (PA) and oleic acid (OA). Consistent with the results obtained in the in vivo experiments, the expression levels of miR-21 were decreased and those of HMGCR were increased in the in vitro model of NAFLD. Luciferase reporter assay revealed that HMGCR was a direct target of miR-21 and that miR-21 exerted an effect on both HMGCR transcript degradation and protein translation. Furthermore, the results from the in vitro experiments revealed that miR-21 decreased the levels of triglycerides (TG), free cholesterol (FC) and total cholesterol (TC) in the PA/OA-treated HepG2 cells and that this effect was attenuated by HMGCR overexpression. Taken together, to the best of our knowledge, the present study is the first to report that miR-21 regulates triglyceride and cholesterol metabolism in an in vitro model of NAFLD, and that this effect is achieved by the inhibition of HMGCR expression. We speculate that miR-21 may be a useful biomarker for the diagnosis and

  11. Effects of sterol regulatory element-binding protein (SREBP in chickens

    Directory of Open Access Journals (Sweden)

    Alipour Fahimeh

    2012-02-01

    Full Text Available Abstract Sterol regulatory element binding protein- 1 and -2 (SREBP-1 and -2 are key transcription factors involved in the biosynthesis of cholesterol and fatty acids. The SREBP have mostly been studied in rodents in which lipogenesis is regulated in both liver and adipose tissue. There is, though, a paucity of information on birds, in which lipogenesis occurs essentially in the liver as in humans. Since a prelude to the investigation of the role of SREBP in lipid metabolism regulation in chicken, we review Size and Tissue expression Pattern of SREBP and role of this protein in chickens.

  12. Eicosapentaenoic Acid-Enriched Phosphatidylcholine Attenuated Hepatic Steatosis Through Regulation of Cholesterol Metabolism in Rats with Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Liu, Yanjun; Shi, Di; Tian, Yingying; Liu, Yuntao; Zhan, Qiping; Xu, Jie; Wang, Jingfeng; Xue, Changhu

    2017-02-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world. Disturbed cholesterol metabolism plays a crucial role in the development of NAFLD. The present study was conducted to evaluate the effects of EPA-PC extracted from sea cucumber on liver steatosis and cholesterol metabolism in NAFLD. Male Wistar rats were randomly divided into seven groups (normal control group, model group, lovastatin group, low- and high-dose EPA groups, and low- and high-dose EPA-PC groups). Model rats were established by administering a diet containing 1% orotic acid. To determine the possible cholesterol metabolism promoting mechanism of EPA-PC, we analyzed the transcription of key genes and transcriptional factors involved in hepatic cholesterol metabolism. EPA-PC dramatically alleviated hepatic lipid accumulation, reduced the serum TC concentration, and elevated HDLC levels in NAFLD rats. Fecal neutral cholesterol excretion was also promoted by EPA-PC administration. Additionally, EPA-PC decreased the mRNA expression of hydroxymethyl glutaric acid acyl (HMGR) and cholesterol 7α-hydroxylase (CYP7A), and increased the transcription of sterol carrying protein 2 (SCP2). Moreover, EPA-PC stimulated the transcription of peroxisome proliferators-activated receptor α (PPARα) and adenosine monophosphate activated protein kinase (AMPK) as well as its modulators, liver kinase B1 (LKB1) and Ca 2+ /calmodulin-dependent kinase kinase (CAMKK). Based on the results, the promoting effects of EPA-PC on NAFLD may be partly associated with the suppression of cholesterol synthesis via HMGR inhibition and the enhancement of fecal cholesterol excretion through increased SCP2 transcription. The underlying mechanism may involve stimulation of PPARα and AMPK.

  13. Should we change our lipid management strategies to focus on non-high-density lipoprotein cholesterol?

    NARCIS (Netherlands)

    Rana, Jamal S.; Boekholdt, S. Matthijs

    2010-01-01

    Purpose of review Despite aggressive low-density lipoprotein cholesterol lowering, patients continue to be at significant risk of cardiovascular events. Assessment of non-high-density lipoprotein cholesterol (non-HDL-C) provides a measure of cholesterol contained in all atherogenic particles. In the

  14. Markers of Oxidative Stress in Dogs with Myxomatous Mitral Valve Disease are Influenced by Sex, Neuter Status, and Serum Cholesterol Concentration

    DEFF Research Database (Denmark)

    Reimann, M J; Häggström, J; Møller, J E

    2017-01-01

    -tocopherol [P = .003]) was associated with body condition score (BCS), but the association disappeared when cholesterol was included in the analyses. All markers of oxidative stress (MDA, oxLDL, and vitamin E) were positively associated with serum cholesterol concentration (P ≤ .04), but none were associated...... with clinical stage of MMVD. CONCLUSIONS: In conclusion, markers of oxidative stress are associated with sex, BCS, neuter status, and cholesterol. The results cannot confirm a relationship between oxidative stress and clinical stage of the disease in dogs with MMVD....

  15. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to a combination of plant sterols and Cholesternorm®mix and reduction of blood LDL-cholesterol concentrations pursuant to Article 14 of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following an application from Health Concern B.V., submitted for authorisation of a claim pursuant to Article 14 of Regulation (EC) No 1924/2006 via the Competent Authority of the Netherlands, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the sci......Following an application from Health Concern B.V., submitted for authorisation of a claim pursuant to Article 14 of Regulation (EC) No 1924/2006 via the Competent Authority of the Netherlands, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion...... on the scientific substantiation of a health claim related to a combination of plant sterols and Cholesternorm®mix and reduction of blood LDL-cholesterol concentrations. The food which is the subject of the health claim is a combination of plant sterols (free and in esterified form) and Cholesternorm......®mix and provides at the levels of the proposed conditions of use around 0.52 g plant sterols, 0.95 g linoleic acid, 0.13 g alpha-linolenic acid and 0.13 g pectins per day. The combination of plant sterols and Cholesternorm®mix, which is the subject of the claim, is sufficiently characterised in relation...

  16. Serum Lipid Levels in Patients with Eating Disorders.

    Science.gov (United States)

    Nakai, Yoshikatsu; Noma, Shun'ichi; Fukusima, Mitsuo; Taniguchi, Ataru; Teramukai, Satoshi

    2016-01-01

    Objective To evaluate some risk factors for cardiovascular diseases in feeding and eating disorders, the degree of lipid abnormalities was investigated in a large Japanese cohort of different groups of feeding and eating disorders, according to the Japan Atherosclerosis Society Guidelines for the Prevention of Atherosclerotic Cardiovascular Diseases 2012 (JAS Guidelines 2012). Methods Participants in the current study included 732 women divided into four groups of feeding and eating disorders: anorexia nervosa, restricting type (AN-R); anorexia nervosa, binge-eating/purging type; bulimia nervosa (BN); and binge-eating disorder (BED). We measured the serum levels of total cholesterol, high-density-lipoprotein (HDL) cholesterol, and triglyceride in these participants. Low-density-lipoprotein (LDL) cholesterol and non-HDL cholesterol levels were also calculated. Results The concentrations of LDL cholesterol and non-HDL cholesterol were widely distributed in all groups. When the LDL cholesterol risk was defined as ≥120 mg/dL and the non-HDL cholesterol risk as ≥150 mg/dL, according to the JAS Guidelines 2012, the proportion of LDL cholesterol risk ranged from 29.6% (BN) to 38.6% (AN-R), and the proportion of non-HDL cholesterol risk ranged from 17.8% (BN) to 30.1% (BED). Conclusion The present findings suggest the existence of LDL cholesterol risk and non-HDL cholesterol risk in all groups of eating disorders. Given the chronicity of this condition, the development of elevated concentrations of LDL cholesterol and non-HDL cholesterol at an early age may increase the risk of cardiovascular diseases.

  17. Inward cholesterol gradient of the membrane system in P. falciparum-infected erythrocytes involves a dilution effect from parasite-produced lipids

    Directory of Open Access Journals (Sweden)

    Fuyuki Tokumasu

    2014-05-01

    Full Text Available Plasmodium falciparum (Pf infection remodels the human erythrocyte with new membrane systems, including a modified host erythrocyte membrane (EM, a parasitophorous vacuole membrane (PVM, a tubulovesicular network (TVN, and Maurer's clefts (MC. Here we report on the relative cholesterol contents of these membranes in parasitized normal (HbAA and hemoglobin S-containing (HbAS, HbAS erythrocytes. Results from fluorescence lifetime imaging microscopy (FLIM experiments with a cholesterol-sensitive fluorophore show that membrane cholesterol levels in parasitized erythrocytes (pRBC decrease inwardly from the EM, to the MC/TVN, to the PVM, and finally to the parasite membrane (PM. Cholesterol depletion of pRBC by methyl-β-cyclodextrin treatment caused a collapse of this gradient. Lipid and cholesterol exchange data suggest that the cholesterol gradient involves a dilution effect from non-sterol lipids produced by the parasite. FLIM signals from the PVM or PM showed little or no difference between parasitized HbAA vs HbS-containing erythrocytes that differed in lipid content, suggesting that malaria parasites may regulate the cholesterol contents of the PVM and PM independently of levels in the host cell membrane. Cholesterol levels may affect raft structures and the membrane trafficking and sorting functions that support Pf survival in HbAA, HbAS and HbSS erythrocytes.

  18. Sterol regulatory element binding protein-1 (SREBP1) gene expression is similarly increased in polycystic ovary syndrome and endometrial cancer.

    Science.gov (United States)

    Shafiee, Mohamad N; Mongan, Nigel; Seedhouse, Claire; Chapman, Caroline; Deen, Suha; Abu, Jafaru; Atiomo, William

    2017-05-01

    Women with polycystic ovary syndrome have a three-fold higher risk of endometrial cancer. Insulin resistance and hyperlipidemia may be pertinent factors in the pathogenesis of both conditions. The aim of this study was to investigate endometrial sterol regulatory element binding protein-1 gene expression in polycystic ovary syndrome and endometrial cancer endometrium, and to correlate endometrial sterol regulatory element binding protein-1 gene expression with serum lipid profiles. A cross-sectional study was performed at Nottingham University Hospital, UK. A total of 102 women (polycystic ovary syndrome, endometrial cancer and controls; 34 participants in each group) were recruited. Clinical and biochemical assessments were performed before endometrial biopsies were obtained from all participants. Taqman real-time polymerase chain reaction for endometrial sterol regulatory element binding protein-1 gene and its systemic protein expression were analyzed. The body mass indices of women with polycystic ovary syndrome (29.28 ± 2.91 kg/m 2 ) and controls (28.58 ± 2.62 kg/m 2 ) were not significantly different. Women with endometrial cancer had a higher mean body mass index (32.22 ± 5.70 kg/m 2 ). Sterol regulatory element binding protein-1 gene expression was significantly increased in polycystic ovary syndrome and endometrial cancer endometrium compared with controls (p ovary syndrome, but this was not statistically significant. Similarly, statistically insignificant positive correlations were found between endometrial sterol regulatory element binding protein-1 gene expression and body mass index in endometrial cancer (r = 0.643, p = 0.06) and waist-hip ratio (r = 0.096, p = 0.073). Sterol regulatory element binding protein-1 gene expression was significantly positively correlated with triglyceride in both polycystic ovary syndrome and endometrial cancer (p = 0.028 and p = 0.027, respectively). Quantitative serum sterol regulatory element

  19. National, regional, and global trends in serum total cholesterol since 1980: systematic analysis of health examination surveys and epidemiological studies with 321 country-years and 3·0 million participants

    DEFF Research Database (Denmark)

    Farzadfar, Farshad; Finucane, Mariel M; Danaei, Goodarz

    2011-01-01

    Data for trends in serum cholesterol are needed to understand the effects of its dietary, lifestyle, and pharmacological determinants; set intervention priorities; and evaluate national programmes. Previous analyses of trends in serum cholesterol were limited to a few countries, with no consisten...

  20. Fabrication and Optimization of ChE/ChO/HRP-AuNPs/c-MWCNTs Based Silver Electrode for Determining Total Cholesterol in Serum

    Directory of Open Access Journals (Sweden)

    Kusum Lata

    2016-01-01

    Full Text Available The developed method used three enzymes comprised of cholesterol esterase, cholesterol oxidase, and peroxidase for fabrication of amperometric biosensor in order to determine total cholesterol in serum samples. Gold nanoparticles (AuNPs and carboxylated multiwall carbon nanotubes (cMWCNTs were used to design core of working electrode, having covalently immobilized ChO, ChE, and HRP. Polyacrylamide layer was finally coated on working electrode in order to prevent enzyme leaching. Chemically synthesised Au nanoparticles were subjected to transmission electron microscopy (TEM for analysing the shape and size of the particles. Working electrode was subjected to FTIR and XRD. The combined action of AuNP and c-MWCNT showed enhancement in electrocatalytic activity at a very low potential of 0.27 V. The pH 7, temperature 40°C, and response time of 20 seconds, respectively, were observed. The biosensor shows a broad linear range from 0.5 mg/dL to 250 mg/dL (0.01 mM–5.83 mM with minimum detection limit being 0.5 mg/dL (0.01 mM. The biosensor showed reusability of more than 45 times and was stable for 60 days. The biosensor was successfully tested for determining total cholesterol in serum samples amperometrically with no significant interference by serum components.

  1. Association between non-high-density lipoprotein cholesterol and nonalcoholic fatty liver disease in postmenopausal Uyghur women in Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Mailamuguli

    2016-06-01

    Full Text Available ObjectiveTo investigate the association between non-high-density lipoprotein cholesterol (non-HDL-C and nonalcoholic fatty liver disease (NAFLD in postmenopausal Uyghur women in Xinjiang, China. MethodsA total of 1271 postmenopausal Uyghur women who underwent physical examination in the physical examination centers of hospitals in Urumqi and Kashi, Xinjiang, were enrolled as study subjects, and according to the presence or absence of NAFLD, they were divided into NAFLD group (682 women and control group (589 women. Demographic data were recorded in detail, and the hepatic enzyme parameters, parameters for glucose and lipid metabolism, and parameters including uric acid and non-HDL-C were measured. The t-test was used for comparison of continuous data between groups, the chi-square test was used for comparison of categorical data between groups, and non-conditional logistic regression analysis was used to determine the risk factors for NAFLD in postmenopausal women. ResultsCompared with the control group, the NAFLD group had significantly higher uric acid, fasting blood glucose, triglyceride (TG, glycosylated hemoglobin, alanine aminotransferase (ALT, aspartate aminotransferase (AST, waist circumference, hip circumference, body mass index, waist-hip ratio, systolic pressure, diastolic pressure, and non-HDL-C level (all P<0.05, and a significantly lower HDL-C level (P<0.05. Compared with the group with a non-HDL-C level of ≥3.58 mmol/L, the group with a non-HDL-C level of <3.58 mmol/L had significantly lower levels of blood glucose, total cholesterol, TG, AST, ALT, and low-density lipoprotein cholesterol. The multivariate logistic regression analysis showed that non-HDL-C, serum uric acid, and BMI were risk factors for NAFLD in postmenopausal women. ConclusionNon-HDL-C, along with central obesity, hypertriglyceridemia, and hyperuricemia, is a major risk factor for NAFLD in postmenopausal women.

  2. Effects of physical examination and diet consultation on serum cholesterol and health-behavior in the Korean pilots employed in commercial airline.

    Science.gov (United States)

    Choi, Yun Young; Kim, Ki Youn

    2013-01-01

    An objective of this study is to search how physical examination and diet consultation can influence those risk factors of cardiovascular disease. The subjects were 326 pilots of the "B" airline company in Korea whose total cholesterol values were over 220 mg/dl on their regular physical examinations from April 2006 to December 2008. They were divided into two groups, one who had diet consultation (an intervention group) and a control group. The physical examination components used to each group were body mass index (BMI), total cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL) and triglyceride (TG). The behavioral, anthropometric and biomedical measurements were collected at each visit. This study compares and investigates the changes of serum cholesterol and also the health-behavior at each physical examination. Within the intervention group significant improvements were observed for total cholesterol, BMI (body mass index) and HDL (high density lipoprotein). The normalizing rates for cholesterol level to decrease down to lower than 200 mg/dl were 17.7% in intervention group and 8.7% in control group, which is statistically significantly higher among the intervention group. The odds ratio of diet consultation was 2.80 (95% CI=1.35-5.79), which indicates that it is a significantly contributing factor to normalize the serum cholesterol value down to lower than 200 mg/dl. Based on result, it is recommended to have regular physical examination and intensive management with diet and exercise consultation.

  3. [Cholesterol reducing food certainly is useful].

    Science.gov (United States)

    Stalenhoef, A F

    1997-12-27

    The effect of a low-cholesterol diet in open intervention studies depends in the long run on motivation, knowledge and dedication. The mean decrease of the serum cholesterol level is 10% (range: 0-20). Epidemiological and cohort studies clearly prove a connection between the intake of saturated fat, the serum cholesterol level and the risk of coronary heart disease and death. High-fat food slows down the clearance of the degradation products rich in cholesterol which appear in the blood after a meal and which are highly atherogenic (these products are not found at a fasting cholesterol assay). Cholesterol-reducing nutrition has additional useful effects, for instance on the blood pressure and the coagulation. The recommendations for healthy, low-cholesterol nutrition for the population as a whole apply particularly to patients with a high risk of coronary heart disease. Although advice given to individuals often has a disappointing effect, influencing the life pattern should be included in the strategy to reduce the risk of coronary heart disease.

  4. Biosynthesis and composition of sterols and sterol esters in the land snail Cepaea nemoralis (L.) (gastropoda, pulmonata, stylommatophora)

    NARCIS (Netherlands)

    Horst, D.J. van der; Voogt, P.A.

    1972-01-01

    1. 1. The biosynthesis and composition of sterols and sterol esters were studied in the land snail Cepaea nemoralis after injection of Na-1-14C-acetate. 2. 2. Free and esterified sterols appeared to be synthesized by the animals, whilst the specific radioactivity of the sterols from the esters

  5. Characterization of the sterol and phosphatidylinositol 4-phosphate binding properties of Golgi-associated OSBP-related protein 9 (ORP9.

    Directory of Open Access Journals (Sweden)

    Xinwei Liu

    Full Text Available Oxysterol binding protein (OSBP and OSBP-related proteins (ORPS have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE were poor ligands for OSBP. In contrast, both long (ORP9L and short (ORP9S variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus.

  6. Characterization of the sterol and phosphatidylinositol 4-phosphate binding properties of Golgi-associated OSBP-related protein 9 (ORP9).

    Science.gov (United States)

    Liu, Xinwei; Ridgway, Neale D

    2014-01-01

    Oxysterol binding protein (OSBP) and OSBP-related proteins (ORPS) have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL) to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE) were poor ligands for OSBP. In contrast, both long (ORP9L) and short (ORP9S) variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P) from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA) at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus.

  7. Abcg5/Abcg8-independent pathways contribute to hepatobiliary cholesterol secretion in mice

    NARCIS (Netherlands)

    Plosch, Torsten; van der Veen, Jelske N.; Havinga, Rick; Huijkman, Nicolette C. A.; Bloks, Vincent W.; Kuipers, Folkert

    The ATP-binding cassette (ABC) half-transporters ABCG5 and ABCG8 heterodimerize into a functional complex that mediates the secretion of plant sterols and cholesterol by hepatocytes into bile and their apical efflux from enterocytes. We addressed the putative rate-controlling role of Abcg5/Abcg8 in

  8. Structured triglycerides containing caprylic (8:0) and oleic (18:1) fatty acids reduce blood cholesterol concentrations and aortic cholesterol accumulation in hamsters.

    Science.gov (United States)

    Wilson, Thomas A; Kritchevsky, David; Kotyla, Timothy; Nicolosi, Robert J

    2006-03-01

    The effects of structured triglycerides containing one long chain fatty acid (oleic acid, C18:1) and one short chain saturated fatty acid (caprylic acid, 8:0) on lipidemia, liver and aortic cholesterol, and fecal neutral sterol excretion were investigated in male Golden Syrian hamsters fed a hypercholesterolemic regimen consisting of 89.9% commercial ration to which was added 10% coconut oil and 0.1% cholesterol (w/w). After 2 weeks on the HCD diet, the hamsters were bled, following an overnight fast (16 h) and placed into one of three dietary treatments of eight animals each based on similar plasma cholesterol levels. The hamsters either continued on the HCD diet or were placed on diets in which the coconut oil was replaced by one of two structured triglycerides, namely, 1(3),2-dicaproyl-3(1)-oleoylglycerol (OCC) or 1,3-dicaproyl-2-oleoylglycerol (COC) at 10% by weight. Plasma total cholesterol (TC) in hamsters fed the OCC and COC compared to the HCD were reduced 40% and 49%, respectively (Pstructured triglyceride oils had lower blood cholesterol levels and lower aortic accumulation of cholesterol compared to the control fed hamsters.

  9. Serum Levels of Visfatin and Interleukin-6 in Non-Obese Versus Obese Men with Coronary Artery Disease

    International Nuclear Information System (INIS)

    Naz, S.; Sandhu, Q. S.; Akhtar, A.; Zafar, U.; Khalid, A.; Saeed, M.

    2017-01-01

    Objective: To evaluate and compare the serum levels of visfatin, interleukin-6 and lipid profile in non-obese and obese male patients with coronary artery disease. Study Design: Observational, comparative study. Place and Duration of Study: Punjab Institute of Cardiology and Lahore General Hospital, Lahore, from July to December 2013. Methodology: The participants included 20 non-obese group I with coronary artery disease (CAD) and 20 obese males group II with coronary artery disease (angiographically confirmed). All the participants were in the age group of 35 - 55 years being non-smokers and non-diabetic. Serum visfatin and interleukin-6 levels were analysed by Enzyme Linked Immunosorbent Assay (ELISA). Lipid profile was also evaluated. Results were compared with T-test and Mann Whitney U test. The values were considered significant at 0.05 level of significance. Results: Serum visfatin 9.05 versus 3.9 ng/ml and interleukin-6 12.80 versus 0.60 pg/ml levels were significantly (p-value < 0.001 of both) raised in the obese CAD group as compared to non-obese with CAD. Lipid profile also showed raised levels of total serum cholesterol, low density lipoproteins, triglycerides, very low density lipoproteins and low levels of high density lipoproteins in obese group. Conclusion: Significantly raised levels of serum visfatin and interleukin-6 indicate adipose tissue as an imperative source of these adipocytokines involved in inflammation in CAD. Altered lipid profile also seen in obese patients with CAD. (author)

  10. Adropin: An endocrine link between the biological clock and cholesterol homeostasis

    Directory of Open Access Journals (Sweden)

    Sarbani Ghoshal

    2018-02-01

    Full Text Available Objective: Identify determinants of plasma adropin concentrations, a secreted peptide translated from the Energy Homeostasis Associated (ENHO gene linked to metabolic control and vascular function. Methods: Associations between plasma adropin concentrations, demographics (sex, age, BMI and circulating biomarkers of lipid and glucose metabolism were assessed in plasma obtained after an overnight fast in humans. The regulation of adropin expression was then assessed in silico, in cultured human cells, and in animal models. Results: In humans, plasma adropin concentrations are inversely related to atherogenic LDL-cholesterol (LDL-C levels in men (n = 349, but not in women (n = 401. Analysis of hepatic Enho expression in male mice suggests control by the biological clock. Expression is rhythmic, peaking during maximal food consumption in the dark correlating with transcriptional activation by RORα/γ. The nadir in the light phase coincides with the rest phase and repression by Rev-erb. Plasma adropin concentrations in nonhuman primates (rhesus monkeys also exhibit peaks coinciding with feeding times (07:00 h, 15:00 h. The ROR inverse agonists SR1001 and the 7-oxygenated sterols 7-β-hydroxysterol and 7-ketocholesterol, or the Rev-erb agonist SR9009, suppress ENHO expression in cultured human HepG2 cells. Consumption of high-cholesterol diets suppress expression of the adropin transcript in mouse liver. However, adropin over expression does not prevent hypercholesterolemia resulting from a high cholesterol diet and/or LDL receptor mutations. Conclusions: In humans, associations between plasma adropin concentrations and LDL-C suggest a link with hepatic lipid metabolism. Mouse studies suggest that the relationship between adropin and cholesterol metabolism is unidirectional, and predominantly involves suppression of adropin expression by cholesterol and 7-oxygenated sterols. Sensing of fatty acids, cholesterol and oxysterols by the ROR

  11. Evaluation of the effect of shift work on serum cholesterol and triglyceride levels.

    Science.gov (United States)

    Akbari, Hamed; Mirzaei, Ramazan; Nasrabadi, Tahereh; Gholami-Fesharaki, Mohammad

    2015-01-01

    Working outside daylight hours (7 am to 7 pm) is called shift work. Shift work is a common practice in many industries and factories such as steel industries, petroleum industries, power plants, and in some services such as medicine and nursing and police forces, in which professionals provide services during day and night. Considering the contradictory reports of different studies, we decided to evaluate the effect of shift work on cholesterol and triglyceride (TG) levels through a historical cohort on steel industry workers. This retrospective cohort study was performed on all the staff of Isfahan's Mobarakeh Steel Company between years 2002 and 2011. There were 5773 participants in this study. Data were collected from the medical records of the staff using the census method. For analysis of data, generalized estimating equation (GEE) regression was used. The results showed a significant difference in cholesterol levels between shift workers and day workers on the first observation (P work experience and BMI were not similar between shift workers and day workers. Therefore, to remove the effect of such variables, we used GEE regression. Despite the borderline difference of cholesterol between regular shift workers and day workers, this correlation was not statistically significant (P = 0.051). The results for TG also showed no correlation with shift work. According to the findings of this study, there is no relationship between shift work and changes in serum TG and cholesterol. The lack of relationship can be due to shift plans for shift workers, nutrition, or the "Healthy Heart project" at Isfahan Mobarakeh Steel Company.

