WorldWideScience

Sample records for serpentine grassland electronic

  1. Effects of nitrogen deposition and cattle grazing on productivity, invasion impact, and soil microbial processes in a serpentine grassland

    Science.gov (United States)

    Pasari, J.; Hernandez, D.; Selmants, P. C.; Keck, D.

    2010-12-01

    In recent decades, human activities have vastly increased the amount of biologically available nitrogen (N) in the biosphere. The resulting increase in N availability has broadly affected ecosystems through increased productivity, changes in species composition, altered nutrient cycles, and increases in invasion by exotic plant species, especially in systems that were historically low in N. California serpentine grasslands are N-limited ecosystems historically dominated by native species including several threatened and endangered plants and animals. Cattle grazing has emerged as the primary tool for controlling the impact of nitrophilic exotic grasses whose increased abundance has paralleled the regional traffic-derived increase in atmospheric N deposition. We examined the interactive effects of cattle grazing and N deposition on plant community composition, productivity, invasion resistance, and microbial processes in the Bay Area's largest serpentine grassland to determine the efficacy of current management strategies as well as the biogeochemical consequences of exotic species invasion. In the first two years of the study, aboveground net primary productivity decreased in response to grazing and increased in response to nitrogen addition. However, contrary to our hypotheses the change in productivity was not due to an increase in exotic species cover as there was little overall effect of grazing or N addition on species composition. Microbial activity was more responsive to grazing and N. Potential net N mineralization rates increased with N addition, but were not affected by grazing. In contrast, soil respiration rates were inhibited by grazing, but were not affected by N addition; suggesting strong carbon-limitation of soil microbial activity, particularly under grazing. Site differences in soil depth and grazing intensity were often more important than treatment effects. We suspect that the unusually dry conditions in the first two growing seasons inhibited

  2. Mutualism and Adaptive Divergence: Co-Invasion of a Heterogeneous Grassland by an Exotic Legume-Rhizobium Symbiosis

    Science.gov (United States)

    Porter, Stephanie S.; Stanton, Maureen L.; Rice, Kevin J.

    2011-01-01

    Species interactions play a critical role in biological invasions. For example, exotic plant and microbe mutualists can facilitate each other's spread as they co-invade novel ranges. Environmental context may influence the effect of mutualisms on invasions in heterogeneous environments, however these effects are poorly understood. We examined the mutualism between the legume, Medicago polymorpha, and the rhizobium, Ensifer medicae, which have both invaded California grasslands. Many of these invaded grasslands are composed of a patchwork of harsh serpentine and relatively benign non-serpentine soils. We grew legume genotypes collected from serpentine or non-serpentine soil in both types of soil in combination with rhizobium genotypes from serpentine or non-serpentine soils and in the absence of rhizobia. Legumes invested more strongly in the mutualism in the home soil type and trends in fitness suggested that this ecotypic divergence was adaptive. Serpentine legumes had greater allocation to symbiotic root nodules in serpentine soil than did non-serpentine legumes and non-serpentine legumes had greater allocation to nodules in non-serpentine soil than did serpentine legumes. Therefore, this invasive legume has undergone the rapid evolution of divergence for soil-specific investment in the mutualism. Contrary to theoretical expectations, the mutualism was less beneficial for legumes grown on the stressful serpentine soil than on the non-serpentine soil, possibly due to the inhibitory effects of serpentine on the benefits derived from the interaction. The soil-specific ability to allocate to a robust microbial mutualism may be a critical, and previously overlooked, adaptation for plants adapting to heterogeneous environments during invasion. PMID:22174755

  3. Mutualism and adaptive divergence: co-invasion of a heterogeneous grassland by an exotic legume-rhizobium symbiosis.

    Directory of Open Access Journals (Sweden)

    Stephanie S Porter

    Full Text Available Species interactions play a critical role in biological invasions. For example, exotic plant and microbe mutualists can facilitate each other's spread as they co-invade novel ranges. Environmental context may influence the effect of mutualisms on invasions in heterogeneous environments, however these effects are poorly understood. We examined the mutualism between the legume, Medicago polymorpha, and the rhizobium, Ensifer medicae, which have both invaded California grasslands. Many of these invaded grasslands are composed of a patchwork of harsh serpentine and relatively benign non-serpentine soils. We grew legume genotypes collected from serpentine or non-serpentine soil in both types of soil in combination with rhizobium genotypes from serpentine or non-serpentine soils and in the absence of rhizobia. Legumes invested more strongly in the mutualism in the home soil type and trends in fitness suggested that this ecotypic divergence was adaptive. Serpentine legumes had greater allocation to symbiotic root nodules in serpentine soil than did non-serpentine legumes and non-serpentine legumes had greater allocation to nodules in non-serpentine soil than did serpentine legumes. Therefore, this invasive legume has undergone the rapid evolution of divergence for soil-specific investment in the mutualism. Contrary to theoretical expectations, the mutualism was less beneficial for legumes grown on the stressful serpentine soil than on the non-serpentine soil, possibly due to the inhibitory effects of serpentine on the benefits derived from the interaction. The soil-specific ability to allocate to a robust microbial mutualism may be a critical, and previously overlooked, adaptation for plants adapting to heterogeneous environments during invasion.

  4. Shielded serpentine traveling wave tube deflection structure

    Science.gov (United States)

    Hudson, C.L.; Spector, J.

    1994-12-27

    A shielded serpentine slow wave deflection structure is disclosed having a serpentine signal conductor within a channel groove. The channel groove is formed by a serpentine channel in a trough plate and a ground plane. The serpentine signal conductor is supported at its ends by coaxial feed through connectors. A beam interaction trough intersects the channel groove to form a plurality of beam interaction regions wherein an electron beam may be deflected relative to the serpentine signal conductor. 4 figures.

  5. Testing nickel tolerance of Sorghastrum nutans and its associated soil microbial community from serpentine and prairie soils

    International Nuclear Information System (INIS)

    Doherty, Jennifer H.; Ji Baoming; Casper, Brenda B.

    2008-01-01

    Ecotypes of Sorghastrum nutans from a naturally metalliferous serpentine grassland and the tallgrass prairie were assessed for Ni tolerance and their utility in remediation of Ni-polluted soils. Plants were inoculated with serpentine arbuscular mycorrhizal (AM) root inoculum or whole soil microbial communities, originating from either prairie or serpentine, to test their effects on plant performance in the presence of Ni. Serpentine plants had marginally higher Ni tolerance as indicated by higher survival. Ni reduced plant biomass and AM root colonization for both ecotypes. The serpentine AM fungi and whole microbial community treatments decreased plant biomass relative to uninoculated plants, while the prairie microbial community had no effect. Differences in how the soil communities affect plant performance were not reflected in patterns of root colonization by AM fungi. Thus, serpentine plants may be suited for reclamation of Ni-polluted soils, but AM fungi that occur on serpentine do not improve Ni tolerance. - Ni tolerance of Sorghastrum nutans differs slightly between serpentine and prairie populations and is negatively affected by serpentine soil and root inoculation

  6. Orthogonally interdigitated shielded serpentine travelling wave cathode ray tube deflection structure

    Science.gov (United States)

    Hagen, E.C.; Hudson, C.L.

    1995-07-25

    A new deflection structure which deflects a beam of charged particles, such as an electron beam, includes a serpentine set for transmitting a deflection field, and a shielding frame for housing the serpentine set. The serpentine set includes a vertical serpentine deflection element and a horizontal serpentine deflection element. These deflection elements are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage, through which the electron beam passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame includes a plurality of ground blocks, and forms an internal serpentine trough within these ground blocks, for housing the serpentine set. The deflection structure further includes a plurality of feedthrough connectors which are inserted through the shielding frame, and which are electrically connected to the serpentine set. 10 figs.

  7. Dynamics of soil chemistry in different serpentine habitats from Serbia

    Directory of Open Access Journals (Sweden)

    Vicić Dražen D.

    2014-01-01

    Full Text Available To enhance understanding of edaphic conditions in serpentine habitats, a thorough investigation of chemical and mechanical properties of three soils from disjunct ultramafic outcrops in the central Balkans was undertaken. Soil from a nearby chemically-contrasting limestone habitat was also analyzed. Three plant species differently associated with serpentine (Halacsya sendtneri, Cheilanthes marantae, and Seseli rigidum were references for site and soil selection. Twenty elements were scanned for, and fourteen were measured in seven sequentially-extracted soil fractions. Quantified soil properties also included: pH, levels of free CaCO3, organic matter, P2O5, K2O, N, C, S, cation exchange capacity, total organic carbon, field capacity and soil mechanical composition. The usual harsh components for plant growth in serpentine soil such as elevated Mg:Ca ratio, high levels of Ni, Cr, or Co, were significantly lower in the available fractions. There was a significant positive correlation of organic matter and field capacity, with most available Ca (70-80% found in the mobile, rather than the organically-bound fraction. This showed that a more favorable Mg:Ca ratio is highly dependent upon a higher field capacity, which is also in accordance with a more developed vegetation. Increasing the availability of metals (Al, Ba, Ca, Cr, Cu, Mg, Ni, Zn in a more developed serpentine grassland and forest vegetation, occurred only simultaneously with decrease of the Mg:Ca ratio and rise in other factors of fertility (N, P, K. Progressive development of ecosystem complexity therefore raised the availability of metals, but also reduced harsh Mg:Ca ratio disproportion, boosted levels of nutrients and raised soil field capacity. Principal components analysis confirmed that the main differences among serpentine habitats lay primarily in factors of fertility. The common habitat which hosts all three reference species offers intermediate conditions in a plant habitat

  8. Sulfur in serpentinized oceanic peridotites: Serpentinization processes and microbial sulfate reduction

    Science.gov (United States)

    Alt, J.C.; Shanks, Wayne C.

    1998-01-01

    The mineralogy, contents, and isotopic compositions of sulfur in oceanic serpentinites reflect variations in temperatures and fluid fluxes. Serpentinization of serpentinization of Iberian Margin peridotites occurred at low temperatures (???20??-200??C) and high water/rock ratios. Complete serpentinization and consumption of ferrous iron allowed evolution to higher fO2. Microbial reduction of seawater sulfate resulted in addition of low-??34S sulfide (-15 to -43???) and formation of higher-sulfur assemblages that include valleriite and pyrite. The high SO4/total S ratio of Hess Deep serpentinites (0.89) results in an increase of total sulfur and high ??34S of total sulfur (mean ??? 8???). In contrast, Iberian Margin serpentinites gained large amounts of 34S-poor sulfide (mean total S = 3800 ppm), and the high sulfide/total S ratio (0.61) results in a net decrease in ??34S of total sulfur (mean ??? -5???). Thus serpentinization is a net sink for seawater sulfur, but the amount fixed and its isotopic composition vary significantly. Serpentinization may result in uptake of 0.4-14 ?? 1012 g S yr-1 from the oceans, comparable to isotopic exchange in mafic rocks of seafloor hydrothermal systems and approaching global fluxes of riverine sulfate input and sedimentary sulfide output.

  9. Radiation color and electron-hole centers of serpentines

    International Nuclear Information System (INIS)

    Lyutoev, V.P.; Yukhtanov, P.P.

    1999-01-01

    Radiation-induced coloring of serpentine (Mg 3 [Si 2 O 5 ](OH) 4 ), gamma radiation dose being 30 Mrad, is studied by the ESR and absorption spectroscopy methods. It is ascertained that ionizing radiation gives rise to formation of radiation centers on the mineral basic structural elements. paramagnetic centers and coloring centers, relating to radiation centers, stem from the same type of defects - O - oxygen centers, formed as a result of radiation-induced break of OH-bonds [ru

  10. Moessbauer Study of Serpentine Minerals in the Ultramafic Body of Tehuitzingo, Southern Mexico

    International Nuclear Information System (INIS)

    Gonzalez-Mancera, G.; Ortega-Gutierrez, F.; Nava, N. E.; Arriola, H. S.

    2003-01-01

    Serpentine 'polymorph' minerals (chrysotile, lizardite, and antigorite) are hydrous Mg-Fe silicates that commonly form serpentine rock (serpentinite) by hydration of olivine-pyroxene peridotites from the mantle of the Earth. During the complex geologic history of orogenic belts, the redox and hydration state of the mantle changes, and olivine and pyroxenes are replaced by serpentine group minerals during tectonic deformation and uplift. Unfortunately, modern microanalysis of minerals by electron probe does not distinguish the oxidation state of iron, and it has to be assumed or estimated by precise methods, such as Moessbauer spectrometry. The studied samples were collected in the Xayacatlan Formation of the Tehuitzingo area, State of Puebla, within the Paleozoic Acatlan Complex. The original mantle peridotite was completely converted to serpentinite, with secondary crystallization of Fe-Mg oxides, calcsilicates, and carbonates. The three serpentine 'polymorphs' were identified in the studied samples, although with a clear predominance of the high-temperature member antigorite, which was preliminary determined by optical petrography, X-ray diffraction, electron probe, and scanning electron microscopy. Microprobe total iron content in most specimens was +3 substitution at the tetrahedral site may also occur according to some Moessbauer studies. This paper studied the iron valence state and its position in serpentine minerals of the Tehuitzingo ultramafic body using Moessbauer techniques. The analyses in most samples detected one doublet, compatible with Fe +2 in octahedral coordination, but only two specimens displayed two doublets corresponding to Fe +2 and Fe +3 in octahedral coordination. Doublets corresponding to Fe +3 in tetrahedral sites were not found. The parameters obtained for all the Fe +2 doublets are similar (QS=2.76±0.08 mm/sec, and IS=1.12±0.01), whereas the ratio Fe +3 /Fe +2 (0-0.34) has a strong tendency for iron to be in a divalent state. This

  11. Mantle wedge serpentinization effects on slab dips

    Directory of Open Access Journals (Sweden)

    Eh Tan

    2017-01-01

    Full Text Available The mechanical coupling between a subducting slab and the overlying mantle wedge is an important factor in controlling the subduction dip angle and the flow in mantel wedge. This paper investigates the role of the amount of mantle serpentinization on the subduction zone evolution. With numerical thermos-mechanical models with elasto-visco-plastic rheology, we vary the thickness and depth extent of mantle serpentinization in the mantle wedge to control the degree of coupling between the slab and mantle wedge. A thin serpentinized mantle layer is required for stable subduction. For models with stable subduction, we find that the slab dip is affected by the down-dip extent and the mantle serpentinization thickness. A critical down-dip extent exists in mantle serpentinization, determined by the thickness of the overriding lithosphere. If the down-dip extent does not exceed the critical depth, the slab is partially coupled to the overriding lithosphere and has a constant dip angle regardless of the mantle serpentinization thickness. However, if the down-dip extent exceeds the critical depth, the slab and the base of the overriding lithosphere would be separated and decoupled by a thick layer of serpentinized peridotite. This allows further slab bending and results in steeper slab dip. Increasing mantle serpentinization thickness will also result in larger slab dip. We also find that with weak mantle wedge, there is no material flowing from the asthenosphere into the serpentinized mantle wedge. All of these results indicate that serpentinization is an important ingredient when studying the subduction dynamics in the mantle wedge.

  12. Change in Frictional Behavior during Olivine Serpentinization

    Science.gov (United States)

    Xing, T.; Zhu, W.; French, M. E.; Belzer, B.

    2017-12-01

    Hydration of mantle peridotites (serpentinization) is pervasive at plate boundaries. It is widely accepted that serpentinization is intrinsically linked to hydromechanical processes within the sub-seafloor, where the interplay between cracking, fluid supply and chemical reactions is responsible for a spectrum of fault slip, from earthquake swarms at the transform faults, to slow slip events at the subduction zone. Previous studies demonstrate that serpentine minerals can either promote slip or creep depend on many factors that include sliding velocity, temperature, pressure, interstitial fluids, etc. One missing link from the experimental investigation of serpentine to observations of tectonic faults is the extent of alteration necessary for changing the frictional behaviors. We quantify changes in frictional behavior due to serpentinization by conducting experiments after in-situ serpentinization of olivine gouge. In the sample configuration a layer of powder is sandwiched between porous sandstone blocks with 35° saw-cut surface. The starting material of fine-grained (63 120 µm) olivine powder is reacted with deionized water for 72 hours at 150°C before loading starts. Under the conventional triaxial configuration, the sample is stressed until sliding occurs within the gouge. A series of velocity-steps is then performed to measure the response of friction coefficient to variations of sliding velocity from which the rate-and-state parameters are deduced. For comparison, we measured the frictional behavior of unaltered olivine and pure serpentine gouges.Our results confirm that serpentinization causes reduced frictional strength and velocity weakening. In unaltered olivine gouge, an increase in frictional resistance with increasing sliding velocity is observed, whereas the serpentinized olivine and serpentine gouges favor velocity weakening behaviors at the same conditions. Furthermore, we observed that high pore pressures cause velocity weakening in olivine but

  13. Characterization of carbonated serpentine using XPS and TEM

    International Nuclear Information System (INIS)

    Schulze, Roland K.; Hill, Mary Ann; Field, Robert D.; Papin, Pallas A.; Hanrahan, Robert J.; Byler, Darrin D.

    2004-01-01

    With the increasing concentration volume of carbon dioxide in the atmosphere, there has been an increasing interest in carbon dioxide sequestration. One method is to store the carbon dioxide in mineral form, reacting solution dissolved CO 2 to precipitate carbonates. In order to understand whether or not such an endeavor is feasible, the carbonation reaction must first be understood. In this study, the surface of ground serpentine, untreated, heat treated and following a carbonation experiment, has been characterized using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results indicate that the mechanism for the reaction involves dissolution of the serpentine through the formation of an amorphous phase and subsequent precipitation of magnesite. The rate limiting step appears to be the diffusion of Mg out of the amorphous phase

  14. Biogeochemical weathering of serpentinites: An examination of incipient dissolution affecting serpentine soil formation

    International Nuclear Information System (INIS)

    Baumeister, Julie L.; Hausrath, Elisabeth M.; Olsen, Amanda A.; Tschauner, Oliver; Adcock, Christopher T.; Metcalf, Rodney V.

    2015-01-01

    Highlights: • Dissolution of primary minerals is important to porosity generation in serpentinites. • Mineral weathering extent in serpentinites follows the order Fe > Mg > Al rich minerals. • Fe-oxidizing bacteria may mediate Fe-rich primary and serpentine mineral alteration. • Serpentinite weathering is strongly impacted by degree of serpentinization. - Abstract: Serpentinite rocks, high in Mg and trace elements including Ni, Cr, Cd, Co, Cu, and Mn and low in nutrients such as Ca, K, and P, form serpentine soils with similar chemical properties resulting in chemically extreme environments for the biota that grow upon them. The impact of parent material on soil characteristics is most important in young soils, and therefore the incipient weathering of serpentinite rock likely has a strong effect on the development of serpentine soils and ecosystems. Additionally, porosity generation is a crucial process in converting rock into a soil that can support vegetation. Here, the important factors affecting the incipient weathering of serpentinite rock are examined at two sites in the Klamath Mountains, California. Serpentinite-derived soils and serpentinite rock cores were collected in depth profiles from each sampling location. Mineral dissolution in weathered serpentinite samples, determined by scanning electron microscopy, energy dispersive spectrometry, electron microprobe analyses, and synchrotron microXRD, is consistent with the order, from most weathered to least weathered: Fe-rich pyroxene > antigorite > Mg-rich lizardite > Al-rich lizardite. These results suggest that the initial porosity formation within serpentinite rock, impacting the formation of serpentine soil on which vegetation can exist, is strongly affected both by the presence of non-serpentine primary minerals as well as the composition of the serpentine minerals. In particular, the presence of ferrous Fe appears to contribute to greater dissolution, whereas the presence of Al within the

  15. Numerical quantification of habitability in serpentinizing systems

    Science.gov (United States)

    Som, S.; Alperin, M. J.; Hoehler, T. M.

    2012-12-01

    The likely presence of liquid water in contact with olivine-bearing rocks on Mars, the detection of serpentine minerals and of methane emissions possibly consistent with serpentinization, and the observation of serpentine-associated methane-cycling communities on Earth have all led to excitement over the potential of such systems to host life on Mars, even into the present day. However, the habitability of subsurface serpentinizing systems on Mars does not necessarily follow from these qualitative observations. In particular, while the production of H2 during serpentinization could provide methanogens with a needed substrate, the alkaline conditions and corresponding potential for carbon limitation that arise in concert are negatives against which H2 supply must be balanced. We considered this balance via a coupled geochemical-bioenergetic model that weighs the outputs of serpentinization against the metabolic requirements of methanogenesis, in an energetic frame of reference. Serpentinization is modeled using the "Geochemist's Workbench" (GWB) whereby ultramafic harzburgite rocks are reacted with oxygen and sulfate depleted seawater. Reaction kinetics are not explicitly considered, but comparable effects of partial reaction are approximated by assuming post-reaction dilution of equilibrated fluids. The output of GWB serves as the input to the bioenergetic model, which calculates methanogenic energy yields based on spherically-symmetrical diffusion of substrates to a cell followed by reaction at the diffusion-limited rate. Membrane selectivity for substrate transport is explicitly considered. Results will be report updates for two scenarios: (i) High temperature serpentinization followed by cooling and transport of equilibrated fluid to a lower temperature regime accessible to biology; (ii) Serpentinization within the biologically-tolerated range of temperatures. Such coupled models demonstrate that environmental variability with respect to both water-rock reaction

  16. Design Methodology and Experimental Verification of Serpentine/Folded Waveguide TWTs

    Science.gov (United States)

    2016-03-17

    FW), oscillation, serpentine, stopband, traveling -wave tube (TWT), vacuum electronics. I. INTRODUCTION DEVELOPMENT of high-power broadband vacuum elec...tron devices (VEDs) beyond Ka-band using conventional coupled-cavity and helix traveling -wave tube (TWT) RF cir- cuit fabrication techniques is...bottom plot. III. G-BAND CIRCUIT DESIGN AND EXPERIMENTAL VALIDATION The primary motivation for the G-band amplifier was to develop a high-power broadband

  17. Large-Scale Deformation and Uplift Associated with Serpentinization

    Science.gov (United States)

    Germanovich, L. N.; Lowell, R. P.; Smith, J. E.

    2014-12-01

    Geologic and geophysical data suggest that partially serpentinized peridotites and serpentinites are a significant part of the oceanic lithosphere. All serpentinization reactions are exothermic and result in volume expansion as high as 40%. Volume expansion beneath the seafloor will lead to surface uplift and elevated stresses in the neighborhood of the region undergoing serpentinization. The serpentinization-induced stresses are likely to result in faulting or tensile fracturing that promote the serpentinization process by creating new permeability and allowing fluid access to fresh peridotite. To explore these issues, we developed a first-order model of crustal deformation by considering an inclusion undergoing transformation strain in an elastic half-space. Using solutions for inclusions of different shapes, orientations, and depths, we calculate the surface uplift and mechanical stresses generated by the serpentinization processes. We discuss the topographic features at the TAG hydrothermal field (Mid-Atlantic Ridge, 26°N), uplift of the Miyazaki Plain (Southwestern Japan), and tectonic history of the Atlantic Massif (inside corner high of the Mid-Atlantic Ridge, 30°N, and the Atlantis Transform Fault). Our analysis suggests that an anomalous salient of 3 km in diameter and 100 m high at TAG may have resulted from approximately 20% transformational strain in a region beneath the footwall of the TAG detachment fault. This serpentinization process tends to promote slip along some overlying normal faults, which may then enhance fluid pathways to the deeper crust to continue the serpentinization process. The serpentinization also favors slip and seismicity along the antithetic faults identified below the TAG detachment fault. Our solution for the Miyazaki Plain above the Kyushu-Palau subduction zone explains the observed uplift of 120 m, but the transformational strain needs only be 3%. Transformational strains associated with serpentinization in this region may

  18. Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site.

    Science.gov (United States)

    Suzuki, Shino; Kuenen, J Gijs; Schipper, Kira; van der Velde, Suzanne; Ishii, Shun'ichi; Wu, Angela; Sorokin, Dimitry Y; Tenney, Aaron; Meng, XianYing; Morrill, Penny L; Kamagata, Yoichi; Muyzer, Gerard; Nealson, Kenneth H

    2014-05-21

    Serpentinization, or the aqueous alteration of ultramafic rocks, results in challenging environments for life in continental sites due to the combination of extremely high pH, low salinity and lack of obvious electron acceptors and carbon sources. Nevertheless, certain Betaproteobacteria have been frequently observed in such environments. Here we describe physiological and genomic features of three related Betaproteobacterial strains isolated from highly alkaline (pH 11.6) serpentinizing springs at The Cedars, California. All three strains are obligate alkaliphiles with an optimum for growth at pH 11 and are capable of autotrophic growth with hydrogen, calcium carbonate and oxygen. The three strains exhibit differences, however, regarding the utilization of organic carbon and electron acceptors. Their global distribution and physiological, genomic and transcriptomic characteristics indicate that the strains are adapted to the alkaline and calcium-rich environments represented by the terrestrial serpentinizing ecosystems. We propose placing these strains in a new genus 'Serpentinomonas'.

  19. Thermal activation of serpentine for adsorption of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chun-Yan [College of Land and Environment, Shenyang Agricultural University, Shenyang (China); College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou (China); Liang, Cheng-Hua, E-mail: liang110161@163.com [College of Land and Environment, Shenyang Agricultural University, Shenyang (China); Yin, Yan [Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang (China); Du, Li-Yu [College of Land and Environment, Shenyang Agricultural University, Shenyang (China)

    2017-05-05

    Highlights: • Thermal activated serpentine was prepared by changing heated temperature. • Thermal activated serpentine exhibited excellent adsorption behavior for cadmium. • The adsorption mechanisms could be explained as formation of CdCO{sub 3} and Cd(OH){sub 2}. • The adsorption obeyed Langmuir model and pseudo second order kinetics model. - Abstract: Thermal activated serpentine with high adsorption capacity for heavy metals was prepared. The batch experiment studies were conducted to evaluate the adsorption performance of Cd{sup 2+} in aqueous solution using thermal activated serpentine as adsorbent. These samples before and after adsorption were characterized by XRD, FT-IR, SEM, XPS, and N{sub 2} adsorption-desorption at low temperature. It was found that serpentine with layered structure transformed to forsterite with amorphous structure after thermal treatment at over 700 °C, while the surface area of the samples was increased with activated temperature and the serpentine activated at 700 °C (S-700) presented the largest surface area. The pH of solution after adsorption was increased in different degrees due to hydrolysis of MgO in serpentine, resulting in enhancing adsorption of Cd{sup 2+}. The S-700 exhibited the maximum equilibrium adsorption capacity (15.21 mg/g), which was 2 times more than pristine serpentine. Langmuir isotherm was proved to describe the equilibrium adsorption data better than Freundlich isotherm and pseudo second order kinetics model could fit the adsorption kinetics processes well. Based on the results of characterization with XPS and XRD, the adsorption mechanisms could be explained as primarily formation of CdCO{sub 3} and Cd(OH){sub 2} precipitation on the surface of serpentine.

  20. Thermal activation of serpentine for adsorption of cadmium

    International Nuclear Information System (INIS)

    Cao, Chun-Yan; Liang, Cheng-Hua; Yin, Yan; Du, Li-Yu

    2017-01-01

    Highlights: • Thermal activated serpentine was prepared by changing heated temperature. • Thermal activated serpentine exhibited excellent adsorption behavior for cadmium. • The adsorption mechanisms could be explained as formation of CdCO_3 and Cd(OH)_2. • The adsorption obeyed Langmuir model and pseudo second order kinetics model. - Abstract: Thermal activated serpentine with high adsorption capacity for heavy metals was prepared. The batch experiment studies were conducted to evaluate the adsorption performance of Cd"2"+ in aqueous solution using thermal activated serpentine as adsorbent. These samples before and after adsorption were characterized by XRD, FT-IR, SEM, XPS, and N_2 adsorption-desorption at low temperature. It was found that serpentine with layered structure transformed to forsterite with amorphous structure after thermal treatment at over 700 °C, while the surface area of the samples was increased with activated temperature and the serpentine activated at 700 °C (S-700) presented the largest surface area. The pH of solution after adsorption was increased in different degrees due to hydrolysis of MgO in serpentine, resulting in enhancing adsorption of Cd"2"+. The S-700 exhibited the maximum equilibrium adsorption capacity (15.21 mg/g), which was 2 times more than pristine serpentine. Langmuir isotherm was proved to describe the equilibrium adsorption data better than Freundlich isotherm and pseudo second order kinetics model could fit the adsorption kinetics processes well. Based on the results of characterization with XPS and XRD, the adsorption mechanisms could be explained as primarily formation of CdCO_3 and Cd(OH)_2 precipitation on the surface of serpentine.

  1. Transmission of neutrons in serpentine mixed and ordinary concrete a comparative study

    International Nuclear Information System (INIS)

    Ravishankar, R.; Bhattacharyya, Sarmishtha; Bandyopadhyay, Tapas; Sarkar, P.K.

    2002-01-01

    Full text: In particle accelerator facilities, for radiation shielding, concrete is commonly used for its effectiveness in attenuating neutrons in addition to its good structural and mechanical properties. Neutron attenuation depends largely on the water content in the concrete. Serpentine mixed concrete is reported to retain better water content than ordinary concrete. Experiments have been carried out to compare neutron attenuation properties of Serpentine mixed concrete slabs and ordinary concrete slabs of different thickness. Transmission of neutrons from a 185 GBq Pu-Be neutron source has been studied using NE-213 liquid scintillator detector, along with the associated electronics to discriminate neutron from gamma using pulse shape discrimination techniques. The energy differential neutron spectra transmitted through the concrete slabs and the corresponding dose have been obtained by unfolding the pulse height spectra using the FERDOR-U computer code and proper response matrix data of the NE-213 detector. The neutron transmission factors through both Serpentine and Ordinary concrete slabs have been studied. The results show serpentine mixed concrete slabs can attenuate more neutrons of varying energies compared to ordinary concrete slabs of equal dimensions. From the trend, it has been found out, with the increase in slab thickness, the gain in neutron attenuation increases. This is due to increase in quantity of serpentine with the increase in thickness of, concrete. A Monte Carlo simulation carried out, for theoretical analysis of the results, has been found to be in order

  2. Transmission of neutrons in serpentine mixed and ordinary concrete- a comparative study

    International Nuclear Information System (INIS)

    Ravishankar, R.; Bhattacharyya, Sarmishtha; Bandyopadhyay, Tapas; Sarkar, P. K.

    2002-01-01

    In particle accelerator facilities, for radiation shielding, concrete is commonly used for its effectiveness in attenuating neutrons in addition to its good structural and mechanical properties. Neutron attenuation depends largely on the water content in the concrete. Serpentine mixed concrete is reported to retain better water content than ordinary concrete. Experiments have been carried out to compare neutron attenuation properties of Serpentine mixed concrete slabs and ordinary concrete slabs of different thickness. Transmission of neutrons from a 185 GBq Pu-Be neutron source has been studied using NE-213 liquid scintillator detector, along with the associated electronics to discriminate neutron from gamma using pulse shape discrimination techniques. The energy differential neutron spectra transmitted through the concrete slabs and the corresponding dose have been obtained by unfolding the pulse height spectra using the FERDOR-U computer code and proper response matrix data of the NE-213 detector. The neutron transmission factors through both Serpentine and Ordinary concrete slabs have been studied. The results show serpentine mixed concrete slabs can attenuate more neutrons of varying energies compared to ordinary concrete slabs of equal dimensions. From the trend, it has been found out, with the increase in slab thickness, the gain in neutron attenuation increases. This is due to increase in quantity of serpentine with the increase in thickness of concrete. A Monte Carlo simulation carried out, for theoretical analysis of the results, has been found to be in order

  3. Biological Potential in Serpentinizing Systems

    Science.gov (United States)

    Hoehler, Tori M.

    2016-01-01

    Generation of the microbial substrate hydrogen during serpentinization, the aqueous alteration of ultramafic rocks, has focused interest on the potential of serpentinizing systems to support biological communities or even the origin of life. However the process also generates considerable alkalinity, a challenge to life, and both pH and hydrogen concentrations vary widely across natural systems as a result of different host rock and fluid composition and differing physical and hydrogeologic conditions. Biological potential is expected to vary in concert. We examined the impact of such variability on the bioenergetics of an example metabolism, methanogenesis, using a cell-scale reactive transport model to compare rates of metabolic energy generation as a function of physicochemical environment. Potential rates vary over more than 5 orders of magnitude, including bioenergetically non-viable conditions, across the range of naturally occurring conditions. In parallel, we assayed rates of hydrogen metabolism in wells associated with the actively serpentinizing Coast Range Ophiolite, which includes conditions more alkaline and considerably less reducing than is typical of serpentinizing systems. Hydrogen metabolism is observed at pH approaching 12 but, consistent with the model predictions, biological methanogenesis is not observed.

  4. Ultramafic clasts from the South Chamorro serpentine mud volcano reveal a polyphase serpentinization history of the Mariana forearc mantle

    Science.gov (United States)

    Kahl, Wolf-Achim; Jöns, Niels; Bach, Wolfgang; Klein, Frieder; Alt, Jeffrey C.

    2015-06-01

    Serpentine seamounts located on the outer half of the pervasively fractured Mariana forearc provide an excellent window into the forearc devolatilization processes, which can strongly influence the cycling of volatiles and trace elements in subduction zones. Serpentinized ultramafic clasts recovered from an active mud volcano in the Mariana forearc reveal microstructures, mineral assemblages and compositions that are indicative of a complex polyphase alteration history. Petrologic phase relations and oxygen isotopes suggest that ultramafic clasts were serpentinized at temperatures below 200 °C. Several successive serpentinization events represented by different vein generations with distinct trace element contents can be recognized. Measured in situ Rb/Cs ratios are fairly uniform ranging between 1 and 10, which is consistent with Cs mobilization from sediments at lower temperatures and lends further credence to the low-temperature conditions proposed in models of the thermal structure in forearc settings. Late veins show lower fluid mobile element (FME) concentrations than early veins, suggesting a decreasing influence of fluid discharge from the subducting slab on the composition of the serpentinizing fluids. The continuous microfabric and mineral chemical evolution observed in the ultramafic clasts may have implications as to the origin and nature of the serpentinizing fluids. We hypothesize that opal and smectite dehydration produce quartz-saturated fluids with high FME contents and Rb/Cs between 1 and 4 that cause the early pervasive serpentinization. The partially serpentinized material may then be eroded from the basal plane of the suprasubduction mantle wedge. Serpentinization continued but the interacting fluids did not carry a pronounced sedimentary signature, either because FMEs were no longer released from the slab, or due to an en route loss of FMEs. Late chrysotile veins that document the increased access of fluids in a now fluid-dominated regime are

  5. Characterizing and quantifying superparamagnetic magnetite particles in serpentinized mantle peridotite observed in continental ophiolite complexes.

    Science.gov (United States)

    Ortiz, E.; Vento, N. F. R.; Tominaga, M.; Beinlich, A.; Einsle, J. F.; Buisman, I.; Ringe, E.; Schrenk, M. O.; Cardace, D.

    2017-12-01

    Serpentinization of mantle peridotite has been recognized as one of the most important energy factories for the deep biosphere. To better evaluate the habitability of the deep biosphere, it is crucial to understand the link between in situ peridotite serpentinization processes and associated magnetite and hydrogen production. Previous efforts in correlating magnetite and hydrogen production during serpentinization processes are based primarily on laboratory experiments and numerical modeling, being challenged to include the contribution of superparamagnetic-sized magnetites (i.e., extremely fine-grained magnetite, petrographically observed as a "pepper flake" like texture in many natural serpentinized rock samples). To better estimate the abundance of superparamagnetic grains, we conducted frequency-dependent susceptibility magnetic measurements at the Institute of Rock Magnetism on naturally serpentinized rock samples from the Coast Range Ophiolite Microbial Observatory (CROMO) in California, USA and the Atlin Ophiolite (British Columbia). In addition, we conducted multiscale EDS phase mapping, BackScattered Electron (BSE) scanning, FIB-nanotomography and STEM-EELS to identify and quantify the superparamagnetic minerals that contribute to the measured magnetic susceptibility signals in our rock samples. Utilizing a multidisciplinary approach, we aim to improve the estimation of hydrogen production based on the abundance of magnetite, that includes the contribution of superparamagnetic particle size magnetite, to ultimately provide a more accurate estimation of bulk deep-biomass hosted by in situ serpentinization processes.

  6. Serpentinization and its implications for life on the early Earth and Mars.

    Science.gov (United States)

    Schulte, Mitch; Blake, David; Hoehler, Tori; McCollom, Thomas

    2006-04-01

    Ophiolites, sections of ocean crust tectonically displaced onto land, offer significant potential to support chemolithoautotrophic life through the provision of energy and reducing power during aqueous alteration of their highly reduced mineralogies. There is substantial chemical disequilibrium between the primary olivine and pyroxene mineralogy of these ophiolites and the fluids circulating through them. This disequilibrium represents a potential source of chemical energy that could sustain life. Moreover, E (h)-pH conditions resulting from rock- water interactions in ultrabasic rocks are conducive to important abiotic processes antecedent to the origin of life. Serpentinization--the reaction of olivine- and pyroxene-rich rocks with water--produces magnetite, hydroxide, and serpentine minerals, and liberates molecular hydrogen, a source of energy and electrons that can be readily utilized by a broad array of chemosynthetic organisms. These systems are viewed as important analogs for potential early ecosystems on both Earth and Mars, where highly reducing mineralogy was likely widespread in an undifferentiated crust. Secondary phases precipitated during serpentinization have the capability to preserve organic or mineral biosignatures. We describe the petrology and mineral chemistry of an ophiolite-hosted cold spring in northern California and propose criteria to aid in the identification of serpentinizing terranes on Mars that have the potential to harbor chemosynthetic life.

  7. Geochemical evidence of present-day serpentinization.

    Science.gov (United States)

    Barnes, I; Lamarche, V C; Himmelberg, G

    1967-05-12

    Ultrabasic (pH > 11) water issues from some fresh ultramafic bodies. The properties of the ultrabasic solutions are believed to be due to current reactions yielding serpentine from primary olivines and pyroxenes. The low concentrations of divalent airon. divalent magnesium, and dissolved silica from the serpentinization require an increase in rock volume.

  8. Nuclear microprobe analysis of serpentine from the mid-Atlantic ridge

    International Nuclear Information System (INIS)

    Orberger, Beate; Metrich, Nicole; Mosbah, Michelle; Mevel, Catherine; Fouquet, Yves

    1999-01-01

    At mid-ocean ridges, ultramafic rocks are serpentinized by interaction with seawater-derived fluids. Elements, dissolved in large quantities in seawater, e.g., Na, K, Cl, Br, Ca and Sr, can be, in small amounts, incorporated as traces into the crystal structure of the various serpentine minerals (Mg 3 Si 2 O 5 (OH) 4 ). These trace elements can be used to track the composition of the reacting fluids and to constrain physico-chemical conditions. This paper represents the first application of particle-induced X- and γ-ray emission (PIXE/PIGE) analysis to serpentine using the nuclear microprobe at the Laboratoire Pierre Suee (CEA-CNRS). Three types of serpentine, belonging to two different serpentinization generations, have been analysed in samples collected from the Mid-Atlantic Ridge (14 deg. 45'N/45 deg. W) that exposes serpentinized peridotites on which the Logachev black smoker is placed. The trace elements Cl, F, S, Cu, Zn, Ca, K, Ni, Cr and Mn were detected from several tens to several thousands of ppm. Bromine, As and Sr are close to the detection limit of about 5 ppm. The trace element concentrations and interelement relationships in serpentines vary (a) with the serpentine type and (b) with the geographic location to the black smoker. Chlorine and in part S originated from seawater, whereas Cu, Zn, Ca, K, Ni, Cr and Fe and the major amount of S were mobilized from the unaltered host rock and partitioned between the serpentine and the aqueous solution

  9. The production of iron oxide during peridotite serpentinization: Influence of pyroxene

    Directory of Open Access Journals (Sweden)

    Ruifang Huang

    2017-11-01

    Full Text Available Serpentinization produces molecular hydrogen (H2 that can support communities of microorganisms in hydrothermal fields; H2 results from the oxidation of ferrous iron in olivine and pyroxene into ferric iron, and consequently iron oxide (magnetite or hematite forms. However, the mechanisms that control H2 and iron oxide formation are poorly constrained. In this study, we performed serpentinization experiments at 311 °C and 3.0 kbar on olivine (with <5% pyroxene, orthopyroxene, and peridotite. The results show that serpentine and iron oxide formed when olivine and orthopyroxene individually reacted with a saline starting solution. Olivine-derived serpentine had a significantly lower FeO content (6.57 ± 1.30 wt.% than primary olivine (9.86 wt.%, whereas orthopyroxene-derived serpentine had a comparable FeO content (6.26 ± 0.58 wt.% to that of primary orthopyroxene (6.24 wt.%. In experiments on peridotite, olivine was replaced by serpentine and iron oxide. However, pyroxene transformed solely to serpentine. After 20 days, olivine-derived serpentine had a FeO content of 8.18 ± 1.56 wt.%, which was significantly higher than that of serpentine produced in olivine-only experiments. By contrast, serpentine after orthopyroxene had a slightly higher FeO content (6.53 ± 1.01 wt.% than primary orthopyroxene. Clinopyroxene-derived serpentine contained a significantly higher FeO content than its parent mineral. After 120 days, the FeO content of olivine-derived serpentine decreased significantly (5.71 ± 0.35 wt.%, whereas the FeO content of orthopyroxene-derived serpentine increased (6.85 ± 0.63 wt.% over the same period. This suggests that iron oxide preferentially formed after olivine serpentinization. Pyroxene in peridotite gained some Fe from olivine during the serpentinization process, which may have led to a decrease in iron oxide production. The correlation between FeO content and SiO2 or Al2O3 content in olivine- and

  10. Effect of water activity on rates of serpentinization of olivine.

    Science.gov (United States)

    Lamadrid, Hector M; Rimstidt, J Donald; Schwarzenbach, Esther M; Klein, Frieder; Ulrich, Sarah; Dolocan, Andrei; Bodnar, Robert J

    2017-07-14

    The hydrothermal alteration of mantle rocks (referred to as serpentinization) occurs in submarine environments extending from mid-ocean ridges to subduction zones. Serpentinization affects the physical and chemical properties of oceanic lithosphere, represents one of the major mechanisms driving mass exchange between the mantle and the Earth's surface, and is central to current origin of life hypotheses as well as the search for microbial life on the icy moons of Jupiter and Saturn. In spite of increasing interest in the serpentinization process by researchers in diverse fields, the rates of serpentinization and the controlling factors are poorly understood. Here we use a novel in situ experimental method involving olivine micro-reactors and show that the rate of serpentinization is strongly controlled by the salinity (water activity) of the reacting fluid and demonstrate that the rate of serpentinization of olivine slows down as salinity increases and H 2 O activity decreases.

  11. Effect of water activity on rates of serpentinization of olivine

    Science.gov (United States)

    Lamadrid, Hector M.; Rimstidt, J. Donald; Schwarzenbach, Esther M.; Klein, Frieder; Ulrich, Sarah; Dolocan, Andrei; Bodnar, Robert J.

    2017-07-01

    The hydrothermal alteration of mantle rocks (referred to as serpentinization) occurs in submarine environments extending from mid-ocean ridges to subduction zones. Serpentinization affects the physical and chemical properties of oceanic lithosphere, represents one of the major mechanisms driving mass exchange between the mantle and the Earth's surface, and is central to current origin of life hypotheses as well as the search for microbial life on the icy moons of Jupiter and Saturn. In spite of increasing interest in the serpentinization process by researchers in diverse fields, the rates of serpentinization and the controlling factors are poorly understood. Here we use a novel in situ experimental method involving olivine micro-reactors and show that the rate of serpentinization is strongly controlled by the salinity (water activity) of the reacting fluid and demonstrate that the rate of serpentinization of olivine slows down as salinity increases and H2O activity decreases.

  12. Nuclear microprobe analysis of serpentine from the mid-Atlantic ridge

    Energy Technology Data Exchange (ETDEWEB)

    Orberger, Beate E-mail: orberger@geol.u-psud.fr; Metrich, Nicole; Mosbah, Michelle E-mail: mosbah@drecam.cea.fr; Mevel, Catherine; Fouquet, Yves

    1999-09-02

    At mid-ocean ridges, ultramafic rocks are serpentinized by interaction with seawater-derived fluids. Elements, dissolved in large quantities in seawater, e.g., Na, K, Cl, Br, Ca and Sr, can be, in small amounts, incorporated as traces into the crystal structure of the various serpentine minerals (Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}). These trace elements can be used to track the composition of the reacting fluids and to constrain physico-chemical conditions. This paper represents the first application of particle-induced X- and {gamma}-ray emission (PIXE/PIGE) analysis to serpentine using the nuclear microprobe at the Laboratoire Pierre Suee (CEA-CNRS). Three types of serpentine, belonging to two different serpentinization generations, have been analysed in samples collected from the Mid-Atlantic Ridge (14 deg. 45'N/45 deg. W) that exposes serpentinized peridotites on which the Logachev black smoker is placed. The trace elements Cl, F, S, Cu, Zn, Ca, K, Ni, Cr and Mn were detected from several tens to several thousands of ppm. Bromine, As and Sr are close to the detection limit of about 5 ppm. The trace element concentrations and interelement relationships in serpentines vary (a) with the serpentine type and (b) with the geographic location to the black smoker. Chlorine and in part S originated from seawater, whereas Cu, Zn, Ca, K, Ni, Cr and Fe and the major amount of S were mobilized from the unaltered host rock and partitioned between the serpentine and the aqueous solution.

  13. Serpentinization history of the Río Guanajibo serpentinite body, Puerto Rico

    Science.gov (United States)

    Roehrig, Erin E.; Laó-Dávila, Daniel A.; Wolfe, Amy L.

    2015-10-01

    The Río Guanajibo serpentinite body (RGSB) near Mayagüez, Puerto Rico, is part of an ophiolite mélange thrust in an oceanic convergent zone. The aim of this study was to characterize the extent and chronology of serpentinization within this peridotite mass. Mineralogy, microstructures, and veining episodes within the RGSB were characterized using optical microscopy, x-ray diffraction (XRD), scanning electron microscopy (SEM), and structural analyses. This study identified, for the first time, all three serpentine polymorphs (i.e., antigorite, chrysotile, lizardite) in serpentinite samples collected from Puerto Rico. Lizardite, the initial serpentine mineral formed from widespread hydration of olivine, was found throughout serpentinite samples. Chrysotile was the most abundant polymorph observed in sheared serpentinite samples, consistent with conditions favoring low fluid to rock ratios, supersaturation and abundant porosity. Antigorite was observed as a replacement texture in serpentinites that were not exposed to greenschist facies metamorphic conditions, and were frequently found in veins with a shear component. The results indicate that metamorphic conditions do not exclusively dictate polymorph formation. The mineralogy and textures observed within the different vein generations reflect the formation conditions, and deformational mechanisms, that occurred during the serpentinization process; six veining episodes (V1 - V6) were identified and grouped into four stages of serpentinization. Stage one (V1 and V2 type veins) represents the earliest stages of serpentinization and was characterized by microscopic fracture networks that formed as a result of cracking during the initial hydration of olivine under low water/rock ratios. During stage two (V3 and V4 type veins), fibrous crack - seal veins formed to accommodate continued volume expansion, via incremental fracture openings, caused by continued hydration of olivine. The ascension of serpentinite into the

  14. SERPENTINE COIL TOPOLOGY FOR BNL DIRECT WIND SUPERCONDUCTING MAGNETS

    International Nuclear Information System (INIS)

    PARKER, B.; ESCALLIER, J.

    2005-01-01

    Serpentine winding, a recent innovation developed at BNL for direct winding superconducting magnets, allows winding a coil layer of arbitrary multipolarity in one continuous winding process and greatly simplifies magnet design and production compared to the planar patterns used before. Serpentine windings were used for the BEPC-II Upgrade and JPARC magnets and are proposed to make compact final focus magnets for the EC. Serpentine patterns exhibit a direct connection between 2D body harmonics and harmonics derived from the integral fields. Straightforward 2D optimization yields good integral field quality with uniformly spaced (natural) coil ends. This and other surprising features of Serpentine windings are addressed in this paper

  15. Iron transformations during low temperature alteration of variably serpentinized rocks from the Samail ophiolite, Oman

    Science.gov (United States)

    Mayhew, Lisa E.; Ellison, Eric T.; Miller, Hannah M.; Kelemen, Peter B.; Templeton, Alexis S.

    2018-02-01

    Partially serpentinized peridotites in the Samail ophiolite in the Sultanate of Oman currently undergo low temperature alteration and hydration both at shallow levels, with water recently in contact with the atmosphere, and at depth, with anoxic, reducing fluids. However, it is unclear how changes in the distribution and oxidation state of Fe are driving the production of energy-rich gases such as hydrogen and methane detected in peridotite catchments. We track the Fe transformations in a suite of outcrop samples representing a subset of the spectrum of least to most altered end-members of the Oman peridotites. We use microscale mineralogical and geochemical analyses including QEMSCAN, Raman spectroscopy, synchrotron radiation X-ray fluorescence (XRF) mapping, and electron microprobe wavelength dispersive spectroscopy. The less-altered peridotites possess a diversity of Fe-bearing phases including relict primary minerals (e.g. olivine, pyroxene, chromite) and secondary phases (e.g. serpentine and brucite). Raman spectroscopy and electron microprobe data (Si/(Mg + Fe)) indicate that much of the serpentine is significantly intergrown with brucite on the sub-micron scale. These data also indicate that the Fe content of the brucite ranges from 10 to 20 wt% FeO. The mineral assemblage of the highly reacted rocks is less diverse, dominated by serpentine and carbonate while olivine and brucite are absent. Magnetite is relatively rare and mainly associated with chromite. Goethite and hematite, both Fe(III)-hydroxides, were also identified in the highly altered rocks. Whole rock chemical analyses reflect these mineralogical differences and show that Fe in the partially serpentinized samples is on average more reduced (∼0.40-0.55 Fe3+/FeTotal) than Fe in the highly reacted rocks (∼0.85-0.90 Fe3+/FeTotal). We propose that olivine, brucite, chromite and, perhaps, serpentine in the less-altered peridotites act as reactive phases during low temperature alteration of the Oman

  16. Rare and Endangered Geophyte Plant Species in Serpentine of Kosovo

    Directory of Open Access Journals (Sweden)

    Naim Berisha

    2014-12-01

    Full Text Available Our study documents information on rarity, geographical distribution, taxonomy and conservation status of 11 geophyte species in serpentine soils of Kosovo, already included in the Red Book of Vascular Flora of Kosovo. Kosovo’s serpentine vegetation represents a diversity that yet has not been sufficiently explored. Large serpentine complexes are found in the northern Kosovo but also southern part of the country is rich in serpentines, therefore in endemics. Serpentine rocks and soils are characterized by low level of principal plant nutrients (N, P, K, Ca and exceptionally high levels of Mg and Fe. Serpentines play particular importance for flora of the country due to their richness in endemic plant species. The following 11 plant species have been studied: Aristolochia merxmuelleri, Colchicum hungaricum, Crocus flavus, Crocus kosaninii, Epimedium alpinum, Gentiana punctata, Gladiolus illyricus, Lilium albanicum, Paeonia peregrina, Tulipa gesneriana and Tulipa kosovarica. Five out of eleven studied geophytes fall within Critically Endangered IUCN based threat category and five out of eleven are local endemics. Aristolochia merxmuelleri and Tulipa kosovarica are steno-endemic plant species that are found exclusively in serpentine soils. Information in our database should prove to be valuable to efforts in ecology, floristics, biosystematics, conservation and land management.

  17. Giant serpentine intracranial aneurysm: a case report

    International Nuclear Information System (INIS)

    Park, Jae Seong; Lee, Myeong Sub; Kim, Myung Soon; Kim, Dong Jin; Park, Joong Wha; Whang, Kum

    2001-01-01

    The authors present a case of giant serpentine aneurysm (a partially thrombosed aneurysm containing tortuous vascular channels with a separate entrance and outflow pathway). Giant serpentine aneurysms form a subgroup of giant intracranial aneurysms, distinct from saccular and fusiform varieties, and in this case, too, the clinical presentation and radiographic features of CT, MR imaging and angiography were distinct

  18. The effect of polyether on the separation of pentlandite and serpentine

    Directory of Open Access Journals (Sweden)

    Xiaowen Zhou

    2015-10-01

    Full Text Available The effect of polyether on the separation of pentlandite from serpentine has been studied. In addition to flotation and sedimentation tests, electrophoresis and adsorption tests have been conducted. The flotation and sedimentation results show that serpentine impairs flotation performance of pentlandite, by adhering to the pentlandite particles. Addition of the polyether could promote the dispersion of the mixed sample of pentlandite and serpentine in alkaline conditions and significantly reduce adverse effects of serpentine on the pentlandite flotation. The electrophoresis and adsorption tests show that polyether can selectively adsorb onto pentlandite surface through hydrophobic reaction and remove serpentine slime particles from pentlandite surfaces by steric hindrance effect.

  19. Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site

    NARCIS (Netherlands)

    Suzuki, S.; Kuenen, J.G.; Schipper, K.; van der Velde, S.; Ishii, S.; Wu, A.; Sorokin, D.Y.; Tenney, A.; Meng, X.Y.; Morrill, P.L.; Kamagata, Y.; Muyzer, G.; Nealson, K.H.

    2014-01-01

    Serpentinization, or the aqueous alteration of ultramafic rocks, results in challenging environments for life in continental sites due to the combination of extremely high pH, low salinity and lack of obvious electron acceptors and carbon sources. Nevertheless, certain Betaproteobacteria have been

  20. Study of thermal, radiation and environmental effects on serpentine

    International Nuclear Information System (INIS)

    Raje, Naina; Kalekar, Bhupesh B.; Dubey, K.A.

    2016-01-01

    Physical and chemical properties of a material, such as particle size surface area, magnetic properties, water content, radiation and thermal stability, viscosity, porosity, are responsible for their specific applications. Serpentine is a greenish, layer structured phyllosilicate, known as magnesium hydroxy silicate. The availability of large number of hydroxyl group makes serpentine a potential candidate for nuclear shielding material. Hence present studies have been carried out to understand the stability of serpentine with the variation in thermal, radiation and environmental parameters. Serpentine samples were received from Reactor Projects Division, BARC. An accurately weighed sample was subjected to simultaneous TG - DTA - EGA measurements in air as well as inert atmosphere at the heating rate of 10 °C/min. The sample was heated from room temperature to 1000 °C with a gas flow rate of 100 mL/min in Netzsch thermal analyzer (Model STA409 PC LUXX) connected to Bruker FTIR system (Model - Tensor27) via a 1m long capillary. The sample was subjected to gamma radiation in the range of 10 - 100 kGy using 60 Co gamma source in gamma chamber and was subjected to TG measurements to understand the effect of radiation on the thermal stability of serpentine and the results are being discussed here

  1. Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils.

    Science.gov (United States)

    Gonçalves, Susana C; Martins-Loução, M Amélia; Freitas, Helena

    2009-04-01

    Selection for metal-tolerant ecotypes of ectomycorrhizal (ECM) fungi has been reported in instances of metal contamination of soils as a result of human activities. However, no study has yet provided evidence that natural metalliferous soils, such as serpentine soils, can drive the evolution of metal tolerance in ECM fungi. We examined in vitro Ni tolerance in isolates of Cenococcum geophilum from serpentine and non-serpentine soils to assess whether isolates from serpentine soils exhibited patterns consistent with adaptation to elevated levels of Ni, a typical feature of serpentine. A second objective was to investigate the relationship between Ni tolerance and specific growth rates (micro) among isolates to increase our understanding of possible tolerance/growth trade-offs. Isolates from both soil types were screened for Ni tolerance by measuring biomass production in liquid media with increasing Ni concentrations, so that the effective concentration of Ni inhibiting fungal growth by 50% (EC(50)) could be determined. Isolates of C. geophilum from serpentine soils exhibited significantly higher tolerance to Ni than non-serpentine isolates. The mean Ni EC(50) value for serpentine isolates (23.4 microg ml(-1)) was approximately seven times higher than the estimated value for non-serpentine isolates (3.38 microg ml(-1)). Although there was still a considerable variation in Ni sensitivity among the isolates, none of the serpentine isolates had EC(50) values for Ni within the range found for non-serpentine isolates. We found a negative correlation between EC(50) and micro values among isolates (r = -0.555). This trend, albeit only marginally significant (P = 0.06), indicates a potential trade-off between tolerance and growth, in agreement with selection against Ni tolerance in "normal" habitats. Overall, these results suggest that Ni tolerance arose among serpentine isolates of C. geophilum as an adaptive response to Ni exposure in serpentine soils.

  2. Serpentine concrete in the experiment and application of Tianwan nuclear power station

    International Nuclear Information System (INIS)

    Wang Kaihua; Qian Fuhua

    2015-01-01

    The choice of the configuration of the serpentine concrete aggregate is very important. From selection of serpentine concrete raw materials, and test and adjustment of mixture ratio, the paper elaborates in detail the special physical properties and engineering application, and provides detailed information for the promotion and application of the serpentine concrete. (authors)

  3. Serpentinization: Getting water into a low permeability peridotite

    Science.gov (United States)

    Ulven, Ole Ivar

    2017-04-01

    Fluid consuming rock transformation processes occur in a variety of settings in the Earth's crust. One such process is serpentinization, which involves hydration of ultramafic rock to form serpentine. With peridotite being one of the dominating rocks in the oceanic crust, this process changes physical and chemical properties of the crust at a large scale, increases the amount of water that enters subduction zones, and might even affect plate tectonics te{jamtveit}. A significant number of papers have studied serpentinization in different settings, from reaction fronts progressing over hundreds of meters te{rudge} to the interface scale fracture initiation te{pluemper}. However, the process represents a complicated multi-physics problem which couples external stress, mechanical deformation, volume change, fracture formation, fluid transport, the chemical reaction, heat production and heat flow. Even though it has been argued that fracture formation caused by the volume expansion allows fluid infiltration into the peridotite te{rudge}, it remains unclear how sufficient water can enter the initially low permeability peridotite to pervasively serpentinize the rock at kilometre scale. In this work, we study serpentinization numerically utilizing a thermo-hydro-mechanical model extended with a fluid consuming chemical reaction that increases the rock volume, reduces its density and strength, changes the permeability of the rock, and potentially induces fracture formation. The two-way coupled hydromechanical model is based on a discrete element model (DEM) previously used to study a volume expanding process te{ulven_1,ulven_2} combined with a fluid transport model based on poroelasticity te{ulven_sun}, which is here extended to include fluid unsaturated conditions. Finally, a new model for reactive heat production and heat flow is introduced, to make this probably the first ever fully coupled chemo-thermo-hydromechanical model describing serpentinization. With this model

  4. Interrelation between rifting, faulting, sedimentation, and mantle serpentinization during continental margin formation

    Science.gov (United States)

    Rupke, L.; Schmid, D. W.; Perez-Gussinye, M.; Hartz, E. H.

    2013-12-01

    We explore the conditions under which mantle serpentinization may take place during continental rifting with 2D thermotectonostratigraphic basin models. The basic concept follows the idea that the entire extending continental crust has to be brittle for crustal scale faulting and mantle serpentinization to occur. The new model tracks the rheological evolution of the continental crust and allows for kinetically controlled mantle serpentinization processes. The isostatic and latent heat effects of the reaction are fully coupled to the structural and thermal solutions. A systematic parameter study shows that a critical stretching factor exists for which complete crustal embrittlement and serpentinization occurs. Sedimentation shifts this critical stretching factor to higher values as both deeper burial and the low thermal conductivity of sediments lead to higher crustal temperatures. Serpentinization reactions are therefore only likely in settings with low sedimentation rates and high stretching factors. In addition, we find that the rate of sediment supply has first order controls on the rheology of the lower crust, which may control the overall margin geometry. We further test these concepts in ideas in a case study for the Norwegian margin. In particular, we evaluate whether the inner lower crustal bodies (LCB) imaged beneath the More and Voring margin could be serpentinized mantle. For this purpose we reconstruct multiple 2D transects through a 3D data set. This reconstruction of the Norwegian margin shows that serpentinization reactions are indeed possible and likely during the Jurassic rift phase. Predicted present-day thicknesses and locations of partially serpentinized mantle rocks fit well to information on LCBs from seismic and gravity data. We conclude that some of the inner LCBs beneath the Norwegian margin may, in fact, be partially serpentinized mantle.

  5. Present day serpentinization in New Caledonia, Oman and Yugoslavia

    Science.gov (United States)

    Barnes, I.; O'Neil, J.R.; Trescases, J.J.

    1978-01-01

    Geochemical evidence for modern low-temperature serpentinization has been found in three new localities. Apparently the low-temperature reactions are a common mode of formation of the lizardite-chrysotile and brucite assemblage. Possibly the 18O content of serpentine formed at low temperatures is in part inherited from the pyroxene and olivine. ?? 1978.

  6. Experimental Study of Serpentinization Reactions

    Science.gov (United States)

    Cohen, B. A.; Brearley, A. J.; Ganguly, J.; Liermann, H.-P.; Keil, K.

    2004-01-01

    Current carbonaceous chondrite parent-body thermal models [1-3] produce scenarios that are inconsistent with constraints on aqueous alteration conditions based on meteorite mineralogical evidence, such as phase stability relationships within the meteorite matrix minerals [4] and isotope equilibration arguments [5, 6]. This discrepancy arises principally because of the thermal runaway effect produced by silicate hydration reactions (here loosely called serpentinization, as the principal products are serpentine minerals), which are so exothermic as to produce more than enough heat to melt more ice and provide a self-sustaining chain reaction. One possible way to dissipate the heat of reaction is to use a very small parent body [e.g., 2] or possibly a rubble pile model. Another possibility is to release this heat more slowly, which depends on the alteration reaction path and kinetics.

  7. Serpentinization-Influenced Groundwater Harbors Extremely Low Diversity Microbial Communities Adapted to High pH.

    Science.gov (United States)

    Twing, Katrina I; Brazelton, William J; Kubo, Michael D Y; Hyer, Alex J; Cardace, Dawn; Hoehler, Tori M; McCollom, Tom M; Schrenk, Matthew O

    2017-01-01

    Serpentinization is a widespread geochemical process associated with aqueous alteration of ultramafic rocks that produces abundant reductants (H 2 and CH 4 ) for life to exploit, but also potentially challenging conditions, including high pH, limited availability of terminal electron acceptors, and low concentrations of inorganic carbon. As a consequence, past studies of serpentinites have reported low cellular abundances and limited microbial diversity. Establishment of the Coast Range Ophiolite Microbial Observatory (California, U.S.A.) allowed a comparison of microbial communities and physicochemical parameters directly within serpentinization-influenced subsurface aquifers. Samples collected from seven wells were subjected to a range of analyses, including solute and gas chemistry, microbial diversity by 16S rRNA gene sequencing, and metabolic potential by shotgun metagenomics, in an attempt to elucidate what factors drive microbial activities in serpentinite habitats. This study describes the first comprehensive interdisciplinary analysis of microbial communities in hyperalkaline groundwater directly accessed by boreholes into serpentinite rocks. Several environmental factors, including pH, methane, and carbon monoxide, were strongly associated with the predominant subsurface microbial communities. A single operational taxonomic unit (OTU) of Betaproteobacteria and a few OTUs of Clostridia were the almost exclusive inhabitants of fluids exhibiting the most serpentinized character. Metagenomes from these extreme samples contained abundant sequences encoding proteins associated with hydrogen metabolism, carbon monoxide oxidation, carbon fixation, and acetogenesis. Metabolic pathways encoded by Clostridia and Betaproteobacteria, in particular, are likely to play important roles in the ecosystems of serpentinizing groundwater. These data provide a basis for further biogeochemical studies of key processes in serpentinite subsurface environments.

  8. Abiotic methane formation during experimental serpentinization of olivine.

    Science.gov (United States)

    McCollom, Thomas M

    2016-12-06

    Fluids circulating through actively serpentinizing systems are often highly enriched in methane (CH 4 ). In many cases, the CH 4 in these fluids is thought to derive from abiotic reduction of inorganic carbon, but the conditions under which this process can occur in natural systems remain unclear. In recent years, several studies have reported abiotic formation of CH 4 during experimental serpentinization of olivine at temperatures at or below 200 °C. However, these results seem to contradict studies conducted at higher temperatures (300 °C to 400 °C), where substantial kinetic barriers to CH 4 synthesis have been observed. Here, the potential for abiotic formation of CH 4 from dissolved inorganic carbon during olivine serpentinization is reevaluated in a series of laboratory experiments conducted at 200 °C to 320 °C. A 13 C-labeled inorganic carbon source was used to unambiguously determine the origin of CH 4 generated in the experiments. Consistent with previous high-temperature studies, the results indicate that abiotic formation of CH 4 from reduction of dissolved inorganic carbon during the experiments is extremely limited, with nearly all of the observed CH 4 derived from background sources. The results indicate that the potential for abiotic synthesis of CH 4 in low-temperature serpentinizing environments may be much more limited than some recent studies have suggested. However, more extensive production of CH 4 was observed in one experiment performed under conditions that allowed an H 2 -rich vapor phase to form, suggesting that shallow serpentinization environments where a separate gas phase is present may be more favorable for abiotic synthesis of CH 4 .

  9. Deformation, Fluid Flow and Mantle Serpentinization at Oceanic Transform Faults

    Science.gov (United States)

    Rupke, L.; Hasenclever, J.

    2017-12-01

    Oceanic transform faults (OTF) and fracture zones have long been hypothesized to be sites of enhanced fluid flow and biogeochemical exchange. In this context, the serpentine forming interaction between seawater and cold lithospheric mantle rocks is particularly interesting. The transformation of peridotite to serpentinite not only leads to hydration of oceanic plates and is thereby an important agent of the geological water cycle, it is also a mechanism of abiotic hydrogen and methane formation, which can support archeal and bacterial communities at the seafloor. Inferring the likely amount of mantle undergoing serpentinization reactions therefore allows estimating the amount of biomass that may be autotrophically produced at and around oceanic transform faults and mid-ocean ridges Here we present results of 3-D geodynamic model simulations that explore the interrelations between deformation, fluid flow, and mantle serpentinization at oceanic transform faults. We investigate how slip rate and fault offset affect the predicted patterns of mantle serpentinization around oceanic transform faults. Global rates of mantle serpentinization and associated H2 production are calculated by integrating the modeling results with plate boundary data. The global additional OTF-related production of H2 is found to be between 6.1 and 10.7 x 1011 mol per year, which is comparable to the predicted background mid-ocean ridge rate of 4.1 - 15.0 x 1011 mol H2/yr. This points to oceanic transform faults as potential sites of intense fluid-rock interaction, where chemosynthetic life could be sustained by serpentinization reactions.

  10. Serpentinization as a reactive transport process: The brucite silicification reaction

    Science.gov (United States)

    Tutolo, Benjamin M.; Luhmann, Andrew J.; Tosca, Nicholas J.; Seyfried, William E.

    2018-02-01

    Serpentinization plays a fundamental role in the biogeochemical and tectonic evolution of the Earth and perhaps many other rocky planetary bodies. Yet, geochemical models still fail to produce accurate predictions of the various modes of serpentinization, which limits our ability to predict a variety of related geological phenomena over many spatial and temporal scales. Here, we use kinetic and reactive transport experiments to parameterize the brucite silicification reaction and provide fundamental constraints on SiO2 transport during serpentinization. We show that, at temperatures characteristic of the sub-seafloor at the serpentinite-hosted Lost City Hydrothermal Field (150 °C), the assembly of Si tetrahedra onto MgOH2 (i.e., brucite) surfaces is a rate-limiting elementary reaction in the production of serpentine and/or talc from olivine. Moreover, this reaction is exponentially dependent on the activity of aqueous silica (a SiO2 (aq)), such that it can be calculated according to the rate law:

  11. Sliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additive

    International Nuclear Information System (INIS)

    Zhang Baosen; Xu Yi; Gao Fei; Shi Peijing; Xu Binshi; Wu Yixiong

    2011-01-01

    This work aims to investigate the friction and wear properties of surface-coated natural serpentine powders (SP) suspended in diesel engine oil using an Optimal SRV oscillating friction and wear tester. The worn surface was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). Results indicated that the additives can improve the wear resistance and decrease friction coefficient of carbon steel friction couples. The 0.5 wt% content of serpentine powders is found most efficient in reducing friction and wear at the load of 50 N. The SEM and XPS analysis results demonstrate that a tribofilm forms on the worn surface, which is responsible for the decrease in friction and wear, mainly with iron oxides, silicon oxides, graphite and organic compounds.

  12. Contrasting serpentinization processes in the eastern Central Alps

    Science.gov (United States)

    Burkhard, D.J.M.; O'Neil, J.R.

    1988-01-01

    Stable isotope compositions have been determined for serpentinites from between Davos (Arosa-Platta nappe, Switzerland) and the Valmalenco (Italy). ??D and ??18O values (-120 to -60 and 6-10???, respectively) in the Arosa-Platta nappe indicate that serpentinization took place on the continent at relatively low temperatures in the presence of limited amounts of metamorphic fluids that contained a component of meteoric water. One sample of chrysotile has a ??18O value of 13??? providing evidence of high W/R ratios and low formation temperature of lizardite-chrysotile in this area. In contrast, relatively high ??D values (-42 to -34???) and low ??18O values (4.4-7.4???) for serpentine in the eastern part of the Valmalenco suggest a serpentinization process that took place at moderate temperatures in fluids that were dominated by ocean water. The antigorite in the Valmalenco is the first reported example of continental antigorite with an ocean water signature. An amphibole sample from a metasomatically overprinted contact zone to metasediments (??D=-36???) indicates that the metasomatic event also took place in the presence of ocean water. Lower ??D values (-93 to -60???) of serpentines in the western part of the Valmalenco suggest a different alteration history possibly influenced by fluids associated with contact metamorphism. Low water/rock ratios during regional metamorphism (and metasomatism) have to be assumed for both regions. ?? 1988 Springer-Verlag.

  13. The “Serpentine Syndrome” (H. Jenny, 1980: A Proxy for Soil Remediation

    Directory of Open Access Journals (Sweden)

    Claudio Bini

    2014-12-01

    Full Text Available Serpentine soils have relatively high concentrations of PTEs (Co, Cr, Cu, Fe, Ni but generally low amounts of major nutrients. They often bear a distinctive vegetation, and a frequently-used approach to understanding serpentine ecology and related environmental hazard has been the chemical analysis of soils and plants. In this paper we report past and current studies on serpentine soils and serpentinophytes. The serpentine vegetation differs from the conterminous non-serpentine areas, being often endemic, and showing macroscopic physionomical characters. Similarly, at microscopic level cytomorphological characteristics of the roots and variations in biochemical parameters were recorded in serpentinophytes. Light microscopy observations showed depressed mitotic activity in the meristematic zone, and consequent reduced root growth. The different tolerance mechanisms responsible for plant adaption to high concentrations of PTEs in serpentine soils can be related to the capacity of plants to limit metal uptake and translocation. The majority of serpentinophytes tend to limit metal absorption to roots: the cell wall constitutes a barrier against metal penetration inside plant tissues. Only a few species are able to accumulate metals in their aerial parts, acting a tolerance mechanism to very high metal concentrations. Serpentinophytes, therefore, could represent proxies for plants  used in remediation of metal-contaminated soils and in phytomining as well.

  14. Controls of faulting and reaction kinetics on serpentinization and double Benioff zones

    OpenAIRE

    Iyer, Karthik; Rüpke, Lars H.; Phipps Morgan, Jason; Grevemeyer, Ingo

    2012-01-01

    The subduction of partially serpentinized oceanic mantle may potentially be the key geologic process leading to the regassing of Earth's mantle and also has important consequences for subduction zone processes such as element cycling, slab deformation, and intermediate-depth seismicity. However, little is known about the quantity of water that is retained in the slab during mantle serpentinization and the pattern of serpentinization that may occur during bending-related faulting; an initial s...

  15. Micro-, to nano-structural relationships in natural serpentines, derived from cationic substitutions.

    Science.gov (United States)

    Munoz, M.; Farges, F.; Andreani, M.; Ulrich, M.; Marcaillou, C.; Mathon, O.

    2014-12-01

    The understanding of the crystal chemistry of serpentine minerals (incl. antigorite, lizardite and chrysotile) is fundamental since serpentinization processes concern very large scientific domains: e.g., natural abiotic hydrogen production (Marcaillou et al., 2011), origins of life (Russell et al., 2010), fluid properties and mobility of metals in subduction zones (Kelley and Cottrell, 2009). This study aims at characterizing relations between the micro-, and nano-structures of the most abundant serpentine polytypes in the oceanic crust. Serpentine theoretical formula is Mg3Si2O5(OH)4 but several natural substitutions are possible and the formula may be written such as: (Mg,Fe2+,Fe3+,Al)3(Si,Al,Fe3+)2O5(OH)4; showing that Fe and Al may play an important role in the crystallization of serpentines. Preliminary crystal chemistry studies, suggest that, 1) the Al content alone cannot be directly correlated to serpentine polytypes (Andreani et al., 2008), 2) the amounts of tetrahedral iron can be significant in the presence of ferric iron (Marcaillou et al., 2011). Because magnetite is usually associated to serpentine, the Fe-speciation characterization of serpentine is delicate. Here, we provide the study of 33 magnetite-free serpentines containing various amounts of Fe and Al. The samples were characterized by SEM, Raman, XRF, as well as XANES, pre-edge, and EXAFS spectroscopy at the Fe K-edge. XANES experimental data were crosschecked and interpreted thanks to ab initio calculations and EXAFS shell-fitting. Also, preliminary 27Al-RMN data is presented. Results suggest relationships between the type and amount of substitution of trivalent cations in minerals, and the microstructures observed. Chrysotile incorporates less trivalent cations than other varieties, which tends to preserve the so-called misfit between the TO layers, and therefore the tubular structure of the mineral. Lizardites mainly involve Fe/Al Tschermak-type substitutions, while M-site vacancy charge

  16. Petrology and Geochemistry of Serpentinized Peridotites from a Bonin Fore-arc Seamount

    Science.gov (United States)

    Tian, L.; Tuoyu, W.; Dong, Y. H.; Gao, J.; Wu, S.

    2016-12-01

    Serpentinites, which contain up to 13 wt.% of water, are an important reservoir for chemical recycling in subduction zones. During the last two decades, many observations documented the occurrence of fore-arc mantle serpentinites in different locations. Here, we present petrology and whole rock chemistry for serpentinized peridotites dredged from the Hahajima Seamount, which is located 20-60 km west of the junction of the Bonin Trench and the Mariana Trench. Combined with published geochemical data of serpentinites from the Torishima Seamount, Conical Seamount and South Chamorro Seamount in the Izu-Bonin-Mariana fore-arc region, it will allow us to better understand the average composition of serpentinized fore-arc mantle overlying the subducting slab and the role of serpentinized mantle playing in the subduction zone geochemical cycle. The studied ultramafic rocks from the Hahajima Seamount are extensively serpentinized and hydrated (73 to 83%), with loss of ignition values ranging between 13 and 15 wt.%. Our results show that the serpentinized peridotites have Mg number from 88 to 90, and the average MgO/SiO2 is 0.93. The average Al2O3 (0.48 wt.%) and CaO (0.23 wt.%) contents are very low, consistent with low clinopyroxene abundances, and the overall depleted character of the mantle harzburgite protoliths. The serpentinized peridotites from the Hahajima Seamount exhibit similar "U" shape rare earth element (REE) patterns ([La/Sm]N = 3.1-3.6), at higher overall abundances, to the Conical and South Chamorro Seamount suites. One exceptional sample shows the similar REE pattern as serpentinized peridotites from the Torishima Seamount, with depleted light REE concentration ([La/Sm]N =0.7). All the serpentinized peridotites from these four fore-arc seamounts show strong enrichment in fluid-mobile and lithophile elements (U, Pb, Sr and Li). The geochemical signature of the serpentinized peridotites from the seamounts in the Izu-Bonin-Mariana fore-arc region could be

  17. Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines

    Science.gov (United States)

    Abrajano, T.A.; Sturchio, N.C.; Kennedy, B.M.; Lyon, G.L.; Muehlenbachs, K.; Böhlke, J.K.

    1990-01-01

    Methane-hydrogen gas seeps with mantle-like C and noble gas isotopic characteristics issue from partially serpentinized ultramafic rocks in the Zambales ophiolite, Philippines. New measurements of noble gas and 14C isotope abundances, rock/mixed-volatile equilibrium calculations, and previous chemical and isotopic data suggest that these reduced gases are products of periodotite hydration. The gas seeps are produced in rock-dominated zones of serpentinization, and similar gases may be ubiquitous in ultramafic terranes undergoing serpentinization.

  18. CURRENT BUILDUP IN EMERGING SERPENTINE FLUX TUBES

    International Nuclear Information System (INIS)

    Pariat, E.; Masson, S.; Aulanier, G.

    2009-01-01

    The increase of magnetic flux in the solar atmosphere during active-region formation involves the transport of the magnetic field from the solar convection zone through the lowest layers of the solar atmosphere, through which the plasma β changes from >1 to <1 with altitude. The crossing of this magnetic transition zone requires the magnetic field to adopt a serpentine shape also known as the sea-serpent topology. In the frame of the resistive flux-emergence model, the rising of the magnetic flux is believed to be dynamically driven by a succession of magnetic reconnections which are commonly observed in emerging flux regions as Ellerman bombs. Using a data-driven, three-dimensional (3D) magnetohydrodynamic numerical simulation of flux emergence occurring in active region 10191 on 2002 November 16-17, we study the development of 3D electric current sheets. We show that these currents buildup along the 3D serpentine magnetic-field structure as a result of photospheric diverging horizontal line-tied motions that emulate the observed photospheric evolution. We observe that reconnection can not only develop following a pinching evolution of the serpentine field line, as usually assumed in two-dimensional geometry, but can also result from 3D shearing deformation of the magnetic structure. In addition, we report for the first time on the observation in the UV domain with the Transition Region and Coronal Explorer (TRACE) of extremely transient loop-like features, appearing within the emerging flux domain, which link several Ellermam bombs with one another. We argue that these loop transients can be explained as a consequence of the currents that build up along the serpentine magnetic field.

  19. Origin of multiple serpentinization events in New Caledonia

    Science.gov (United States)

    Ulrich, M.; Guillot, S.; Muñoz, M.; Picard, C.

    2011-12-01

    Studies on serpentinites around the world have shown that various polymorphs can coexist depending on the temperature, pressure and chemistry of the formation environment. Identifying serpentine polymorphs can thus provide significant constrains on the geodynamic environment at the time of formation. The New Caledonia ophiolite (Southwest Pacific) is one of the world's largest (500 km long, 50 km wide and 2 km thick). Emplaced during Eocene, it is thrust upon the continental Norfolk ridge, which derived from the splitting of the East Gondwana margin during Lower Late Cretaceous. The ophiolite consists of a large continuous massif occurring in the south of the island and some smaller isolated klippes located along the West coast. The peridotites are mostly harzburgite, related to a supra-subduction zone environment. The northernmost massifs are also composed of lherzolites, inherited from the opening of the South Loyalty Basin where the ophiolite was formed. Serpentinization is ubiquitous (usually >50%) independently from the nature of the peridotite. However, numerous studies have focused on the ophiolite but very few on the serpentinite. In this study, we use the Raman spectroscopy to identify serpentine polymorph in each part of the ophiolite. In situ trace element measurements were performed to constrain the behavior of fluid mobile element (FME: As, Sb, B, Li, Cs, Pb, U, Ba, Sr), and we are currently analyzing stable isotopic ratios to investigate the origin of fluids. Our results show that lizardite represents ~90% of the serpentine in the New Caledonia ophiolite. Only the serpentine sole has recorded multiple serpentinization events. In this horizon, the lizardite is crosscut by millimeter to centimeter antigorite veins. Chrysotile is the last polymorph to crystallize in millimeter crackseals. If the formation of the lizardite can be easily related to abyssal history of the ophiolite for the lherzolite and its supra-subduction history for the harzburgite, the

  20. Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines

    International Nuclear Information System (INIS)

    Zhao, Junhua; Lu, Lixin; Rabczuk, Timon

    2014-01-01

    Recently, Geblinger et al. [Nat. Nanotechnol. 3, 195 (2008)] and Machado et al. [Phys. Rev. Lett. 110, 105502 (2013)] reported the experimental and molecular dynamics realization of S-like shaped single-walled carbon nanotubes (CNTs), the so-called CNT serpentines. We reported here results from continuum modeling of the binding energy γ between different single- and multi-walled CNT serpentines and substrates as well as the mechanical stability of the CNT serpentine formation. The critical length for the mechanical stability and adhesion of different CNT serpentines are determined in dependence of E i I i , d, and γ, where E i I i and d are the CNT bending stiffness and distance of the CNT translation period. Our continuum model is validated by comparing its solution to full-atom molecular dynamics calculations. The derived analytical solutions are of great importance for understanding the interaction mechanism between different single- and multi-walled CNT serpentines and substrates

  1. Evaluation of serpentine ore as a nuclear shielding material using gas chromatographic techniques

    International Nuclear Information System (INIS)

    Singh, B.N.; Unnikrishnan, E.K.; Kumar, Sangita D.

    2007-01-01

    Serpentine ore mixed with cement has been recognized as a candidate shielding material for use in nuclear reactors because of its many desirable properties. Therefore the assessment of serpentine ore for release of volatile gases during exposure to elevated temperatures, irradiation and changes in chemical composition, is essential. The present paper deals with the studies on the serpentine ores using gas chromatography and combustion gas chromatographic techniques. (author)

  2. Grassland Sustainability

    Science.gov (United States)

    Deborah U. Potter; Paulette L. Ford

    2004-01-01

    In this chapter we discuss grassland sustainability in the Southwest, grassland management for sustainability, national and local criteria and indicators of sustainable grassland ecosystems, and monitoring for sustainability at various scales. Ecological sustainability is defined as: [T]he maintenance or restoration of the composition, structure, and processes of...

  3. Serpentinization processes: Influence of silica

    Science.gov (United States)

    Huang, R.; Sun, W.; Ding, X.; Song, M.; Zhan, W.

    2016-12-01

    Serpentinization systems are highly enriched in molecular hydrogen (H2) and hydrocarbons (e.g. methane, ethane and propane). The production of hydrocarbons results from reactions between H2 and oxidized carbon (carbon dioxide and carbon monoxide), which possibly contribute to climate changes during early history of the Earth. However, the influence of silica on the production of H2 and hydrocarbons was poorly constrained. We performed experiments at 311-500 °C and 3.0 kbar using mechanical mixtures of silica and olivine in ratios ranging from 0 to 40%. Molecular hydrogen (H2), methane, ethane and propane were formed, which were analyzed by gas chromatography. It was found that silica largely decreased H2 production. Without any silica, olivine serpentinization produced 94.5 mmol/kg H2 after 20 days of reaction time. By contrast, with the presence of 20% silica, H2 concentrations decreased largely, 8.5 mmol/kg. However, the influence of silica on the production of hydrocarbons is negligible. Moreover, with the addition of 20%-40% silica, the major hydrous minerals are talc, which was quantified according to an established standard curve calibrated by infrared spectroscopy analyses. It shows that silica greatly enhances olivine hydration, especially at 500 °C. Without any addition of silica, reaction extents were serpentinization at 500 °C and 3.0 kbar. By contrast, with the presence of 50% silica, olivine was completely transformed to talc within 9 days. This study indicates that silica impedes the oxidation of ferrous iron into ferric iron, and that rates of olivine hydration in natural geological settings are much faster with silica supply.

  4. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess)

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Hyun-Na; Yun, Seung-Hwan; Yoon, Changmann [Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Gil-Hah, E-mail: khkim@chungbuk.ac.kr [Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2012-01-15

    The American serpentine leafminer fly, Liriomyza trifolii (Burgess), is one of the most destructive polyphagous pests worldwide. In this study, we determined electron beam doses for inhibition of normal development of the leaf miner and investigated the effect of electron beam irradiation on DNA damage and p53 stability. Eggs (0-24 h old), larvae (2nd instar), puparia (0-24 h old after pupariation) and adults (24 h after emergence) were irradiated with increasing doses of electron beam irradiation (six levels between 30 and 200 Gy). At 150 Gy, the number of adults that developed from irradiated eggs, larvae and puparia was lower than in the untreated control. Fecundity and egg hatchability decreased depending on the doses applied. Reciprocal crosses between irradiated and unirradiated flies demonstrated that males were more radiotolerant than females. Adult longevity was not affected in all stages. The levels of DNA damage in L. trifolii adults were evaluated using the alkaline comet assay. Our results indicate that electron beam irradiation increased levels of DNA damage in a dose-dependent manner. Moreover, low doses of electron beam irradiation led to the rapid appearance of p53 protein within 6 h; however, it decreased after exposure to high doses (150 Gy and 200 Gy). These results suggest that electron beam irradiation induced not only abnormal development and reproduction but also p53 stability caused by DNA damage in L. trifolii. We conclude that a minimum dose of 150 Gy should be sufficient for female sterilization of L. trifolii. - Highlights: > Electron beam irradiation inhibited normal development of the leaf miner. > Electron beam irradiation inhibited normal reproduction of the leaf miner. > Electron beam irradiation increased levels of DNA damage. > Electron beam irradiation induced p53 stability.

  5. Geochemical bioenergetics during low-temperature serpentinization: An example from the Samail ophiolite, Sultanate of Oman

    Science.gov (United States)

    Canovas, Peter A.; Hoehler, Tori; Shock, Everett L.

    2017-07-01

    Various classes of microbial and biomolecular evidence from global studies in marine and continental settings are used to identify a set of reactions that appear to support microbial metabolism during serpentinization of ultramafic rocks. Geochemical data from serpentinizing ecosystems in the Samail ophiolite of Oman are used to evaluate the extent of disequilibria that can support this set of microbial metabolisms and to provide a ranking of potential metabolic energy sources in hyperalkaline fluids that are direct products of serpentinization. Results are used to construct hypotheses for how microbial metabolism may be supported in the subsurface for two cases: ecosystems hosted in rocks that have already undergone significant serpentinization and those hosted by deeper, active serpentinization processes.

  6. D/H diffusion in serpentine

    Science.gov (United States)

    Pilorgé, Hélène; Reynard, Bruno; Remusat, Laurent; Le Floch, Sylvie; Montagnac, Gilles; Cardon, Hervé

    2017-08-01

    Interactions between aqueous fluids and ultrabasic rocks are essential processes in a broad range of contexts including hydrothermal alteration on the parent body of carbonaceous chondrites, at mid-oceanic ridge, and in subduction zones. Tracking these processes and understanding reaction kinetics require knowledge of the diffusion of water in rocks, and of isotope fractionation in major minerals forming under hydrous conditions, such as serpentines. We present a study of D/H inter-diffusion in antigorite, a common variety of serpentine. Experiments were performed in a belt apparatus at 315 °C, 450 °C and 540 °C and at 3.0 GPa on natural antigorite powders saturated with interstitial D2O. An experiment was performed in a diamond anvil cell at 350 °C and 2.5 GPa on an antigorite single-crystal loaded with pure D2O. D/(D + H) ratios were mapped using Raman spectroscopy for the experiments at 315 °C, 450 °C and 540 °C and by NanoSIMS for the experiment at 350 °C. As antigorite is a phyllosilicate, diffusion coefficients were obtained for crystallographic directions parallel and perpendicular to the silicate layers (perpendicular and parallel to the c∗-axis, respectively). Arrhenius relations for D/H inter-diffusion coefficients were determined to be DD/H (m2/s) = 4.71 × 10-2 × exp(-207(-33/+58) (kJ/mol)/RT) and DD/H (m2/s) = 1.61 × 10-4 × exp(-192(-34/+93) (kJ/mol)/RT) perpendicular and parallel to the c∗-axis, respectively, and DD/H (m2/s) = 7.09 × 10-3 × exp(-202(-33/+70) (kJ/mol)/RT) for the bulk diffusivity. Assuming D/H inter-diffusion coefficients for antigorite are the same for all serpentine species, closure temperature and diffusion durations are applied to hydrothermal alteration in the oceanic lithosphere, and in CI, CM and CR chondrites. Closure temperatures lie below 300 °C for terrestrial hydrothermal alteration and depend on serpentine variety because they have different typical grain sizes. Closure temperatures lie below 160 °C for

  7. Petrology and Rock Magnetism of the peridotites of Pindos Ophiolite (Greece), insights into the serpentinization process

    Science.gov (United States)

    Bonnemains, D.; Carlut, J. H.; Mevel, C.; Andreani, M.; Escartin, J.; Debret, B.

    2015-12-01

    We present a petrological and magnetic study of a suite of serpentinized peridotites from the Pindos ophiolite spanning a wide range in the degree of serpentinization (from ~10 to 100%). The Pindos ophiolite, in Northern Greece, is a portion of Late Triassic oceanic lithosphere obducted during the convergence of the Apulian and Pelagonian micro-continents. This ophiolite is interpreted mainly as the result of a supra-subduction zone spreading process but its complete history remains largely unknown. Therefore, it is not clear when the ultramafic section was exposed to fluid circulation that resulted in its serpentinization. Element partitioning during serpentinization reactions is dependent on parameters such as temperature and water-rock ratio. In particular, they affect the behavior of the iron released by olivine, which can be taken up either by magnetite, serpentine and/or brucite. Analyses of the reaction products are therefore a key to constrain the conditions during the main stage of the alteration. Our study was designed to gain insight on the conditions prevailing during hydration. Our results indicate that even fully serpentinized samples have a very low magnetization and magnetite content. Moreover, microprobe and μXanes results show that serpentine is the main host of iron in the divalent but also trivalent form. These results are compared with a set of data from serpentinized ultramafics sampled from the ocean floors, as well as from various other ophiolites. We suggest that serpentinization at Pindos occurred at relatively low-temperature (less than 200 °C), therefore not at a ridge environment. In addition, we stress that the presence of trivalent iron in serpentine indicates that serpentinization may remain a producer of hydrogen even when very little magnetite is formed.

  8. Fe-Ni-bearing serpentines from the saprolite horizon of Caribbean Ni-laterite deposits: new insights from thermodynamic calculations

    Science.gov (United States)

    Villanova-de-Benavent, Cristina; Domènech, Cristina; Tauler, Esperança; Galí, Salvador; Tassara, Santiago; Proenza, Joaquín A.

    2017-10-01

    Fe-Ni-bearing serpentine from the saprolite horizon is the main Ni ores in hydrous silicate-type Ni laterites and formed by chemical weathering of partially serpentinized ultramafic rocks under tropical conditions. During lateritization, Mg, Si, and Ni are leached from the surface and transported downwards. Fe2+ is oxidized to Fe3+ and fixed as insoluble Fe-oxyhydroxides (mostly goethite) that incorporate Ni. This Ni is later leached from goethite and incorporated in secondary serpentine and garnierite. As a result, a serpentine-dominated saprolite horizon forms over the ultramafic protolith, overlapped by a Fe-oxyhydroxide-dominated limonite horizon. The serpentine from the protolith (serpentine I) is of hydrothermal origin and yields similar Ni (0.10-0.62 wt.% NiO) and lower Fe (mostly 1.37-5.81 wt.% FeO) concentrations than the primary olivine. In contrast, Fe-Ni-bearing serpentine from the saprolite (serpentine II) shows significantly higher and variable Fe and Ni contents, typically ranging from 2.23 to 15.59 wt.% Fe2O3 and from 1.30 to 7.67 wt.% NiO, suggesting that serpentine get enriched in Fe and Ni under supergene conditions. This study presents detailed mineralogical, textural, and chemical data on this serpentine II, as well as new insights by thermodynamic calculations assuming ideal solution between Fe-, Ni- and Mg-pure serpentines. The aim is to assess if at atmospheric pressure and temperature Fe-Ni-bearing serpentine can be formed by precipitation. Results indicate that the formation of serpentine II under atmospheric pressure and temperature is thermodynamically supported, and pH, Eh, and the equilibrium constant of the reaction are the parameters that affect the results more significantly.

  9. The Eurasian Dry Grassland Group (EDGG in 2016–2017

    Directory of Open Access Journals (Sweden)

    Venn Stephen

    2018-06-01

    Full Text Available This report summarizes the activities and achievements of the Eurasian Dry Grassland Group (EDGG from mid-2016 through to the end of 2017. During this period, the 13th Eurasian Grassland Conference took place in Sighişoara, Romania, and the 14th conference was held in Riga, Latvia. The 10th EDGG Field Workshop on Biodiversity patterns across a precipitation gradient in the Central Apennine mountains was conducted in the Central Apennines, Italy, this time in addition to multi-scale sampling of vascular plants, bryophytes and lichens, also including one animal group (leaf hoppers. Apart from the quarterly issues of its own electronic journal (Bulletin of the Eurasian Dry Grassland Group, EDGG also finalised five grassland-related Special Features/Issues during the past 1.5 years in the following international journals: Applied Vegetation Science, Biodiversity and Conservation, Phytocoenologia, Tuexenia and Hacquetia. Beyond that, EDGG facilitated various national and supra-national vegetationplot databases of grasslands and established its own specialised database for standardised multi-scale plot data of Palaearctic grasslands (GrassPlot.

  10. Microfracturing and fluid pathways in serpentinizing abyssal peridotites along the Southwest Indian Ridge (62°-65°E)

    Science.gov (United States)

    Rouméjon, S.; Cannat, M.; Agrinier, P.; Godard, M.; Andreani, M.

    2013-12-01

    At slow spreading ridges, axial detachment faults exhume mantle-derived peridotites. Their interaction with seawater-derived hydrothermal fluids causes serpentinization down to 2-3km from the fault, as inferred from seismic velocity models. It is commonly proposed that fractures allow penetration of seawater into the fault's footwall. At the microscopic scale, the hydration front progresses from a microfracture network toward the center of olivine relicts and forms the serpentine mesh texture. The origin of these microfractures is a matter of debate: tectonic, anisotropic thermal contraction of olivine during peridotite cooling or hierarchical fracturing of the olivine due to volume increase during serpentinization. In this presentation we use petrology and geochemistry to analyze the links between microfractures and serpentinization in a set of highly serpentinized peridotites dredged along the melt-starved easternmost part of the Southwest Indian Ridge (Smoothseafloor cruise). Our observations suggest that thermal contraction of olivine combines with tectonic stresses to fracture fresh peridotite in the brittle lithosphere. These ~60μm-spaced microfractures constitute the initial sample-scale permeability network for fluid penetration, onset of serpentinization and formation of additional hierarchical fractures. As serpentinization proceeds, the volume increase closes the least-developed planes and preferential pathways for fluid circulation become more distant, forming the 200-500μm-wide polygonal pattern typical of the serpentine mesh texture. In about 20% of the recovered samples the mesh serpentine is partially recrystallized forming rims next to later microfractures and serpentine veins. The spacing of these rims, and the limited proportion of affected samples suggest that the scales of the efficient permeability network in the serpentinites at this stage had increased to decimetric and greater scales. We use geochemical constrains to derive temperature

  11. Serpentine Coil Topology for BNL Direct Wind Superconducting Magnets

    CERN Document Server

    Parker, Brett

    2005-01-01

    BNL direct wind technology, with the conductor pattern laid out without need for extra tooling (no collars, coil presses etc.) began with RHIC corrector production. RHIC patterns were wound flat and then wrapped on cylindrical support tubes. Later for the HERA-II IR magnets we improved conductor placement precision by winding directly on a support tube. To meet HERA-II space and field quality goals took sophisticated coil patterns, (some wound on tapered tubes). We denote such patterns, topologically equivalent to RHIC flat windings, "planar patterns." Multi-layer planar patterns run into trouble because it is hard to wind across existing turns and magnet leads get trapped at poles. So we invented a new "Serpentine" winding style, which goes around 360 degrees while the conductor winds back and forth on the tube. To avoid making solenoidal fields, we wind Serpentine layers in opposite handed pairs. With a Serpentine pattern each turn can have the same projection on the coil axis and integral field harmonics t...

  12. Bioleaching of serpentine group mineral by fungus Talaromyces flavus: application for mineral carbonation

    Science.gov (United States)

    Li, Z.; Lianwen, L.; Zhao, L.; Teng, H.

    2011-12-01

    Many studies of serpentine group mineral dissolution for mineral carbonation have been published in recent years. However, most of them focus mainly on either physical and chemical processes or on bacterial function, rather than fungal involvement in the bioleaching of serpentine group mineral. Due to the excessive costs of the magnesium dissolution process, finding a lower energy consumption method will be meaningful. A fungal strain Talaromyces flavus was isolated from serpentinic rock of Donghai (China). No study of its bioleaching ability is currently available. It is thus of great significance to explore the impact of T. flavus on the dissolution of serpentine group mineral. Serpentine rock-inhabiting fungi belonging to Acremonium, Alternaria, Aspergillus, Botryotinia, Cladosporium, Clavicipitaceae, Cosmospora, Fusarium, Monascus, Paecilomyces, Penicillium, Talaromyces, Trichoderma were isolated. These strains were chosen on the basis of resistance to magnesium and nickel characterized in terms of minimum inhibiting concentration (MIC). Specifically, the strain Talaromyces flavus has a high tolerance to both magnesium (1 mol/L) and nickel (10 mM/L), and we examine its bioleaching ability on serpentine group mineral. Contact and separation experiments (cut-off 8 000-14 000 Da), as well as three control experiments, were set up for 30 days. At least three repeated tests were performed for each individual experiment. The results of our experiments demonstrate that the bioleaching ability of T. flavus towards serpentine group mineral is evident. 39.39 wt% of magnesium was extracted from lizardite during the bioleaching period in the contact experiment, which showed a dissolution rate at about a constant 0.126 mM/d before reaching equilibrium in 13 days. The amount of solubilized Mg from chrysotile and antigorite were respectively 37.79 wt% and 29.78 wt% in the contact experiment. These results make clear the influence of mineral structure on mineral bioleaching

  13. Dynamic control on serpentine crystallization in veins: Constraints on hydration processes in oceanic peridotites

    OpenAIRE

    Andréani , Muriel; Mével , C.; Boullier , A.-M.; Escartín , J.

    2007-01-01

    International audience; Deformation and hydration processes are intimately linked in the oceanic lithosphere, but the feedbacks between them are still poorly understood, especially in ultramafic rocks where serpentinization results in a decrease of rock density that implies a volume increase and/or mass transfer. Serpentinization is accompanied by abundant veining marked by different generations of vein-filling serpentines with a high variety of morphologies and textures that correspond to di...

  14. Water removal characteristics of parallel serpentine channels. Paper no. IGEC-1-035

    International Nuclear Information System (INIS)

    Jiao, K.; Zhou, B.; Quan, P.

    2005-01-01

    Water management in a proton exchange membrane (PEM) fuel cell stack has been a challenging issue on the road to commercialization. This paper presents a numerical investigation of air-water flow in parallel serpentine channels on cathode side of a PEM fuel cell stack by use of the commercial Computational Fluid Dynamics (CFD) software package FLUENT. Different air-water flow behaviours inside the serpentine flow channels with inlet and outlet manifolds were discussed. The results showed that there were significant variations of water distribution and pressure drop in different cells at different times. The 'collecting-and-separating effect' due to the serpentine shape of the gas flow channels, the pressure drop change due to the water distribution inside the outlet manifold were observed. Several gas flow problems of this type of parallel serpentine channels were identified and useful suggestions were given through investigating the flow patterns inside the channels and manifolds. (author)

  15. H2-rich fluids from serpentinization: Geochemical and biotic implications

    OpenAIRE

    Sleep, N. H.; Meibom, A.; Fridriksson, Th.; Coleman, R. G.; Bird, D. K.

    2004-01-01

    Metamorphic hydration and oxidation of ultramafic rocks produces serpentinites, composed of serpentine group minerals and varying amounts of brucite, magnetite, and/or FeNi alloys. These minerals buffer metamorphic fluids to extremely reducing conditions that are capable of producing hydrogen gas. Awaruite, FeNi3, forms early in this process when the serpentinite minerals are Fe-rich. Olivine with the current mantle Fe/Mg ratio was oxidized during serpentinization after the Moon-forming impac...

  16. Serpentinization of mantle-derived peridotites at mid-ocean ridges: Mesh texture development in the context of tectonic exhumation

    Science.gov (United States)

    Rouméjon, Stéphane; Cannat, Mathilde

    2014-06-01

    At slow spreading ridges, axial detachment faults exhume mantle-derived peridotites and hydrothermal alteration causes serpentinization in a domain extending more than 1 km next to the fault. At the microscopic scale, serpentinization progresses from a microfracture network toward the center of olivine relicts and forms a mesh texture. We present a petrographic study (SEM, EBSD, and Raman) of the serpentine mesh texture in a set of 278 abyssal serpentinized peridotites from the Mid-Atlantic and Southwest Indian Ridges. We show that serpentinization initiated along two intersecting sets of microfractures that have consistent orientations at the sample scale, and in at least one studied location, at the 100 m scale. We propose that these microfractures formed in fresh peridotites due to combined thermal and tectonic stresses and subsequently served as channels for serpentinizing fluids. Additional reaction-induced cracks developed for serpentinization extents <20%. The resulting microfracture network has a typical spacing of ˜60 µm but most serpentinization occurs next to a subset of these microfractures that define mesh cells 100-400 µm in size. Apparent mesh rim thickness is on average 33 ± 19 µm corresponding to serpentinization extents of 70-80%. Published laboratory experiments suggest that mesh rims formation could be completed in a few years (i.e., quasi instantaneous at the plate tectonic timescale). The depth and extent of the serpentinization domain in the detachment fault's footwall are probably variable in time and space and as a result we expect that the serpentine mesh texture at slow spreading ridges forms at variable rates with a spatially heterogeneous distribution.

  17. Contents of several elements in trees grown on the serpentine soil

    International Nuclear Information System (INIS)

    Tomita, Michio; Katayama, Yukio; Takada, Jitsuya; Nishimura, Kazuo.

    1990-01-01

    Determination of Mg-, Ca-, Cr-, Mn-, Fe- and Ni-content in akamatsu (P. densiflora), konara (Q. serrata) and ryoubu (C. barbinervis) which were grown on the serpentine soil, as well as in soil, were performed by the neutron activation method or the atomic absorption spectrophotometry. It turned out that contents of these elements was higher in leaves than wood. It was also found that Ni content in the leaves of konara as well as of ryoubu reflected the concentration of the acid extractable Ni in the serpentine soil. The elemental contents in akamatsu leaves were heavily affected by the characteristic contents of the serpentine soil. It is suggested that these trees are available for the indicator of soil-environment. (author)

  18. Reaction-induced fracturing during olivine serpentinization: A mechanistic investigation at the interface scale

    NARCIS (Netherlands)

    Plümper, O.; Røyne, A.; Malthe-Sørenssen, A.; King, H. E.; Jamtveit, B.

    Serpentinization of the Earth's impermeable upper mantle is one of the most fundamental metamorphic hydration reactions. It governs lithospheric weakening, geochemical subduction zone input and possibly even the formation of life-essential building blocks. Serpentinization relies on fluid pathway

  19. Vestiges of Submarine Serpentinization Recorded in the Microbiology of Continental Ophiolite Complexes

    Science.gov (United States)

    Schrenk, M. O.; Sabuda, M.; Brazelton, W. J.; Twing, K. I.

    2017-12-01

    The study of serpentinization-influenced microbial ecosystems at and below the seafloor has accelerated in recent years with multidisciplinary drilling expeditions to the Atlantis Massif (X357), Southwest Indian Ridge (X360) and Mariana Forearc (X366). In parallel, a number of studies have surveyed serpentinizing systems in ophiolite complexes which host a range of geologic histories, geochemical characteristics, fluid pathways, and consequently microbiology. As ophiolite complexes originate as seafloor materials, it is likely that a microbiological record of seafloor serpentinization processes is maintained through the emplacement and weathering of continental serpentinites. This hypothesis was evaluated through a global comparison of continental serpentinite springs and groundwater, ranging from highly brackish (saline) to freshwater. One of the most saline sites, known as the Coast Range Ophiolite Microbial Observatory (CROMO), was used as a point-of-comparison to marine serpentinizing systems, such as the Lost City Hydrothermal Field. Although there was little taxonomic overlap between microbial populations in marine and terrestrial systems, both communities harbored an abundance of genes involved in sulfur metabolism, including sulfide oxidation, thiosulfate disproportionation, and sulfate reduction. The phylogeny of key genes involved in these metabolic processes was evaluated relative to published studies and compared between sites. Together, these data provide insights into both the functioning of microbial communities in modern-day serpentinizing systems, and the transport processes that disperse microorganisms between marine and terrestrial serpentinites.

  20. Experimental investigation of As, Sb and Cs behavior during olivine serpentinization in hydrothermal alkaline systems

    Science.gov (United States)

    Lafay, Romain; Montes-Hernandez, German; Janots, Emilie; Munoz, Manuel; Auzende, Anne Line; Gehin, Antoine; Chiriac, Rodica; Proux, Olivier

    2016-04-01

    While Fluid-Mobile Elements (FMEs) such as B, Sb, Li, As or Cs are particularly concentrated in serpentinites, data on FME fluid-serpentine partitioning, distribution, and sequestration mechanisms are missing. In the present experimental study, the behavior of Sb, As and Cs during San Carlos olivine serpentinization was investigated using accurate mineralogical, geochemical, and spectroscopic characterization. Static-batch experiments were conducted at 200 °C, under saturated vapor pressure (≈1.6 MPa), for initial olivine grain sizes of coefficient increasing such as CsDp/fl = 1.5-1.6 elements are however substantially different. While the As partition coefficient remains constant throughout the serpentinization reaction, the Cs partition coefficient decreases abruptly in the first stages of the reaction to reach a constant value after the reaction is 40-60% complete. Both As and Cs partitioning appear to decrease with increasing initial olivine grain size, but there is no significant difference in the partitioning coefficient between the 30-56 and 56-150 μm grain size after complete serpentinization. X-ray absorption spectroscopy (XAS) measurements combined with X-ray chemical measurements reveal that the As(V) is mainly adsorbed onto the serpentinization products, especially brucite. In contrast, mineralogical characterization combined with XAS spectroscopy reveal redox sensitivity for Sb sequestration within serpentine products, depending on the progress of the reaction. When serpentinization is coefficient compared to that of the serpentine and brucite assemblage. Antimony reduction appears linked to water reduction accompanying the bulk iron oxidation, as half the initial Fe(II) is oxidized into Fe(III) and incorporated into the serpentine products once the reaction is over. The reduction of Sb implies a decrease of its solubility, but the type of secondary Sb-rich phases identified here might not be representative of natural systems where Sb

  1. Radiation distribution through serpentine concrete using local materials and its application as a reactor biological shield

    International Nuclear Information System (INIS)

    Kansouh, W.A.

    2012-01-01

    Highlights: ► New serpentine concrete was made and examined as a reactor biological shield. ► Ilmenite–limonite concrete is a better reactor biological shield. ► New serpentine concrete is a better reactor fast neutrons shield than ordinary and hematite–serpentine concretes. ► Serpentine concrete has lower properties as a reactor total gamma rays shields. - Abstract: In the present work attempt has been made to estimate the shielding parameters of the new serpentine concrete (density = 2.4 g/cm 3 ) using local materials on the shielding parameters for two types of heat resistant concretes, namely hematite–serpentine (density = 2.5 g/cm 3 ) and ilmenite–limonite (density = 2.9 g/cm 3 ). Shielding parameters for ordinary concrete (density = 2.3 g/cm 3 ) were also discussed. These parameters were determined experimentally for serpentine concrete and compared with previously published values for other concretes, which had also been obtained using local materials. The leakage spectra of reactor fast neutrons and total gamma photon beams from cylindrical samples of these concrete shields were also investigated using a collimated beam from ET-RR-1 reactor. A neutron–gamma spectrometer was used in order to obtain pulse height spectra of reactor fast neutrons and the total gamma rays leakage through the investigated concrete samples. These spectra were utilized to obtain the energy spectra required in these investigations. Removal cross section Σ R (E n ) and linear attenuation coefficient μ(E g ) for reactor fast neutrons and total gamma rays and their relative coefficients were evaluated and presented. Measured results were compared with those previously measured for other concretes. The results show that ilmenite–limonite concrete is a better reactor biological shield than the other three concretes. Serpentine concrete under investigation is a better reactor fast neutrons shield than ordinary and hematite–serpentine concretes. Serpentine concrete

  2. Magnetic properties of serpentinized peridotites from the Zedong ophiolite, Yarlung-Zangbo suture zone, SE Tibet

    Science.gov (United States)

    Li, Z.; Zheng, J.; Moskowitz, B. M.; Xiong, Q.; Liu, Q.

    2017-12-01

    Serpentinized mantle peridotites are widely supposed to be significant sources of the magnetic, gravity and seismic anomalies in mid-oceanic ridges, forearcs and suture zones. However, the relationship between the magnetic properties of variably serpentinized peridotites and the serpentinization process is still under debate. Ophiolite outcrops commonly comprise peridotites in different stages of serpentinization and these ophiolitic peridotites are ideal to investigate the magnetic signatures of suture zones. The Zedong ophiolite locates in the eastern part of the Yarlung-Zangbo suture zone, SE Tibet (China), and the peridotite massif represents the remnants of the Neo-Tethyan lithospheric mantle. The harzburgite and lherzolite samples show densities between 3.316 and 2.593 g cm-3, and vary from the freshest to >90% serpentinized peridotites. The magnetic susceptibility curves from room temperature to 700ºC mainly show the Curie temperatures of 585ºC for pure magnetite. The low-temperature (20-300 K) demagnetization curves show the Verwey transitions at 115-125 K, suggesting that magnetite is also the dominant remanence-carrying phase. The hysteresis data of the peridotites fall in the region of pseudo-single-domain (PSD) and follow the theoretical trends for mixtures of single domain (SD) and multidomain (MD) magnetite. The first-order reversal curve (FORC) diagrams suggest that the magnetite is dominantly interacting SD + PSD particles for S 40% serpentinized samples. The susceptibility and saturation magnetization of the Zedong peridotites range from 0.9 to 30.8 × 10‒3 (SI) and 14.1 to 1318 × 10‒3 Am2 kg‒1, respectively, and both show consistent trends with increasing degrees of serpentinization. The S serpentinization of ophiolitic peridotites, whereas the S > 40% peridotites have higher susceptibilities of 0.02-0.03 (SI) and fall in the region of abyssal peridotites. Our results suggest that the Zedong ophiolitic peridotites probably experienced a

  3. Preserved organic matter in the Serpentinized Ocean-Continent Transition of Alpine Tethys

    Science.gov (United States)

    Mateeva, T.; Wolff, G. A.; Kusznir, N.; Manatschal, G.; Wheeler, J.

    2017-12-01

    Serpentinization occurs at slow-spreading ocean ridges and magma-poor rifted continental margins. At modern hydrothermal vents, serpentinization has been observed to support hydrogen-driven microbial environments including methanotrophic biosystems. An important question is: "Are such bio-systems locally restricted to hydrothermal vents or are they more pervasive, being linked with the exhumation of serpentinized mantle at the seafloor?" Fieldwork sampling of km scale exposures of orogenically exhumed serpentinized mantle in the Alps allows 3D mantle sampling that is not possible at ocean ridges and provides an opportunity to investigate the organic matter in an ophiolite sequence relative to the seafloor. Samples from the fossil Tethyan OCT, exhumed during Alpine collisional orogeny, have been examined for the presence or absence of biomarkers typical of methanotrophy within serpentinized exhumed mantle. Samples from the Totalp unit, Tasna nappe and Platta unit of the Eastern Swiss Alps and Chenaillet in the Western Alps from the Tethyan magma-poor OCT were selected for analysis because they have little Alpine deformation and underwent only low-grade Alpine metamorphism. Hand specimens and cores taken from these locations have been analysed to search for the presence or absence of biomarkers in the serpentinite and its overlying lithologies. Thin sections of samples from these OCT locations reveal multiple serpentinization events and calcification phases. All the lithologies sampled show the presence of hydrocarbons such as n-alkanes, low molecular weight polynuclear aromatic hydrocarbons (PAHs, of mixed petrogenic and pyrogenic source), hopanes, steranes (of marine origin), and branched alkanes (pristane and phytane, non-specific marine origin). The identifiable biomarkers and the isotopic data are consistent with organic matter of a marine origin and do not provide any evidence for a methanotrophic bio-system. It is noteworthy that basement mantle rocks still

  4. Nickel speciation in several serpentine (ultramafic) topsoils via bulk synchrotron-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Siebecker, Matthew G.; Chaney, Rufus L.; Sparks, Donald L.

    2017-07-01

    Serpentine soils have elevated concentrations of trace metals including nickel, cobalt, and chromium compared to non-serpentine soils. Identifying the nickel bearing minerals allows for prediction of potential mobility of nickel. Synchrotron-based techniques can identify the solid-phase chemical forms of nickel with minimal sample treatment. Element concentrations are known to vary among soil particle sizes in serpentine soils. Sonication is a useful method to physically disperse sand, silt and clay particles in soils. Synchrotron-based techniques and sonication were employed to identify nickel species in discrete particle size fractions in several serpentine (ultramafic) topsoils to better understand solid-phase nickel geochemistry. Nickel commonly resided in primary serpentine parent material such as layered-phyllosilicate and chain-inosilicate minerals and was associated with iron oxides. In the clay fractions, nickel was associated with iron oxides and primary serpentine minerals, such as lizardite. Linear combination fitting (LCF) was used to characterize nickel species. Total metal concentration did not correlate with nickel speciation and is not an indicator of the major nickel species in the soil. Differences in soil texture were related to different nickel speciation for several particle size fractionated samples. A discussion on LCF illustrates the importance of choosing standards based not only on statistical methods such as Target Transformation but also on sample mineralogy and particle size. Results from the F-test (Hamilton test), which is an underutilized tool in the literature for LCF in soils, highlight its usefulness to determine the appropriate number of standards to for LCF. EXAFS shell fitting illustrates that destructive interference commonly found for light and heavy elements in layered double hydroxides and in phyllosilicates also can occur in inosilicate minerals, causing similar structural features and leading to false positive results in

  5. Polyphase serpentinization history of Mariana forearc mantle: observations on the microfabric of ultramafic clasts from ODP Leg 195, Site 1200

    Science.gov (United States)

    Kahl, Wolf-Achim; Jöns, Niels; Bach, Wolfgang; Klein, Frieder

    2013-04-01

    In the forearc of the Mariana subduction zone system, a number of seamounts form from extrusion of blueschist and serpentine mud. Ocean Drilling Program Leg 195 drilled the South Chamorro seamount, where ultramafic clasts occur within the mud matrix. These clasts show a complex serpentinization history, which bears the potential for tracking the alteration history during uplift and cooling of mantle wedge rocks to the seafloor. Moreover, the microfabrics of the highly serpentinized harzburgite and dunite clasts exhibit evidence for multiple fracturing events in the forearc mantle. These, in turn, lead to fluid influx and varied styles of serpentinization of harzburgite and dunite. The serpentinized ultramafic clasts exhibit a variety of microfabrics that range from virtually undeformed to strongly deformed samples. Pervasively serpentinized harzburgites feature either an equigranular fabric of serpentinized olivine and orthopyroxene crystals, or different vein generations related to multiple stages of serpentinization. Several types of fluid pathways in harzburgites are present: (i) veins containing brucite and iron oxides, developed linearly without marked conformance with the rock fabric. In places, these veins developed mm-cm wide halos with finger-shaped serpentinization fronts. Veins of type (i) are either developed as syntaxial veins from a single crack-seal event with large magnetite crystals growing from one wall to the other (as confirmed with high-resolution X-ray microtomography), or formed by multiple fluid events. (ii) serpentine veins that encompass regions of marginally serpentinized, microgranular olivine and large orthopyroxene crystals. (iii) extensional serpentine veins (known as "Frankenstein" type). In the clasts studied, their occurrence is restricted to the halo region of type (i) veins. (iv) as a late-stage feature, extensional veins documenting multiple crack-seal events can be present in the serpentinites (either in undeformed regions with

  6. Bringing together evolution on serpentine and polyploidy: spatiotemporal history of the diploid-tetraploid complex of Knautia arvensis (Dipsacaceae.

    Directory of Open Access Journals (Sweden)

    Filip Kolář

    Full Text Available Polyploidization is one of the leading forces in the evolution of land plants, providing opportunities for instant speciation and rapid gain of evolutionary novelties. Highly selective conditions of serpentine environments act as an important evolutionary trigger that can be involved in various speciation processes. Whereas the significance of both edaphic speciation on serpentine and polyploidy is widely acknowledged in plant evolution, the links between polyploid evolution and serpentine differentiation have not yet been examined. To fill this gap, we investigated the evolutionary history of the perennial herb Knautia arvensis (Dipsacaceae, a diploid-tetraploid complex that exhibits an intriguing pattern of eco-geographic differentiation. Using plastid DNA sequencing and AFLP genotyping of 336 previously cytotyped individuals from 40 populations from central Europe, we unravelled the patterns of genetic variation among the cytotypes and the edaphic types. Diploids showed the highest levels of genetic differentiation, likely as a result of long term persistence of several lineages in ecologically distinct refugia and/or independent immigration. Recurrent polyploidization, recorded in one serpentine island, seems to have opened new possibilities for the local serpentine genotype. Unlike diploids, the serpentine tetraploids were able to escape from the serpentine refugium and spread further; this was also attributable to hybridization with the neighbouring non-serpentine tetraploid lineages. The spatiotemporal history of K. arvensis allows tracing the interplay of polyploid evolution and ecological divergence on serpentine, resulting in a complex evolutionary pattern. Isolated serpentine outcrops can act as evolutionary capacitors, preserving distinct karyological and genetic diversity. The serpentine lineages, however, may not represent evolutionary 'dead-ends' but rather dynamic systems with a potential to further influence the surrounding

  7. The California Valley grassland

    Science.gov (United States)

    Keeley, J.E.; Schoenherr, Allan A.

    1990-01-01

    Grasslands are distributed throughout California from Oregon to Baja California Norte and from the coast to the desert (Brown 1982) (Figure 1). This review will focus on the dominant formation in cismontane California, a community referred to as Valley Grassland (Munz 1959). Today, Valley Grassland is dominated by non-native annual grasses in genera such as Avena (wild oat), Bromus (brome grass), and Hordeum (barley), and is often referred to as the California annual grassland. On localized sites, native perennial bunchgrasses such as Stipa pultra (purple needle grass) may dominate and such sites are interpreted to be remnants of the pristine valley grassland. In northwestern California a floristically distinct formation of the Valley Grassland, known as Coast Prairie (Munz 1959) or Northern Coastal Grassland (Holland and Keil 1989) is recognized. The dominant grasses include many native perennial bunchgrasses in genera such as Agrostis, Calamagrostis, Danthonia, Deschampsia, Festuca, Koeleria and Poa (Heady et al. 1977). Non-native annuals do not dominate, but on some sites non-native perennials like Anthoxanthum odoratum may colonize the native grassland (Foin and Hektner 1986). Elevationally, California's grasslands extend from sea level to at leas 1500 m. The upper boundary is vague because montane grassland formations are commonly referred to as meadows; a community which Munz (1959) does not recognize. Holland and Keil (1989) describe the montane meadow as an azonal community; that is, a community restricted not so much to a particular climatic zone but rather controlled by substrate characteristics. They consider poor soil-drainage an over-riding factor in the development of montane meadows and, in contrast to grasslands, meadows often remain green through the summer drought. Floristically, meadows are composed of graminoids; Cyperaceae, Juncaceae, and rhizomatous grasses such as Agropyron (wheat grass). Some bunchgrasses, such as Muhlenbergia rigens, are

  8. Raman Spectroscopy of Serpentine and Reaction Products at High Pressure Using a Diamond Anvil Cell

    Science.gov (United States)

    Burgess, K.; Zinin, P.; Odake, S.; Fryer, P.; Hellebrand, E.

    2012-12-01

    Serpentine is one of the most abundant hydrous phases in the altered subducting plate, and contributes a large portion of the water flux in subduction zones. Measuring and understanding the structural changes in serpentine with pressure aids our understanding of the processes ongoing in oceanic crust and subduction zones. We have conducted high-pressure/high-temperature experiments on serpentine and its dehydration reaction products using a diamond anvil cell. We used the multifunctional in-situ measurement system equipped with a Raman device and laser heating system at the University of Hawaii. Well-characterized natural serpentinite was used in the study. Pressure was determined using the shift of the fluorescence line of a ruby placed next to the sample. Raman spectra of serpentine were obtained at higher pressures than previously published, up to 15 GPa; the peak shift with pressure fits the model determined by Auzende et al. [2004] at lower pressures. Heating was done at several different pressures up to 20 GPa, and reaction products were identified using Raman. Micro-Raman techniques allow us to determine reaction progress and heterogeneity within natural samples containing olivine and serpentine. Auzende, A-L., I. Daniel, B. Reynard, C. Lemaire, F. Guyot (2004). High-pressure behavior of serpentine minerals: a Raman spectroscopic study. Phys. Chem. Minerals 31 269-277.

  9. Methane Dynamics in a Tropical Serpentinizing Environment: The Santa Elena Ophiolite, Costa Rica

    Directory of Open Access Journals (Sweden)

    Melitza Crespo-Medina

    2017-05-01

    Full Text Available Uplifted ultramafic rocks represent an important vector for the transfer of carbon and reducing power from the deep subsurface into the biosphere and potentially support microbial life through serpentinization. This process has a strong influence upon the production of hydrogen and methane, which can be subsequently consumed by microbial communities. The Santa Elena Ophiolite (SEO on the northwestern Pacific coast of Costa Rica comprises ~250 km2 of ultramafic rocks and mafic associations. The climatic conditions, consisting of strongly contrasting wet and dry seasons, make the SEO a unique hydrogeological setting, where water-rock reactions are enhanced by large storm events (up to 200 mm in a single storm. Previous work on hyperalkaline spring fluids collected within the SEO has identified the presence of microorganisms potentially involved in hydrogen, methane, and methanol oxidation (such as Hydrogenophaga, Methylobacterium, and Methylibium spp., respectively, as well as the presence of methanogenic Archaea (such as Methanobacterium. Similar organisms have also been documented at other serpentinizing sites, however their functions have not been confirmed. SEO's hyperalkaline springs have elevated methane concentrations, ranging from 145 to 900 μM, in comparison to the background concentrations (<0.3 μM. The presence and potential activity of microorganisms involved in methane cycling in serpentinization-influenced fluids from different sites within the SEO were investigated using molecular, geochemical, and modeling approaches. These results were combined to elucidate the bioenergetically favorable methane production and/or oxidation reactions in this tropical serpentinizing environment. The hyperalkaline springs at SEO contain a greater proportion of Archaea and methanogens than has been detected in any terrestrial serpentinizing system. Archaea involved in methanogenesis and anaerobic methane oxidation accounted from 40 to 90% of total

  10. Geogenic Enrichment of PTEs and the " Serpentine Syndrome"(H. Jenny, 1980). A proxy for soil remediation

    Science.gov (United States)

    Bini, Claudio; Maleci, Laura

    2014-05-01

    Serpentine soils have relatively high concentrations of PTEs (e.g., Co, Cr, Cu, Fe, Ni) but generally low amounts of major nutrients. They often bear a distinctive vegetation, and a frequently-used approach to understanding serpentine ecology and environmental hazard has been the chemical analysis of soils and plants. Long-term studies on aspects of serpentine soils and their vegetation provide results on total concentrations, or on plant-available fractions, of soil elements which counteract ecological conditions. For example, there is evidence of Ni toxicity at Ni-concentration >0.3 mg/L in the soil solution (Johnston and Proctor, 1981). The serpentine vegetation differs from the conterminous non-serpentine areas, being often endemic, and showing macroscopic physionomical characters such as dwarfism, prostrate outcome, glaucescence and glabrescence, leaves stenosis, root shortening (what Jenny, 1980, called "the serpentine syndrome"). Similarly, at microscopic level cytomorphological characteristics of the roots and variations in biochemical parameters such as LPO and phenols have been recorded in serpentine native vegetation (Giuliani et al., 2008). Light microscopy observations showed depressed mitotic activity in the meristematic zone, and consequent reduced root growth (Gabbrielli et al., 1990) The metal content of plants growing on serpentine soils at sites with different microclimatic conditions has been examined by several authors (e.g. Bini et al., 1993; Dinelli and Lombini, 1996) . A preferential Ni distribution in epidermis and sclerenchima has been observed in the stem of Alyssum bertoloni, a well known Ni-accumulator plant (Vergnano Gambi, 1975). The different tolerance mechanisms responsible for plant adaption to high concentrations of PTEs in serpentine soils can be related to the capacity of plants either to limit metal uptake and translocation or to accumulate metals in non toxic forms. The majority of serpentine species (e.g. Silene italica) tend

  11. Hajdu-Cheney syndrome associated with serpentine fibulae and polycystic kidney disease

    International Nuclear Information System (INIS)

    Currarino, Guido

    2009-01-01

    Six patients who presented with craniofacial anomalies, musculoskeletal anomalies including elongated and bowed (serpentine) fibulae, and polycystic kidneys are reported. This association of anomalies is referred to as serpentine fibula polycystic kidney syndrome (SFPKS) and is currently interpreted as a manifestation of Hajdu-Cheney syndrome (HCS). We report a new instance of this association of anomalies and review the clinical and radiographic features of HCS and of the reported cases of SFPKS. (orig.)

  12. Visual study of air--water mixtures flowing inside serpentine tubes

    International Nuclear Information System (INIS)

    Farukhi, M.N.; Parker, J.D.

    1974-01-01

    Hydrodynamic behavior of air-water mixtures flowing inside serpentine tubes, with bends in the vertical plane, was investigated. Flow visualization was accomplished by injecting dye into the liquid phase and recording the events on color slides and color movies. For certain combinations of gas and liquid flow rates, in the annular type flow regime, ''film inversion'' was observed in the bend as well as in the straight section immediately downstream of the bend. A new flow regime map particularly applicable to two phase flow inside serpentine tubes is presented. (U.S.)

  13. Using MicroFTIR to Map Mineral Distributions in Serpentinizing Systems

    Science.gov (United States)

    Johnson, A.; Kubo, M. D.; Cardace, D.