  12. Photoaffinity labeling with cholesterol analogues precisely maps a cholesterol-binding site in voltage-dependent anion channel-1.

    Science.gov (United States)

    Budelier, Melissa M; Cheng, Wayland W L; Bergdoll, Lucie; Chen, Zi-Wei; Janetka, James W; Abramson, Jeff; Krishnan, Kathiresan; Mydock-McGrane, Laurel; Covey, Douglas F; Whitelegge, Julian P; Evers, Alex S

    2017-06-02

    Voltage-dependent anion channel-1 (VDAC1) is a highly regulated β-barrel membrane protein that mediates transport of ions and metabolites between the mitochondria and cytosol of the cell. VDAC1 co-purifies with cholesterol and is functionally regulated by cholesterol, among other endogenous lipids. Molecular modeling studies based on NMR observations have suggested five cholesterol-binding sites in VDAC1, but direct experimental evidence for these sites is lacking. Here, to determine the sites of cholesterol binding, we photolabeled purified mouse VDAC1 (mVDAC1) with photoactivatable cholesterol analogues and analyzed the photolabeled sites with both top-down mass spectrometry (MS), and bottom-up MS paired with a clickable, stable isotope-labeled tag, FLI -tag. Using cholesterol analogues with a diazirine in either the 7 position of the steroid ring (LKM38) or the aliphatic tail (KK174), we mapped a binding pocket in mVDAC1 localized to Thr 83 and Glu 73 , respectively. When Glu 73 was mutated to a glutamine, KK174 no longer photolabeled this residue, but instead labeled the nearby Tyr 62 within this same binding pocket. The combination of analytical strategies employed in this work permits detailed molecular mapping of a cholesterol-binding site in a protein, including an orientation of the sterol within the site. Our work raises the interesting possibility that cholesterol-mediated regulation of VDAC1 may be facilitated through a specific binding site at the functionally important Glu 73 residue. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Recent perspectives on the role of nutraceuticals as cholesterol-lowering agents.

    Science.gov (United States)

    Ward, Natalie; Sahebkar, Amirhossein; Banach, Maciej; Watts, Gerald

    2017-12-01

    Reduction in circulating cholesterol is an important step in lowering cardiovascular risk. Although statins are the most frequently prescribed cholesterol-lowering medication, there remains a significant portion of patients who require alternative treatment options. Nutraceuticals are increasingly popular as cholesterol-lowering agents. Despite the lack of long-term trials evaluating their use on cardiovascular endpoints and mortality, several studies have demonstrated their potential cholesterol-lowering effects. The purpose of this review is to provide an update on the role of nutraceuticals as cholesterol-lowering agents. The present review will focus on individual nutraceutical compounds, which have shown modest cholesterol-lowering abilities, as well as combination nutraceuticals, which may offer potential additive and/or synergistic effects. Berberine, red yeast rice, and plant sterols have moderate potential as cholesterol-lowering agents. Combination nutraceuticals, including the proprietary formulation, Armolipid Plus, appear to confer additional benefit on plasma lipid profiles, even when taken with statins and other agents. Although robust, long-term clinical trials to examine the effects of nutraceuticals on clinical outcomes are still required, their cholesterol-lowering ability, together with their reported tolerance and safety, offer a pragmatic option for lowering plasma cholesterol levels.

  14. The value of surrogate markers to monitor cholesterol absorption, synthesis and bioconversion to bile acids under lipid lowering therapies.

    Science.gov (United States)

    Stellaard, Frans; von Bergmann, Klaus; Sudhop, Thomas; Lütjohann, Dieter

    2017-05-01

    Regulation of cholesterol (Chol) homeostasis is controlled by three main fluxes, i.e. intestinal absorption, de novo synthesis (ChS) and catabolism, predominantly as bile acid synthesis (BAS). High serum total Chol and LDL-Chol concentrations in particular are considered risk factors and markers for the development of atherosclerosis. Pharmaceutical treatments to lower serum Chol have focused on reducing absorption or ChS and increasing BAS. Monitoring of these three parameters is complex involving isotope techniques, cholesterol balance experiments and advanced mass spectrometry based analysis methods. Surrogate markers were explored that require only one single fasting blood sample collection. These markers were validated in specific, mostly physiological conditions and during statin treatment to inhibit ChS. They were also applied under cholesterol absorption restriction, but were not validated in this condition. We retrospectively evaluated the use of serum campesterol (Camp), sitosterol (Sit) and cholestanol (Cholol) as markers for cholesterol absorption, lathosterol (Lath) as marker for ChS and 7α-hydroxycholesterol (7α-OH-Ch) and 27-hydroxycholesterol (27-OH-Ch) as markers for BAS under conditions of Chol absorption restriction. Additionally, their values were corrected for Chol concentration (R_sterol or oxysterols). Thirty-seven healthy male omnivore subjects were studied under treatments with placebo (PLAC), ezetimibe (EZE) to inhibit cholesterol absorption, simvastatin (SIMVA) to reduce cholesterol synthesis and a combination of both (EZE+SIMVA). Results were compared to those obtained in 18 pure vegetarian subjects (vegans) whose dietary Chol intake is extremely low. Relative or fractional Chol absorption (FrChA) was measured with the continuous feeding stable isotope procedure, ChS and BAS with the cholesterol balance method. The daily Chol intake (DICh) was inventoried and the daily Chol absorption (DACh) calculated. Monitoring cholesterol

  15. Elevated levels of serum cholesterol are associated with better performance on tasks of episodic memory.

    Science.gov (United States)

    Leritz, Elizabeth C; McGlinchey, Regina E; Salat, David H; Milberg, William P

    2016-04-01

    We examined how serum cholesterol, an established risk factor for cerebrovascular disease (CVD), relates to cognitive function in healthy middle-older aged individuals with no neurologic or CVD history. A complete lipid panel was obtained from a cohort of one hundred twenty individuals, ages 43-85, who also underwent a comprehensive neuropsychological examination. In order to reduce the number of variables and empirically identify broad cognitive domains, scores from neuropsychological tests were submitted into a factor analysis. This analysis revealed three explainable factors: Memory, Executive Function and Memory/Language. Three separate hierarchical multiple regression analyses were conducted using individual cholesterol metrics (total cholesterol, low density lipoprotein; LDL, high density lipoprotein; HDL, and triglycerides), as well as age, education, medication status (lipid lowering agents), ApoE status, and additional risk factors for CVD to predict neuropsychological function. The Memory Factor was predicted by a combination of age, LDL, and triglyceride levels; both age and triglycerides were negatively associated with factor score, while LDL levels revealed a positive relationship. Both the Executive and Memory/Language factor were only explained by education, whereby more years were associated with better performance. These results provide evidence that individual cholesterol lipoproteins and triglycerides may differentially impact cognitive function, over and above other common CVD risk factors and ApoE status. Our findings demonstrate the importance of consideration of vascular risk factors, such as cholesterol, in studies of cognitive aging.

  16. Sebaceous lipid profiling of bat integumentary tissues: quantitative analysis of free Fatty acids, monoacylglycerides, squalene, and sterols.

    Science.gov (United States)

    Pannkuk, Evan L; Gilmore, David F; Fuller, Nathan W; Savary, Brett J; Risch, Thomas S

    2013-12-01

    White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans and is devastating North American bat populations. Sebaceous lipids secreted from host integumentary tissues are implicated in the initial attachment and recognition of host tissues by pathogenic fungi. We are interested in determining if ratios of lipid classes in sebum can be used as biomarkers to diagnose severity of fungal infection in bats. To first establish lipid compositions in bats, we isolated secreted and integral lipid fractions from the hair and wing tissues of three species: big brown bats (Eptesicus fuscus), Eastern red bats (Lasiurus borealis), and evening bats (Nycticeius humeralis). Sterols, FFAs, MAGs, and squalene were derivatized as trimethylsilyl esters, separated by gas chromatography, and identified by mass spectrometry. Ratios of sterol to squalene in different tissues were determined, and cholesterol as a disease biomarker was assessed. Free sterol was the dominant lipid class of bat integument. Squalene/sterol ratio is highest in wing sebum. Secreted wing lipid contained higher proportions of saturated FFAs and MAGs than integral wing or secreted hair lipid. These compounds are targets for investigating responses of P. destructans to specific host lipid compounds and as biomarkers to diagnose WNS. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  17. Sex Differences in the Hepatic Cholesterol Sensing Mechanisms in Mice

    Directory of Open Access Journals (Sweden)

    Ingemar Björkhem

    2013-09-01

    Full Text Available Cholesterol is linked to many multifactorial disorders, including different forms of liver disease where development and severity depend on the sex. We performed a detailed analysis of cholesterol and bile acid synthesis pathways at the level of genes and metabolites combined with the expression studies of hepatic cholesterol uptake and transport in female and male mice fed with a high-fat diet with or without cholesterol. Lack of dietary cholesterol led to a stronger response of the sterol sensing mechanism in females, resulting in higher expression of cholesterogenic genes compared to males. With cholesterol in the diet, the genes were down-regulated in both sexes; however, males maintained a more efficient hepatic metabolic flux through the pathway. Females had higher content of hepatic cholesterol but this was likely not due to diminished excretion but rather due to increased synthesis and absorption. Dietary cholesterol and sex were not important for gallbladder bile acids composition. Neither sex up-regulated Cyp7a1 upon cholesterol loading and there was no compensatory up-regulation of Abcg5 or Abcg8 transporters. On the other hand, females had higher expression of the Ldlr and Cd36 genes. These findings explain sexual dimorphism of cholesterol metabolism in response to dietary cholesterol in a high-fat diet in mice, which contributes to understanding the sex-basis of cholesterol-associated liver diseases.

  18. Atorvastatin treatment lowers fasting remnant-like particle cholesterol and LDL subfraction cholesterol without affecting LDL size in type 2 diabetes mellitus: Relevance for non-HDL cholesterol and apolipoprotein B guideline targets

    NARCIS (Netherlands)

    Kappelle, Paul J. W. H.; Dallinga-Thie, Geesje M.; Dullaart, Robin P. F.

    2010-01-01

    The extent to which atorvastatin treatment affects LDL size, LDL subfraction levels and remnant-like particle cholesterol (RLP-C) was determined in type 2 diabetes. We also compared LDL size and RLP-C in relation to guideline cut-off values for LDL cholesterol, non-HDL cholesterol and apolipoprotein

  19. Atorvastatin treatment lowers fasting remnant-like particle cholesterol and LDL subfraction cholesterol without affecting LDL size in type 2 diabetes mellitus : Relevance for non-HDL cholesterol and apolipoprotein B guideline targets

    NARCIS (Netherlands)

    Kappelle, Paul J.W.H.; Dallinga-Thie, Geesje M.; Dullaart, Robin P. F.

    The extent to which atorvastatin treatment affects LDL size, LDL subfraction levels and remnant-like particle cholesterol (RLP-C) was determined in type 2 diabetes. We also compared LDL size and RLP-C in relation to guideline cut-off values for LDL cholesterol, non-HDL cholesterol and apolipoprotein

  20. Sitosterol and cholesterol metabolism in a patient with coexisting phytosterolemia and cholestanolemia

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H.J.; Wang, C.; Salen, G.; Lam, K.C.; Chan, T.K.

    1983-02-01

    Sitosterol and cholesterol metabolism were studied in a patient with coexisting phytosterolemia and cholestanolemia, and in a control subject, both on similar diets containing about 170 mg cholesterol and 135 mg phytosterols per day. The turnover of 22,23-3H-sitosterol and 4-14C-cholesterol, given intravenously, were followed for up to 372 days. The specific activity-time curves for both sterols were resolved into two exponentials and fitted into a two-pool model. The half-lives of both exponential curves for sitosterol, in the patient, were abnormally long. Equilibration of the tracer between the two pools, in the patient, occurred at about 30 days as compared to 10-15 days in the control subject. The daily turnover of sitosterol in the patient was estimated to be 10 times greater than that in the control subject. The patient's total body exchangeable pool of sitosterol was 9.6 g or about 80 times the amount found in the control. The patient's plasma phytosterol levels fell by 25% when he went on a diet containing only 10 mg phytosterols per day. During this period the specific activity of his plasma sitosterol with respect to an equilibrated dose of 3H-labeled tracer remained constant; this was compatible with the absence of endogenous synthesis. Cholesterol turnover in the patient showed prolonged half-lives for both exponential curves and reduced fractional daily loss from the fast-exchanging pool. The patient's xanthoma sterols underwent 16% and 55% exchange with plasma sitosterol and cholesterol, respectively, on day 60, indicating the presence of a third exchangeable pool.

  1. Fatty acid and sterol contents during tulip leaf senescence induced by methyl jasmonate

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It has been shown previously that methyl jasmonate (JA-Me applied in lanolin paste on the bottom surface of intact tulip leaves causes a rapid and intense its senescence. The aim of this work was to study the effect of JA-Me on free and bound fatty acid and sterol contents during tulip leaf senescence. The main free and bound fatty acids of tulip leaf, in decreasing order of their abundance, were linolenic, linoleic, palmitic, oleic, stearic and myristic acids. Only the content of free linolenic acid decreased after treatment with JA-Me during visible stage of senescence. ß-Sitosterol (highest concentration, campesterol, stigmasterol and cholesterol were identified in tulip leaf. Methyl jasmonate evidently increased the level of ß-sitosterol, campesterol and stigmasterol during induced senescence. It is suggested that the increase in sterol concentrations under the influence of methyl jasmonate induced changes in membrane fluidity and permeability, which may be responsible for senescence.

  2. Sterol Synthesis in Diverse Bacteria

    OpenAIRE

    Wei, Jeremy H.; Yin, Xinchi; Welander, Paula V.

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identifie...

  3. Effects of Physical Examination and Diet Consultation on Serum Cholesterol and Health-behavior in the Korean Pilots Employed in Commercial Airline

    Science.gov (United States)

    CHOI, Yun Young; KIM, Ki Youn

    2013-01-01

    An objective of this study is to search how physical examination and diet consultation can influence those risk factors of cardiovascular disease. The subjects were 326 pilots of the “B” airline company in Korea whose total cholesterol values were over 220 mg/dl on their regular physical examinations from April 2006 to December 2008. They were divided into two groups, one who had diet consultation (an intervention group) and a control group. The physical examination components used to each group were body mass index (BMI), total cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL) and triglyceride (TG). The behavioral, anthropometric and biomedical measurements were collected at each visit. This study compares and investigates the changes of serum cholesterol and also the health-behavior at each physical examination. Within the intervention group significant improvements were observed for total cholesterol, BMI (body mass index) and HDL (high density lipoprotein). The normalizing rates for cholesterol level to decrease down to lower than 200 mg/dl were 17.7% in intervention group and 8.7% in control group, which is statistically significantly higher among the intervention group. The odds ratio of diet consultation was 2.80 (95% CI=1.35–5.79), which indicates that it is a significantly contributing factor to normalize the serum cholesterol value down to lower than 200 mg/dl. Based on result, it is recommended to have regular physical examination and intensive management with diet and exercise consultation. PMID:24131872

  4. El consumo de fitosteroles ¿un arma de doble filo?

    OpenAIRE

    Nus, Meritxell; Librelotto, Josana; Canales, Amaia; Sánchez-Muniz, Francisco J.

    2004-01-01

    Phytosterols are plant sterols structurally similar to cholesterol. The most common phytosterols are ß-sitosterol, campesterol and stigmasterol. They are present in many foods but mainly in nuts and vegetable oils. They compete with cholesterol absorption decreasing the cardiovascular risk. Recent studies have associated the intake of 0.63-3g/day of phytosterols with lowering serum cholesterol and LDL-cholesterol levels. The same decrease has been observed in apolipoprotein B. These resu...

  5. Cholesterol suppresses antimicrobial effect of statins

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Haeri

    2015-12-01

    Full Text Available Objective(s:Isoprenoid biosynthesis is a key metabolic pathway to produce a wide variety of biomolecules such as cholesterol and carotenoids, which target cell membranes. On the other hand, it has been reported that statins known as inhibitors of isoprenoid biosynthesis and cholesterol lowering agents, may have a direct antimicrobial effect on the some bacteria. The exact action of statins in microbial metabolism is not clearly understood. It is possible that statins inhibit synthesis or utilization of some sterol precursor necessary for bacterial membrane integrity. Accordingly, this study was designed in order to examine if statins inhibit the production of a compound, which can be used in the membrane, and whether cholesterol would replace it and rescue bacteria from toxic effects of statins. Materials and Methods: To examine the possibility we assessed antibacterial effect of statins with different classes; lovastatin, simvastatin, and atorvastatin, alone and in combination with cholesterol on two Gram-positive (Staphylococcus aureus and Enterococcus faecalis and two Gram-negative (Pseudomonas aeruginosa and Escherichia coli bacteria using gel diffusion assay. Results: Our results showed that all of the statins except for lovastatin had significant antibacterial property in S. aureus, E. coli, and Enter. faecalis. Surprisingly, cholesterol nullified the antimicrobial action of effective statins in statin-sensitive bacteria. Conclusion: It is concluded that statins may deprive bacteria from a metabolite responsible for membrane stability, which is effectively substituted by cholesterol.

  6. Evaluation the Effect Garlet Tablet on Serum Lipid Profile

    Directory of Open Access Journals (Sweden)

    F. Emami

    2006-07-01

    Full Text Available Introduction & Objective: Some investigators reported significant effect of garlic on serum cholesterol reduction. In addition, Iranian culture has specific belief on herbs and garlic in this regard. Our goal in this study was to evaluate the effect of garlet tablets on serum lipid profile.Materials & Methods: Sixty patients were randomly divided into two groups for evaluation of the effect of garlic on their lipid profile. The first group was low fat regimen group and the second was garlet tablet regimen group. Total cholesterol, LDL cholesterol, HDL cholesterol and triglyceride levels were measured in both groups. Then, after two months of these regimens administration, these items were measured again and were compared.Results: Mean age, sex and baseline initial lipid levels were similar in both groups. Total cholesterol and LDL cholesterol levels were decreased significantly in the garlic regimen group (in spite of non significant reduction in the other group. Triglyceride and HDL levels were not changed significantly in both regimen groups. Conclusion: Garlet tablet administration has more significant reductive effect on cholestrol level than low cholesterol diet.

  7. Serum lipids coupled with menopausal status may be used as biomarkers in female gallstone patients

    International Nuclear Information System (INIS)

    Awan, A.Y.; Channa, N.A.; Solangi, D.A.; Tabassum, N.

    2017-01-01

    Objective: Females with different menopausal status are compared for serum lipids to explore the role of menopausal status in developing gallstones. Methodology: This study was conducted at Institute of Biochemistry, University of Sindh Jamshoro, Pakistan. A total number of 135 female gallstone patients admitted at Liaquat University Hospital, Wali Bhai Rajputana Hospital, Hyderabad and other hospitals of Hyderabad, Pakistan and 170 age and gender matched control subjects were selected for the study. The serum samples of patients of different menopausal status and control group were analyzed for the lipid contents. Gallstones recovered from the patients were also analyzed for the composition by FTIR. Results: Serum total cholesterol (TC) and serum high density lipoprotein cholesterol (HDL-C) were significantly varied among all age groups while serum triglycerides (TG), serum very low density lipoprotein cholesterol (VLDL-C) and serum total lipids (TL) were found to be significantly differed among four different types of gallstone formers. Consumers of non-branded oil and non-branded ghee were found with significant lipid alterations in comparison to control group. Major lipid alterations were found in female gallstone patients with pre and peri-menopause. Conclusion: Raised serum TC, serum TG and decreased serum HDL-C in addition to pre- and peri-menopausal status may be considered as biomarkers for female gallstone patients.

  8. Phaleria macrocarpa Boerl. (Thymelaeaceae Leaves Increase SR-BI Expression and Reduce Cholesterol Levels in Rats Fed a High Cholesterol Diet

    Directory of Open Access Journals (Sweden)

    Yosie Andriani

    2015-03-01

    Full Text Available In vitro and in vivo studies of the activity of Phaleria macrocarpa Boerl (Thymelaeaceae leaves against the therapeutic target for hypercholesterolemia were done using the HDL receptor (SR-BI and hypercholesterolemia-induced Sprague Dawley rats. The in vitro study showed that the active fraction (CF6 obtained from the ethyl acetate extract (EMD and its component 2',6',4-trihydroxy-4'-methoxybenzophenone increased the SR-BI expression by 95% and 60%, respectively. The in vivo study has proven the effect of EMD at 0.5 g/kgbw dosage in reducing the total cholesterol level by 224.9% and increasing the HDL cholesterol level by 157% compared to the cholesterol group. In the toxicity study, serum glutamate oxalate transaminase (SGOT and serum glutamate pyruvate transaminase (SGPT activity were observed to be at normal levels. The liver histology also proved no toxicity and abnormalities in any of the treatment groups, so it can be categorized as non-toxic to the rat liver. The findings taken together show that P. macrocarpa leaves are safe and suitable as an alternative control and prevention treatment for hypercholesterolemia in Sprague Dawley rats.

  9. The cholesterol space of the rat

    International Nuclear Information System (INIS)

    Chevallier, F.

    1959-01-01

    The experiments consisted in feeding daily to rats the same mass of radioactive cholesterol, over variable time intervals. From the evolution of the specific radioactivity of cholesterol carbon-14 in the organs as a function of time, information relative to the transport of cholesterol in the organism may be obtained. 1) The cholesterol space, defined as the group of molecules capable of being transferred from the organs into the serum and vice versa, represents at the most 50 per cent of the total cholesterol of the adult rat. 2) The incessant interchange between the tissual and the serum cholesterol renews entirely or for the most part the cholesterol molecules contained in the following organs: spleen, heart, adipose tissue, suprarenal glands, lungs, bone marrow, liver, erythrocytes. For a second group of organs: skin, testicles, kidneys, colon, bones, muscles, only a fraction of their cholesterol is renewable by this process. No transfer can be detected at the level of the brain. 3) The relative speeds of the various means of appearance (absorption, synthesis) and disappearance (excretion, transformation) of the cholesterol from its space are such that a stationary isotopic state is established around the eighth day, when the animal absorbs 5 milligrams of radioactive cholesterol daily. (author) [fr

  10. Taurocholate Deconjugation and Cholesterol Binding by Indigenous Dadih Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    USMAN PATO

    2005-09-01

    Full Text Available High serum cholesterol levels have been associated with an increased risk for human coronary heart disease. Lowering of serum cholesterol has been suggested to prevent the heart disease. To reduce serum cholesterol levels one may consumed diet supplementat of fermented dairy product such as dadih. Lactic acid bacteria present in dadih may alter serum cholesterol by directly bind to dietary cholesterol and/or deconjugation of bile salts. Acid and bile tolerance, deconjugation of sodium taurocholate, and the cholesterol-binding ability of lactic acid bacteria from dadih were examined. Among ten dadih lactic acid bacteria tested, six strains namely I-11, I-2775, K-5, I-6257, IS-7257, and B-4 could bind cholesterol and deconjugate sodium taurocholate. However, the last four strains were very sensitive to bile. Therefore, Lactobacillus fermentum I-11 and Leuconostoc lactis subsp. lactis I-2775 those were tolerant to acid and oxgall (bile and deconjugated sodium taurocholate and bound cholesterol could be recommended as probiotic to prevent coronary heart disease.