    2016-12-01

    Serpentinization, the water-rock reaction forming serpentine mineral assemblages from ultramafic precursors, can co-occur with the production of hydrogen, methane, and diverse organic compounds (McCollom and Seewald, 2013), evolving water appropriate for carbonate precipitation, including in ophiolite groundwater flow systems and travertine-producing seeps/springs. Serpentinization is regarded as a geologic process important to the sustainability of the deep biosphere (Schrenk et al., 2013) and the origin of life (Schulte et al., 2006). In this study, we manually polished wafers of ultramafic rocks/associated minerals (serpentinite, peridotite, pyroxenite, dunite; olivine, diopside, serpentine, magnetite), and travertine/constituent minerals (carbonate crusts; calcite, dolomite), and observed mineral boundaries and interfaces using µFTIR analysis in reflection mode. We used a Thermo Nicolet iS50 FTIR spectrometer coupled with a Continuum IR microscope to map minerals/boundaries. We identify, confirm, and document FTIR wavenumber regions linked to serpentinite- and travertine-associated minerals by referencing IR spectra (RRUFF) and aligning with x-ray diffraction. The ultramafic and carbonate samples are from the following field localities: McLaughlin Natural Reserve - a UC research reserve, Lower Lake, CA; Zambales, PH; Ontario, CA; Yellow Dog, MI; Taskesti, TK; Twin Sisters Range, WA; Sharon, MA; Klamath Mountains, CA; Dun Mountain, NZ; and Sussex County, NJ. Our goals are to provide comprehensive µFTIR characterization of mineral profiles important in serpentinites and related rocks, and evaluate the resolving power of µFTIR for the detection of mineral-encapsulated, residual organic compounds from biological activity. We report on µFTIR data for naturally occurring ultramafics and travertines and also estimate the limit of detection for cell membrane components in mineral matrices, impregnating increasing mass proportions of xanthan gum in a peridotite sand

  14. A stable isotope study of serpentinization in the Fengtien ophiolite, Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Tzen-Fu Yui; Hsueh-Wen Yeh (Univ. of Hawaii, Honolulu (USA)); Chihming Wang Lee (National Taiwan Univ. (Taiwan))

    1990-05-01

    Detailed H- and O-isotopic studies of serpentinites of Fengtien ophiolite have been made in order to enhance our knowledge on the process of serpentinization. Pseudomorphic lizardites have {delta}{sup 18}O = +3.6{per thousand} and {delta}D = {minus}48 to {minus}49{per thousand}; bladed-mat and foliated antigorites have {delta}{sup 18}O = +3.5 to +5.8{per thousand} and {delta}D = {minus}45 to {minus}69{per thousand}; slickensided antigorites have {delta}{sup 18}O = +4.1 to +4.9{per thousand} and {delta}D = {minus}46 to {minus}50{per thousand}; picrolites have {delta}{sup 18}O = +4.2 to +4.3{per thousand} and {delta}D = {minus}65 to {minus}67{per thousand}; and slickensided chrysotiles have {delta}{sup 18}O = +4.1 to +4.5{per thousand} and {delta}D = {minus}80{per thousand}. It is suggested that lizardite might have formed in an oceanic environment, whereas antigorite and chrysotile have formed in continental environments. These results depict complicated multiple serpentinization processes. Isotopic temperatures calculated using {delta}{sup 18}O values of coexisting fissure-filling minerals range from 325 to 370{degree}C, which are consistent with those derived from phase equilibria involving serpentines. The narrow range of {delta}{sup 18}O and wide range of {delta}D values for antigorite and chrysotile also demonstrate that water/rock ratios during these serpentinizations should not have been high. These Fengtien serpentines fall outside either of the continental domains described by Wenner and Taylor (1973, 1974); and fall within their oceanic domain. We suggest that the domains proposed by Wenner and Taylor (1973, 1974) should be extended and that the terms, especially the continental antigorite and the continental lizardite-chrysotile, should be purely occurrence-descriptive.

  15. Fabrication and analysis of awl-shaped serpentine microsprings for large out-of-plane displacement

    International Nuclear Information System (INIS)

    Chou, Hui-Min; Chen, Rongshun; Lin, Meng-Ju

    2015-01-01

    This work investigates a novel awl-shaped serpentine microspring for a suspension structure, with a lower spring constant under the same unit layout area in out-of-plane motion. Using Castigliano’s theorem, the spring constant of the microspring was theoretically derived and simulations were performed using COMSOL Multiphysics to verify the theoretical results. The proposed awl-shaped serpentine microspring was successfully fabricated using silicon-based micromachining. Experiments were conducted to compare the theoretical and numerical results, which were in close agreement. In addition, a parameter of spring constant to layout area ratio (K/A) is defined to be used as the index for comparing spring constants under the same unit area. Accordingly, the awl-shaped serpentine microspring has a lower K/A value than the traditional serpentine microspring with the same total effective length and folds. With a greater taper angle, more folds, a smaller beam width, and lower beam thickness, the awl-shaped serpentine microspring has a smaller K/A value. Using the proposed mathematical model, the spring constants of microsprings of various sizes and geometric structures can be calculated in out-of-plane motion before the microstructure is fabricated. Thus, it saves time when designing a microspring with a proper spring constant. (paper)

  16. Heavy Metal Resistant, Alkalitolerant Bacteria Isolated From Serpentinizing Springs in the Zambales Ophiolite, Philippines

    Science.gov (United States)

    Vallalar, B.; Meyer-Dombard, D. R.; Cardace, D.; Arcilla, C. A.

    2016-12-01

    Serpentinization involves hydrologic alteration of ultramafic mantle rocks containing olivine and pyroxene to produce serpentine minerals. The fluids resulting from this reaction are reduced, extremely depleted in dissolved inorganic carbon, and are highly alkaline with pH values typically exceeding 10. Major byproducts of the serpentinizing reaction include iron oxides, hydrogen, methane, and small amounts of organic molecules that provide chemosynthetic energy for subsurface microbial communities. In addition, weathering of serpentine rocks often produces fluids and sediments that have elevated concentrations of various toxic heavy metals such as chromium, nickel, cobalt, copper, and zinc. Thus, microorganisms inhabiting these unique ecological niches must be adapted to a variety of physicochemical extremes. The purpose of this study is to isolate bacteria that are capable of withstanding extremely high concentrations of multiple heavy metals from serpentine fluid-associated sediments. Fluid and sediment samples for microbial culturing were collected from Manleluag Spring National Park located on the island of Luzon, Philippines. The area is part of the Zambales ophiolite range, and hosts several serpentinizing fluid seeps. Fluid emanating from the source pool of the spring, designated Manleluag 2 (ML2), has a pH of 10.83 and temperature of 34.4 °C. Luria-Bertani agar medium was supplemented with varying concentrations of five trace elements - Cu, Cr, Co, Ni, and Zn. Environmental samples were spread on each of these media and colony forming units were subsequently chosen for isolation. In all, over 20 isolates were obtained from media with concentrations ranging from 25 mg/L - 400 mg/L of each metal. Taxonomic identity of each isolate was determined using 16S rRNA gene sequences. The isolates were then tested for tolerance to alkaline conditions by altering LB medium to pH values of 8, 9, 10, 11, and 12. The majority of strains exhibit growth at the highest p

  17. Serpentine Robot Model and Gait Design Using Autodesk Inventor and Simulink SimMechanics

    Science.gov (United States)

    Daniel; Iman Alamsyah, Mohammad; Erwin; Tan, Sofyan

    2014-03-01

    The authors introduce gaits of a serpentine robot with linear expansion mechanism where the robot varies its length using joints with three degrees of freedom. The 3D model of the serpentine robot is drawed in Autocad Inventor® and exported to SimMechanics® for straighforward modeling of the kinematics. The gaits are important for robots designed to explore ruins of disasters where the working spaces are very tight. For maximum flexibility of the serpentine robot, we adopted a joint design with three parallel actuators, where the joint is capable of linear movement in the forward axis, and rotational movements around two other axes. The designed linear expansion gaits is calculated for forward movement when the robot is posing straight or turning laterally.

  18. Serpentine Robot Model and Gait Design Using Autodesk Inventor and Simulink SimMechanics

    Directory of Open Access Journals (Sweden)

    Daniel

    2014-03-01

    Full Text Available The authors introduce gaits of a serpentine robot with linear expansion mechanism where the robot varies its length using joints with three degrees of freedom. The 3D model of the serpentine robot is drawed in Autocad Inventor® and exported to SimMechanics® for straighforward modeling of the kinematics. The gaits are important for robots designed to explore ruins of disasters where the working spaces are very tight. For maximum flexibility of the serpentine robot, we adopted a joint design with three parallel actuators, where the joint is capable of linear movement in the forward axis, and rotational movements around two other axes. The designed linear expansion gaits is calculated for forward movement when the robot is posing straight or turning laterally.

  19. Effect of humidity content and direction of the flow of reactant gases on water management in the 4-serpentine and 1-serpentine flow channel in a PEM (proton exchange membrane) fuel cell

    International Nuclear Information System (INIS)

    Khazaee, I.; Sabadbafan, H.

    2016-01-01

    The performance of a PEM (proton exchange membrane) fuel cell depends on design and operating parameters such as relative humidity, operation pressure, and number of channels and direction of the flow of reactant gases. In this study, a three-dimensional, two-phase model has been established to investigate the water management and performance of PEM fuel cell with rectangular geometry and 1-serpentine and 4-serpentine with parallel flow, counter flow and cross flow for hydrogen and oxygen. The numerical simulation was realized with a PEM fuel cell model based on the FLUENT. The active area of each cell is 24.8 cm 2 that its weight is 1300 gr. The material of the gas diffusion layer is carbon clothes, the membrane is nafion117 and the catalyst layer is a plane with 0.004 g cm −2 platinum. Pure hydrogen is used on the anode side and oxygen on the cathode side. Simulation results are obtained for voltage as a function of current density at different humidity. The simulation results are compared with the experimental data, and the agreement is found to be good. The results show that the cell performance at lower voltages increases with increasing humidity in cell with 4-Serpentine flow channel and also in cell with 1-Serpentine flow channel, cell performance at all voltages increases with increasing humidity. In cell with 4-Serpentine and parallel flow channel cell performance is better than counter and cross flow in low voltage and in cell with 1-Serpentine and parallel flow, performance is better than counter and cross flow in high voltage. - Highlights: • Investigation new geometries of a fuel cell. • The effect of geometry on current density, oxygen and water distribution. • The effect of humidity on current density, oxygen and water distribution. • Seeing the interacting and complex electrochemical phenomena.

  20. Malenco Serpentine: proposed as a candidate for "Global Heritage Stone Resource" designation

    Science.gov (United States)

    Primavori, Piero

    2017-04-01

    The Malenco Serpentine (Serpentine of Val Malenco) is the commercial name of a meta-peridotitic geological formation, Jurassic-Lower Cretaceous in age, entirely restricted to the borders of the valley of the same name (Malenco Valley), and geographically located in Sondrio Province, Lombardy Region, North Italy. Geologically speaking, it is part of an ophiolithic suture zone situated at the contact of the Austroalpine and Penninic nappes of the Alps (Rhaetian sector); petrographically, it is the result of a polymetamorphic (both regional and contact) and polytectonic history, with the development of a paragenesis of antigorite + chrysotile + chlorite + magnetite + diopside + olivine + titanolivine ± chromite ± pyrite ± brucite, and other iron and copper sulphurs. Malenco Serpentine extends over an area of approximately 170 km2, with a thickness ranging from 1 to 2 km. Lithological and mineralogical features allow the recognition of three distinct lythotypes: 1) a strongly foliated Serpentine - called Serpentine-schist of Val Malenco, with a regular and penetrative schistosity, which makes it possible to split the rock into very fine sheets ("pioda"); 2) a massive Serpentine, with no remarkable foliation, called with different commercial names (Green Vittoria, Green Mare, Green Torre S. Maria etc.); 3) A Clorithic schist (Val Malenco Ollare Stone), in turn subdivisible into two main types, depending on the predominance of Chlorite or Talc, and well known for their thermal behaviour and historical utilization for the production of stoves and cooking pots. The stone is quarried and processed since Middle Ages, and used in building and urban décor since 1800. Particularly, the splittable Serpentine has totally characterized - and still characterizes - the typology of the roofs and the urban style of the Malenco Valley architecture. "Pioda" is the name given to the roofing elements; initially used only for the local building, they were processed and transported out

  1. Out of the dark: transitional subsurface-to-surface microbial diversity in a terrestrial serpentinizing seep (Manleluag, Pangasinan, the Philippines).

    Science.gov (United States)

    Woycheese, Kristin M; Meyer-Dombard, D'Arcy R; Cardace, Dawn; Argayosa, Anacleto M; Arcilla, Carlo A

    2015-01-01

    In the Zambales ophiolite range, terrestrial serpentinizing fluid seeps host diverse microbial assemblages. The fluids fall within the profile of Ca(2+)-OH(-)-type waters, indicative of active serpentinization, and are low in dissolved inorganic carbon (DIC) (serpentinizing seep ecosystem studies, particularly with regards to tropical biomes.

  2. Soil acidification and liming in grassland production and grassland soil fertility in Slovenia

    Directory of Open Access Journals (Sweden)

    Jure ČOP

    2015-12-01

    Full Text Available This paper reviews the evidences on grassland soil acidity and liming in relation to soil processes and herbage production. There is also an outline of the present state of soil acidity and acidity-related traits – contents of organic matter (OM, phosphorus (P and potassium (K in Slovene grassland. In grassland, soil acidification is an ongoing process under humid climate conditions. It is mainly driven by leaching of nutrients, net loss of cations due to retention in livestock products, use of physiologically acid fertilizers, acid rain and N2 fixation. This process is reduced by strong pH buffering capacity of the soil and by physiologically basic fertilizers. Acid grassland soils in Slovenia are widely distributed in spite of the fact that 44% of the total land has developed from a carbonate parent material. Of the 1713 grassland soil samples analysed during 2005-2007 45% were regarded as acid ones (pH < 5.5; in KCl, 57% as soils with very low P status (˂ 6 mg P2O5/100 g soil and 22% as soils with very low K status (˂ 10 mg K2O/100 soil. Increased content of soil organic matter was identified for alpine pastures (˃ 10 % OM in 44% of samples, mainly as a result of low decomposition rate. Liming of acid grassland soils did not always reflect in a higher herbage yield. The cause for this inefficiency is plant composition of grassland. Thus, many grassland plants with relatively high production potential have adapted to acid soil conditions. To illustrate the inconsistent liming effect three researches are reviewed. In the first two researches liming along with fertilizer application did not increase the yield comparing to the fertilized control while in the third research the increase amounted 26 %. Liming improves considerably botanical composition of the acid grassland (e.g. sward where Common Bent – Agrostis tenuis Sibth. – prevails and thus indirectly affects palatability and nutritive value of herbage. Grassland liming has a weak

  3. Geochemistry and geobiology of a present-day serpentinization site in California: The Cedars

    Science.gov (United States)

    Morrill, Penny L.; Kuenen, J. Gijs; Johnson, Orion J.; Suzuki, Shino; Rietze, Amanda; Sessions, Alex L.; Fogel, Marilyn L.; Nealson, Kenneth H.

    2013-05-01

    Ultra-basic (pH 11-12) reducing (-656 to -585 mV) groundwater springs discharging from serpentinized peridotite of The Cedars, CA, were investigated for their geochemistry and geobiology. The spring waters investigated were of meteoric origin; however, geochemical modeling suggests that there were two sources of groundwater, a shallow source with sufficient contact with The Cedars' peridotite body to be altered geochemically by serpentinization, and a deeper groundwater source that not only flows through the peridotite body but was also in contact with the marine sediments of the Franciscan Subduction Complex (FSC) below the peridotite body. We propose that the groundwater discharging from lower elevations (GPS1 and CS1) reflect the geochemistry of the deeper groundwater in contact with FSC, while groundwaters discharging from springs at higher elevations (NS1 and BSC) were a mixture of the shallow peridotite-only groundwater and the deeper groundwater that has been in contact with the FSC. Cell densities of suspended microbes within these waters were extremely low. In the NS1 and BSC spring fluids, cell densities ranged from 102 to 103 cells/ml, while suspended cells at GPS were lower than 10 cells/mL. However, glass slides incubated in the BSC and GPS1 springs for 2-3 weeks were colonized by cells with densities ranging from 106 to 107 cells/cm2 attached to their surfaces. All of the springs were very low (⩽1 μM) in several essential elements and electron acceptors (e.g. nitrate/ammonium, sulfate, and phosphate) required for (microbial) growth, which is not uncommon at sites of continental serpentinization. Gases rich in N2, H2, and CH4 were exsolving from the springs. The stable carbon isotope value (δ13CCH4 = -68 ± 0.6‰) and the CH4/C2+ (>103) of methane and other gaseous hydrocarbons exsolving from NS1 were typical of microbially sourced methane, whereas the isotope values and the CH4/C2+ of BSC and CS1 springs were more enriched in 13C and had CH4/C2

  4. Modeling Late-State Serpentinization on Enceladus and Implications for Methane-Utilizing Microbial Metabolisms

    Science.gov (United States)

    Hart, R.; Cardace, D.

    2017-12-01

    Modeling investigations of Enceladus and other icy-satellites have included physicochemical properties (Sohl et al., 2010; Glein et al., 2015; Neveu et al., 2015), geophysical prospects of serpentinization (Malamud and Prialnik, 2016; Vance et al., 2016), and aqueous geochemistry across different antifreeze fluid-rock scenarios (Neveu et al., 2017). To more effectively evaluate the habitability of Enceladus, in the context of recent observations (Waite et al., 2017), we model the potential bioenergetic pathways that would be thermodynamically favorable at the interface of hydrothermal water-rock reactions resulting from late stage serpentinization (>90% serpentinized), hypothesized on Enceladus. Building on previous geochemical model outputs of Enceladus (Neveu et al., 2017), and bioenergetic modeling (as in Amend and Shock, 2001; Cardace et al., 2015), we present a model of late stage serpentinization possible at the water-rock interface of Enceladus, and report changing activities of chemical species related to methane utilization by microbes over the course of serpentinization using the Geochemist's Workbench REACT code [modified Extended Debye-Hückel (Helgeson, 1969) using the thermodynamic database of SUPCRT92 (Johnson et al., 1992)]. Using a model protolith speculated to exist at Enceladus's water-rock boundary, constrained by extraterrestrial analog analytical data for subsurface serpentinites of the Coast Range Ophiolite (Lower Lake, CA, USA) mélange rocks, we deduce evolving habitability conditions as the model protolith reacts with feasible, though hypothetical, planetary ocean chemistries (from Glien et al., 2015, and Neveu et al., 2017). Major components of modeled oceans, Na-Cl, Mg-Cl, and Ca-Cl, show shifts in the feasibility of CO2-CH4-H2 driven microbial habitability, occurring early in the reaction progress, with methanogenesis being bioenergetically favored. Methanotrophy was favored late in the reaction progress of some Na-Cl systems and in the

  5. Mechanics of ultra-stretchable self-similar serpentine interconnects

    International Nuclear Information System (INIS)

    Zhang, Yihui; Fu, Haoran; Su, Yewang; Xu, Sheng

    2013-01-01

    Graphical abstract: We developed analytical models of flexibility and elastic-stretchability for self-similar interconnect. The analytic solutions agree very well with the finite element analyses, both demonstrating that the elastic-stretchability more than doubles when the order of self-similar structure increases by one. Design optimization yields 90% and 50% elastic stretchability for systems with surface filling ratios of 50% and 70% of active devices, respectively. The analytic models are useful for the development of stretchable electronics that simultaneously demand large coverage of active devices, such as stretchable photovoltaics and electronic eye-ball cameras. -- Abstract: Electrical interconnects that adopt self-similar, serpentine layouts offer exceptional levels of stretchability in systems that consist of collections of small, non-stretchable active devices in the so-called island–bridge design. This paper develops analytical models of flexibility and elastic stretchability for such structures, and establishes recursive formulae at different orders of self-similarity. The analytic solutions agree well with finite element analysis, with both demonstrating that the elastic stretchability more than doubles when the order of the self-similar structure increases by one. Design optimization yields 90% and 50% elastic stretchability for systems with surface filling ratios of 50% and 70% of active devices, respectively

  6. Exploration of the Role of Heat Activation in Enhancing Serpentine Carbon Sequestration Reactions

    International Nuclear Information System (INIS)

    McKelvy, M.J.; Chizmeshya, A.V.G.; Diefenbacher, J.; Bearat, H.; Wolf, G.

    2005-01-01

    As compared with other candidate carbon sequestration technologies, mineral carbonation offers the unique advantage of permanent disposal via geologically stable and environmentally benign carbonates. The primary challenge is the development of an economically viable process. Enhancing feedstock carbonation reactivity is key. Heat activation dramatically enhances aqueous serpentine carbonation reactivity. Although the present process is too expensive to implement, the materials characteristics and mechanisms that enhance carbonation are of keen interest for further reducing cost. Simultaneous thermogravimetric and differential thermal analysis (TGA/DTA) of the serpentine mineral lizardite was used to isolate a series of heat-activated materials as a function of residual hydroxide content at progressively higher temperatures. Their structure and composition are evaluated via TGA/DTA, X-ray powder diffraction (including phase analysis), and infrared analysis. The meta-serpentine materials that were observed to form ranged from those with longer range ordering, consistent with diffuse stage-2 like interlamellar order, to an amorphous component that preferentially forms at higher temperatures. The aqueous carbonation reaction process was investigated for representative materials via in situ synchrotron X-ray diffraction. Magnesite was observed to form directly at 15 MPa CO 2 and at temperatures ranging from 100 to 125 C. Carbonation reactivity is generally correlated with the extent of meta-serpentine formation and structural disorder.

  7. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism

    Science.gov (United States)

    Alt, J.C.; Shanks, Wayne C.

    2006-01-01

    The Mariana and Izu-Bonin arcs in the western Pacific are characterized by serpentinite seamounts in the forearc that provide unique windows into the mantle wedge. We present stable isotope (O, H, S, and C) data for serpentinites from Conical seamount in the Mariana forearc and S isotope data for Torishima seamount in the Izu-Bonin forearc in order to understand the compositions of fluids and temperatures of serpentinization in the mantle wedge, and to investigate the transport of sulfur from the slab to the mantle wedge. Six serpentine mineral separates have a restricted range of ??18O (6.5-8.5???). Antigorite separates have ??D values of -29.5??? to -45.5??? that reflect serpentinization within the mantle wedge whereas chrysotile has low ??D values (-51.8??? to -84.0???) as the result of re-equilibration with fluids at low temperatures. Fractionation of oxygen isotopes between serpentine and magnetite indicate serpentinization temperatures of 300-375 ??C. Two late cross-fiber chrysotile veins have higher ??18O values of 8.9??? to 10.8??? and formed at lower temperatures (as low as ???100 ??C). Aqueous fluids in equilibrium with serpentine at 300-375 ??C had ??18O = 6.5-9??? and ??D = -4??? to -26???, consistent with sediment dehydration reactions at temperatures arc lavas. ?? 2006 Elsevier B.V. All rights reserved.

  8. Effects of grassland management on the emission of methane from grassland on peat soils

    Energy Technology Data Exchange (ETDEWEB)

    Van Dasselaar, A. [Dept. of Soil Science and Plant Nutrition, Wageningen Agricultural Univ. (Netherlands); Oenema, O. [NMI, Wageningen (Netherlands)

    1995-11-01

    Net methane (CH{sub 4}) emissions from managed grassland on peat soils in the Netherlands have been monitored with vented closed flux chambers in the period January - June 1994. Net CH{sub 4} emissions from two intensively managed grasslands were low, in general less than 0.1 mg CH{sub 4} m{sup -2} d{sup -l}. On these sites, the effect of management was negligibly small. CH{sub 4} emission from three extensively managed grasslands in a nature preserve ranged from 0 to 185 mg CH{sub 4} m{sup -2} d{sup -l}. The results presented here indicate that CH{sub 4} emissions are 2-3 orders of magnitude higher on extensively managed grasslands than on intensively managed grasslands. 2 figs., 6 refs.

  9. The H2/CH4 ratio during serpentinization cannot reliably identify biological signatures

    OpenAIRE

    Huang, Ruifang; Sun, Weidong; Liu, Jinzhong; Ding, Xing; Peng, Shaobang; Zhan, Wenhuan

    2016-01-01

    Serpentinization potentially contributes to the origin and evolution of life during early history of the Earth. Serpentinization produces molecular hydrogen (H2) that can be utilized by microorganisms to gain metabolic energy. Methane can be formed through reactions between molecular hydrogen and oxidized carbon (e.g., carbon dioxide) or through biotic processes. A simple criterion, the H2/CH4 ratio, has been proposed to differentiate abiotic from biotic methane, with values approximately lar...

  10. Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages.

    Science.gov (United States)

    Lartaud, Franck; Little, Crispin T S; de Rafelis, Marc; Bayon, Germain; Dyment, Jerome; Ildefonse, Benoit; Gressier, Vincent; Fouquet, Yves; Gaill, Françoise; Le Bris, Nadine

    2011-05-10

    Among the deep-sea hydrothermal vent sites discovered in the past 30 years, Lost City on the Mid-Atlantic Ridge (MAR) is remarkable both for its alkaline fluids derived from mantle rock serpentinization and the spectacular seafloor carbonate chimneys precipitated from these fluids. Despite high concentrations of reduced chemicals in the fluids, this unique example of a serpentinite-hosted hydrothermal system currently lacks chemosynthetic assemblages dominated by large animals typical of high-temperature vent sites. Here we report abundant specimens of chemosymbiotic mussels, associated with gastropods and chemosymbiotic clams, in approximately 100 kyr old Lost City-like carbonates from the MAR close to the Rainbow site (36 °N). Our finding shows that serpentinization-related fluids, unaffected by high-temperature hydrothermal circulation, can occur on-axis and are able to sustain high-biomass communities. The widespread occurrence of seafloor ultramafic rocks linked to likely long-range dispersion of vent species therefore offers considerably more ecospace for chemosynthetic fauna in the oceans than previously supposed.

  11. Biofilm formation and potential for iron cycling in serpentinization-influenced groundwater of the Zambales and Coast Range ophiolites.

    Science.gov (United States)

    Meyer-Dombard, D'Arcy R; Casar, Caitlin P; Simon, Alexander G; Cardace, Dawn; Schrenk, Matthew O; Arcilla, Carlo A

    2018-05-01

    Terrestrial serpentinizing systems harbor microbial subsurface life. Passive or active microbially mediated iron transformations at alkaline conditions in deep biosphere serpentinizing ecosystems are understudied. We explore these processes in the Zambales (Philippines) and Coast Range (CA, USA) ophiolites, and associated surface ecosystems by probing the relevance of samples acquired at the surface to in situ, subsurface ecosystems, and the nature of microbe-mineral associations in the subsurface. In this pilot study, we use microcosm experiments and batch culturing directed at iron redox transformations to confirm thermodynamically based predictions that iron transformations may be important in subsurface serpentinizing ecosystems. Biofilms formed on rock cores from the Zambales ophiolite on surface and in-pit associations, confirming that organisms from serpentinizing systems can form biofilms in subsurface environments. Analysis by XPS and FTIR confirmed that enrichment culturing utilizing ferric iron growth substrates produced reduced, magnetic solids containing siderite, spinels, and FeO minerals. Microcosms and enrichment cultures supported organisms whose near relatives participate in iron redox transformations. Further, a potential 'principal' microbial community common to solid samples in serpentinizing systems was identified. These results indicate collectively that iron redox transformations should be more thoroughly and universally considered when assessing the function of terrestrial subsurface ecosystems driven by serpentinization.

  12. Weak Serpentine-bearing Fault Zones: laboratory evidence and implications for the activity of of oceanic detachments

    Science.gov (United States)

    Tesei, T.; Harbord, C. W. A.; Paola, N.; Collettini, C.; Viti, C.

    2017-12-01

    Serpentinites are major constituents of oceanic lithosphere shear zones located at slow-spreading margins, transform plate boundaries and obduction complexes. Geological and geophysical evidence suggests that these shear zones are inherently weak and, therefore, studies of serpentine friction are of paramount importance to constrain the strength of oceanic faults. However, laboratory friction experiments give a wide range of friction values for serpentine, which are not conclusive to explain the observed fault weakness. These variable results may arise from the difficulties to accurately characterize the mineralogical composition of serpentinite rocks and, hence, from the lack of pure monomineralic reference samples. Here we present laboratory experiments performed on a suite of serpentine samples, whose mineralogical composition was accurately characterized from the hand specimen down to the nanoscale. We observe that the main, low temperature polymorphs components of ocean-floor retrograde serpentinites (e.g. lizardite, chrysotile and polygonal serpentine) exhibit friction coefficients, µ reported, over a range of pressure and temperature conditions. We applied the frictional reactivation theory based on our experimental result to serpentine-bearing oceanic detachments. We show that detachments may slip until they rotate to very shallow dips 15°, as documented along some Atlantic detachments, accommodating large amounts of extension before being abandoned.

  13. Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation

    Science.gov (United States)

    Palandri, J.L.; Reed, M.H.

    2004-01-01

    In a series of water-rock reaction simulations, we assess the processes of serpentinization of harzburgite and related calcium metasomatism resulting in rodingite-type alteration, and seafloor carbonate chimney precipitation. At temperatures from 25 to 300??C (P = 10 to 100 bar), using either fresh water or seawater, serpentinization simulations produce an assemblage commonly observed in natural systems, dominated by serpentine, magnetite, and brucite. The reacted waters in the simulations show similar trends in composition with decreasing water-rock ratios, becoming hyper-alkaline and strongly reducing, with increased dissolved calcium. At 25??C and w/r less than ???32, conditions are sufficiently reducing to yield H2 gas, nickel-iron alloy and native copper. Hyperalkalinity results from OH- production by olivine and pyroxene dissolution in the absence of counterbalancing OH- consumption by alteration mineral precipitation except at very high pH; at moderate pH there are no stable calcium minerals and only a small amount of chlorite forms, limited by aluminum, thus allowing Mg2+ and Ca2+ to accumulate in the aqueous phase in exchange for H+. The reducing conditions result from oxidation of ferrous iron in olivine and pyroxene to ferric iron in magnetite. Trace metals are computed to be nearly insoluble below 300??C, except for mercury, for which high pH stabilizes aqueous and gaseous Hg??. In serpentinization by seawater at 300??C, Ag, Au, Pd, and Pt may approach ore-forming concentrations in sulfide complexes. Simulated mixing of the fluid derived from serpentinization with cold seawater produces a mineral assemblage dominated by calcite, similar to recently discovered submarine, ultramafic rock-hosted, carbonate mineral deposits precipitating at hydrothermal vents. Simulated reaction of gabbroic or basaltic rocks with the hyperalkaline calcium- and aluminum-rich fluid produced during serpentinization at 300??C yields rodingite-type mineral assemblages, including

  14. The Correlation Between Porosity, Density and Degree of Serpentinization in Ophiolites from Point Sal, California: Implications for Strength of Oceanic Lithosphere

    Science.gov (United States)

    Karrasch, A. K.; Farough, A.; Lowell, R. P.

    2017-12-01

    Hydration and serpentinization of oceanic lithosphere influences its strength and behavior under stress. Serpentine content is the limiting factor in deformation and the correlation between crustal strength and the degree of serpentinization is not linear. Escartin et al., [2001] shows that the presence of only 10% serpentine results in a nominally non-dilatant mode of brittle deformation and reduces the strength of peridotites dramatically. In this study, we measured density and porosity of ophiolite samples from Point Sal, CA that had various degrees of serpentinization. The densities ranged between 2500- 3000 kg/m3 and porosities ranged between 2.1-4.8%. The degree of serpentinization was estimated from mineralogical analysis, and these data were combined with that of 4 other samples analyzed by Farough et al., [2016], which were obtained from various localities. The degree of serpentinization varied between 0.6 and 40%. We found that degree of serpentinization was inversely correlated with density with a slope of 7.25 (kg/m3)/%. Using Horen et al., [1996] models, estimated P-wave velocity of the samples ranged between 6.75-7.90 km/s and S-wave velocity ranged between 3.58-4.35 km/s. There were no distinguishable difference in the results between olivine-rich or pyroxene-rich samples. These results, along with correlations to strength and deformation style, can be used as a reference for mechanical properties of the crust at depth, analysis of deep drill cores and to estimate the rate of weakening of the oceanic crust after the onset of serpentinization reactions.

  15. SIMULTANEOUS MECHANICAL AND HEAT ACTIVATION: A NEW ROUTE TO ENHANCE SERPENTINE CARBONATION REACTIVITY AND LOWER CO2 MINERAL SEQUESTRATION PROCESS COST

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McKelvy; J. Diefenbacher; R. Nunez; R.W. Carpenter; A.V.G. Chizmeshya

    2005-01-01

    potential thermomechanical activation offers. Lizardite was selected as the model serpentine material for investigation, due to the relative structural simplicity of its lamellar structure when compared with the corrugated and spiral structures of antigorite and chrysotile, respectively. Hot-ground materials were prepared as a function of grinding temperature, time, and intensity. Carbonation reactivity was explored using the standard ARC serpentine carbonation test (155 C, 150 atm CO{sub 2}, and 1 hr). The product feedstock and carbonation materials were investigated via a battery of techniques, including X-ray powder diffraction, electron microscopy, thermogravimetric and differential thermal, BET, elemental, and infrared analysis. The incorporation of low-level heat with moderate mechanical activation (i.e., thermomechanical activation) was found to be able to substantially enhance serpentine carbonation reactivity in comparison with moderate mechanical activation alone. Increases in the extent of carbonation of over 70% have been observed in this feasibility study, indicating thermomechanical activation offers substantial potential to lower process cost. Investigations of the thermomechanically activated materials that formed indicate adding low-level heat during moderately intense lizardite mechanical activation promotes (1) energy absorption during activation, (2) structural disorder, and (3) dehydroxylation, as well as carbonation reactivity, with the level of energy absorption, structural disorder and dehydroxylation generally increasing with increasing activation temperature. Increasing activation temperatures were also associated with decreasing surface areas and water absorptive capacities for the activated product materials. The above decreases in surface area and water absorption capacity can be directly correlated with enhanced particle sintering during thermomechanical activation, as evidenced by electron microscopy observation. The level of induced

  16. Lower Crustal Strength Controls on Melting and Serpentinization at Magma-Poor Margins: Potential Implications for the South Atlantic

    Science.gov (United States)

    Ros, Elena; Pérez-Gussinyé, Marta; Araújo, Mario; Thoaldo Romeiro, Marco; Andrés-Martínez, Miguel; Morgan, Jason P.

    2017-12-01

    Rifted continental margins may present a predominantly magmatic continent-ocean transition (COT), or one characterized by large exposures of serpentinized mantle. In this study we use numerical modeling to show the importance of the lower crustal strength in controlling the amount and onset of melting and serpentinization during rifting. We propose that the relative timing between both events controls the nature of the COT. Numerical experiments for half-extension velocities serpentinized mantle underlain by some magmatic products. In contrast, a weak lower crust promotes margins with a gentle crustal tapering, small faults dipping both ocean- and landward and small syn-rift subsidence. Their COT is predominantly magmatic at any ultra-slow extension velocity and perhaps underlain by some serpentinized mantle. These margins can also be either symmetric or asymmetric. Our models predict that magmatic underplating mostly underlies the wide margin at weak asymmetric conjugates, whereas the wide margin is mainly underlain by serpentinized mantle at strong asymmetric margins. Based on this conceptual template, we propose different natures for the COTs in the South Atlantic.

  17. Three-dimensional flow measurements induced from serpentine plasma actuators in quiescent air

    International Nuclear Information System (INIS)

    Durscher, R J; Roy, S

    2012-01-01

    This paper presents three-dimensional flow measurements performed on a dielectric barrier discharge (DBD) actuator with the electrodes in a serpentine design. Such a configuration induces a local pinching and a local spreading of the fluid as one follows along the span of the actuator. In this work two different variations on the serpentine configuration are evaluated: one constructed from patterned circular arcs and one from patterned rectangles. The influence of applied voltage is studied for the former case. To quantify these effects stereo particle image velocimetry (PIV) is used to generate time averaged, spatially resolved measurements of the detailed flow structure. The three components of the velocity vector are measured along spanwise and streamwise cuts. These slices are then reconstructed to provide a three-dimensional view of the induced flow field. The results for the induced flow fields are also compared with stereo-PIV measurements made on a standard linear DBD actuator. A truly three-dimensional induced flow field was observed as a result of the serpentine configuration. These designs could be beneficial for rapid mixing of the local fluid. (paper)

  18. Analysis of Passive Mixing in a Serpentine Microchannel with Sinusoidal Side Walls

    Directory of Open Access Journals (Sweden)

    Muhammad Usman Javaid

    2017-12-01

    Full Text Available Sample mixing is difficult in microfluidic devices because of laminar flow. Micromixers are designed to ensure the optimal use of miniaturized devices. The present study aims to design a chaotic-advection-based passive micromixer with enhanced mixing efficiency. A serpentine-shaped microchannel with sinusoidal side walls was designed, and three cases, with amplitude to wavelength (A/λ ratios of 0.1, 0.15, and 0.2 were investigated. Numerical simulations were conducted using the Navier–Stokes equations, to determine the flow field. The flow was then coupled with the convection–diffusion equation to obtain the species concentration distribution. The mixing performance of sinusoidal walled channels was compared with that of a simple serpentine channel for Reynolds numbers ranging from 0.1 to 50. Secondary flows were observed at high Reynolds numbers that mixed the fluid streams. These flows were dominant in the proposed sinusoidal walled channels, thereby showing better mixing performance than the simple serpentine channel at similar or less mixing cost. Higher mixing efficiency was obtained by increasing the A/λ ratio.

  19. Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets).

    Science.gov (United States)

    Holm, N G; Oze, C; Mousis, O; Waite, J H; Guilbert-Lepoutre, A

    2015-07-01

    Serpentinization involves the hydrolysis and transformation of primary ferromagnesian minerals such as olivine ((Mg,Fe)2SiO4) and pyroxenes ((Mg,Fe)SiO3) to produce H2-rich fluids and a variety of secondary minerals over a wide range of environmental conditions. The continual and elevated production of H2 is capable of reducing carbon, thus initiating an inorganic pathway to produce organic compounds. The production of H2 and H2-dependent CH4 in serpentinization systems has received significant interdisciplinary interest, especially with regard to the abiotic synthesis of organic compounds and the origins and maintenance of life in Earth's lithosphere and elsewhere in the Universe. Here, serpentinization with an emphasis on the formation of H2 and CH4 are reviewed within the context of the mineralogy, temperature/pressure, and fluid/gas chemistry present in planetary environments. Whether deep in Earth's interior or in Kuiper Belt Objects in space, serpentinization is a feasible process to invoke as a means of producing astrobiologically indispensable H2 capable of reducing carbon to organic compounds.

  20. Mantle Serpentinization near the Central Mariana Trench Constrained by Ocean Bottom Surface Wave Observations

    Science.gov (United States)

    Cai, C.; Wiens, D. A.; Lizarralde, D.; Eimer, M. O.; Shen, W.

    2017-12-01

    We investigate the crustal and uppermost mantle seismic structure across the Mariana trench by jointly inverting Rayleigh wave phase and group velocities from ambient noise and longer period phase velocities from Helmholtz tomography of teleseismic waveforms. We use data from a temporary deployment in 2012-2013, consisting of 7 island-based stations and 20 broadband ocean bottom seismographs, as well as data from the USGS Northern Mariana Islands Seismograph Network. To avoid any potential bias from the starting model, we use a Bayesian Monte-Carlo algorithm to invert for the azimuthally-averaged SV-wave velocity at each node. This method also allows us to apply prior constraints on crustal thickness and other parameters in a systematic way, and to derive formal estimates of velocity uncertainty. The results show the development of a low velocity zone within the incoming plate beginning about 80 km seaward of the trench axis, consistent with the onset of bending faults from bathymetry and earthquake locations. The maximum depth of the velocity anomaly increases towards the trench, and extends to about 30 km below the seafloor. The low velocities persist after the plate is subducted, as a 20-30 km thick low velocity layer with a somewhat smaller velocity reduction is imaged along the top of the slab beneath the forearc. An extremely low velocity zone is observed beneath the serpentine seamounts in the outer forearc, consistent with 40% serpentinization in the forearc mantle wedge. Azimuthal anisotropy results show trench parallel fast axis within the incoming plate at uppermost mantle depth (2%-4% anisotropy). All these observations suggest the velocity reduction in the incoming plate prior to subduction results from both serpentinized normal faults and water-filled cracks. Water is expelled from the cracks early in subduction, causing a modest increase in the velocity of the subducting mantle, and moves upward and causes serpentinization of the outer forearc

  1. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism

    Science.gov (United States)

    Alt, J.C.; Shanks, Wayne C.

    2006-01-01

    The Mariana and Izu-Bonin arcs in the western Pacific are characterized by serpentinite seamounts in the forearc that provide unique windows into the mantle wedge. We present stable isotope (O, H, S, and C) data for serpentinites from Conical seamount in the Mariana forearc and S isotope data for Torishima seamount in the Izu-Bonin forearc in order to understand the compositions of fluids and temperatures of serpentinization in the mantle wedge, and to investigate the transport of sulfur from the slab to the mantle wedge. Six serpentine mineral separates have a restricted range of ??18O (6.5-8.5???). Antigorite separates have ??D values of -29.5??? to -45.5??? that reflect serpentinization within the mantle wedge whereas chrysotile has low ??D values (-51.8??? to -84.0???) as the result of re-equilibration with fluids at low temperatures. Fractionation of oxygen isotopes between serpentine and magnetite indicate serpentinization temperatures of 300-375 ??C. Two late cross-fiber chrysotile veins have higher ??18O values of 8.9??? to 10.8??? and formed at lower temperatures (as low as ???100 ??C). Aqueous fluids in equilibrium with serpentine at 300-375 ??C had ??18O = 6.5-9??? and ??D = -4??? to -26???, consistent with sediment dehydration reactions at temperatures aragonite veins in metabasalt and siltstone clasts within the serpentinite flows have ??18O = 16.7-24.5???, consistent with the serpentinizing fluids at temperatures <250 ??C. ??13C values of 0.1-2.5??? suggest a source in subducting carbonate sediments. The ??34S values of sulfide in serpentinites on Conical Seamount (-6.7??? to 9.8???) result from metasomatism through variable reduction of aqueous sulfate (??34S = 14???) derived from slab sediments. Despite sulfur metasomatism, serpentinites have low sulfur contents (generally < 164 ppm) that reflect the highly depleted nature of the mantle wedge. The serpentinites are mostly enriched in 34S (median ??34Ssulfide = 4.5???), consistent with a 34S

  2. Satellite-based assessment of grassland yields

    Science.gov (United States)

    Grant, K.; Siegmund, R.; Wagner, M.; Hartmann, S.

    2015-04-01

    Cutting date and frequency are important parameters determining grassland yields in addition to the effects of weather, soil conditions, plant composition and fertilisation. Because accurate and area-wide data of grassland yields are currently not available, cutting frequency can be used to estimate yields. In this project, a method to detect cutting dates via surface changes in radar images is developed. The combination of this method with a grassland yield model will result in more reliable and regional-wide numbers of grassland yields. For the test-phase of the monitoring project, a study area situated southeast of Munich, Germany, was chosen due to its high density of managed grassland. For determining grassland cutting robust amplitude change detection techniques are used evaluating radar amplitude or backscatter statistics before and after the cutting event. CosmoSkyMed and Sentinel-1A data were analysed. All detected cuts were verified according to in-situ measurements recorded in a GIS database. Although the SAR systems had various acquisition geometries, the amount of detected grassland cut was quite similar. Of 154 tested grassland plots, covering in total 436 ha, 116 and 111 cuts were detected using CosmoSkyMed and Sentinel-1A radar data, respectively. Further improvement of radar data processes as well as additional analyses with higher sample number and wider land surface coverage will follow for optimisation of the method and for validation and generalisation of the results of this feasibility study. The automation of this method will than allow for an area-wide and cost efficient cutting date detection service improving grassland yield models.

  3. Water removal characteristics of parallel serpentine channels

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, K.; Zhou, B.; Quan, P. [Windsor Univ., ON (Canada). Dept. of Mechanical, Automotive and Materials Engineering

    2005-07-01

    A study was conducted in which the liquid water behaviours in parallel serpentine channels with manifolds on the cathode side of a proton exchange membrane (PEM) fuel cell stack were examined. A 3-dimensional, unsteady two-phase flow model within the commercial computational fluid dynamics software package FLUENT was used. Membrane electrode assemblies (MEA) were placed on different sides in the numerical analysis. Several water management issues were identified for this type of fuel cell stack by examining the flow behaviours of liquid water and airflow velocity fields. It was shown that water in the outflow manifold could be blocked by air streams from the gas flow channels, with water flowing continuously into the outflow manifold. It was also shown that the pressure drop along all the unit cells can never increase or decrease at the same pace. Water which adheres to the end wall of both the inlet and outlet manifolds is difficult to remove. It was suggested that faster water drainage can be achieved by keeping the MEA side of the gas flow channels close to the outlet of the outflow manifold. It was also suggested that the collecting and separating effect at the serpentine gas flow channels could improve the water drainage. 8 refs., 10 figs.

  4. Unusual metabolic diversity of hyperalkaliphilic microbial communities associated with subterranean serpentinization at The Cedars.

    Science.gov (United States)

    Suzuki, Shino; Ishii, Shun'ichi; Hoshino, Tatsuhiko; Rietze, Amanda; Tenney, Aaron; Morrill, Penny L; Inagaki, Fumio; Kuenen, J Gijs; Nealson, Kenneth H

    2017-11-01

    Water from The Cedars springs that discharge from serpentinized ultramafic rocks feature highly basic (pH=~12), highly reducing (E h serpentinizing system, was dominated by several bacterial taxa from the phyla OD1 ('Parcubacteria') and Chloroflexi. Members of the GPS1 community had, for the most part, the smallest genomes reported for their respective taxa, and encoded only archaeal (A-type) ATP synthases or no ATP synthases at all. Furthermore, none of the members encoded respiration-related genes and some of the members also did not encode key biosynthesis-related genes. In contrast, BS5, fed by shallow water, appears to have a community driven by hydrogen metabolism and was dominated by a diverse group of Proteobacteria similar to those seen in many terrestrial serpentinization sites. Our findings indicated that the harsh ultrabasic geological setting supported unexpectedly diverse microbial metabolic strategies and that the deep-water-fed springs supported a community that was remarkable in its unusual metagenomic and genomic constitution.

  5. In situ electrochemical enrichment and isolation of a magnetite-reducing bacterium from a high pH serpentinizing spring.

    Science.gov (United States)

    Rowe, Annette R; Yoshimura, Miho; LaRowe, Doug E; Bird, Lina J; Amend, Jan P; Hashimoto, Kazuhito; Nealson, Kenneth H; Okamoto, Akihiro

    2017-06-01

    Serpentinization is a geologic process that produces highly reduced, hydrogen-rich fluids that support microbial communities under high pH conditions. We investigated the activity of microbes capable of extracellular electron transfer in a terrestrial serpentinizing system known as 'The Cedars'. Measuring current generation with an on-site two-electrode system, we observed daily oscillations in current with the current maxima and minima occurring during daylight hours. Distinct members of the microbial community were enriched. Current generation in lab-scale electrochemical reactors did not oscillate, but was correlated with carbohydrate amendment in Cedars-specific minimal media. Gammaproteobacteria and Firmicutes were consistently enriched from lab electrochemical systems on δ-MnO 2 and amorphous Fe(OH) 3 at pH 11. However, isolation of an electrogenic strain proved difficult as transfer cultures failed to grow after multiple rounds of media transfer. Lowering the bulk pH in the media allowed us to isolate a Firmicutes strain (Paenibacillus sp.). This strain was capable of electrode and mineral reduction (including magnetite) at pH 9. This report provides evidence of the in situ activity of microbes using extracellular substrates as sinks for electrons at The Cedars, but also highlights the potential importance of community dynamics for supporting microbial life through either carbon fixation, and/or moderating pH stress. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Microbial diversity in The Cedars, an ultrabasic, ultrareducing, and low salinity serpentinizing ecosystem.

    Science.gov (United States)

    Suzuki, Shino; Ishii, Shun'ichi; Wu, Angela; Cheung, Andrea; Tenney, Aaron; Wanger, Greg; Kuenen, J Gijs; Nealson, Kenneth H

    2013-09-17

    The Cedars, in coastal northern California, is an active site of peridotite serpentinization. The spring waters that emerge from this system feature very high pH, low redox potential, and low ionic concentrations, making it an exceptionally challenging environment for life. We report a multiyear, culture-independent geomicrobiological study of three springs at The Cedars that differ with respect to the nature of the groundwater feeding them. Within each spring, both geochemical properties and microbial diversity in all three domains of life remained stable over a 3-y period, with multiple samples each year. Between the three springs, however, the microbial communities showed considerable differences that were strongly correlated with the source of the serpentinizing groundwater. In the spring fed solely by deep groundwater, phylum Chloroflexi, class Clostridia, and candidate division OD1 were the major taxa with one phylotype in Euryarchaeota. Less-abundant phylotypes include several minor members from other candidate divisions and one phylotype that was an outlier of candidate division OP3. In the springs fed by the mixture of deep and shallow groundwater, organisms close to the Hydrogenophaga within Betaproteobacteria dominated and coexisted with the deep groundwater community members. The shallow groundwater community thus appears to be similar to those described in other terrestrial serpentinizing sites, whereas the deep community is distinctly different from any other previously described terrestrial serpentinizing community. These unique communities have the potential to yield important insights into the development and survival of life in these early-earth analog environments.

  7. Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study

    Science.gov (United States)

    Farough, Aida; Moore, Diane E.; Lockner, David A.; Lowell, R.P.

    2016-01-01

    We performed flow-through laboratory experiments on five cylindrically cored samples of ultramafic rocks, in which we generated a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at a confining pressure of 50 MPa, pore pressure of 20 MPa, and temperature of 260°C, simulating a depth of 2 km under hydrostatic conditions. A pore pressure difference of up to 2 MPa was imposed across the ends of the sample. Fracture permeability decreased by 1–2 orders of magnitude during the 200–330 h experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferro-magnesian minerals. By comparing the difference between fracture permeability and matrix permeability measured on intact samples of the same rock types, we concluded that the contribution of the low matrix permeability to flow is negligible and essentially all of the flow is focused in the tensile fracture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems can be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses is required to maintain fluid circulation.

  8. Repairing the deteriorated thermal insulation in the serpentine - moderator tank - SLCD assemblies

    International Nuclear Information System (INIS)

    Gyongyosi, Tiberiu

    2004-01-01

    Deterioration during operation of the thermal insulation at the upper serpentines in the serpentine assembly in the moderator tank of SLCD (the system of localising the failed fuel) can create problems when one scans the fuel channels in case of failure of one of the ventilated air refrigerator in the rooms of the LAC 10 reactor. Recovering the thermal insulation is absolutely necessary but it is difficult to execute because the loading operation with the granulated layer of diatomaceous filtering agent must be effected directly on the moderator tank after some 24 h from the reactor shut down. The paper presents two possible methods of repairing together with the necessary technological facilities

  9. A theoretical study of the fast-neutron attenuation in Ghanaian serpentine shields

    International Nuclear Information System (INIS)

    Akaho, E.H.K.; Anim-Sampong, S.

    1994-01-01

    Theoretical calculations were done to determine the suitability of local serpentine rocks for shielding fast neutrons. A coupled neutron-gamma library of 25 energy groups, IRAN3.LIB developed for ANISN/PC was used to generate nuclear data for the tested shields. Calculations were carried out assuming a P 3 scattering order for spherical geometry with S 6 angular quadrature. From the trends of attenuation and computer factors such as relaxation length and transmission there is the indication that the shielding properties of the local shields are better than the foreign serpentine shields used in this study. They are slightly inferior to ordinary concrete employed in shielding power reactors. (author). 9 refs.; 5 tabs.; 5 figs

  10. A three-dimensional model of PEM fuel cells with serpentine flow channels

    International Nuclear Information System (INIS)

    Nguyen, P.T.; Berning, T.; Bang, M.; Djilali, N.

    2003-01-01

    A three-dimensional computational model of PEM fuel cell with serpentine flow field channels is presented in this paper. This model presents a comprehensive account for all important transport phenomena in fuel cell such as heat transfer, mass transfer, electrode kinetics, and potential fields in the membrane and gas diffusion layers. A new approach of solving for the potential losses across the cell was also developed in this model. The dependency of local current density on oxygen concentration and activation overpotential is fully addressed in this model. The computational domain consists of serpentine gas flow channels, porous gas diffusion layers, catalyst layers, and a membrane. Results obtained from this model are in good agreement with experimental results. (author)

  11. [Spatiotemporal characteristics of MODIS NDVI in Hulunber Grassland].

    Science.gov (United States)

    Zhang, Hong-Bin; Yang, Gui-Xia; Wu, Wen-Bin; Li, Gang; Chen, Bao-Rui; Xin, Xiao-Ping

    2009-11-01

    Time-series MODIS NDVI datasets from 2000 to 2008 were used to study the spatial change trend, fluctuation degree, and occurrence time of the annual NDVImax of four typical grassland types, i.e., lowland meadow, temperate steppe, temperate meadow steppe, and upland meadow, in Hulunber Grassland. In 2000-2008, the vegetation in Hulunber Grassland presented an obvious deterioration trend. The mean annual NDVImax of the four grassland types had a great fluctuation, especially in temperate steppe where the maximum change in the mean value of annual NDVImax approximated to 50%. As for the area change of different grade grasslands, the areas with NDVImax between 0.4 and 1 accounted for about 91% of the total grassland area, which suggested the good vegetation coverage in the Grassland. However, though the areas with NDVImax values in (0.4, 0.8) showed an increasing trend, the areas with NDVImax values in (0.2, 0.4) and (0.8, 1) decreased greatly in the study period. Overall, the deteriorating grassland took up about 66.25% of the total area, and the restoring grassland took the rest. There was about 62.85% of the grassland whose NDVImax occurred between the 193rd day and the 225th day in each year, indicating that this period was the most important vegetation growth season in Hulunber Grassland.

  12. Application of k0-based NAA for multielement determination in serpentines and associated minerals

    International Nuclear Information System (INIS)

    Nagendra Kumar, P.V.; S.V. University, Tirupati; Suresh Kumar, N.; King Fahad Specialist Hospital, Dammam; Acharya, R.; Krishna Reddy, L.; Reddy, A.V.R.

    2014-01-01

    The k 0 -based neutron activation analysis method was applied for multielement determination in black and yellow serpentines along with two associated minerals namely altered and unaltered dolomites and intrusive rock dolerite, obtained from the asbestos mines of Cuddapah basin, Andhra Pradesh, India. Concentrations of 20 elements were determined and they were used to predict the process of formation of fibrous chrysotile asbestos. Majority of elements as well as REEs reveal the contribution of elements from both dolerite and dolomite during the process of contact metamorphism in forming the mineral serpentine. (author)

  13. Bird communities and biomass yields in potential bioenergy grasslands.

    Directory of Open Access Journals (Sweden)

    Peter J Blank

    Full Text Available Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields, and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.

  14. Serpentine tube heat transfer characteristic under accident condition in gas cooled reactors

    International Nuclear Information System (INIS)

    Abouhadra, D.S.; Byrne, J.E.

    2004-01-01

    In nuclear reactors of the Magnox or advanced gas Cooled type, serpentine tubing is used in some designs to generate steam in a once through arrangement. The calculation of accident conditions using two phase flow codes requires knowledge of the heat transfer behavior of the boiler steam side. A series of experiments to study the blowdown characteristics of a typical serpentine boiler section was devised in order to validate the MARTHA section of the MACE code used by nuclear Electric. The tests were carried out on the Thermal Hydraulics Experimental Research Assembly (THERA) loop at Manchester University. The Thermal Hydraulic Experimental Research Assembly was designed to operate with pressures up to 180 bar and temperatures of 450degC. The geometry and dimensions of this test section were similar to part of a gas cooled reactor boiler of the Hinkley Point design. Blowdown from a pressure of 60 bar with subcoolings of 5degC, 50degC, 100degC formed the main part of the programme. A set of tests was conducted using discharge orifices of different sizes to produce depressurization times from 30 s to 10 mins, and in a few cases, the duration of blowdown approached 1 hour. These times were defined using the criterion of blowdown end as a final pressure of 10% of the initial pressure. Pressures, wall and fluid temperatures were all measured at average time intervals of 1.1s during the excursion and an inventory of the remaining water content in the serpentine was taken when the blowdown ended. Some tests were also conducted at an initial pressure of 30 bar. The results obtained show interesting stratification effects for the relatively fast discharge, with substantial wall circumferential temperature variations. For these tests, a relatively small water inventory remained after blowdown. The discharge characteristics of the serpentine in terms of orifice size have been mapped, and tests at 30 bar show the equivalence in terms of orifice size have been mapped

  15. Preliminary Research on Grassland Fine-classification Based on MODIS

    International Nuclear Information System (INIS)

    Hu, Z W; Zhang, S; Yu, X Y; Wang, X S

    2014-01-01

    Grassland ecosystem is important for climatic regulation, maintaining the soil and water. Research on the grassland monitoring method could provide effective reference for grassland resource investigation. In this study, we used the vegetation index method for grassland classification. There are several types of climate in China. Therefore, we need to use China's Main Climate Zone Maps and divide the study region into four climate zones. Based on grassland classification system of the first nation-wide grass resource survey in China, we established a new grassland classification system which is only suitable for this research. We used MODIS images as the basic data resources, and use the expert classifier method to perform grassland classification. Based on the 1:1,000,000 Grassland Resource Map of China, we obtained the basic distribution of all the grassland types and selected 20 samples evenly distributed in each type, then used NDVI/EVI product to summarize different spectral features of different grassland types. Finally, we introduced other classification auxiliary data, such as elevation, accumulate temperature (AT), humidity index (HI) and rainfall. China's nation-wide grassland classification map is resulted by merging the grassland in different climate zone. The overall classification accuracy is 60.4%. The result indicated that expert classifier is proper for national wide grassland classification, but the classification accuracy need to be improved

  16. Effects of grassland management on the emission of methane from grassland on peat soils

    Energy Technology Data Exchange (ETDEWEB)

    Oenema, O. [Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, Wageningen (Netherlands)

    1995-12-31

    The aim of the project on the title subject is to provide insight into the major controlling factors that contribute to the net exchange rates of methane (CH4) between grassland and atmosphere, and to provide quantitative net CH4 emission rates. Net CH4 emissions have been monitored with vented closed flux chambers on both intensively managed grasslands and grasslands in a nature preserve on peat soil in the Netherlands. Net CH4 emissions from intensively managed grasslands (Zegveld, Netherlands) were low in the period January-December 1994, in general in the range of -0.2 to 0.2 mg CH4 m{sup -2} d{sup -1}. Only in the relatively warm summer of 1994, consumption of atmospheric CH4 of about 0.4 mg m{sup -2} d{sup -1} was measured. Effects of ground water level in the range of 30-60 cm below surface were very small. There were also no clear effects of nitrogen fertilization and grazing versus mowing on CH4 emission from the soil. Net CH4 emissions from three extensively managed grasslands in a nature preserve (Nieuwkoopse Plassen area in the Netherlands) ranged from 0-215 mg CH4 m{sup -2} d{sup -1} in the period January 1994-June 1995. Differences between the three sites were quite large, as were the spatial variations at each of the sites. The results presented here indicate that a shift of intensively managed peat grasslands into more natural ecosystems will significantly increase the contribution of Dutch peat soils to the total CH4 emission. refs.

  17. Low temperature dissolution creep induced B-type olivine fabric during serpentinization and deformation in mantle wedge

    Science.gov (United States)

    Liu, W.; Zhang, J.

    2017-12-01

    The B-type olivine fabric (i.e., the [010]ol axes subnormal to foliation and the [001]ol axes subparallel to the lineation) has been regarded as an important olivine fabric for interpreting global trench-parallel S-wave polarization in fore-arc regions. However, strong serpentinization and cold temperature environment in the mantle wedge should inhibit development of the B-type olivine fabric that requires high temperature to activate solid-state plastic deformation. Here we report fabrics of olivine and antigorite generated at low temperatures (300-370 oC) during serpentinization in a fossil mantle wedge of the Val Malenco area, Central Alps. Olivine in the serpentine matrix develops a pronounced B-type fabric, while antigorite in the same matrix displays a strong crystallographic orientation (CPO) with the (001) and the [010] subparallel to foliation and lineation, respectively. The following evidence leads to the conclusion that the B-type olivine fabric is resulted from dissolution creep assisted by grain boundaries sliding (GBS) and grain rotation, rather than solid-state plastic deformation: (1) serpentinization took place at low temperatures and a fluid-enriched environment, ideal for dissolution-precipitation creep; (2) the voids and zigzag boundaries along the interface between antigorite and olivine suggest a fluid dissolution reaction; (3) the primary coarse olivine develops a nearly random fabric, indicating the B-type fabrics in the fine-grained olivine can't be inherited fabrics. These results document for the first time the B-type olivine CPO formed by dissolution creep at low temperatures during serpentinization and provide a mechanism to reconcile petrofabric observations with geophysical observations of trench parallel fast S-wave seismic anisotropy in fore-arc mantle wedge regions.

  18. Effects of Government Grassland Conservation Policy on Household Livelihoods and Dependence on Local Grasslands: Evidence from Inner Mongolia, China

    NARCIS (Netherlands)

    Du, Bingzhen; Zhen, Lin; Yan, Huimin; Groot, de Dolf

    2016-01-01

    Grassland degradation intensifies human-environment conflicts and adversely affects local residents’ livelihoods. To reduce grassland degradation in Inner Mongolia, China, the government has enforced (since 1998) a series of grassland conservation and management policies that restrict the use of

  19. Time-resolved x-ray diffraction analysis of the experimental dehydration of serpentine at high pressure

    International Nuclear Information System (INIS)

    Inoue, Toru; Yoshimi, Isamu; Yamada, Akihiro; Kikegawa, Takumi

    2009-01-01

    Time-resolved, in situ X-ray diffraction analysis was used to determine the dehydration rate and kinetics of serpentine during experimental dehydration at high pressures. The capsule used comprises a diamond sleeve fitted with Au or Pt lids in order to provide high-quality, time-resolved X-ray diffraction data. Antigorite quickly dehydrated to enstatite + forsterite + fluid within 2 h at 650degC below ∼6 GPa. Avrami modeling of the results and SEM observations of the partially dehydrated sample revealed that the nucleation rate was quite high for enstatite but low for forsterite, showing incubation periods of ∼10 min before appearing. The crystallization of these minerals is controlled largely by the composition of the fluid generated from serpentine dehydration. The dehydration boundary determined below 6 GPa in the present study is consistent with the results of previous phase equilibrium studies. This study indicates that serpentine in a subducting slab dehydrates rapidly below 6 GPa when the slab intersects the dehydration boundary conditions. (author)

  20. Appreciation of grassland functions by European stakeholders

    NARCIS (Netherlands)

    Pol, van den A.; Golinski, P.; Hennessy, D.; Huyghe, C.; Parente, G.; Peyraud, J.L.