  11. Low-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio is the best surrogate marker for insulin resistance in non-obese Japanese adults

    Directory of Open Access Journals (Sweden)

    Takayama Shuzo

    2010-12-01

    Full Text Available Abstract Background The aim of the present study was to examine how lipid profiles are associated with insulin resistance in Japanese community-dwelling adults. Methods This cross-sectional study included 614 men aged 58 ± 14 (mean ± standard deviation; range, 20-89 years and 779 women aged 60 ± 12 (range, 21-88 years. The study sample were 1,042 (74.8% non-obese (BMI 2 and 351 (25.2% overweight (BMI ≥ 25 kg/m2 subjects. Insulin resistance was defined by homeostasis model assessment of insulin resistance (HOMA-IR of at least 2.5. The areas under the curve (AUC of the receiver operating characteristic curves (ROC were used to compare the power of these serum markers. Results In non-obese subjects, the best marker of insulin resistance was low-density lipoprotein cholesterol (LDL-C/high-density lipoprotein cholesterol (HDL-C ratio of 0.74 (95% confidence interval (CI, 0.66-0.80. The HDL-C, triglyceride (TG/HDL-C ratio, and non-HDL-C also discriminated insulin resistance, as the values for AUC were 0.31 (95% CI, 0.24-0.38, 0.69 (95% CI, 0.62-0.75 and 0.69 (95% CI, 0.62-0.75, respectively. In overweight subjects, the AUC for TG and TG/HDL-C ratio were 0.64 (0.58-0.71 and 0.64 (0.57-0.70, respectively. The optimal cut-off point to identifying insulin resistance for these markers yielded the following values: TG/HDL-C ratio of ≥1.50 and LDL-C/HDL-C ratio of ≥2.14 in non-obese subjects, and ≥2.20, ≥2.25 in overweight subjects. In non-obese subjects, the positive likelihood ratio was greatest for LDL-C/HDL-C ratio. Conclusion In non-obese Japanese adults, LDL-C/HDL-C ratio may be the best reliable marker of insulin resistance.

  12. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance.

    Science.gov (United States)

    Singh, Anup Kumar; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Reddy, Sajjalavarahalli Gangireddy Eswara; Rao, Dodaghatta Krishnarao Venkata; Shasany, Ajit Kumar; Nagegowda, Dinesh A

    2015-12-01

    Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (β-amyrin synthase) and β-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides

  13. Effect of sterol metabolism in the yeast-Drosophila system on the frequency of radiation-induced aneuploidy in the Drosophila melanogaster oocytes

    International Nuclear Information System (INIS)

    Savitskii, V.V.; Luchnikova, E.M.; Inge-Vechtomov, S.G.

    1986-01-01

    The effect of sterol metabolism on induced mutagenesis of Drosophila melanogaster was studied in the ecogenetic system of yeast-Drosophila. Sterol deficiency was created in Drosophila by using the biomass of live cells of Saccharomyces cerevisiae strain 9-2-P712 till mutation in locus nys/sup r1/ blocking the synthesis of ergosterol as the food. It was found that rearing of Drosophila females on the mutant yeast increases the frequency of loss and nondisjunction of X chromosomes induced in mature oocytes by X rays (1000 R). Addition of 0.1% of cholesterol solution in 10% ethanol to the yeast biomass restores the resistance of oocyte to X irradiation to the control level. The possible hormonal effect on membrane leading to increased radiation-induced aneuploidy in Drosophila and the role of sterol metabolism in determining the resistance to various damaging factors are discussed

  14. Correlation of Serum Ascorbic Acid with Serum Lipids in Healthy Subjects

    OpenAIRE

    藤野, 武彦; 村田, 晃; 金谷, 庄蔵; 森田, ケイ; 宇都宮, 弘子; 本多, 理恵

    1985-01-01

    The serum levels of ascorbic acid (ASA), total cholesterol, HDL cholesterol and triglyceride were estimated in 82 healthy persons who consisted of 41 men aged 18 to 69 and 41 women aged 32 to 69. None of fasting lipid profils correlated with the serum level of ASA in total subjects. In young men aged 18 to 23, however, there was significant negative correlation between ASA and total cholesterol. These findings suggest that ASA may be one of effective drug to decrease the level of cholesterol.

  15. Comparison of the response of serum ceruloplasmin and cholesterol, and of tissue ascorbic acid, metallothionein, and nonprotein sulfhydryl in rats to the dietary level of cystine and cysteine.

    Science.gov (United States)

    Yang, B S; Yamazaki, M; Wan, Q; Kato, N

    1996-12-01

    The effects were compared of the addition of graded levels of L-cystine and of L-cysteine (0.3, 3, or 5%) to a 10% casein diet on several metabolic parameters in rats. The growth-promoting effect of cystine was equivalent to that of cysteine. Supplementation of these two amino acids elevated serum cholesterol, liver ascorbic acid, liver nonprotein sulfhydryl (SH) and kidney metallothionein, and reduced the activity of serum ceruloplasmin. The responses of serum cholesterol, liver nonprotein SH, and serum ceruloplasmin to cystine were greater than of those to cysteine. When the basal diet was supplemented with 0.3% of these amino acids, the elevation of liver ascorbic acid by cystine supplementation was less than that by cysteine supplementation. However, when supplemented with 5% of these amino acids, the elevation of liver ascorbic acid by cystine was greater than that by cysteine. There was no difference in the influence of cystine and cysteine on kidney metallothionein. This study demonstrates that dietary cystine and cysteine had the same influence on growth, but had a differential influence on such metabolic parameters as liver nonprotein SH, serum ceruloplasmin, serum cholesterol, and tissue ascorbic acid.

  16. Co-ordinate regulation of sterol biosynthesis enzyme activity during accumulation of sterols in developing rape and tobacco seed.

    Science.gov (United States)

    Harker, Mark; Hellyer, Amanda; Clayton, John C; Duvoix, Annelyse; Lanot, Alexandra; Safford, Richard

    2003-02-01

    The activities of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, sterol methyl transferase 1 and sterol acyltransferase, key enzymes involved in phytosterol biosynthesis were shown to be co-ordinately regulated during oilseed rape ( Brassica napus L.) and tobacco ( Nicotiana tabacum L.) seed development. In both plants, enzyme activities were low during the initial stages of seed development, increasing towards mid-maturation where they remained stable for a time, before declining rapidly as the oilseeds reached maturity. During seed development, the level of total sterols increased 12-fold in tobacco and 9-fold in rape, primarily due to an increase in steryl ester production. In both seed tissues, stages of maximum enzyme activity coincided with periods of high rates of sterol production, indicating developmental regulation of the enzymes to be responsible for the increases in the sterol content observed during seed development. Consistent with previous studies the data presented suggest that sterol biosynthesis is regulated by two key steps, although there may be others. The first is the regulation of carbon flux into the isoprenoid pathway to cycloartenol. The second is the flux from cycloartenol to Delta(5)-end-product sterols. The implications of the results in terms of enhancing seed sterol levels by genetic modification are also discussed.

  17. The cellular origin of the hepatic cholesterol synthesis (1961)

    International Nuclear Information System (INIS)

    Chevallier, F.

    1961-01-01

    If rats are sacrificed within minutes after an injection of acetate 1 - 14 C the specific radioactivities of sterols precipitable with digitonine, extracted from liver parenchyma cells and from Kupffer cells are very close to each other, whatever the duration of the experiment may be. It follows that cholesterol synthesis probably occurs in both types of cells. A validation of this conclusion requires that the validity of certain assumptions be established. (authors) [fr

  18. Testosterone like Activity of Ethanolic and Aqueous Extracts of Mucuna pruriens Seeds and its Effects on Serum Biochemical Metabolites in Immature Male Rats

    Directory of Open Access Journals (Sweden)

    Nazir Ahmad*, Zia-ur-Rahman1, Nafees Akhtar and Shujait Ali

    2012-01-01

    Full Text Available Testosterone like activity of seeds of Mucuna pruriens and its effects on serum biochemical metabolites in immature male rats were investigated. Forty eight immature male rats were divided into four equal groups. Rats of groups A and B were orally given ethanolic and aqueous extracts of Mucuna pruriens seeds daily at the dose rate of 500 mg/kg body weight, respectively, for 14 days. Rats of group C were injected with testosterone at the dose rate of 2.5 mg/kg body weight daily, while rats of group D served as controls. After 7 days, six rats from each group were euthanized, while the remaining six rats from each group were euthanized after 14 days of treatment. Rats given ethanolic extract gained higher weight compared to controls (P<0.05. Testis weight was the highest in rats treated with testosterone. The effect of treatments on the weight of the liver and the kidneys was non significant. Rats given ethanolic or aqueous extract had higher serum testosterone concentration than controls. Similarly, rats given ethanolic or aqueous extract had higher serum total proteins, total cholesterol and HDL cholesterol compared to controls. Moreover, ethanolic extract treated rats also had higher total cholesterol and HDL cholesterol than aqueous extract treated rats. However, differences in serum total proteins, total cholesterol and HDL cholesterol between control and testosterone injected rats were non significant. Serum triglycerides, LDL cholesterol and ALT activity did not differ among rats of four groups. Serum AST activity and urea were lower in rats treated with ethanolic or aqueous extract compared to controls. Thus, seeds of Mucuna pruriens had testosterone like activity and increased serum total proteins, total cholesterol and HDL cholesterol, with no adverse effects on the serum LDL cholesterol, liver or kidney functions.

  19. A novel mutation in the sterol 27-hydroxylase gene of a woman with autosomal recessive cerebrotendinous xanthomatosis

    Directory of Open Access Journals (Sweden)

    Garuti Rita

    2010-10-01

    Full Text Available Article abstract Mutations of the gene encoding the mitochondrial enzyme sterol 27-hydroxylase (CYP27A1 gene cause defects in the cholesterol pathway to bile acids that lead to the storage of cholestanol and cholesterol in tendons, lenses and the central nervous system. This disorder is the cause of a clinical syndrome known as cerebrotendinous xanthomatosis (CTX. Since 1991 several mutations of the CYP27A1 gene have been reported. We diagnosed the clinical features of CTX in a caucasian woman. Serum levels of cholestanol and 7α-hydroxycholesterol were elevated and the concentration of 27-hydroxycholesterol was reduced. Bile alcohols in the urine and faeces were increased. The analysis of the CYP27A1 gene showed that the patient was a compound heterozygote carrying two mutations both located in exon 8. One mutation is a novel four nucleotide deletion (c.1330-1333delTTCC that results in a frameshift and the occurrence of a premature stop codon leading to the formation of a truncated protein of 448 amino acids. The other mutation, previously reported, is a C - > T transition (c. c.1381C > T that converts the glutamine codon at position 461 into a termination codon (p.Q461X. These truncated proteins are expected to have no biological function being devoid of the cysteine residue at position 476 of the normal enzyme that is crucial for heme binding and enzyme activity.

  20. Binding domain-driven intracellular trafficking of sterols for synthesis of steroid hormones, bile acids and oxysterols.

    Science.gov (United States)

    Midzak, Andrew; Papadopoulos, Vassilios

    2014-09-01

    Steroid hormones, bioactive oxysterols and bile acids are all derived from the biological metabolism of lipid cholesterol. The enzymatic pathways generating these compounds have been an area of intense research for almost a century, as cholesterol and its metabolites have substantial impacts on human health. Owing to its high degree of hydrophobicity and the chemical properties that it confers to biological membranes, the distribution of cholesterol in cells is tightly controlled, with subcellular organelles exhibiting highly divergent levels of cholesterol. The manners in which cells maintain such sterol distributions are of great interest in the study of steroid and bile acid synthesis, as limiting cholesterol substrate to the enzymatic pathways is the principal mechanism by which production of steroids and bile acids is regulated. The mechanisms by which cholesterol moves within cells, however, remain poorly understood. In this review, we examine the subcellular machinery involved in cholesterol metabolism to steroid hormones and bile acid, relating it to both lipid- and protein-based mechanisms facilitating intracellular and intraorganellar cholesterol movement and delivery to these pathways. In particular, we examine evidence for the involvement of specific protein domains involved in cholesterol binding, which impact cholesterol movement and metabolism in steroidogenesis and bile acid synthesis. A better understanding of the physical mechanisms by which these protein- and lipid-based systems function is of fundamental importance to understanding physiological homeostasis and its perturbation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Apolipoprotein A-1 (apoA-1) deposition in, and release from, the enterocyte brush border

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H; Rasmussen, Karina

    2012-01-01

    Transintestinal cholesterol efflux (TICE) has been proposed to represent a non-hepatobiliary route of cholesterol secretion directly "from blood to gut" and to play a physiologically significant role in excretion of neutral sterols, but so far little is known about the proteins involved in the pr......Transintestinal cholesterol efflux (TICE) has been proposed to represent a non-hepatobiliary route of cholesterol secretion directly "from blood to gut" and to play a physiologically significant role in excretion of neutral sterols, but so far little is known about the proteins involved...... transport (RCT), we propose that brush border-deposited apoA-1 in the small intestine acts in TICE by mediating cholesterol efflux into the gut lumen....

  2. Taurine ameliorates cholesterol metabolism by stimulating bile acid production in high-cholesterol-fed rats.

    Science.gov (United States)

    Murakami, Shigeru; Fujita, Michiko; Nakamura, Masakazu; Sakono, Masanobu; Nishizono, Shoko; Sato, Masao; Imaizumi, Katsumi; Mori, Mari; Fukuda, Nobuhiro

    2016-03-01

    This study was designed to investigate the effects of dietary taurine on cholesterol metabolism in high-cholesterol-fed rats. Male Sprague-Dawley rats were randomly divided into two dietary groups (n = 6 in each group): a high-cholesterol diet containing 0.5% cholesterol and 0.15% sodium cholate, and a high-cholesterol diet with 5% (w/w) taurine. The experimental diets were given for 2 weeks. Taurine supplementation reduced the serum and hepatic cholesterol levels by 37% and 32%, respectively. Faecal excretion of bile acids was significantly increased in taurine-treated rats, compared with untreated rats. Biliary bile acid concentrations were also increased by taurine. Taurine supplementation increased taurine-conjugated bile acids by 61% and decreased glycine-conjugated bile acids by 53%, resulting in a significant decrease in the glycine/taurine (G/T) ratio. Among the taurine-conjugated bile acids, cholic acid and deoxycholic acid were significantly increased. In the liver, taurine supplementation increased the mRNA expression and enzymatic activity of hepatic cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme for bile acid synthesis, by three- and two-fold, respectively. Taurine also decreased the enzymatic activity of acyl-CoA:cholesterol acyltransferase (ACAT) and microsomal triglyceride transfer protein (MTP). These observations suggest that taurine supplementation increases the synthesis and excretion of taurine-conjugated bile acids and stimulates the catabolism of cholesterol to bile acid by elevating the expression and activity of CYP7A1. This may reduce cholesterol esterification and lipoprotein assembly for very low density lipoprotein (VLDL) secretion, leading to reductions in the serum and hepatic cholesterol levels. © 2016 John Wiley & Sons Australia, Ltd.

  3. Cholesterol Effect on Survival and Development of Larval Mud Crab Scylla serrata

    Directory of Open Access Journals (Sweden)

    MUHAMMAD AGUS SUPRAYUDI

    2012-03-01

    Full Text Available The effect of cholesterol on the survival and development of larval mud crab Scylla serrata were examined by feeding larvae with Artemia enriched with different level of cholesterol. Artemia enriched with four stated levels of cholesterol i.e., 0, 5, 10, and 20 ul/l (Chol 0, 5, 10, and 20. All treatments were mixed with DHA70G at 25 ul/l. All the oil was adjusted to 100 ul/l by adding the oleic acid. Survival rate, intermolt period, and carapace width at the fisrt crab stage of mud crab larvae fed Chol 0, 5, and 10 were higher compared to that of Chol 20 (P < 0.05. We suggest that free sterol contained in Artemia at 1.37% was harmful to the growth performance of mud crab larvae. This study suggests that mud crab larvae required at least 0.61% cholesterol for maintaining good survival and development and therefore no need to enrich Artemia by cholesterol for the practical purpose.

  4. Cholesterol can modulate mitochondrial aquaporin-8 expression in human hepatic cells.

    Science.gov (United States)

    Danielli, Mauro; Capiglioni, Alejo M; Marrone, Julieta; Calamita, Giuseppe; Marinelli, Raúl A

    2017-05-01

    Hepatocyte mitochondrial aquaporin-8 (mtAQP8) works as a multifunctional membrane channel protein that facilitates the uptake of ammonia for its detoxification to urea as well as the mitochondrial release of hydrogen peroxide. Since early oligonucleotide microarray studies in liver of cholesterol-fed mice showed an AQP8 downregulation, we tested whether alterations of cholesterol content per se modulate mtAQP8 expression in human hepatocyte-derived Huh-7 cells. Cholesterol loading with methyl-β-cyclodextrin (mβCD):cholesterol complexes downregulated the proteolytic activation of cholesterol-responsive sterol regulatory element-binding protein (SREBP) transcriptions factors 1 and 2, and the expression of the target gene 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Under such conditions, mtAQP8 mRNA and protein expressions were significantly reduced. In contrast, cholesterol depletion using mβCD alone increased SREBP-1 and 2 activation and upregulated HMGCR and mtAQP8 mRNA and protein expressions. The results suggest that cholesterol can regulate transcriptionally human hepatocyte mtAQP8 expression likely via SREBPs. The functional implications of our findings are discussed. © 2017 IUBMB Life, 69(5):341-346, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  5. Comparison of serum lipid profile in ischaemic and haemorrhagic stroke

    International Nuclear Information System (INIS)

    Mehmood, A.; Sharif, M.A.

    2010-01-01

    To compare serum lipid profile between patients of ischaemic and haemorrhagic strokes. Study Design: Cross sectional, comparative study. Place and Duration of Study: Military Hospital, Rawalpindi, from August 2004 to February 2005. Methodology: Patients with diagnosis of stroke comprising 100 consecutive patients each of ischaemic and haemorrhagic strokes were included in the study while patients on lipid lowering therapy were excluded from study. To determine the subtype of stroke, clinical examination followed by CT scan of brain was done. A serum sample after 8 hours of overnight fasting was taken on the next day of admission for both groups of patients. Total serum cholesterol, triglycerides, LDL cholesterol, VLDL-cholesterol and HDL-cholesterol was determined, using enzymatic colorimetric method. Statistical analysis was done by comparison of lipid profile in two subgroups, using proportion test for any significant difference. Results: The mean age at presentation of patients with stroke was 64.2+-12 years with a male to female ratio of 3.6:1. In 100 ischaemic stroke patients, raised serum total cholesterol was seen in 42, triglyceride in 04, LDL-cholesterol in 05 and VLDL-cholesterol in 07 patients. Serum HDL-cholesterol was below the normal reference in 31 cases. On the other hand, serum total cholesterol and triglycerides was raised in 05 patients each, LDL-cholesterol in 09 and VLDL-cholesterol in 03 patients of haemorrhagic stroke. Serum HDL-cholesterol was below normal in 04 patients of haemorrhagic stroke. On comparison, there were significantly greater number of patients with raised serum cholesterol and low HDL-cholesterol in ischaemic stroke than haemorrhagic stroke (p < 0.05). No statistical significance was found on comparing serum values of ischaemic and haemorrhagic stroke for triglycerides, LDL-cholesterol and VLDL-cholesterol. Conclusion: Ischaemic stroke patients had high serum total cholesterol and lower HDL-cholesterol levels as compared to

  6. The Evolution of Sterol Biosynthesis in Bacteria: In Situ Fluorescence Localization of Sterols in the Nucleoid Bacterium Gemmata obscuriglobus

    Science.gov (United States)

    Budin, M.; Jorgenson, T. L.; Pearson, A.

    2004-12-01

    The biosynthesis of sterols is generally regarded as a eukaryotic process. The first enzymatic step in the production of sterols requires molecular oxygen. Therefore, both the origin of eukaryotes and the evolution of sterol biosynthesis were thought to postdate the rise of oxygen in earth's atmosphere, until Brocks et al. discovered steranes in rocks aged 2.7 Ga (1). Many prokaryotes produce hopanoids, sterol-like compounds that are synthesized from the common precursor squalene without the use of molecular oxygen. However, a few bacterial taxa are also known to produce sterols, suggesting this pathway could precede the rise of oxygen (2, 3). Recently, we discovered the shortest sterol-producing biosynthetic pathway known to date in the bacterium Gemmata obscuriglobus (4). Using genomic searches, we found that Gemmata has the enzymes necessary for synthesis of sterols, and lipid analyses showed that the sterols produced are lanosterol and its isomer parkeol. Gemmata is a member of the Planctomycetes, an unusual group of bacteria, all of the known species of which contain intracellular compartmentalization. Among the Planctomycetes, Gemmata uniquely is the only prokaryote known to contain a double-membrane-bounded nuclear body (5). Since sterols usually are found in eukaryotes, and Gemmata has a eukaryote-like nuclear organelle, we investigated the location of the sterols within Gemmata to postulate whether they play a role in stabilization of the nuclear membrane and control of genomic organization. We used the sterol-specific fluorescent dye Filipin III in conjunction with fluorescent dyes for internal and external cellular membranes in order to determine whether the sterols are located in the nuclear body membrane, external membrane, or both. We found that sterols in Gemmata are concentrated in the internal membrane, implying that they function in maintaining this unusual cellular component. It is notable that Gemmata also produce hopanoids, suggesting that they

  7. Cell-free transfer of sterols by plant fractions

    International Nuclear Information System (INIS)

    Morre, D.J.; Wilkinson, F.E.; Morre, D.M.; Moreau, P.; Sandelius, A.S.; Penel, C.; Greppin, H.

    1990-01-01

    Microsomes from etiolated hypocotyls of soybean or leaves of light-grown spinach radiolabeled in vivo with [ 3 H]acetate or in vitro with [ 3 H]squalene or [ 3 H]cholesterol as donor transferred radioactivity to unlabeled acceptor membranes immobilized on nitrocellulose. Most efficient transfer was with plasma membrane or tonoplast as the acceptor. The latter were highly purified by aqueous two-phase partition (plasma membrane) and preparative free-flow electrophoresis (tonoplast and plasma membrane). Plasma membrane- and tonoplast-free microsomes and purified mitochondria were less efficient acceptors. Sterol transfer was verified by thin-layer chromatography of extracted lipids. Transfer was time- and temperature-dependent, required ATP but was not promoted by cytosol. The nature of the donor (endoplasmic reticulum, Golgi apparatus or both) and of the transfer mechanism is under investigation

  8. Synthesis, Spectroscopic and Theoretical Studies of New Quaternary N,N-Dimethyl-3-phthalimidopropylammonium Conjugates of Sterols and Bile Acids

    Directory of Open Access Journals (Sweden)

    Bogumil Brycki

    2014-04-01

    Full Text Available New quaternary 3-phthalimidopropylammonium conjugates of steroids were obtained by reaction of sterols (ergosterol, cholesterol, cholestanol and bile acids (lithocholic, deoxycholic, cholic with bromoacetic acid bromide to give sterol 3β-bromoacetates and bile acid 3α-bromoacetates, respectively. These intermediates were subjected to nuclephilic substitution with N,N-dimethyl-3-phthalimidopropylamine to give the final quaternary ammonium salts. The structures of products were confirmed by spectral (1H-NMR, 13C-NMR, and FT-IR analysis, mass spectrometry (ESI-MS, MALDI as well as PM5 semiempirical methods and B3LYP ab initio methods. Estimation of the pharmacotherapeutic potential has been accomplished for synthesized compounds on the basis of Prediction of Activity Spectra for Substances (PASS.

  9. The origin of cholesterol in chyle demonstrated by nuclear indicator methods; Origines du cholesterol du chyle mises en evidence par la methode des indicateurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, M

    1962-07-01

    In order to obtain information about the mechanism of the intestinal absorption of cholesterol, rats having a lymphatic abdominal fistula are used. The animals receive either 4-{sup 14}C- cholesterol subcutaneously or orally, or the 1-{sup 14}C acetate. The study of the specific radio-activities of the cholesterol in chyle, in serum, in the lining, and in the intestinal contents makes it possible to define the roles played by the transfer cholesterol from the serum, by the cholesterol synthesised intestinally, and by the absorption cholesterol, in the formations of the lymph and of the chylomicrons. A new theory is proposed for the mechanism of cholesterol absorption. (author) [French] Pour obtenir des renseignements concernant le mecanisme de l'absorption intestinale du cholesterol, on utilise des rats porteurs d'une fistule lymphatique abdominale. Les animaux recoivent soit du cholesterol 4-{sup 14}C par voie sous-cutanee ou par voie orale, soit de l'acetate 1-{sup 14}C. L'etude des radioactivites specifiques du cholesterol du chyle, du serum, de la paroi et du contenu intestinal permet de preciser les roles joues par le cholesterol de transfert d'origine serique, par le cholesterol de synthese intestinale et par le cholesterol d'absorption, dans la formation de la lymphe et des chylomicrons. Une theorie nouvelle concernant le mecanisme de l'absorption du cholesterol est proposee. (auteur)

  10. The effects of phytosterol in low fat milk on serum lipid levels among mild-moderately hypercholesterolemic subjects

    Directory of Open Access Journals (Sweden)

    Sri Sukmaniah

    2008-03-01

    Full Text Available One of the most important risk factors for CHD is dyslipidemia, among others hypercholesterolemia or high LDL-cholesterol. Plant-sterols or phytosterols (PS are among dietary factors known to lower blood cholesterol as part of therapeutic life-style changes diet. This study was aimed to evaluate the effect of PS properly solubilized in a-partly vegetable oil-filled low fat milk, on serum lipid levels in mild-moderate hypercholesterolemic subjects. Randomized, two-arm parallel control group trial was conducted at Department of Nutrition-University of Indonesia in Jakarta from June to November 2006. Each subject was randomly assigned to receive dietary life-style changes counseling plus 1.2 g phytosterol/day in low-fat milk (PS-group or control group receiving the counseling alone for six weeks period. There were no significant changes of serum total and LDL-cholesterol of control group after a six week of dietary counseling (respectively 218.3 ± 18.6 mg/dL to 219.6 ± 24.3 mg/dL and 164.7±21.8 mg/dL to 160.0±26.4 mg/dL. There were a significant decreases of serum total and LDL-cholesterol (respectively p=0.01 and p=0.004 among subjects receiving PS after a six weeks observation period (respectively 233.5±24.6 mg/dL to 211.2±30.3 mg/dL and 176.9±24.7 mg/dL to 154.5±24.3 mg/dL. There was a significant difference in the LDL-lowering effects (p=0.024 among the PS-group after a six weeks (22.4±27.9 mg/dL as compared to the control group (4.7±17.2 mg/dL. No significant changes were found on serum HDL-cholesterol and triglyceride levels in both groups. Although there was no significant difference found in daily nutrients intake between the-2 groups, however, significant reductions in body weight, body mass index and waist circumference were found only in the PS group (p=0.000; 0.000; 0.003, respectively. It is concluded that the lowering of total and LDL-cholesterol in those receiving life-style changes counseling plus 1.2 g PS daily for six

  11. Continuous Dose-Response Response Relationship of the LDL-Cholesterol-Lowering Effect of Phytosterol Intake 1,2

    NARCIS (Netherlands)

    Demonty, I.; Ras, R.T.; Knaap, van der H.C.M.; Duchateau, G.S.M.J.E.; Meijer, L.; Zock, P.L.; Geleijnse, J.M.; Trautwein, E.A.

    2009-01-01

    Phytosterols (plant sterols and stanols) are well known for their LDL-cholesterol (LDL-C)¿lowering effect. A meta-analysis of randomized controlled trials in adults was performed to establish a continuous dose-response relationship that would allow predicting the LDL-C¿lowering efficacy of different

  12. Human paraoxonase and HDL-cholesterol in pakistan patients with acute myocardial infarction and normal healthy adults

    International Nuclear Information System (INIS)

    Iqbal, I.P.; Khan, A.H.; Mehboobali, N.

    2007-01-01

    Human serum paraoxonase is a high density lipoprotein (HDL)-bound enzyme exhibiting antiatherogenic properties. The aim of this study was to investigate any relationship between serum paraoxonase activity and serum levels of HDL-cholesterol in Pakistani patients with acute myocardial infarction (AMI) compared to normal healthy subjects and to examine possible association between serum paraoxonase activity and AMI in Pakistani population. In a case-control study, serum paraoxonase activity and serum levels of HDL-cholesterol and LDL-cholesterol were monitored in 164 Pakistani patients with AMI and 106 normal healthy adults matched for gender, BMI and age within 10 years. Mean serum concentration of HDL-cholesterol and mean serum paraoxonase activity in AMI patients were not significantly different from the corresponding values in normal healthy subjects. Mean serum paraoxonase activity value was significantly lower in normal healthy subjects with low HDL-cholesterol (serum levels < 40mg/dl) compared to the value in those with normal levels of HDL-cholesterol (P=0.04). In AMI patients, paraoxonase activity was lower in subjects with low HDL-cholesterol compared to those with normal levels of HDL-cholesterol, however, the decrease was not statistically significant. Correlation analyses of the data revealed a moderate association of paraoxonase activity with HDL-cholesterol (Pearson's r= 0.225, P<0.01 for AMI patients and r=0.281, P<0.01 for normal healthy controls). Seventy three percent of normal healthy subjects and 65% of AMI patients in this study had low HDL-cholesterol. Low serum paraoxonase activity and high prevalence of low HDL-cholesterol in Pakistani population could be contributing to the high rates of coronary heart disease in this population. (author)

  13. Is High Serum LDL/HDL Cholesterol Ratio an Emerging Risk Factor for Sudden Cardiac Death? Findings from the KIHD Study.

    Science.gov (United States)

    Kunutsor, Setor K; Zaccardi, Francesco; Karppi, Jouni; Kurl, Sudhir; Laukkanen, Jari A

    2017-06-01

    Low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c), which are components of total cholesterol, have each been suggested to be linked to the risk of sudden cardiac death (SCD). However, the relationship between LDL-c/HDL-c ratio and the risk of SCD has not been previously investigated. We aimed to assess the associations of LDL-c, HDL-c, and the ratio of LDL-c/HDL-c with the risk of SCD. Serum lipoprotein concentrations were assessed at baseline in the Finnish Kuopio Ischemic Heart Disease prospective cohort study of 2,616 men aged 42-61 years at recruitment. Hazard ratios (HRs) (95% confidence intervals [CI]) were assessed. During a median follow-up of 23.0 years, a total of 228 SCDs occurred. There was no significant evidence of an association of LDL-c or HDL-c with the risk of SCD. In analyses adjusted for age, examination year, body mass index, systolic blood pressure, smoking, alcohol consumption, physical activity, years of education, diabetes, previous myocardial infarction, family history of coronary heart disease, and serum high sensitivity C-reactive protein, there was approximately a two-fold increase in the risk of SCD (HR 1.94, 95% CI 1.21-3.11; p=0.006), comparing the top (>4.22) versus bottom (≤2.30) quintile of serum LDL-c/HDL-c ratio. In this middle-aged male population, LDL-c or HDL-c was not associated with the risk of SCD. However, a high serum LDL-c/HDL-c ratio was found to be independently associated with an increased risk of SCD. Further research is warranted to understand the mechanistic pathways underlying this association.

  14. Cholesterol-lowering properties of Ganoderma lucidum in vitro, ex vivo, and in hamsters and minipigs

    Directory of Open Access Journals (Sweden)

    Hajjaj H

    2004-02-01

    Full Text Available Abstract Introduction There has been renewed interest in mushroom medicinal properties. We studied cholesterol lowering properties of Ganoderma lucidum (Gl, a renowned medicinal species. Results Organic fractions containing oxygenated lanosterol derivatives inhibited cholesterol synthesis in T9A4 hepatocytes. In hamsters, 5% Gl did not effect LDL; but decreased total cholesterol (TC 9.8%, and HDL 11.2%. Gl (2.5 and 5% had effects on several fecal neutral sterols and bile acids. Both Gl doses reduced hepatic microsomal ex-vivo HMG-CoA reductase activity. In minipigs, 2.5 Gl decreased TC, LDL- and HDL cholesterol 20, 27, and 18%, respectively (P Conclusions Overall, Gl has potential to reduce LDL cholesterol in vivo through various mechanisms. Next steps are to: fully characterize bioactive components in lipid soluble/insoluble fractions; evaluate bioactivity of isolated fractions; and examine human cholesterol lowering properties. Innovative new cholesterol-lowering foods and medicines containing Gl are envisioned.

  15. Topical cholesterol in clofazimine induced ichthyosis

    Directory of Open Access Journals (Sweden)

    Pandey S

    1994-01-01

    Full Text Available Topical application of 10% cholesterol in petrolatum significantly (P< 0.05 controlled the development of ichthyosis in 62 patients taking 100 mg clofazimine daily for a period of 3 months. However, topical cholesterol application did not affect the lowering of serum cholesterol induced by oral clofazimine. Probable mechanism of action is being discussed.

  16. Association between coffee consumption and serum lipid profile.

    Science.gov (United States)

    Karabudak, Efsun; Türközü, Duygu; Köksal, Eda

    2015-05-01

    The aim of the present study was to investigate the association between coffee consumption and serum lipid levels in a study population of 122 Turkish subjects (mean age, 41.4±12.69 years), including 48 males and 74 females. A questionnaire was compiled to determine baseline characteristics, and food and coffee consumption. Subjects were divided into three groups, which included non-drinkers, Turkish coffee and instant coffee drinkers, and anthropometric measurements were acquired, including weight, height and body mass index. Serum lipid levels were analyzed, including the total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and very low-density lipoprotein cholesterol (VLDL-C) levels. Of the population studied, 76.2% had consumed at least one cup of coffee per week over the previous year. Daily consumption values were 62.3±40.60 ml (0.7±0.50 cup) for Turkish coffee and 116.3±121.96 ml (0.7±0.81 cup) for instant coffee. No statistically significant differences were observed in the serum levels of TC, TG, LDL-C, HDL-C or VLDL-C among the three groups. In addition, no statistically significant differences were observed in the serum lipid levels when comparing individuals who consumed coffee with sugar/cream or who smoked and those who did not (P>0.05). Therefore, the present observations indicated no significant association between the consumption of Turkish or instant coffee and serum lipid levels.

  17. A dual enzymatic-biosensor for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages of diabetic mice: Evaluation of the diabetes-accelerated atherosclerosis risk

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qilin; An Yarui; Tang Linlin; Jiang Xiaoli; Chen Hua; Bi Wenji [Department of Chemistry, East China Normal University, Shanghai 200062 (China); Wang Zhongchuan [Department of Anorectal Surgery, Xinhua Hospital, Affiliated to School of Medicine of Shanghai Jiaotong University, Shanghai 200092 (China); Zhang Wen, E-mail: wzhang@chem.ecnu.edu.cn [Department of Chemistry, East China Normal University, Shanghai 200062 (China)

    2011-11-30

    Graphical abstract: In this paper, we reported a novel dual enzymatic-biosensor for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages (PMs) of diabetic mice to evaluate the diabetes-accelerated atherosclerosis risk. The biosensor was firstly modified with a poly-thionine (PTH) film as electron transfer mediator (ETM), then the gold nanoparticles (GNPs) were covered on the surface of PTH to act as tiny conduction centers for facilitating the electron transfer between enzymes and electrode. The schematic of the dual biosensor is shown in figure. The developed dual biosensor had good electrocatalytic activity toward the oxidations of glucose and cholesterol, exhibited a linear range from 0.008 mM to 6.0 mM for glucose with a detection limit of 2.0 {mu}M, and a linear range from 0.002 mM to 1.0 mM for cholesterol with a detection limit of 0.6 {mu}M. The results of the diabetic mice demonstrated that the cholesterol level was not changed obviously with the increase of glucose level in serum, while the cholesterol level was enhanced together with the increase of the glucose level in PMs. Previous studies have shown that the large accumulation of cholesterol in macrophage could lead to macrophage foam cell formation, the hallmark of early atherosclerosis. These findings indicated the possibility that high glucose induced by diabetes might increase the macrophage cholesterol level to further accelerate atherosclerosis development. Highlights: Black-Right-Pointing-Pointer A novel biosensor was developed to determine glucose and cholesterol simultaneously. Black-Right-Pointing-Pointer The dual enzymatic-biosensor has good selectivity and high sensitivity. Black-Right-Pointing-Pointer We determined glucose and cholesterol in the real samples of diabetic mice. Black-Right-Pointing-Pointer The results showed that high glucose might increase the macrophage cholesterol level. Black-Right-Pointing-Pointer It provided useful experimental

  18. A dual enzymatic-biosensor for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages of diabetic mice: Evaluation of the diabetes-accelerated atherosclerosis risk

    International Nuclear Information System (INIS)

    Huang Qilin; An Yarui; Tang Linlin; Jiang Xiaoli; Chen Hua; Bi Wenji; Wang Zhongchuan; Zhang Wen

    2011-01-01

    Graphical abstract: In this paper, we reported a novel dual enzymatic-biosensor for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages (PMs) of diabetic mice to evaluate the diabetes-accelerated atherosclerosis risk. The biosensor was firstly modified with a poly-thionine (PTH) film as electron transfer mediator (ETM), then the gold nanoparticles (GNPs) were covered on the surface of PTH to act as tiny conduction centers for facilitating the electron transfer between enzymes and electrode. The schematic of the dual biosensor is shown in figure. The developed dual biosensor had good electrocatalytic activity toward the oxidations of glucose and cholesterol, exhibited a linear range from 0.008 mM to 6.0 mM for glucose with a detection limit of 2.0 μM, and a linear range from 0.002 mM to 1.0 mM for cholesterol with a detection limit of 0.6 μM. The results of the diabetic mice demonstrated that the cholesterol level was not changed obviously with the increase of glucose level in serum, while the cholesterol level was enhanced together with the increase of the glucose level in PMs. Previous studies have shown that the large accumulation of cholesterol in macrophage could lead to macrophage foam cell formation, the hallmark of early atherosclerosis. These findings indicated the possibility that high glucose induced by diabetes might increase the macrophage cholesterol level to further accelerate atherosclerosis development. Highlights: ► A novel biosensor was developed to determine glucose and cholesterol simultaneously. ► The dual enzymatic-biosensor has good selectivity and high sensitivity. ► We determined glucose and cholesterol in the real samples of diabetic mice. ► The results showed that high glucose might increase the macrophage cholesterol level. ► It provided useful experimental evidences for diabetes-accelerate atherosclerosis. - Abstract: In this paper, a novel dual enzymatic-biosensor is described for

  19. Phytosterol ester processing in the small intestine: impact on cholesterol availability for absorption and chylomicron cholesterol incorporation in healthy humans[S

    Science.gov (United States)

    Amiot, Marie Josèphe; Knol, Diny; Cardinault, Nicolas; Nowicki, Marion; Bott, Romain; Antona, Claudine; Borel, Patrick; Bernard, Jean-Paul; Duchateau, Guus; Lairon, Denis

    2011-01-01

    Phytosterols (plant sterols and stanols) can lower intestinal cholesterol absorption, but the complex dynamics of the lipid digestion process in the presence of phytosterol esters (PEs) are not fully understood. We performed a clinical experiment in intubated healthy subjects to study the time course of changes in the distribution of all lipid moieties present in duodenal phases during 4 h of digestion of meals with 3.2 g PE (PE meal) or without (control meal) PE. In vitro experiments under simulated gastrointestinal conditions were also performed. The addition of PE did not alter triglyceride (TG) hydrolysis in the duodenum or subsequent chylomicron TG occurrence in the circulation. In contrast, cholesterol accumulation in the duodenum aqueous phase was markedly reduced in the presence of PE (−32%, P < 0.10). In vitro experiments confirmed that PE reduces cholesterol transfer into the aqueous phase. The addition of PE resulted in a markedly reduced presence of meal-derived hepta-deuterated cholesterol in the circulation, i.e., in chylomicrons (−43%, PE meal vs. control; P < 0.0001) and plasma (−54%, PE meal vs. control; P < 0.0001). The present data show that addition of PE to a meal does not alter TG hydrolysis but displaces cholesterol from the intestinal aqueous phase and lowers chylomicron cholesterol occurrence in humans. PMID:21482714

  20. Assessment of serum lipids in patients with age related macular degeneration from Pakistan

    International Nuclear Information System (INIS)

    Ambreen, F.; Qureshi, I. Z.

    2014-01-01

    Objective: To determine serum lipids in patients with age related macular degeneration from Pakistani population. Methods: The study was a cross sectional, randomized and case-control. Selected subjects ages were >50 years and were normotensive, non-diabetic with no family history of any such disease and no complication of posterior ocular chamber other than age related macular degeneration (AMD). Controls were age matched healthy individuals with no symptoms of AMD. Diagnosis of AMD was done through conventional diagnostic techniques by professional ophthalmologists. Serum samples were analyzed for total cholesterol, triglycerides, LDL and HDL using commercially available kits. Data were compared with Student's t-test. Pearson correlation was calculated for relationship between different parameters. P<0.05 was considered significant. Results: Compared to controls, AMD patients had significantly greater total cholesterol concentration (p<0.041), and power HDL/LDL ratio (p<0.038), while serum triglycerides, HDL and LDL were non-significantly different from control subjects. Total cholesterol in AMD patients was significantly correlated with TG, LDL and HDL (p<0.0001). Conclusion: The study indicates that high cholesterol might be a predictor of AMD and can be a diagnostic parameter. (author)

  1. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials.

    Science.gov (United States)

    Ho, Hoang V T; Sievenpiper, John L; Zurbau, Andreea; Blanco Mejia, Sonia; Jovanovski, Elena; Au-Yeung, Fei; Jenkins, Alexandra L; Vuksan, Vladimir

    2016-10-01

    Oats are a rich source of β-glucan, a viscous, soluble fibre recognised for its cholesterol-lowering properties, and are associated with reduced risk of CVD. Our objective was to conduct a systematic review and meta-analysis of randomised-controlled trials (RCT) investigating the cholesterol-lowering potential of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for the risk reduction of CVD. MEDLINE, Embase, CINAHL and Cochrane CENTRAL were searched. We included RCT of ≥3 weeks of follow-up, assessing the effect of diets enriched with oat β-glucan compared with controlled diets on LDL-cholesterol, non-HDL-cholesterol or apoB. Two independent reviewers extracted data and assessed study quality and risk of bias. Data were pooled using the generic inverse-variance method with random effects models and expressed as mean differences with 95 % CI. Heterogeneity was assessed by the Cochran's Q statistic and quantified by the I 2-statistic. In total, fifty-eight trials (n 3974) were included. A median dose of 3·5 g/d of oat β-glucan significantly lowered LDL-cholesterol (-0·19; 95 % CI -0·23, -0·14 mmol/l, Pcholesterol (-0·20; 95 % CI -0·26, -0·15 mmol/l, PLDL-cholesterol (I 2=79 %) and non-HDL-cholesterol (I 2=99 %). Pooled analyses showed that oat β-glucan has a lowering effect on LDL-cholesterol, non-HDL-cholesterol and apoB. Inclusion of oat-containing foods may be a strategy for achieving targets in CVD reduction.

  2. Plasma biomarker of dietary phytosterol intake.

    Science.gov (United States)

    Lin, Xiaobo; Racette, Susan B; Ma, Lina; Wallendorf, Michael; Spearie, Catherine Anderson; Ostlund, Richard E

    2015-01-01

    Dietary phytosterols, plant sterols structurally similar to cholesterol, reduce intestinal cholesterol absorption and have many other potentially beneficial biological effects in humans. Due to limited information on phytosterol levels in foods, however, it is difficult to quantify habitual dietary phytosterol intake (DPI). Therefore, we sought to identify a plasma biomarker of DPI. Data were analyzed from two feeding studies with a total of 38 subjects during 94 dietary periods. DPI was carefully controlled at low, intermediate, and high levels. Plasma levels of phytosterols and cholesterol metabolites were assessed at the end of each diet period. Based on simple ordinary least squares regression analysis, the best biomarker for DPI was the ratio of plasma campesterol to the endogenous cholesterol metabolite 5-α-cholestanol (R2 = 0.785, P 0.600; P phytosterol intake. Conversely, plasma phytosterol levels alone are not ideal biomarkers of DPI because they are confounded by large inter-individual variation in absorption and turnover of non-cholesterol sterols. Further work is needed to assess the relation between non-cholesterol sterol metabolism and associated cholesterol transport in the genesis of coronary heart disease.

  3. The origin of cholesterol in chyle demonstrated by nuclear indicator methods

    International Nuclear Information System (INIS)

    Vyas, M.

    1962-01-01

    In order to obtain information about the mechanism of the intestinal absorption of cholesterol, rats having a lymphatic abdominal fistula are used. The animals receive either 4- 14 C- cholesterol subcutaneously or orally, or the 1- 14 C acetate. The study of the specific radio-activities of the cholesterol in chyle, in serum, in the lining, and in the intestinal contents makes it possible to define the roles played by the transfer cholesterol from the serum, by the cholesterol synthesised intestinally, and by the absorption cholesterol, in the formations of the lymph and of the chylomicrons. A new theory is proposed for the mechanism of cholesterol absorption. (author) [fr

  4. Estimations of cholesterol, triglycerides and fractionation of lipoproteins in serum samples of some Nigerian female subjects

    Directory of Open Access Journals (Sweden)

    E.I. Adeyeye

    2011-04-01

    Full Text Available Blood samples (serum were collected to determine some biochemical parameters: total glycerides (TG, total cholesterol (TC, high density lipoprotein-cholesterol (HDL-C, low density lipoprotein-cholesterol (LDL-C and very low density lipoprotein-cholesterol (VLDL-C in 53 female subjects in Warri, Delta State, Nigeria using the Reflotron® (an auto analyser, supported with the use of questionnaire to get information on age and sex. Age range of the subjects was 18–80 years. The TG levels in all the subjects were < 200 mg/dL; only one subject (1.89% had TC < 200 mg/dL; nine subjects (17.0% had HDL-C ≤ 35 mg/dL; for LDL-C only one subject (1.89% had a desirable level of < 130 mg/dL; for VLDL-C 29 subjects (54.7% had values 17.2 mg/dL and above. For therapeutic decision-making, TC/HDL-C and LDL-C/HDL-C, were calculated. In TC/HDL-C, three subjects (5.66% had values < 4.4 and in LDL-C/HDL-C, 41 subjects (77.4% had values < 4.5. Hence, TC, HDL-C, LDL-C, TC/HDL-C and slightly LDL-C/HDL-C and VLDL-C in the subjects could lead to increase coronary heart diseases. Results were matched for the age and sex of subjects.

  5. Casein kinase 1 regulates sterol regulatory element-binding protein (SREBP) to control sterol homeostasis.

    Science.gov (United States)

    Brookheart, Rita T; Lee, Chih-Yung S; Espenshade, Peter J

    2014-01-31

    Sterol homeostasis is tightly controlled by the sterol regulatory element-binding protein (SREBP) transcription factor that is highly conserved from fungi to mammals. In fission yeast, SREBP functions in an oxygen-sensing pathway to promote adaptation to decreased oxygen supply that limits oxygen-dependent sterol synthesis. Low oxygen stimulates proteolytic cleavage of the SREBP homolog Sre1, generating the active transcription factor Sre1N that drives expression of sterol biosynthetic enzymes. In addition, low oxygen increases the stability and DNA binding activity of Sre1N. To identify additional signals controlling Sre1 activity, we conducted a genetic overexpression screen. Here, we describe our isolation and characterization of the casein kinase 1 family member Hhp2 as a novel regulator of Sre1N. Deletion of Hhp2 increases Sre1N protein stability and ergosterol levels in the presence of oxygen. Hhp2-dependent Sre1N degradation by the proteasome requires Hhp2 kinase activity, and Hhp2 binds and phosphorylates Sre1N at specific residues. Our results describe a role for casein kinase 1 as a direct regulator of sterol homeostasis. Given the role of mammalian Hhp2 homologs, casein kinase 1δ and 1ε, in regulation of the circadian clock, these findings may provide a mechanism for coordinating circadian rhythm and lipid metabolism.

  6. Plasma 27-hydroxycholesterol/cholesterol ratio is increased in low high density lipoprotein-cholesterol healthy subjects.

    Science.gov (United States)

    Nunes, Valéria S; Leança, Camila C; Panzoldo, Natália B; Parra, Eliane; Zago, Vanessa; Cazita, Patrícia M; Nakandakare, Edna R; de Faria, Eliana C; Quintão, Eder C R

    2013-10-01

    Sterol 27-hydroxylase converts cholesterol to 27-hydroxycholesterol (27-OHC) which is widely distributed among tissues and is expressed at high levels in the vascular endothelium and macrophages. There is a continuous flow of this oxysterol from the tissues into the liver, where it is converted to bile acids. Measure plasma concentrations of 27-OHC in subjects that differ according to their plasma HDL-C concentration. Healthy men presenting low HDL-C (1.55 mmol/L), n=18, BMIm² were recruited after excluding secondary causes that might interfere with their plasma lipid concentrations such as smoking, heavy drinking and diabetes. Blood samples were drawn after a 12h fasting period for the measurement of 27-OHC by the combined GC/MS analysis utilizing deuterium-label internal standards. The plasma ratio 27-OHC/total cholesterol (median and range nmoL/mmoL) was 50.41 (27.47-116.00) in the High HDL-C subjects and 63.34 (36.46-91.18) in the Low HDL-C subjects (p=0.0258). Our data indicate that the production of 27-OHC by extrahepatic tissues and its transport to the liver may represent an alternative pathway for a deficient reverse cholesterol transport system when plasma HDL-C is low. © 2013.

  7. Amelioration of oxidative and inflammatory status in hearts of cholesterol-fed rats supplemented with oils or oil-products with extra virgin olive oil components.