    2014-01-01

    In order to promote sustainable and competitive ruminant production systems, the European Multisward project was aimed at improving farmer trust in grassland and grassland mixtures. A questionnaire on grassland functions was submitted in eight languages, in order to better understand the importance

  1. Out of the dark: Transitional subsurface-to-surface microbial diversity in a terrestrial serpentinizing seep (Manleluag, Pangasinan, the Philippines

    Directory of Open Access Journals (Sweden)

    Kristin eWoycheese

    2015-02-01

    Full Text Available In the Zambales ophiolite range terrestrial serpentinizing fluid seeps host diverse microbial assemblages. The fluids fall within the profile of Ca2+-OH--type waters, indicative of active serpentinization, and are low in dissolved inorganic carbon (<0.5 ppm. Influx of atmospheric carbon dioxide affects the solubility of calcium carbonate as distance from the source increases, triggering the formation of meter-scale travertine terraces. Samples were collected at the source and along the outflow channel to determine subsurface microbial community response to surface exposure. DNA was extracted and submitted for high-throughput 16S rRNA gene sequencing on the Illumina MiSeq platform. Taxonomic assignment of the sequence data indicates that 8.1% of the total sequence reads at the source of the seep affiliate with the genus Methanobacterium. Other major classes detected at the source include anaerobic taxa such as Bacteroidetes (40.7% of total sequence reads and Firmicutes (19.1% of total reads. Hydrogenophaga spp. increase in relative abundance as redox potential increases. At the carbonate terrace, 45% of sequence reads affiliate with Meiothermus spp. Taxonomic observations and geochemical data suggest that several putative metabolisms may be favorable, including hydrogen oxidation, H2-associated sulfur cycling, methanogenesis, methanotrophy, nitrogen fixation, ammonia oxidation, denitrification, nitrate respiration, methylotrophy, carbon monoxide respiration, and ferrous iron oxidation, based on capabilities of nearest known neighbors. Scanning electron microscopy and energy dispersive X-ray spectroscopy suggest that microbial activity produces chemical and physical traces in the precipitated carbonates forming downstream of the seep’s source. These data provide context for future serpentinizing seep ecosystem studies, particularly with regards to tropical biomes.

  2. Research on the Mechanism of Cross Regional Grassland Ecological Compensation

    Science.gov (United States)

    Yang, Ran; Ma, Jun

    2018-01-01

    In recent years, grassland environmental damage has become serious, and grassland resources protection task has become heavy, grassland ecological compensation has become an effective way to solve this problem; but the current grassland ecological compensation standards were low, the effect is poor. The fundamental reason is the model of administrative division destroys the integrity of grassland. Based on the analysis of the status quo of grassland compensation, this paper tries to protect the grassland integrity, breaks the administrative division restriction, implements the space regulation, constructs the framework of cross-regional grassland ecological compensation mechanism, describes its operation process. It provides new way to realize the sustainable development of the grassland environment.

  3. Effects of Government Grassland Conservation Policy on Household Livelihoods and Dependence on Local Grasslands: Evidence from Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Bingzhen Du

    2016-12-01

    Full Text Available Grassland degradation intensifies human-environment conflicts and adversely affects local residents’ livelihoods. To reduce grassland degradation in Inner Mongolia, China, the government has enforced (since 1998 a series of grassland conservation and management policies that restrict the use of grasslands. To ease the impact on the residents’ livelihoods, the national and regional governments have offered a series of top-down arrangements to stimulate sustainable use of the grasslands. Simultaneously, local households spontaneously developed bottom-up countermeasures. To determine the effects of these processes, we interviewed members of 135 households using a mix of qualitative and quantitative methods. We analyzed the effects on household dependence on local grasslands and on perceptions of the future of grassland use. Our findings show that the implementation of the grassland conservation policies significantly affected household livelihoods, which in turn affected household use of natural assets (primarily the land, their agricultural assets (farming and grazing activities and their financial assets (income and consumption, resulting in fundamental transformation of their lifestyles. The households developed adaptation measures to account for the dependence of their livelihood on local ecosystems by initializing strategies, such as seeking off-farm work, leasing pasture land, increasing purchases of fodder for stall-fed animals and altering their diet and fuel consumption to compensate for their changing livelihoods.

  4. Some Insights on Grassland Health Assessment Based on Remote Sensing

    Directory of Open Access Journals (Sweden)

    Dandan Xu

    2015-01-01

    Full Text Available Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment.

  5. Some insights on grassland health assessment based on remote sensing.

    Science.gov (United States)

    Xu, Dandan; Guo, Xulin

    2015-01-29

    Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment.

  6. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: Sulfur geochemistry and reaction modeling

    Science.gov (United States)

    Alt, J.C.; Shanks, Wayne C.

    2003-01-01

    The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated ??34Ssulfide (3.7 to 12.7???). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400??C alone cannot account for both the high sulfur contents and high ??34Ssulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (???400??C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ???300??C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5???) at temperatures above 250??C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 ?? 1012 g seawater S yr-1. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates. ?? 2003 Elsevier Science Ltd.

  7. Deformation associated to exhumation of serpentinized mantle rocks in a fossil Ocean Continent Transition: The Totalp unit in SE Switzerland

    Science.gov (United States)

    Picazo, S.; Manatschal, G.; Cannat, M.; Andréani, M.

    2013-08-01

    Although the exhumation of ultramafic rocks in slow and ultraslow spreading Mid-Ocean Ridges and Ocean Continent Transitions (OCTs) has been extensively investigated, the deformation processes related to mantle exhumation are poorly constrained. In this paper we present a new geological map and a section across the exhumed serpentinized peridotites of the Totalp unit near Davos (SE Switzerland), and we propose that the Totalp unit is formed by two Alpine thrust sheets. Geological mapping indicates local exposure of a paleo-seafloor that is formed by an exhumed detachment surface and serpentinized peridotites. The top of the exhumed mantle rocks is made of ophicalcites that resulted from the carbonation of serpentine under static conditions at the seafloor. The ophicalcites preserve depositional contacts with Upper Jurassic to Lower Cretaceous pelagic sediments (Bernoulli and Weissert, 1985). These sequences did not exceed prehnite-pumpellyite metamorphic facies conditions, and locally escaped Alpine deformation. Thin mylonitic shear zones as well as foliated amphibole-bearing ultramafic rocks have been mapped. The age of these rocks and the link with the final exhumation history are yet unknown but since amphibole-bearing ultramafic rocks can be found as clasts in cataclasites related to the detachment fault, they pre-date detachment faulting. Our petrostructural study of the exhumed serpentinized rocks also reveals a deformation gradient from cataclasis to gouge formation within 150 m in the footwall of the proposed paleo-detachment fault. This deformation postdates serpentinization. It involves a component of plastic deformation of serpentine in the most highly strained intervals that has suffered pronounced grain-size reduction and a polyphase cataclastic overprint.

  8. B-type olivine fabric induced by low temperature dissolution creep during serpentinization and deformation in mantle wedge

    Science.gov (United States)

    Liu, Wenlong; Zhang, Junfeng; Barou, Fabrice

    2018-01-01

    The B-type olivine fabric (i.e., the [010] axes subnormal to foliation and the [001] axes subparallel to the lineation) has been regarded as an important olivine fabric for interpreting global trench-parallel S-wave polarization in fore-arc regions. However, strong serpentinization and cold temperature environment in the mantle wedge should inhibit development of the B-type olivine fabric that requires high temperature to activate solid-state plastic deformation. Here we report fabrics of olivine and antigorite generated at low temperatures (300-370 °C) during serpentinization in a fossil mantle wedge of the Val Malenco area, Central Alps. Olivine in the serpentine matrix develops a pronounced B-type fabric, while antigorite in the same matrix displays a strong crystallographic preferred orientation (CPO) with the (001) planes and the [010] axes subparallel to foliation and lineation, respectively. The following evidence leads to the conclusion that the B-type olivine fabric results from dissolution creep assisted by grain boundary sliding (GBS) and grain rotation, rather than solid-state plastic deformation: (1) serpentinization took place at low temperatures and a fluid-enriched environment, ideal for dissolution-precipitation creep; (2) the voids and zigzag boundaries along the interface between antigorite and olivine suggest a fluid dissolution reaction; (3) the primary coarse olivine develops a nearly random fabric, indicating the B-type fabrics in the fine-grained olivine may not be inherited fabrics. These results document for the first time the B-type olivine CPO formed by dissolution creep at low temperatures during serpentinization and provide a mechanism to reconcile petrofabric observations with geophysical observations of trench parallel fast S-wave seismic anisotropy in fore-arc mantle wedge regions.

  9. Assessing the Effects of Grassland Management on Forage Production and Environmental Quality to Identify Paths to Ecological Intensification in Mountain Grasslands.

    Science.gov (United States)

    Loucougaray, Grégory; Dobremez, Laurent; Gos, Pierre; Pauthenet, Yves; Nettier, Baptiste; Lavorel, Sandra

    2015-11-01

    Ecological intensification in grasslands can be regarded as a process for increasing forage production while maintaining high levels of ecosystem functions and biodiversity. In the mountain Vercors massif, where dairy cattle farming is the main component of agriculture, how to achieve forage autonomy at farm level while sustaining environmental quality for tourism and local dairy products has recently stimulated local debate. As specific management is one of the main drivers of ecosystem functioning, we assessed the response of forage production and environmental quality at grassland scale across a wide range of management practices. We aimed to determine which components of management can be harnessed to better match forage production and environmental quality. We sampled the vegetation of 51 grasslands stratified across 13 grassland types. We assessed each grassland for agronomic and environmental properties, measuring forage production, forage quality, and indices based on the abundance of particular plant species such as timing flexibility, apiarian potential, and aromatic plants. Our results revealed an expected trade-off between forage production and environmental quality, notably by stressing the contrasts between sown and permanent grasslands. However, strong within-type variability in both production and environmental quality as well as in flexibility of timing of use suggests possible ways to improve this trade-off at grassland and farm scales. As achieving forage autonomy relies on increasing both forage production and grassland resilience, our results highlight the critical role of the ratio between sown and permanent grasslands as a major path for ecological intensification in mountain grasslands.

  10. Stable and High Ajmalicine or Serpentine Production of Gamma Radiation Induction Mutant Catharantus Roseus

    International Nuclear Information System (INIS)

    Sumaryati Syukur

    2004-01-01

    Catharantus roseus Mutant have been selected by gamma irradiation with 20 krad doses of radiation and characterized as biochemical mutant with anti-feed back inhibition mechanism of tritophan decarboxylase (TDR) enzyme in biosynthetic path way of indole alkaloid. Production of indole alkaloid mainly ajmalicine with high economical values as a pharmaceutical drug for heart attack have been studied by using cell suspension cultures with several variation of medium, elicitors and stress osmosis. This treatment produced variation of indole alkaloid ajmalicine and serpentine. Several induction methods using Murashige and Skoog (MS) medium and polyethylene glycol PEG (6000) 1 to 7%, with hormones concentration of 2,4-D and kinetin as (10 : 1), showed optimal results of ajmalicine range between 20 and 50 nmol/gFW, and serpentine 10 to 60 nmol/gFW. This production increases ten time in mutant (20 Krad) by stress osmotic condition and performed long term stability in culture without subculture. In this paper explanation in detail about the selection methods, stability of mutant and the production of indole alkaloid ajmalicine and serpentine during growth phase, such as adaptation, log, and stationar in suspention culture of mutan cells. (author)

  11. Optimization of seed germination in an Iranian serpentine endemic, Fortuynia garcinii

    NARCIS (Netherlands)

    Salehi Eskandari, Behrooz; Ghaderian, Seyed Majid; Ghasemi, Rasoul; Schat, Henk

    2017-01-01

    Fortuynia garcinii (Brassicaceae) is endemic to serpentine soils in central Iran. It has indehiscent silicles. The effects of its fruit pericarp on seed imbibition and germination were determined. The effects of moist chilling (15 days) and gibberellic acid (GA3, four levels), both alone and

  12. Variability of annual CO2 exchange from Dutch grasslands

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Jacobs, A.F.G.; Bosveld, F.C.; Hendriks, D.M.D.; Hensen, A.; Kroon, P.; Moors, E.J.; Nol, L.; Schrier-Uijl, A.P.; Veenendaal, E.M.

    2007-01-01

    An intercomparison is made of the Net Ecosystem Exchange of CO2, NEE, for eight Dutch grassland sites: four natural grasslands, two production grasslands and two meteorological stations within a rotational grassland region. At all sites the NEE was determined during at least 10 months per site,

  13. Effects of forest expansion on mountain grassland

    DEFF Research Database (Denmark)

    Guidi, Claudia; Magid, Jakob; Rodeghiero, Mirco

    2014-01-01

    Background and aims. Grassland abandonment followed by forest succession is the dominant land-use change in the European Alps. We studied the impact of current forest expansion on mountain grassland on changes in physical soil organic carbon (SOC) fractions along a land-use and management gradient......, focusing on changes in aggregate stability and particulate organic matter (POM). Methods. Four successional stages were investigated: managed grassland, two transitional phases in which grassland abandonment led to colonization by Picea abies (L.) Karst., and old mixed forest dominated by Fagus sylvatica L....... Results. The dimension of aggregates assessed by aggregate size fractionation tended to increase, whereas SOC allocation to stable aggregates assessed by sizedensity fractionation decreased following conversion of grassland to forest (e.g. from 81 to 59 % in the 0–5 cm layer). The amount of SOC stored...

  14. Habitat associations of migrating and overwintering grassland birds in Southern Texas

    Science.gov (United States)

    Igl, Lawrence D.; Ballard, Bart M.

    1999-01-01

    We report on the habitat associations of 21 species of grassland birds overwintering in or migrating through southern Texas, during 1991-1992 and 1992-1993. Ninety percent of our grassland bird observations were made during winter and spring, and only 10% occurred during fall. Grassland species made up a high proportion of the total bird densities in grassland and shrub-grassland habitats, but much lower proportions in the habitats with more woody vegetation. Fewer grassland species were observed in grassland and woodland than in brushland, parkland, and shrub-grassland habitats. Grassland birds generally were found in higher densities in habitats that had woody canopy coverage of < 30%; densities of grassland birds were highest in shrub-grassland habitat and lowest in woodland habitat. Species that are grassland specialists on their breeding grounds tended to be more habitat specific during the nonbreeding season compared to shrub-grassland specialists, which were more general in their nonbreeding-habitat usage. Nonetheless, our data demonstrate that grassland birds occur in a variety of habitats during the nonbreeding season and seem to occupy a broader range of habitats than previously described.

  15. Importance and functions of European grasslands.

    Science.gov (United States)

    Carlier, L; De Vliegher, A; Van Cleemput, O; Boeckx, P

    2005-01-01

    The European agricultural policy is not simple and needs to accommodate also social and environmental requirements. Grassland will continue to be an important form of land use in Europe, but with increased diversity in management objectives and systems used. Besides its role as basic nutrient for herbivores and ruminants grasslands have opportunities for adding value by exploiting positive health characteristics in animal products from grassland and through the delivery of environmental benefits. In fact grasslands contribute to a high degree to the struggle against erosion and to the regularizing of water regimes, to the purification of fertilizers and pesticides and to biodiversity. Finally they have aesthetic role and recreational function as far as they provide public access that other agricultural uses do not allow. But even for grassland it is very difficult to create a good frame for its different tasks (1) the provision of forage for livestock, (2) protection and conservation of soil and water resources, (3) furnishing a habitat for wildlife, both flora and fauna and (4) contribution to the attractiveness of the landscape. Nevertheless it is the only crop, able to fulfil so many tasks and to fit so many requirements.

  16. Sustaining the grassland sea: Regional perspectives on identifying, protecting and restoring the Sky Island region's most intact grassland valley landscapes

    Science.gov (United States)

    Gitanjali S. Bodner; Peter Warren; David Gori; Karla Sartor; Steven Bassett

    2013-01-01

    Grasslands of the Sky Islands region once covered over 13 million acres in southeastern Arizona and adjacent portions of New Mexico, Sonora, and Chihuahua. Attempts to evaluate current ecological conditions suggest that approximately two thirds of these remain as intact or restorable grassland habitat. These grasslands provide watershed services such as flood control...

  17. The H2/CH4 ratio during serpentinization cannot reliably identify biological signatures.

    Science.gov (United States)

    Huang, Ruifang; Sun, Weidong; Liu, Jinzhong; Ding, Xing; Peng, Shaobang; Zhan, Wenhuan

    2016-09-26

    Serpentinization potentially contributes to the origin and evolution of life during early history of the Earth. Serpentinization produces molecular hydrogen (H 2 ) that can be utilized by microorganisms to gain metabolic energy. Methane can be formed through reactions between molecular hydrogen and oxidized carbon (e.g., carbon dioxide) or through biotic processes. A simple criterion, the H 2 /CH 4 ratio, has been proposed to differentiate abiotic from biotic methane, with values approximately larger than 40 for abiotic methane and values of serpentinization experiments at 200 °C and 0.3 kbar. However, it is not clear whether the criterion is applicable at a wider range of temperatures. In this study, we performed sixteen experiments at 311-500 °C and 3.0 kbar using natural ground peridotite. Our results demonstrate that the H 2 /CH 4 ratios strongly depend on temperature. At 311 °C and 3.0 kbar, the H 2 /CH 4 ratios ranged from 58 to 2,120, much greater than the critical value of 40. By contrast, at 400-500 °C, the H 2 /CH 4 ratios were much lower, ranging from 0.1 to 8.2. The results of this study suggest that the H 2 /CH 4 ratios cannot reliably discriminate abiotic from biotic methane.

  18. The H2/CH4 ratio during serpentinization cannot reliably identify biological signatures

    Science.gov (United States)

    Huang, Ruifang; Sun, Weidong; Liu, Jinzhong; Ding, Xing; Peng, Shaobang; Zhan, Wenhuan

    2016-09-01

    Serpentinization potentially contributes to the origin and evolution of life during early history of the Earth. Serpentinization produces molecular hydrogen (H2) that can be utilized by microorganisms to gain metabolic energy. Methane can be formed through reactions between molecular hydrogen and oxidized carbon (e.g., carbon dioxide) or through biotic processes. A simple criterion, the H2/CH4 ratio, has been proposed to differentiate abiotic from biotic methane, with values approximately larger than 40 for abiotic methane and values of serpentinization experiments at 200 °C and 0.3 kbar. However, it is not clear whether the criterion is applicable at a wider range of temperatures. In this study, we performed sixteen experiments at 311-500 °C and 3.0 kbar using natural ground peridotite. Our results demonstrate that the H2/CH4 ratios strongly depend on temperature. At 311 °C and 3.0 kbar, the H2/CH4 ratios ranged from 58 to 2,120, much greater than the critical value of 40. By contrast, at 400-500 °C, the H2/CH4 ratios were much lower, ranging from 0.1 to 8.2. The results of this study suggest that the H2/CH4 ratios cannot reliably discriminate abiotic from biotic methane.

  19. Thermal, epithermal and thermalized neutron attenuation properties of ilmenite-serpentine heat resistant concrete shield

    International Nuclear Information System (INIS)

    Kany, A.M.I.; El-Gohary, M.I.; Kamal, S.M.

    1994-01-01

    Experimental measurements were carried out to study the attenuation properties of low-energy neutrons transmitted through unheated and preheated barriers of heavy-weight, highly hydrated and heat-resistant concrete shields. The concrete shields under investigation have been prepared from naturally occurring ilmenite and serpentine Egyptian ores. A collimated beam obtained from an Am-Be source was used as a source of neutrons, while the measurements of total thermal, epithermal, and thermalized neutron fluxes were performed using a BF-3 detector, multichannel analyzer and Cd filter. Results show that the ilmenite-serpentine concrete proved to be a better thermal, epithermal and thermalized neutron attenuator than the ordinary concrete especially at a high temperature of concrete exposure. (Author)

  20. [Research progress and trend on grassland agroecology].

    Science.gov (United States)

    Ren, Jizhou; Li, Xianglin; Hou, Fujiang

    2002-08-01

    The connotation, progress, research frontiers and developmental trend of grassland agroecology are discussed in this paper. The interface theory, structure and function, coupling and discordance, and health assessment of grassland agroecosystems were recognized as the four research frontiers of the discipline. There exist three primary interfaces in a grassland agroecosystem, i.e., vegetation-site, grassland-animal and production-management. Research into a series of the ecological processes that occurred at these interfaces is the key to revealing the features of the system behavior. There are four sections in a grassland agroecosystem, i.e., pre-plant, plant, animal and post-biotic sections. System coupling and discordance are the two important concepts to describe interactions among the production sections. System coupling among the sections can lead to system improvement by exerting the potential of system capacity. Health of an ecosystem is a reflection of its structure and function, and health assessment is a measurement of its orderliness and service value.

  1. Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens

    Directory of Open Access Journals (Sweden)

    Giovanna eVisioli

    2015-08-01

    Full Text Available This study assesses the effects of specific bacterial endophytes on the phytoextraction capacity of the Ni-hyperaccumulator Noccaea caerulescens, spontaneously growing in a serpentine soil environment. Five metal-tolerant endophytes had already been selected for their high Ni tolerance (6 mM and plant growth promoting ability. Here we demonstrate that individual bacterial inoculation is ineffective in enhancing Ni translocation and growth of N. caerulescens in serpentine soil, except for specific strains Ncr-1 and Ncr-8, belonging to the Arthrobacter and Microbacterium genera, which showed the highest IAA production and ACC-deaminase activity. Ncr-1 and Ncr-8 co-inoculation was even more efficient in promoting plant growth, soil Ni removal and translocation of Ni, together with that of Fe, Co and Cu. Bacteria of both strains densely colonised the root surfaces and intercellular spaces of leaf epidermal tissue. These two bacterial strains also turned out to stimulate root length, shoot biomass and Ni uptake in Arabidopsis thaliana grown in MS agar medium supplemented with Ni. It is concluded that adaptation of N. caerulescens in highly Ni-contaminated serpentine soil can be enhanced by an integrated community of bacterial endophytes rather than by single strains; of the former, Arthrobacter and Microbacterium may be useful candidates for future phytoremediation trials

  2. Metamorphic assemblages and the direction of flow of metamorphic fluids in four instances of serpentinization

    Science.gov (United States)

    Barnes, I.; Rapp, J.B.; O'Neil, J.R.; Sheppard, R.A.; Gude, A.J.

    1972-01-01

    Fluids related to Serpentinization are of at least three types. The first reported (Barnes and O'Neil, 1969) is a fluid of local meteoric origin, the chemical and thermodynamic properties of which are entirely controlled by olivine, orthopyroxene, brucite, and serpentine reactions. It is a Ca+2-OH-1 type and is shown experimentally to be capable of reacting with albite to yield calcium hydroxy silicates. Rodingites may form where the Ca+2-OH-1 type waters flow across the ultramafic contact and react with siliceous country rock. The second type of fluid has its chemical composition largely controlled before it enters the ultramafic rocks, but reactions within the ultramafic rocks fix the thermodynamic properties by reactions of orthopyroxene, olivine, calcite, brucite, and serpentine. The precipitation of brucite from this fluid clearly shows that fluid flow allows reaction products to be deposited at a distance from the point of solution. Thus, textural evidence for volume relations during Serpentinization may not be valid. The third type of fluid has its chemical properties fixed in part before the reactions with ultramafic rocks, in part by the reactions of orthopyroxene, olivine, and serpentine and in part by reactions with siliceous country rock at the contact. The reactions of the ultramafic rock and country rock with the fluid must be contemporaneous and require flow to be along the contact. This third type of fluid is grossly supersaturated with talc and tremolite, both found along the contact. The occurrence of magadiite, kenyaite, mountainite, and rhodesite along the contact is probably due to a late stage low-temperature reaction of fluids of the same thermodynamic properties as those that formed the talc and tremolite at higher temperatures. Oxygen isotope analyses of some of these minerals supports this conclusion. Rodingites form from Ca+2-rich fluids flowing across the contact; talc and tremolite form from silica-rich fluids flowing along the contact

  3. Modeling low-temperature serpentinization reactions to estimate molecular hydrogen production with implications for potential microbial life on Saturn's moon Enceladus.

    Science.gov (United States)

    Zwicker, Jennifer; Smrzka, Daniel; Taubner, Ruth-Sophie; Bach, Wolfgang; Rittmann, Simon; Schleper, Christa; Peckmann, Jörn

    2017-04-01

    Serpentinization of ultramafic rocks attracts much interest in research on the origin of life on Earth and the search for life on extraterrestrial bodies including icy moons like Enceladus. Serpentinization on Earth occurs in peridotite-hosted systems at slow-spreading mid-ocean ridges, and produces large amounts of molecular hydrogen and methane. These reduced compounds can be utilized by diverse chemosynthetic microbial consortia as a metabolic energy source. Although many hydrothermal vents emit hot and acidic fluids today, it is more likely that life originated in the Archean at sites producing much cooler and more alkaline fluids that allowed for the synthesis and stability of essential organic molecules necessary for life. Therefore, a detailed understanding of water-rock interaction processes during low-temperature serpentinization is of crucial importance in assessing the life-sustaining potential of these environments. In the course of serpentinization, the metasomatic hydration of olivine and pyroxene produces various minerals including serpentine minerals, magnetite, brucite, and carbonates. Hydrogen production only occurs if ferrous iron within iron-bearing minerals is oxidized and incorporated as ferric iron into magnetite. The PHREEQC code was used to model the pH- and temperature-dependent dissolution of olivine and pyroxene to form serpentine, magnetite and hydrogen under pressure and temperature conditions that may exist on Saturn's icy moon Enceladus. Various model setups at 25 and 50°C were run to assess the influence of environmental parameters on hydrogen production. The results reveal that hydrogen production rates depend on the composition of the initial mineral assemblage and temperature. The current assumption is that there is a gaseous phase between Enceladus' ice sheet and subsurface ocean. To test various scenarios, model runs were conducted with and without the presence of a gas phase. The model results show that hydrogen production is

  4. An inverted continental Moho and serpentinization of the forearc mantle.

    Science.gov (United States)

    Bostock, M G; Hyndman, R D; Rondenay, S; Peacock, S M

    2002-05-30

    Volatiles that are transported by subducting lithospheric plates to depths greater than 100 km are thought to induce partial melting in the overlying mantle wedge, resulting in arc magmatism and the addition of significant quantities of material to the overlying lithosphere. Asthenospheric flow and upwelling within the wedge produce increased lithospheric temperatures in this back-arc region, but the forearc mantle (in the corner of the wedge) is thought to be significantly cooler. Here we explore the structure of the mantle wedge in the southern Cascadia subduction zone using scattered teleseismic waves recorded on a dense portable array of broadband seismometers. We find very low shear-wave velocities in the cold forearc mantle indicated by the exceptional occurrence of an 'inverted' continental Moho, which reverts to normal polarity seaward of the Cascade arc. This observation provides compelling evidence for a highly hydrated and serpentinized forearc region, consistent with thermal and petrological models of the forearc mantle wedge. This serpentinized material is thought to have low strength and may therefore control the down-dip rupture limit of great thrust earthquakes, as well as the nature of large-scale flow in the mantle wedge.

  5. H2-rich fluids from serpentinization: geochemical and biotic implications.

    Science.gov (United States)

    Sleep, N H; Meibom, A; Fridriksson, Th; Coleman, R G; Bird, D K

    2004-08-31

    Metamorphic hydration and oxidation of ultramafic rocks produces serpentinites, composed of serpentine group minerals and varying amounts of brucite, magnetite, and/or FeNi alloys. These minerals buffer metamorphic fluids to extremely reducing conditions that are capable of producing hydrogen gas. Awaruite, FeNi3, forms early in this process when the serpentinite minerals are Fe-rich. Olivine with the current mantle Fe/Mg ratio was oxidized during serpentinization after the Moon-forming impact. This process formed some of the ferric iron in the Earth's mantle. For the rest of Earth's history, serpentinites covered only a small fraction of the Earth's surface but were an important prebiotic and biotic environment. Extant methanogens react H2 with CO2 to form methane. This is a likely habitable environment on large silicate planets. The catalytic properties of FeNi3 allow complex organic compounds to form within serpentinite and, when mixed with atmospherically produced complex organic matter and waters that circulated through basalts, constitutes an attractive prebiotic substrate. Conversely, inorganic catalysis of methane by FeNi3 competes with nascent and extant life. Copyright 2004 The National Academy of Sciencs of the USA

  6. Incorporating grassland management in a global vegetation model

    Science.gov (United States)

    Chang, Jinfeng; Viovy, Nicolas; Vuichard, Nicolas; Ciais, Philippe; Wang, Tao; Cozic, Anne; Lardy, Romain; Graux, Anne-Isabelle; Klumpp, Katja; Martin, Raphael; Soussana, Jean-François

    2013-04-01

    Grassland is a widespread vegetation type, covering nearly one-fifth of the world's land surface (24 million km2), and playing a significant role in the global carbon (C) cycle. Most of grasslands in Europe are cultivated to feed animals, either directly by grazing or indirectly by grass harvest (cutting). A better understanding of the C fluxes from grassland ecosystems in response to climate and management requires not only field experiments but also the aid of simulation models. ORCHIDEE process-based ecosystem model designed for large-scale applications treats grasslands as being unmanaged, where C / water fluxes are only subject to atmospheric CO2 and climate changes. Our study describes how management of grasslands is included in the ORCHIDEE, and how management affects modeled grassland-atmosphere CO2 fluxes. The new model, ORCHIDEE-GM (Grassland Management) is capable with a management module inspired from a grassland model (PaSim, version 5.0), of accounting for two grassland management practices (cutting and grazing). The evaluation of the results of ORCHIDEE-GM compared with those of ORCHIDEE at 11 European sites equipped with eddy covariance and biometric measurements, show that ORCHIDEE-GM can capture realistically the cut-induced seasonal variation in biometric variables (LAI: Leaf Area Index; AGB: Aboveground Biomass) and in CO2 fluxes (GPP: Gross Primary Productivity; TER: Total Ecosystem Respiration; and NEE: Net Ecosystem Exchange). But improvements at grazing sites are only marginal in ORCHIDEE-GM, which relates to the difficulty in accounting for continuous grazing disturbance and its induced complex animal-vegetation interactions. Both NEE and GPP on monthly to annual timescales can be better simulated in ORCHIDEE-GM than in ORCHIDEE without management. At some sites, the model-observation misfit in ORCHIDEE-GM is found to be more related to ill-constrained parameter values than to model structure. Additionally, ORCHIDEE-GM is able to simulate

  7. A segmented cell approach for studying the effects of serpentine flow field parameters on PEMFC current distribution

    International Nuclear Information System (INIS)

    Reshetenko, Tatyana V.; Bender, Guido; Bethune, Keith; Rocheleau, Richard

    2013-01-01

    Highlights: ► Effects of a flow field design on PEMFC were investigated. ► A segmented cell was used to study 6- and 10-channel serpentine flow fields. ► 10-Channel flow field improved a fuel cell's performance at high current. ► Performance distribution was more uniform for 10-channel than for 6-channel flow field. ► The performance improvement was due to an increased pressure drop. -- Abstract: A serpentine flow field is a commonly used design in proton exchange membrane fuel cells (PEMFCs). Consequently, optimization of the flow field parameters is critically needed. A segmented cell system was used to study the impact of the flow field's parameters on the current distribution in a PEMFC, and the data obtained were analyzed in terms of voltage overpotentials. 6-Channel and 10-channel serpentine flow field designs were investigated. At low current the segments performance was found to slightly decrease for a 10-channel serpentine flow field. However, increasing the number of channels increased the fuel cell performance when operating at high current and the cell performance became more uniform downstream. The observed improvement in fuel cell performance was attributed to a decrease in mass transfer voltage losses (permeability and diffusion), due to an increased pressure drop. Spatially distributed electrochemical impedance spectroscopy (EIS) data showed differences in the local segment impedance response and confirmed the performance distribution and the impact of the flow field design

  8. Distinguishing Intensity Levels of Grassland Fertilization Using Vegetation Indices

    OpenAIRE

    Jens L. Hollberg; Jürgen Schellberg

    2017-01-01

    Monitoring the reaction of grassland canopies on fertilizer application is of major importance to enable a well-adjusted management supporting a sustainable production of the grass crop. Up to date, grassland managers estimate the nutrient status and growth dynamics of grasslands by costly and time-consuming field surveys, which only provide low temporal and spatial data density. Grassland mapping using remotely-sensed Vegetation Indices (VIs) has the potential to contribute to solving these ...

  9. Expedition 357 Preliminary Report: Atlantis Massif Serpentinization and Life

    OpenAIRE

    Früh-Green, GL; Orcutt, BN; Green, S; Cotterill, C; McCaig, AM; Expedition 357 Scientists,

    2016-01-01

    International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpent...

  10. The serpentine mitral valve and cerebral embolism

    Directory of Open Access Journals (Sweden)

    Ker James

    2011-02-01

    Full Text Available Abstract Valvular strands, well-delineated filiform masses, attached to cardiac valve edges are associated with cerebral embolism and stroke. Strokes, caused by emboli from valvular strands, tend to occur among younger persons. In this case report a valvular strand, giving a peculiar serpentine appearance to the mitral valve is described. This mitral valvular strand was the only explanation for an episode of cerebral embolism, presenting with a transient right sided hemiparesis. It is proposed that a randomized study involving combined treatment with aspirin and clopidogrel is warranted in young patients with valvular strands, presenting with a first episode of cerebral embolism.

  11. Grassland birds wintering at U.S. Navy facilities in southern Texas

    Science.gov (United States)

    Woodin, Marc C.; Skoruppa, Mary Kay; Bryan, Pearce D.; Ruddy, Amanda J.; Hickman, Graham C.

    2010-01-01

    Grassland birds have undergone widespread decline throughout North America during the past several decades. Causes of this decline include habitat loss and fragmentation because of conversion of grasslands to cropland, afforestation in the East, brush and shrub invasion in the Southwest and western United States, and planting of exotic grass species to enhance forage production. A large number of exotic plant species, including grasses, have been introduced in North America, but most research on the effects of these invasions on birds has been limited to breeding birds, primarily those in northern latitudes. Research on the effects of exotic grasses on birds in winter has been extremely limited.This is the first study in southern Texas to examine and compare winter bird responses to native and exotic grasslands. This study was conducted during a period of six years (2003–2009) on United States Navy facilities in southern Texas including Naval Air Station–Corpus Christi, Naval Air Station–Kingsville, Naval Auxiliary Landing Field Waldron, Naval Auxiliary Landing Field Orange Grove, and Escondido Ranch, all of which contained examples of native grasslands, exotic grasslands, or both. Data from native and exotic grasslands were collected and compared for bird abundance and diversity; ground cover, vegetation density, and floristic diversity; bird and vegetation relationships; diversity of insects and arachnids; and seed abundance and diversity. Effects of management treatments in exotic grasslands were evaluated by comparing numbers and diversity of birds and small mammals in mowed, burned, and control areas.To determine bird abundance and bird species richness, birds were surveyed monthly (December–February) during the winters of 2003–2008 in transects (100 meter × 20 meter) located in native and exotic grasslands distributed at all five U.S. Navy facilities. To compare vegetation in native and exotic grasslands, vegetation characteristics were measured

  12. Protecting Mongolia's grassland steppes | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... windy grassland region is severely damaged, desertification can quickly set in. ... to marketing to the sound use of (grassland) resources," explains Ykhanbai, who ... is going to require improvement in the skills of researchers, adds Ykhanbai.

  13. SEMTAP (Serpentine End Match TApe program): The Easy Way to Program Your Numerically Controlled Router for the Production of SEM Joints

    Science.gov (United States)

    Ronald E. Coleman

    1977-01-01

    SEMTAP (Serpentine End Match TApe Program) is an easy and inexpensive method of programing a numerically controlled router for the manufacture of SEM (Serpentine End Matching) joints. The SEMTAP computer program allows the user to issue commands that will accurately direct a numerically controlled router along any SEM path. The user need not be a computer programer to...

  14. Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens.

    Science.gov (United States)

    Visioli, Giovanna; Vamerali, Teofilo; Mattarozzi, Monica; Dramis, Lucia; Sanangelantoni, Anna M

    2015-01-01

    This study assesses the effects of specific bacterial endophytes on the phytoextraction capacity of the Ni-hyperaccumulator Noccaea caerulescens, spontaneously growing in a serpentine soil environment. Five metal-tolerant endophytes had already been selected for their high Ni tolerance (6 mM) and plant growth promoting ability. Here we demonstrate that individual bacterial inoculation is ineffective in enhancing Ni translocation and growth of N. caerulescens in serpentine soil, except for specific strains Ncr-1 and Ncr-8, belonging to the Arthrobacter and Microbacterium genera, which showed the highest indole acetic acid production and 1-aminocyclopropane-1-carboxylic acid-deaminase activity. Ncr-1 and Ncr-8 co-inoculation was even more efficient in promoting plant growth, soil Ni removal, and translocation of Ni, together with that of Fe, Co, and Cu. Bacteria of both strains densely colonized the root surfaces and intercellular spaces of leaf epidermal tissue. These two bacterial strains also turned out to stimulate root length, shoot biomass, and Ni uptake in Arabidopsis thaliana grown in MS agar medium supplemented with Ni. It is concluded that adaptation of N. caerulescens in highly Ni-contaminated serpentine soil can be enhanced by an integrated community of bacterial endophytes rather than by single strains; of the former, Arthrobacter and Microbacterium may be useful candidates for future phytoremediation trials in multiple metal-contaminated sites, with possible extension to non-hyperaccumulator plants.

  15. Quantifying Cr(VI) Production and Export from Serpentine Soil of the California Coast Range.

    Science.gov (United States)

    McClain, Cynthia N; Fendorf, Scott; Webb, Samuel M; Maher, Kate

    2017-01-03

    Hexavalent chromium (Cr(VI)) is generated in serpentine soils and exported to surface and groundwaters at levels above health-based drinking water standards. Although Cr(VI) concentrations are elevated in serpentine soil pore water, few studies have reported field evidence documenting Cr(VI) production rates and fluxes that govern Cr(VI) transport from soil to water sources. We report Cr speciation (i) in four serpentine soil depth profiles derived from the California Coast Range serpentinite belt and (ii) in local surface waters. Within soils, we detected Cr(VI) in the same horizons where Cr(III)-minerals are colocated with biogenic Mn(III/IV)-oxides, suggesting Cr(VI) generation through oxidation by Mn-oxides. Water-extractable Cr(VI) concentrations increase with depth constituting a 7.8 to 12 kg/km 2 reservoir of Cr(VI) in soil. Here, Cr(VI) is produced at a rate of 0.3 to 4.8 kg Cr(VI)/km 2 /yr and subsequently flushed from soil during water infiltration, exporting 0.01 to 3.9 kg Cr(VI)/km 2 /yr at concentrations ranging from 25 to 172 μg/L. Although soil-derived Cr(VI) is leached from soil at concentrations exceeding 10 μg/L, due to reduction and dilution during transport to streams, Cr(VI) levels measured in local surface waters largely remain below California's drinking water limit.

  16. Appreciation of the functions of grasslands by Irish stakeholders

    NARCIS (Netherlands)

    Hennessy, D.; Pol-van Dasselaar, van den A.

    2014-01-01

    The European project MultiSward studied the appreciation of different functions of grasslands by European stakeholders. This paper describes the importance of grasslands for stakeholders in Ireland. Ireland currently has approximately 4.6 million ha of grassland, which is 90% of the total utilized

  17. Distinguishing Intensity Levels of Grassland Fertilization Using Vegetation Indices

    Directory of Open Access Journals (Sweden)

    Jens L. Hollberg

    2017-01-01

    Full Text Available Monitoring the reaction of grassland canopies on fertilizer application is of major importance to enable a well-adjusted management supporting a sustainable production of the grass crop. Up to date, grassland managers estimate the nutrient status and growth dynamics of grasslands by costly and time-consuming field surveys, which only provide low temporal and spatial data density. Grassland mapping using remotely-sensed Vegetation Indices (VIs has the potential to contribute to solving these problems. In this study, we explored the potential of VIs for distinguishing five differently-fertilized grassland communities. Therefore, we collected spectral signatures of these communities in a long-term fertilization experiment (since 1941 in Germany throughout the growing seasons 2012–2014. Fifteen VIs were calculated and their seasonal developments investigated. Welch tests revealed that the accuracy of VIs for distinguishing these grassland communities varies throughout the growing season. Thus, the selection of the most promising single VI for grassland mapping was dependent on the date of the spectra acquisition. A random forests classification using all calculated VIs reduced variations in classification accuracy within the growing season and provided a higher overall precision of classification. Thus, we recommend a careful selection of VIs for grassland mapping or the utilization of temporally-stable methods, i.e., including a set of VIs in the random forests algorithm.

  18. CFD Models of a Serpentine Inlet, Fan, and Nozzle

    Science.gov (United States)

    Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.

    2010-01-01

    Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan

  19. Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora.

    NARCIS (Netherlands)

    Mengoni, A.; Schat, H.; Vangronsveld, J.

    2010-01-01

    During recent years there has been an increasing interest in the bacterial communities occurring in unusual, often extreme, environments. On serpentine outcrops around the world, a high diversity of plant species showing the peculiar features of metal hyperaccumulation is present. These metal

  20. Grassland ecology and diversity (Ecologia y diversidad de pastizales)

    Science.gov (United States)

    Laurie B. Abbott

    2006-01-01

    Grasslands of the Chihuahuan Desert region are ecologically and economically important. These grasslands are valued for their rangeland, wildlife, watershed, and recreation resources. Biological diversity also raises the value of grassland communities. The potential for multiple uses within the region increases as the diversity of the resource base increases. In order...

  1. Predation drives nesting success in moist highland grasslands: the ...

    African Journals Online (AJOL)

    By focusing on process-oriented data rather than inventory-type data, this study provides a robust understanding of the effects of agricultural management on grassland bird reproductive output in the moist highland grasslands (MHGs) of South Africa. Four-hundred and four nests of 12 grassland-breeding bird species were ...

  2. The role of grasslands in food security and climate change.

    Science.gov (United States)

    O'Mara, F P

    2012-11-01

    Grasslands are a major part of the global ecosystem, covering 37 % of the earth's terrestrial area. For a variety of reasons, mostly related to overgrazing and the resulting problems of soil erosion and weed encroachment, many of the world's natural grasslands are in poor condition and showing signs of degradation. This review examines their contribution to global food supply and to combating climate change. Grasslands make a significant contribution to food security through providing part of the feed requirements of ruminants used for meat and milk production. Globally, this is more important in food energy terms than pig meat and poultry meat. Grasslands are considered to have the potential to play a key role in greenhouse gas mitigation, particularly in terms of global carbon storage and further carbon sequestration. It is estimated that grazing land management and pasture improvement (e.g. through managing grazing intensity, improved productivity, etc) have a global technical mitigation potential of almost 1·5 Gt CO(2) equivalent in 2030, with additional mitigation possible from restoration of degraded lands. Milk and meat production from grassland systems in temperate regions has similar emissions of carbon dioxide per kilogram of product as mixed farming systems in temperate regions, and, if carbon sinks in grasslands are taken into account, grassland-based production systems can be as efficient as high-input systems from a greenhouse gas perspective. Grasslands are important for global food supply, contributing to ruminant milk and meat production. Extra food will need to come from the world's existing agricultural land base (including grasslands) as the total area of agricultural land has remained static since 1991. Ruminants are efficient converters of grass into humanly edible energy and protein and grassland-based food production can produce food with a comparable carbon footprint as mixed systems. Grasslands are a very important store of carbon, and

  3. Cathodoluminescence (CL) and electron paramagnetic resonance (EPR) studies of clay minerals

    International Nuclear Information System (INIS)

    Goetze, J.; Ploetze, M.; Goette, T.; Neuser, R.D.; Richter, D.K.

    2002-01-01

    Sheet silicates of the serpentine-kaolin-group (serpentine, kaolinite, dickite, nacrite, halloysite), the talc-pyrophyllite-group (talc, pyrophyllite), the smectite-group (montmorillonite), and illite (as a mineral of the mica-group) were investigated to obtain information concerning their cathodoluminescence behavior. The study included analyses by cathodoluminescence (CL microscopy and spectroscopy), electron paramagnetic resonance (EPR), x-ray diffraction (XRD), scanning electron microscopy (SEM) and trace element analysis. In general, all dioctahedral clay minerals exhibit a visible CL. Kaolinite, dickite, nacrite and pyrophyllite have a characteristic deep blue CL, whereas halloysite emission is in the greenish-blue region. On the contrary, the trioctahedral minerals (serpentine, talc) and illite do not show visible CL. The characteristic blue CL is caused by an intense emission band around 400 nm (double peak with two maxima at 375 and 410 nm). EPR measurements indicate that his blue emission can be related to radiation induced defect centers (RID), which occur as electron holes trapped on apical oxygen (Si-O center) or located at the Al-O-Al group (Al substituting Si in the tetrahedron). Additional CL emission bands were detected at 580 nm in halloysite and kaolinite, and between 700 and 800 nm in kaolinite, dickite, nacrite and pyrophyllite. Time-resolved spectral CL measurements show typical luminescence kinetics for the different clay minerals, which enable differentiation between the various dioctahedral minerals (e.g. kaolinite and dickite), even in thin section. (author)

  4. Does Evapotranspiration Increase When Forests are converted to Grasslands?

    Science.gov (United States)

    Varcoe, Robert; Sterling, Shannon

    2017-04-01

    The conversion of forests to grasslands (FGC) is a widespread land cover change (LCC) and is also among the most commonly studied changes with respect to its impact on ET; such research employs a variety of experimental approaches, including, paired catchment (PC), Budyko and land surface models (LSM), and measurement methods, including the catchment water balance (CWB), eddy covariance (EC) and remote sensing (RS). Until recently, there has been consensus in the scientific literature that rates of ET decrease when a forest is converted to grassland; however, this consensus has recently come into question. Williams (2012) applied the Budyko framework to a global network of eddy covariance measurements with the results that grasslands have a 9% greater evaporative index than forests. In addition, HadGEM2, a recent Hadley Centre LSM, produced increased ET in the northern Amazon Basin after simulating global scale tropical deforestation (Brovkin et al., 2015). Here we present an analysis of available estimates of how ET rates change with FGC to increase our understanding of the forest - grassland-ET paradigm. We used two datasets to investigate the impacts land cover change on ET. I compiled a dataset of change in ET with land cover change (ΔETLCC) using published experiments that compare forest and grassland ET under conditions controlled for meteorological and landscape influences. Using the ΔETLCC dataset, we show that, in all cases, forest ET is higher than grassland under controlled conditions. Results suggest that the eddy covariance method measures smaller changes in ET when forests are converted to grasslands, though more data are needed for this result to be statistically significant. Finally, GETA2.0, a new global dataset of annual ET, projects that forest ET is greater than grassland, except at high latitudes and areas where orography influences precipitation (P). The data included in this study represent the data available on forest and grassland ET

  5. Evaluation of semiarid grassland degradation in North China from multiple perspectives

    Science.gov (United States)

    Han, D.; Wang, G.; Xue, B. L.; Xu, X.

    2017-12-01

    There has been increasing interest in grassland ecosystem degradation resulting from intensive human activity and climate change, especially in arid and semiarid regions. Species composition, grassland desertification, and aboveground biomass (AGB) are used as indicators of grassland degradation in this study. We comprehensively analyzed variations in these three indicators in semiarid grassland in North China, on multiple time scales, based on MODIS products and field sampling datasets. Since 1984, species composition has become simpler and species indicative of grassland degradation, such as Potentilla acaulis and Artemisia frigida, have become dominant. These changes indicate that serious grassland degradation has occurred since 1984. Grassland degradation was also analyzed on shorter time scales. Analyses of interannual variations during 2005-2015 showed that desertification decreased and average AGB in the growth season increased over the study area, indicating that grassland was recovering. Analyses of spatial variations showed that the position of slightly desertified grassland shifted and formed a band in the west, where the lowest AGB in the growth season was recorded but tendency ratio of AGB increased from 2005 to 2015. Climatic factors had critical effects on grassland degradation, as identified by the three indicators on different time scales. The simpler species composition resulted from the increase in average temperature and decrease in average precipitation over the past 30 years. For nearly a decade, an increase in precipitation and decreases in temperature and potential evapotranspiration reduced desertification and increased AGB in the growth season overall. Consequently, there has distinct difference in grassland degradation between analysis results on above two time scales, indicating multiple perspectives should be considered to accurately assess the state and characteristics of grassland degradation.

  6. Changes in productivity of grassland with ageing

    NARCIS (Netherlands)

    Hoogerkamp, M.

    1984-01-01

    The productivity of grassland may change greatly with ageing. Frequently, a productive ley period, occurring in the first time after (re)seeding, is followed by a period in which productivity decreases. Under conditions favourable to grassland this may be temporary. A production level

  7. Serpentinization as a source of energy at the origin of life.

    Science.gov (United States)

    Russell, M J; Hall, A J; Martin, W

    2010-12-01

    For life to have emerged from CO₂, rocks, and water on the early Earth, a sustained source of chemically transducible energy was essential. The serpentinization process is emerging as an increasingly likely source of that energy. Serpentinization of ultramafic crust would have continuously supplied hydrogen, methane, minor formate, and ammonia, as well as calcium and traces of acetate, molybdenum and tungsten, to off-ridge alkaline hydrothermal springs that interfaced with the metal-rich carbonic Hadean Ocean. Silica and bisulfide were also delivered to these springs where cherts and sulfides were intersected by the alkaline solutions. The proton and redox gradients so generated represent a rich source of naturally produced chemiosmotic energy, stemming from geochemistry that merely had to be tapped, rather than induced, by the earliest biochemical systems. Hydrothermal mounds accumulating at similar sites in today's oceans offer conceptual and experimental models for the chemistry germane to the emergence of life, although the ubiquity of microbial communities at such sites in addition to our oxygenated atmosphere preclude an exact analogy. Published 2010. This article is a US Government work and is in the public domain in the USA.

  8. Ecological mechanisms underlying arthropod species diversity in grasslands.

    Science.gov (United States)

    Joern, Anthony; Laws, Angela N

    2013-01-01

    Arthropods are an important component of grassland systems, contributing significantly to biodiversity and ecosystem structure and function. Climate, fire, and grazing by large herbivores are important drivers in grasslands worldwide. Arthropod responses to these drivers are highly variable and clear patterns are difficult to find, but responses are largely indirect with respect to changes in resources, species interactions, habitat structure, and habitat heterogeneity resulting from interactions among fire, grazing, and climate. Here, we review these ecological mechanisms influencing grassland arthropod diversity. We summarize hypotheses describing species diversity at local and regional scales and then discuss specific factors that may affect arthropod diversity in grassland systems. These factors include direct and indirect effects of grazing, fire, and climate, species interactions, above- and belowground interactions, and landscape-level effects.

  9. SOWING GRASSLANDS – EFFICIENT SOLUTION FOR ZOOTEHNICAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    VALENTINA OFELIA ROBESCU

    2008-05-01

    Full Text Available Recruitment is critical for the maintenance of plant populations and community diversity, but sexual regeneration is considered to be infrequent in climatically harsh habitats such as sub alpine grasslands. For this reasons it is very important to improve the grassland. In this paper we study the interaction among milk production, fertilizations and flower composition in sub alpine grasslands. The agrochemical indicators are important because they influence the pasture value and at the final the milk production.

  10. Continuous particle separation in a serpentine microchannel via negative and positive dielectrophoretic focusing

    International Nuclear Information System (INIS)

    Church, Christopher; Zhu, Junjie; Nieto, Juan; Keten, Gyunay; Ibarra, Erl; Xuan, Xiangchun

    2010-01-01

    Dielectrophoresis (DEP) has been widely used to focus and separate cells and particles in microfluidic devices. This work first demonstrates negative and positive dielectrophoretic focusing of particles in a serpentine microchannel by changing only the electric conductivity of the suspending fluid. Due to the channel turn-induced dielectrophoretic force, particles are focused to either the centerline or the sidewalls of the channel when their electric conductivity is lower (i.e. negative DEP) or higher (i.e. positive DEP) than that of the fluid. These distinctive dielectrophoretic focusing phenomena in a serpentine microchannel are then combined to implement a continuous separation between particles of different sizes and electric conductivities. Such separation eliminates the fabrication of in-channel microelectrodes or micro-insulators that are typically required in DEP-based separation techniques. A numerical model is also developed to predict the particle motion, and the simulation results agree reasonably with the observed particle focusing and separation behaviors.

  11. Characterizing Dissolved Organic Matter and Metabolites in an Actively Serpentinizing Ophiolite Using Global Metabolomics Techniques

    Science.gov (United States)

    Seyler, L. M.; Rempfert, K. R.; Kraus, E. A.; Spear, J. R.; Templeton, A. S.; Schrenk, M. O.

    2017-12-01

    Environmental metabolomics is an emerging approach used to study ecosystem properties. Through bioinformatic comparisons to metagenomic data sets, metabolomics can be used to study microbial adaptations and responses to varying environmental conditions. Since the techniques are highly parallel to organic geochemistry approaches, metabolomics can also provide insight into biogeochemical processes. These analyses are a reflection of metabolic potential and intersection with other organisms and environmental components. Here, we used an untargeted metabolomics approach to characterize dissolved organic carbon and aqueous metabolites from groundwater obtained from an actively serpentinizing habitat. Serpentinites are known to support microbial communities that feed off of the products of serpentinization (such as methane and H2 gas), while adapted to harsh environmental conditions such as high pH and low DIC availability. However, the biochemistry of microbial populations that inhabit these environments are understudied and are complicated by overlapping biotic and abiotic processes. The aim of this study was to identify potential sources of carbon in an environment that is depleted of soluble inorganic carbon, and to characterize the flow of metabolites and describe overlapping biogenic and abiogenic processes impacting carbon cycling in serpentinizing rocks. We applied untargeted metabolomics techniques to groundwater taken from a series of wells drilled into the Semail Ophiolite in Oman.. Samples were analyzed via quadrupole time-of-flight liquid chromatography tandem mass spectrometry (QToF-LC/MS/MS). Metabolomes and metagenomic data were imported into Progenesis QI software for statistical analysis and correlation, and metabolic networks constructed using the Genome-Linked Application for Metabolic Maps (GLAMM), a web interface tool. Further multivariate statistical analyses and quality control was performed using EZinfo. Pools of dissolved organic carbon could

  12. Application of Multi-Source Remote Sensing Image in Yunnan Province Grassland Resources Investigation

    Science.gov (United States)

    Li, J.; Wen, G.; Li, D.

    2018-04-01

    Trough mastering background information of Yunnan province grassland resources utilization and ecological conditions to improves grassland elaborating management capacity, it carried out grassland resource investigation work by Yunnan province agriculture department in 2017. The traditional grassland resource investigation method is ground based investigation, which is time-consuming and inefficient, especially not suitable for large scale and hard-to-reach areas. While remote sensing is low cost, wide range and efficient, which can reflect grassland resources present situation objectively. It has become indispensable grassland monitoring technology and data sources and it has got more and more recognition and application in grassland resources monitoring research. This paper researches application of multi-source remote sensing image in Yunnan province grassland resources investigation. First of all, it extracts grassland resources thematic information and conducts field investigation through BJ-2 high space resolution image segmentation. Secondly, it classifies grassland types and evaluates grassland degradation degree through high resolution characteristics of Landsat 8 image. Thirdly, it obtained grass yield model and quality classification through high resolution and wide scanning width characteristics of MODIS images and sample investigate data. Finally, it performs grassland field qualitative analysis through UAV remote sensing image. According to project area implementation, it proves that multi-source remote sensing data can be applied to the grassland resources investigation in Yunnan province and it is indispensable method.

  13. Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil

    Czech Academy of Sciences Publication Activity Database

    Doubková, Pavla; Vlasáková, E.; Sudová, Radka

    2013-01-01

    Roč. 370, 1-2 (2013), s. 149-161 ISSN 0032-079X R&D Projects: GA AV ČR KJB600050812 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * drought * serpentine soil Subject RIV: EF - Botanics Impact factor: 3.235, year: 2013

  14. A novel sandwich differential capacitive accelerometer with symmetrical double-sided serpentine beam-mass structure

    International Nuclear Information System (INIS)

    Xiao, D B; Li, Q S; Hou, Z Q; Wang, X H; Chen, Z H; Xia, D W; Wu, X Z

    2016-01-01

    This paper presents a novel differential capacitive silicon micro-accelerometer with symmetrical double-sided serpentine beam-mass sensing structure and glass–silicon–glass sandwich structure. The symmetrical double-sided serpentine beam-mass sensing structure is fabricated with a novel pre-buried mask fabrication technology, which is convenient for manufacturing multi-layer sensors. The glass–silicon–glass sandwich structure is realized by a double anodic bonding process. To solve the problem of the difficulty of leading out signals from the top and bottom layer simultaneously in the sandwich sensors, a silicon pillar structure is designed that is inherently simple and low-cost. The prototype is fabricated and tested. It has low noise performance (the peak to peak value is 40 μg) and μg-level Allan deviation of bias (2.2 μg in 1 h), experimentally demonstrating the effectiveness of the design and the novel fabrication technology. (paper)

  15. Exacerbated grassland degradation and desertification in Central Asia during 2000-2014.

    Science.gov (United States)

    Zhang, Geli; Biradar, Chandrashekhar M; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Qin, Yuanwei; Zhang, Yao; Liu, Fang; Ding, Mingjun; Thomas, Richard J

    2018-03-01

    Grassland degradation and desertification is a complex process, including both state conversion (e.g., grasslands to deserts) and gradual within-state change (e.g., greenness dynamics). Existing studies hardly separated the two components and analyzed it as a whole based on time series vegetation index data, which cannot provide a clear and comprehensive picture for grassland degradation and desertification. Here we propose an integrated assessment strategy, by considering both state conversion and within-state change of grasslands, to investigate grassland degradation and desertification process in Central Asia. First, annual maps of grasslands and sparsely vegetated land were generated to track the state conversions between them. The results showed increasing grasslands were converted to sparsely vegetated lands from 2000 to 2014, with the desertification region concentrating in the latitude range of 43-48° N. A frequency analysis of grassland vs. sparsely vegetated land classification in the last 15 yr allowed a recognition of persistent desert zone (PDZ), persistent grassland zone (PGZ), and transitional zone (TZ). The TZ was identified in southern Kazakhstan as one hotspot that was unstable and vulnerable to desertification. Furthermore, the trend analysis of Enhanced Vegetation Index during thermal growing season (EVI TGS ) was investigated in individual zones using linear regression and Mann-Kendall approaches. An overall degradation across the area was found; moreover, the second desertification hotspot was identified in northern Kazakhstan with significant decreasing in EVI TGS , which was located in PGZ. Finally, attribution analyses of grassland degradation and desertification were conducted by considering precipitation, temperature, and three different drought indices. We found persistent droughts were the main factor for grassland degradation and desertification in Central Asia. Considering both state conversion and gradual within-state change

  16. Grassland ecology and population growth: striking a balance.

    Science.gov (United States)

    Hou, D; Duan, C; Zhang, D

    2000-06-01

    Degradation of forest and grasslands in western China attributes to the soil erosion and desertification in the country. Researchers have established that the primary reason for the degradation of grasslands is overgrazing, which in turn is caused by a number of factors, including over-population and over-reliance on animal husbandry. In addition, the existing administrative system has also proved ineffective in ensuring sustainable development. On contrary, many local governments even encourage exploitative development of grassland; thus, localities opened up grassland for growing crops in an effort to increase income. According to estimates, degraded grassland accounts for more than one-third of utilizable acreage and another one-third suffers from a profusion of rats and pests. To redress the situation, central government should implement strategies in achieving sustainable development, such as providing banking and tax incentives for the development of the secondary and tertiary industries, and supporting education and training of youths from herding areas. Moreover, government should increase spending on infrastructural construction and ecological preservation. Finally, the family planning program needs to be enforced to control population growth and improve the quality of peoples¿ lives.

  17. Grassland carbon sequestration and emissions following cultivation in a mixed crop rotation

    DEFF Research Database (Denmark)

    Acharya, Bharat Sharma; Rasmussen, Jim; Eriksen, Jørgen

    2012-01-01

    Grasslands are potential carbon sinks to reduce unprecedented increase in atmospheric CO2. Effect of age (1–4-year-old) and management (slurry, grazing multispecies mixture) of a grass phase mixed crop rotation on carbon sequestration and emissions upon cultivation was compared with 17-year...... biomass was highest in 4-year-old grassland, but all 1–4-year-old grasslands were in between the pea field (0.81 ± 0.094 g kg−1 soil) and the 17-year-old grassland (3.17 ± 0.22 g kg−1 soil). Grazed grasslands had significantly higher root biomass than cut grasslands. There was no significant difference...... in the CO2 emissions within 1–4-year-old grasslands. Only the 17-year-old grassland showed markedly higher CO2 emissions (4.9 ± 1.1 g CO2 kg−1 soil). Differences in aboveground and root biomass did not affect CO2 emissions, and slurry application did not either. The substantial increase in root biomass...

  18. Thermo-hydraulic characteristics of serpentine tubing in the boilers of gas cooled reactors under condition of rapid and slow depressurization

    International Nuclear Information System (INIS)

    Abouhadra, D.S.; Byrne, J.E.

    2003-01-01

    In nuclear reactors of the magnox or advanced gas cooled type, serpentine tubing is used in some designs to generate steam in a once through arrangement. The calculation of accidents using two phase flow codes requires knowledge of the heat transfer behaviour of the boiler steam side. A series of experiments to study the blowdown characteristics of a typical serpentine boiler section was devised in order to validate the MARTHA section of the MACE code used by nuclear electric . The tests were carried out on the thermal hydraulics experimental research assembly (THERA) loop at manchester university. Depressurization from an initial pressure of 60 bar, with fluid subcooling of 5 k, 50 k, and 100 k was controlled by discharging the test section contents through suitably chosen orifices to produce blowdown to 10% of the initial pressure over a time scale of 30 s to 3600 s. pressures and temperatures in the serpentine were measured at average time intervals of approximately 1 s

  19. Lesser prairie-chicken avoidance of trees in a grassland landscape

    Science.gov (United States)

    Lautenbach, Joseph M.; Plumb, Reid T.; Robinson, Samantha G.; Hagen, Christian A.; Haukos, David A.; Pitman, James C.

    2016-01-01

    Grasslands are among the most imperiled ecosystems in North America. Reasons that grasslands are threatened include conversion to row-crop agriculture, fragmentation, and changes in fire regimes. The reduction of fire processes in remaining prairies has resulted in tree encroachment and establishment in grasslands, further reducing grassland quantity and quality. Grassland birds have been experiencing precipitous population declines in recent decades, commensurate with landscape changes to grasslands. The lesser prairie-chicken (Tympanuchus pallidicinctus Ridgway) is a declining species of prairie grouse of conservation concern. We used second- and third-order habitat selection metrics to test if female lesser prairie-chickens avoid grasslands where trees were present. Our results indicated that female lesser prairie-chickens selected habitats avoiding the nearest trees by 283 m on average, nearly twice as far as would be expected at random. Lesser prairie-chickens were 40 times more likely to use habitats with tree densities of 0 trees ∙ ha− 1 than habitats with 5 trees ∙ ha− 1. Probability of use indicated that lesser prairie-chickens were 19 times more likely to use habitats 1000 m from the nearest tree when compared with using habitats 0 m from the nearest tree. Nest survival was not affected at densities 2 trees ∙ ha− 1. Avoidance of trees could be due to perceived increased predation risk, reduced habitat quality, or a combination of these potentially confounding factors. Preventing further establishment and expansion of trees in landscapes occupied by lesser prairie-chickens could contribute to the continued persistence of the species. Additionally, restoring grasslands through tree removal may facilitate conservation efforts for grassland species such as the lesser prairie-chicken by improving habitat quality and promoting expansion of occupied range.

  20. Ecology and Conservation of Steppes and Semi-Natural Grasslands

    Directory of Open Access Journals (Sweden)

    Valkó Orsolya

    2016-12-01

    Full Text Available Palaearctic grasslands encompass a diverse variety of habitats, many of high nature value and vulnerability. The main challenges are climate-change, land-use change, agricultural intensification and abandonment. Many measures are in place to address these challenges, through restoration and appropriate management, though more work is necessary. We present eight studies from China/Germany, Greece, Kazakhstan, Russia and Ukraine. The papers cover a wide range of grassland and steppe habitats and cover vegetation ecology, syntaxonomy and zoology. We also conducted a systematic search on steppe and grassland diversity. The greatest number of studies was from China, followed by Germany and England. We conclude that the amount of research being carried out on Eurasian grasslands is inadequate considering their high levels of biodiversity and vulnerability. We hope to encourage readers to address current major challenges, such as how to manage grasslands for the benefit of diverse taxa, to ensure that conservation initiatives concentrate on sites where there is good potential for success and for the generation of realistic and viable conservation strategies.

  1. The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress

    Czech Academy of Sciences Publication Activity Database

    Doubková, Pavla; Suda, Jan; Sudová, Radka

    2012-01-01

    Roč. 4, č. 1 (2012), s. 56-64 ISSN 0038-0717 R&D Projects: GA AV ČR KJB600050812 Institutional research plan: CEZ:AV0Z60050516 Keywords : serpentine syndrome * arbuscular mycorrhizal fungi * reciprocal transplant experiment Subject RIV: EF - Botanics Impact factor: 3.654, year: 2012

  2. Si-Metasomatism During Serpentinization of Jurassic Ultramafic Sea-floor: a Comparative Study

    Science.gov (United States)

    Vogel, M.; Frueh-Green, G. L.; Boschi, C.; Schwarzenbach, E. M.

    2014-12-01

    The Bracco-Levanto ophiolitic complex (northwestern Italy) represents one of the largest and better-exposed ophiolitic successions in the Northern Apennines. It is considered to be a fragment of heterogeneous Jurassic lithosphere that records tectono-magmatic and alteration histories similar to those documented along the Mid-Atlantic Ridge (MAR), such as at the 15°20'N area and the Atlantis Massif at 30°N. Structural and petrological studies on these rocks provide constraints on metamorphic/deformation processes during formation and hydrothermal alteration of the Jurassic oceanic lithosphere. We present a petrological and geochemical study of serpentinization processes and fluid-rock interaction in the Bracco-Levanto ophiolitic complex and compare these to published data from modern oceanic hydrothermal systems, such as the Lost City hydrothermal field hosted in serpentinites on the Atlantis Massif. Major element and mineral compositional data allow us to distinguish a multiphase history of alteration characterized by: (1) widespread Si-metasomatism during progressive serpentinization, and (2) multiple phases of veining and carbonate precipitation associated with circulation of seawater in the shallow ultramafic-dominated portions of the Jurassic seafloor, resulting in the formation of ophicalcites. In detail, regional variations in Si, Mg and Al content are observed in zones of ophicalcite formation, indicating metasomatic reactions and Si-Al transport during long-lived fluid-rock interaction and channelling of hydrothermal fluids. Rare earth element and isotopic analysis indicate that the Si-rich fluids are derived from alteration of pyroxenes to talc and tremolite in ultramafic rocks at depth. Comparison with serpentinites from the Atlantis Massif and 15°20'N indicates a similar degree of Si-enrichment in the modern seafloor and suggests that Si-metasomatism may be a fundamental process associated with serpentinization at slow-spreading ridge environments

  3. Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems

    Science.gov (United States)

    Brazier, Richard E.

    2015-04-01

    Grassland ecosystems cover significant areas of the terrestrial land mass, across a range of geoclimates, from arctic tundra, through temperate and semi-arid landscapes. In very few locations, such grasslands may be termed 'pristine' in that they remain undamaged by human activities and resilient to changing climates. In far more cases, grasslands are being degraded, often irreversibly so, with significant implications for a number of ecosystem services related to water resources, soil quality, nutrient cycles, and therefore both global food and water security. This paper draws upon empirical research that has been undertaken over the last decade to characterise a range of different grasslands in terms of soil properties, vegetation structure and geomorphology and to understand how these structures or patterns might interact or control how the grassland ecosystems function. Particular emphasis is placed upon quantifying fluxes of water, within and from grasslands, but also fluxes of sediment, via the processes of soil erosion and finally fluxes of the macronutrients Nitrogen, Phosphorus and Carbon from the landscape to surface waters. Data are presented from semi-arid grasslands, which are subject to severe encroachment by woody species, temperate upland grasslands that have been 'improved' via drainage to support grazing, temperate lowland grasslands, that are unimproved (Culm or Rhôs pastures) and finally intensively managed grasslands in temperate regions, that have been significantly modified via land management practices to improve productivity. It is hypothesised that, once degraded, the structure and function of these very diverse grassland ecosystems follows the same negative trajectory, resulting in depleted soil depths, nutrient storage capacities and therefore reduced plant growth and long-term carbon sequestration. Results demonstrate that similar, but highly complex and non-linear responses to perturbation of the ecosystem are observed, regardless of

  4. A nonlinear analysis of the terahertz serpentine waveguide traveling-wave amplifier

    International Nuclear Information System (INIS)

    Li, Ke; Cao, Miaomiao; Liu, Wenxin; Wang, Yong

    2015-01-01

    A nonlinear model for the numerical simulation of terahertz serpentine waveguide traveling-wave tube (SW-TWT) is described. In this model, the electromagnetic wave transmission in the SW is represented as an infinite set of space harmonics to interact with an electron beam. Analytical expressions for axial electric fields in axisymmetric interaction gaps of SW-TWTs are derived and compared with the results from CST simulation. The continuous beam is treated as discrete macro-particles with different initial phases. The beam-tunnel field equations, space-charge field equations, and motion equations are combined to solve the beam-wave interaction. The influence of backward wave and relativistic effect is also considered in the series of equations. The nonlinear model is used to design a 340 GHz SW-TWT. Several favorable comparisons of model predictions with results from a 3-D Particle-in-cell simulation code CHIPIC are presented, in which the output power versus beam voltage and interaction periods are illustrated. The relative error of the predicted output power is less than 15% in the 3 dB bandwidth and the relative error of the saturated length is less than 8%.The results show that the 1-D nonlinear analysis model is appropriate to solve the terahertz SW-TWT operation characteristics

  5. Near-wall serpentine cooled turbine airfoil

    Science.gov (United States)

    Lee, Ching-Pang

    2013-09-17

    A serpentine coolant flow path (54A-54G) formed by inner walls (50, 52) in a cavity (49) between pressure and suction side walls (22, 24) of a turbine airfoil (20A). A coolant flow (58) enters (56) an end of the airfoil, flows into a span-wise channel (54A), then flows forward (54B) over the inner surface of the pressure side wall, then turns behind the leading edge (26), and flows back along a forward part of the suction side wall, then follows a loop (54E) forward and back around an inner wall (52), then flows along an intermediate part of the suction side wall, then flows into an aft channel (54G) between the pressure and suction side walls, then exits the trailing edge (28). This provides cooling matched to the heating topography of the airfoil, minimizes differential thermal expansion, revives the coolant, and minimizes the flow volume needed.

  6. Mineral textures in Serpentine-hosted Alkaline Springs from the Oman ophiolite

    Science.gov (United States)

    Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Bach, Wolfgang; Garrido, Carlos J.; Los, Karin; Fussmann, Dario; Monien, Monien

    2017-04-01

    Meteoric water infiltration in ultramafic rocks leads to serpentinization and the formation of subaerial, low temperature, hydrothermal alkaline springs. Here, we present a detailed investigation of the mineral precipitation mechanisms and textural features of mineral precipitates, along as the geochemical and hydrological characterization, of two alkaline spring systems in the Semail ophiolite (Nasif and Khafifah sites, Wadi Tayin massif). The main aim of the study is to provide new insights into mineral and textural variations in active, on-land, alkaline vents of the Oman ophiolite. Discharge of circulating fluids forms small-scale, localized hydrological catchments consisting in unevenly interconnected ponds. Three different types of waters can be distinguished within the pond systems: i) Mg-type; alkaline (7.9 11.6), Ca-OH-rich waters; and iii) Mix-type waters arising from the mixing of Mg-type and Ca-type waters (9.6 ponds were carried out by X-ray diffraction (XRD), Raman spectroscopy and field-emission scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Aragonite and calcite are the dominant minerals (95 vol.%) of the total mineralogical index in all sites. Mg-type waters host hydrated magnesium carbonates (nesquehonite) and magnesium hydroxycarbonate hydrates (artinite) due to evaporation. Brucite, hydromagnesite and dypingite presence in Mix-type waters is spatially controlled by the hydrology of the system and is localized around mixing zones between Ca-type with Mg-type waters. Residence time of discharging waters in the ponds before mixing has an impact on fluid chemistry as it influences the equilibration time with the atmosphere. Acicular aragonite is the main textural type in hyper-alkaline Ca-type waters, acting as a substratum for the growth of calcite and brucite crystals. Low crystallinity, dumbbell shaped and double pyramid aragonite dominates in Mix-type water precipitates. Rate of supersaturation is essential

  7. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress.

    Science.gov (United States)

    Ma, Ying; Rajkumar, Mani; Moreno, António; Zhang, Chang; Freitas, Helena

    2017-10-01

    This study evaluates the potential of serpentine endophytic bacterium to foster phytoremediation efficiency of Trifolium arvense grown on multi-metal (Cu, Zn and Ni) contaminated soils under drought stress. A drought resistant endophytic bacterial strain ASS1 isolated from the leaves of Alyssum serpyllifolium grown in serpentine soils was identified as Pseudomonas azotoformans based on biochemical tests and partial 16S rRNA gene sequencing. P. azotoformans ASS1 possessed abiotic stress resistance (heavy metals, drought, salinity, antibiotics and extreme temperature) and plant growth promoting (PGP) properties (phosphate solubilization, nitrogen fixation, production of 1-aminocyclopropane-1-carboxylate deaminase, siderophore and ammonia). Inoculation of T. arvense with ASS1 considerably increased the plant biomass and leaf relative water content in both roll towel assay and pot experiments in the absence and presence of drought stress (DS). In the pot experiments, ASS1 greatly enhanced chlorophyll content, catalase, peroxidase, superoxide dismutase activities, and proline content (only in the absence of drought) in plant leaves, whereas they decreased the concentrations of malondialdehyde. Irrespective of water stress, ASS1 significantly improved accumulation, total removal, bio-concentration factor and biological accumulation coefficient of metals (Cu, Zn and Ni), while decreased translocation factors of Cu. The effective colonization and survival in the rhizosphere and tissue interior assured improved plant growth and successful metal phytoremediation under DS. These results demonstrate the potential of serpentine endophytic bacterium ASS1 for protecting plants against abiotic stresses and helping plants to thrive in semiarid ecosystems and accelerate phytoremediation process in metal polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Resilience and stability of the grasslands of the Transkei | B | African ...

    African Journals Online (AJOL)

    In spite of very high stocking rates the grasslands of Transkei still have in many areas a high cover and many climax species. The concepts of resilience and stability are used in an attempt to explain dynamics of the grasslands. Keywords: resiliences|stabilities|grasslands|Transkei|stocking rates|basal covers|grass ...

  9. Ecological transition in Arizona's subalpine and montane grasslands

    Science.gov (United States)

    Michael R. White

    2000-01-01

    Important components of Southwest forest ecosystem are subalpine and montane grassland communities, Grassland communities provide habitat diversity for wildlife, forage for domestic livestock and wildlife, and contribute to the visual quality of an area. The objectives of this research were to determine if: 1) vegetation attributes and soil-surface cover variables of...

  10. Magnetic properties of variably serpentinized peridotites and their implication for the evolution of oceanic core complexes

    NARCIS (Netherlands)

    Maffione, M.; Morris, A.; Plümper, O.|info:eu-repo/dai/nl/37155960X; van Hinsbergen, D.J.J.|info:eu-repo/dai/nl/269263624

    Serpentinization of ultramafic rocks during hydrothermal alteration at mid-ocean ridges profoundly changes the physical, chemical, rheological, and magnetic properties of the oceanic lithosphere. There is renewed interest in this process following the discovery of widespread exposures of

  11. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    Science.gov (United States)

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.

  12. Carbonate control of H2 and CH4 production in serpentinization systems at elevated P-Ts

    Science.gov (United States)

    Jones, L. Camille; Rosenbauer, Robert; Goldsmith, Jonas I.; Oze, Christopher

    2010-01-01

    Serpentinization of forsteritic olivine results in the inorganic synthesis of molecular hydrogen (H2) in ultramafic hydrothermal systems (e.g., mid-ocean ridge and forearc environments). Inorganic carbon in those hydrothermal systems may react with H2 to produce methane (CH4) and other hydrocarbons or react with dissolved metal ions to form carbonate minerals. Here, we report serpentinization experiments at 200°C and 300 bar demonstrating Fe2+ being incorporated into carbonates more rapidly than Fe2+ oxidation (and concomitant H2 formation) leading to diminished yields of H2 and H2-dependent CH4. In addition, carbonate formation is temporally fast in carbonate oversaturated fluids. Our results demonstrate that carbonate chemistry ultimately modulates the abiotic synthesis of both H2 and CH4 in hydrothermal ultramafic systems and that ultramafic systems present great potential for CO2-mineral sequestration.

  13. Impacts of Future Grassland Changes on Surface Climate in Mongolia

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-01-01

    Full Text Available Climate change caused by land use/cover change (LUCC is becoming a hot topic in current global change, especially the changes caused by the grassland degradation. In this paper, based on the baseline underlying surface data of 1993, the predicted underlying surface data which can be derived through overlaying the grassland degradation information to the map of baseline underlying surface, and the atmospheric forcing data of RCP 6.0 from CMIP5, climatological changes caused by future grassland changes for the years 2010–2020 and 2040–2050 with the Weather Research Forecast model (WRF are simulated. The model-based analysis shows that future grassland degradation will significantly result in regional climate change. The grassland degradation in future could lead to an increasing trend of temperature in most areas and corresponding change range of the annual average temperature of −0.1°C–0.4°C, and it will cause a decreasing trend of precipitation and corresponding change range of the annual average precipitation of 10 mm–50 mm. This study identifies lines of evidence for effects of future grassland degradation on regional climate in Mongolia which provides meaningful decision-making information for the development and strategy plan making in Mongolia.

  14. Managed grassland alters soil N dynamics and N2O emissions in temperate steppe.

    Science.gov (United States)

    Xu, Lijun; Xu, Xingliang; Tang, Xuejuan; Xin, Xiaoping; Ye, Liming; Yang, Guixia; Tang, Huajun; Lv, Shijie; Xu, Dawei; Zhang, Zhao

    2018-04-01

    Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen (N) dynamics and nitrous oxide (N 2 O) emissions. However, it remains unclear how large-scale grassland reclamation will impact the grassland ecosystem as a whole. Here, we investigated the effects of the conversion from native to managed grasslands on soil N dynamics and N2O emissions by field experiments in Hulunber in northern China. Soil (0-10cm), nitrate (NO 3 - ), ammonium (NH 4 + ), and microbial N were measured in plots in a temperate steppe (Leymus chinensis grassland) and two managed grasslands (Medicago sativa and Bromus inermis grasslands) in 2011 and 2012. The results showed conversion of L. chinensis grassland to M. sativa or B. inermis grasslands decreased concentrations of NO 3 - -N, but did not change NH 4 + -N. Soil microbial N was slightly decreased by the conversion of L. chinensis grassland to M. sativa, but increased by the conversion to B. inermis. The conversion of L. chinensis grassland to M. sativa (i.e., a legume grass) increased N 2 O emissions by 26.2%, while the conversion to the B. inermis (i.e., a non-legume grass) reduced N 2 O emissions by 33.1%. The conversion from native to managed grasslands caused large created variations in soil NO 3 - -N and NH 4 + -N concentrations. Net N mineralization rates did not change significantly in growing season or vegetation type, but to net nitrification rate. These results provide evidence on how reclamation may impact the grassland ecosystem in terms of N dynamics and N 2 O emissions. Copyright © 2017. Published by Elsevier B.V.

  15. Variation in soil organic carbon within highland grasslands of Langtang National Park, Nepal

    Directory of Open Access Journals (Sweden)

    Keshab Shrestha

    2016-09-01

    Full Text Available Grassland also plays important role in food security. The estimated grassland area in Nepal is about 1.75 million ha. Most of the grassland in Nepal is located in higher elevation above, 2000 meter. The aim of this research is to observe difference in SOC of grassland in different altitude. Soil samples were collected from grasslands of altitude: 1500- 2000m, 2001- 2500m, 2501-3000m, 3001- 3500m and 3501- 4000m. The soil samples were collected at successive depths in each grassland i.e. 0 – 10 cm, 10 – 20 cm and 20 – 30 cm. The maximum SOC was found in grassland at altitude 3001 m- 3500m. The lowest was SOC was found in grassland at altitude 3051m – 4000m. Correlation analysis between altitude and SOC shows that SOC is positively correlated with altitude with correlation coefficient 0.850 (significant at P<0.05 level. But SOC decreases sharply in treeline with negative correlation (Significant at P<0.05.International Journal of Environment Vol.5(3 2016, pp.57-65

  16. Grasslands feeling the heat: The effects of elevated temperatures on a subtropical grassland

    Directory of Open Access Journals (Sweden)

    Rowan D. Buhrmann

    2016-12-01

    Conclusions: OTCs can simulate realistic increases of air temperature in subtropical grasslands. Graminoids and shrubs appear to benefit from elevated temperatures whilst forbs decrease in abundance, possibly through competition and/or direct physiological effects.

  17. Tools for Management for Grassland Ecosystem Sustainability: Thinking "Outside the Box"

    Science.gov (United States)

    Gerald J. Gottfried

    2004-01-01

    Grassland ecosystem management is dynamic and has adapted to the development of new tools and ideas. Our ancestors were indirectly managing grasslands when they learned to move livestock to take advantage of better water and greener forage. One could argue that even their hunting of grassland wildlife, especially the use of fire to drive animals to waiting hunters, had...

  18. Grassland futures in Great Britain - Productivity assessment and scenarios for land use change opportunities.

    Science.gov (United States)

    Qi, Aiming; Holland, Robert A; Taylor, Gail; Richter, Goetz M

    2018-09-01

    To optimise trade-offs provided by future changes in grassland use intensity, spatially and temporally explicit estimates of respective grassland productivities are required at the systems level. Here, we benchmark the potential national availability of grassland biomass, identify optimal strategies for its management, and investigate the relative importance of intensification over reversion (prioritising productivity versus environmental ecosystem services). Process-conservative meta-models for different grasslands were used to calculate the baseline dry matter yields (DMY; 1961-1990) at 1km 2 resolution for the whole UK. The effects of climate change, rising atmospheric [CO 2 ] and technological progress on baseline DMYs were used to estimate future grassland productivities (up to 2050) for low and medium CO 2 emission scenarios of UKCP09. UK benchmark productivities of 12.5, 8.7 and 2.8t/ha on temporary, permanent and rough-grazing grassland, respectively, accounted for productivity gains by 2010. By 2050, productivities under medium emission scenario are predicted to increase to 15.5 and 9.8t/ha on temporary and permanent grassland, respectively, but not on rough grassland. Based on surveyed grassland distributions for Great Britain in 2010 the annual availability of grassland biomass is likely to rise from 64 to 72milliontonnes by 2050. Assuming optimal N application could close existing productivity gaps of ca. 40% a range of management options could deliver additional 21∗10 6 tonnes of biomass available for bioenergy. Scenarios of changes in grassland use intensity demonstrated considerable scope for maintaining or further increasing grassland production and sparing some grassland for the provision of environmental ecosystem services. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Toxic element profiles in selected medicinal plants growing on serpentines in Bulgaria.

    Science.gov (United States)

    Pavlova, Dolja; Karadjova, Irina

    2013-12-01

    Populations of medicinal plants growing on serpentines and their respective soils were analyzed for Fe, Ni, Mn, Cr, Co, Cd, Cu, Zn, and Pb using inductively coupled plasma atomic emission spectrometry. Aqua regia extraction and 0.43 M acetic acid extraction were used for the quantification of pseudototal and bioavailable fractions, respectively, of elements in soil and nitric acid digestion for determination of total element content in plants. Screening was performed to (1) document levels of toxic metals in herbs extensively used in preparation of products and standardized extracts, (2) compare accumulation abilities of ferns and seed plants, and (3) estimate correlations between metal content in plants and their soils. The toxic element content of plants varied from site to site on a large scale. The concentrations of Fe and Ni were elevated while those of Cu, Zn, and Pb were close to average values usually found in plants. The highest concentrations for almost all elements were measured in both Teucrium species. Specific differences in metal accumulation between ferns and seed plants were not recorded. The investigated species are not hyperaccumulators but can accumulate toxic elements, in some cases exceeding permissible levels proposed by the World Health Organization and European Pharmacopoeia. The harvesting of medicinal plants from serpentines could be hazardous to humans.

  20. Effects of haying on breeding birds in CRP grasslands

    Science.gov (United States)

    Igl, Lawrence D.; Johnson, Douglas H.

    2016-01-01

    The Conservation Reserve Program (CRP) is a voluntary program that is available to agricultural producers to help protect environmentally sensitive or highly erodible land. Management disturbances of CRP grasslands generally are not allowed unless authorized to provide relief to livestock producers during severe drought or a similar natural disaster (i.e., emergency haying and grazing) or to improve the quality and performance of the CRP cover (i.e., managed haying and grazing). Although CRP grasslands may not be hayed or grazed during the primary bird-nesting season, these disturbances may have short-term (1 yr after disturbance) and long-term (≥2 yr after disturbance) effects on grassland bird populations. We assessed the effects of haying on 20 grassland bird species in 483 CRP grasslands in 9 counties of 4 states in the northern Great Plains, USA between 1993 and 2008. We compared breeding bird densities (as determined by total-area counts) in idle and hayed fields to evaluate changes 1, 2, 3, and 4 years after haying. Haying of CRP grasslands had either positive or negative effects on grassland birds, depending on the species, the county, and the number of years after the initial disturbance. Some species (e.g., horned lark [Eremophila alpestris], bobolink [Dolichonyx oryzivorus]) responded positively after haying, and others (e.g., song sparrow [Melospiza melodia]) responded negatively. The responses of some species changed direction as the fields recovered from haying. For example, densities for common yellowthroat (Geothlypis trichas), sedge wren (Cistothorus platensis), and clay-colored sparrow (Spizella pallida) declined the first year after haying but increased in the subsequent 3 years. Ten species showed treatment × county interactions, indicating that the effects of haying varied geographically. This long-term evaluation on the effects of haying on breeding birds provides important information on the strength and direction of changes in

  1. Redox flow batteries with serpentine flow fields: Distributions of electrolyte flow reactant penetration into the porous carbon electrodes and effects on performance

    Science.gov (United States)

    Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.

    2018-04-01

    Redox flow batteries with flow field designs have been demonstrated to boost their capacities to deliver high current density and power density in medium and large-scale energy storage applications. Nevertheless, the fundamental mechanisms involved with improved current density in flow batteries with serpentine flow field designs have been not fully understood. Here we report a three-dimensional model of a serpentine flow field over a porous carbon electrode to examine the distributions of pressure driven electrolyte flow penetrations into the porous carbon electrodes. We also estimate the maximum current densities associated with stoichiometric availability of electrolyte reactant flow penetrations through the porous carbon electrodes. The results predict reasonably well observed experimental data without using any adjustable parameters. This fundamental work on electrolyte flow distributions of limiting reactant availability will contribute to a better understanding of limits on electrochemical performance in flow batteries with serpentine flow field designs and should be helpful to optimizing flow batteries.

  2. Turbulence characteristics and mixing performances of viscoelastic fluid flow in a serpentine microchannel

    International Nuclear Information System (INIS)

    Tatsumi, K; Takeda, Y; Nakabe, K; Suga, K

    2011-01-01

    Flow velocity measurement and visualization using particle image velocimetry and fluorescent dye were carried out for a viscoelastic fluid flow in a serpentine microchannel for the purpose to quantitatively evaluate the unsteady flow characteristics that is observed even under very low Reynolds number regime due to the combined effect of the viscoelastic fluid properties and the channel shape. Sucrose water solution (Newtonian fluid) and the polyacrylamide-sucrose water solution (viscoelastic fluid) were used as working fluids. The mixing performance markedly increased when the Reynolds number exceeded a certain value in the polyacrylamide solution case. The single-point, cross-sectional and two-dimensional velocity distributions showed that low frequency fluctuation was produced in the polyacrylamide solution case. Particularly large fluctuation in the channel spanwise direction was observed in the upstream area of the serpentine channel. On the other hand, the amplitude of the fluctuation decreased in the downstream region. The fluctuation in the upstream region is believed to be generated by the flow instability at the curved part of the channel, while the fluctuations in the downstream area were attributed to the local instability and the vortices provided from the upstream region.

  3. Modeling effects of conservation grassland losses on amphibian habitat

    Science.gov (United States)

    Mushet, David M.; Neau, Jordan L.; Euliss, Ned H.

    2014-01-01

    Amphibians provide many ecosystem services valued by society. However, populations have declined globally with most declines linked to habitat change. Wetlands and surrounding terrestrial grasslands form habitat for amphibians in the North American Prairie Pothole Region (PPR). Wetland drainage and grassland conversion have destroyed or degraded much amphibian habitat in the PPR. However, conservation grasslands can provide alternate habitat. In the United States, the Conservation Reserve Program (CRP) is the largest program maintaining grasslands on agricultural lands. We used an ecosystem services model (InVEST) parameterized for the PPR to quantify amphibian habitat over a six-year period (2007–2012). We then quantified changes in availability of amphibian habitat under various land-cover scenarios representing incremental losses (10%, 25%, 50%, 75%, and 100%) of CRP grasslands from 2012 levels. The area of optimal amphibian habitat in the four PPR ecoregions modeled (i.e., Northern Glaciated Plains, Northwestern Glaciated Plains, Lake Agassiz Plain, Des Moines Lobe) declined by approximately 22%, from 3.8 million ha in 2007 to 2.9 million ha in 2012. These losses were driven by the conversion of CRP grasslands to croplands, primarily for corn and soybean production. Our modeling identified an additional 0.8 million ha (26%) of optimal amphibian habitat that would be lost if remaining CRP lands are returned to crop production. An economic climate favoring commodity production over conservation has resulted in substantial losses of amphibian habitat across the PPR that will likely continue into the future. Other regions of the world face similar challenges to maintaining amphibian habitats.

  4. Using Calibrated RGB Imagery from Low-Cost Uavs for Grassland Monitoring: Case Study at the Rengen Grassland Experiment (rge), Germany

    Science.gov (United States)

    Lussem, U.; Hollberg, J.; Menne, J.; Schellberg, J.; Bareth, G.

    2017-08-01

    Monitoring the spectral response of intensively managed grassland throughout the growing season allows optimizing fertilizer inputs by monitoring plant growth. For example, site-specific fertilizer application as part of precision agriculture (PA) management requires information within short time. But, this requires field-based measurements with hyper- or multispectral sensors, which may not be feasible on a day to day farming practice. Exploiting the information of RGB images from consumer grade cameras mounted on unmanned aerial vehicles (UAV) can offer cost-efficient as well as near-real time analysis of grasslands with high temporal and spatial resolution. The potential of RGB imagery-based vegetation indices (VI) from consumer grade cameras mounted on UAVs has been explored recently in several. However, for multitemporal analyses it is desirable to calibrate the digital numbers (DN) of RGB-images to physical units. In this study, we explored the comparability of the RGBVI from a consumer grade camera mounted on a low-cost UAV to well established vegetation indices from hyperspectral field measurements for applications in grassland. The study was conducted in 2014 on the Rengen Grassland Experiment (RGE) in Germany. Image DN values were calibrated into reflectance by using the Empirical Line Method (Smith & Milton 1999). Depending on sampling date and VI the correlation between the UAV-based RGBVI and VIs such as the NDVI resulted in varying R2 values from no correlation to up to 0.9. These results indicate, that calibrated RGB-based VIs have the potential to support or substitute hyperspectral field measurements to facilitate management decisions on grasslands.

  5. USING CALIBRATED RGB IMAGERY FROM LOW-COST UAVS FOR GRASSLAND MONITORING: CASE STUDY AT THE RENGEN GRASSLAND EXPERIMENT (RGE, GERMANY

    Directory of Open Access Journals (Sweden)

    U. Lussem

    2017-08-01

    Full Text Available Monitoring the spectral response of intensively managed grassland throughout the growing season allows optimizing fertilizer inputs by monitoring plant growth. For example, site-specific fertilizer application as part of precision agriculture (PA management requires information within short time. But, this requires field-based measurements with hyper- or multispectral sensors, which may not be feasible on a day to day farming practice. Exploiting the information of RGB images from consumer grade cameras mounted on unmanned aerial vehicles (UAV can offer cost-efficient as well as near-real time analysis of grasslands with high temporal and spatial resolution. The potential of RGB imagery-based vegetation indices (VI from consumer grade cameras mounted on UAVs has been explored recently in several. However, for multitemporal analyses it is desirable to calibrate the digital numbers (DN of RGB-images to physical units. In this study, we explored the comparability of the RGBVI from a consumer grade camera mounted on a low-cost UAV to well established vegetation indices from hyperspectral field measurements for applications in grassland. The study was conducted in 2014 on the Rengen Grassland Experiment (RGE in Germany. Image DN values were calibrated into reflectance by using the Empirical Line Method (Smith & Milton 1999. Depending on sampling date and VI the correlation between the UAV-based RGBVI and VIs such as the NDVI resulted in varying R2 values from no correlation to up to 0.9. These results indicate, that calibrated RGB-based VIs have the potential to support or substitute hyperspectral field measurements to facilitate management decisions on grasslands.

  6. A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell

    DEFF Research Database (Denmark)

    Singdeo, Debanand; Dey, Tapobrata; Gaikwad, Shrihari

    2017-01-01

    field design is proposed and its usefulness for the fuel cell applications are evaluated in a high-temperature polymer electrolyte fuel cell. The proposed geometry retains some of the features of serpentine flow field such as multiple bends, while modifications are made in its in-plane flow path...

  7. Chromite and other mineral deposits in serpentine rocks of the Piedmont Upland, Maryland, Pennsylvania, and Delaware

    Science.gov (United States)

    Pearre, Nancy C.; Heyl, Allen V.

    1960-01-01

    The Piedmont Upland in Maryland, Pennsylvania, and Delaware is about 160 miles long and at the most 50 miles wide. Rocks that underlie the province are the Baltimore gneiss of Precambrian age and quartzite, gneiss, schist, marble, phyllite, and greenstone, which make up the Glenarm series of early Paleozoic (?) age. These are intruded by granitic, gabbroic, and ultramaflc igneous rocks. Most of the ultramaflc rocks, originally peridotite, pyroxenite, and dunite, have been partly or completely altered to serpentine and talc; they are all designated by the general term serpentine. The bodies of serpentine are commonly elongate and conformable with the enclosing rocks. Many have been extensively quarried for building, decorative, and crushed stone. In addition, chromite, titaniferous magnetite, rutile, talc and soapstone, amphibole asbestos, magnesite, sodium- rich feldspar (commercially known as soda spar), and corundum have been mined or prospected for in the serpentine. Both high-grade massive chromite and lower grade disseminated chromite occur in very irregular and unpredictable form in the serpentine, and placer deposits of chromite are in and near streams that drain areas underlain by serpentine. A group of unusual minerals, among them kammererite, are typical associates of high-grade massive chromite but are rare in lower grade deposits. Chromite was first discovered in the United States at Bare Hills, Md., around 1810. Between 1820 and 1850, additional deposits were discovered and mined in Maryland and Pennsylvania, including the largest deposit of massive chromite ever found in the United States the Wood deposit, in the State Line district. A second period of extensive chromite mining came during the late 1860's and early 1870's. Production figures are incomplete and conflicting. Estimates from the available data indicate that the aggregate production from 27 of 40 known mines before 1900 totaled between 250,000 and 280,000 tons of lode-chromite ore

  8. Hydrogen, metals, bifurcating electrons, and proton gradients: the early evolution of biological energy conservation.

    Science.gov (United States)

    Martin, William F

    2012-03-09

    Life is a persistent, self-specified set of far from equilibrium chemical reactions. In modern microbes, core carbon and energy metabolism are what keep cells alive. In very early chemical evolution, the forerunners of carbon and energy metabolism were the processes of generating reduced carbon compounds from CO(2) and the mechanisms of harnessing energy as compounds capable of doing some chemical work. The process of serpentinization at alkaline hydrothermal vents holds promise as a model for the origin of early reducing power, because Fe(2+) in the Earth's crust reduces water to H(2) and inorganic carbon to methane. The overall geochemical process of serpentinization is similar to the biochemical process of methanogenesis, and methanogenesis is similar to acetogenesis in that both physiologies allow energy conservation from the reduction of CO(2) with electrons from H(2). Electron bifurcation is a newly recognized cytosolic process that anaerobes use generate low potential electrons, it plays an important role in some forms of methanogenesis and, via speculation, possibly in acetogenesis. Electron bifurcation likely figures into the early evolution of biological energy conservation. Copyright © 2011. Published by Elsevier B.V.

  9. New insight on Li and B isotope fractionation during serpentinization derived from batch reaction investigations

    Science.gov (United States)

    Hansen, Christian T.; Meixner, Anette; Kasemann, Simone A.; Bach, Wolfgang

    2017-11-01

    Multiple batch experiments (100 °C, 200 °C; 40 MPa) were conducted, using Dickson-type reactors, to investigate Li and B partitioning and isotope fractionation between rock and water during serpentinization. We reacted fresh olivine (5 g; Fo90; [B] = anti-correlated with temperature, we argue for an overall attenuation of the isotopic effect through changes in B speciation in saline solutions (NaB(OH)4(aq) and B(OH)3Cl-) as well as variable B fixation and fractionation for different serpentinization product minerals (brucite, chrysotile). Breakdown of the Li-rich olivine and limited Li incorporation into product mineral phases resulted in an overall lower Li content of the final solid phase assemblage at 200 °C ([Li]final_200 °C = 0.77 μg/g; DS/FLi200 °C = 1.58). First order changes in Li isotopic compositions were defined by mixing of two isotopically distinct sources i.e. the fresh olivine and the fluid rather than by equilibrium isotope fraction. At 200 °C primary olivine is dissolved, releasing its Li budget into the fluid which shifts towards a lower δ7LiF of +38.62‰. Newly formed serpentine minerals (δ7LiS = +30.58‰) incorporate fluid derived Li with a minor preference of the 6Li isotope. At 100 °C Li enrichment of secondary phases exceeded Li release by olivine breakdown ([Li]final_100 °C = 2.10 μg/g; DS/FLi100 °C = 11.3) and it was accompanied by preferential incorporation of heavier 7Li isotope that might be due to incorporation of a 7Li enriched fluid fraction into chrysotile nanotubes.

  10. New evidence for the serpentinization of the Palaeozoic basement of southeastern Sicily from joint 3-D seismic velocity and attenuation tomography

    Science.gov (United States)

    Giampiccolo, E.; Brancato, A.; Manuella, F. C.; Carbone, S.; Gresta, S.; Scribano, V.

    2017-12-01

    In this study, we derived the first 3-D P-wave seismic attenuation images (QP) as well as new 3-D VP and VP/VS models for the crust in southeastern Sicily. We used a large data set of local seismic events occurring in the time span 1994-2013. The results of this tomographic study have important implications on the seismic behaviour of the region. Based on velocity and attenuation images, we identified distinct volumes characterized by different fluid content, which correlate well with seismicity distribution. Moreover, the obtained velocity and attenuation tomographies help us to provide a more complete picture of the crustal structure of the area. High VP, high QP and high VP/VS values have been obtained in the crustal basement, below a depth of 8 km, and may be interpreted as due to the presence of serpentinized peridotites. Accordingly, the new model for the degree of serpentinization, retrieved from VP values, shows that the basement has an average serpentinization value of 96 ± 3 vol.% at 8 km, decreasing to 44 ± 5 vol.% at about 18-20 km.

  11. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass

    Directory of Open Access Journals (Sweden)

    Fengge Zhang

    2018-04-01

    Full Text Available In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly (p = 0.019 increased following amendment with 9,000 kg ha−1 of Trichoderma biofertilizer (composted cattle manure + inoculum compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha−1 biofertilizer. This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha−1 increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella. Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella. According to our structural equation modeling (SEM, Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  12. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass.

    Science.gov (United States)

    Zhang, Fengge; Huo, Yunqian; Cobb, Adam B; Luo, Gongwen; Zhou, Jiqiong; Yang, Gaowen; Wilson, Gail W T; Zhang, Yingjun

    2018-01-01

    In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly ( p = 0.019) increased following amendment with 9,000 kg ha -1 of Trichoderma biofertilizer (composted cattle manure + inoculum) compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha -1 biofertilizer). This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS) revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha -1 ) increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella . Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella . According to our structural equation modeling (SEM), Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  13. Microjet flow control in an ultra-compact serpentine inlet

    Directory of Open Access Journals (Sweden)

    Da Xingya

    2015-10-01

    Full Text Available Microjets are used to control the internal flow to improve the performance of an ultra-compact serpentine inlet. A highly offset serpentine inlet with length-to-diameter ratio of 2.5 is designed and static tests are conducted to analyze the internal flow characteristics in terms of pressure recovery, distortion and flow separation. Flow separation is encountered in the second S-turn, and two strong counter-rotating vortices are formed at the aerodynamic interface plane (AIP face which occupy a quarter of the outlet area and result in severe pressure loss and distortion. A flow control model employing a row of microjets in the second turn is designed based on the internal flow characteristics and simplified CFD simulations. Flow control tests are conducted to verify the control effectiveness and understand the characteristics as a function of inlet throat Mach number, injection mass flow ratio, jet Mach number and momentum coefficient. At all test Mach numbers, microjet flow control (MFC effectively improves the recovery and reduces the distortion intensity. Between inlet throat Mach number 0.2 and 0.5, the strong flow separation in the second S-turn is suppressed at an optimum jet flow ratio of less than 0.65%, resulting in a maximum improvement of 4% for pressure recovery coefficient and a maximum decrease of 75% for circumferential distortion intensity at cruise. However, in order to suppress the flow separation, the injection rate should retain in an effective range. When the injection rate is higher than this range, the flow is degraded and the distortion contour is changed from 90° circumferential distortion pattern to 180° circumferential distortion pattern. Detailed data analysis shows that this optimum flow ratio depends on inlet throat Mach number and the momentum coefficient affects the control effectiveness in a dual stepping manner.

  14. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    DEFF Research Database (Denmark)

    Guidi, Claudia

    . Changes in labile soil C were assessed by carbohydrate and thermal analyses of soil samples and fractions. Forest expansion on mountain grasslands caused a decrease in SOC stocks within the mineral soil. The SOC accumulation within the organic layers following forest establishment could not fully...... and thermally labile to resistant components decreased from grassland to forest successional stages, and corresponded to decreased SOC protection within stable aggregates. This PhD thesis showed that mineral SOC stocks and physically protected SOC fractions decreased following forest expansion on mountain......Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties...

  15. Species-rich semi-natural grasslands have a higher resistance but a lower resilience than intensively managed agricultural grasslands in response to climate anomalies

    NARCIS (Netherlands)

    Keersmaecker, De Wanda; Rooijen, van Nils; Lhermitte, Stef; Tits, Laurent; Schaminée, Joop; Coppin, Pol; Honnay, Olivier; Somers, Ben

    2016-01-01

    The stable delivery of ecosystem services provided by grasslands is strongly dependent on the stability of grassland ecosystem functions such as biomass production. Biomass production is in turn strongly affected by the frequency and intensity of climate extremes. The aim of this study is to

  16. Grassland biodiversity can pay.

    Science.gov (United States)

    Binder, Seth; Isbell, Forest; Polasky, Stephen; Catford, Jane A; Tilman, David

    2018-04-10

    The biodiversity-ecosystem functioning (BEF) literature provides strong evidence of the biophysical basis for the potential profitability of greater diversity but does not address questions of optimal management. BEF studies typically focus on the ecosystem outputs produced by randomly assembled communities that only differ in their biodiversity levels, measured by indices such as species richness. Landholders, however, do not randomly select species to plant; they choose particular species that collectively maximize profits. As such, their interest is not in comparing the average performance of randomly assembled communities at each level of biodiversity but rather comparing the best-performing communities at each diversity level. Assessing the best-performing mixture requires detailed accounting of species' identities and relative abundances. It also requires accounting for the financial cost of individual species' seeds, and the economic value of changes in the quality, quantity, and variability of the species' collective output-something that existing multifunctionality indices fail to do. This study presents an assessment approach that integrates the relevant factors into a single, coherent framework. It uses ecological production functions to inform an economic model consistent with the utility-maximizing decisions of a potentially risk-averse private landowner. We demonstrate the salience and applicability of the framework using data from an experimental grassland to estimate production relationships for hay and carbon storage. For that case, our results suggest that even a risk-neutral, profit-maximizing landowner would favor a highly diverse mix of species, with optimal species richness falling between the low levels currently found in commercial grasslands and the high levels found in natural grasslands.

  17. Soil disturbance as a grassland restoration measure

    DEFF Research Database (Denmark)

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success...... to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration...

  18. An environmental survey of Serpentine Hot Springs: Geology, hydrology, geochemistry, and microbiology

    Science.gov (United States)

    Nordstrom, D. Kirk; Hasselbach, Linda; Ingebritsen, Steven E.; Skorupa, Dana; McCleskey, R. Blaine; McDermott, Timothy R.

    2015-01-01

    Serpentine Hot Springs is the most visited site in the Bering Land Bridge National Preserve. The hot springs have traditionally been used by the Native people of the Seward Peninsula for religious, medicinal and spiritual purposes and continue to be used in many of the same ways by Native people today. The hot springs are also popular with non-Native users from Nome and other communities, recreational users and pilots from out of the area, and hunters and hikers.

  19. Effects of temperature and precipitation on grassland bird nesting success as mediated by patch size.

    Science.gov (United States)

    Zuckerberg, Benjamin; Ribic, Christine A; McCauley, Lisa A

    2018-02-06

    Grassland birds are declining faster than any other bird guild across North America. Shrinking ranges and population declines are attributed to widespread habitat loss and increasingly fragmented landscapes of agriculture and other land uses that are misaligned with grassland bird conservation. Concurrent with habitat loss and degradation, temperate grasslands have been disproportionally affected by climate change relative to most other terrestrial biomes. Distributions of grassland birds often correlate with gradients in climate, but few researchers have explored the consequences of weather on the demography of grassland birds inhabiting a range of grassland fragments. To do so, we modeled the effects of temperature and precipitation on nesting success rates of 12 grassland bird species inhabiting a range of grassland patches across North America (21,000 nests from 81 individual studies). Higher amounts of precipitation in the preceding year were associated with higher nesting success, but wetter conditions during the active breeding season reduced nesting success. Extremely cold or hot conditions during the early breeding season were associated with lower rates of nesting success. The direct and indirect influence of temperature and precipitation on nesting success was moderated by grassland patch size. The positive effects of precipitation in the preceding year on nesting success were strongest in relatively small grassland patches and had little effect in large patches. Conversely, warm temperatures reduced nesting success in small grassland patches but increased nesting success in large patches. Mechanisms underlying these differences may be patch-size-induced variation in microclimates and predator activity. Although the exact cause is unclear, large grassland patches, the most common metric of grassland conservation, appears to moderate the effects of weather on grassland-bird demography and could be an effective component of climate-change adaptation.

  20. Impacts of tree rows on grassland birds and potential nest predators: a removal experiment.

    Science.gov (United States)

    Ellison, Kevin S; Ribic, Christine A; Sample, David W; Fawcett, Megan J; Dadisman, John D

    2013-01-01

    Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow's sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus]) at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2-4 times for bobolink and Henslow's sparrow) and nesting densities increased (all 3 species) in the removal areas compared to control areas. After removals, Henslow's sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor]) at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]). Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116) and the number of successful nests for bobolinks and Henslow's sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland ecosystems.

  1. Impacts of tree rows on grassland birds and potential nest predators: a removal experiment.

    Directory of Open Access Journals (Sweden)

    Kevin S Ellison

    Full Text Available Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow's sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus] at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2-4 times for bobolink and Henslow's sparrow and nesting densities increased (all 3 species in the removal areas compared to control areas. After removals, Henslow's sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor] at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]. Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116 and the number of successful nests for bobolinks and Henslow's sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland

  2. Effects of nitrogen fertilization and grazing on the emission of nitrous oxide from grassland

    Energy Technology Data Exchange (ETDEWEB)

    Velthof, G.L.; Brader, A.B.; Oenema, O. [NMI, Dept. of Soil Science and Plant Nutrition, Wageningen Agricultural Univ. (Netherlands)

    1995-11-01

    In the Netherlands, managed grasslands are potentially a large source of nitrous oxide (N{sub 2}O), because of the large nitrogen (N) input and the relatively high ground water levels. To provide insight into the major factors that contribute to N{sub 2}O emission from grassland and to provide quantitative N{sub 2}O emission rates, a monitoring study was carried out on four sites, during March 1992 to March 1994. Fluxes of N{sub 2}O increased after N fertilizer application and grazing, especially during wet conditions. Fluxes were higher from peat soils than from sand and clay soils. Fluxes were low during the winter periods. Total N{sub 2}O losses were 2 to 4.5 times higher on grassland fertilized with 160-460 kg N ha{sup -1} yr{sup -1} than on unfertilized grassland. Losses from grazed grasslands were 1.5 to 3.5 times higher than losses from mown grassland. This study shows that management practice of grassland and soil type are major factors controlling N{sub 2}O emission from grasslands. 2 figs., 3 refs.

  3. Extensive Management Promotes Plant and Microbial Nitrogen Retention in Temperate Grassland

    Science.gov (United States)

    de Vries, Franciska T.; Bloem, Jaap; Quirk, Helen; Stevens, Carly J.; Bol, Roland; Bardgett, Richard D.

    2012-01-01

    Leaching losses of nitrogen (N) from soil and atmospheric N deposition have led to widespread changes in plant community and microbial community composition, but our knowledge of the factors that determine ecosystem N retention is limited. A common feature of extensively managed, species-rich grasslands is that they have fungal-dominated microbial communities, which might reduce soil N losses and increase ecosystem N retention, which is pivotal for pollution mitigation and sustainable food production. However, the mechanisms that underpin improved N retention in extensively managed, species-rich grasslands are unclear. We combined a landscape-scale field study and glasshouse experiment to test how grassland management affects plant and soil N retention. Specifically, we hypothesised that extensively managed, species-rich grasslands of high conservation value would have lower N loss and greater N retention than intensively managed, species-poor grasslands, and that this would be due to a greater immobilisation of N by a more fungal-dominated microbial community. In the field study, we found that extensively managed, species-rich grasslands had lower N leaching losses. Soil inorganic N availability decreased with increasing abundance of fungi relative to bacteria, although the best predictor of soil N leaching was the C/N ratio of aboveground plant biomass. In the associated glasshouse experiment we found that retention of added 15N was greater in extensively than in intensively managed grasslands, which was attributed to a combination of greater root uptake and microbial immobilisation of 15N in the former, and that microbial immobilisation increased with increasing biomass and abundance of fungi. These findings show that grassland management affects mechanisms of N retention in soil through changes in root and microbial uptake of N. Moreover, they support the notion that microbial communities might be the key to improved N retention through tightening linkages

  4. Classification of Grassland Successional Stages Using Airborne Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Thomas Möckel

    2014-08-01

    Full Text Available Plant communities differ in their species composition, and, thus, also in their functional trait composition, at different stages in the succession from arable fields to grazed grassland. We examine whether aerial hyperspectral (414–2501 nm remote sensing can be used to discriminate between grazed vegetation belonging to different grassland successional stages. Vascular plant species were recorded in 104.1 m2 plots on the island of Öland (Sweden and the functional properties of the plant species recorded in the plots were characterized in terms of the ground-cover of grasses, specific leaf area and Ellenberg indicator values. Plots were assigned to three different grassland age-classes, representing 5–15, 16–50 and >50 years of grazing management. Partial least squares discriminant analysis models were used to compare classifications based on aerial hyperspectral data with the age-class classification. The remote sensing data successfully classified the plots into age-classes: the overall classification accuracy was higher for a model based on a pre-selected set of wavebands (85%, Kappa statistic value = 0.77 than one using the full set of wavebands (77%, Kappa statistic value = 0.65. Our results show that nutrient availability and grass cover differences between grassland age-classes are detectable by spectral imaging. These techniques may potentially be used for mapping the spatial distribution of grassland habitats at different successional stages.

  5. Balancing forest-regeneration probabilities and maintenance costs in dry grasslands of high conservation priority

    Science.gov (United States)

    Bolliger, Janine; Edwards, Thomas C.; Eggenberg, Stefan; Ismail, Sascha; Seidl, Irmi; Kienast, Felix

    2011-01-01

    Abandonment of agricultural land has resulted in forest regeneration in species-rich dry grasslands across European mountain regions and threatens conservation efforts in this vegetation type. To support national conservation strategies, we used a site-selection algorithm (MARXAN) to find optimum sets of floristic regions (reporting units) that contain grasslands of high conservation priority. We sought optimum sets that would accommodate 136 important dry-grassland species and that would minimize forest regeneration and costs of management needed to forestall predicted forest regeneration. We did not consider other conservation elements of dry grasslands, such as animal species richness, cultural heritage, and changes due to climate change. Optimal sets that included 95–100% of the dry grassland species encompassed an average of 56–59 floristic regions (standard deviation, SD 5). This is about 15% of approximately 400 floristic regions that contain dry-grassland sites and translates to 4800–5300 ha of dry grassland out of a total of approximately 23,000 ha for the entire study area. Projected costs to manage the grasslands in these optimum sets ranged from CHF (Swiss francs) 5.2 to 6.0 million/year. This is only 15–20% of the current total estimated cost of approximately CHF30–45 million/year required if all dry grasslands were to be protected. The grasslands of the optimal sets may be viewed as core sites in a national conservation strategy.

  6. Effects of wind turbines on upland nesting birds in Conservation Reserve Program grasslands

    Science.gov (United States)

    Leddy, K.L.; Higgins, K.F.; Naugle, D.E.

    1999-01-01

    Grassland passerines were surveyed during summer 1995 on the Buffalo Ridge Wind Resource Area in southwestern Minnesota to determine the relative influence of wind turbines on overall densities of upland nesting birds in Conservation Reserve Program (CRP) grasslands. Birds were surveyed along 40 m fixed width transects that were placed along wind turbine strings within three CRP fields and in three CRP fields without turbines. Conservation Reserve Program grasslands without turbines and areas located 180 m from turbines supported higher densities (261.0-312.5 males/100 ha) of grassland birds than areas within 80 m of turbines (58.2-128.0 males/100 ha). Human disturbance, turbine noise, and physical movements of turbines during operation may have disturbed nesting birds. We recommend that wind turbines be placed within cropland habitats that support lower densities of grassland passerines than those found in CRP grasslands.

  7. Methods for evaluation of the invasibility of grasslands

    DEFF Research Database (Denmark)

    Strandberg, M. T.; Strandberg, B.; Erneberg, M.

    The number of non-native plant species in Danish dry acidic grasslands was positively correlated with the cover of disturbance in the form of molehills, anthills, mouseholes and erosion due trampling or digging by large herbivores/livestock. Natural disturbance in acidic grassland ecosystems...... not grazed by livestock therefore is important for the occurrence of non-native species, and probably also for the occurrence of a high native floristic diversity....

  8. Research priorities for grassland science: the need of long term integrated experiments networks

    Directory of Open Access Journals (Sweden)

    G. Lemaire

    2007-07-01

    Full Text Available Grasslands have to be considered not only as a mean for providing foods for domestic herbivore but also as an important biome of terrestrial biosphere. This function of grasslands as an active component of our environment requires specific studies on the role and impact of this ecosystem on soil erosion and soil quality, quality and quantity of water resources, atmosphere composition and greenhouse gas emission or sequestration, biodiversity dynamics at different scales from field plot to landscape. All these functions have to be evaluated in conjunction with the function of providing animal products for increasing human population. So multifunctionality of grasslands become a new paradigm for grassland science. Environmental and biodiversity outputs require long term studies, being the long term retro-active processes within soil, vegetation and micro-organism communities in relation to changes in management programme. So grassland science needs to carry on long term integrated experimentation for studying all the environmental outputs and ecological services associated to grassland management systems.

  9. Factors affecting the ozone sensitivity of temperate European grasslands: An overview

    International Nuclear Information System (INIS)

    Bassin, S.; Volk, M.; Fuhrer, J.

    2007-01-01

    This overview of experimentally induced effects of ozone aims to identify physiological and ecological principles, which can be used to classify the sensitivity to ozone of temperate grassland communities in Europe. The analysis of data from experiments with single plants, binary mixtures and multi-species communities illustrates the difficulties to relate individual responses to communities, and thus to identify grassland communities most at risk. Although there is increasing evidence that communities can be separated into broad classes of ozone sensitivity, the database from experiments under realistic conditions with representative systems is too small to draw firm conclusions. But it appears that risk assessments, based on results from individuals or immature mixtures exposed in chambers, are only applicable to intensively managed, productive grasslands, and that the risk of ozone damage for most of perennial grasslands with lower productivity tends to be less than previously expected. - An overview of experimentally induced ozone effects suggests that temperate grasslands could be separated into broad classes of ozone sensitivity based on physiological and ecological principles

  10. Factors affecting the ozone sensitivity of temperate European grasslands: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Bassin, S. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, Reckenholzstrasse 191, CH-8046 Zurich (Switzerland)]. E-mail: seraina.bassin@fal.admin.ch; Volk, M. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, Reckenholzstrasse 191, CH-8046 Zurich (Switzerland); Fuhrer, J. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, Reckenholzstrasse 191, CH-8046 Zurich (Switzerland)

    2007-04-15

    This overview of experimentally induced effects of ozone aims to identify physiological and ecological principles, which can be used to classify the sensitivity to ozone of temperate grassland communities in Europe. The analysis of data from experiments with single plants, binary mixtures and multi-species communities illustrates the difficulties to relate individual responses to communities, and thus to identify grassland communities most at risk. Although there is increasing evidence that communities can be separated into broad classes of ozone sensitivity, the database from experiments under realistic conditions with representative systems is too small to draw firm conclusions. But it appears that risk assessments, based on results from individuals or immature mixtures exposed in chambers, are only applicable to intensively managed, productive grasslands, and that the risk of ozone damage for most of perennial grasslands with lower productivity tends to be less than previously expected. - An overview of experimentally induced ozone effects suggests that temperate grasslands could be separated into broad classes of ozone sensitivity based on physiological and ecological principles.

  11. Serpentinization and alteration in an olivine cumulate from the Stillwater Complex, Southwestern Montana

    Science.gov (United States)

    Page, N.J.

    1976-01-01

    Some of the olivine cumulates of the Ultramafic zone of the Stillwater Complex, Montana, are progressively altered to serpentine minerals and thompsonite. Lizardite and chrysotile developed in the cumulus olivine and postcumulus pyroxenes; thompsonite developed in postcumulus plagioclase. The detailed mineralogy, petrology, and chemistry indicate that olivine and plagioclase react to form the alteration products, except for H2O, without changes in the bulk composition of the rocks. ?? 1976 Springer-Verlag.

  12. Biodiversity in temperate European grasslands: origin and conservation.

    OpenAIRE

    Pärtel, Meelis; Bruun, Hans Henrik; Sammul, Marek

    2005-01-01

    Northern Europe is in the forest zone, but wild megaherbivores have maintained grass-dominated vegetation here for the last 1.8 million years. Continuity of the grassland biome through glacialinterglacial cycles and connection to steppe vegetation has resulted in the evolution, immigration, and survival of a large number of grassland species. During the last millennia the effect of wild ungulates has been replaced by domestic grazers and hay making, and the persistence of grasslan...

  13. Quantifying nitrous oxide emissions from Chinese grasslands with a process-based model

    Directory of Open Access Journals (Sweden)

    F. Zhang

    2010-06-01

    Full Text Available As one of the largest land cover types, grassland can potentially play an important role in the ecosystem services of natural resources in China. Nitrous oxide (N2O is a major greenhouse gas emitted from grasslands. Current N2O inventory at a regional or national level in China relies on the emission factor method, which is based on limited measurements. To improve the accuracy of the inventory by capturing the spatial variability of N2O emissions under the diverse climate, soil and management conditions across China, we adopted an approach by utilizing a process-based biogeochemical model, DeNitrification-DeComposition (DNDC, to quantify N2O emissions from Chinese grasslands. In the present study, DNDC was tested against datasets of N2O fluxes measured at eight grassland sites in China with encouraging results. The validated DNDC was then linked to a GIS database holding spatially differentiated information of climate, soil, vegetation and management at county-level for all the grasslands in the country. Daily weather data for 2000–2007 from 670 meteorological stations across the entire domain were employed to serve the simulations. The modelled results on a national scale showed a clear geographic pattern of N2O emissions. A high-emission strip showed up stretching from northeast to central China, which is consistent with the eastern boundary between the temperate grassland region and the major agricultural regions of China. The grasslands in the western mountain regions, however, emitted much less N2O. The regionally averaged rates of N2O emissions were 0.26, 0.14 and 0.38 kg nitrogen (N ha−1 y−1 for the temperate, montane and tropical/subtropical grasslands, respectively. The annual mean N2O emission from the total 337 million ha of grasslands in China was 76.5 ± 12.8 Gg N for the simulated years.

  14. Cattle slurry on grassland - application methods and nitrogen use efficiency

    NARCIS (Netherlands)

    Lalor, S.T.J.

    2014-01-01

    Cattle slurry represents a significant resource on grassland-based farming systems. The objective of this thesis was to investigate and devise cattle slurry application methods and strategies that can be implemented on grassland farms to improve the efficiency with which nitrogen (N) in

  15. Technological project of serpentine raw material milling from Dobšiná heaps

    Directory of Open Access Journals (Sweden)

    Alena Pietriková

    2005-11-01

    Full Text Available Serpentine heaps in the surrounding of Dobšiná are an old ecological problem of the city and at the same time a suitable material for the production of MgCl2 and SiO2. The technology of the production is based on the chemical processing of the raw material, which is preceded by the raw material preparation comprising of the mechanical and hydraulic sorting, milling and the magnetic separation operations.

  16. Arbuscular mycorrhizal symbiosis on serpentine soils: the effect of native fungal communities on different Knautia arvensis ecotypes

    Czech Academy of Sciences Publication Activity Database

    Doubková, Pavla; Suda, Jan; Sudová, Radka

    2011-01-01

    Roč. 345, 1-2 (2011), s. 325-338 ISSN 0032-079X R&D Projects: GA AV ČR KJB600050812 Institutional research plan: CEZ:AV0Z60050516 Keywords : arbuscular mycorrhiza * serpentine soils * edaphic stress Subject RIV: EF - Botanics Impact factor: 2.733, year: 2011

  17. Forest and grassland carbon in North America: A short course for land managers

    Science.gov (United States)

    Chris Swanston; Michael J. Furniss; Kristen Schmitt; Jeffrey Guntle; Maria Janowiak; Sarah Hines

    2012-01-01

    This multimedia short-course presents a range of information on the science, management and policy of forest and grassland carbon. Forests and grasslands worldwide play a critical role in storing carbon and sequestering greenhouse gases from the atmosphere. The U.S. Forest Service, which manages 193 million acres of forests and grasslands, emphasizes the need for...

  18. Threshold responses to interacting global changes in a California grassland ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Field, Christopher [Carnegie Inst. of Science, Stanford, CA (United States); Mooney, Harold [Stanford Univ., CA (United States); Vitousek, Peter [Stanford Univ., CA (United States)

    2015-02-02

    Building on the history and infrastructure of the Jasper Ridge Global Change Experiment, we conducted experiments to explore the potential for single and combined global changes to stimulate fundamental type changes in ecosystems that start the experiment as California annual grassland. Using a carefully orchestrated set of seedling introductions, followed by careful study and later removal, the grassland was poised to enable two major kinds of transitions that occur in real life and that have major implications for ecosystem structure, function, and services. These are transitions from grassland to shrubland/forest and grassland to thistle patch. The experiment took place in the context of 4 global change factors – warming, elevated CO2, N deposition, and increased precipitation – in a full-factorial array, present as all possible 1, 2, 3, and 4-factor combinations, with each combination replicated 8 times.

  19. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    Science.gov (United States)

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community.

  20. Long-term after-effects of fertilisation on restoration of calcareous grasslands

    NARCIS (Netherlands)

    Smits, N.A.C.; Bobbink, R.; Willems, J.H.

    2008-01-01

    Question: What are the long-term implications of former fertilisation for the ecological restoration of calcareous grasslands? Location: Gerendal, Limburg, The Netherlands. Methods: In 1970, ten permanent plots were established in just abandoned agricultural calcareous grassland under a regime of

  1. Monitoring in South African grasslands

    CSIR Research Space (South Africa)

    Mentis, MT

    1984-12-01

    Full Text Available The main purpose of this document is to propose how ecological monitoring might be developed in the Grassland Biome of South Africa. Monitoring is defined as the maintenance of regular surveillance to test the null hypothesis of no change...

  2. Multistage crack seal vein and hydrothermal Ni enrichment in serpentinized ultramafic rocks (Koniambo massif, New Caledonia)

    Science.gov (United States)

    Cathelineau, Michel; Myagkiy, Andrey; Quesnel, Benoit; Boiron, Marie-Christine; Gautier, Pierre; Boulvais, Philippe; Ulrich, Marc; Truche, Laurent; Golfier, Fabrice; Drouillet, Maxime

    2017-10-01

    Sets of fractures and breccia sealed by Ni-rich silicates and quartz occur within saprock of the New Caledonian regolith developed over ultramafic rocks. The crystallization sequence in fractures is as follows: (1) serpentine stage: lizardite > polygonal serpentine > white lizardite; (2) Ni stage: Ni-Mg kerolite followed by red-brown microcrystalline quartz; and (3) supergene stages. The red-brown microcrystalline quartz corresponds to the very last stage of the Ni sequence and is inferred to have precipitated within the 50-95 °C temperature range. It constitutes also the main cement of breccia that has all the typical features of hydraulic fracturing. The whole sequence is therefore interpreted as the result of hydrothermal fluid circulation under medium to low temperature and fluctuating fluid pressure. Although frequently described as the result of a single downward redistribution of Ni and Mg leached in the upper part of the regolith under ambient temperature, the Ni silicate veins thus appear as the result of recurrent crack and seal process, corresponding to upward medium temperature fluid convection, hydraulic fracturing and subsequent fluid mixing, and mineral deposition.