    Science.gov (United States)

    Katsarou, Ageliki I; Kaliora, Andriana C; Chiou, Antonia; Kalogeropoulos, Nick; Papalois, Apostolos; Agrogiannis, George; Andrikopoulos, Nikolaos K

    2016-04-01

    The contribution of extra virgin olive oil (EVOO) macro- and micro-constituents in heart oxidative and inflammatory status in a hypercholesterolemic rat model was evaluated. Fatty acid profile as well as α-tocopherol, sterol, and squalene content was identified directly in rat hearts to distinguish the effect of individual components or to enlighten the potential synergisms. Oils and oil-products with discernible lipid and polar phenolic content were used. Wistar rats were fed a high-cholesterol diet solely, or supplemented with one of the following oils, i.e., EVOO, sunflower oil (SO), and high-oleic sunflower oil (HOSO) or oil-products, i.e., phenolics-deprived EVOO [EVOO(-)], SO enriched with the EVOO phenolics [SO(+)], and HOSO enriched with the EVOO phenolics [HOSO(+)]. Dietary treatment lasted 9 weeks; at the end of the intervention blood and heart samples were collected. High-cholesterol-diet-induced dyslipidemia was shown by increase in serum total cholesterol, low-density lipoprotein cholesterol, and triacylglycerols. Dyslipidemia resulted in increased malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α) levels, while glutathione and interleukin 6 levels remained unaffected in all intervention groups. Augmentation observed in MDA and TNF-α was attenuated in EVOO, SO(+), and HOSO(+) groups. Heart squalene and cholesterol content remained unaffected among all groups studied. Heart α-tocopherol was determined by oil α-tocopherol content. Variations were observed for heart β-sitosterol, while heterogeneity was reported with respect to heart fatty acid profile in all intervention groups. Overall, we suggest that the EVOO-polar phenolic compounds decreased MDA and TNF-α in hearts of cholesterol-fed rats.

  8. Effects of policosanol on borderline to mildly elevated serum total cholesterol levels: a prospective, double-blind, placebo-controlled, parallel-group, comparative study

    Directory of Open Access Journals (Sweden)

    Gladys Castaño, PhD

    2003-09-01

    Full Text Available Background: Hypercholesterolemia is a major risk factor for coronary heart disease. Clinical studies have shown that lowering elevated serum cholesterol levels, particularly low-density lipoprotein cholesterol (LDL-C, is beneficial for patients with borderline to mildly elevated serum total cholesterol (TC levels (5.0–6.0 mmol/L. Policosanol is a cholesterol-lowering drug made from purified sugar cane wax. The therapeutic range of policosanol is 5 to 20 mg/d. Objective: This study investigated the efficacy and tolerability of policosanol 5 mg/d in patients with borderline to mildly elevated serum TC levels. Methods: This 14-week, single-center, prospective, double-blind, placebo-controlled, parallel-group, comparative study was conducted in men and women aged 25 to 75 years with a serum TC level ≥4.8 to <6.0 mmol/L. After a 6-week run-in period in which patients were placed on therapeutic lifestyle changes, in particular a cholesterol-lowering diet, patients were randomly assigned to receive policosanol 5-mg tablets or placebo tablets once daily with the evening meal for 8 weeks, and the diet was continued throughout the study. Lipid profile variables, safety indicators, adverse events (AEs, and compliance with study medications were assessed. Results: One hundred patients (71 women, 29 men; mean [SD] age, 52 [10] years entered the study after the dietary run-in period. After 8 weeks of treatment, the mean (SD serum LDL-C level decreased significantly in the policosanol group (P<0.001 vs baseline and placebo from 3.57 (0.30 mmol/L to 2.86 (0.41 mmol/L (change, −19.9%. Significantly more patients in the policosanol group (42 patients [84%] achieved a ≥15% decrease in serum LDL-C than in the placebo group (2 patients [4%] (P<0.001. Also in the policosanol group, the mean (SD serum TC level decreased significantly, from 5.20 (0.22 mmol/L to 4.56 (0.44 mmol/L (P<0.001 vs baseline and placebo (change, −12.3%; the mean (SD triglyceride (TG

  9. Synthesis and disappearance of cholesterol and bile acids in miniature swine

    International Nuclear Information System (INIS)

    Dupont, J.; Butterfield, A.B.; Clow, D.J.; Lumb, W.V.; McClellan, M.A.; O'Deen, L.; Oh, S-Y.

    1986-01-01

    Minerature swine were fitted with indwelling cannulae at two sites in the gut and catheters in the aorta, portal vein and posterior vena cava. Radioactive acetate, alanine and glucose were administered via the duodenal cannula or the portal vein catheter and synthesis of cholesterol by gut or liver monitored via the aortic serum cholesterol specific activity. Ring labeled cholesterol was administered via jejunum and portal vein and various parameters of disappearance measured during 17 to 66 days. Conversion of cholesterol to bile acids and their subsequent disappearance from gut lumen were measured. Differences were observed in substrate preference of gut and liver and in fate of newly synthesized cholesterol. Cholesterol disappearance was found to follow a two component exponential in serum and a three component exponential in gut. Serum curves were similar to those reported for humans. Two hepatic pools of cholesterol, one accessible to lipoprotein synthesis (anabolic) and another accessible to enterohepatic circulation and 7-α-hydroxylase, were inducated

  10. Effect of cocoa and theobromine consumption on serum HDL-cholesterol concentrations: a randomized controlled trial.

    Science.gov (United States)

    Neufingerl, Nicole; Zebregs, Yvonne E M P; Schuring, Ewoud A H; Trautwein, Elke A

    2013-06-01

    Evidence from clinical studies has suggested that cocoa may increase high-density lipoprotein (HDL)-cholesterol concentrations. However, it is unclear whether this effect is attributable to flavonoids or theobromine, both of which are major cocoa components. We investigated whether pure theobromine increases serum HDL cholesterol and whether there is an interaction effect between theobromine and cocoa. The study had a 2-center, double-blind, randomized, placebo-controlled, full factorial parallel design. After a 2-wk run-in period, 152 healthy men and women (aged 40-70 y) were randomly allocated to consume one 200-mL drink/d for 4 wk that contained 1) cocoa, which naturally provided 150 mg theobromine and 325 mg flavonoids [cocoa intervention (CC)], 2) 850 mg pure theobromine [theobromine intervention (TB)], 3) cocoa and added theobromine, which provided 1000 mg theobromine and 325 mg flavonoids [theobromine and cocoa intervention (TB+CC)], or 4) neither cocoa nor theobromine (placebo). Blood lipids and apolipoproteins were measured at the start and end of interventions. In a 2-factor analysis, there was a significant main effect of the TB (P cocoa and interaction effects suggested that theobromine may be the main ingredient responsible for the HDL cholesterol-raising effect. This trial was registered at clinicaltrials.gov as NCT01481389.

  11. Pectin penta-oligogalacturonide reduces cholesterol accumulation by promoting bile acid biosynthesis and excretion in high-cholesterol-fed mice.

    Science.gov (United States)

    Zhu, Ru-Gang; Sun, Yan-Di; Hou, Yu-Ting; Fan, Jun-Gang; Chen, Gang; Li, Tuo-Ping

    2017-06-25

    Haw pectin penta-oligogalacturonide (HPPS) has important role in improving cholesterol metabolism and promoting the conversion of cholesterol to bile acids (BA) in mice fed high-cholesterol diet (HCD). However, the mechanism is not clear. This study aims to investigate the effects of HPPS on cholesterol accumulation and the regulation of hepatic BA synthesis and transport in HCD-fed mice. Results showed that HPPS significantly decreased plasma and hepatic TC levels but increased plasma high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) levels, compared to HCD. BA analysis showed that HPPS markedly decreased hepatic and small intestine BA levels but increased the gallbladder BA levels, and finally decreased the total BA pool size, compared to HCD. Studies of molecular mechanism revealed that HPPS promoted hepatic ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and scavenger receptor BI (SR-BI) expression but did not affect ATB binding cassette transporter G5/G8 (ABCG5/8) expression. HPPS inactivated hepatic farnesoid X receptor (FXR) and target genes expression, which resulted in significant increase of cholesterol 7α-hydroxylase 1 (CYP7A1) and sterol 12α-hydroxylase (CYP8B1) expression, with up-regulations of 204.2% and 33.5% for mRNA levels, respectively, compared with HCD. In addition, HPPS markedly enhanced bile salt export pump (BSEP) expression but didn't affect the sodium/taurocholate co-transporting polypeptide (NTCP) expression. In conclusion, the study revealed that HPPS reduced cholesterol accumulation by promoting BA synthesis in the liver and excretion in the feces, and might promote macrophage-to-liver reverse cholesterol transport (RCT) but did not liver-to-fecal RCT. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Sterols and fatty acids analysis at the Llobregat River for a wastewater dumping episode; Analisis de esteroles y acidos grasos en el rio Llobrgat por un vertido de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Lacal, J.; Garcia-Mendi, C.; Vega, A.; Pujadas, M.

    2006-07-01

    The study by gas chromatography (HRGC) and mass spectrometry (MS) of fatty acids and sterols of water samples from Anoia and Llobregat River, allowed to rule out the hypothesis of the Anoia River as the cause of dumping episode and even to determine that the episode was not associated to the faecal or residual contamination. Nevertheless, it has permitted us to have a better knowledge of these families of organic compounds in the basin of the Llobregat River. In the acidic fraction, saturated and unsaturated fatty acids of 14, 16 and 18 atoms of carbon from oil fish, animal fat or hydrogenated oils with industrial and domestic use were found. The application of different sterols indices (coprostanol, cholesterol, cholestanol, stigmasterol, stigmastadienol and sitosterol) permitted us to study the role of the sterols and the significance of the contamination from animal sterols, fitosterols in the studied samples. (Author) 19 refs.

  13. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.

    Science.gov (United States)

    Gas-Pascual, Elisabet; Berna, Anne; Bach, Thomas J; Schaller, Hubert

    2014-01-01

    The plant sterol pathway exhibits a major biosynthetic difference as compared with that of metazoans. The committed sterol precursor is the pentacyclic cycloartenol (9β,19-cyclolanost-24-en-3β-ol) and not lanosterol (lanosta-8,24-dien-3β-ol), as it was shown in the late sixties. However, plant genome mining over the last years revealed the general presence of lanosterol synthases encoding sequences (LAS1) in the oxidosqualene cyclase repertoire, in addition to cycloartenol synthases (CAS1) and to non-steroidal triterpene synthases that contribute to the metabolic diversity of C30H50O compounds on earth. Furthermore, plant LAS1 proteins have been unambiguously identified by peptidic signatures and by their capacity to complement the yeast lanosterol synthase deficiency. A dual pathway for the synthesis of sterols through lanosterol and cycloartenol was reported in the model Arabidopsis thaliana, though the contribution of a lanosterol pathway to the production of 24-alkyl-Δ(5)-sterols was quite marginal (Ohyama et al. (2009) PNAS 106, 725). To investigate further the physiological relevance of CAS1 and LAS1 genes in plants, we have silenced their expression in Nicotiana benthamiana. We used virus induced gene silencing (VIGS) based on gene specific sequences from a Nicotiana tabacum CAS1 or derived from the solgenomics initiative (http://solgenomics.net/) to challenge the respective roles of CAS1 and LAS1. In this report, we show a CAS1-specific functional sterol pathway in engineered yeast, and a strict dependence on CAS1 of tobacco sterol biosynthesis.

  14. Organization of fluorescent cholesterol analogs in lipid bilayers - lessons from cyclodextrin extraction.

    Science.gov (United States)

    Milles, Sigrid; Meyer, Thomas; Scheidt, Holger A; Schwarzer, Roland; Thomas, Lars; Marek, Magdalena; Szente, Lajos; Bittman, Robert; Herrmann, Andreas; Günther Pomorski, Thomas; Huster, Daniel; Müller, Peter

    2013-08-01

    To characterize the structure and dynamics of cholesterol in membranes, fluorescent analogs of the native molecule have widely been employed. The cholesterol content in membranes is in general manipulated by using water-soluble cyclodextrins. Since the interactions between cyclodextrins and fluorescent-labeled cholesterol have not been investigated in detail so far, we have compared the cyclodextrin-mediated membrane extraction of three different fluorescent cholesterol analogs (one bearing a NBD and two bearing BODIPY moieties). Extraction of these analogs was followed by measuring the Förster resonance energy transfer between a rhodamine moiety linked to phosphatidylethanolamine and the labeled cholesterol. The extraction kinetics revealed that the analogs are differently extracted from membranes. We examined the orientation of the analogs within the membrane and their influence on lipid condensation using NMR and EPR spectroscopies. Our data indicate that the extraction of fluorescent sterols from membranes is determined by several parameters, including their impact on lipid order, their hydrophobicity, their intermolecular interactions with surrounding lipids, their orientation within the bilayer, and their affinity with the exogenous acceptor. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Potassium-doped carbon nanotubes toward the direct electrochemistry of cholesterol oxidase and its application in highly sensitive cholesterol biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaorong [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Xu Jingjuan, E-mail: xujj@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Chen Hongyuan [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2011-10-30

    We demonstrate herein a newly developed serum total cholesterol biosensor by using the direct electron transfer of cholesterol oxidase (ChOx), which is based on the immobilization of cholesterol oxidase and cholesterol esterase (ChEt) on potassium-doped multi-walled carbon nanotubes (KMWNTs) modified electrodes. The KMWNTs accelerate the electron transfer from electrode surface to the immobilized ChOx, achieving the direct electrochemistry of ChOx and maintaining its bioactivity. As a new platform in cholesterol analysis, the resulting electrode (ChOx/KMWNTs/GCE) exhibits a sensitive response to free cholesterol, with a linear range of 0.050-16.0 {mu}mol L{sup -1} and a detection limit of 5.0 nmol L{sup -1} (S/N = 3). Coimmobilization of ChEt and ChOx (ChEt/ChOx/KMWNTs/GCE) allows the determination of both free cholesterol and esterified cholesterol. The resulting biosensor shows the same linear range of 0.050-16.0 {mu}mol L{sup -1} for free cholesterol and cholesteryl oleate, with the detection limit of 10.0 and 12.0 nmol L{sup -1} (S/N = 3), respectively. The concentrations of total (free and esterified) cholesterol in human serum samples, determined by using the techniques developed in the present study, are in good agreement with those determined by the well-established techniques using the spectrophotometry.

  16. Absorption and transport of cholesterol autoxidation derivatives in rabbits

    International Nuclear Information System (INIS)

    Peng, S.K.; Morin, R.J.; Phillips, G.A.; Xia, G.Z.

    1986-01-01

    Spontaneously autoxidized products of cholesterol have been demonstrated to be angiotoxic and possibly atherogenic. This study investigates the absorption and transport of these cholesterol oxidation derivatives (COD's) as compared to cholesterol. 14 C-labeled cholesterol autoxidized by incubation in a 60 0 C water bath for 5 weeks, then suspended in gelatin and given to New Zealand white rabbits by gastric gavage. Rabbits were sacrificed 24 hours after treatment. COD's were separated by thin layer chromatography (TLC) and radioactivities of each COD and cholesterol were measured. Percentages of each COD and cholesterol in the original mixture before administration and in the rabbits' serum after administration are almost identical, suggesting that the rates of absorption of COD's are not significantly different from that of cholesterol. Lipoproteins were fractionated by ultracentrifugation into VLDL, LDL and HDL. Radioactivities of each COD separated by TLC in each lipoprotein fraction showed that cholestane-3β,5α,6β-triol, 7α- and 7β-hydroxycholesterol and 7-ketocholesterol were predominantly present in VLDL (3 x serum concentration) and 25-hydroxycholesterol was predominantly in LDL (2.5 x serum concentration). HDL contained only minute amounts of COD's. The increased levels of COD's in VLDL and LDL may contribute to the atherogenicity of these lipoprotein

  17. Plasma biomarker of dietary phytosterol intake.

    Directory of Open Access Journals (Sweden)

    Xiaobo Lin

    Full Text Available Dietary phytosterols, plant sterols structurally similar to cholesterol, reduce intestinal cholesterol absorption and have many other potentially beneficial biological effects in humans. Due to limited information on phytosterol levels in foods, however, it is difficult to quantify habitual dietary phytosterol intake (DPI. Therefore, we sought to identify a plasma biomarker of DPI.Data were analyzed from two feeding studies with a total of 38 subjects during 94 dietary periods. DPI was carefully controlled at low, intermediate, and high levels. Plasma levels of phytosterols and cholesterol metabolites were assessed at the end of each diet period. Based on simple ordinary least squares regression analysis, the best biomarker for DPI was the ratio of plasma campesterol to the endogenous cholesterol metabolite 5-α-cholestanol (R2 = 0.785, P 0.600; P < 0.01.The ratio of plasma campesterol to the coordinately regulated endogenous cholesterol metabolite 5-α-cholestanol is a biomarker of dietary phytosterol intake. Conversely, plasma phytosterol levels alone are not ideal biomarkers of DPI because they are confounded by large inter-individual variation in absorption and turnover of non-cholesterol sterols. Further work is needed to assess the relation between non-cholesterol sterol metabolism and associated cholesterol transport in the genesis of coronary heart disease.

  18. Speed Limits for Nonvesicular Intracellular Sterol Transport.

    Science.gov (United States)

    Dittman, Jeremy S; Menon, Anant K

    2017-02-01

    Sterol transport between the endoplasmic reticulum (ER) and plasma membrane (PM) occurs by nonvesicular mechanisms requiring sterol transport proteins (STPs). Here we examine the idea that transport is enhanced at membrane contact sites where the ER is closely apposed to the PM. We conclude that sterol desorption from the membrane, rather than STP-mediated diffusion, is rate limiting in the cellular context, so there is no apparent kinetic benefit to having STP-mediated sterol transfer occur at contact sites. Contact sites may instead compartmentalize lipid synthesis or transport machinery, providing opportunities for regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effect of Atorvastatin on Serum Levels of Total Cholesterol and High-Sensitivity C-reactive Protein in High-Risk Patients with Atrial Fibrillation in Asia.

    Science.gov (United States)

    Shi, Ming Yu; Xue, Feng Hua; Teng, Shi Chao; Jiang, Li; Zhu, Jing; Yin, Feng; Gu, Hong Yue

    2015-08-01

    The aim of this meta-analysis was to investigate the effects of atorvastatin on serum levels of high-sensitivity C-reactive protein (hs-CRP) and total cholesterol in atrial fibrillation (AF) patients in Asia. By searching English and Chinese language-based electronic databases (ie, PubMed, EBSCO, Ovid, SpringerLink, Wiley, Web of Science, Wanfang database, China National Knowledge Infrastructure, and VIP database), we identified 13 studies relevant to our topic of interest. Data were collected from the 13 studies and analyzed with Comprehensive Meta-Analysis software (version 2.0, Biostat Inc., Englewood, New Jersey). Initially, our database searches retrieved 356 studies (45 in English, 311 in Chinese). Thirteen studies were selected for the meta-analysis following stringent criteria. The data included 1239 patients with AF, of whom 634 were treated with atorvastatin and included in the treatment group, and 605 patients were treated with conventional treatment and included in the control group. The results of our meta-analysis suggested that the serum levels of hs-CRP (mg/L) and total cholesterol (mmol/L) in the treatment group were significantly lower than those of the control group (hs-CRP: standardized mean difference = 0.962; 95% CI, 0.629-1.295, P < 0.001; total cholesterol: standardized mean difference = 1.400; 95% CI, 0.653-2.146, P < 0.001). The findings of this study suggest that atorvastatin may be very effective in decreasing serum levels of hs-CRP and total cholesterol to prevent cardiovascular events. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  20. Cerebrotendinous xanthomatosis: Need for early diagnosis

    Directory of Open Access Journals (Sweden)

    Muhammed K

    2006-01-01

    Full Text Available Cerebrotendinous xanthomatosis is a rare autosomal recessive lipid storage disease characterized by widespread tissue deposition of two neutral sterols, cholestanol and cholesterol, resulting in tendinous xanthomas, juvenile cataracts, progressive neurological defects and premature death from arteriosclerosis. The primary biochemical defect is deficiency of hepatic mitochondrial enzyme sterol-27-hydroxylase which catalyses the hydroxylation of cholestanol (5-alpha dehydro derivative of cholesterol and this deficiency decreases bile acid synthesis. Substantial elevation of serum cholestanol and urinary bile alcohols with low to normal plasma cholesterol concentration establishes the diagnosis. Cerebrotendinous xanthomatosis is exceptionally rare in the Indian population. We are reporting a woman with this rare disorder, who was on antiepileptic and antipsychotic drugs for a prolonged period and whose original condition went undiagnosed. She presented with xanthomas on the Achilles tendons and the upper end of tibia. She was mentally subnormal and her serum cholestanol level was raised. Her younger sister too was severely affected by this disorder. Early treatment with chenodeoxycholic acid is known to prevent disease progression.

  1. Activity test of various mangosteen (Garcinia mangostana pericarp extract fractions to decrease fasting blood cholesterol levels and lipid peroxidation activity in diabetic mice

    Directory of Open Access Journals (Sweden)

    Saikhu Akhmad Husen

    2017-01-01

    Full Text Available The objectives of this study were to determine the effect of various fractions of mangosteen (Garcinia mangostana pericarp extract to the changes of the fasting blood cholesterol and serum malondialdehyde (MDA levels on diabetic mice (Mus musculus. Thirty 3-4 months old male mice strain BALB/c, weight 20-30 g were divided into six groups. The first group was KN as a non diabetic control group, KD as a diabetic control, KM as a group of diabetic mice treated with metformin, and NP, SP, and P as the treatment groups that were treated by using three different fractions from mangosteen pericarp extract, non polar, semi polar, and polar respectively. The induction of Diabetes mellitus was done by the injection of STZ, and the mice were given a high fat diet treatment to induce the hiperlipidemia condition using lard for three weeks. The blood cholesterol levels were measured in all groups before and after the injection of lard, and day 1, 7, and 14 of treatment as well. The serum MDA level as the indicator of lipid peroxidation were measured by using QuantiChrom TBARS Assay Kit (DTBA-100. The data of cholesterol levels were statistically analyzed by t-test, while the data of serum MDA levels were analyzed by variance analysis followed by Duncan test. The results showed that the polar fraction of mangosteen pericarp had effect to decrease the fasting blood cholesterol level in mice, however the non polar and semi polar fraction had no simmilar effect. All of the fractions has shown significant effect to decrease the serum MDA level in mice. Key words: cholesterol, diabetes mellitus, Garcinia mangostana, malondialdehyde (mda, obesity.

  2. The effect of 24S-hydroxycholesterol on cholesterol homeostasis in neurons: quantitative changes to the cortical neuron proteome.

    Science.gov (United States)

    Wang, Yuqin; Muneton, Sabina; Sjövall, Jan; Jovanovic, Jasmina N; Griffiths, William J

    2008-04-01

    In humans, the brain represents only about 2% of the body's mass but contains about one-quarter of the body's free cholesterol. Cholesterol is synthesized de novo in brain and removed by metabolism to oxysterols. 24S-Hydoxycholesterol represents the major metabolic product of cholesterol in brain, being formed via the cytochrome P450 (CYP) enzyme CYP46A1. CYP46A1 is expressed exclusively in brain, normally by neurons. In this study, we investigated the effect of 24S-hydroxycholesterol on the proteome of rat cortical neurons. With the use of two-dimensional liquid chromatography linked to nanoelectrospray tandem mass spectrometry, over 1040 proteins were identified including members of the cholesterol, isoprenoid and fatty acid synthesis pathways. With the use of stable isotope labeling technology, the protein expression patterns of enzymes in these pathways were investigated. 24S-Hydroxycholesterol was found to down-regulate the expression of members of the cholesterol/isoprenoid synthesis pathways including 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (EC 2.3.3.10), diphosphomevalonate decarboxylase (EC 4.1.1.33), isopentenyl-diphosphate delta isomerase (EC 5.3.3.2), farnesyl-diphosphate synthase (Geranyl trans transferase, EC 2.5.1.10), and dedicated sterol synthesis enzymes, farnesyl-diphosphate farnesyltransferase 1 (squalene synthase, EC 2.5.1.21) and methylsterol monooxygenase (EC 1.14.13.72). The expression of many enzymes in the cholesterol/isoprenoid and fatty acid synthesis pathways are regulated by the membrane-bound transcription factors named sterol regulatory element-binding proteins (SREBPs), which themselves are both transcriptionally and post-transcriptionally regulated. The current proteomic data indicates that 24S-hydroxycholesterol down-regulates cholesterol synthesis in neurons, possibly, in a post-transcriptional manner through SREBP-2. In contrast to cholesterol metabolism, enzymes responsible for the synthesis of fatty acids were not

  3. Sterol-induced Dislocation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase from Endoplasmic Reticulum Membranes into the Cytosol through a Subcellular Compartment Resembling Lipid Droplets*

    Science.gov (United States)

    Hartman, Isamu Z.; Liu, Pingsheng; Zehmer, John K.; Luby-Phelps, Katherine; Jo, Youngah; Anderson, Richard G. W.; DeBose-Boyd, Russell A.