  3. Evapotranspiration and soil moisture dynamics in a temperate grassland ecosystem in Inner Mongolia China

    Science.gov (United States)

    L. Hao; Ge Sun; Yongqiang Liu; G. S. Zhou; J. H.   Wan;  L. B. Zhang; J. L. Niu; Y. H. Sang;  J. J He

    2015-01-01

    Precipitation, evapotranspiration (ET), and soil moisture are the key controls for the productivity and functioning of temperate grassland ecosystems in Inner Mongolia, northern China. Quantifying the soil moisture dynamics and water balances in the grasslands is essential to sustainable grassland management under global climate change. We...

  4. Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil.

    Science.gov (United States)

    Bandara, Tharanga; Herath, Indika; Kumarathilaka, Prasanna; Hseu, Zeng-Yei; Ok, Yong Sik; Vithanage, Meththika

    2017-04-01

    Crops grown in metal-rich serpentine soils are vulnerable to phytotoxicity. In this study, Gliricidia sepium (Jacq.) biomass and woody biochar were examined as amendments on heavy metal immobilization in a serpentine soil. Woody biochar was produced by slow pyrolysis of Gliricidia sepium (Jacq.) biomass at 300 and 500 °C. A pot experiment was conducted for 6 weeks with tomato (Lycopersicon esculentum L.) at biochar application rates of 0, 22, 55 and 110 t ha -1 . The CaCl 2 and sequential extractions were adopted to assess metal bioavailability and fractionation. Six weeks after germination, plants cultivated on the control could not survive, while all the plants were grown normally on the soils amended with biochars. The most effective treatment for metal immobilization was BC500-110 as indicated by the immobilization efficiencies for Ni, Mn and Cr that were 68, 92 and 42 %, respectively, compared to the control. Biochar produced at 500 °C and at high application rates immobilized heavy metals significantly. Improvements in plant growth in biochar-amended soil were related to decreasing in metal toxicity as a consequence of metal immobilization through strong sorption due to high surface area and functional groups.

  5. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China.

    Directory of Open Access Journals (Sweden)

    Lu Wen

    Full Text Available The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC, and soil total nitrogen (TN were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.

  6. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China.

    Science.gov (United States)

    Wen, Lu; Dong, Shikui; Li, Yuanyuan; Li, Xiaoyan; Shi, Jianjun; Wang, Yanlong; Liu, Demei; Ma, Yushou

    2013-01-01

    The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC), and soil total nitrogen (TN) were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe) were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.

  7. Microbial Community Structure in a Serpentine-Hosted Abiotic Gas Seepage at the Chimaera Ophiolite, Turkey.

    Science.gov (United States)

    Neubeck, Anna; Sun, Li; Müller, Bettina; Ivarsson, Magnus; Hosgörmez, Hakan; Özcan, Dogacan; Broman, Curt; Schnürer, Anna

    2017-06-15

    The surface waters at the ultramafic ophiolitic outcrop in Chimaera, Turkey, are characterized by high pH values and high metal levels due to the percolation of fluids through areas of active serpentinization. We describe the influence of the liquid chemistry, mineralogy, and H 2 and CH 4 levels on the bacterial community structure in a semidry, exposed, ultramafic environment. The bacterial and archaeal community structures were monitored using Illumina sequencing targeting the 16S rRNA gene. At all sampling points, four phyla, Proteobacteria , Actinobacteria , Chloroflexi , and Acidobacteria , accounted for the majority of taxa. Members of the Chloroflexi phylum dominated low-diversity sites, whereas Proteobacteria dominated high-diversity sites. Methane, nitrogen, iron, and hydrogen oxidizers were detected as well as archaea and metal-resistant bacteria. IMPORTANCE Our study is a comprehensive microbial investigation of the Chimaera ophiolite. DNA has been extracted from 16 sites in the area and has been studied from microbial and geochemical points of view. We describe a microbial community structure that is dependent on terrestrial, serpentinization-driven abiotic H 2 , which is poorly studied due to the rarity of these environments on Earth. Copyright © 2017 Neubeck et al.

  8. The influence of boundary features on grassland-edge communities of Alta Murgia

    OpenAIRE

    Cassano, Stefania; Alignier, Audrey; Forte, Luigi; Labadessa, Rocco; Mairota, Paola

    2016-01-01

    Many studies suggest the importance of boundary features on plant community dynamics. Our aim was to investigate the influence of boundary features on edge plant assemblages in semi-natural dry grasslands. For this purpose we selected 16 grassland edges in the central portion of the Natura 2000 site Murgia Alta, in southeastern Italy. These sites were selected according to a combination of boundary features, i.e. the adjoining land use type (road or cereal crop), slope (grassland tilted towar...

  9. Root biomass and carbon storage in differently managed multispecies temporary grasslands

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Mortensen, Tine Bloch; Søegaard, Karen

    2012-01-01

    Species-rich grasslands may potentially increase carbon (C) storage in soil, and an experiment was established to investigate C storage in highly productive temporary multi-species grasslands. Plots were established with three mixtures: (1) a herb mixture containing salad burnet (Sanguisorba minor...

  10. Balance matters : N:P stoichiometry and plant diversity in grassland ecosystems

    NARCIS (Netherlands)

    Fujita, Y.

    2010-01-01

    Eutrophication of Nitrogen (N) and Phosphorus (P) is threatening the functioning and biodiversity of grassland ecosystems. A well known effect of eutrophication on grasslands is an increase of above-ground productivity, which intensifies light competition and allows only a few competitive species to

  11. Secondary succession after fire in Imperata grasslands of East Kalimantan Indonesia

    NARCIS (Netherlands)

    Yassir, I.; Kamp, van der J.; Buurman, P.

    2010-01-01

    Regeneration of grassland areas is becoming increasingly important, not only to create new secondary forest and recover the original biodiversity, but also recover for agriculture. We studied an early succession in Imperata grasslands in East Kalimantan, Indonesia, using plots that last burned 3

  12. Early Thermal History of Rhea: The Role of Serpentinization and Liquid State Convection

    OpenAIRE

    Czechowski Leszek; Łosiak Anna

    2016-01-01

    Early thermal history of Rhea is investigated. The role of the following parameters of the model is investigated: time of beginning of accretion, tini, duration of accretion, tac, viscosity of ice close to the melting point, η0, activation energy in the formula for viscosity, E, thermal conductivity of silicate component, ksil, ammonia content, XNH3, and energy of serpentinization, cserp. We found that tini and tac are crucial for evolution. All other parameters are also important, but no dra...

  13. Characterization of Serpentine Samples from the Coast Range Ophiolite Microbial Observatory with μ-FTIR and XRD. ­­

    Science.gov (United States)

    Sousa, A.; Cardace, D.

    2017-12-01

    Serpentinizing systems hold much promise as potentially habitable environments in diverse planetary settings. They involve abundant and simple ingredients (i.e., the mineral olivine, liquid water), support subsurface microbial communities on Earth (Crespo-Medina et al. 2014; Suzuki et al. 2014; Kelley et al. 2005) and are thought to occur elsewhere in our solar system such as Mars (Schulte et al. 2006; Ehlmann et al. 2010)and possibly ocean worlds (Waite et al. 2017; Vance 2009). Although geochemical and microbial data collection continues in serpentinizing systems, the identification and resolution of potential biosignatures in serpentinites are not yet clear. Specifically, the micro-scale mineralogical contexts in which cell fragments or biofilm residues may be formed and preserved is lacking. Here we report preliminary transmission and reflection mode μ-FTIR spectral maps and XRD diffractograms, obtained with instruments relevant to robotic exploration missions (Blake et al. 2012; Igisu et al. 2009; Leroi et al. 2009). Samples analyzed include ultramafic rock and constituent mineral standards (e.g., olivine) and rocks collected from near surface sites associated with the NASA Astrobiology Institute-funded initiative, the Coast Range Ophiolite Microbial Observatory (CROMO), in Lower Lake, CA (Cardace et al. 2013). These new results provide co-registered, complementary data on astrobiologically important rock and mineral phases related to serpentinization (Crespo-Medina et al. 2014; Twing et al. 2017). Future work will leverage this data set in microbial colonization experiments aimed at parsing background organic loads in serpentinites from surficial/fracture-localized modern biofilm signatures.

  14. Energy analysis of various grassland utilisation systems

    Directory of Open Access Journals (Sweden)

    Jozef Ržonca

    2005-01-01

    Full Text Available In 2003 and 2004 was carried out the energy analysis of the different types of permanent grassland utilization on the Hrubý Jeseník locality. There were estimated values of the particular entrances of additional energy. Energy entrances moved according to the pratotechnologies from 2.17 GJ. ha–1 to 22.70 GJ.ha–1. The biggest share on energy entrances had fertilizers. It was 84.93% by the nitrogen fertilisation. The most energy benefit of brutto and nettoenergy was marked by the low intensive utilisation (33.40 GJ.ha–1 NEL and 32.40 GJ.ha–1 NEV on average. The highest value of energy efficiency (13.23% was marked by the low intensive utilization of permanent grassland. By using of higher doses of industrial fertilizers has energy efficiency decreased. From view of energy benefit and intensiveness on energy entrances it appears the most available utilisation of permanent grassland with three cuts per year (first cut on May 31st at the latest, every next after 60 days or two cuts per year (first cut on July 15th, next cuts after 90 days.

  15. Influence of density on the seasonal utilization of broad grassland ...

    African Journals Online (AJOL)

    We monitored seasonal use of grassland types by white rhinos at two sites within the Hluhluwe iMfolozi Park (HiP). Thirty-two rhinos were removed from one site to reduce rhino density. Seasonal use of grassland types was similar at both sites, but differed to what a previous study reported. This was likely due to higher food ...

  16. Electron microscopy of fine-grained extraterrestrial materials

    International Nuclear Information System (INIS)

    Mackinnon, I.D.R.; McKay, D.S.; Isaacs, A.M.; Nace, G.

    1982-01-01

    Electron micrographs are shown of (a) Mighei C2 carbonaceous chondrite (variety of matrix phases present; micro-diffraction patterns of a region showing small, discrete intergrowths of planar serpentine and an ordered mixed-layer material; figures showing examples of textures which may be interpreted in terms of alteration processes, and inclusions); and (b) a typical cosmic dust particle collected by high-flying aircraft in the Earth's stratosphere. The composition and morphology of the samples are discussed and their significance. (U.K.)

  17. COENOLOGICAL SHIFT FOLLOWING FERTILIZATION IN MEDITERRANEAN GRASSLAND

    Directory of Open Access Journals (Sweden)

    ALESSANDRO SERAFINI SAULI

    2006-05-01

    Full Text Available In Rome both meadows of CentraI-European affinity and Mediterranean dry grasslands are presento We studied a site (Parco Regionale Urbano de] Pineto in Rome with very diverse vegetation, where species belonging to both coenologica] groups oceur. Wc fertilized a grassland with a combination of phosphorus (P and nitrogen (N. After fertilization diagDostie species of Helianthemetea guttati (Thcrophytes dccrease while species of MolinioArrhenatheretea (Hemicriptophytes increase. In a climate as that of Rome, transition between Mediterranean (with summer drought and Central European (without summer drought, nutrients availability modulates the distribution of vegetation Classes with respectively Mediterranean or Central-Europe affinities.

  18. 77 FR 47089 - Public Land Order No. 7795; Withdrawal of Public Lands, Clear Creek Serpentine Area of Critical...

    Science.gov (United States)

    2012-08-07

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLCAC09000, 16100000.DQ; CACA 051408] Public Land Order No. 7795; Withdrawal of Public Lands, Clear Creek Serpentine Area of Critical Environmental Concern; California AGENCY: Bureau of Land Management, Interior. ACTION: Public Land Order. SUMMARY: This...

  19. Impact of Climate Change on Temperate and Alpine Grasslands in China during 1982–2006

    Directory of Open Access Journals (Sweden)

    Xiangjin Shen

    2015-01-01

    Full Text Available Based on GIMMS NDVI and climate data from 1982 to 2006, this study analyzed the impact of climate change on grassland in China. During the growing season, there were significant effects of precipitation on the growth of all the grassland types (P<0.05, except for meadow vegetation. For the air temperatures, there existed asymmetrical effects of maximum temperature (Tmax and minimum temperature (Tmin on grassland vegetation, especially for the temperate grasslands and alpine steppe. The growing season NDVI correlated negatively with Tmax but positively with Tmin for temperate grasslands. Seasonally, these opposite effects were only observed in summer. For alpine steppe, the growing season NDVI correlated positively with Tmax but negatively with Tmin, and this pattern of asymmetrical responses was only obvious in spring and autumn. Under the background of global asymmetric warming, more attention should be paid to this asymmetric response of grassland vegetation to daytime and night-time warming, especially when we want to predict the productivity of China’s grasslands in the future.

  20. Mineralizing Filamentous Bacteria from the Prony Bay Hydrothermal Field Give New Insights into the Functioning of Serpentinization-Based Subseafloor Ecosystems.

    Science.gov (United States)

    Pisapia, Céline; Gérard, Emmanuelle; Gérard, Martine; Lecourt, Léna; Lang, Susan Q; Pelletier, Bernard; Payri, Claude E; Monnin, Christophe; Guentas, Linda; Postec, Anne; Quéméneur, Marianne; Erauso, Gaël; Ménez, Bénédicte

    2017-01-01

    Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H 2 and CH 4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed to characterize the subsurface microbial ecology of this environment by focusing on the earliest stages of chimney construction, dominated by the discharge of hydrothermal fluids of subseafloor origin. By jointly examining the mineralogy and the microbial diversity of the conduits of juvenile edifices at the micrometric scale, we find a central role of uncultivated bacteria belonging to the Firmicutes in the ecology of the PHF. These bacteria, along with members of the phyla Acetothermia and Omnitrophica , are identified as the first chimneys inhabitants before archaeal Methanosarcinales . They are involved in the construction and early consolidation of the carbonate structures via organomineralization processes. Their predominance in the most juvenile and nascent hydrothermal chimneys, and their affiliation with environmental subsurface microorganisms, indicate that they are likely discharged with hydrothermal fluids from the subseafloor. They may thus be representative of endolithic serpentinization-based ecosystems, in an environment where DIC is limited. In contrast, heterotrophic and fermentative microorganisms may consume organic compounds from the abiotic by-products of serpentinization processes and/or from life in the deeper subsurface. We thus propose

  1. Assessing the biophysical naturalness of grassland in eastern North Dakota with hyperspectral imagery

    Science.gov (United States)

    Zhou, Qiang

    Over the past two decades, non-native species within grassland communities have quickly developed due to human migration and commerce. Invasive species like Smooth Brome grass (Bromus inermis) and Kentucky Blue Grass (Poa pratensis), seriously threaten conservation of native grasslands. This study aims to discriminate between native grasslands and planted hayfields and conservation areas dominated by introduced grasses using hyperspectral imagery. Hyperspectral imageries from the Hyperion sensor on EO-1 were acquired in late spring and late summer on 2009 and 2010. Field spectra for widely distributed species as well as smooth brome grass and Kentucky blue grass were collected from the study sites throughout the growing season. Imagery was processed with an unmixing algorithm to estimate fractional cover of green and dry vegetation and bare soil. As the spectrum is significantly different through growing season, spectral libraries for the most common species are then built for both the early growing season and late growing season. After testing multiple methods, the Adaptive Coherence Estimator (ACE) was used for spectral matching analysis between the imagery and spectral libraries. Due in part to spectral similarity among key species, the results of spectral matching analysis were not definitive. Additional indexes, "Level of Dominance" and "Band variance", were calculated to measure the predominance of spectral signatures in any area. A Texture co-occurrence analysis was also performed on both "Level of Dominance" and "Band variance" indexes to extract spatial characteristics. The results suggest that compared with disturbed area, native prairie tend to have generally lower "Level of Dominance" and "Band variance" as well as lower spatial dissimilarity. A final decision tree model was created to predict presence of native or introduced grassland. The model was more effective for identification of Mixed Native Grassland than for grassland dominated by a single

  2. PV water pumping systems for grassland and farmland conservation

    OpenAIRE

    Campana, Pietro Elia

    2013-01-01

    Grassland degradation is considered as one of the worst environmental and economic problems in China because of the negative impacts on water and food security. The application of the photovoltaic water pumping (PVWP) technology for irrigation is an innovative and sustainable solution to curb the progress of grassland desertification and to promote the conservation of farmland in remote areas. The combination of PVWP with water saving irrigation techniques and the sustainable management of th...

  3. Monitoring Grassland Tourist Season of Inner Mongolia, China Using Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Quansheng Ge

    2014-01-01

    Full Text Available Phenology-driven events, such as spring wildflower displays or fall tree colour, are generally appreciated by tourists for centuries around the world. Monitoring when tourist seasons occur using satellite data has been an area of growing research interest in recent decades. In this paper, a valid methodology for detecting the grassland tourist season using remote sensing data was presented. On average, the beginning, the best, and the end of grassland tourist season of Inner Mongolia, China, occur in late June (±30 days, early July (±30 days, and late July (±50 days, respectively. In south region, the grassland tourist season appeared relatively late. The length of the grassland tourist season is about 90 days with strong spatial trend. South areas exhibit longer tourist season.

  4. Grassland simulation with the LPJmL model : version 3.4.018

    NARCIS (Netherlands)

    Boons-Prins, E.R.

    2010-01-01

    One third of the land surface is covered with natural and cultivated grasslands. Most of these grasslands are intensively or extensively exploited by humans to feed animals. With growing wealth, causing an increase of meat consumption, there is a need to better understand the processes that

  5. Spatial patterns of grasses and shrubs in an arid grassland environment

    Science.gov (United States)

    In the Chihuahuan Desert of Mexico and New Mexico, shrub invasion is a common problem, and once-abundant grassland ecosystems are being replaced by shrub-dominated habitat. The spatial arrangement of grasses and shrubs in these arid grasslands can provide better insight into community dynamics and c...

  6. Voluntary intake and in vivo digestibility of forages from semi-natural grasslands in dairy cows

    NARCIS (Netherlands)

    Bruinenberg, M.H.; Valk, H.; Struik, P.C.

    2003-01-01

    To study in vivo digestibility of forages from semi-natural grasslands two experiments were carried out. In the first experiment lactating dairy cows were offered three different silage-based diets. Silage originated from intensively managed grassland (IM), extensively managed species-poor grassland

  7. Energy production from grassland - Assessing the sustainability of different process chains under German conditions

    International Nuclear Information System (INIS)

    Roesch, Christine; Skarka, J.; Raab, K.; Stelzer, V.

    2009-01-01

    In many regions of Europe, grassland shapes the landscape and fulfils important functions in protecting nature, soil, and water. However, the traditional uses of grassland for forage production are vanishing with progress in breeding and structural adaptations in agriculture. On the other hand, the demand for biomass energy is rising due to political sustainability goals and financial measures to support renewable energy. Against this background, the Institute for Technology Assessment and Systems Analysis investigated the applicability, economic efficiency, and sustainability of different techniques for energy production from grassland as well as from grassland converted into maize fields or short-rotation poplars under German conditions. The results show that despite relatively high energy prices and the financial support for bioenergy, the effects of energy production from grassland on employment in agriculture and farmers' income are modest. What is beneficial are savings in non-renewable energy, reductions in greenhouse gas emissions, and local provision of energy carriers. If grassland biomass (grass silage or hay) is used for energy purposes, this brings the further advantages of preserving biodiversity and the cultural landscape and protecting of soil and groundwater. Negative impacts on sustainable development result from an increase in emissions, which leads to acidification, eutrophication, and risks to human health. The overall evaluation indicates that short-rotation poplars are comparatively advantageous from the economic and ecological point of view. Therefore, a development plan for grassland is required to identify areas where grassland could be used as an energy resource or where it would be favourable to install energy plantations with fast-growing perennial plants

  8. Drought and Carbon Cycling of Grassland Ecosystems under Global Change: A Review

    Directory of Open Access Journals (Sweden)

    Tianjie Lei

    2016-10-01

    Full Text Available In recent years, the increased intensity and duration of droughts have dramatically altered the structure and function of grassland ecosystems, which have been forced to adapt to this change in climate. Combinations of global change drivers such as elevated atmospheric CO2 concentration, warming, nitrogen (N deposition, grazing, and land-use change have influenced the impact that droughts have on grassland C cycling. This influence, to some extent, can modify the relationship between droughts and grassland carbon (C cycling in the multi-factor world. Unfortunately, prior reviews have been primarily anecdotal from the 1930s to the 2010s. We investigated the current state of the study on the interactive impacts of multiple factors under drought scenarios in grassland C cycling and provided scientific advice for dealing with droughts and managing grassland C cycling in a multi-factor world. Currently, adequate information is not available on the interaction between droughts and global change drivers, which would advance our understanding of grassland C cycling responses. It was determined that future experiments and models should specifically test how droughts regulate grassland C cycling under global changes. Previous multi-factor experiments of current and future global change conditions have studied various drought scenarios poorly, including changes in precipitation frequency and amplitude, timing, and interactions with other global change drivers. Multi-factor experiments have contributed to quantifying these potential changes and have provided important information on how water affects ecosystem processes under global change. There is an urgent need to establish a systematic framework that can assess ecosystem dynamic responses to droughts under current and future global change and human activity, with a focus on the combined effects of droughts, global change drivers, and the corresponding hierarchical responses of an ecosystem.

  9. Flower resource and land management drives hoverfly communities and bee abundance in seminatural and agricultural grasslands.

    Science.gov (United States)

    Lucas, Andrew; Bull, James C; de Vere, Natasha; Neyland, Penelope J; Forman, Dan W

    2017-10-01

    Pollination is a key ecosystem service, and appropriate management, particularly in agricultural systems, is essential to maintain a diversity of pollinator guilds. However, management recommendations frequently focus on maintaining plant communities, with the assumption that associated invertebrate populations will be sustained. We tested whether plant community, flower resources, and soil moisture would influence hoverfly (Syrphidae) abundance and species richness in floristically-rich seminatural and floristically impoverished agricultural grassland communities in Wales (U.K.) and compared these to two Hymenoptera genera, Bombus, and Lasioglossum . Interactions between environmental variables were tested using generalized linear modeling, and hoverfly community composition examined using canonical correspondence analysis. There was no difference in hoverfly abundance, species richness, or bee abundance, between grassland types. There was a positive association between hoverfly abundance, species richness, and flower abundance in unimproved grasslands. However, this was not evident in agriculturally improved grassland, possibly reflecting intrinsically low flower resource in these habitats, or the presence of plant species with low or relatively inaccessible nectar resources. There was no association between soil moisture content and hoverfly abundance or species richness. Hoverfly community composition was influenced by agricultural improvement and the amount of flower resource. Hoverfly species with semiaquatic larvae were associated with both seminatural and agricultural wet grasslands, possibly because of localized larval habitat. Despite the absence of differences in hoverfly abundance and species richness, distinct hoverfly communities are associated with marshy grasslands, agriculturally improved marshy grasslands, and unimproved dry grasslands, but not with improved dry grasslands. Grassland plant community cannot be used as a proxy for pollinator

  10. Evolution of spreading rate and H2 production by serpentinization at mid-ocean ridges from 200 Ma to Present

    Science.gov (United States)

    Andreani, M.; García del Real, P.; Daniel, I.; Wright, N.; Coltice, N.

    2017-12-01

    Mid-oceanic ridge (MOR) spreading rate spatially varies today from 20 to 200 mm/yr and geological records attest of important temporal variations, at least during the past 200 My. The spreading rate has a direct impact on the mechanisms accomodating extension (magmatic vs tectonic), hence on the nature of the rocks forming the oceanic lithosphere. The latter is composed of variable amount of magmatic and mantle rocks, that dominate at fast and (ultra-) slow spreading ridges, respectively. Serpentinization of mantle rocks contributes to global fluxes and notably to those of hydrogen and carbon by providing a pathways for dihydrogen (H2) production, carbone storage by mineralization, and carbon reduction to CH4 and possibly complex organic compounds. Quantification of the global chemical impact of serpentinization through geological time requires a coupling of geochemical parameters with plate-tectonic reconstructions. Here we quantify serpentinization extent and concurrent H2 production at MOR from the Jurassic (200 Ma) to present day (0 Ma). We coupled mean values of relevant petro-chemical parameters such as the proportion of mantle rocks, initial iron in olivine, iron redox state in serpentinites, % of serpentinization to high-resolution models of plate motion within the GPlates infrastructure to estimate the lengths in 1 Myr intervals for the global MOR plate boundary (spreading and transform components), and spreading ridges as a function of their rate. The model sensitivity to selected parameters has been tested. The results show that fragmentation of Pangea resulted in elevated H2 rates (>1012 to 1013 mol/yr) starting at 160 Ma compared to Late Mesozoic (<160 Ma) rates (<1011-1012 mol/yr). From 160 Ma to present, the coupled opening of the Atlantic and Indian oceans as well as the variation in spreading rates maintained H2 generation in the 1012 mol/yr level, but with significant excursions mainly related to the length of ultra-slow spreading segments. For

  11. Understanding of Grassland Ecosystems under Climate Change and Economic Development Pressures in the Mongolia Plateau

    Science.gov (United States)

    Qi, J.; Chen, J.; Shan, P.; Pan, X.; Wei, Y.; Wang, M.; Xin, X.

    2011-12-01

    The land use and land cover change, especially in the form of grassland degradation, in the Mongolian Plateau, exhibited a unique spatio-temporal pattern that is a characteristic of a mixed stress from economic development and climate change of the region. The social dimension of the region played a key role in shaping the landscape and land use change, including the cultural clashes with economic development, conflicts between indigenous people and business ventures, and exogenous international influences. Various research projects have been conducted in the region to focus on physical degradation of grasslands and/or on economic development but there is a lack of understanding how the social and economic dimensions interact with grassland ecosystems and changes. In this talk, a synthesis report was made based on the most recent workshop held in Hohhot, Inner Mongolia, of China, that specifically focused on climate change and grassland ecosystems. The report analyzed the degree of grassland degradation, its climate and social drivers, and coupling nature of economic development and conservation of traditional grassland values. The goal is to fully understand the socio-ecological-economic interactions that together shape the trajectory of the grassland ecosystems in the Mongolia Plateau.

  12. DYNAMICS OF CARBON SEQUESTRATION IN ABANDONED GRASSLANDS OF NORTHEASTERN MEXICO

    Directory of Open Access Journals (Sweden)

    José Israel Yerena Yamallel

    2014-04-01

    Full Text Available Livestock activities due to the improper handling of the load capacity, suffer from low productivity in their grasslands, which are abandoned giving rise to the appearance of species considered invasive and undesirable for producers, without knowing the qualities of these as mitigating of climate change. The objective of the present study was to estimate the carbon content in tamaulipan thornscrub and three abandoned grasslands with a time of abandonment of 10, 20 and 30 years. For the estimation of the carbon content was used a systematic sampling design, in each area were established four sampling sites of 1,600 m2. The primary scrub is the system that resulted in the largest value of carbon content of 14.25 Mg ha-1, followed by the grasslands of 30, 20 and 10 years with 8.03, 7.33 and 4.13 Mg ha-1 respectively. It was concluded that recovering the initial state of the primary scrub take many years, as can be seen in the grasslands system 30 years reaching only 56% of what it had in reserves of primary scrub.

  13. Strategic Grassland Bird Conservation throughout the Annual Cycle: Linking Policy Alternatives, Landowner Decisions, and Biological Population Outcomes.

    Directory of Open Access Journals (Sweden)

    Ryan G Drum

    Full Text Available Grassland bird habitat has declined substantially in the United States. Remaining grasslands are increasingly fragmented, mostly privately owned, and vary greatly in terms of habitat quality and protection status. A coordinated strategic response for grassland bird conservation is difficult, largely due to the scope and complexity of the problem, further compounded by biological, sociological, and economic uncertainties. We describe the results from a collaborative Structured Decision Making (SDM workshop focused on linking social and economic drivers of landscape change to grassland bird population outcomes. We identified and evaluated alternative strategies for grassland bird conservation using a series of rapid prototype models. We modeled change in grassland and agriculture cover in hypothetical landscapes resulting from different landowner decisions in response to alternative socio-economic conservation policy decisions. Resulting changes in land cover at all three stages of the annual cycle (breeding, wintering, and migration were used to estimate changes in grassland bird populations. Our results suggest that successful grassland bird conservation may depend upon linkages with ecosystem services on working agricultural lands and grassland-based marketing campaigns to engage the public. With further development, spatial models that link landowner decisions with biological outcomes can be essential tools for making conservation policy decisions. A coordinated non-traditional partnership will likely be necessary to clearly understand and systematically respond to the many conservation challenges facing grassland birds.

  14. Strategic Grassland Bird Conservation throughout the annual cycle: Linking policy alternatives, landowner decisions, and biological population outcomes

    Science.gov (United States)

    Drum, Ryan G.; Ribic, Christine; Koch, Katie; Lonsdorf, Eric V.; Grant, Edward C.; Ahlering, Marissa; Barnhill, Laurel; Dailey, Thomas; Lor, Socheata; Mueller, Connie; Pavlacky, D.C.; Rideout, Catherine; Sample, David W.

    2015-01-01

    Grassland bird habitat has declined substantially in the United States. Remaining grasslands are increasingly fragmented, mostly privately owned, and vary greatly in terms of habitat quality and protection status. A coordinated strategic response for grassland bird conservation is difficult, largely due to the scope and complexity of the problem, further compounded by biological, sociological, and economic uncertainties. We describe the results from a collaborative Structured Decision Making (SDM) workshop focused on linking social and economic drivers of landscape change to grassland bird population outcomes. We identified and evaluated alternative strategies for grassland bird conservation using a series of rapid prototype models. We modeled change in grassland and agriculture cover in hypothetical landscapes resulting from different landowner decisions in response to alternative socio-economic conservation policy decisions. Resulting changes in land cover at all three stages of the annual cycle (breeding, wintering, and migration) were used to estimate changes in grassland bird populations. Our results suggest that successful grassland bird conservation may depend upon linkages with ecosystem services on working agricultural lands and grassland-based marketing campaigns to engage the public. With further development, spatial models that link landowner decisions with biological outcomes can be essential tools for making conservation policy decisions. A coordinated non-traditional partnership will likely be necessary to clearly understand and systematically respond to the many conservation challenges facing grassland birds.

  15. Description of the Grassland Biome Project

    CSIR Research Space (South Africa)

    Mentis, MT

    1982-10-01

    Full Text Available The objectives, organization and research programme of the Grassland Biome Project are described against a background of the biome's ecological characteristics and environmental problems. Four principal research topics wil 1 be focused upon: (i...

  16. Estimating N2O processes during grassland renewal and grassland conversion to maize cropping using N2O isotopocules

    Science.gov (United States)

    Buchen, Caroline; Well, Reinhard; Flessa, Heinz; Fuß, Roland; Helfrich, Mirjam; Lewicka-Szczebak, Dominika

    2017-04-01

    Grassland break-up due to grassland renewal and grassland conversion to cropland can lead to a flush of mineral nitrogen from decomposition of the old grass sward and the decomposition of soil organic matter. Moreover, increased carbon and nitrogen mineralisation can result in enhanced nitrous oxide (N2O) emissions. As N2O is known to be an important greenhouse gas and a major precursor for ozone depletion, its emissions need to be mitigated by adjusting agricultural management practices. Therefore, it is necessary to understand the N2O processes involved, as well as the contribution of N2O reduction to N2. Apart from the widely used 15N gas flux method, natural abundance isotopic analysis of the four most abundant isotopocules of N2O species is a promising alternative to assess N2O production pathways. We used stable isotope analyses of soil-emitted N2O (δ18ON2O, δ15NN2Obulk and δ15NN2OSP= intramolecular distribution of 15N within the linear N2O molecule) with an isotopocule mapping approach to simultaneously estimate the magnitude of N2O reduction to N2 and the fraction of N2O originating from the bacterial denitrification pathway or fungal denitrification and/or nitrification. This approach is based on endmember areas of isotopic values for the N2O produced from different sources reported in the literature. For this purpose, we calculated two main scenarios with different assumptions for N2O produced: N2O is reduced to N2 before residual N2O is mixed with N2O of various sources (Scenario a) and vice versa (Scenario b). Based on this, we applied seven different scenario variations, where we evaluated the range of possible values for the potential N2O production pathways (heterotrophic bacterial denitrification and/or nitrifier denitrification and fungal denitrification and/or nitrification). This was done by using a range of isotopic endmember values and assuming different fractionation factors of N2O reduction in order to find the most reliable scenario

  17. High pH microbial ecosystems in a newly discovered, ephemeral, serpentinizing fluid seep at Yanartaş (Chimera), Turkey.

    Science.gov (United States)

    Meyer-Dombard, D'Arcy R; Woycheese, Kristin M; Yargıçoğlu, Erin N; Cardace, Dawn; Shock, Everett L; Güleçal-Pektas, Yasemin; Temel, Mustafa

    2014-01-01

    Gas seeps emanating from Yanartaş (Chimera), Turkey, have been documented for thousands of years. Active serpentinization produces hydrogen and a range of carbon gases that may provide fuel for life. Here we report a newly discovered, ephemeral fluid seep emanating from a small gas vent at Yanartaş. Fluids and biofilms were sampled at the source and points downstream. We describe site conditions, and provide microbiological data in the form of enrichment cultures, Scanning electron microscopy (SEM), carbon and nitrogen isotopic composition of solids, and PCR screens of nitrogen cycle genes. Source fluids are pH 11.95, with a Ca:Mg of ~200, and sediments under the ignited gas seep measure 60°C. Collectively, these data suggest the fluid is the product of active serpentinization at depth. Source sediments are primarily calcite and alteration products (chlorite and montmorillonite). Downstream, biofilms are mixed with montmorillonite. SEM shows biofilms distributed homogeneously with carbonates. Organic carbon accounts for 60% of the total carbon at the source, decreasing downstream to <15% as inorganic carbon precipitates. δ(13)C ratios of the organic carbon fraction of solids are depleted (-25 to -28‰) relative to the carbonates (-11 to -20‰). We conclude that heterotrophic processes are dominant throughout the surface ecosystem, and carbon fixation may be key down channel. δ(15)N ratios ~3‰, and absence of nifH in extracted DNA suggest that nitrogen fixation is not occurring in sediments. However, the presence of narG and nirS at most locations and in enrichments indicates genomic potential for nitrate and nitrite reduction. This small seep with shallow run-off is likely ephemeral, but abundant preserved microterracettes in the outflow and the surrounding area suggest it has been present for some time. This site and others like it present an opportunity for investigations of preserved deep biosphere signatures, and subsurface-surface interactions.

  18. High pH microbial ecosystems in a newly discovered, ephemeral, serpentinizing fluid seep at Yanartaş (Chimaera, Turkey

    Directory of Open Access Journals (Sweden)

    D'Arcy Renee Meyer-Dombard

    2015-01-01

    Full Text Available Gas seeps emanating from ophiolites at Yanartaş (Chimaera, Turkey, have been documented for thousands of years. Active serpentinization produces hydrogen and a range of carbon gases that may provide fuel for life. Here we report a newly discovered, ephemeral fluid seep emanating from a small gas vent at Yanartaş. Fluids and biofilms were sampled at the source and points downstream. We describe site conditions, and provide microbiological data in the form of enrichment cultures, scanning electron microscopy (SEM, carbon and nitrogen isotopic composition of solids, and PCR screens of nitrogen cycle genes. Source fluids are pH 11.95, with a Ca:Mg of ~200, and sediments under the ignited gas seep measure 60°C. Collectively, these data suggest the fluid is the product of active serpentinization at depth. Source sediments are primarily calcite and alteration products (chlorite and montmorillonite. Downstream, biofilms are mixed with montmorillonite. SEM shows biofilms distributed homogeneously with carbonates. Organic carbon accounts for 60% of the total carbon at the source, decreasing downstream to <15% as inorganic carbon precipitates. δ13C ratios of the organic carbon fraction of solids are depleted (−25 to −28 ‰ relative to the carbonates (−11 to −20‰. We conclude that heterotrophic processes are dominant throughout the surface ecosystem, and carbon fixation may be key down channel. δ15N ratios ~ 3‰, and absence of nifH in extracted DNA suggest that nitrogen fixation is not occurring in sediments. However, the presence of narG and nirS at most locations and in enrichments indicates genomic potential for nitrate and nitrite reduction. This small seep with shallow run-off is likely ephemeral, but abundant preserved microterracettes in the outflow and the surrounding area suggest it has been present for some time. This site and others like it present an opportunity for investigations of preserved deep biosphere signatures, and

  19. Apparent Disequilibrium of Inorganic and Organic Carbon Compounds in Serpentinizing Fluids

    Science.gov (United States)

    Robinson, K.; Shock, E.

    2014-12-01

    During serpentinization of ultramafic rocks, ferrous iron in silicates is oxidized to ferric minerals and H2O is reduced to H2. This process is accompanied by the reduction of inorganic carbon, as observed in experiments and natural systems. To test the extent to which stable and metastable equilibria are reached among aqueous organic compounds during serpentinization, we sampled water and dissolved gases from circumneutral surface pools and hyperalkaline seeps in the Samail ophiolite in the Sultanate of Oman and analyzed for various carbon constituents, including dissolved inorganic carbon, dissolved organic carbon, methane, carbon monoxide, formate, acetate, and other small organic acid anions. Measurements of temperature, pH, dissolved H2, O2, major cations, major anions, and major and trace elements were also made. The aqueous composition of the analyzed samples was speciated based on ionic equilibrium interactions in order to obtain activities for inorganic carbon species, reduced carbon species, H2, and O2. The redox disequilibria among carbon species was then assessed using data and parameters for the revised HKF equations of state. This analysis demonstrates that the carbon species in this system are out of equilibrium with respect to one another in ways that cannot be compensated by altering the abundance of the other constituents within analytical uncertainties. Specifically, there is too much formate and too little methane relative to stable and metastable equilibria. This result implies the following: 1) Methane and formate equilibrated in separate parts of the system, given that no reasonable temperature, pressure, or composition changes satisfy equilibrium with their measured abundances. 2) Methane production is kinetically inhibited, as seen in experiments. 3) Microbial methane oxidation altered the abundance of methane and formate; methane oxidation to formate or carbonate is calculated to be extremely thermodynamically favorable in these fluids.

  20. Study of temperature effect on the physical properties of ilmenite-serpentine heat resistant concrete radiation shields

    International Nuclear Information System (INIS)

    Kany, A.M.I.; EL-Fouly, M.M.; EL-Gohary, M.I.; Makatious, A.S.; Kamal, S.M.

    1990-01-01

    A series of experimental studies have been carried out to determine the change in unit weigh, compressive strength, water content and neutron macroscopic cross section of a new type of concrete shields made from egyptian ilmenite and serpentine ores when heated for long period at temperatures up to 600 degree C. Results show that the unit weight of the cure concrete has a value of 2.98 Ton/M 3 and decreases with increasing temperature, while the compressive strength reaches a maximum value of 19 Ton/M 2 at 100 degree C. The differential thermal analysis (D.T.A.) of this concrete shows three endothermic peaks at 100 degree C, 48 degree C and 740 degree C. Also, the thermogravimetry analysis (T.G.A.) shows that the cure concrete retains about 11% water content of the total sample weigh and still retains 4.5% of its initial value when heated for long period at 600 degree C. Results also show that the neutron macroscopic cross section (for neutrons of energies < 1 MeV) of the ilmenite-serpentine heat resistant concrete decreases to 18.6% of its initial value after heating to 600 degree C

  1. Serpentinization and carbonation of pristine continental ultramafic rocks and applications to the oceanic crust; H2O-CO2 alteration of dunites and re-distribution of Ni-Cu-PGE in sulphide deposits

    Science.gov (United States)

    Grant, Thomas; McEnroe, Suzanne; Eske Sørensen, Bjørn; Larsen, Rune; Pastore, Zeudia; Rune Grannes, Kim; Nikolaisen, Even

    2017-04-01

    Here, we document carbonation and serpentinization within a suite of ultramafic rocks from a continental setting. These ultramafic rocks vary from pristine dunites to varying degrees of serpentinization which locally penetrates the ultramafic complex. Hence, it allows us to observe a number of delicate serpentinization and carbonation reactions, otherwise lost during more extensive alteration or tectonic events. We use a multi-disciplinary approach using petrographic, EPMA, thermodynamic modelling and geophysical data to reveal how the initial stages of serpentization and carbonation in dunites affects the distribution of economic to sub-economic deposits of Ni-Cu and PGE. The data can then be applied to oceanic crust. The samples are dunites and poikilitic wehrlites from the Reinfjord Ultramafic complex, Seiland Igneous Province Northern Norway. The complex formed through crystallization of picritic melts in the lower continental crust. The dunites contain small amounts of interstitial clinopyroxene, sulphides and spinel, with local enrichments in Ni, Cu and PGE. Late magmatic CO2-H2O-S fluids reacted with the dunite forming clots of amphibole + dolomite + sulphides + enstatite, reaction rims of enstatite + dolomite, and inclusions trails of dolomite + enstatite + magnetite + CO2 fluid. Thermodynamic modelling reveals that these textures formed at pressures of >12 kbar and temperatures 850-950 °C, which would be consistent with the late magmatic history of the Reinfjord complex. The clots and reactions have local association with enrichments in gold-rich PGMs. A second stage of alteration involved H2O-dominated fluids. These formed predominantly lizardite serpentinization, as is often concentrated within highly localized fracture zones. Thermodynamic modelling shows that these formed serpentinization interacted with the earlier formed carbonate bearing assemblages leading to the formation of serpentinite, native copper and symplectites of brucite + calcite. The

  2. Boron, lithium and methane isotope composition of hyperalkaline waters (Northern Apennines, Italy): Terrestrial serpentinization or mixing with brine?

    International Nuclear Information System (INIS)

    Boschetti, Tiziano; Etiope, Giuseppe; Pennisi, Maddalena; Romain, Millot; Toscani, Lorenzo

    2013-01-01

    Highlights: ► First data on boron and lithium isotope on waters from ophiolites are described. ► High boron and lithium isotope composition may be related to terrestrial serpentinization. ► Methane isotope data show unusual biotic signature. - Abstract: Spring waters issuing from serpentinized ultramafic rocks of the Taro-Ceno Valleys (Northern Apennine, Emilia-Romagna region, Italy) were analyzed for major element, trace element and dissolved gas concentrations and δ 11 B, δ 7 Li, δ 18 O(H 2 O), δ 2 H(H 2 O), δ 13 C(CH 4 ) and δ 2 H(CH 4 ) isotope compositions. Similar to other springs worldwide that issue from serpentinites, the chemical composition of the waters evolves with water–rock interaction from Ca-HCO 3 , through Mg-HCO 3 and ultimately to a hyperalkaline Na-(Ca)-OH composition. Most of the Ca- and Mg-HCO 3 springs have δ 11 B ranging between +16.3‰ and +23.7‰, consistent with the range of low P–T serpentinites. Very high δ 11 B in two springs from Mt. Prinzera (PR10: +39‰; PR01: +43‰) can be related to isotopic fractionation during secondary phase precipitation, as also inferred from δ 7 Li values. In contrast to typical abiogenic isotope signatures of CH 4 from serpentinized rocks, dissolved CH 4 from the Taro-Ceno hyperalkaline springs has an apparent biotic (thermogenic and/or mixed thermogenic-microbial) signature with δ 13 C(CH 4 ) ranging from −57.5‰ to −40.8‰, which is similar to that of hydrocarbons from production wells and natural seeps in adjacent hydrocarbon systems. The data suggest that CH 4 in the hyperalkaline springs investigated in this study may derive from organic matter of the sedimentary (flysch and arenaceous) formations underlying the ophiolite unit. However, small amounts of H 2 were detected in one hyperalkaline spring (PR10), but for two springs with very low CH 4 concentrations (PR01 and UM15) the δ 2 H value could not be measured, so the occurrence of some abiotic CH 4 cannot be excluded

  3. Differentiating climate- and human-induced drivers of grassland degradation in the Liao River Basin, China.

    Science.gov (United States)

    He, Chunyang; Tian, Jie; Gao, Bin; Zhao, Yuanyuan

    2015-01-01

    Quantitatively distinguishing grassland degradation due to climatic variations from that due to human activities is of great significance to effectively governing degraded grassland and realizing sustainable utilization. The objective of this study was to differentiate these two types of drivers in the Liao River Basin during 1999-2009 using the residual trend (RESTREND) method and to evaluate the applicability of the method in semiarid and semihumid regions. The relationship between the normalized difference vegetation index (NDVI) and each climatic factor was first determined. Then, the primary driver of grassland degradation was identified by calculating the change trend of the normalized residuals between the observed and the predicted NDVI assuming that climate change was the only driver. We found that the RESTREND method can be used to quantitatively and effectively differentiate climate and human drivers of grassland degradation. We also found that the grassland degradation in the Liao River Basin was driven by both natural processes and human activities. The driving factors of grassland degradation varied greatly across the study area, which included regions having different precipitation and altitude. The degradation in the Horqin Sandy Land, with lower altitude, was driven mainly by human activities, whereas that in the Kungl Prairie, with higher altitude and lower precipitation, was caused primarily by climate change. Therefore, the drivers of degradation and local conditions should be considered in an appropriate strategy for grassland management to promote the sustainability of grasslands in the Liao River Basin.

  4. Shift in soil microbial communities with shrub encroachment in Inner Mongolia grasslands, China

    Science.gov (United States)

    Shen, H.; Li, H.; Zhang, J.; Hu, H.; Chen, L.; Zhu, Y.; Fang, J.

    2017-12-01

    The ongoing expansion of shrub encroachment into grasslands represents a unique form of land cover change. How this process affects soil microbial communities is poorly understood. In this study, we aim to assess the effects of shrub encroachment on soil microbial biomass, abundance and composition by comparing data between shrub patches and neighboring herb patches in shrub-encroached grasslands (SEGs) in Inner Mongolia, China. Fourteen SEG sites from two ecosystem types (typical and desert grasslands) were investigated. The phospholipid fatty acid (PLFA) method was used to analyze the composition and biomass of the soil microbial community. Our results showed that the top-soil microbial biomass and abundances of gram-negative bacteria, arbuscular mycorrhizal fungi, and actinomycetes were significantly higher in shrub patches than in herb patches in both typical and desert grasslands (P fungi to bacteria ratio was significantly higher in shrub patches than in herb patches in desert grassland (P soil microbial communities, which makes the microbial communities toward a fresh organic carbon-based structure. This study highlights the importance of edaphic and climate factors in microbial community shifts in SEGs.

  5. Mixed artificial grasslands with more roots improved mine soil infiltration capacity

    Science.gov (United States)

    Wu, Gao-Lin; Yang, Zheng; Cui, Zeng; Liu, Yu; Fang, Nu-Fang; Shi, Zhi-Hua

    2016-04-01

    Soil water is one of the critical limiting factors in achieving sustainable revegetation. Soil infiltration capacity plays a vital role in determining the inputs from precipitation and enhancing water storage, which are important for the maintenance and survival of vegetation patches in arid and semi-arid areas. Our study investigated the effects of different artificial grasslands on soil physical properties and soil infiltration capacity. The artificial grasslands were Medicago sativa, Astragalus adsurgens, Agropyron mongolicum, Lespedeza davurica, Bromus inermis, Hedysarum scoparium, A. mongolicum + Artemisia desertorum, A. adsurgens + A. desertorum and M. sativa + B. inermis. The soil infiltration capacity index (SICI), which was based on the average infiltration rate of stage I (AIRSI) and the average infiltration rate of stage III (AIRS III), was higher (indicating that the infiltration capacity was greater) under the artificial grasslands than that of the bare soil. The SICI of the A. adsurgens + A. desertorum grassland had the highest value (1.48) and bare soil (-0.59) had the lowest value. It was evident that artificial grassland could improve soil infiltration capacity. We also used principal component analysis (PCA) to determine that the main factors that affected SICI were the soil water content at a depth of 20 cm (SWC20), the below-ground root biomasses at depths of 10 and 30 cm (BGB10, BGB30), the capillary porosity at a depth of 10 cm (CP10) and the non-capillary porosity at a depth of 20 cm (NCP20). Our study suggests that the use of Legume-poaceae mixtures and Legume-shrub mixtures to create grasslands provided an effective ecological restoration approach to improve soil infiltration properties due to their greater root biomasses. Furthermore, soil water content, below-ground root biomass, soil capillary porosity and soil non-capillary porosity were the main factors that affect the soil infiltration capacity.

  6. Identifying priority areas for ecosystem service management in South African grasslands.

    Science.gov (United States)

    Egoh, Benis N; Reyers, Belinda; Rouget, Mathieu; Richardson, David M

    2011-06-01

    Grasslands provide many ecosystem services required to support human well-being and are home to a diverse fauna and flora. Degradation of grasslands due to agriculture and other forms of land use threaten biodiversity and ecosystem services. Various efforts are underway around the world to stem these declines. The Grassland Programme in South Africa is one such initiative and is aimed at safeguarding both biodiversity and ecosystem services. As part of this developing programme, we identified spatial priority areas for ecosystem services, tested the effect of different target levels of ecosystem services used to identify priority areas, and evaluated whether biodiversity priority areas can be aligned with those for ecosystem services. We mapped five ecosystem services (below ground carbon storage, surface water supply, water flow regulation, soil accumulation and soil retention) and identified priority areas for individual ecosystem services and for all five services at the scale of quaternary catchments. Planning for individual ecosystem services showed that, depending on the ecosystem service of interest, between 4% and 13% of the grassland biome was required to conserve at least 40% of the soil and water services. Thirty-four percent of the biome was needed to conserve 40% of the carbon service in the grassland. Priority areas identified for five ecosystem services under three target levels (20%, 40%, 60% of the total amount) showed that between 17% and 56% of the grassland biome was needed to conserve these ecosystem services. There was moderate to high overlap between priority areas selected for ecosystem services and already-identified terrestrial and freshwater biodiversity priority areas. This level of overlap coupled with low irreplaceability values obtained when planning for individual ecosystem services makes it possible to combine biodiversity and ecosystem services in one plan using systematic conservation planning. Copyright © 2011 Elsevier Ltd. All

  7. Grasslands and Croplands Have Different Microbial Biomass Carbon Levels per Unit of Soil Organic Carbon

    Directory of Open Access Journals (Sweden)

    Terence P. McGonigle

    2017-07-01

    Full Text Available Primarily using cropped systems, previous studies have reported a positive linear relationship between microbial biomass carbon (MBC and soil organic carbon (SOC. We conducted a meta-analysis to explore this relationship separately for grasslands and croplands using available literature. Studies were limited to those using fumigation–extraction for MBC for field samples. Trials were noted separately where records were distinct in space or time. Grasslands were naturally occurring, restored, or seeded. Cropping systems were typical of the temperate zone. MBC had a positive linear response to increasing SOC that was significant in both grasslands (p < 0.001; r2 = 0.76 and croplands (p < 0.001; r2 = 0.48. However, MBC increased 2.5-fold more steeply per unit of increasing SOC for grassland soils, as compared to the corresponding response in cropland soils. Expressing MBC as a proportion of SOC across the regression overall, slopes corresponded to 2.7% for grasslands and 1.1% for croplands. The slope of the linear relationship for grasslands was significantly (p = 0.0013 steeper than for croplands. The difference between the two systems is possibly caused by a greater proportion of SOC in grasslands being active rather than passive, relative to that in croplands, with that active fraction promoting the formation of MBC.

  8. Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert.

    Science.gov (United States)

    Petrie, M D; Collins, S L; Swann, A M; Ford, P L; Litvak, M E

    2015-03-01

    The replacement of native C4 -dominated grassland by C3 -dominated shrubland is considered an ecological state transition where different ecological communities can exist under similar environmental conditions. These state transitions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan Desert, we found established shrubland to sequester 49 g C m(-2) yr(-1) on average, while nearby native C4 grassland was a net source of 31 g C m(-2) yr(-1) over this same period. Differences in C exchange between these ecosystems were pronounced--grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosystem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland than shrubland, such that grassland had a net uptake of C when wet but lost C when dry. Thus, even under unfavorable, drier than average climate conditions, the state transition from grassland to shrubland resulted in a substantial increase in terrestrial C sequestration. These results illustrate the inherent tradeoffs in quantifying ecosystem services that result from ecological state transitions, such as shrub encroachment. In this case, the deleterious changes to ecosystem services often linked to grassland to shrubland state transitions may at least be partially offset by increased ecosystem carbon sequestration. © 2014 John Wiley & Sons Ltd.

  9. Are Agrofuels a conservation threat or opportunity for grassland birds in the United States?

    Science.gov (United States)

    Robertson, Bruce A.; Rice, Robert A.; Ribic, Christine; Babcock, Bruce A.; Landis, Douglas A.; Herkert, James R.; Fletcher, Robert J.; Fontaine, Joseph J; Doran, Patrick J.; Schemske, Douglas W.

    2012-01-01

    In the United States, government-mandated growth in the production of crops dedicated to biofuel (agrofuels) is predicted to increase the demands on existing agricultural lands, potentially threatening the persistence of populations of grassland birds they support. We review recently published literature and datasets to (1) examine the ability of alternative agrofuel crops and their management regimes to provide habitat for grassland birds, (2) determine how crop placement in agricultural landscapes and agrofuel-related land-use change will affect grassland birds, and (3) identify critical research and policy-development needs associated with agrofuel production. We find that native perennial plants proposed as feedstock for agrofuel (switchgrass, Panicum virgatum, and mixed grass—forb prairie) have considerable potential to provide new habitat to a wide range of grassland birds, including rare and threatened species. However, industrialization of agrofuel production that maximizes biomass, homogenizes vegetation structure, and results in the cultivation of small fields within largely forested landscapes is likely to reduce species richness and/or abundance of grassland-dependent birds. Realizing the potential benefits of agrofuel production for grassland birds' conservation will require the development of new policies that encourage agricultural practices specifically targeting the needs of grassland specialists. The broad array of grower-incentive programs in existence may deliver new agrofuel policies effectively but will require coordination at a spatial scale broader than currently practiced, preferably within an adaptive-management framework.

  10. Conservation Reserve Program mitigates grassland loss in the lesser prairie-chicken range of Kansas

    Science.gov (United States)

    Haukos, David A.; Spencer, David; Hagen, Christian A.; Daniels, Melinda D.; Goodin, Doug

    2017-01-01

    Since the beginning of the 20th century, the overall occupied range of the lesser prairie-chicken (Tympanuchus pallidicinctus) has declined by 84% commensurate with population trends. Much of this decline has been attributed to the loss and fragmentation of native grasslands throughout the lesser prairie-chicken range. However, quantification of changes in land cover in the distribution of the lesser prairie-chicken is lacking. Our objectives were to (1) document changes in the areal extent and connectivity of grasslands in the identified lesser prairie-chicken range in Kansas, USA, (>60% of extant lesser prairie-chicken population) from the 1950s to 2013 using remotely sensed data and (2) assess the potential of the Conservation Reserve Program (U.S. Department of Agriculture Program converting cropland to permanent cover; CRP) to mitigate grassland loss. Digital land cover maps were generated on a decadal time step through spectral classification of LANDSAT images and visual analysis of aerial photographs (1950s and 1960s). Landscape composition and configuration were assessed using FRAGSTATS to compute a variety of landscape metrics measuring changes in the amount of grassland present as well as changes in the size and configuration of grassland patches. With the exception of a single regional portion of the range, nearly all of the grassland converted to cropland in the lesser prairie-chicken range of Kansas occurred prior to the 1950s. Prior to the implementation of CRP, the amount of grassland decreased 3.6% between the 1950s and 1985 from 18,455 km2 to 17,788 km2. Since 1985, the overall amount of grassland in the lesser prairie-chicken range has increased 11.9% to 19,898 km2 due to implementation of CRP, although the area of grassland decreased between 1994 and 2013 as CRP contracts were not renewed by landowners. Since 1986 grassland in Kansas became more connected and less fragmented in response to the CRP. While the CRP has been successful in

  11. Conservation Reserve Program mitigates grassland loss in the lesser prairie-chicken range of Kansas

    Directory of Open Access Journals (Sweden)

    David Spencer

    2017-01-01

    Full Text Available Since the beginning of the 20th century, the overall occupied range of the lesser prairie-chicken (Tympanuchus pallidicinctus has declined by 84% commensurate with population trends. Much of this decline has been attributed to the loss and fragmentation of native grasslands throughout the lesser prairie-chicken range. However, quantification of changes in land cover in the distribution of the lesser prairie-chicken is lacking. Our objectives were to (1 document changes in the areal extent and connectivity of grasslands in the identified lesser prairie-chicken range in Kansas, USA, (>60% of extant lesser prairie-chicken population from the 1950s to 2013 using remotely sensed data and (2 assess the potential of the Conservation Reserve Program (U.S. Department of Agriculture Program converting cropland to permanent cover; CRP to mitigate grassland loss. Digital land cover maps were generated on a decadal time step through spectral classification of LANDSAT images and visual analysis of aerial photographs (1950s and 1960s. Landscape composition and configuration were assessed using FRAGSTATS to compute a variety of landscape metrics measuring changes in the amount of grassland present as well as changes in the size and configuration of grassland patches. With the exception of a single regional portion of the range, nearly all of the grassland converted to cropland in the lesser prairie-chicken range of Kansas occurred prior to the 1950s. Prior to the implementation of CRP, the amount of grassland decreased 3.6% between the 1950s and 1985 from 18,455 km2 to 17,788 km2. Since 1985, the overall amount of grassland in the lesser prairie-chicken range has increased 11.9% to 19,898 km2 due to implementation of CRP, although the area of grassland decreased between 1994 and 2013 as CRP contracts were not renewed by landowners. Since 1986 grassland in Kansas became more connected and less fragmented in response to the CRP. While the CRP has been successful

  12. Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings.

    Science.gov (United States)

    Saintilan, Neil; Rogers, Kerrylee

    2015-02-01

    A global trend of woody plant encroachment of terrestrial grasslands is co-incident with woody plant encroachment of wetland in freshwater and saline intertidal settings. There are several arguments for considering tree encroachment of wetlands in the context of woody shrub encroachment of grassland biomes. In both cases, delimitation of woody shrubs at regional scales is set by temperature thresholds for poleward extent, and by aridity within temperature limits. Latitudinal expansion has been observed for terrestrial woody shrubs and mangroves, following recent warming, but most expansion and thickening has been due to the occupation of previously water-limited grassland/saltmarsh environments. Increases in atmospheric CO₂, may facilitate the recruitment of trees in terrestrial and wetland settings. Improved water relations, a mechanism that would predict higher soil moisture in grasslands and saltmarshes, and also an enhanced capacity to survive arid conditions, reinforces local mechanisms of change. The expansion of woody shrubs and mangroves provides a negative feedback on elevated atmospheric CO₂ by increasing carbon sequestration in grassland and saltmarsh, and is a significant carbon sink globally. These broad-scale vegetation shifts may represent a new stable state, reinforced by positive feedbacks between global change drivers and endogenic mechanisms of persistence in the landscape.

  13. Grassland communities in the USA and expected trends associated with climate change

    Directory of Open Access Journals (Sweden)

    David Paul Belesky

    2016-06-01

    Full Text Available Grasslands, including managed grazinglands, represent one of the largest ecosystems on the planet. Managed grazinglands in particular tend to occupy marginal climatic and edaphic resource zones, thus exacerbating responses in net primary productivity relative to changes in system resources, including anthropogenic factors. Climate dynamism, as evident from the fossil record, appears to be a putative feature of our planet. Recent global trends in temperature and precipitation patterns seem to differ from long-term patterns and have been associated with human activities linked with increased greenhouse gas emissions; specifically CO2. Thus grasslands, with their diverse floristic components, and interaction with and dependence upon herbivores, have a remarkable ability to persist and sustain productivity in response to changing resource conditions. This resistance and resilience to change, including uncertain long-term weather conditions, establishes managed grasslands as an important means of protecting food security. We review responses of grassland communities across regions of the USA and consider the responses in productivity and system function with respect to climatic variation. Research is needed to identify plant resources and management technologies that strengthen our ability to capitalize upon physiological and anatomical features prevalent in grassland communities associated with varying growing conditions.

  14. Effects of 10-Year Management Regimes on the Soil Seed Bank in Saline-Alkaline Grassland

    Science.gov (United States)

    Ma, Hongyuan; Yang, Haoyu; Liang, Zhengwei; Ooi, Mark K. J.

    2015-01-01

    Background Management regimes for vegetation restoration of degraded grasslands can significantly affect the process of ecological succession. However, few studies have focused on variation in the soil seed bank during vegetation restoration under different management regimes, especially in saline-alkaline grassland habitats. Our aim was to provide insights into the ecological effects of grassland management regimes on soil seed bank composition and vegetation establishment in mown, fenced, transplanted and natural grassland sites, all dominated by the perennial rhizomatous grass Leymus chinensis. Methodology We studied species composition and diversity in both the soil seed bank and aboveground vegetation in differently managed grasslands in Northeast China. An NMDS (nonmetric multidimensional scaling) was used to evaluate the relationship between species composition, soil seed banks, aboveground vegetation and soil properties. Principal Findings Fenced and mown grassland sites had high density and species richness in both the soil seed bank and aboveground vegetation. The Transplanted treatment exhibited the highest vegetation growth and seed production of the target species L. chinensis. Seeds of L. chinensis in the soil occurred only in transplanted and natural grassland. Based on the NMDS analysis, the number of species in both the soil seed bank and aboveground vegetation were significantly related to soil Na+, Cl-, RSC (residual sodium carbonate), alkalinity, ESP (exchangeable sodium percentage) and AP (available phosphorus). Conclusions Soil seed bank composition and diversity in the saline-alkaline grassland were significantly affected by the management regimes implemented, and were also significantly related to the aboveground vegetation and several soil properties. Based on vegetative growth, reproductive output and maintenance of soil seed bank, the transplanting was identified as the most effective method for relatively rapid restoration of the target

  15. Automated thin-film analyses of hydrated interplanetary dust particles in the analytical electron microscope

    Science.gov (United States)

    Germani, M. S.; Bradley, J. P.; Brownlee, D. E.

    1990-01-01

    A 200 keV electron microscope was used to obtain elemental analyses from over 4000 points on thin sections of eight 'layer silicate' class interplanetary dust particles (IDPs). Major and minor element abundances from a volume approaching that of a cylinder 50 nm in diameter were observed. Mineral phases and their relative abundances in the thin sections were identified and petrographic characteristics were determined. Three of the particles contained smectite (1.0-1.2 nm basal spacing) and two contained serpentine (0.7 nm basal spacing). The point count analyses and Mg-Si-Fe ternary diagrams show that one of the serpentine-containing IDPs is similar to CI and CM chondritic meteorites. The IDPs exhibit evidence of aqueous processing, but they have typically experienced only short range, submicrometer scale alteration. The IDPs may provide a broad sampling of the asteroid belt.

  16. Temporal dynamics of soil nematode communities in a grassland plant diversity experiment.

    NARCIS (Netherlands)

    Viketoft, M.; Sohlenius, B.; Bostrom, S.; Palmborg, C.; Bengtsson, J.; Berg, M.P.; Kuss-Danell, K.

    2011-01-01

    We report here on an 8-year study examining links between plant and nematode communities in a grassland plant diversity experiment, located in the north of Sweden on previous agricultural soil. The examined plots contained 1, 4 and 12 common grassland plant species from three functional groups;

  17. Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL model

    NARCIS (Netherlands)

    Si, Y.; Schlerf, M.; Zurita-Milla, R.; Skidmore, A.K.; Wang, T.