    2010-01-01

    Sterol-induced binding to Insigs in the endoplasmic reticulum (ER) allows for ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. This ubiquitination marks reductase for recognition by the ATPase VCP/p97, which mediates extraction and delivery of reductase from ER membranes to cytosolic 26 S proteasomes for degradation. Here, we report that reductase becomes dislocated from ER membranes into the cytosol of sterol-treated cells. This dislocation exhibits an absolute requirement for the actions of Insigs and VCP/p97. Reductase also appears in a buoyant fraction of sterol-treated cells that co-purifies with lipid droplets, cytosolic organelles traditionally regarded as storage depots for neutral lipids such as triglycerides and cholesteryl esters. Genetic, biochemical, and localization studies suggest a model in which reductase is dislodged into the cytosol from an ER subdomain closely associated with lipid droplets. PMID:20406816

  4. A new cholesterol biosynthesis and absorption disorder associated with epilepsy, hypogonadism, and cerebro-cerebello-bulbar degeneration.

    Science.gov (United States)

    Korematsu, Seigo; Uchiyama, Shin-ichi; Honda, Akira; Izumi, Tatsuro

    2014-06-01

    Cholesterol is one of the main components of human cell membranes and constitutes an essential substance in the central nervous system, endocrine system, and its hormones, including sex hormones. A 19-year-old male patient presented with failure to thrive, psychomotor deterioration, intractable epilepsy, hypogonadism, and cerebro-cerebello-bulbar degeneration. His serum level of cholesterol was low, ranging from 78.7 to 116.5 mg/dL. The serum concentrations of intermediates in the cholesterol biosynthesis pathway, such as 7-dehydrocholesterol, 8-dehydrocholesterol, desmosterol, lathosterol, and dihydrolanosterol, were not increased. In addition, the levels of the urinary cholesterol biosynthesis marker mevalonic acid, the serum cholesterol absorption markers, campesterol and sitosterol, and the serum cholesterol catabolism marker, 7α-hydroxycholesterol, were all low. A serum biomarker analysis indicated that the patient's basic abnormality differed from that of Smith-Lemli-Opitz syndrome and other known disorders of cholesterol metabolism. Therefore, this individual may have a new metabolic disorder with hypocholesterolemia because of decreased biosynthesis and absorption of cholesterol. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Lowering of cholesterol bioaccessibility and serum concentrations by saponins

    NARCIS (Netherlands)

    Vinarova, Liliya; Vinarov, Zahari; Atanasov, Vasil; Pantcheva, Ivayla; Tcholakova, Slavka; Denkov, Nikolai; Stoyanov, Simeon

    2015-01-01

    Using an in vitro digestion model, we studied the effect of six saponin extracts on the bioaccessibility of cholesterol and saturated fatty acids (SFAs). In the absence of saponins, around 78% of the available cholesterol was solubilized in the simulated intestinal fluids. The addition of two

  6. Hypercholesterolemia with consumption of PFOA-laced Western diets is dependent on strain and sex of mice

    Directory of Open Access Journals (Sweden)

    Sandra L. Rebholz

    Full Text Available Perfluorooctanoic acid (PFOA is a man-made surfactant with a number of industrial applications. It has a long half-life environmentally and biologically. Past studies suggest a direct relationship between plasma cholesterol and PFOA serum concentrations in humans and an inverse one in rodents fed standard rodent chow, making it difficult to examine mechanisms responsible for the potential PFOA-induced hypercholesterolemia and altered sterol metabolism. To examine dietary modification of PFOA-induced effects, C57BL/6 and BALB/c mice were fed PFOA in a fat- and cholesterol-containing diet. When fed these high fat diets, PFOA ingestion resulted in marked hypercholesterolemia in male and female C57BL/6 mice and less robust hypercholesterolemia in male BALB/c mice. The PFOA-induced hypercholesterolemia appeared to be the result of increased liver masses and altered expression of genes associated with hepatic sterol output, specifically bile acid production. mRNA levels of genes associated with sterol input were reduced only in C57BL/6 females, the mice with the greatest increase in plasma cholesterol levels. Strain-specific PFOA-induced changes in cholesterol concentrations in mammary tissues and ovaries paralleled changes in plasma cholesterol levels. mRNA levels of sterol-related genes were reduced in ovaries of C57BL/6 but not in BALB/c mice and not in mammary tissues. Our data suggest that PFOA ingestion leads to hypercholesterolemia in mice fed fat and cholesterol and effects are dependent upon the genetic background and gender of the mice with C57BL/6 female mice being most responsive to PFOA. Keywords: Perfluorooctanoic acid, C8, PFC, PFAS, Cholesterol, Dietary fat

  7. STARD4 knockdown in HepG2 cells disrupts cholesterol trafficking associated with the plasma membrane, ER, and ERC

    DEFF Research Database (Denmark)

    Garbarino, J.; Pan, M. H.; Chin, H. F.

    2012-01-01

    small hairpin RNA knockdown technology to reduce STARD4 expression in HepG2 cells. In a cholesterol-poor environment, we found that a reduction in STARD4 expression leads to retention of cholesterol at the plasma membrane, reduction of endoplasmic reticulum-associated cholesterol, and decreased ACAT...... synthesized cholesteryl esters. Furthermore, D4 KD cells exhibited a reduced rate of sterol transport to the endocytic recycling compartment after cholesterol repletion. Although these cells displayed normal endocytic trafficking in cholesterol-poor and replete conditions, cell surface low density lipoprotein...... membrane and the endocytic recycling compartment to the endoplasmic reticulum and perhaps other intracellular compartments as well. -Garbarino, J., M. Pan, H.F. Chin, F.W. Lund, F.R. Maxfield, and J.L. Breslow. STARD4 knockdown in HepG2 cells disrupts cholesterol trafficking associated with the plasma...

  8. A Cytotoxic Hydroperoxy Sterol from the Brown Alga, Nizamuddinia Zanardinii

    Directory of Open Access Journals (Sweden)

    Abdolhossein Rustaiyan

    2013-03-01

    Full Text Available Background:The marine environment is a unique source of bioactive natural products, of which Nizamuddinia zanardinii is an important brown algae distributed in Oman Sea. Literature revealed that there is no report on phytochemistry and pharmacology of this valuable algae.Methods:Bioguided fractionation of the methanolic extract of Nizamuddinia zanardinii, collected from Oman Sea, led to the isolation of a hydroperoxy sterol. Its structure was determined by analysis of the spectroscopic data as 24-hydroperoxy-24-vinyl cholesterol (HVC. In vitro cytotoxic activity of this compound was evaluated against HT29, MCF7, A549, HepG2 and MDBK cell lines.Results:Although 24(R-hydroproxy-24-vinylcholesterol has been previously reported from Sargassum and Padina species, it is the first report on the presence of this compound from N. zanardinii. This compound exhibited cytotoxicity in all cell lines (IC50, 3.62, 9.09, 17.96, 32.31 and 37.31 μg/mL respectively. HVC was also evaluated for apoptotic activity and demonstrated positive results in terminal deoxynucleotidyl transferase dUTP Nick End labeling (TUNEL assay suggesting it a candidate for further apoptotic studies.Conclusions:Nizamuddinia zanardinii, a remarkable brown algae of Oman Sea, is a good source of hydroproxy sterols with promising cytotoxic on various cell lines particularly human colon adenocarcinoma.

  9. 2H NMR evidence for antibiotic-induced cholesterol immobilization in biological model membranes

    International Nuclear Information System (INIS)

    Dufourc, E.J.; Smith, I.C.

    1985-01-01

    The interaction of the polyene antibiotic filipin with membrane sterols has been studied by deuterium nuclear magnetic resonance of the molecular probes [2,2,3,4,4,6- 2 H6]cholesterol and 1-myristoyl-2-[4',4',14',14',14'- 2 H5]myristoyl-sn-glycero-3-phospho- choline. At physiological temperatures, there is evidence of filipin-induced cholesterol immobilization in the membrane. The 2 H NMR spectra of cholesterol show two domains in which ordering and dynamics are very different. In one of these, cholesterol is static on the 2 H NMR time scale, whereas in the other it undergoes rapid axially symmetric motions similar to those it exhibits in the drug-free membrane; this indicates that the jumping frequency of cholesterol between the labile and immobilized domains is less than 10(5) s -1 . The distribution of cholesterol between these two sites is temperature dependent. In contrast to cholesterol, the phospholipids sense only one type of environment, at both the top and center of the bilayer, indicating that cholesterol acts as a screen, preventing the lipids from direct interaction with the antibiotic. At low temperature, the ordering of the lipid in the presence of cholesterol does not change upon filipin addition, whereas at elevated temperatures the local ordering of both the lipid and the labile cholesterol is significantly lower than that in the absence of the drug

  10. The effects of coffee consumption on serum lipids and lipoprotein in healthy individuals.

    Science.gov (United States)

    Onuegbu, A J; Agbedana, E O

    2001-01-01

    The changes in total serum cholestrol, serum triglyceride, HDL-cholesterol and LDL-cholesterol after twenty eight (28) days of consumption of moderate quantity of a commercial coffee preparation (NESCAFE brand) were studied in 30 human subjects consisting of 20 male and 10 female healthy adults. Significant increases in the mean total serum cholesterol concentration (110.8-126.5 mg/100 mls) and LDL- cholesterol concentration (78.4-94.5 mg/100 ml) were observed in the subjects. No significant differences were obtained in the mean HDL cholesterol concentration and in the mean serum triglyceride levels. The differences observed in the mean total serum cholesterol, LDL cholesterol, HDL- cholesterol and triglyceride concentrations in the individual male and female groups studied were not statistically significant. The results from this study suggest that short-term consumption of coffee may increase the total serum cholesterol and LDL cholesterol levels. It is therefore possible that long-term consumption of coffee may lead to clinically significant alterations in serum lipid profile and could be important in the aetiology of atherosclerotic vascular diseases such as coronary heart disease.

  11. TM6SF2 and MAC30, new enzyme homologues in sterol metabolism and common metabolic disease.

    Directory of Open Access Journals (Sweden)

    Luis eSanchez-Pulido

    2014-12-01

    Full Text Available Carriers of the Glu167Lys coding variant in the TM6SF2 gene have recently been identified as being more susceptible to non-alcoholic fatty liver disease (NAFLD, yet exhibit lower levels of circulating lipids and hence are protected against cardiovascular disease. Despite the physiological importance of these observations, the molecular function of TM6SF2 remains unknown, and no sequence similarity with functionally characterised proteins has been identified. In order to trace its evolutionary history and to identify functional domains, we embarked on a computational protein sequence analysis of TM6SF2. We identified a new domain, the EXPERA domain, which is conserved among TM6SF, MAC30/TMEM97 and EBP (D8,D7 sterol isomerase protein families. EBP mutations are the cause of chondrodysplasia punctata 2 X-linked dominant (CDPX2, also known as Conradi-Hünermann-Happle syndrome, a defective cholesterol biosynthesis disorder. Our analysis of evolutionary conservation among EXPERA domain-containing families and the previously suggested catalytic mechanism for the EBP enzyme, indicate that TM6SF and MAC30/TMEM97 families are both highly likely to possess, as for the EBP family, catalytic activity as sterol isomerases. This unexpected prediction of enzymatic functions for TM6SF and MAC30/TMEM97 is important because it now permits detailed experiments to investigate the function of these key proteins in various human pathologies, from cardiovascular disease to cancer.

  12. Effect of ionising radiation and sal of cadmium on the changes of concentrations glucose and cholesterol in serum of chickens

    International Nuclear Information System (INIS)

    Kafka, I.; Danova, D.; Kalenicova, Z.; Striskova, K.

    2008-01-01

    The present study investigated changes of concentrations glucose and cholesterol in the serum of broiler chickens exposed to single of whole-body dose of 3 Gy gamma rays and concentration of cadmium 6 mg · kg -1 live weight. Samples of our experiment was analyse on the 7, 14 and 21 day after irradiation. (authors)

  13. The Effect of Cloud Ear Fungus (Auricularia polytricha on Serum Total Cholesterol, LDL And HDL Levels on Wistar Rats Induced by Reused Cooking Oil

    Directory of Open Access Journals (Sweden)

    Budinastiti Ratih

    2018-01-01

    Full Text Available The usage of reused cooking oil affects the increase of serum total cholesterol (TC and LDL, also the decrease of serum HDL. This condition escalates the risk of atherosclerosis, which could lead to the incidence of cardiovascular disease. Cloud ear fungus is a natural antioxidant that contains polysaccharides, flavonoids, niacin, and vitamin C, which can improve the lipid profiles. Objective of this research is to analyze the impact of water from boiled cloud ear fungus on total cholesterol, LDL, and HDL level of Wistar rats that have been given reused cooking oil. This study is a true experimental research with post test only control group design, using 12 weeks-aged male Wistar rats (n = 24 that were randomly divided into 4 groups. K1 as the negative control, K2 was given reused cooking oil and standard diet, K3 was given water from boiled cloud ear fungus and standard diet, and K4 was given reused cooking oil, water from boiled cloud ear fungus and standard diet. Serum total cholesterol, LDL, and HDL levels were measured by the CHOD-PAP method after 28 days treatment. The study showed that TC mean value of K1 (80.2217 ± 3.61 mg / dL, K2 (195.8483 ± 5.47 mg / dL, K3 (75.5800 ± 4.02 mg / dL, and K4 (110.8683 ± 5.82 mg / dL; p = 0.000. LDL mean value of K1 (29.9200 ± 1.53 mg / dL, K2 (78.4167 ± 1.77 mg / dL, K3 (24.3167 ± 1.77 mg / dL, and K4 (40, 1617 ± 2.84 mg / dL; p = 0.000. HDL mean value of K1 (65.8950 ± 1.99 mg / dL, K2 (24.3233 ± 1.44 mg / dL, K3 (73.2300 ± 1.92 mg / dL, and K4 (54, 9550 ± 2.04 mg / dL; p= 0.000. Conclusion: Water from boiled cloud ear fungus decreases the serum total cholesterol and LDL, 06006 increases serum HDL levels of Wistar rats that has been given reused cooking oil.

  14. The Effect of Cloud Ear Fungus (Auricularia polytricha) on Serum Total Cholesterol, LDL And HDL Levels on Wistar Rats Induced by Reused Cooking Oil

    Science.gov (United States)

    Budinastiti, Ratih; Sunoko, Henna Rya; Widiastiti, Nyoman Suci

    2018-02-01

    The usage of reused cooking oil affects the increase of serum total cholesterol (TC) and LDL, also the decrease of serum HDL. This condition escalates the risk of atherosclerosis, which could lead to the incidence of cardiovascular disease. Cloud ear fungus is a natural antioxidant that contains polysaccharides, flavonoids, niacin, and vitamin C, which can improve the lipid profiles. Objective of this research is to analyze the impact of water from boiled cloud ear fungus on total cholesterol, LDL, and HDL level of Wistar rats that have been given reused cooking oil. This study is a true experimental research with post test only control group design, using 12 weeks-aged male Wistar rats (n = 24) that were randomly divided into 4 groups. K1 as the negative control, K2 was given reused cooking oil and standard diet, K3 was given water from boiled cloud ear fungus and standard diet, and K4 was given reused cooking oil, water from boiled cloud ear fungus and standard diet. Serum total cholesterol, LDL, and HDL levels were measured by the CHOD-PAP method after 28 days treatment. The study showed that TC mean value of K1 (80.2217 ± 3.61 mg / dL), K2 (195.8483 ± 5.47 mg / dL), K3 (75.5800 ± 4.02 mg / dL), and K4 (110.8683 ± 5.82 mg / dL); p = 0.000. LDL mean value of K1 (29.9200 ± 1.53 mg / dL), K2 (78.4167 ± 1.77 mg / dL), K3 (24.3167 ± 1.77 mg / dL), and K4 (40, 1617 ± 2.84 mg / dL); p = 0.000. HDL mean value of K1 (65.8950 ± 1.99 mg / dL), K2 (24.3233 ± 1.44 mg / dL), K3 (73.2300 ± 1.92 mg / dL), and K4 (54, 9550 ± 2.04 mg / dL); p= 0.000. Conclusion: Water from boiled cloud ear fungus decreases the serum total cholesterol and LDL, 06006 increases serum HDL levels of Wistar rats that has been given reused cooking oil.

  15. Stability of Cholesterol, 7-Ketocholesterol and β-Sitosterol during Saponification: Ramifications for Artifact Monitoring of Sterol Oxide Products.

    Science.gov (United States)

    Busch, T P; King, A J

    2010-09-01

    Cholesterol has been used to monitor artifact generation. Stability differences among cholesterol oxide products (COPs) and cholesterol in thermal and alkaline conditions are theorized. Thus, use of cholesterol may be unsuitable for detection of artifacts generated from COPs. Stability of cholesterol was compared to that of 7-ketocholesterol (7-keto) and β-sitosterol (βS) under various thermal and alkaline saponification conditions: 1 M methanolic KOH for 18 h at 24 °C (1 M18hr24°C, Control), 18 h at 37 °C (1M18hr37°C), 3 h at 45 °C (1M3hr45°C), and 3.6 M methanolic KOH for 3 h at 24 °C (3.6M3hr24°C). Trends indicated that cholesterol in solution was more stable than 7-keto under all conditions. Compared to βS, cholesterol was more stable under all conditions except for 1M18hr37°C for which stabilities were similar. Compounds were more labile in heat than alkalinity. Poor recoveries of 7-keto during cold saponification with high alkalinity were attributed to alkaline instability. 7-Keto, less stable than cholesterol, should be used to monitor artifact generation during screening of various methods that include thermal and alkaline conditions. In a preliminary analysis of turkey meat, more 3,5-7-one was generated from spiking with cholesterol than with 7-keto.

  16. Inositol and hepatic lipidosis. I. Effect of inositol supplementation and time from parturition on liver and serum lipids in dairy cattle.

    Science.gov (United States)

    Gerloff, B J; Herdt, T H; Wells, W W; Liesman, J S; Emery, R S

    1986-06-01

    Percutaneous liver biopsies and blood samples were obtained from 80 multiparous dairy cows in nine Michigan herds. Biopsies and samples were obtained serially over the peripartum period. Thirty-nine cows received 17 g of supplemental myoinositol in the diet to test its use as a possible lipotropic substance and 41 received a placebo. Liver biopsies were assayed for triglyceride (TG) and total myoinositol content. Serum was assayed for dextran precipitable cholesterol and non-esterified fatty acids (NEFA). Inositol supplementation had no effect on any of the lipid variables. There was a significant herd effect on liver inositol, serum dextran precipitable cholesterol and NEFA concentrations. Serum NEFA and liver TG concentrations increased in the immediate postpartum period, while dextran precipitable cholesterol decreased. A significant herd X period interaction existed for liver TG and serum dextran precipitable cholesterol concentrations. Liver TG and serum NEFA concentrations were positively correlated. Excessive infiltration of bovine liver with lipid at calving appears to be an exaggerated manifestation of normal metabolic changes.

  17. Vitamin A-coupled liposome system targeting free cholesterol accumulation in hepatic stellate cells offers a beneficial therapeutic strategy for liver fibrosis.

    Science.gov (United States)

    Furuhashi, Hirotaka; Tomita, Kengo; Teratani, Toshiaki; Shimizu, Motonori; Nishikawa, Makoto; Higashiyama, Masaaki; Takajo, Takeshi; Shirakabe, Kazuhiko; Maruta, Koji; Okada, Yoshikiyo; Kurihara, Chie; Watanabe, Chikako; Komoto, Shunsuke; Aosasa, Suefumi; Nagao, Shigeaki; Yamamoto, Junji; Miura, Soichiro; Hokari, Ryota

    2018-04-01

    Liver fibrosis is a life-threatening disorder for which no approved therapy is available. Recently, we reported that mouse hepatic stellate cell (HSC) activation increased free cholesterol (FC) accumulation, partly by enhancing signaling through sterol regulatory element-binding protein 2 (SREBP2) and microRNA-33a (miR-33a), which resulted in HSC sensitization to transforming growth factor-β (TGFβ)-induced activation in a "vicious cycle" of liver fibrosis. Human HSCs were isolated from surgical liver specimens from control patients and patients with liver fibrosis. C57BL/6 mice were treated with carbon tetrachloride for 4 weeks and concurrently given SREBP2-siRNA- or anti-miR-33a-bearing vitamin A-coupled liposomes. In human activated HSCs obtained from patients with liver fibrosis, FC accumulation was enhanced independently of serum cholesterol levels through increased signaling by both SREBP2 and miR-33a. This increased FC accumulation enhanced Toll-like receptor 4 (TLR4) protein levels and lowered the TGFβ-pseudoreceptor Bambi (bone morphogenetic protein and activin membrane-bound inhibitor) mRNA levels in HSCs. Notably, in a mouse liver fibrosis model, reduction of FC accumulation, specifically in activated HSCs by suppression of SREBP2 or miR-33a expression using SREBP2-siRNA- or anti-miR-33a-bearing vitamin A-coupled liposomes, downregulated TLR4 signaling, increased Bambi expression, and consequently ameliorated liver fibrosis. Our results suggest that FC accumulation in HSCs, as an intracellular mediator promoting HSC activation, contributes to a vicious cycle of HSC activation in human and mouse liver fibrosis independent of serum cholesterol levels. Targeting FC accumulation-related molecules in HSCs through a vitamin A-coupled liposomal system represents a favorable therapeutic strategy for liver fibrosis. © 2017 The Japan Society of Hepatology.

  18. Non-HDL Cholesterol is a More Superior Predictor of Small-Dense LDL Cholesterol than LDL Cholesterol in Japanese Subjects with TG Levels <400 mg/dL.

    Science.gov (United States)

    Moriyama, Kengo; Takahashi, Eiko

    2016-09-01

    The Japan Atherosclerosis Society (JAS) guidelines for the diagnosis and treatment of hyperlipidemia in Japanese adults recommend using low-density lipoprotein cholesterol (LDL-C) calculated by Friedewald formula (F_LDL-C) for subjects with triglyceride (TG) levels <400 mg/dL and non-high-density lipoprotein cholesterol (non-HDL-C) levels for subjects with TG levels ≥400 mg/dL. Because small-dense LDL particles are more atherogenic than large LDL particles, we sought the better lipid parameter which was more reflective of the high small-dense LDL-C (sdLDL-C) levels in subjects with TG levels <400 mg/dL. This study included 769 Japanese subjects who met our inclusion criteria and underwent an annual health examination, including sdLDL-C analyses. The correlation coefficient of non-HDL-C for sdLDL-C (r=0.760) was significantly higher than that of F_LDL-C (r=0.601). The area under the curve (95% confidence interval) was 0.771 (0.731, 0.811) for F_LDL-C and 0.871 (0.842, 0.901) for non HDL-C, which showed significantly higher predictive value for more than fourth quartile value of sdLDL-C (46 mg/dL). The optimal cut-off point of non-HDL-C was 158 mg/dL. Even in subjects stratified by waist circumstance, homeostasis model assessment of insulin resistance, TG, and F_LDL-C levels and non-HDL-C showed stronger relationships with sdLDL-C than F_LDL-C. Moreover, non-HDL-C showed a better relationship with sdLDL-C than total cholesterol (TC), TC/HDL-C, and non-HDL-C/HDL-C. Our data suggested that non-HDL-C is superior to F_LDL-C and one of the reliable surrogate lipid markers of sdLDL-C in Japanese subjects with TG levels <400 mg/dL.

  19. Impact of Mediterranean diet education versus posted leaflet on dietary habits and serum cholesterol in a high risk population for cardiovascular disease

    NARCIS (Netherlands)

    Bemelmans, Wanda J. E.; Broer, Jan; de Vries, Jeanne H. M.; Hulshof, Karin F. A. M.; May, Jo F.; Meyboom-de Jong, Betty

    Objective: To investigate the impact of intensive group education on the Mediterranean diet on dietary intake and serum total cholesterol after 16 and 52 weeks, compared to a posted leaflet with the Dutch nutritional guidelines, in the context of primary prevention of cardiovascular disease (CVD).

  20. Effects of Fatty Acids at Different Positions in the Triglycerides on Cholesterol Levels

    International Nuclear Information System (INIS)

    Teh, S.S.; Voon, P.T.; Ng, Y.T.; Ong, S.H.; Augustine, S.H.O.; Choo, Y.M.