    2012-01-01

    Accurate estimates of the quantity and quality of grasslands, as they vary in space and time and from regional to global scales, furthers our understanding of grassland ecosystems. The Medium Resolution Imaging Spectrometer (MERIS) is a promising sensor for measuring and monitoring grasslands due to

  18. Carbon dynamics in an Imperata grassland in Northeast India

    Directory of Open Access Journals (Sweden)

    Amrabati Thokchom

    2016-01-01

    Full Text Available Carbon stocks and soil CO2 flux were assessed in an Imperata cylindrica grassland of Manipur, Northeast India. Carbon stocks in the vegetative components were estimated to be 11.17 t C/ha and soil organic carbon stocks were 55.94 t C/ha to a depth of 30 cm. The rates of carbon accumulation in above-ground and below-ground biomass were estimated to be 11.85 t C/ha/yr and 11.71 t C/ha/yr, respectively. Annual soil CO2 flux was evaluated as 6.95 t C/ha and was highly influenced by soil moisture, soil temperature and soil organic carbon as well as by C stocks in above-ground biomass. Our study on the carbon budget of the grassland ecosystem revealed that annually 23.56 t C/ha was captured by the vegetation through photosynthesis, and 6.95 t C/ha was returned to the atmosphere through roots and microbial respiration, with a net balance of 16.61 t C/ha/yr being retained in the grassland ecosystem. Thus the present Imperata grassland exhibited a high capacity to remove atmospheric CO2 and to induce high C stocks in the soil provided it is protected from burning and overgrazing.Keywords: Above-ground biomass, below-ground biomass, carbon stocks, carbon storage, net primary productivity, soil CO2 flux.DOI: 10.17138/TGFT(419-28  

  19. [Edge influence of soil moisture at farmland-grassland boundary in agriculture-pasturage ecotone of northern China].

    Science.gov (United States)

    Liu, Hong-lai; Zhang, Wei-hua; Wang, Kun; Zhao, Na

    2009-03-01

    In the agriculture-pasturage ecotone of Northern China, a typical zone with linear boundary of cropland and grassland was chosen to investigate its soil moisture regime, and the moving split-window technique was adopted to study the edge influence of soil moisture at the boundary. The results showed that the edge influence was 10 m, from 6 m within grassland and 4 m within cropland, and was categorized as the acute change type boundary. Accordingly, the farmland-grassland landscape boundary could be divided into three functional zones, i.e., grassland zone, farmland zone, and compositional ecotone zone. Soil moisture content varied abruptly in the ecotone zone, but presented linear distribution in both grassland zone and farmland zone. The average soil moisture content in grassland was about 1 g x g(-1) higher than that in farmland, which was mainly caused by the decreased capillary moisture capacity of farmland. Owing to the different vegetation cover, farmland and grassland had different transpiration and evaporation, which led to the diverse soil moisture regime, making soil water potential changed and water movement from one ecosystem to another possible.

  20. Prairie dog decline reduces the supply of ecosystem services and leads to desertification of semiarid grasslands.

    Directory of Open Access Journals (Sweden)

    Lourdes Martínez-Estévez

    Full Text Available Anthropogenic impacts on North American grasslands, a highly endangered ecosystem, have led to declines of prairie dogs, a keystone species, over 98% of their historical range. While impacts of this loss on maintenance of grassland biodiversity have been widely documented, much less is known about the consequences on the supply of ecosystem services. Here we assessed the effect of prairie dogs in the supply of five ecosystem services by comparing grasslands currently occupied by prairie dogs, grasslands devoid of prairie dogs, and areas that used to be occupied by prairie dogs that are currently dominated by mesquite scrub. Groundwater recharge, regulation of soil erosion, regulation of soil productive potential, soil carbon storage and forage availability were consistently quantitatively or qualitatively higher in prairie dog grasslands relative to grasslands or mesquite scrub. Our findings indicate a severe loss of ecosystem services associated to the absence of prairie dogs. These findings suggest that contrary to a much publicize perception, especially in the US, prairie dogs are fundamental in maintaining grasslands and their decline have strong negative impacts in human well - being through the loss of ecosystem services.

  1. 78 FR 65609 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Science.gov (United States)

    2013-11-01

    ... National Grassland; Wyoming; Thunder Basin National Grassland Prairie Dog Amendment Environmental Impact... Cooperating Agencies. No changes to the Proposed Action or Purpose of and Need for Action have been made... alternatives will be analyzed in the Thunder Basin National Grassland Prairie Dog Amendment EIS. The EIS will...

  2. Striking a balance: socioeconomic development and conservation in grassland through community-based zoning.

    Directory of Open Access Journals (Sweden)

    Craig Leisher

    Full Text Available The goal of preserving nature is often in conflict with economic development and the aspirations of the rural poor. Nowhere is this more striking than in native grasslands, which have been extensively converted until a mere fraction of their original extent remains. This is not surprising; grasslands flourish in places coveted by humans, primed for agriculture, plantations, and settlements that nearly always trump conservation efforts. The Umgano grassland conservation and poverty reduction project in KwaZulu-Natal Province, South Africa uses community-based spatial planning to balance the conversion of its lower-conservation value grasslands to a timber plantation, while conserving higher-value grasslands for heritage purposes and managed livestock grazing. Ten years after project launch, we measured the ecological and socioeconomic impacts of the project using Normalized Differential Vegetation Index remote sensing data and over 500 household interviews, as compared with similar non-conserved areas. Zoned management of the Umgano area had resulted in between 9% and 17% greater average peak production in the grassland areas compared to control sites. There was also a 21% gain in incomes for the roughly one hundred people employed by the forestry efforts, when compared to others in their village. Community-based spatial zoning is an overlooked tool for balancing conservation and development but may require, as we found in Umgano, certain critical factors including strong local leadership, an accountable financial management mechanism to distribute income, outside technical expertise for the zoning design, and community support.

  3. Soil seed-bank composition reveals the land-use history of calcareous grasslands

    Science.gov (United States)

    Karlík, Petr; Poschlod, Peter

    2014-07-01

    We compared soil seed banks and vegetation of recent (established on abandoned arable fields) and ancient (continuously managed as pastures at least since 1830) calcareous grasslands if there is any impact of former arable field use. The study was carried out in two regions of Southern Germany with well-preserved dry grassland vegetation: the western Jurassic mountains (Kaltes Feld) and the climatically drier eastern part of Southern Germany (Kallmünz). Total number of species in the seed bank was similar in both regions, but species composition partly differed, reflecting phytogeographical differences between the regions. The total number of emerged seedlings showed a large disparity (5457 compared to 2523 seedlings/m2 in Kaltes Feld and Kallmünz, respectively). Though there were differences in seed bank composition and size, we found a uniform pattern of plant traits (affiliation to phytosociological groups, Raunkiaer plant life-forms and seed longevity), which depended on the age of the grassland. The main conclusion is that seed banks in contemporary calcareous grasslands still reflect the history of former land use - in this case arable cultivation, even though it occurred a long time ago (up to 150 years). Indicators of former arable fields are germinable seeds of weeds which have persisted in the soil to the present. By contrast, weedy species are completely absent from the seed banks of ancient grasslands. Soil seed banks of recent grasslands may be of substantial conservation importance because they may store seeds of rare and endangered weed species such as Kickxia spuria, Silene noctiflora and Stachys annua, the majority of which have already gone extinct from the current vegetation of the study sites.

  4. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Horswill, Paul [Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN (United Kingdom)], E-mail: paul.horswill@naturalengland.org.uk; O' Sullivan, Odhran; Phoenix, Gareth K.; Lee, John A.; Leake, Jonathan R. [Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN (United Kingdom)

    2008-09-15

    Pollutant nitrogen deposition effects on soil and foliar element concentrations were investigated in acidic and limestone grasslands, located in one of the most nitrogen and acid rain polluted regions of the UK, using plots treated for 8-10 years with 35-140 kg N ha{sup -2} y{sup -1} as NH{sub 4}NO{sub 3}. Historic data suggests both grasslands have acidified over the past 50 years. Nitrogen deposition treatments caused the grassland soils to lose 23-35% of their total available bases (Ca, Mg, K, and Na) and they became acidified by 0.2-0.4 pH units. Aluminium, iron and manganese were mobilised and taken up by limestone grassland forbs and were translocated down the acid grassland soil. Mineral nitrogen availability increased in both grasslands and many species showed foliar N enrichment. This study provides the first definitive evidence that nitrogen deposition depletes base cations from grassland soils. The resulting acidification, metal mobilisation and eutrophication are implicated in driving floristic changes. - Nitrogen deposition causes base cation depletion, acidification and eutrophication of semi-natural grassland soils.

  5. On the stability of mixed grasslands

    NARCIS (Netherlands)

    Schulte, R.P.O.

    2001-01-01

    Recent years have seen a renewed interest in the use of white clover (Trifolium repens) in grasslands, as a more sustainable alternative to fertiliser nitrogen inputs. However, mixtures of grasses and white clover have frequently been associated with unstable and hence unreliable herbage

  6. Vegetation in clear-cuts depends on previous land use: a century-old grassland legacy

    Science.gov (United States)

    Jonason, Dennis; Ibbe, Mathias; Milberg, Per; Tunér, Albert; Westerberg, Lars; Bergman, Karl-Olof

    2014-01-01

    Plant species richness in central and northern European seminatural grasslands is often more closely linked to past than present habitat configuration, which is indicative of an extinction debt. In this study, we investigate whether signs of historical grassland management can be found in clear-cuts after at least 80 years as coniferous production forest by comparing floras between clear-cuts with a history as meadow and as forest in the 1870s in Sweden. Study sites were selected using old land-use maps and data on present-day clear-cuts. Species traits reflecting high capacities for dispersal and persistence were used to explain any possible links between the plants and the historical land use. Clear-cuts that were formerly meadow had, on average, 36% higher species richness and 35% higher richness of grassland indicator species, as well as a larger overall seed mass and lower anemochory, compared to clear-cuts with history as forest. We suggest that the plants in former meadows never disappeared after afforestation but survived as remnant populations. Many contemporary forests in Sweden were managed as grasslands in the 1800s. As conservation of remaining grassland fragments will not be enough to reduce the existing extinction debts of the flora, these young forests offer opportunities for grassland restoration at large scales. Our study supports the concept of remnant populations and highlights the importance of considering historical land use for understanding the distribution of grassland plant species in fragmented landscapes, as well as for policy-making and conservation. PMID:25540690

  7. The pretzel sign: angiographic pattern of tortuous intra-aneurysmal blood flow in a giant serpentine aneurysm.

    LENUS (Irish Health Repository)

    Fanning, N F

    2012-02-03

    Giant serpentine aneurysms (GSAs) form a specific subgroup of giant cerebral aneurysms that have pathognomonic angiographic features. We report the angiographic findings of a GSA demonstrating a striking convoluted dynamic flow pattern, which we have called the \\'pretzel sign\\'. The aneurysm was successfully treated by permanent occlusion of the parent vessel using a detachable balloon. GSAs should be identified prior to treatment in view of their particular management requirements.

  8. Effect of climate change on halophytic grasslands loss and its impact in the viability of Gopherus flavomarginatus

    Directory of Open Access Journals (Sweden)

    Jorge Luis Becerra-López

    2017-08-01

    Full Text Available The decrease of the habitat is one of the main factors that affect the survival of G. flavomarginatus. This study assesses the halophytic grasslands loss over a period of 30 years in the distribution area of the Bolson tortoise and the effects of climate change on the habitat suitability of these grasslands and its possible impact on this tortoise. Grassland loss was assessed by an analysis of symmetric differences and the habitat suitability model was carried out by the method of overlapping layers raster. Our results showed a grassland loss of 63.7%; however, our current habitat suitability model points out that much of the grassland loss has occurred where the environmental conditions are suitable. These results suggest that anthropic activity is a main factor in the habitat disturbance in the study area. Likewise, the models for years 2050 and 2070 under the criteria RCP 2.6, RCP 4.5, RCP 6.0, suggest that anthropic activity will continue be the main cause of the grassland loss. Therefore, considering the association between the Bolson tortoise and grassland halophyte Hilaria mutica, which comprises around 60% of its diet, the viability of the Bolson tortoise depends largely on strategies aimed at protecting the soil that allow the presence of this grassland.

  9. Greenhouse Gas Emission from Beef Cattle Grazing Systems on Temperate Grasslands

    Science.gov (United States)

    Rice, C. W.; Rivera-Zayas, J.

    2017-12-01

    At a global scale, cattle production is responsible for 65% of GHG emissions. During 2014 cattle management was the largest emitters of methane (CH4) representing a 23.2% of the total CH4 from anthropogenic activities. Since 2014, gas samples have been gathered and analyzed for carbon dioxide (CO2), CH4 and nitrous oxide (N2O) from three grazing areas under three different burning regimes at the temperate grassland of Konza Prairie Biological Station in Kansas. Burning regimes included one site in annually burned, and two sites with patch burned every three years on offset years. Burning regimes showed no effect in N2O emissions (pconsumed on grazed grassland soils; with an increase in consumption with patch burning. Results quantify the role of temperate grasslands as a sink of CH4, and a possible sink of N2O. This experiment evidence CO2, CH4 and N2O emissions behavior as a consequence of burning regimes, and quantify the role of temperate grasslands as a sink of CH4 and N2O in order to understand best practice for resilience of beef cattle management.

  10. Grassland/atmosphere response to changing climate: Coupling regional and local scales

    International Nuclear Information System (INIS)

    Coughenour, M.B.; Kittel, T.G.F.; Pielke, R.A.; Eastman, J.

    1993-10-01

    The objectives of the study were: to evaluate the response of grassland ecosystems to atmospheric change at regional and site scales, and to develop multiscaled modeling systems to relate ecological and atmospheric models with different spatial and temporal resolutions. A menu-driven shell was developed to facilitate use of models at different temporal scales and to facilitate exchange information between models at different temporal scales. A detailed ecosystem model predicted that C 3 temperate grasslands wig respond more strongly to elevated CO 2 than temperate C 4 grasslands in the short-term while a large positive N-PP response was predicted for a C 4 Kenyan grassland. Long-term climate change scenarios produced either decreases or increases in Colorado plant productivity (NPP) depending on rainfall, but uniform increases in N-PP were predicted in Kenya. Elevated CO 2 is likely to have little effect on ecosystem carbon storage in Colorado while it will increase carbon storage in Kenya. A synoptic climate classification processor (SCP) was developed to evaluate results of GCM climate sensitivity experiments. Roughly 80% agreement was achieved with manual classifications. Comparison of lx and 2xCO 2 GCM Simulations revealed relatively small differences

  11. Prescribed burning to affect a state transition in a shrub-encroached desert grassland

    Science.gov (United States)

    Prescribed burning is a commonly advocated and historical practice for control of woody species encroachment into grasslands on all continents. However, desert grasslands of the southwestern United States often lack needed herbaceous fuel loads for effective prescriptions, dominant perennial gramin...

  12. Association of wintering raptors with Conservation Reserve Enhancement Program grasslands in Pennsylvania

    Science.gov (United States)

    Wilson, A.; Brittingham, M.; Grove, G.

    2010-01-01

    Conservation grasslands can provide valuable habitat resource for breeding songbirds, but their value for wintering raptors has received little attention. We hypothesized that increased availability of grassland habitat through the Conservation Reserve Enhancement Program (CREP) has resulted in an increase or redistribution in numbers of four species of raptors in Pennsylvania since 2001. We tested this by analyzing winter raptor counts from volunteer surveys, conducted from 2001 to 2008, for Red-tailed Hawks (Buteo jamaicensis), Rough-legged Hawks (Buteo lagopus), Northern Harriers (Circus cyaneus), and American Kestrels (Falco sparverius). During that period, numbers of wintering Northern Harriers increased by more than 20% per year. Log-linear Poisson regression models show that all four species increased in the region of Pennsylvania that had the most and longest-established conservation grasslands. At the county scale (N= 67), Bayesian spatial models showed that spatial and temporal population trends of all four species were positively correlated with the amount of conservation grassland. This relationship was particularly strong for Northern Harriers, with numbers predicted to increase by 35.7% per year for each additional 1% of farmland enrolled in CREP. Our results suggest that conservation grasslands are likely the primary cause of the increase in numbers of wintering Northern Harriers in Pennsylvania since 2001. ?? 2010 The Authors. Journal of Field Ornithology ?? 2010 Association of Field Ornithologists.

  13. Bringing Together Evolution on Serpentine and Polyploidy: Spatiotemporal History of the Diploid-Tetraploid Complex of Knautia arvensis (Dipsacaceae)

    Czech Academy of Sciences Publication Activity Database

    Kolář, Filip; Fér, T.; Štech, M.; Trávníček, Pavel; Dušková, E.; Schönswetter, P.; Suda, Jan

    2012-01-01

    Roč. 7, č. 7 (2012), e39988 E-ISSN 1932-6203 R&D Projects: GA AV ČR KJB600050812; GA AV ČR(CZ) KJB601110627 Institutional research plan: CEZ:AV0Z6005908 Institutional support: RVO:67985939 Keywords : serpentine spetiation * Knautia arvensis * polyploidy Subject RIV: EF - Botanics Impact factor: 3.730, year: 2012

  14. Preparation and utilization of amorphous siliceous materials from serpentine (Mg3Si2O5(OH)4) by acid treatment; Jamonseki no kofuka kachika ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-30

    Concerning the conversion of serpentine, not only its magnesium component but also silica component, into industrial materials, conditions suitable for the production of porous materials and amorphous silica by acid treatment were evaluated, and the properties of the products were evaluated. The silica resulting from the acid treatment of serpentine comes out in different forms, each reflecting the structure of the parent rock, that is, an amorphous mass of planar particles from antigorite and a fascicular mass of filaments from chrysotile. A microporic structure resulted when a small quantity of magnesium was allowed to remain in the skeleton structure and acid treatment conditions were properly adjusted. Several siliceous compounds were prepared for the purpose of finding use for silica from this rock, and then it was found that high-efficiency production of high-crystallinity compounds was possible and that they were furnished with properties fit for use as materials. Furthermore, study was made about the kaolinite reaction in which serpentine would be directly converted into useful materials. 105 refs., 55 figs., 6 tabs.

  15. Using Remotely Sensed Fluorescence and Soil Moisture to Better Understand the Seasonal Cycle of Tropical Grasslands

    Science.gov (United States)

    Smith, Dakota Carlysle

    Seasonal grasslands account for a large area of Earth's land cover. Annual and seasonal changes in these grasslands have profound impacts on Earth's carbon, energy, and water cycles. In tropical grasslands, growth is commonly water-limited and the landscape oscillates between highly productive and unproductive. As the monsoon begins, soils moisten providing dry grasses the water necessary to photosynthesize. However, along with the rain come clouds that obscure satellite products that are commonly used to study productivity in these areas. To navigate this issue, we used solar induced fluorescence (SIF) products from OCO-2 along with soil moisture products from the Soil Moisture Active Passive satellite (SMAP) to "see through" the clouds to monitor grassland productivity. To get a broader understanding of the vegetation dynamics, we used the Simple Biosphere Model (SiB4) to simulate the seasonal cycles of vegetation. In conjunction with SiB4, the remotely sensed SIF and soil moisture observations were utilized to paint a clearer picture of seasonal productivity in tropical grasslands. The remotely sensed data is not available for every place at one time or at every time for one place. Thus, the study was focused on a large area from 15° E to 35° W and from 8°S to 20°N in the African Sahel. Instead of studying productivity relative to time, we studied it relative to soil moisture. Through this investigation we found soil moisture thresholds for the emergence of grassland growth, near linear grassland growth, and maturity of grassland growth. We also found that SiB4 overestimates SIF by about a factor of two for nearly every value of soil moisture. On the whole, SiB4 does a surprisingly good job of predicting the response of seasonal growth in tropical grasslands to soil moisture. Future work will continue to integrate remotely sensed SIF & soil moisture with SiB4 to add to our growing knowledge of carbon, water, and energy cycling in tropical grasslands.

  16. Linear objects impact on grassland degradation in the typical steppe region of China

    NARCIS (Netherlands)

    Li, Suying; Verburg, Peter H.; Lv, Shihai; Gao, Shangyu; Wu, Jingle

    2011-01-01

    Despite growing recognition of the issue of grassland degradation, few regional estimates of linear object impacts on grassland degradation [1]. We presented a methodology for evaluating regional impacts on steppe degradation from linear objects which were two uppermost types, rivers and roads, in

  17. Avian diversity in the Naliya Grassland, Abdasa Taluka, Kachchh, India

    Directory of Open Access Journals (Sweden)

    Sandeep B Munjpara

    2012-03-01

    Full Text Available Naliya Grassland is one of the significant grasslands of Gujarat. In this study the importance of the Naliya Grassland has been explored with special reference to avian diversity. Field work for the study was carried out throughout the year of 2007 on a monthly basis covering three distinct seasons to explore avian diversity. A total of 177 species belonging to 54 families were recorded wherein most species belonged to the family Accipitridae (20 species followed by Alaudidae (11 species. Of the total families, five were represented by more than seven species, 18 families by 3-7 species and 31 families by one or two species respectively. Among the species observed, 16 species ware globally threatened (three Critically Endangered, four Endangered and nine Near Threatened. Most of the species were chiefly terrestrial (68.2%, about 23.9% species were freshwater dependant and 7.9% utilized mixed habitats. Maximum species richness was recorded in the monsoons and minimum in summer. Constant turnover and fluctuation in species richness occurred because of seasonal immigration and emigration. Maximum emigration took place during February and March and maximum immigration occurred during June and July. Many water dependant birds attracted to the flooded grassland during the monsoons explained the high species richness during this season. In winter, the area was inhabited by resident species as well as many migratory species.

  18. Evaluation of SPOT imagery for the estimation of grassland biomass

    Science.gov (United States)

    Dusseux, P.; Hubert-Moy, L.; Corpetti, T.; Vertès, F.

    2015-06-01

    In many regions, a decrease in grasslands and change in their management, which are associated with agricultural intensification, have been observed in the last half-century. Such changes in agricultural practices have caused negative environmental effects that include water pollution, soil degradation and biodiversity loss. Moreover, climate-driven changes in grassland productivity could have serious consequences for the profitability of agriculture. The aim of this study was to assess the ability of remotely sensed data with high spatial resolution to estimate grassland biomass in agricultural areas. A vegetation index, namely the Normalized Difference Vegetation Index (NDVI), and two biophysical variables, the Leaf Area Index (LAI) and the fraction of Vegetation Cover (fCOVER) were computed using five SPOT images acquired during the growing season. In parallel, ground-based information on grassland growth was collected to calculate biomass values. The analysis of the relationship between the variables derived from the remotely sensed data and the biomass observed in the field shows that LAI outperforms NDVI and fCOVER to estimate biomass (R2 values of 0.68 against 0.30 and 0.50, respectively). The squared Pearson correlation coefficient between observed and estimated biomass using LAI derived from SPOT images reached 0.73. Biomass maps generated from remotely sensed data were then used to estimate grass reserves at the farm scale in the perspective of operational monitoring and forecasting.

  19. High potential of sub-Mediterranean dry grasslands for sheep epizoochory

    Directory of Open Access Journals (Sweden)

    Kaligarič Mitja

    2016-01-01

    Full Text Available There is a general decline of grasslands across Europe due to habitat loss and degradation. Ensuring plant dispersal thus becomes a key process for preserving grassland patches in all scales. We examined diaspore dispersal by sheep epizoochory in the pastures of the North Adriatic Karst (NW Slovenia and determined the qualitative and quantitative features of diaspores in fur. We recorded 25,650 diaspores of 141 plant taxa (with 107 taxa and 23,350 diaspores determined to species level, using three different methods: (i the “whole-coat method”, (ii the “part-of-thecoat method” and (iii a “seedling emergence method”. A comparison of these techniques revealed that the “wholecoat method” provided the highest number of diaspores and plant species. All diaspores were clustered into five emergent groups based on seven functional traits (diaspore weight, length, width, height, volume, specific weight and the diaspore surface structure. Our research revealed that sheep represent an important dispersal vector, since about half of the plant species recorded in the pastures were found as diaspores in fur. This study contributes to knowledge about the modes of seed dispersal in seminatural grasslands. Taking into account that livestock play a key role in vegetation dynamics, understanding their effects on seed dispersal is essential for conservation and restoration of these species-rich grassland communities.

  20. Intensive management in grasslands causes diffuse water pollution at the farm scale.

    Science.gov (United States)

    Peukert, Sabine; Griffith, Bruce A; Murray, Phillip J; Macleod, Christopher J A; Brazier, Richard E

    2014-11-01

    Arable land use is generally assumed to be the largest contributor to agricultural diffuse pollution. This study adds to the growing evidence that conventional temperate intensively managed lowland grasslands contribute significantly to soil erosion and diffuse pollution rates. This is the first grassland study to monitor hydrological characteristics and multiple pollutant fluxes (suspended sediment [SS] and the macronutrients: total oxidized nitrogen-N [TON], total phosphorus [TP], and total carbon [TC]) at high temporal resolution (monitoring up to every 15 min) over 1 yr. Monitoring was conducted across three fields (6.5-7.5 ha) on the North Wyke Farm Platform, UK. The estimated annual erosion rates (up to 527.4 kg ha), TP losses (up to 0.9 kg ha), and TC losses (up to 179 kg ha) were similar to or exceeded the losses reported for other grassland, mixed land-use, and arable sites. Annual yields of TON (up to 3 kg ha) were less than arable land-use fluxes and earlier grassland N studies, an important result as the study site is situated within a Nitrate Vulnerable Zone. The high-resolution monitoring allowed detailed "system's functioning" understanding of hydrological processes, mobilization- transport pathways of individual pollutants, and the changes of the relative importance of diffuse pollutants through flow conditions and time. Suspended sediment and TP concentrations frequently exceeded water quality guidelines recommended by the European Freshwater Fisheries Directive (25 mg L) and the European Water Framework Directive (0.04 mg soluble reactive P L), suggesting that intensively managed grasslands pose a significant threat to receiving surface waters. Such sediment and nutrient losses from intensively managed grasslands should be acknowledged in land management guidelines and advice for future compliance with surface water quality standards. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of

  1. Terrestrial ecology. Comprehensive study of the grassland biome

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Terrestrial ecology and grassland biome studies are designed to characterize the biota of the Hanford Reservation, elucidate seasonal dynamics of plant productivity, decomposition and mineral behavior patterns of important plant communities, and, to study the response of these communities to important natural environmental stresses, such as weather, wildfire and man-induced alterations of communities (influenced by grazing cattle and severe mechanical disturbance of the soil, such as affected by plowing or burial of waste materials or construction activities). A detailed account of the important findings of a 5-yr study is currently being prepared by the terrestrial ecology section staff for publication as a contribution to the International Biological Program Grassland Biome project

  2. Traditional cattle grazing in a mosaic alkali landscape: effects on grassland biodiversity along a moisture gradient.

    Directory of Open Access Journals (Sweden)

    Péter Török

    Full Text Available Extensively managed pastures are of crucial importance in sustaining biodiversity both in local- and landscape-level. Thus, re-introduction of traditional grazing management is a crucial issue in grassland conservation actions worldwide. Traditional grazing with robust cattle breeds in low stocking rates is considered to be especially useful to mimic natural grazing regimes, but well documented case-studies are surprisingly rare on this topic. Our goal was to evaluate the effectiveness of traditional Hungarian Grey cattle grazing as a conservation action in a mosaic alkali landscape. We asked the following questions: (i How does cattle grazing affect species composition and diversity of the grasslands? (ii What are the effects of grazing on short-lived and perennial noxious species? (iii Are there distinct effects of grazing in dry-, mesophilous- and wet grassland types? Vegetation of fenced and grazed plots in a 200-ha sized habitat complex (secondary dry grasslands and pristine mesophilous- and wet alkali grasslands was sampled from 2006-2009 in East-Hungary. We found higher diversity scores in grazed plots compared to fenced ones in mesophilous- and wet grasslands. Higher cover of noxious species was typical in fenced plots compared to their grazed counterparts in the last year in every studied grassland type. We found an increasing effect of grazing from the dry- towards the wet grassland types. The year-to-year differences also followed similar pattern: the site-dependent effects were the lowest in the dry grassland and an increasing effect was detected along the moisture gradient. We found that extensive Hungarian Grey cattle grazing is an effective tool to suppress noxious species and to create a mosaic vegetation structure, which enables to maintain high species richness in the landscape. Hungarian Grey cattle can feed in open habitats along long moisture gradient, thus in highly mosaic landscapes this breed can be the most suitable

  3. Evaluating the Impacts of Grassland Conversions to Experimental Forest on Groundwater Recharge in the Nebraska Sand Hills

    Science.gov (United States)

    Adane, Zablon A.

    The Nebraska Sand Hills grasslands provide the greatest groundwater recharge rates in the High Plains Aquifer. However, the grasslands and their ecological services have become vulnerable to land use change and degradation. This study used a series of field data to investigate the effects of grassland conversions to forest on recharge rates in a century-old experimental forest in the Sand Hills. The results show that the impact of grassland conversion on recharge was dependent on the species and plantation density. Estimated recharge rates beneath the dense plantations represent reductions of 86-94% relative to the native grassland. Results of 1H Nuclear Magnetic Resonance spectral analysis suggested that the surface soil organic carbon beneath pine plantations also contain up to 3 times the ratio of hydrophobic components than the native grasslands and may alter the soil hydraulic properties. This investigation further uncovered a previously overlooked feedback between the effect of soil organic carbon chemical shift generated by the ponderosa pine needle litter decomposition; namely that the alteration may have a link to reduced groundwater recharge rates. Thus, a global optimizer algorithm was used to estimate the effective soil hydraulic parameters from monthly soil moisture contents and recharge rates were then estimated through HYDRUS 1-D numerical modeling for grassland and pine forest soils. The impact of grassland conversion to pine was an overall reduction of groundwater recharge by nearly 100%. These outcomes highlight the significance of the grasslands for recharge, in the Sand Hills and the sustainability of the High Plains Aquifer.

  4. The Impact of Ecological Construction Programs on Grassland Conservation in Inner Mongolia, China

    NARCIS (Netherlands)

    Liu, Min; Dries, Liesbeth; Heijman, Wim; Huang, Jikun; Zhu, Xueqin; Hu, Yuanning; Chen, Haibin

    2018-01-01

    A series of Ecological Construction Programs have been initiated to protect the condition of grasslands in China during recent decades. However, grassland degradation is still severe, and conditions have not been restored as intended. This paper aims to empirically examine the effectiveness of these

  5. Spatial probability models of fire in the desert grasslands of the southwestern USA

    Science.gov (United States)

    Fire is an important driver of ecological processes in semiarid environments; however, the role of fire in desert grasslands of the Southwestern US is controversial and the regional fire distribution is largely unknown. We characterized the spatial distribution of fire in the desert grassland region...

  6. Evaluating effects of habitat loss and land-use continuity on ant species richness in seminatural grassland remnants.

    Science.gov (United States)

    Dauber, Jens; Bengtsson, Jan; Lenoir, Lisette

    2006-08-01

    Seminatural grasslands in Europe are susceptible to habitat destruction and fragmentation that result in negative effects on biodiversity because of increased isolation and area effects on extinction rate. However even small habitatpatches of seminatural grasslands might be of value for conservation and restoration of species richness in a landscape with a long history of management, which has been argued to lead to high species richness. We tested whether ant communities have been negatively affected by habitat loss and increased isolation of seminatural grasslands during the twentieth century. We examined species richness and community composition in seminatural grasslands of different size in a mosaic landscape in Central Sweden. Grasslands managed continuously over centuries harbored species-rich and ecologically diverse ant communities. Grassland remnant size had no effect on ant species richness. Small grassland remnants did not harbor a nested subset of the ant species of larger habitats. Community composition of ants was mainly affected by habitat conditions. Our results suggest that the abandonment of traditional land use and the encroachment of trees, rather than the effects of fragmentation, are important for species composition in seminatural grasslands. Our results highlight the importance of considering land-use continuity and dispersal ability of thefocal organisms when examining the effects of habitat loss and fragmentation on biodiversity. Landscape history should be considered in conservation programs focusing on effects of land-use change.

  7. Fate of semi-natural grassland in England between 1960 and 2013: A test of national conservation policy

    Directory of Open Access Journals (Sweden)

    Lucy E. Ridding

    2015-07-01

    Full Text Available It is well documented that significant losses in semi-natural grassland occurred across Europe during the second half of the twentieth century. However, comparatively few studies have investigated and quantified the fate of large numbers of individual grassland areas. This is important for understanding the causes of decline, and consequently establishing new policies to conserve and restore lost habitats. This study addresses this problem; GIS was used to compare historic survey data collected between 1960 and 1981 with two contemporary spatial datasets of habitats in England. The datasets included the Priority Habitats Inventory 2013 and the Land Cover Map 2007 and this was undertaken for different types of semi-natural grassland across England. Considerable decreases occurred across the different grassland types, with a loss of 47% of studied semi-natural grasslands sites in England over 32–53 years. Of this, the majority of grassland was lost to conversion to agriculturally-improved grassland or arable cultivation, 45% and 43% respectively. Changes to woodland and urban areas were also evident, but on a much smaller scale. Sites receiving statutory protection as a Site of Special Scientific Interest were found to have retained more grassland (91%, compared with non-protected sites (27%, thus highlighting the effectiveness of this aspect of current conservation policy in England, and the need for this to continue in the future.

  8. Evaporation from Pinus caribaea plantations on former grassland soils under maritime tropical conditions

    Science.gov (United States)

    Waterloo, M. J.; Bruijnzeel, L. A.; Vugts, H. F.; Rawaqa, T. T.

    1999-07-01

    Wet canopy and dry canopy evaporation from young and mature plantations of Pinus caribaea on former grassland soils under maritime tropical conditions in southwestern Viti Levu, Fiji, were determined using micrometeorological and hydrological techniques. Modeled annual evaporation totals (ET) of 1926 and 1717 mm were derived for the 6- and the 15-year-old stands, respectively. Transpiration made up 72% and 70% of annual ET, and modeled rainfall interception by the trees and litter layer was 20-22% and 8-9% in the young and the mature stands respectively. Monthly ET was related to forest leaf area index and was much higher than that for the kind of tall fire-climax Pennisetum polystachyon grassland replaced by the forests. Grassland reforestation resulted in a maximum decrease in annual water yield of 1180 mm on a plot basis, although it is argued that a reduction of (at least) 500-700 mm would be more realistic at the catchment scale. The impact of reforesting grassland on the water resources in southwest Viti Levu is enhanced by its location in a maritime, seasonal climate in the outer tropics, which favors a larger difference between annual forest and grassland evaporation totals than do equatorial regions.

  9. Trajectories of grassland ecosystem change in response to experimental manipulations of precipitation

    Science.gov (United States)

    Knapp, Alan; Smith, Melinda; Collins, Scott; Blair, John; Briggs, John

    2010-05-01

    Understanding and predicting the dynamics of ecological systems has always been central to Ecology. Today, ecologists recognize that in addition to natural and human-caused disturbances, a fundamentally different type of ecosystem change is being driven by the combined and cumulative effects of anthropogenic activities affecting earth's climate and biogeochemical cycles. This type of change is historically unprecedented in magnitude, and as a consequence, such alterations are leading to trajectories of change in ecological responses that differ radically from those observed in the past. Through both short- and long-term experiments, we have been trying to better understand the mechanisms and consequences of ecological change in grassland ecosystems likely to result from changes in precipitation regimes. We have manipulated a key resource for most grasslands (water) and modulators of water availability (temperature) in field experiments that vary from 1-17 years in duration, and used even longer-term monitoring data from the Konza Prairie LTER program to assess how grassland communities and ecosystems will respond to changes in water availability. Trajectories of change in aboveground net primary production (ANPP) in sites subjected to 17 years of soil water augmentation were strongly non-linear with a marked increase in the stimulation of ANPP after year 8 (from 25% to 65%). Lags in alterations in grassland community composition are posited to be responsible for the form of this trajectory of change. In contrast, responses in ANPP to chronic increases in soil moisture variability appear to have decreased over a 10-yr period of manipulation, although the net effects of more variable precipitation inputs were to reduce ANPP, alter the genetic structure of the dominant grass species, increase soil nitrogen availability and reduce soil respiration. The loss of sensitivity to increased resource variability was not reflected in adjacent plots where precipitation was

  10. Increasing temperature reduces the coupling between available nitrogen and phosphorus in soils of Chinese grasslands

    Science.gov (United States)

    Geng, Yan; Baumann, Frank; Song, Chao; Zhang, Mi; Shi, Yue; Kühn, Peter; Scholten, Thomas; He, Jin-Sheng

    2017-03-01

    Changes in climatic conditions along geographical gradients greatly affect soil nutrient cycling processes. Yet how climate regimes such as changes in temperature influence soil nitrogen (N) and phosphorus (P) concentrations and their stoichiometry is not well understood. This study investigated the spatial pattern and variability of soil N and P availability as well as their coupling relationships at two soil layers (0-10 and 10-20 cm) along a 4000-km climate transect in two grassland biomes of China, the Inner Mongolian temperate grasslands and the Tibetan alpine grasslands. Our results found that in both grasslands, from cold to warm sites the amounts of soil total N, total P and available P all decreased. By contrast, the amount of available N was positively related to mean annual temperature in the Tibetan grasslands. Meanwhile, with increasing temperature ratio of available N to P significantly increased but the linear relationship between them was considerably reduced. Thus, increasing temperature may not only induce a stoichiometric shift but also loose the coupling between available N and P. This N-P decoupling under warmer conditions was more evident in the Tibetan alpine grasslands where P limitation might become more widespread relative to N as temperatures continue to rise.

  11. Seasonal/Interannual Variations of Carbon Sequestration and Carbon Emission in a Warm-Season Perennial Grassland

    OpenAIRE

    Deepa Dhital; Tomoharu Inoue; Hiroshi Koizumi

    2014-01-01

    Carbon sequestration and carbon emission are processes of ecosystem carbon cycling that can be affected while land area converted to grassland resulting in increased soil carbon storage and below-ground respiration. Discerning the importance of carbon cycle in grassland, we aimed to estimate carbon sequestration in photosynthesis and carbon emission in respiration from soil, root, and microbes, for four consecutive years (2007–2010) in a warm-season perennial grassland, Japan. Soil carbon emi...

  12. Responses of soil fungal community to the sandy grassland restoration in Horqin Sandy Land, northern China.

    Science.gov (United States)

    Wang, Shao-Kun; Zuo, Xiao-An; Zhao, Xue-Yong; Li, Yu-Qiang; Zhou, Xin; Lv, Peng; Luo, Yong-Qing; Yun, Jian-Ying

    2016-01-01

    Sandy grassland restoration is a vital process including re-structure of soils, restoration of vegetation, and soil functioning in arid and semi-arid regions. Soil fungal community is a complex and critical component of soil functioning and ecological balance due to its roles in organic matter decomposition and nutrient cycling following sandy grassland restoration. In this study, soil fungal community and its relationship with environmental factors were examined along a habitat gradient of sandy grassland restoration: mobile dunes (MD), semi-fixed dunes (SFD), fixed dunes (FD), and grassland (G). It was found that species abundance, richness, and diversity of fungal community increased along with the sandy grassland restoration. The sequences analysis suggested that most of the fungal species (68.4 %) belonged to the phylum of Ascomycota. The three predominant fungal species were Pleospora herbarum, Wickerhamomyces anomalus, and Deconica Montana, accounting for more than one fourth of all the 38 species. Geranomyces variabilis was the subdominant species in MD, Pseudogymnoascus destructans and Mortierella alpine were the subdominant species in SFD, and P. destructans and Fungi incertae sedis were the dominant species in FD and G. The result from redundancy analysis (RDA) and stepwise regression analysis indicated that the vegetation characteristics and soil properties explain a significant proportion of the variation in the fungal community, and aboveground biomass and C:N ratio are the key factors to determine soil fungal community composition during sandy grassland restoration. It was suggested that the restoration of sandy grassland combined with vegetation and soil properties improved the soil fungal diversity. Also, the dominant species was found to be alternative following the restoration of sandy grassland ecosystems.

  13. A Satellite-Based Model for Simulating Ecosystem Respiration in the Tibetan and Inner Mongolian Grasslands

    Directory of Open Access Journals (Sweden)

    Rong Ge

    2018-01-01

    Full Text Available It is important to accurately evaluate ecosystem respiration (RE in the alpine grasslands of the Tibetan Plateau and the temperate grasslands of the Inner Mongolian Plateau, as it serves as a sensitivity indicator of regional and global carbon cycles. Here, we combined flux measurements taken between 2003 and 2013 from 16 grassland sites across northern China and the corresponding MODIS land surface temperature (LST, enhanced vegetation index (EVI, and land surface water index (LSWI to build a satellite-based model to estimate RE at a regional scale. First, the dependencies of both spatial and temporal variations of RE on these biotic and climatic factors were examined explicitly. We found that plant productivity and moisture, but not temperature, can best explain the spatial pattern of RE in northern China’s grasslands; while temperature plays a major role in regulating the temporal variability of RE in the alpine grasslands, and moisture is equally as important as temperature in the temperate grasslands. However, the moisture effect on RE and the explicit representation of spatial variation process are often lacking in most of the existing satellite-based RE models. On this basis, we developed a model by comprehensively considering moisture, temperature, and productivity effects on both temporal and spatial processes of RE, and then, we evaluated the model performance. Our results showed that the model well explained the observed RE in both the alpine (R2 = 0.79, RMSE = 0.77 g C m−2 day−1 and temperate grasslands (R2 = 0.75, RMSE = 0.60 g C m−2 day−1. The inclusion of the LSWI as the water-limiting factor substantially improved the model performance in arid and semi-arid ecosystems, and the spatialized basal respiration rate as an indicator for spatial variation largely determined the regional pattern of RE. Finally, the model accurately reproduced the seasonal and inter-annual variations and spatial variability of RE, and it avoided

  14. A study of the carbon dynamics of Japanese grassland and forest using 14C and 13C

    International Nuclear Information System (INIS)

    Katsuno, Kazumi; Miyairi, Yosuke; Tamura, Kenji; Matsuzaki, Hiroyuki; Fukuda, Kenji

    2010-01-01

    We quantified the carbon contents of grassland and forest soil using conventional methods and studied the changes in their dynamics by measuring δ 13 C and Δ 14 C. Soil samples were taken from a neighboring Miscanthus sinensis grassland and Pinus densiflora forest in central Japan. Both had been maintained as grassland until the 1960s, when the latter was abandoned and became a pine forest by natural succession. The soil carbon content of the forest was much lower than that of the grassland, implying that the soil carbon decreased as the grassland became forest. The δ 13 C values were very similar in the grassland and forest, at approximately -20 per mille , suggesting that M. sinensis (a C4 plant) contributed to carbon storage, whereas there was little carbon accumulation from P. densiflora (a C3 plant) in forest soil. The Δ 14 C values and calculated soil carbon mean residence time (MRT) showed that the soil carbon in the upper A horizon was older, and that in the lower A horizon was younger in forest than in grassland. From these results, we conclude that young, fast-MRT soil carbon is decomposed in the upper A horizon, and old, stable soil carbon was decomposed in the lower A horizon after the pine invasion.

  15. Combining social policy and scientific knowledge with stakeholder participation can benefit on salted grassland production in Northeast China

    Science.gov (United States)

    Wang, Deli; Yang, Zhiming; Wang, Ling; Sun, Wei

    2015-04-01

    Soil salinization is a serious environmental problem across the Eurasian steppes, where millions people have been living for at least five thousand years and will still depend on it in the near future. During the last several decades, ecologists and grassland scientists have done much research on rational grassland utilization avoiding land degradation and reduction in ecological services. Meanwhile, the central and local governments took some attempts of agricultural policy and ecological subsidy to mitigate large scale land salinization in Northeast China. Fortunately, more and more farmers and stakeholders begin to adopt rational grassland management with the guidance of scientists and the help of local governments. However, up to date, there is still a gap between farmers, scientists and governments, which often negatively affect grassland production and remission of soil salinization in these areas. We conducted a case study on sustainable grassland production adapted to steppe salinization funded by EC project from 2011 to 2013. Our goal is trying to establish a mode of adaptive grassland management integrating previous scientific knowledge (grazing and seeding), current agricultural policies (ecological subsidy) and stakeholders' participation or performance. The study showed that: A. Despite of some grassland utilization techniques available for stakeholders (regulating stocking rate and seeding in pastures, or planting high quality forages), they tended to take the simplest action to enhance animal production and prevent grassland salinization; B. Compared to educating or training stakeholders, demonstration of grazing management is the most effective mean for knowledge dissemination or technology transfer; C. Ecological subsidy is absolutely welcome to the local people, and technology transfer became easier when combined with ecological subsidy; D. There was a contrasting effect in grassland production and land degradation mitigation for experimental farm

  16. Combining Livestock Production Information in a Process-Based Vegetation Model to Reconstruct the History of Grassland Management

    Science.gov (United States)

    Chang, Jinfeng; Ciais, Philippe; Herrero, Mario; Havlik, Petr; Campioli, Matteo; Zhang, Xianzhou; Bai, Yongfei; Viovy, Nicolas; Joiner, Joanna; Wang, Xuhui; hide

    2016-01-01

    Grassland management type (grazed or mown) and intensity (intensive or extensive) play a crucial role in the greenhouse gas balance and surface energy budget of this biome, both at field scale and at large spatial scale. However, global gridded historical information on grassland management intensity is not available. Combining modelled grass-biomass productivity with statistics of the grass-biomass demand by livestock, we reconstruct gridded maps of grassland management intensity from 1901 to 2012. These maps include the minimum area of managed vs. maximum area of unmanaged grasslands and the fraction of mown vs. grazed area at a resolution of 0.5deg by 0.5deg. The grass-biomass demand is derived from a livestock dataset for 2000, extended to cover the period 19012012. The grass-biomass supply (i.e. forage grass from mown grassland and biomass grazed) is simulated by the process-based model ORCHIDEE-GM driven by historical climate change, risingCO2 concentration, and changes in nitrogen fertilization. The global area of managed grassland obtained in this study increases from 6.1 x 10(exp 6) km(exp 2) in 1901 to 12.3 x 10(exp 6) kmI(exp 2) in 2000, although the expansion pathway varies between different regions. ORCHIDEE-GM also simulated augmentation in global mean productivity and herbage-use efficiency over managed grassland during the 20th century, indicating a general intensification of grassland management at global scale but with regional differences. The gridded grassland management intensity maps are model dependent because they depend on modelled productivity. Thus specific attention was given to the evaluation of modelled productivity against a series of observations from site-level net primary productivity (NPP) measurements to two global satellite products of gross primary productivity (GPP) (MODIS-GPP and SIF data). Generally, ORCHIDEE-GM captures the spatial pattern, seasonal cycle, and inter-annual variability of grassland productivity at global

  17. Topographic and Bioclimatic Determinants of the Occurrence of Forest and Grassland in Tropical Montane Forest-Grassland Mosaics of the Western Ghats, India.

    Directory of Open Access Journals (Sweden)

    Arundhati Das

    Full Text Available The objective of this analysis was to identify topographic and bioclimatic factors that predict occurrence of forest and grassland patches within tropical montane forest-grassland mosaics. We further investigated whether interactions between topography and bioclimate are important in determining vegetation pattern, and assessed the role of spatial scale in determining the relative importance of specific topographic features. Finally, we assessed the role of elevation in determining the relative importance of diverse explanatory factors. The study area consists of the central and southern regions of the Western Ghats of Southern India, a global biodiversity hotspot. Random forests were used to assess prediction accuracy and predictor importance. Conditional inference classification trees were used to interpret predictor effects and examine potential interactions between predictors. GLMs were used to confirm predictor importance and assess the strength of interaction terms. Overall, topographic and bioclimatic predictors classified vegetation pattern with approximately 70% accuracy. Prediction accuracy was higher for grassland than forest, and for mosaics at higher elevations. Elevation was the most important predictor, with mosaics above 2000 m dominated largely by grassland. Relative topographic position measured at a local scale (within a 300 m neighbourhood was another important predictor of vegetation pattern. In high elevation mosaics, northness and concave land surface curvature were important predictors of forest occurrence. Important bioclimatic predictors were: dry quarter precipitation, annual temperature range and the interaction between the two. The results indicate complex interactions between topography and bioclimate and among topographic variables. Elevation and topography have a strong influence on vegetation pattern in these mosaics. There were marked regional differences in the roles of various topographic and bioclimatic

  18. Topographic and Bioclimatic Determinants of the Occurrence of Forest and Grassland in Tropical Montane Forest-Grassland Mosaics of the Western Ghats, India.

    Science.gov (United States)

    Das, Arundhati; Nagendra, Harini; Anand, Madhur; Bunyan, Milind

    2015-01-01

    The objective of this analysis was to identify topographic and bioclimatic factors that predict occurrence of forest and grassland patches within tropical montane forest-grassland mosaics. We further investigated whether interactions between topography and bioclimate are important in determining vegetation pattern, and assessed the role of spatial scale in determining the relative importance of specific topographic features. Finally, we assessed the role of elevation in determining the relative importance of diverse explanatory factors. The study area consists of the central and southern regions of the Western Ghats of Southern India, a global biodiversity hotspot. Random forests were used to assess prediction accuracy and predictor importance. Conditional inference classification trees were used to interpret predictor effects and examine potential interactions between predictors. GLMs were used to confirm predictor importance and assess the strength of interaction terms. Overall, topographic and bioclimatic predictors classified vegetation pattern with approximately 70% accuracy. Prediction accuracy was higher for grassland than forest, and for mosaics at higher elevations. Elevation was the most important predictor, with mosaics above 2000 m dominated largely by grassland. Relative topographic position measured at a local scale (within a 300 m neighbourhood) was another important predictor of vegetation pattern. In high elevation mosaics, northness and concave land surface curvature were important predictors of forest occurrence. Important bioclimatic predictors were: dry quarter precipitation, annual temperature range and the interaction between the two. The results indicate complex interactions between topography and bioclimate and among topographic variables. Elevation and topography have a strong influence on vegetation pattern in these mosaics. There were marked regional differences in the roles of various topographic and bioclimatic predictors across the

  19. Changes in grassland management and plant diversity in a marginal region of the Carpathian Mts. in 1999-2015.

    Science.gov (United States)

    Halada, Ľuboš; David, Stanislav; Hreško, Juraj; Klimantová, Alexandra; Bača, Andrej; Rusňák, Tomáš; Buraľ, Miroslav; Vadel, Ľuboš

    2017-12-31

    The political change from socialism to democracy in countries of Central and Eastern Europe at the end of the 20th century induced broad changes in agriculture mostly due to land ownership changes and strong reduction of subsidies to agriculture. This resulted in agricultural decline, including grassland abandonment, which influenced grassland biodiversity and conservation. Between 1999 and 2015 we studied the grasslands in the area depopulated in the early 1980's in the Poloniny National Park (NE Slovakia, Carpathian Mts.). The aim of the study was to examine influence of environmental factors and grassland management driven by the Common Agricultural Policy (CAP) to plant community structure and taxonomical diversity. We identified altitude and soil properties as the main environmental factors: altitude determines climate gradient and probably also management intensity gradient and soil properties express soil fertility via A-horizon depth. We identified remarkable increase of proportion of managed grasslands from only 8% in 1999 to 40% in 2012-2015; other 7% of sampled grasslands were recently restored and prepared for future management. The average species richness in grasslands managed in 2012-2015 increased from 47.5 species per record in 1999 to 54.2 species in 2012-2015, the increase was found statistically significant. In 2012-2015, we observed statistically significant difference in the average species richness between managed (54.2) and abandoned grasslands (46.3). The agricultural subsidies of the CAP drive the grassland management in the study area. Therefore, we conclude that CAP enabled grassland biodiversity maintenance in significant part of the Poloniny National Park following start of its application in 2004 and above provided figures can be considered as indicators of the CAP effectiveness in our study area. However, the conservation of mountain meadows remains a challenge because of their poor accessibility. Copyright © 2017 Elsevier B.V. All

  20. Monitoring aeolian desertification process in Hulunbir grassland during 1975-2006, Northern China.

    Science.gov (United States)

    Guo, Jian; Wang, Tao; Xue, Xian; Ma, Shaoxiu; Peng, Fei

    2010-07-01

    The Hulunbir grassland experienced aeolian desertification expansion during 1975-2000, but local rehabilitation during 2000-2006. Northern China suffered severe aeolian desertification during the past 50 years. Hulunbir grassland, the best stockbreeding base in Northern China, was also affected by aeolian desertification. To evaluate the evolution and status of aeolian desertification, as well as its causes, satellite images (acquired in 1975, 1984, 2000, and 2006) and meteorological and socioeconomic data were interpreted and analyzed. The results show there was 2,345.7, 2,899.8, 4,053.9, and 3,859.6 km(2) of aeolian desertified land in 1975, 1984, 2000, and 2006, respectively. The spatial pattern dynamic had three stages: stability during 1975-1984, fast expansion during 1984-2000, and spatial transfer during 2000-2006. The dynamic degree of aeolian desertification is negatively related to its severity. Comprehensive analysis shows that the human factor is the primary cause of aeolian desertification in Hulunbir grassland. Although aeolian desertified land got partly rehabilitated, constant increase of extremely severe aeolian desertified land implied that current measures were not effective enough on aeolian desertification control. Alleviation of grassland pressure may be an effective method.

  1. Impacts of atmospheric pollution on the plant communities of British acid grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Richard J., E-mail: r.payne@mmu.ac.uk [School of Science and the Environment, Manchester Metropolitan University, Chester St., Manchester M1 5GD (United Kingdom); Geography, School of Environment and Development, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Stevens, Carly J. [Faculty of Science, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ (United Kingdom); Dise, Nancy B. [School of Science and the Environment, Manchester Metropolitan University, Chester St., Manchester M1 5GD (United Kingdom); Gowing, David J. [Faculty of Science, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Pilkington, Michael G.; Phoenix, Gareth K. [Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Sheffield S10 2TN (United Kingdom); Emmett, Bridget A. [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Ashmore, Michael R. [Environment Department, University of York, Heslington, York YO10 5DD (United Kingdom)

    2011-10-15

    Air pollutants are recognised as important agents of ecosystem change but few studies consider the effects of multiple pollutants and their interactions. Here we use ordination, constrained cluster analysis and indicator value analyses to identify potential environmental controls on species composition, ecological groupings and indicator species in a gradient study of UK acid grasslands. The community composition of these grasslands is related to climate, grazing, ozone exposure and nitrogen deposition, with evidence for an interaction between the ecological impacts of base cation and nitrogen deposition. Ozone is a key agent in species compositional change but is not associated with a reduction in species richness or diversity indices, showing the subtly different drivers on these two aspects of ecosystem degradation. Our results demonstrate the effects of multiple interacting pollutants, which may collectively have a greater impact than any individual agent. - Highlights: > Ozone exposure, N and base cation deposition modify UK acid grassland composition. > Ozone influences community composition without reducing species richness. > Nitrogen and base cation deposition have interacting impacts. > Distinct species responses to pollutants suggest potential for bioindication. - Ozone exposure and nitrogen deposition have distinct but additive impacts on the plant communities of British acid grasslands.

  2. Impacts of atmospheric pollution on the plant communities of British acid grasslands

    International Nuclear Information System (INIS)

    Payne, Richard J.; Stevens, Carly J.; Dise, Nancy B.; Gowing, David J.; Pilkington, Michael G.; Phoenix, Gareth K.; Emmett, Bridget A.; Ashmore, Michael R.

    2011-01-01

    Air pollutants are recognised as important agents of ecosystem change but few studies consider the effects of multiple pollutants and their interactions. Here we use ordination, constrained cluster analysis and indicator value analyses to identify potential environmental controls on species composition, ecological groupings and indicator species in a gradient study of UK acid grasslands. The community composition of these grasslands is related to climate, grazing, ozone exposure and nitrogen deposition, with evidence for an interaction between the ecological impacts of base cation and nitrogen deposition. Ozone is a key agent in species compositional change but is not associated with a reduction in species richness or diversity indices, showing the subtly different drivers on these two aspects of ecosystem degradation. Our results demonstrate the effects of multiple interacting pollutants, which may collectively have a greater impact than any individual agent. - Highlights: → Ozone exposure, N and base cation deposition modify UK acid grassland composition. → Ozone influences community composition without reducing species richness. → Nitrogen and base cation deposition have interacting impacts. → Distinct species responses to pollutants suggest potential for bioindication. - Ozone exposure and nitrogen deposition have distinct but additive impacts on the plant communities of British acid grasslands.

  3. Exergy Analysis of Serpentine Thermosyphon Solar Water Heater

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal Hasan

    2018-03-01

    Full Text Available The performance of a solar hot water system is assessed for heat pump and domestic heating applications. Thermodynamic analysis on a serpentine-type thermosyphon flat-plate solar heater is conducted using the Second Law of thermodynamics. Exergetic optimization is first performed to determine the parameters for the maximum exergy efficiency using MATLAB optimization toolbox. Geometric parameters (collector surface area, dimensions, and pipe diameter, optical parameters (transmittance absorptance product, ambient temperature, solar irradiation and operating parameters (mass flow rate, fluid temperature, and overall heat transfer (loss coefficient are accounted for in the optimization scheme. The exergy efficiency at optimum condition is found to be 3.72%. The results are validated using experimental data and found to be in good agreement. The analysis is further extended to the influence of various operating parameters on the exergetic efficiency. It is observed that optical and thermal exergy losses contribute almost 20%, whereas approximately 77% exergy destruction is contributed by the thermal energy conversion. Exergy destruction due to pressure drop is found negligible. The result of this analysis can be used for designing and optimization of domestic heat pump system and hot water application.

  4. 77 FR 75119 - Dakota Prairie Grasslands, North Dakota; Oil and Gas Development Supplemental Environmental...

    Science.gov (United States)

    2012-12-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Dakota Prairie Grasslands, North Dakota; Oil and Gas... to prepare a supplemental environmental impact statement. SUMMARY: In June of 2003, the Dakota... Dakota Prairie Grasslands Land and Resource Management Plan, based on the 2001 Northern Great Plains...

  5. Potential of endozoochorous seed dispersal by sheep in calcareous grasslands: correlations with seed traits.

    NARCIS (Netherlands)

    Kuiters, A.T.; Huiskes, H.P.J.

    2010-01-01

    Questions: What is the potential of sheep to serve as seed dispersers via ingestion and defecation in calcareous grasslands? Is the presence of viable seeds from dung correlated with specific seed traits? Location: Calcareous grasslands, South Limburg, the Netherlands/Belgium. Methods: Dung samples

  6. Serpentine soils affect heavy metal tolerance but not genetic diversity in a common Mediterranean ant.

    Science.gov (United States)

    Frizzi, Filippo; Masoni, Alberto; Çelikkol, Mine; Palchetti, Enrico; Ciofi, Claudio; Chelazzi, Guido; Santini, Giacomo

    2017-08-01

    Natural habitats with serpentine soils are rich in heavy metal ions, which may significantly affect ecological communities. Exposure to metal pollutants results, for instance, in a reduction of population genetic diversity and a diffused higher tolerance towards heavy metals. In this study, we investigated whether chronic exposure to metals in serpentine soils affect accumulation patterns, tolerance towards metal pollutants, and genetic diversity in ants. In particular, we studied colonies of the common Mediterranean ant, Crematogaster scutellaris, along a contamination gradient consisting of two differently contaminated forests and a reference soil with no geogenic contamination. We first evaluated the metal content in both soil and ants' body. Then, we tested for tolerance towards metal pollutants by evaluating the mortality of ants fed with nickel (Ni) solutions of increasing concentrations. Finally, differences in genetic diversity among ants from different areas were assessed using eight microsatellite loci. Interestingly, a higher tolerance to nickel solutions was found in ants sampled in sites with intermediate levels of heavy metals. This may occur, because ants inhabiting strongly contaminated areas tend to accumulate higher amounts of contaminants. Additional ingestion of toxicants beyond the saturation threshold would lead to death. There was no difference in the genetic diversity among ant colonies sampled in different sites. This was probably the result of queen mediated gene flow during nuptial flights across uncontaminated and contaminated areas of limited geographical extent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mapping Plant Functional Groups in Subalpine Grassland of the Greater Caucasus

    Directory of Open Access Journals (Sweden)

    Anja Magiera

    2018-02-01

    Full Text Available Plant functional groups—in our case grass, herbs, and legumes—and their spatial distribution can provide information on key ecosystem functions such as species richness, nitrogen fixation, and erosion control. Knowledge about the spatial distribution of plant functional groups provides valuable information for grassland management. This study described and mapped the distribution of grass, herb, and legume coverage of the subalpine grassland in the high-mountain Kazbegi region, Greater Caucasus, Georgia. To test the applicability of new sensors, we compared the predictive power of simulated hyperspectral canopy reflectance, simulated multispectral reflectance, simulated vegetation indices, and topographic variables for modeling plant functional groups. The tested grassland showed characteristic differences in species richness; in grass, herb, and legume coverage; and in connected structural properties such as yield. Grass (Hordeum brevisubulatum was dominant in biomass-rich hay meadows. Herb-rich grassland featured the highest species richness and evenness, whereas legume-rich grassland was accompanied by a high coverage of open soil and showed dominance of a single species, Astragalus captiosus. The best model fits were achieved with a combination of reflectance, vegetation indices, and topographic variables as predictors. Random forest models for grass, herb, and legume coverage explained 36%, 25%, and 37% of the respective variance, and their root mean square errors varied between 12–15%. Hyperspectral and multispectral reflectance as predictors resulted in similar models. Because multispectral data are more easily available and often have a higher spatial resolution, we suggest using multispectral parameters enhanced by vegetation indices and topographic parameters for modeling grass, herb, and legume coverage. However, overall model fits were merely moderate, and further testing, including stronger gradients and the addition of

  8. LEAF AREA DYNAMICS AND ABOVEGROUND BIOMASS OF SPECIFIC VEGETATION TYPES OF A SEMI-ARID GRASSLAND IN SOUTHERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Bosco Kidake Kisambo

    2016-12-01

    Full Text Available Leaf Area Index (LAI dynamics and aboveground biomass of a semi-arid grassland region in Southern Ethiopia were determined over a long rain season. The vegetation was categorized into four distinct vegetation types namely Grassland (G, Tree-Grassland (TG, Bushed-Grassland (BG and Bush-Tree grassland (BT. LAI was measured using a Plant Canopy Analyzer (LAI2000. Biomass dynamics of litter and herbaceous components were determined through clipping while the above ground biomass of trees and shrubs were estimated using species-specific allometric equations from literature. LAI showed a seasonal increase over the season with the maximum recorded in the BG vegetation (2.52. Total aboveground biomass for the different vegetation types ranged from 0.61 ton C/ha in areas where trees were non-existent to 8.80 ± 3.81ton C/ha in the Tree-Grassland vegetation in the study site. A correlation of LAI and AGB yielded a positive relationship with an R2 value of 0.55. The results demonstrate the importance of tropical semi-arid grasslands as carbon sinks hence their potential in mitigation of climate change.

  9. [Effects of desertification on C and N storages in grassland ecosystem on Horqin sandy land].