    2016-01-01

    Previous studies established a series of regression equations for predicting the risk factor effects from serum cholesterol concentrations. However, the degree of saturation was solely based on total fatty acid composition in triglycerides. Our article is focused on the relationships between the published human nutrition studies and predicted values of serum cholesterol levels based on total fatty acid compositions and at sn-2 position in triglycerides. Twenty-two published human nutrition studies were chosen to assess the effects of palm olein, olive oil, cocoa butter, sunflower seed oil, corn oil, soyabean oil, grape seed oil, groundnut oil and rice bran oil diets on serum cholesterol levels. There were no statistically significant differences between the predicted values of serum cholesterol levels based on fatty acids at sn-2 position and the published human nutrition studies as proven by the statistical analyses with p values more than 0.05. In contrast, there were statistically significant differences between the predicted values of serum cholesterol levels based on total fatty acids and the published human nutritional studies with p values less than 0.05. Fatty acids at sn-2 position appear to influence the cholesterol levels rather than total fatty acids of the triglyceride. (author)

  1. Atherosclerosis in familial lines of pigeons fed exogenous cholesterol.

    Science.gov (United States)

    Patton, N M; Brown, R V; Middleton, C C

    1975-01-01

    Exogenous cholesterol was fed to F1 pigeons of high and low serum cholesterol differentiated lines of White Carneau and Racing Homer pigeons that had previously been developed by selection and positive assortive mating. The serum cholesterol response of the various high and low lines was dependent upon the breed and the amount of cholesterol in the diet. Racing Homer pigeons were found to be more resistant to aortic atherosclerosis and more susceptible to coronary atherosclerosis than White Carneau pigeons. Data from necropsy examinations showed significant differences in both aortic and coronary atherosclerosis between lines within the White Carneau breed, but no differences between lines of the Racing Homer breed. Mean organ weights for the 4 lines of pigeons were reported.

  2. Differential effect of walnut oil and safflower oil on the serum cholesterol level and lesion area in the aortic root of apolipoprotein E-deficient mice.

    Science.gov (United States)

    Iwamoto, Masako; Kono, Misaki; Kawamoto, Daisuke; Tomoyori, Hiroko; Sato, Masao; Imaizumi, Katsumi

    2002-01-01

    Walnut oil (WO) is a good source of alpha-linolenic acid. We compared the effects of WO and high-linoleic safflower oil (HLSO) on the serum lipid level and atherosclerosis development in male and female apolipoprotein (apo) E-deficient mice. The WO diet resulted in a higher level of serum cholesterol than with HLSO. Female mice fed on the WO diet had a greater lesion area in the aortic root than did those on the HLSO diet. There was no diet-dependent difference in the level of cholesterol and its oxidation products in the abdominal and thoracic aorta. These results suggest that the unpleasant effects of the WO diet on apo E-deficient mice may be attributable to alpha-linolenic acid.

  3. Serum phospholipid omega-3 polyunsaturated fatty acids and insulin resistance in type 2 diabetes mellitus and non-alcoholic fatty liver disease.

    Science.gov (United States)

    Lou, Da-Jun; Zhu, Qi-Qian; Si, Xu-Wei; Guan, Li-Li; You, Qiao-Ying; Yu, Zhong-Ming; Zhang, Ai-Zhen

    2014-01-01

    To investigate the relationship between serum phospholipid omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and insulin resistance (IR) in patients with type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD). 51 patients with T2DM and NAFLD (T2DM+NAFLD group), 50 with T2DM alone (T2DM group), 45 with NAFLD alone (NAFLD group), and 42 healthy control subjects (NC group) were studied. Serum ω-3 PUFA profiles were analyzed by gas chromatography, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), and serum lipid concentrations were measured. Insulin resistance was assessed by the homeostasis model assessment method (HOMA-IR). HOMA-IR levels were higher in the T2DM+NAFLD group than in the T2DM, NAFLD and NC groups (p<0.05), as were ALT, AST, GGT, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) concentrations (p<0.05). Conversely, serum ω-3 PUFA levels were significantly lower in the T2DM+NAFLD group than in the other groups (p<0.05). The ω-3 PUFA level was negatively correlated with HOMA-IR, TC, LDL-C and TG. Serum phospholipid ω-3 PUFA levels were significantly decreased in patients with T2DM and NAFLD, and were negatively related with insulin resistance. Thus, reduced ω-3 PUFAs may play an important role in the development of T2DM and NAFLD. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. CYP2E1-dependent elevation of serum cholesterol, triglycerides, and hepatic bile acids by isoniazid

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jie; Krausz, Kristopher W. [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Li, Feng; Ma, Xiaochao [Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, 4089 KLSIC, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160 (United States); Gonzalez, Frank J., E-mail: fjgonz@helix.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-01-15

    Isoniazid is the first-line medication in the prevention and treatment of tuberculosis. Isoniazid is known to have a biphasic effect on the inhibition–induction of CYP2E1 and is also considered to be involved in isoniazid-induced hepatotoxicity. However, the full extent and mechanism of involvement of CYP2E1 in isoniazid-induced hepatotoxicity remain to be thoroughly investigated. In the current study, isoniazid was administered to wild-type and Cyp2e1-null mice to investigate the potential toxicity of isoniazid in vivo. The results revealed that isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice, but produced elevated serum cholesterol and triglycerides, and hepatic bile acids in wild-type mice, as well as decreased abundance of free fatty acids in wild-type mice and not in Cyp2e1-null mice. Metabolomic analysis demonstrated that production of isoniazid metabolites was elevated in wild-type mice along with a higher abundance of bile acids, bile acid metabolites, carnitine and carnitine derivatives; these were not observed in Cyp2e1-null mice. In addition, the enzymes responsible for bile acid synthesis were decreased and proteins involved in bile acid transport were significantly increased in wild-type mice. Lastly, treatment of targeted isoniazid metabolites to wild-type mice led to similar changes in cholesterol, triglycerides and free fatty acids. These findings suggest that while CYP2E1 is not involved in isoniazid-induced hepatotoxicity, while an isoniazid metabolite might play a role in isoniazid-induced cholestasis through enhancement of bile acid accumulation and mitochondria β-oxidation. -- Highlights: ► Isoniazid metabolites were elevated only in wild-type mice. ► Isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice. ► Isoniazid elevated serum cholesterol and triglycerides, and hepatic bile acids. ► Bile acid transporters were significantly decreased in isoniazid-treated mice.

  5. CYP2E1-dependent elevation of serum cholesterol, triglycerides, and hepatic bile acids by isoniazid

    International Nuclear Information System (INIS)

    Cheng, Jie; Krausz, Kristopher W.; Li, Feng; Ma, Xiaochao; Gonzalez, Frank J.

    2013-01-01

    Isoniazid is the first-line medication in the prevention and treatment of tuberculosis. Isoniazid is known to have a biphasic effect on the inhibition–induction of CYP2E1 and is also considered to be involved in isoniazid-induced hepatotoxicity. However, the full extent and mechanism of involvement of CYP2E1 in isoniazid-induced hepatotoxicity remain to be thoroughly investigated. In the current study, isoniazid was administered to wild-type and Cyp2e1-null mice to investigate the potential toxicity of isoniazid in vivo. The results revealed that isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice, but produced elevated serum cholesterol and triglycerides, and hepatic bile acids in wild-type mice, as well as decreased abundance of free fatty acids in wild-type mice and not in Cyp2e1-null mice. Metabolomic analysis demonstrated that production of isoniazid metabolites was elevated in wild-type mice along with a higher abundance of bile acids, bile acid metabolites, carnitine and carnitine derivatives; these were not observed in Cyp2e1-null mice. In addition, the enzymes responsible for bile acid synthesis were decreased and proteins involved in bile acid transport were significantly increased in wild-type mice. Lastly, treatment of targeted isoniazid metabolites to wild-type mice led to similar changes in cholesterol, triglycerides and free fatty acids. These findings suggest that while CYP2E1 is not involved in isoniazid-induced hepatotoxicity, while an isoniazid metabolite might play a role in isoniazid-induced cholestasis through enhancement of bile acid accumulation and mitochondria β-oxidation. -- Highlights: ► Isoniazid metabolites were elevated only in wild-type mice. ► Isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice. ► Isoniazid elevated serum cholesterol and triglycerides, and hepatic bile acids. ► Bile acid transporters were significantly decreased in isoniazid-treated mice.

  6. CORRELATION OF GALLSTONE FORMATION WITH SERUM IRON LEVELS

    Directory of Open Access Journals (Sweden)

    Rohini Bipin Bhadre

    2016-07-01

    Full Text Available INTRODUCTION Gallstones are one of the most common problem associated with the gallbladder, affecting millions of people throughout the world. Bile is excreted from liver and gallbladder into Duodenum for digestion. After digestion, if the gallbladder is not emptied out completely, the Bile Juice that remains in the gallbladder can become too concentrated with cholesterol leading to gallstone formation. Cholesterol and calcium bilirubinate are the two main substances involved in gallstone formation. Gallstones derived from bile consists of mixture of cholesterol, bilirubin with or without calcium. Based on their chemical composition, gallstones found in the gallbladder are classified as cholesterol, pigmented or mixed stones. Iron deficiency has been shown to alter the activity of several hepatic enzymes, leading to increased gallbladder bile cholesterol saturation and promotion of cholesterol crystal formation. AIMS & OBJECTIVE Attempt to establish a correlation with gallstones and decreased serum iron levels. MATERIAL & METHODS This study was a prospective cohort study which included 100 consecutive patients with imaging studies suggestive of Cholelithiasis. The Gallstone surgically removed was crushed with mortar and pestle and then analysed for cholesterol, calcium, phosphate and bilirubin (pigment. Serum samples were analysed for Cholesterol, iron and iron binding capacity. RESULTS 86% patients had increased cholesterol levels (p=0.04 and 93% had decreased serum Iron levels (p=0.96. The most common type of gallstone was found to be Cholesterol type of gallstone followed by Mixed and Pigment gallstones. CONCLUSION Serum cholesterol levels were found to be raised in majority of the patients and serum iron was found to be low in these majority of the patients indicating iron deficiency may play a role in gallstone formation.

  7. Low serum levels of High-Density Lipoprotein cholesterol (HDL-c) as an indicator for the development of severe postpartum depressive symptoms

    Science.gov (United States)

    Ramachandran Pillai, Raji; Wilson, Anand Babu; Premkumar, Nancy R.; Kattimani, Shivanand; Sagili, Haritha

    2018-01-01

    Postpartum depression (PPD) is a psychiatric complication of childbirth affecting 10–20% of new mothers and has negative impact on both mother and infant. Serum lipid levels have been related to depressive disorders, but very limited literatures are available regarding the lipid levels in women with postpartum depression. The present study is aimed to examine the association of serum lipids with the development of postpartum depressive symptoms. This is a cross sectional study conducted at a tertiary care hospital in South India. Women who came for postpartum check-up at 6th week post-delivery were screened for PPD (September 2014-October 2015). Women with depressive symptoms were assessed using EPDS (Edinburgh Postnatal Depression Scale). The study involved 186 cases and 250 controls matched for age and BMI. Serum levels of lipid parameters were estimated through spectrophotometry and the atherogenic indices were calculated in all the subjects. Low serum levels of Total Cholesterol (TC) and High Density Lipoprotein cholesterol (HDL-c) were significantly low in PPD women with severe depressive symptoms. The study recorded a significant negative correlation between HDL-c and the EPDS score in PPD women (r = -0.140, p = 0.05). Interestingly, the study also observed a significant negative correlation between Body Mass Index (BMI) and EPDS scores in case group (r = -0.146, p = 0.047), whereas a positive correlation between the same in controls (r = 0.187, p = 0.004). Our study demonstrated that low levels of serum HDL-c is correlated with the development of severe depressive symptoms in postpartum women. Study highlights the role of lipids in the development of postpartum depressive symptoms. PMID:29444162

  8. Low serum levels of High-Density Lipoprotein cholesterol (HDL-c as an indicator for the development of severe postpartum depressive symptoms.

    Directory of Open Access Journals (Sweden)

    Raji Ramachandran Pillai

    Full Text Available Postpartum depression (PPD is a psychiatric complication of childbirth affecting 10-20% of new mothers and has negative impact on both mother and infant. Serum lipid levels have been related to depressive disorders, but very limited literatures are available regarding the lipid levels in women with postpartum depression. The present study is aimed to examine the association of serum lipids with the development of postpartum depressive symptoms. This is a cross sectional study conducted at a tertiary care hospital in South India. Women who came for postpartum check-up at 6th week post-delivery were screened for PPD (September 2014-October 2015. Women with depressive symptoms were assessed using EPDS (Edinburgh Postnatal Depression Scale. The study involved 186 cases and 250 controls matched for age and BMI. Serum levels of lipid parameters were estimated through spectrophotometry and the atherogenic indices were calculated in all the subjects. Low serum levels of Total Cholesterol (TC and High Density Lipoprotein cholesterol (HDL-c were significantly low in PPD women with severe depressive symptoms. The study recorded a significant negative correlation between HDL-c and the EPDS score in PPD women (r = -0.140, p = 0.05. Interestingly, the study also observed a significant negative correlation between Body Mass Index (BMI and EPDS scores in case group (r = -0.146, p = 0.047, whereas a positive correlation between the same in controls (r = 0.187, p = 0.004. Our study demonstrated that low levels of serum HDL-c is correlated with the development of severe depressive symptoms in postpartum women. Study highlights the role of lipids in the development of postpartum depressive symptoms.

  9. Influence of dietary cholesterol on 26-hydroxycholesterol and the effect of 26-hydroxycholesterol on the intracellular free calcium level

    International Nuclear Information System (INIS)

    Kou, I.L.

    1987-01-01

    The purpose of this study was to investigate the factors influencing serum level of 26-hydroxycholesterol after long-term consumption of cholesterol by animals. It is also to examine the effect of this sterol on intracellular free calcium level. Purified 26-hydroxycholesterol was synthesized from kryptogenin by the Clemmemsen and Wolff-Kishner reduction method. 26-Hydroxycholesterol was also used for fatty acid esters syntheses, and to study its influence on membranes. Tritiated 26-hydroxycholesterol which was synthesized by an enzymatic method, was used to monitor the 26-hydroxycholesterol loss during the procedure. The ester form of 26-hydroxycholesterol was also synthesized, and used to investigate its effects on membranes. The HPLC method that was developed for the analysis of 26-hydroxycholesterol levels in animal tissues was accurate, efficient, and reproducible for the determination of 26-hydroxycholesterol in plasma. However, it was not suitable for the analysis of other tissues, due to the overlapping of peaks making quantitation difficult

  10. Diet, Alcohol Consumption and Serum Lipid Levels of Elderly Men ...

    African Journals Online (AJOL)

    Methodology: Elderly subjects attending quarterly medical lectures organized by a non-governmental organization at the Federal Medical Centre, Asaba were recruited. Information on diet, alcohol consumption and hypertension were obtained and serum lipids were determined using standard cholesterol / low density ...

  11. The Effects of Altered Membrane Cholesterol Levels on Sodium Pump Activity in Subclinical Hypothyroidism

    Directory of Open Access Journals (Sweden)

    Suparna Roy

    2017-02-01

    Full Text Available BackgroundMetabolic dysfunctions characteristic of overt hypothyroidism (OH start at the early stage of subclinical hypothyroidism (SCH. Na+/K+-ATPase (the sodium pump is a transmembrane enzyme that plays a vital role in cellular activities in combination with membrane lipids. We evaluated the effects of early changes in thyroid hormone and membrane cholesterol on sodium pump activity in SCH and OH patients.MethodsIn 32 SCH patients, 35 OH patients, and 34 euthyroid patients, sodium pump activity and cholesterol levels in red blood cell membranes were measured. Serum thyroxine (T4 and thyroid stimulating hormone (TSH levels were measured using enzyme-linked immunosorbent assays. Differences in their mean values were analysed using post hoc analysis of variance. We assessed the dependence of the sodium pump on other metabolites by multiple regression analysis.ResultsSodium pump activity and membrane cholesterol were lower in both hypothyroid groups than in control group, OH group exhibiting lower values than SCH group. In SCH group, sodium pump activity showed a significant direct dependence on membrane cholesterol with an inverse relationship with serum TSH levels. In OH group, sodium pump activity depended directly on membrane cholesterol and serum T4 levels. No dependence on serum cholesterol was observed in either case.ConclusionDespite the presence of elevated serum cholesterol in hypothyroidism, membrane cholesterol contributed significantly to maintain sodium pump activity in the cells. A critical reduction in membrane cholesterol levels heralds compromised enzyme activity, even in the early stage of hypothyroidism, and this can be predicted by elevated TSH levels alone, without any evident clinical manifestations.

  12. A novel cholesterol-producing Pichia pastoris strain is an ideal host for functional expression of human Na,K-ATPase α3β1 isoform.

    Science.gov (United States)

    Hirz, Melanie; Richter, Gerald; Leitner, Erich; Wriessnegger, Tamara; Pichler, Harald

    2013-11-01

    The heterologous expression of mammalian membrane proteins in lower eukaryotes is often hampered by aberrant protein localization, structure, and function, leading to enhanced degradation and, thus, low expression levels. Substantial quantities of functional membrane proteins are necessary to elucidate their structure-function relationships. Na,K-ATPases are integral, human membrane proteins that specifically interact with cholesterol and phospholipids, ensuring protein stability and enhancing ion transport activity. In this study, we present a Pichia pastoris strain which was engineered in its sterol pathway towards the synthesis of cholesterol instead of ergosterol to foster the functional expression of human membrane proteins. Western blot analyses revealed that cholesterol-producing yeast formed enhanced and stable levels of human Na,K-ATPase α3β1 isoform. ATPase activity assays suggested that this Na,K-ATPase isoform was functionally expressed in the plasma membrane. Moreover, [(3)H]-ouabain cell surface-binding studies underscored that the Na,K-ATPase was present in high numbers at the cell surface, surpassing reported expression strains severalfold. This provides evidence that the humanized sterol composition positively influenced Na,K-ATPase α3β1 stability, activity, and localization to the yeast plasma membrane. Prospectively, cholesterol-producing yeast will have high potential for functional expression of many mammalian membrane proteins.

  13. Total and HDL cholesterol and risk of stroke. EUROSTROKE: a collaborative study among research centres in Europe

    NARCIS (Netherlands)

    M.L. Bots (Michiel); D.E. Grobbee (Diederick); P.C. Elwood; Y. Nikitin; J.T. Salonen; A. Freire de Concalves; D. Inzitari; J. Sivenius; V. Benetou (Vassiliki); J. Tuomilehto; P.J. Koudstaal (Peter Jan)

    2002-01-01

    textabstractBACKGROUND: Controversy remains on the relation between serum lipids levels and stroke risk. This paper investigated the association of total and HDL cholesterol level to fatal and non-fatal, and haemorrhagic and ischaemic stroke in four European cohorts participating

  14. Homogeneity in the relationship of serum cholesterol to coronary deaths across different cultures: 40-year follow-up of the Seven Countries Study

    NARCIS (Netherlands)

    Menotti, A.; Lanti, M.; Kromhout, D.; Blackburn, H.; Jacobs, D.; Nissinen, A.; Dontas, A.; Kafatos, A.; Nedeljkovic, S.; Adachi, H.

    2008-01-01

    Background: The aim was to investigate whether multivariate coefficients of serum cholesterol in the prediction of coronary heart disease (CHD) deaths were similar across different cultures in a long-term follow-up. Design: Thirteen cohorts for a total of 10 157 men aged 40¿59 years at entry,

  15. Rho kinase inhibitor fasudil mitigates high-cholesterol diet-induced hypercholesterolemia and vascular damage.

    Science.gov (United States)

    Abdali, Nibrass Taher; Yaseen, Awny H; Said, Eman; Ibrahim, Tarek M

    2017-04-01

    The current study was designed to investigate the potential beneficial therapeutic outcome of Rho kinase inhibitor (fasudil) against hypercholesterolemia-induced myocardial and vascular injury in rabbits together with diet modification. Sixteen male rabbits were randomly divided into four groups: normal control group which received standard rabbit chow, hypercholesterolemic control group, and treated groups which received cholesterol-rich rabbit chow (1.5% cholesterol) for 8 weeks. Treated groups received either fasudil (100 mg/kg/day) or rosuvastatin (2.5 mg/kg/day) starting from the ninth week for further 4 weeks with interruption of the cholesterol-rich chow. Biochemical assessment of serum cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and myocardial oxidative/antioxidant biomarkers malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH), besides biochemical assessment of serum nitric oxide (NO), creatine kinase (CK), and lactate dehydrogenase (LDH) activities and serum total antioxidant capacity (TAC), was conducted. Serum vascular cell adhesion molecule 1 (VCAM-1) and serum Rho-associated protein kinase 1 (ROCK-1) were also evaluated along with histopathological examination of aorta specimens. Fasudil administration significantly decreased serum cholesterol, triglyceride (TG), and LDL and significantly increased serum HDL, with concomitant decrease in serum CK and LDH activities, NO, and restoration of serum TAC. Myocardial MDA significantly declined; SOD activity and GSH contents were restored. Serum ROCK-1 and VCAM-1 levels significantly declined as well. Vascular improvement was confirmed with histopathological examination, which revealed normal aortic intema with the absence of atheromas. Fasudil has promising anti-atherogenic activity mediated primarily via alleviation of hypercholesterolemia-induced oxidative stress and modulation of inflammatory response.

  16. Recognition of Odontogenic Cyst-Fluid Cholesterol Concentration ...

    African Journals Online (AJOL)

    Background: Hypercholesterolaemia is a risk factor for cardiovascular diseases. Serum cholesterol is usually determined to know if a subject is at a risk of heart diseases. This lipid is found in most fluids in the body including the odontogenic cyst-fluid. We investigated the concentration of cholesterol in the odontogenic ...

  17. Cholesterol as a Causative Factor in Alzheimer Disease: A Debatable Hypothesis

    Science.gov (United States)

    Wood, W. Gibson; Li, Ling; Müller, Walter E.; Eckert, Gunter P.

    2014-01-01

    High serum/plasma cholesterol levels have been suggested as a risk factor for Alzheimer disease (AD). Some reports, mostly retrospective epidemiological studies, have observed a decreased prevalence of AD in patients taking the cholesterol lowering drugs, statins. The strongest evidence causally linking cholesterol to AD is provided by experimental studies showing that adding/reducing cholesterol alters amyloid precursor protein (APP) and amyloid beta-protein (Aβ) levels. However, there are problems with the cholesterol-AD hypothesis. Cholesterol levels in serum/plasma and brain of AD patients do not support cholesterol as a causative factor in AD. Prospective studies on statins and AD have largely failed to show efficacy. Even the experimental data are open to interpretation given that it is well-established that modification of cholesterol levels has effects on multiple proteins, not only APP and Aβ. The purpose of this review, therefore, is to examine the above-mentioned issues and discuss the pros and cons of the cholesterol-AD hypothesis, and the involvement of other lipids in the mevalonate pathway, such as isoprenoids and oxysterols, in AD. PMID:24329875

  18. Marine metabolites: The sterols of soft coral

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, N.S.; Krishna, M.S.; Pasha, Sk.G.; Rao, T.S.P.; Venkateswarlu, Y.; Parameswaran, P.S.

    Sterols constitute a major group of secondary metabolites of soft corals. Several of these compounds have the 'usual' 3 beta-hydroxy, delta sup(5) (or delta sup(0)) cholestane skeleton, a large number of these metabolites are polar sterols...

  19. Concerning the role of 24,25-dihydrolanosterol and lanostanol in sterol biosynthesis by cultured cells

    International Nuclear Information System (INIS)

    Nes, W.D.; Norton, R.A.; Parish, E.J.; Meenan, A.; Popjak, G.

    1989-01-01

    Rat hepatoma cells (H4-II-E-C3) efficiently converted a dietary supplement of [2- 3 H]24,25-dihydrolanosterol (1) to [ 3 H]cholesterol while [2- 3 H]lanostanol 4,4,14 alpha-trimethylcholestanol (2) was recovered from the cells without apparent transformation, although it was esterified and induced an accumulation of lanosterol. A comparison of the chromatographic (TLC, GLC and HPLC), spectral (MS and 1H-NMR) and physical properties of 1 and 2 is given for the first time. The inability to detect 2 in nature coupled with our findings that 1 but not 2 is metabolized to cholesterol by H4 cells is interpreted to imply that the biosynthetic inclusion of the delta 8(9)-bond during the cyclization process of squalene-oxide to a tetracyclic product is an evolutionary adaptation selected for because the olefinic linkage is structually important in the subsequent conversion of lanosterol and its stereoisomers, e.g., cycloartenol, to delta 5-sterols

  20. A study of serum lipid profile and serum apolipoproteins A1 and B in Indian male violent criminal offenders.

    Science.gov (United States)

    Chakrabarti, Nandini; Sinha, V K

    2006-01-01

    High cholesterol has been advanced as the most important factor in the development of coronary artery disease. Most panels have recommended population-wide dietary restrictions, yet a body of evolving data yields evidence of the hazards of low cholesterol, including links to aggression and hostility. The aim of this study was to compare the serum lipid profile and serum apolipoproteins A1 and B of men with a violent criminal record and men with no criminal history. Fasting blood samples were collected from 30 men with a known history of violent crime and 30 men with no criminal record. Serum lipid profile and serum apolipoproteins A1 and B were measured in each sample, and compared between the two groups. The group with the violent criminal record showed significantly lower total cholesterol, lower LDL cholesterol, higher apolipoprotein A1 and lower apolipoprotein B compared with the control group. Lower total cholesterol, lower LDL cholesterol, higher apolipoprotein A1 and lower apolipoprotein B could predispose to violence. Future research might explore the possibility that diets offered in prison could affect relevant pathways in lipid metabolism. Copyright (c) 2006 John Wiley & Sons, Ltd.

  1. Portulaca oleracea reduces triglyceridemia, cholesterolemia, and improves lecithin: cholesterol acyltransferase activity in rats fed enriched-cholesterol diet.

    Science.gov (United States)

    Zidan, Y; Bouderbala, S; Djellouli, F; Lacaille-Dubois, M A; Bouchenak, M

    2014-10-15

    The effects of Portulaca oleracea (Po) lyophilized aqueous extract were determined on the serum high-density lipoproteins (HDL2 and HDL3) amounts and composition, as well as on lecithin: cholesterol acyltansferase (LCAT) activity. Male Wistar rats (n = 12) were fed on 1% cholesterol-enriched diet for 10 days. After this phase, hypercholesterolemic rats (HC) were divided into two groups fed the same diet supplemented or not with Portulaca oleracea (Po-HC) (0.5%) for four weeks. Serum total cholesterol (TC) and triacylglycerols (TG), and liver TG values were respectively 1.6-, 1.8-, and 1.6-fold lower in Po-HC than in HC group. Cholesterol concentrations in LDL-HDL1, HDL2, and HDL3 were respectively 1.8, 1.4-, and 2.4-fold decreased in Po-HC group. HDL2 and HDL3 amounts, which were the sum of apolipoproteins (apos), TG, cholesteryl esters (CE), unesterified cholesterol (UC), and phospholipids (PL) contents, were respectively 4.5-fold higher and 1.2-fold lower with Po treatment. Indeed, enhanced LCAT activity (1.2-fold), its cofactor-activator apo A-I (2-fold) and its reaction product HDL2-CE (2.1-fold) were observed, whereas HDL3-PL (enzyme substrate) and HDL3-UC (acyl group acceptor) were 1.2- and 2.4-fold lower. Portulaca oleracea reduces triglyceridemia, cholesterolemia, and improves reverse cholesterol transport in rat fed enriched-cholesterol diet, contributing to anti-atherogenic effects. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Lactic-fermented egg white reduced serum cholesterol concentrations in mildly hypercholesterolemic Japanese men: a double-blind, parallel-arm design.

    Science.gov (United States)

    Matsuoka, Ryosuke; Usuda, Mika; Masuda, Yasunobu; Kunou, Masaaki; Utsunomiya, Kazunori

    2017-05-30

    Lactic-fermented egg white (LE), produced by lactic acid fermentation of egg white, is an easy-to-consume form of egg white. Here we assessed the effect of daily consumption of LE for 8 weeks on serum total cholesterol (TC) levels. The study followed a double-blind, parallel-arm design and included 88 adult men with mild hypercholesterolemia (mean ± standard error) serum TC levels, 229 ± 1.6 mg/dL; range, 204-259 mg/dL). The subjects were randomly divided into three groups, which consumed LE containing 4, 6, or 8 g of protein daily for 8 weeks. Blood samples were collected before starting LE consumption (baseline) and at 4 and 8 weeks to measure serum TC and low-density lipoprotein cholesterol (LDL-C) levels. After 8 weeks of consumption, serum TC levels in the 8 g group decreased by 11.0 ± 3.7 mg/dL, a significant decrease compared to baseline (p < 0.05) and a significantly greater decrease than for the 4 g group (3.1 ± 3.4 mg/dL; p < 0.05). Serum LDL-C levels in the 8 g group decreased by 13.7 ± 3.1 mg/dL, again a significant decrease compared with baseline (p < 0.05) and a significantly greater decrease than that for the 4 g group (2.1 ± 2.9 mg/dL; p < 0.05). Consumption of LE for 8 weeks at a daily dose of 8 g of proteins reduced serum TC and LDL-C levels in men with mild hypercholesterolemia, suggesting this may be effective in helping to prevent arteriosclerotic diseases. This clinical trial was retrospectively registered with the Japan Medical Association Center for Clinical Trials, (JMA-IIA00279; registered on 13/03/2017; https://dbcentre3.jmacct.med.or.jp/JMACTR/App/JMACTRE02_04/JMACTRE02_04.aspx?kbn=3&seqno=6530 ).

  3. Next Generation Sequencing Bulk Segregant Analysis of Potato Support that Differential Flux into the Cholesterol and Stigmasterol Metabolite Pools Is Important for Steroidal Glycoalkaloid Content

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Kørup, Kirsten; Andersen, Mathias Neumann

    2016-01-01

    Potatoes and other Solanaceae species produce biologically active secondary metabolites called steroidal glycoalkaloids (GAs) which have antimicrobial, fungicidal, antiviral and insecticidal properties. GAs are, however, also toxic to animals and humans. Compared to wild species of potato, the el......, sterol 24-C-methyltransferase (SMT1), sterol desaturase (SD) and C-4 sterol methyl oxidase (SMO) genes were found, all encoding critical enzymes in the synthesis of the GAs precursor cholesterol........ Knowledge of metabolic pathways leading to the synthesis of GAs, as well as of the genes that are responsible for the observed differences in plant and tuber GA content is only partial. The primary purpose of this study was to identify genomic regions and candidate genes responsible for differential GA...

  4. Chemical constituents from bark of Cenostigma macrophyllum: cholesterol occurrence

    International Nuclear Information System (INIS)

    Silva, Hilris Rocha e; Silva, Carmem Cicera Maria da; Caland Neto, Laurentino Batista; Lopes, Jose Arimateia Dantas; Cito, Antonia Maria das Gracas Lopes; Chaves, Mariana H.

    2007-01-01

    Phytochemical investigation of the bark of Cenostigma macrophyllum (Leguminosae-Caesapinioideae) resulted in the isolation and identification of valoneic acid dilactone, ellagic acid, lupeol, alkyl ferulate, four free sterols (cholesterol, campesterol, stigmasterol and sitosterol), a mixture of sitosteryl ester derivatives of fatty acids, sitosterol-3-O-beta-D-glucopyranoside, stigmasterol-3-O-beta-D-glucopyranoside and saturated and unsaturated fatty acids. The structures of the isolated compounds were identified by 1 H and 13 C NMR spectral analysis and comparison with literature data. The mixtures of 3-beta-hydroxysterols and fatty acids were analysed by GC/MS. (author)

  5. Cholesterol supplementation improves growth rates of Histomonas meleagridis in vitro.

    Science.gov (United States)

    Gruber, Janine; Pletzer, Alena; Hess, Michael

    2018-02-01

    Research on the energy metabolism of various protozoan parasites showed the essentiality and benefits of cholesterol in the cultivation of these organisms. However, not much is known about the energy metabolism of Histomonas meleagridis, although such information is of high importance to improve cultivation of the parasite for advancements in diagnostics, research and vaccine development. By supplementing a serum enriched cultivation medium with cholesterol, numbers of parasites could be doubled in comparison to unsupplemented negative controls. This effect was demonstrated for two different strains of the parasite, at different levels of in vitro-passages and for histomonads under xenic or monoxenic settings. Supplementing medium free of serum with cholesterol, resulted in significant growth of the parasite over 72 h. However, there were differences in growth behaviour in serum free medium between the different histomonad cultures and continuous passaging of the cultures without serum was not possible. Monitoring the bacterial growth of two different co-cultivated E. coli strains in monoxenic histomonad cultures during these experiments showed that there was no significant impact of cholesterol on the bacteria. Therefore, a direct effect of cholesterol on the parasite itself could be demonstrated. The results of these experiments supply new insights into the metabolism of H. meleagridis and it can be concluded that cholesterol is an important component to enhance parasite growth in vitro. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Targeting Sulfotransferase (SULT) 2B1b as a regulator of Cholesterol Metabolism in Prostate Cancer

    Science.gov (United States)

    2016-10-01

    associated with de novo androgen synthesis will be addressed based on the hypothesis that SULT2B1b promotes PCa proliferation by impacting the...evaluation of sulfonation activity on other sterols using in vitro assays. Seven thousand (7,000) compounds were screened after computational...stim- ulation, and previous studies have demonstrated that cholesterol canbeused as a precursor for androgen synthesis (6, 26). Thus, the impact of

  7. Different responsiveness to a high-fat/cholesterol diet in two inbred mice and underlying genetic factors: a whole genome microarray analysis

    Directory of Open Access Journals (Sweden)

    Jin Gang

    2009-10-01

    Full Text Available Abstract Background To investigate different responses to a high-fat/cholesterol diet and uncover their underlying genetic factors between C57BL/6J (B6 and DBA/2J (D2 inbred mice. Methods B6 and D2 mice were fed a high-fat/cholesterol diet for a series of time-points. Serum and bile lipid profiles, bile acid yields, hepatic apoptosis, gallstones and atherosclerosis formation were measured. Furthermore, a whole genome microarray was performed to screen hepatic genes expression profile. Quantitative real-time PCR, western blot and TUNEL assay were conducted to validate microarray data. Results After fed the high-fat/cholesterol diet, serum and bile total cholesterol, serum cholesterol esters, HDL cholesterol and Non-HDL cholesterol levels were altered in B6 but not significantly changed in D2; meanwhile, biliary bile acid was decreased in B6 but increased in D2. At the same time, hepatic apoptosis, gallstones and atherosclerotic lesions occurred in B6 but not in D2. The hepatic microarray analysis revealed distinctly different genes expression patterns between B6 and D2 mice. Their functional pathway groups included lipid metabolism, oxidative stress, immune/inflammation response and apoptosis. Quantitative real time PCR, TUNEL assay and western-blot results were consistent with microarray analysis. Conclusion Different genes expression patterns between B6 and D2 mice might provide a genetic basis for their distinctive responses to a high-fat/cholesterol diet, and give us an opportunity to identify novel pharmaceutical targets in related diseases in the future.

  8. Apolipoprotein B knockdown by AAV-delivered shRNA lowers plasma cholesterol in mice

    NARCIS (Netherlands)

    Koornneef, Annemart; Maczuga, Piotr; van Logtenstein, Richard; Borel, Florie; Blits, Bas; Ritsema, Tita; van Deventer, Sander; Petry, Harald; Konstantinova, Pavlina

    2011-01-01

    Serum low-density lipoprotein cholesterol (LDL-C) levels are proportionate to the risk of atherosclerotic cardiovascular disease. In order to reduce serum total cholesterol and LDL-C levels in mice, RNA interference (RNAi) was used to inhibit expression of the structural protein of LDL-C,

  9. Restoring Mitochondrial Function: A Small Molecule-mediated Approach to Enhance Glucose Stimulated Insulin Secretion in Cholesterol Accumulated Pancreatic beta cells

    Science.gov (United States)

    Asalla, Suman; Girada, Shravan Babu; Kuna, Ramya S.; Chowdhury, Debabrata; Kandagatla, Bhaskar; Oruganti, Srinivas; Bhadra, Utpal; Bhadra, Manika Pal; Kalivendi, Shasi Vardhan; Rao, Swetha Pavani; Row, Anupama; Ibrahim, A.; Ghosh, Partha Pratim; Mitra, Prasenjit

    2016-06-01

    Dyslipidemia, particularly the elevated serum cholesterol levels, aggravate the pathophysiology of type 2 diabetes. In the present study we explored the relationship between fasting blood sugar and serum lipid parameters in human volunteers which revealed a significant linear effect of serum cholesterol on fasting blood glucose. Short term feeding of cholesterol enriched diet to rodent model resulted in elevated serum cholesterol levels, cholesterol accumulation in pancreatic islets and hyperinsulinemia with modest increase in plasma glucose level. To explore the mechanism, we treated cultured BRIN-BD11 pancreatic beta cells with soluble cholesterol. Our data shows that cholesterol treatment of cultured pancreatic beta cells enhances total cellular cholesterol. While one hour cholesterol exposure enhances insulin exocytosis, overnight cholesterol accumulation in cultured pancreatic beta cells affects cellular respiration, and inhibits Glucose stimulated insulin secretion. We further report that (E)-4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl) hydrazono) ethyl) phenol (small molecule M1) prevents the cholesterol mediated blunting of cellular respiration and potentiates Glucose stimulated insulin secretion which was abolished in pancreatic beta cells on cholesterol accumulation.

  10. Long-term calcium supplementation may have adverse effects on serum cholesterol and carotid intima-media thickness in postmenopausal women: a double-blind, randomized, placebo-controlled trial.

    Science.gov (United States)

    Li, Songtao; Na, Lixin; Li, Ying; Gong, Liya; Yuan, Feifei; Niu, Yucun; Zhao, Yue; Sun, Changhao

    2013-11-01

    Several studies have focused on the effects of calcium intake on serum lipid concentrations in postmenopausal women. However, many premenopausal women are taking calcium supplements in China. To our knowledge, no studies have assessed whether the effects of calcium supplementation on blood lipids are similar between premenopausal and postmenopausal women. We assessed the effects of calcium supplementation on blood lipid concentrations in premenopausal and postmenopausal women with dyslipidemia. A total of 190 premenopausal women (30-40 y old) and 182 postmenopausal women (50-60 y old) with dyslipidemia were given 800 mg Ca/d or a placebo for 2 y in a double-blind, randomized, placebo-controlled trial. Blood pressure, fasting glucose and serum lipid concentrations, carotid intima-media thickness (CIMT), dietary nutrient intakes, and physical activity levels were determined at baseline and after 2 y. There was a significant interaction between calcium supplementation and menopausal status on serum cholesterol concentrations (P women (P women with dyslipidemia increases serum total cholesterol concentrations and CIMT. In postmenopausal women with dyslipidemia, calcium supplements should be prescribed with caution. This trial was registered at http://www.chictr.org/cn/ as ChiCTR-TRC-12002806.

  11. Plasma cholesterol and sodium in some Nigerians | Ighoroje ...

    African Journals Online (AJOL)

    Cholesterol moderates the fluidity of cell membrane and this in turn controls the transmembrane movement of Na+. We have thus attempted to investigate the relationship of serum cholesterol and Na+ concentrations in some Nigerians. Blood samples were obtained from 122 healthy adult Nigerians and the plasma ...

  12. Association between non-high-density lipoprotein cholesterol concentrations and mortality from coronary heart disease among Japanese men and women: the Ibaraki Prefectural Health Study.

    Science.gov (United States)

    Noda, Hiroyuki; Iso, Hiroyasu; Irie, Fujiko; Sairenchi, Toshimi; Ohtaka, Emiko; Ohta, Hitoshi

    2010-02-01

    The aim of this study was to examine whether non-high-density lipoprotein cholesterol (non-HDL-cholesterol) raises the risk of coronary heart disease in a dose-response fashion in a non-obese population with low total cholesterol levels and high HDL-cholesterol levels, such as Japanese. A total of 30,802 men and 60,417 women, aged 40 to 79 years with no history of stroke or coronary heart disease, completed a baseline risk factor survey in 1993 under the auspices of the Ibaraki Prefectural Health Study. Systematic mortality surveillance through 2003 identified 539 coronary heart disease deaths. The mean values for non-HDL-cholesterol were 140 mg/dL for men and 151 mg/dL for women. The corresponding mean values were 193 mg/dL and 208 mg/dL total cholesterol and 52 mg/dL and 57 mg/dL HDL-cholesterol, respectively. Men with non-HDL-cholesterol > or = 180 mg/dL had a two-fold higher age-adjusted risk of mortality from coronary heart disease than did those with non-HDL-cholesterol or = 180 mg/dL versus <100 mg/dL of non-HDL-cholesterol was 2.22 (95% confidence interval: 1.37 to 3.62) for men and 0.71 (0.37 to 1.34) for women. Higher concentrations of non-HDL-cholesterol were associated with an increased risk of mortality from coronary heart disease for men, but not for women.

  13. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway.

    Directory of Open Access Journals (Sweden)

    Kevin A Robertson

    2016-03-01

    Full Text Available In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1. Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.

  14. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway

    Science.gov (United States)

    Robertson, Kevin A.; Hsieh, Wei Yuan; Forster, Thorsten; Blanc, Mathieu; Lu, Hongjin; Crick, Peter J.; Yutuc, Eylan; Watterson, Steven; Martin, Kimberly; Griffiths, Samantha J.; Enright, Anton J.; Yamamoto, Mami; Pradeepa, Madapura M.; Lennox, Kimberly A.; Behlke, Mark A.; Talbot, Simon; Haas, Jürgen; Dölken, Lars; Griffiths, William J.; Wang, Yuqin; Angulo, Ana; Ghazal, Peter

    2016-01-01

    In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway. PMID:26938778

  15. Relationship of dietary intake of fish and non-fish selenium to serum lipids in Japanese rural coastal community.

    Science.gov (United States)

    Miyazaki, Yukiko; Koyama, Hiroshi; Nojiri, Masami; Suzuki, Shosuke

    2002-01-01

    Several studies have suggested that dietary selenium deficiency may be associated with an increased risk of coronary heart disease (CHD). In the present study, 55 men and 71 women were selected from participants in a health examination in a rural coastal community in Japan. The mean dietary selenium intake calculated from the simple food frequency questionnaire (SFFQ) was 127.5 micrograms/day. Fish was the major source of dietary selenium and it contributed to 68.7% of the daily total. HDL cholesterol was higher in the middle selenium intake group and in the high selenium intake group than in the low selenium intake group in all subjects and for males, and a significant difference was found between the middle selenium intake group and the low selenium intake group. The atherogenic index was significantly higher in the low selenium intake group than in the middle selenium intake group and in the high selenium intake group in males. GPx activity, total cholesterol and triacylglycerols did not show any significant differences among the three different selenium intake groups. Dietary intake of non-fish Se had a positive correlation with HDL cholesterol, and an inverse correlation with the atherogenic index in all subjects and for females. On the other hand, dietary intake of fish-Se had no relationship with any serum lipids. Non-fish Se is an important factor in selenium status for the prevention of CHD.

  16. Evaluation of probiotic potential of lactic acid bacteria to reduce in vitro cholesterol

    Directory of Open Access Journals (Sweden)

    Clementina Cueto

    2012-03-01

    Full Text Available Daily consumption of probiotics reduce levels of serum cholesterol by up to 3%, which is significant to prevent hypercholesterolemia, a risk factor for cardiovascular disease and cause of mortality. The genus Lactobacillus is used in industry as a probiotic and some species reduce serum cholesterol by two mechanisms, the adsorption of cholesterol and the production of the enzyme bile salt hydrolase, which vary according to species. The aim of the study was to assess the ability of probiotic bacteria group isolated from coast serum. 53 strains were isolated from nine coastal serum sample; the sensitivity to cefoxitin and vancomycin, and the tolerance to pH 2.0 and 0.3% bile salts were evaluated to determine its probiotic potential. Five microorganisms were selected and molecularly identified as Lactobacillus fermentum. The ability to absorb cholesterol measured by the method of Kimoto, showed a reduction of 53.06 ± 2.69 µg.mL-1 for strain K73 and 7.23 ± 2.69 µg. mL-1 for K75. These same strains showed the highest total and specific activity of the enzyme. The results didn´t show a relationship between the production of enzyme and adsorption of cholesterol. The strain with the greatest probiotic potential was K73. This hypocholesterolemic property will give strains added value to start the search for food matrices that allow decreasing serum cholesterol levels.

  17. Higher serum cholesterol is associated with intensified age-related neural network decoupling and cognitive decline in early- to mid-life.

    Science.gov (United States)

    Spielberg, Jeffrey M; Sadeh, Naomi; Leritz, Elizabeth C; McGlinchey, Regina E; Milberg, William P; Hayes, Jasmeet P; Salat, David H

    2017-06-01

    Mounting evidence indicates that serum cholesterol and other risk factors for cardiovascular disease intensify normative trajectories of age-related cognitive decline. However, the neural mechanisms by which this occurs remain largely unknown. To understand the impact of cholesterol on brain networks, we applied graph theory to resting-state fMRI in a large sample of early- to mid-life Veterans (N = 206, Mean age  = 32). A network emerged (centered on the banks of the superior temporal sulcus) that evidenced age-related decoupling (i.e., decreased network connectivity with age), but only in participants with clinically-elevated total cholesterol (≥180 mg/dL). Crucially, decoupling in this network corresponded to greater day-to-day disability and mediated age-related declines in psychomotor speed. Finally, examination of network organization revealed a pattern of age-related dedifferentiation for the banks of the superior temporal sulcus, again present only with higher cholesterol. More specifically, age was related to decreasing within-module communication (indexed by Within-Module Degree Z-Score) and increasing between-module communication (indexed by Participation Coefficient), but only in participants with clinically-elevated cholesterol. Follow-up analyses indicated that all findings were driven by low-density lipoprotein (LDL) levels, rather than high-density lipoprotein (HDL) or triglycerides, which is interesting as LDL levels have been linked to increased risk for cardiovascular disease, whereas HDL levels appear inversely related to such disease. These findings provide novel insight into the deleterious effects of cholesterol on brain health and suggest that cholesterol accelerates the impact of age on neural trajectories by disrupting connectivity in circuits implicated in integrative processes and behavioral control. Hum Brain Mapp 38:3249-3261, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. [Serum lipids and blood pressure levels in the +Mapuche population living in the Chilean region of Araucanía].

    Science.gov (United States)

    Stockins, B; Larenas, G; Charles, M; Standen, D; Espinoza, O; Illesca, M; Opazo, J A; Carrasco, B; Lanas, F; Davis, M

    1998-11-01

    Chilean aboriginal populations (Mapuche) predominantly live in the region of Araucanía, in the southern part of the country. Their cardiovascular risk factors have not been systematically assessed. To study the prevalence of cardiovascular risk factors in the Mapuche population. Blood pressure, weight, height, dietary habits, fasting serum total cholesterol, HDL cholesterol and triglycerides were measured in 1.948 adults living in 28 Mapuche communities. Thirteen percent of males and 16% of females had high blood pressure. Body mass index was 25.5 kg/m2 in males and 28.1 kg/m2 in females. Forty five percent of women and 24% of men were classified as obese. Mean serum total cholesterol was 186.7 +/- 9.6 mg/dl, HDL cholesterol was 58.7 +/- 30.7 mg/dl, total cholesterol/HDL cholesterol was 3.4 +/- 2 and triglycerides were 155.2 +/- 91.2 mg/dl. Twenty eight percent of males and 9.6% of females smoked. Mapuche individuals have higher levels of HDL cholesterol a better total cholesterol/HDL cholesterol ratio and lower frequency of smoking than non aboriginal Chileans subjects.

  19. An update on the measurement and management of cholesterol with ...

    African Journals Online (AJOL)

    ... and management of cholesterol with specific reference to secondary prevention of ... Serum-cholesterol has emerged as the dominant risk factor for coronary ... reduce the incidence of secondary myocardial infarctions, strokes and death ...

  20. Phytosterol capsules and serum cholesterol in hypercholesterolemia: a randomized controlled trial.

    Science.gov (United States)

    Ottestad, Inger; Ose, Leiv; Wennersberg, Marianne H; Granlund, Linda; Kirkhus, Bente; Retterstøl, Kjetil

    2013-06-01

    Phytosterols are recommended in combination with diet therapy to reduce elevated LDL-cholesterol level. Meta-analyses indicate a 10% reduction in LDL-cholesterol from intake of approximately 2 g phytosterols/d incorporated into fat-based foods. However, the cholesterol lowering effect from capsules containing phytosterols is less documented. The pre-specified primary endpoint of the present study was to investigate the effect of capsules with phytosterols on circulating LDL-cholesterol in patients with mild to moderate hypercholesterolemia. In a double-blinded, randomized, placebo-controlled crossover study, 41 men and women were randomized into two four-weeks intervention periods with softgel capsules containing either phytosterols (2.0 g/d) or sunflower oil. There was a three-weeks washout period between the intervention periods. No significant difference in total- or LDL-cholesterol between the phytosterol and the placebo period were observed after four weeks intervention (0.0 mmol/L (95%CI: -0.3 to 0.2), P = 0.74 and -0.1 mmol/L (95%CI: -0.3 to 0.1), P = 0.32, respectively). Daily intake of capsules containing 2 g phytosterols did not reduce total- or LDL-cholesterol significantly in a highly relevant target group for the use of phytosterol products. The present results may emphasize the importance of choosing a suitable dosage-delivery system in order to achieve optimal cholesterol lowering effect. The study was registered at www.clinicaltrials.gov, IDno:NCT00485095. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.