    Science.gov (United States)

    Zhao, Ha-lin; Li, Yu-qiang; Zhou, Rui-lian

    2007-11-01

    Sandy grassland is widespread in northern China, where desertification is very common because of overgrazing and estrepement. However, little is known about the effects of desertification on grassland C and N storages in this region. A field survey was conducted on Horqin sandy grassland, and desertification gradients were established to evaluate the effects of desertification on C and N storages in soil, plant, and litter. The results showed that desertification had deep effects on the contents and storages of grassland C and N. The C and N contents and storages in the grassland decreased significantly with increasing desertification degree. Comparing with those in un-desertified grassland, the C and N contents in lightly, moderately, heavily, and severely desertified grasslands decreased by 56.06% and 48.72%, 78.43% and 74.36%, 88.95% and 84.62%, and 91.64% and 84.62% in 0-100 cm soil layer, and by 8.61% and 6.43%, 0.05% and 25.71%, 2.58% and 27.14%, and 8. 61% and 27. 86% in plant components, respectively. Relevantly, the C and N storages decreased by 50.95% and 43.38%, 75.19% and 71.04%, 86.76% and 81.48%, and 91.17% and 83.17% in plant underground components in 0-100 cm soil layer, and by 25.08% and 27.62%, 30.90% and 46.55%, 73.84% and 80.62%, and 90.89% and 87.31% in plant aboveground components, respectively. In 2000, the total area of desertified grassland in Horqin sandy land was 30152. 7 km2, and the C and N loss via desertification reached up to 107.53 and 9.97 Mt, respectively. Correlation analysis indicated that the decrease of soil C and N contents was mainly come from the decreased soil fine particles caused by wind erosion in the process of desertification, and the degradation of soil texture- and nutrient status led finally to the rapid decrease of C and N storages in plant biomass and litter.

  10. Methane-bearing fluids in subduction zones: an experimental study of abiotic methanogenesis during serpentinization at 12 kbar and 300°C

    Science.gov (United States)

    Lazar, C.; Manning, C. E.

    2009-12-01

    Serpentinization within subduction zones may generate reduced fluids that contain higher concentrations of abiotic methane than near-surface ultramafic environments. We present preliminary experimental data suggesting that the kinetics of abiotic methanogenesis are enhanced at high pressures. Thermodynamic calculations of C-O-H fluid speciations at the low oxygen fugacities attained during early serpentinization suggest complete conversion of oxidized carbon to methane, yet previous field and experimental investigations have reported fluid compositions with CH4/CO2 far below equilibrium (McCollom and Seewald, 2007). Much experimental work, therefore, has focused on CH4 production rates and the kinetic effects of temperature and mineral catalysis (Horita and Berdt, 1999; Foustoukos and Seyfried, 2004). Methane has been shown experimentally to form at very high pressures (Scott et al, 2004), but the quantitative effect of pressure on methanogenesis kinetics is unknown. We present preliminary results of a comparison of methane production rates at 0.35 and 12 kbar, 300°C, using experiments performed in piston cylinder and cold seal hydrothermal apparatus. Carbon was introduced as a roughly 70 mmol solution of isotopically-labeled formic acid, H13COOH, known to decompose to 13CO2 and H2 at run conditions. Roughly 15 mL of this solution, along with 1.9 mg of natural awaruite (Ni3Fe), was loaded into a gold capsule and then sealed via DC spot welding. Awaruite, a known methane catalyst (Horita and Berndt, 1999), was added to increase the overall rates of all experiments in order to boost the concentration for analysis and as an fO2 buffer appropriate for serpentinization. The experiments were held at T and P for approximately 160 hours. After each run, the capsule was placed in a gas vial and punctured with a needle. The contents of the vial were extracted via gas syringe and injected into gas chromatograph mass spectrometer (GC-MS). CH4 concentration in the 12 kbar run

  11. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2.

    Science.gov (United States)

    Morgan, J A; Pataki, D E; Körner, C; Clark, H; Del Grosso, S J; Grünzweig, J M; Knapp, A K; Mosier, A R; Newton, P C D; Niklaus, P A; Nippert, J B; Nowak, R S; Parton, W J; Polley, H W; Shaw, M R

    2004-06-01

    Atmospheric CO2 enrichment may stimulate plant growth directly through (1) enhanced photosynthesis or indirectly, through (2) reduced plant water consumption and hence slower soil moisture depletion, or the combination of both. Herein we describe gas exchange, plant biomass and species responses of five native or semi-native temperate and Mediterranean grasslands and three semi-arid systems to CO2 enrichment, with an emphasis on water relations. Increasing CO2 led to decreased leaf conductance for water vapor, improved plant water status, altered seasonal evapotranspiration dynamics, and in most cases, periodic increases in soil water content. The extent, timing and duration of these responses varied among ecosystems, species and years. Across the grasslands of the Kansas tallgrass prairie, Colorado shortgrass steppe and Swiss calcareous grassland, increases in aboveground biomass from CO2 enrichment were relatively greater in dry years. In contrast, CO2-induced aboveground biomass increases in the Texas C3/C4 grassland and the New Zealand pasture seemed little or only marginally influenced by yearly variation in soil water, while plant growth in the Mojave Desert was stimulated by CO2 in a relatively wet year. Mediterranean grasslands sometimes failed to respond to CO2-related increased late-season water, whereas semiarid Negev grassland assemblages profited. Vegetative and reproductive responses to CO2 were highly varied among species and ecosystems, and did not generally follow any predictable pattern in regard to functional groups. Results suggest that the indirect effects of CO2 on plant and soil water relations may contribute substantially to experimentally induced CO2-effects, and also reflect local humidity conditions. For landscape scale predictions, this analysis calls for a clear distinction between biomass responses due to direct CO2 effects on photosynthesis and those indirect CO2 effects via soil moisture as documented here.

  12. Air quality and human health impacts of grasslands and shrublands in the United States

    Science.gov (United States)

    Gopalakrishnan, Varsha; Hirabayashi, Satoshi; Ziv, Guy; Bakshi, Bhavik R.

    2018-06-01

    Vegetation including canopy, grasslands, and shrublands can directly sequester pollutants onto the plant surface, resulting in an improvement in air quality. Until now, several studies have estimated the pollution removal capacity of canopy cover at the level of a county, but no such work exists for grasslands and shrublands. This work quantifies the air pollution removal capacity of grasslands and shrublands at the county-level in the United States and estimates the human health benefits associated with pollution removal using the i-Tree Eco model. Sequestration of pollutants is estimated based on the Leaf Area Index (LAI) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) derived dataset estimates of LAI and the percentage land cover obtained from the National Land Cover Database (NLCD) for the year 2010. Calculation of pollution removal capacity using local environmental data indicates that grasslands and shrublands remove a total of 6.42 million tonnes of air pollutants in the United States and the associated monetary benefits total 268 million. Human health impacts and associated monetary value due to pollution removal was observed to be significantly high in urban areas indicating that grasslands and shrublands are equally critical as canopy in improving air quality and human health in urban regions.

  13. Floristic composition, environmental variation and species distribution patterns in burned grassland in southern Brazil.

    Science.gov (United States)

    Overbeck, G E; Müller, S C; Pillar, V D; Pfadenhauer, J

    2006-11-01

    In regularly burned grassland on Morro Santana, Porto Alegre, RS, Brazil, we investigated differences in the floristic composition and their relation to soil properties, aspect and distance from the forest border. In 48 plots of 0.75 m2, we identified a total of 201 species from a local species pool of approximately 450 to 500 species. Most species occurred in low frequencies, showing clumpy distribution patterns in the studied area. Multivariate analysis showed that plots close to the forest edge clearly differed from plots in the open grassland concerning composition and structure. Plots exposed to the north differed from plots on the top of the hill both in the composition of species as well as in soil variables, mainly due to shallower soil in the former. No strong relation between soil properties and variation in vegetation composition could be detected at a finer scale. The studied grassland, as all grassland vegetation in southern Brazil, is very rich in species compared to other grassland formations worldwide. However, this high biodiversity and conservational value of Campos vegetation in general has so far not been recognized properly. Disturbance is essential to maintain this open vegetation type and its species richness. Fire should be considered as a management option in the absence of grazing.

  14. Assessment of Grassland Health Based on Spatial Information Technology in Changji Autonomous Prefecture, Xinjiang

    Science.gov (United States)

    Du, M. J.; Zheng, J. H.; Mu, C.

    2018-04-01

    Based on the "pressure-state-response" (PSR) model, comprehensively applied GIS and RS techniques, 20 evaluation indicators were selected based on pressure, state and response, the entropy weight method was used to determine the weight of each index and build a grassland health evaluation system in Changji Prefecture, Xinjiang. Based on this, evaluation and dynamic analysis of grassland health in Changji Prefecture from 2000 to 2016, using GIS/RS technology, the trend of grassland health status in Changji is analyzed and studied. The results show that: 1) Grassland with low health leveld, lower health level, sub-health level, health level and high health level accounts for 1.46 %,27.67 %,38.35 %,29.21 % and 3.31 % of the total area of Changji. Qitai County, Hutubi County, and Manas County are lower health levels, Jimsar County, Changji City, and Mulei County are at a relatively high level, and Fukang City has a healthy level of health. 2) The level of grassland health in Changji County decreased slightly during the 17 years, accounting for 38.42 % of the total area. The area of 23,87 % showed a stable trend, and the improved area accounted for 37.31 % of the vertical surface area.

  15. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    Directory of Open Access Journals (Sweden)

    A. Bannert

    2012-10-01

    Full Text Available While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore, anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labelled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were also found as most 13C-enriched fatty acids by Raghoebarsing et al. (2006 after addition of 13CH4 to an enrichment culture coupling denitrification of nitrate to anaerobic oxidation of methane. This might be an indication for anaerobic oxidation of methane by relatives of "Candidatus Methylomirabilis oxyfera" in the investigated grassland soil under the conditions of the incubation experiment.

  16. Faunal isotope records reveal trophic and nutrient dynamics in twentieth century Yellowstone grasslands.

    Science.gov (United States)

    Fox-Dobbs, Kena; Nelson, Abigail A; Koch, Paul L; Leonard, Jennifer A

    2012-10-23

    Population sizes and movement patterns of ungulate grazers and their predators have fluctuated dramatically over the past few centuries, largely owing to overharvesting, land-use change and historic management. We used δ(13)C and δ(15)N values measured from bone collagen of historic and recent gray wolves and their potential primary prey from Yellowstone National Park to gain insight into the trophic dynamics and nutrient conditions of historic and modern grasslands. The diet of reintroduced wolves closely parallels that of the historic population. We suggest that a significant shift in faunal δ(15)N values over the past century reflects impacts of anthropogenic environmental changes on grassland ecosystems, including grazer-mediated shifts in grassland nitrogen cycle processes.

  17. Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI.

    Science.gov (United States)

    Liu, Shiliang; Cheng, Fangyan; Dong, Shikui; Zhao, Haidi; Hou, Xiaoyun; Wu, Xue

    2017-06-23

    Spatiotemporal dynamics of aboveground biomass (AGB) is a fundamental problem for grassland environmental management on the Qinghai-Tibet Plateau (QTP). Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data can feasibly be used to estimate AGB at large scales, and their precise validation is necessary to utilize them effectively. In our study, the clip-harvest method was used at 64 plots in QTP grasslands to obtain actual AGB values, and a handheld hyperspectral spectrometer was used to calculate field-measured NDVI to validate MODIS NDVI. Based on the models between NDVI and AGB, AGB dynamics trends during 2000-2012 were analyzed. The results showed that the AGB in QTP grasslands increased during the study period, with 70% of the grasslands undergoing increases mainly in the Qinghai Province. Also, the meadow showed a larger increasing trend than steppe. Future AGB dynamic trends were also investigated using a combined analysis of the slope values and the Hurst exponent. The results showed high sustainability of AGB dynamics trends after the study period. Predictions indicate 60% of the steppe and meadow grasslands would continue to increase in AGB, while 25% of the grasslands would remain in degradation, with most of them distributing in Tibet.

  18. Temporal and spatial changes of land use and landscape in a coal mining area in Xilingol grassland

    Science.gov (United States)

    Guan, Chunzhu; Zhang, Baolin; Li, Jiannan; Zhao, Junling

    2017-01-01

    Coal mining, particularly surface mining, inevitably disturbs land. According to Landsat images acquired over Xilingol grassland in 2005, 2009 and 2015, land uses were divided into seven classes, i. e., open stope, stripping area, waste-dump area, mine industrial area, farmland, urban area and the original landscape (grassland), using supervised classification and human-computer interactive interpretation. The overall classification accuracies were 97.72 %, 98.43 % and 96.73 %, respectively; the Kappa coefficients were 0.95, 0.97 and 0.95, respectively. Analysis on LUCC (Land Use and Cover Change) showed that surface coal mining disturbed grassland ecosystem: grassland decreased by 8661.15 hm2 in 2005-2015. The area and proportion of mining operation areas (open stope, stripping area, waste-dump area, mine industrial field) increased, but those of grassland decreased continuously. Transfer matrix of land use changes showed that waste-dump had the largest impacts in mining disturbance, and that effective reclamation of waste-dump areas would mitigate eco-environment destruction, as would be of great significance to protect fragile grassland eco-system. Six landscape index showed that landscape fragmentation increased, and the influences of human activity on landscape was mainly reflected in the expansion of mining area and urban area. Remote sensing monitoring of coal surface mining in grassland would accurately demonstrate the dynamics and trend of LUCC, providing scientific supports for ecological reconstruction in surface mining area.

  19. Response of predominant soil bacteria to grassland succession as monitored by ribosomal RNA analyses

    NARCIS (Netherlands)

    Felske, A.

    1999-01-01

    The research described in this thesis was aimed to provide insight into the effects of grassland succession on the composition of the soil bacteria community in the Drentse A agricultural research area. The Drentse A meadows represent grassland succession at different stages. Since 30 years

  20. Breeding Biology of Grassland Birds in Western New York: Conservation and Management Implications

    Directory of Open Access Journals (Sweden)

    Christopher J. Norment

    2010-12-01

    Full Text Available Declining grassland breeding bird populations have led to increased efforts to assess habitat quality, typically by estimating density or relative abundance. Because some grassland habitats may function as ecological traps, a more appropriate metric for determining quality may be breeding success. Between 1994 and 2003 we gathered data on the nest fates of Eastern Meadowlarks (Sturnella magna, Bobolinks (Dolichonyx oryzivorous, and Savannah Sparrows (Passerculus sandwichensis in a series of fallow fields and pastures/hayfields in western New York State. We calculated daily survival probabilities using the Mayfield method, and used the logistic-exposure method to model effects of predictor variables on nest success. Nest survival probabilities were 0.464 for Eastern Meadowlarks (n = 26, 0.483 for Bobolinks (n = 91, and 0.585 for Savannah Sparrows (n = 152. Fledge dates for first clutches ranged between 14 June and 23 July. Only one obligate grassland bird nest was parasitized by Brown-headed Cowbirds (Molothrus ater, for an overall brood parasitism rate of 0.004. Logistic-exposure models indicated that daily nest survival probabilities were higher in pastures/hayfields than in fallow fields. Our results, and those from other studies in the Northeast, suggest that properly managed cool season grassland habitats in the region may not act as ecological traps, and that obligate grassland birds in the region may have greater nest survival probabilities, and lower rates of Brown-headed Cowbird parasitism, than in many parts of the Midwest.

  1. Targeted grazing for the restoration of sub-alpine shrub-encroached grasslands

    Directory of Open Access Journals (Sweden)

    Massimiliano Probo

    2016-12-01

    Full Text Available The decline of agro-pastoral activities has led to a widespread tree and shrub-encroachment of former semi-natural meso-eutrophic grasslands in many European mountain regions. Temporary night camp areas (TNCA and mineral mix supplements for targeted cattle were arranged over shrub-encroached areas to restore grassland vegetation within the Val Troncea Natural Park (Italy. From 2011 to 2015, their effects on vegetation structure and pastoral value of forage were assessed along permanent transects. Four years after treatments, both practices were effective in reducing the shrub cover and increasing the cover and average height of the herbaceous layer, but changes were more remarkable within TNCA. Moreover, the arrangement of TNCA decreased the cover of nanophanerophytes and increased the cover of graminoids and high quality species, as well as the overall forage pastoral value. In conclusion, TNCA were the most effective pastoral practice to contrast shrub-encroachment and increase herbage mass and forage quality of sub-alpine grasslands.

  2. The Effects of Timing of Grazing on Plant and Arthropod Communities in High-Elevation Grasslands

    Science.gov (United States)

    Davis, Stacy C.; Burkle, Laura A.; Cross, Wyatt F.; Cutting, Kyle A.

    2014-01-01

    Livestock grazing can be used as a key management tool for maintaining healthy ecosystems. However, the effectiveness of using grazing to modify habitat for species of conservation concern depends on how the grazing regime is implemented. Timing of grazing is one grazing regime component that is less understood than grazing intensity and grazer identity, but is predicted to have important implications for plant and higher trophic level responses. We experimentally assessed how timing of cattle grazing affected plant and arthropod communities in high-elevation grasslands of southwest Montana to better evaluate its use as a tool for multi-trophic level management. We manipulated timing of grazing, with one grazing treatment beginning in mid-June and the other in mid-July, in two experiments conducted in different grassland habitat types (i.e., wet meadow and upland) in 2011 and 2012. In the upland grassland experiment, we found that both early and late grazing treatments reduced forb biomass, whereas graminoid biomass was only reduced with late grazing. Grazing earlier in the growing season versus later did not result in greater recovery of graminoid or forb biomass as expected. In addition, the density of the most ubiquitous grassland arthropod order (Hemiptera) was reduced by both grazing treatments in upland grasslands. A comparison of end-of-season plant responses to grazing in upland versus wet meadow grasslands revealed that grazing reduced graminoid biomass in the wet meadow and forb biomass in the upland, irrespective of timing of grazing. Both grazing treatments also reduced end-of-season total arthropod and Hemiptera densities and Hemiptera biomass in both grassland habitat types. Our results indicate that both early and late season herbivory affect many plant and arthropod characteristics in a similar manner, but grazing earlier may negatively impact species of conservation concern requiring forage earlier in the growing season. PMID:25338008

  3. Mixed-severity fire history at a forest-grassland ecotone in west central British Columbia, Canada.

    Science.gov (United States)

    Harvey, Jill E; Smith, Dan J; Veblen, Thomas T

    2017-09-01

    This study examines spatially variable stand structure and fire-climate relationships at a low elevation forest-grassland ecotone in west central British Columbia, Canada. Fire history reconstructions were based on samples from 92 fire-scarred trees and stand demography from 27 plots collected over an area of about 7 km 2 . We documented historical chronologies of widespread fires and localized grassland fires between AD 1600 and 1900. Relationships between fire events, reconstructed values of the Palmer Drought Severity Index, and annual precipitation were examined using superposed epoch and bivariate event analyses. Widespread fires occurred during warm, dry years and were preceded by multiple anomalously dry, warm years. Localized fires that affected only grassland-proximal forests were more frequent than widespread fires. These localized fires showed a lagged, positive relationship with wetter conditions. The landscape pattern of forest structure provided further evidence of complex fire activity with multiple plots shown to have experienced low-, mixed-, and/or high-severity fires over the last four centuries. We concluded that this forest-grassland ecotone was characterized by fires of mixed severity, dominated by frequent, low-severity fires punctuated by widespread fires of moderate to high severity. This landscape-level variability in fire-climate relationships and patterns in forest structure has important implications for fire and grassland management in west central British Columbia and similar environments elsewhere. Forest restoration techniques such as prescribed fire and thinning are oftentimes applied at the forest-grassland ecotone on the basis that historically high frequency, low-severity fires defined the character of past fire activity. This study provides forest managers and policy makers with important information on mixed-severity fire activity at a low elevation forest-grassland ecotone, a crucial prerequisite for the effective management

  4. Analysis on the Change of Grassland Coverage in the Source Region of Three Rivers during 2000-2012

    International Nuclear Information System (INIS)

    Luo, Chengfeng; Wang, Jiao; Liu, Meilin; Liu, Zhengjun

    2014-01-01

    The Source Region of Three Rivers (SRTR) has very important ecological functions which form an ecological security barrier for China's Qinghai-Tibet plateau. As the biggest nationally occuring nature reserve region in China, the ecological environment here is very fragile. In SRTR the grassland coverage is an effective detector to reflect the ecological environment condition, because it records the changing process of climatic and environmental sensitively. In recent years SRTR has been suffering pressures from both nature and social pressures. With MODIS data the study monitored the grassland coverage continuously in SRTR from 2000 to 2012. The density-model was adapted to estimate grassland coverage degree firstly. Then the degree of change and the change intensity, change type were used to judge the grassland coverage change trend comprehensively. For grassland coverage there was natural change annual or within the year, and the degree of change was used to judge if there was change or not. The grassland has another important characteristic, annual fluctuation, and it can be differed from sustained changes with change type. For grassland coverage, such continuous change, like improvement or degradation, and to what extent, has more guidance sense on specific production practice. On the base of change type and degree of change, change intensity was used to identify the change trend of the grassland coverage. The analysis results from our study show that steady state and fluctuation are two main change trends for the vegetation coverage in SRTR from 2000 to 2012. The conclusion of this paper can provide references in response to environment change research and in the regional ecological environmental protection project in SRTR

  5. FLORISTIC CHANGES ALONG THE TOPOGRAPHICAL GRADIENT IN MONTANE GRASSLANDS IN MONTI PICENTINI (CAMPANIA, SW ITALY

    Directory of Open Access Journals (Sweden)

    M. CUTINI

    2010-01-01

    Full Text Available Populations of xerotolerant species (Achnatherum calamagrostis, Stipa crassiculmis subsp. picentina, are scattered along a wide altitudinal gradient on slopes at mid- and high elevation in Monti Picentini, a subcoastal mesozoic limestone ridge in Tyrrhenian Southern Italy. Their stands are widespread in grasslands of mostly secondary origin. At lower altitudes these grasslands replace former deciduous forest communities dominated by oaks or beech, while at higher altitudes they reach the summits, where they apparently merge into the remnants of the still partially grazed, zonal climatogenic, grasslands ranging above the local tree-line. Nevertheless primary stands of these grasslands are to be found around the many clusters of highly dynamic sites of the montane and sub-alpine levels, scattered around screes and rocky outcrops of the prevalently dolomitic morphology of the slopes. This virtual continuity of non arboreal communities across more than 1000 metres of the local topographical gradient, where azonal, relic stands of Pinus nigra s.l. are transitional between the grasslands and the surrounding zonal broadleaved forest vegetation, stresses patterns of the coenological changes between Festuco-Brometea and Elyno-Seslerietea along the catena, which suggest fragmentary persistence of a paleozonation.

  6. FLORISTIC CHANGES ALONG THE TOPOGRAPHICAL GRADIENT IN MONTANE GRASSLANDS IN MONTI PICENTINI (CAMPANIA, SW ITALY

    Directory of Open Access Journals (Sweden)

    F. SPADA

    2010-04-01

    Full Text Available Populations of xerotolerant species (Achnatherum calamagrostis, Stipa crassiculmis subsp. picentina, are scattered along a wide altitudinal gradient on slopes at mid- and high elevation in Monti Picentini, a subcoastal mesozoic limestone ridge in Tyrrhenian Southern Italy. Their stands are widespread in grasslands of mostly secondary origin. At lower altitudes these grasslands replace former deciduous forest communities dominated by oaks or beech, while at higher altitudes they reach the summits, where they apparently merge into the remnants of the still partially grazed, zonal climatogenic, grasslands ranging above the local tree-line. Nevertheless primary stands of these grasslands are to be found around the many clusters of highly dynamic sites of the montane and sub-alpine levels, scattered around screes and rocky outcrops of the prevalently dolomitic morphology of the slopes. This virtual continuity of non arboreal communities across more than 1000 metres of the local topographical gradient, where azonal, relic stands of Pinus nigra s.l. are transitional between the grasslands and the surrounding zonal broadleaved forest vegetation, stresses patterns of the coenological changes between Festuco-Brometea and Elyno-Seslerietea along the catena, which suggest fragmentary persistence of a paleozonation.

  7. Relationships between botanical and chemical composition of forages: a multivariate approach to grasslands in the Western Italian Alps.

    Science.gov (United States)

    Ravetto Enri, Simone; Renna, Manuela; Probo, Massimiliano; Lussiana, Carola; Battaglini, Luca M; Lonati, Michele; Lombardi, Giampiero

    2017-03-01

    Plant composition of species-rich mountain grasslands can affect the sensorial and chemical attributes of dairy and meat products, with implications for human health. A multivariate approach was used to analyse the complex relationships between vegetation characteristics (botanical composition and plant community variables) and chemical composition (proximate constituents and fatty acid profile) in mesophilic and dry vegetation ecological groups, comprising six different semi-natural grassland types in the Western Italian Alps. Mesophilic and dry grasslands were comparable in terms of phenology, biodiversity indices and proportion of botanical families. The content of total fatty acids and that of the most abundant fatty acids (alpha-linolenic, linoleic and palmitic acids) were mainly associated to nutrient-rich plant species, belonging to the mesophilic grassland ecological group. Mesophilic grasslands showed also higher values of crude protein, lower values of fibre content and they were related to higher pastoral values of vegetation compared to dry grasslands. The proximate composition and fatty acid profile appeared mainly single species dependent rather than botanical family dependent. These findings highlight that forage from mesophilic grasslands can provide higher nutritive value for ruminants and may be associated to ruminant-derived food products with a healthier fatty acid profile. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Conserving Prairie Pothole Region wetlands and surrounding grasslands: evaluating effects on amphibians

    Science.gov (United States)

    Mushet, David M.; Neau, Jordan L.

    2014-01-01

    The maintenance of viable and genetically diverse populations of amphibians in the Prairie Pothole Region of the United States depends on upland as well as wetland over-wintering and landscape level habitat features.Prairie pothole wetlands provide important amphibian breeding habitat while grasslands surrounding these wetlands provide foraging habitat for adults, overwintering habitat for some species, and important connectivity among breeding wetlands.Grasslands surrounding wetlands were found to be especially important for wood frogs and northern leopard frogs, while croplands dominated habitat utilized by Great Plains toads and Woodhouse’s toads.Habitat suitability mapping highlighted (1) the influence of deep-water overwintering wetlands on suitable habitat for four of five anuran species encountered; (2) the lack of overlap between areas of core habitat for both the northern leopard frog and wood frog compared to the core habitat for both toad species; and (3) the importance of conservation programs in providing grassland components of northern leopard frog and wood frog habitat.Currently, there are approximately 7.2 million acres (2.9 million hectares, ha) of habitat in the PPR identified as suitable for amphibians. WRP and CRP wetland and grassland habitats accounted for approximately 1.9 million acres (0.75 million ha) or 26 percent of this total area.Continued loss of amphibian habitat resulting from an ongoing trend of returning PPR conservation lands to crop production, will likely have significant negative effects on the region’s ability to maintain amphibian biodiversity. Conversely, increases in conservation wetlands and surrounding grasslands on the PPR landscape have great potential to positively influence the region’s amphibian populations.

  9. No Significant Changes in Topsoil Carbon in the Grasslands of Northern China Between the 1980s and 2000s

    Science.gov (United States)

    Liu, S.; Yang, Y.; Shen, H.; Hu, H.; Zhao, X.; Li, H.; Liu, T.; Fang, J.

    2017-12-01

    The grasslands of northern China store a large amount of soil organic carbon (SOC), and the small changes in SOC stock could significantly affect the regional C cycle. However, recent estimates of SOC changes in this region are highly controversial. In this study, we examined and mapped the changes in the SOC density (SOCD) in the upper 30 cm of the grasslands of northern China between the 1980s and 2000s, using an improved approach that integrates field-based measurements into machine learning algorithms (artificial neural network and random forest). The random forest-generated SOCD averaged 5.55 kg C m-2 in the 1980s and 5.53 kg C m-2 in the 2000s. The change ranged between -0.17 and 0.22 kg C m-2 at the 95% confidence level, suggesting that the overall SOCD did not change significantly during the study period. However, the change in SOCD exhibited large regional variability. The topsoil of the Inner Mongolian grasslands experienced a significant C loss (4.86 vs. 4.33 kg C m-2), whereas that of the Xinjiang grasslands exhibited an accumulation of C (5.55 vs. 6.46 kg C m-2). In addition, the topsoil C in the Tibetan alpine grasslands remained relatively stable (6.12 vs. 6.06 kg C m-2). A comparison of different grassland types indicated that SOCD exhibited significant decreases in typical steppe, whereas showed increases in mountain meadow, and were stable in the remaining grasslands (alpine meadow, alpine steppe, mountain steppe and desert steppe). Climate variables were shown to be the main determines of the change of SOCD. Increases in precipitation could lead to SOC increase in temperate grasslands and SOC loss in alpine grasslands, while climate warming is likely to cause SOC loss in temperate grasslands. Overall, our study shows that northern grasslands in China remained a neutral SOC sink between the 1980s and 2000s.

  10. Silicate geothermometry as an indicator of water-rock interaction processes in the serpentinized mafic-ultramafic intrusion of Ylivieska

    International Nuclear Information System (INIS)

    Ruskeeniemi, T.; Blomqvist, R.; Vuorela, P.; Frape, S.K.; Blyth, A.

    1996-01-01

    The aim of the study was to use oxygen and hydrogen isotopes to examine the origin of different generations of serpentine. Of special interest was the study of low-temperature generations that may be correlated with the present meteoric waters. The research was commenced with drill core logging in order to obtain insight into the fracture minerals and their distribution in a mafic-ultramafic intrusion. (39 refs., 17 figs., 5 tabs.)

  11. Measurement of grassland evaporation using a surface-layer ...

    African Journals Online (AJOL)

    Measurement of grassland evaporation using a surface-layer scintillometer. ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search ... of soil heat flux and net irradiance, evaporation rates were calculated as a residual of the ...

  12. Fluid and element transfer at the slab-mantle interface: insights from the serpentinized Livingstone Fault, New Zealand

    Science.gov (United States)

    Smith, S. A. F.; Scott, J.; Tarling, M.; Tulley, C. J.; le Roux, P. J.

    2017-12-01

    At the slab-mantle interface in subduction zones, hydrous fluids released by dehydration reactions are fluxed upwards into the fore-arc mantle corner. The extent to which these fluids can move across the plate interface shear zone has significant implications for understanding the composition of the mantle wedge and the origin of episodic tremor and slow slip. The >1000 km long Livingstone Fault in New Zealand provides a superbly exposed analogue (both in terms of scale and the rock types involved) for the serpentinite shear zone likely to be present along the slab-mantle interface. The Livingstone Fault is a sheared serpentinite mélange up to several hundreds of meters wide that separates greenschist-facies quartzofeldspathic metasediments (e.g. analogue for slab sediments) from variably-serpentinized harzburgitic peridotite (e.g. analogue for mantle wedge). To track element mobility and paleo-fluid flow across the shear zone, Sr and Nd isotopes were measured in five transects across the metasediments, mélange and serpentinized peridotites. Results show that the mélange and serpentinized peridotites (originally with Sr and Nd similar to Permian MORB) were progressively overprinted with the isotopic composition of the metasediments at distances of up to c. 400 m from the mélange-metasediment contact. Mass balance calculations require that many elements were mobile across the mélange shear zone, but permeability modeling indicates that diffusive transfer of such elements is unrealistically slow. Instead, it appears that fluid and element percolation in to and across the mélange was aided by episodic over-pressuring and fracturing, as indicated by the widespread presence of tremolite-bearing breccias and veins that mutually cross-cut the serpentinite mélange fabrics. Overall, the field and isotopic results indicate that fluid and element redistribution within major serpentinite-bearing shear zones is strongly aided by fracturing and brecciation that are

  13. Temporal patterns of vegetation phenology and their responses to climate change in mid-latitude grasslands of the Northern Hemisphere

    Science.gov (United States)

    Ren, S.; Chen, X.; Qin, Q.; Zhang, Y.; Wu, Z.

    2017-12-01

    Grassland ecosystem is greatly sensitive to regional and global climate changes. In this study, the start (SOS) and end (EOS) date of growing season were extracted from NDVI data (1981 2014) across the mid-latitude (30°N 55°N) grasslands of Northern Hemisphere. We first validated their accuracy by ground observed phenological data and phenological metrics derived from gross primary production (GPP) data. And then, main climatic factors influencing the temporal patterns of SOS/EOS were explored by means of gridded meteorological data and partial correlation analysis. Based on the results of above statistical analysis, the similarities and differences of spring and autumn phenological responses to climate change among North American grasslands, Mid-West Asian grasslands, and Mongolian grasslands were analyzed. The main results and conclusions are as follows. First, a significant positive correlation was found between SOS/EOS and observed green-up/brown-off date (PSOS/EOS (PSOS/EOS can reflect temporal dynamics of terrestrial vegetation phenology. Second, SOS in Mid-West Asian grasslands showed a significant advancing trend (0.22 days/year, PSOS in North American grasslands and Mongolian grasslands was not significant. EOS in North American grasslands (0.31 dyas/year, PSOS/EOS inter-annual fluctuations and hydrothermal factors showed that a significant negative correlation was found between SOS and the pre-season temperature in 41.6% of pixels (PSOS and pre-season rainfall/snowfall in 14.6%/19.0% of pixels (PSOS and EOS are mainly affected by pre-season temperature and pre-season rainfall.

  14. Mapping grassland productivity with 250-m eMODIS NDVI and SSURGO database over the Greater Platte River Basin, USA

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.; Bliss, Norman B.

    2013-01-01

    This study assessed and described a relationship between satellite-derived growing season averaged Normalized Difference Vegetation Index (NDVI) and annual productivity for grasslands within the Greater Platte River Basin (GPRB) of the United States. We compared growing season averaged NDVI (GSN) with Soil Survey Geographic (SSURGO) database rangeland productivity and flux tower Gross Primary Productivity (GPP) for grassland areas. The GSN was calculated for each of nine years (2000–2008) using the 7-day composite 250-m eMODIS (expedited Moderate Resolution Imaging Spectroradiometer) NDVI data. Strong correlations exist between the nine-year mean GSN (MGSN) and SSURGO annual productivity for grasslands (R2 = 0.74 for approximately 8000 pixels randomly selected from eight homogeneous regions within the GPRB; R2 = 0.96 for the 14 cluster-averaged points). Results also reveal a strong correlation between GSN and flux tower growing season averaged GPP (R2 = 0.71). Finally, we developed an empirical equation to estimate grassland productivity based on the MGSN. Spatially explicit estimates of grassland productivity over the GPRB were generated, which improved the regional consistency of SSURGO grassland productivity data and can help scientists and land managers to better understand the actual biophysical and ecological characteristics of grassland systems in the GPRB. This final estimated grassland production map can also be used as an input for biogeochemical, ecological, and climate change models.

  15. Pressure drop and flow distribution characteristics of single and parallel serpentine flow fields for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Baek, Seung Man; Kim, Charn Jung; Jeon, Dong Hyup; Nam, Jin Hyun

    2012-01-01

    This study numerically investigates pressure drop and flow distribution characteristics of serpentine flow fields (SFFs) that are designed for polymer electrolyte membrane fuel cells, which consider the Poiseuille flow with secondary pressure drop in the gas channel (GC) and the Darcy flow in the porous gas diffusion layer (GDL). The numerical results for a conventional SFF agreed well with those obtained via computational fluid dynamics simulations, thus proving the validity of the present flow network model. This model is employed to characterize various single and parallel SFFs, including multi-pass serpentine flow fields (MPSFFs). Findings reveal that under rib convection (convective flow through GDL under an interconnector rib) is an important transport process for conventional SFFs, with its intensity being significantly enhanced as GDL permeability increases. The results also indicate that under rib convection can be significantly improved by employing MPSFFs as the reactant flow field, because of the closely interlaced structure of GC regions that have different path lengths from the inlet. However, reactant flow rate through GCs proportionally decreases as under rib convection intensity increases, suggesting that proper optimization is required between the flow velocity in GCs and the under rib convection intensity in GDLs

  16. Early Mars serpentinization-derived CH4 reservoirs, H2 induced warming and paleopressure evolution

    Science.gov (United States)

    Lasue, J.; Chassefiere, E.; Langlais, B.; Quesnel, Y.

    2016-12-01

    CH4 has been observed on Mars both by remote sensing and in situ during the past 15 years. Early Mars serpentinization is one possible abiotic mechanism that could not only produce methane, but also explain the observed Martian remanent magnetic field. Assuming a cold early Mars, a cryosphere could trap such CH4 as clathrates in stable form at depth. We recently estimated the maximum storage capacity of such clathrate layer to be about 2x1019 to 2x1020 moles of methane. Such reservoirs may be stable or unstable, depending on many factors that are poorly constrained: major and sudden geological events such as the Tharsis bulge formation, the Hellas impact or the martian polar wander, could have destabilized the clathrates early in the history of the planet and released large quantities of gas in the atmosphere. Here we estimate the associated amounts of serpentinization-derived CH4 stored in the cryosphere that have been released to the atmosphere at the end of the Noachian and the beginning of the Hesperian. Due to rapid clathrate dissociation and photochemical conversion of CH4 to H2, these episodes of massive CH4 release may have resulted in transient H2-rich atmospheres, at typical levels of 10-20% in a background 1-2 bar CO2 atmosphere. We propose that the early Mars cryosphere had a sufficient CH4 storage capacity to have maintained H2-rich transient atmospheres during a total time period up to several Myr or tens of Myr, having potentially contributed - by collision-induced heating effect of atmospheric H2 - to the formation of valley networks during the late Noachian and early Hesperian.

  17. Acidification of sandy grasslands - consequences for plant diversity

    DEFF Research Database (Denmark)

    Olsson, Pål Axel; Mårtensson, Linda-Maria; Bruun, Hans Henrik

    2009-01-01

    soil; a number of nationally red-listed species showed a similar pattern. Plant species diversity and number of red-listed species increased with slope. Where the topsoil had been acidified, limestone was rarely present above a depth of 30 cm. The presence of limestone restricts the availability......Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits......). Environmental variables were recorded at each plot, and soil samples were analysed for exchangeable P and N, as well as limestone content and pH. Data were analysed with regression analysis and canonical correspondence analysis. Results: Plant species richness was highest on weakly acid to slightly alkaline...

  18. Species interactions reverse grassland responses to changing climate.

    Science.gov (United States)

    Suttle, K B; Thomsen, Meredith A; Power, Mary E

    2007-02-02

    Predictions of ecological response to climate change are based largely on direct climatic effects on species. We show that, in a California grassland, species interactions strongly influence responses to changing climate, overturning direct climatic effects within 5 years. We manipulated the seasonality and intensity of rainfall over large, replicate plots in accordance with projections of leading climate models and examined responses across several trophic levels. Changes in seasonal water availability had pronounced effects on individual species, but as precipitation regimes were sustained across years, feedbacks and species interactions overrode autecological responses to water and reversed community trajectories. Conditions that sharply increased production and diversity through 2 years caused simplification of the food web and deep reductions in consumer abundance after 5 years. Changes in these natural grassland communities suggest a prominent role for species interactions in ecosystem response to climate change.

  19. Estimates of grassland biomass and turnover time on the Tibetan Plateau

    Science.gov (United States)

    Xia, Jiangzhou; Ma, Minna; Liang, Tiangang; Wu, Chaoyang; Yang, Yuanhe; Zhang, Li; Zhang, Yangjian; Yuan, Wenping

    2018-01-01

    The grassland of the Tibetan Plateau forms a globally significant biome, which represents 6% of the world’s grasslands and 44% of China’s grasslands. However, large uncertainties remain concerning the vegetation carbon storage and turnover time in this biome. In this study, we quantified the pool size of both the aboveground and belowground biomass and turnover time of belowground biomass across the Tibetan Plateau by combining systematic measurements taken from a substantial number of surveys (i.e. 1689 sites for aboveground biomass, 174 sites for belowground biomass) with a machine learning technique (i.e. random forest, RF). Our study demonstrated that the RF model is effective tool for upscaling local biomass observations to the regional scale, and for producing continuous biomass estimates of the Tibetan Plateau. On average, the models estimated 46.57 Tg (1 Tg = 1012g) C of aboveground biomass and 363.71 Tg C of belowground biomass in the Tibetan grasslands covering an area of 1.32 × 106 km2. The turnover time of belowground biomass demonstrated large spatial heterogeneity, with a median turnover time of 4.25 years. Our results also demonstrated large differences in the biomass simulations among the major ecosystem models used for the Tibetan Plateau, largely because of inadequate model parameterization and validation. This study provides a spatially continuous measure of vegetation carbon storage and turnover time, and provides useful information for advancing ecosystem models and improving their performance.

  20. Multiscale Trend Analysis for Pampa Grasslands Using Ground Data and Vegetation Sensor Imagery

    Directory of Open Access Journals (Sweden)

    Fernando C. Scottá

    2015-07-01

    Full Text Available This study aimed to evaluate changes in the aboveground net primary productivity (ANPP of grasslands in the Pampa biome by using experimental plots and changes in the spectral responses of similar vegetation communities obtained by remote sensing and to compare both datasets with meteorological variations to validate the transition scales of the datasets. Two different geographic scales were considered in this study. At the local scale, an analysis of the climate and its direct influences on grassland ANPP was performed using data from a long-term experiment. At the regional scale, the influences of climate on the grassland reflectance patterns were determined using vegetation sensor imagery data. Overall, the monthly variations of vegetation canopy growth analysed using environmental changes (air temperature, total rainfall and total evapotranspiration were similar. The results from the ANPP data and the NDVI data showed the that variations in grassland growth were similar and independent of the analysis scale, which indicated that local data and the relationships of local data with climate can be considered at the regional scale in the Pampa biome by using remote sensing.

  1. Grassland Aboveground Biomass in Inner Mongolia: Dynamics (2001-2016) and Driving force

    Science.gov (United States)

    Li, F.; Zeng, Y.; Chen, J.; Wu, B.

    2017-12-01

    Plant biomass is the most critical measure of carbon stored in an ecosystem, yet it remains imprecisely modeled for many terrestrial biomes. This lack of modeling capacity for biomass and its change through time and space has impeded scientists from making headway concerning issues in the geographic and social sciences. Satellite remote sensing techniques excel at detecting changes in the Earth's surface; however, accurate estimates of biomass for the heterogeneous biome landscapes based on remote sensing techniques are few and far between, which has led to many repetitive studies. Here, we argued that our ability to assess biomass in a heterogeneous landscape using satellite remote sensing techniques would be effectively enhanced through a stratification of landscapes, i.e homogenizing landscapes. Specifically, above-ground biomass (AGB) for an extended heterogeneous grassland biome over the entirety of Inner Mongolia during the past 16 years (2001-2016) was explored using remote sensing time series data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Massive and extensive in-situ measurement AGB data and pure vegetation index (PVI) models, developed from normal remote sensing vegetation indices such as the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI), were highlighted in the accomplishment of this study. Taking into full consideration the landscape heterogeneity for the grassland biome over Inner Mongolia, we achieved a series of AGB models with high R2 (>0.85) and low RMSE ( 20.85 g/m2). The total average amount of fresh AGB for the entirety of Inner Mongolia grasslands over the past 16 years was estimated as 87 Tg with an inter-annual standard deviation of 9 Tg. Overall, the grassland AGB for Inner Mongolia increased sporadically. We found that the dynamics of AGB in the grassland biome of Inner Mongolia were substantially dominated by variation in precipitation despite the accommodation of a huge

  2. Evaluating Anthropogenic Risk of Grassland and Forest Habitat Degradation using Land-Cover Data

    Directory of Open Access Journals (Sweden)

    Kurt Riitters

    2009-09-01

    Full Text Available The effects of landscape context on habitat quality are receiving increased attention in conservation biology. The objective of this research is to demonstrate a landscape-level approach to mapping and evaluating the anthropogenic risks of grassland and forest habitat degradation by examining habitat context as defined by intensive anthropogenic land uses at multiple spatial scales. A landscape mosaic model classifies a given location according to the amounts of intensive agriculture and intensive development in its surrounding landscape, providing measures of anthropogenic risks attributable to habitat isolation and edge effects at that location. The model is implemented using a land-cover map (0.09 ha/pixel of the conterminous United States and six landscape sizes (4.4, 15.2, 65.6, 591, 5300, and 47800 ha to evaluate the spatial scales of anthropogenic risk. Statistics for grassland and forest habitat are extracted by geographic overlays of the maps of land-cover and landscape mosaics. Depending on landscape size, 81 to 94 percent of all grassland and forest habitat occurs in landscapes that are dominated by natural land-cover including habitat itself. Within those natural-dominated landscapes, 50 percent of grassland and 59 percent of forest is within 590 m of intensive agriculture and/or intensive developed land which is typically a minor component of total landscape area. The conclusion is that anthropogenic risk attributable to habitat patch isolation affects a small proportion of the total grassland or forest habitat area, while the majority of habitat area is exposed to edge effects.

  3. Characterization of serpentine. A potential nuclear shielding material

    International Nuclear Information System (INIS)

    Sengupta, A.; Rajeswari, B.; Kadam, R.M.; Kshirsagar, R.J.

    2012-01-01

    The use of serpentine as a potential nuclear shielding material necessitates a chemical quality control of the samples before its use in reactors. With this in view, characterization of these mineral samples was carried out using inductively coupled plasma atomic emission spectrometry (ICP-AES) and Instrumental neutron activation analysis (INAA) methods. The analytical results obtained by both ICP-AES and NAA techniques were found to be comparable. Na, Cr, Co, Zn, and Cu were found to be present in all samples of Indian origin while Ga, Ag, Ni, and Cd were found to below the limits of detection. A comparison on the detection limits of elements of interest was also carried out by both the analytical techniques and found to be in good agreement. An infrared spectroscopic investigation was also carried out on all the mineral samples. Bands at 3,689 and 3,648 cm -1 were attributed to inner and outer hydroxyl stretching of Mg-OH, respectively. The weak and broad band centered around 3,416 cm -1 was assigned due to the stretching vibrations of the adsorbed water molecules while three bands at 1076, 1022 and 968 cm -1 were prescribed to the vibrations of the SiO 4 tetrahedra. (author)

  4. Grassland bird productivity in warm season grass fields in southwest Wisconsin

    Science.gov (United States)

    Byers, Carolyn M.; Ribic, Christine; Sample, David W.; Dadisman, John D.; Guttery, Michael

    2017-01-01

    Surrogate grasslands established through federal set-aside programs, such as U.S. Department of Agriculture's Conservation Reserve Program (CRP), provide important habitat for grassland birds. Warm season grass CRP fields as a group have the potential for providing a continuum of habitat structure for breeding birds, depending on how the fields are managed and their floristic composition. We studied the nesting activity of four obligate grassland bird species, Bobolink (Dolichonyx oryzivorus), Eastern Meadowlark (Sturnella magna), Grasshopper Sparrow (Ammodramus savannarum), and Henslow's Sparrow (A. henslowii), in relation to vegetative composition and fire management in warm season CRP fields in southwest Wisconsin during 2009–2011. Intraspecific variation in apparent nest density was related to the number of years since the field was burned. Apparent Grasshopper Sparrow nest density was highest in the breeding season immediately following spring burns, apparent Henslow's Sparrow nest density was highest 1 y post burn, and apparent Bobolink and Eastern Meadowlark nest densities were higher in post fire years one to three. Grasshopper Sparrow nest density was highest on sites with more diverse vegetation, specifically prairie forbs, and on sites with shorter less dense vegetation. Bobolink, Eastern Meadowlark, and Henslow's Sparrow apparent nest densities were higher on sites with deeper litter; litter was the vegetative component that was most affected by spring burns. Overall nest success was 0.487 for Bobolink (22 d nesting period), 0.478 for Eastern Meadowlark (25 d nesting period), 0.507 for Grasshopper Sparrow (22 d nesting period), and 0.151 for Henslow's Sparrow (21 d nesting period). The major nest predators were grassland-associated species: thirteen-lined ground squirrel (Ictidomys tridecemlineatus), striped skunk (Mephitis mephitis), milk snake (Lampropeltis triangulum), American badger (Taxidea taxus), and western fox snake (Elaphe vulpina). Overall

  5. Restoration of species-rich grasslands on ex-arable land: Seed addition outweighs soil fertility reduction

    NARCIS (Netherlands)

    Kardol, P.; Van der Wal, A.; Bezemer, T.M.; De Boer, W.; Duyts, H.; Holtkamp, R.; Van der Putten, W.H.

    2008-01-01

    A common practice in biodiversity conservation is restoration of former species-rich grassland on ex-arable land. Major constraints for grassland restoration are high soil fertility and limited dispersal ability of plant species to target sites. Usually, studies focus on soil fertility or on methods

  6. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands

    Science.gov (United States)

    Donald L. Hazlett; Michael H. Schiebout; Paulette L. Ford

    2009-01-01

    Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of...

  7. Spatial and temporal patterns of water availability in a grass-shrub ecotone and implications for grassland recovery in arid environments

    Science.gov (United States)

    Encroachment of woody shrubs into historic desert grasslands is a major problem throughout the world. Conversion of grasslands to shrub-dominated systems may result in significant alteration of biogeochemical processes and reduced resource availability in shrub interspaces, making grassland recover...

  8. The false promises of coal exploitation: How mining affects herdsmen well-being in the grassland ecosystems of Inner Mongolia

    International Nuclear Information System (INIS)

    Dai, G.S.; Ulgiati, S.; Zhang, Y.S.; Yu, B.H.; Kang, M.Y.; Jin, Y.; Dong, X.B.; Zhang, X.S.

    2014-01-01

    The grasslands of Inner Mongolia are not only the source of the necessary resources for the survival and development of herdsmen, but also represent a significant green ecological barrier in North China. Coal-mining production is important in maintaining GDP growth in Inner Mongolia. However, over-exploitation has created serious problems, such as pollution of the environment and significant decreases in grassland ecosystem services, in addition to impacting the well-being of herdsmen and other humans. Based on questionnaires survey performed among 864 herdsmen addressing the relationship between coal exploitation in grasslands and human well-being in Xilinguole League in Inner Mongolia, we found that (1) coal resource exploitation in these grasslands does not benefit the herdsmen by increasing their income; (2) the rapid development of this resource has not obviously materially improved the life of the herdsmen; and (3) these activities have increased the risks that herdsman will have to endure in the future. Overall, coal resource exploitation in grasslands has more negative than positive effects on the well-being of herdsmen. We propose the conservation of coal resources and improvement of ecological compensation should be carried out without blindly pursuing economic growth, instead of focusing on economic development and structural adjustments. - Highlights: • Evaluation of the human well-being of the Xilinguole grassland, Inner Mongolia, China. • Impact of mining affects herdsmen well-being in grassland ecosystem. • Quantity of questionnaires survey. • Addressing the relationship between coal exploitation in grasslands and human well-being

  9. Integrated axial and tangential serpentine cooling circuit in a turbine airfoil

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Marra, John J; Rudolph, Ronald J; Dalton, John P

    2015-05-05

    A continuous serpentine cooling circuit forming a progression of radial passages (44, 45, 46, 47A, 48A) between pressure and suction side walls (52, 54) in a MID region of a turbine airfoil (24). The circuit progresses first axially, then tangentially, ending in a last radial passage (48A) adjacent to the suction side (54) and not adjacent to the pressure side (52). The passages of the axial progression (44, 45, 46) may be adjacent to both the pressure and suction side walls of the airfoil. The next to last radial passage (47A) may be adjacent to the pressure side wall and not adjacent to the suction side wall. The last two radial passages (47A, 48A) may be longer along the pressure and suction side walls respectively than they are in a width direction, providing increased direct cooling surface area on the interiors of these hot walls.

  10. "Cut-and-paste" manufacture of multiparametric epidermal electronic systems

    Science.gov (United States)

    Lu, Nanshu; Yang, Shixuan; Wang, Pulin

    2016-05-01

    Epidermal electronics is a class of noninvasive and unobstructive skin-mounted, tattoo-like sensors and electronics capable of vital sign monitoring and establishing human-machine interface. The high cost of manpower, materials, vacuum equipment, and photolithographic facilities associated with its manufacture greatly hinders the widespread use of disposable epidermal electronics. Here we report a cost and time effective, completely dry, benchtop "cut-and-paste" method for the freeform and portable manufacture of multiparametric epidermal sensor systems (ESS) within minutes. This versatile method works for all types of thin metal and polymeric sheets and is compatible with any tattoo adhesives or medical tapes. The resulting ESS are multimaterial and multifunctional and have been demonstrated to noninvasively but accurately measure electrophysiological signals, skin temperature, skin hydration, as well as respiratory rate. In addition, planar stretchable coils exploiting double-stranded serpentine design have been successfully applied as wireless, passive epidermal strain sensors.

  11. The relationships between biodiversity and ecosystem services and the effects of grazing cessation in semi-natural grasslands

    Directory of Open Access Journals (Sweden)

    S. Wehn

    2018-04-01

    Full Text Available Land use change can affect biodiversity, and this has an impact on ecosystem services (ESs, but the relationships between biodiversity and ESs are complex and poorly understood. Biodiversity is declining due to the abandonment of extensively grazed semi-natural grasslands.We therefore aim to explore relationships between biodiversity and ESs provided by extensively managed semi-natural grasslands. Focusing on vascular plant species richness, as well as the ESs fodder quantity, quality, and stability, allergy control, climate regulation, nutrient cycling, pollination, and aesthetic appreciation, we carried out botanical field surveys of 28 paired extensively grazed and abandoned semi-natural grassland plots, with four subplots of 4 m2 in each plot. The management of the semi-natural grasslands is and has been at low intensity. We calculated the influence of abandonment on the ES indicators, measured the correlation between the biodiversity measure of vascular plant species richness and ES indicators, and finally determined how the relationships between plant species richness and the ES indicators were affected by the cessation of the extensive management.ES indicators are often, but not always, positively correlated with species richness. Cessation of extensive grazing has both negative and positive effects on ES indicators but the relationships between species richness and ES indicators are often different in extensively managed and abandoned semi-natural grasslands. The relationships between species richness and ES indicators are less pronounced in the extensively managed semi-natural grassland than for the abandoned. One possible reason for this outcome is high functional redundancy in the extensively managed semi-natural grasslands.

  12. Deep long-period earthquakes west of the volcanic arc in Oregon: evidence of serpentine dehydration in the fore-arc mantle wedge

    Science.gov (United States)

    Vidale, John E.; Schmidt, David A.; Malone, Stephen D.; Hotovec-Ellis, Alicia J.; Moran, Seth C.; Creager, Kenneth C.; Houston, Heidi

    2014-01-01

    Here we report on deep long-period earthquakes (DLPs) newly observed in four places in western Oregon. The DLPs are noteworthy for their location within the subduction fore arc: 40–80 km west of the volcanic arc, well above the slab, and near the Moho. These “offset DLPs” occur near the top of the inferred stagnant mantle wedge, which is likely to be serpentinized and cold. The lack of fore-arc DLPs elsewhere along the arc suggests that localized heating may be dehydrating the serpentinized mantle wedge at these latitudes and causing DLPs by dehydration embrittlement. Higher heat flow in this region could be introduced by anomalously hot mantle, associated with the western migration of volcanism across the High Lava Plains of eastern Oregon, entrained in the corner flow proximal to the mantle wedge. Alternatively, fluids rising from the subducting slab through the mantle wedge may be the source of offset DLPs. As far as we know, these are among the first DLPs to be observed in the fore arc of a subduction-zone system.

  13. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006

    Science.gov (United States)

    Xia, Jiangzhou; Liu, Shuguang; Liang, Shunlin; Chen, Yang; Xu, Wenfang; Yuan, Wenping

    2014-01-01

    Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI) time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production). The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.

  14. [Diversity and distribution of grasshoppers (Orthoptera: Acridoidea) in grasslands of the Southern Pampas region, Argentina].

    Science.gov (United States)

    Mariottini, Yanina; De Wysiecki, María Laura; Lange, Carlos Ernesto

    2013-03-01

    In Argentina, the grasslands of Pampas region comprise approximately 15% of the country. As in other grasslands of the world, grasshoppers are among the most important native herbivores. Their economic importance has been recognized in Argentina since the mid to late nineteenth century, since outbreaks of different species have become recurrent phenomena. Therefore, the main objective of this work was to study their diversity and distribution in grasslands of the Southern Pampas region (Laprida county, Buenos Aires province), as one of the most affected areas. The study was conducted during five seasons (2005-10). Sampling sites were represented by the most common plant communities in this area, classified in four categories: native grasslands, disturbed grasslands, implanted pastures and halophilous grasslands. The samplings were conducted from mid-spring to early autumn, with five or six samples per season. We estimated the following population descriptors: species richness (S), eveness (E), dominance (J), and diversity index (H'). In order to evaluate the similitude of the grasshopper communities present in the different plant communities, we used qualitative and quantitative coefficients of similitude. A total of 22 species of grasshoppers were collected, of which 21 belong to the family Acrididae. The subfamily Melanoplinae was the most diverse with eight species. The largest species richness was recorded in native grasslands (18). The different communities of grasshoppers had similar indices of evenness and dominance (p>0.05). Considering all plant communities, the average value of Shannon-Wiener index was 1.58+/-0.075. There was a positive correlation between evenness index and species richness (pgrasshoppers species richness, and diversity of grasshoppers. According to the qualitative indices applied, the similitude between different grasshopper communities was higher than 60%. In general, the species that had a higher frequency of occurrence showed greater

  15. Habitat fragmentation effects on birds in grasslands and wetlands: A critique of our knowledge

    Science.gov (United States)

    Johnson, D.H.

    2001-01-01

    Habitat fragmentation exacerbates the problem of habitat loss for grassland and wetland birds. Remaining patches of grasslands and wetlands may be too small, too isolated, and too influenced by edge effects to maintain viable populations of some breeding birds. Knowledge of the effects of fragmentation on bird populations is critically important for decisions about reserve design, grassland and wetland management, and implementation of cropland set-aside programs that benefit wildlife. In my review of research that has been conducted on habitat fragmentation, I found at least five common problems in the methodology used. The results of many studies are compromised by these problems: passive sampling (sampling larger areas in larger patches), confounding effects of habitat heterogeneity, consequences of inappropriate pooling of data from different species, artifacts associated with artificial nest data, and definition of actual habitat patches. As expected, some large-bodied birds with large territorial requirements, such as the northern harrier (Circus cyaneus), appear area sensitive. In addition, some small species of grassland birds favor patches of habitat far in excess of their territory size, including the Savannah (Passerculus sandwichensis), grasshopper (Ammodramus savannarum) and Henslow's (A. henslowii) sparrows, and the bobolink (Dolichonyx oryzivorus). Other species may be area sensitive as well, but the data are ambiguous. Area sensitivity among wetland birds remains unknown since virtually no studies have been based on solid methodologies. We need further research on grassland bird response to habitat that distinguishes supportable conclusions from those that may be artifactual.

  16. Greenhouse gas exchange in grasslands: impacts of climate, intensity of management and other factors

    Science.gov (United States)

    Smith, K. A.

    2003-04-01

    Grasslands occupy some 40% of the terrestrial land surface. They are generally categorised as natural (occurring mainly in those regions where the rainfall is too low to support forest ecosystems), semi-natural (where management, mainly by grazing, has changed the vegetation composition), and artificial (where forests have been cleared to create new pasture land). The soils of the natural and semi-natural grasslands constitute a large reservoir of carbon, and make a substantial contribution to the soil sink for atmospheric CH_4. The conversion of much of the natural temperate grassland to arable agriculture, e.g. in North America and Europe, resulted in a considerable decrease in soil organic carbon, and its release to the atmosphere as CO_2 has made a substantial contribution to the total atmospheric concentration of this gas. The associated increase in cycling of soil N (released from the organic matter) will have contributed to N_2O emissions, and land disturbance and fertilisation has resulted in a depletion of the soil CH_4 sink. Conversion of tropical forests to pastures has also been a major source of CO_2, and these pastures show elevated emissions of N_2O for some years after conversion. Seasonally flooded tropical grasslands are a significant source of CH_4 emissions. Consideration of grassland ecosystems in their entirety, in relation to GHG exchange, necessitates the inclusion of CH_4 production by fauna - domesticated livestock and wild herbivores, as well as some species of termites - in the overall assessment. Stocking rates on pasture land have increased, and the total CH_4 emissions likewise. The relationship between animal production and CH_4 emissions is dependent on the nutritional quality of the vegetation, as well as on animal numbers. In both temperate and tropical regions, increased N inputs as synthetic fertilisers and manures (and increased N deposition) are producing possibly a more-than-linear response in terms of emissions of N_2O. In

  17. Carbon balance of renovated grasslands: input- or output-driven?

    Science.gov (United States)

    Choncubhair, Órlaith Ní; Osborne, Bruce; Lanigan, Gary

    2015-04-01

    Temperate grasslands constitute over 30% of the Earth's naturally-occurring biomes and make an important contribution towards the partial mitigation of anthropogenic greenhouse gas emissions by terrestrial ecosystems. In permanent temperate grasslands, biomass production and sward quality can deteriorate over time and periodic renovation activities, involving soil tillage and reseeding, are commonly carried out to halt this decline. Long-term cultivation of agricultural land has been associated with soil aggregate degradation and reduced soil carbon storage. However, the impact of these single tillage disturbances on C cycling in grasslands is less clear. This study evaluated gaseous and dissolved organic carbon (DOC) losses following a single tillage event by subjecting grassland lysimeters with contrasting soil drainage characteristics to simulated conventional inversion or minimum tillage. Field-scale CO2 emissions after conventional tillage were also quantified and empirically modelled over short- and medium-term timeframes to delineate the ecosystem response to environmental variables. Soil moisture was the limiting determinant of ecosystem carbon release following conventional tillage. Freshly-tilled soils were associated with reduced water retention and increased sensitivity to soil moisture, which was particularly pronounced following rewetting events. Significantly elevated but ephemeral CO2 effluxes were detected in the hours following inversion ploughing, however tillage disturbance did not generate significantly enhanced C emission rates in the medium term. Equally, DOC losses were not significantly amplified by conventional tillage compared with conservative minimum tillage and were predominantly controlled by soil drainage across tillage regimes. Our results suggest that a net ecosystem source of 120 to 210 g C m-2 over an approximately two-month period was most likely a consequence of reduced productivity and C input rather than enhanced soil CO2

  18. Analysis of the production stability of mixed grasslands. II. A mathematical framework for the quantification of production stability of grassland ecosystems

    NARCIS (Netherlands)

    Schulte, R.P.O.

    2003-01-01

    The analysis of the intrinsic properties and processes of ecosystems, which regulate the production stability of mixed grasslands, has been complicated by the environmental noise caused by stochastic weather fluctuations. A mathematical framework is presented to deduct the actual, the extrinsic and

  19. Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6

    Science.gov (United States)

    Rolinski, Susanne; Müller, Christoph; Heinke, Jens; Weindl, Isabelle; Biewald, Anne; Bodirsky, Benjamin Leon; Bondeau, Alberte; Boons-Prins, Eltje R.; Bouwman, Alexander F.; Leffelaar, Peter A.; te Roller, Johnny A.; Schaphoff, Sibyll; Thonicke, Kirsten

    2018-02-01

    Grassland management affects the carbon fluxes of one-third of the global land area and is thus an important factor for the global carbon budget. Nonetheless, this aspect has been largely neglected or underrepresented in global carbon cycle models. We investigate four harvesting schemes for the managed grassland implementation of the dynamic global vegetation model (DGVM) Lund-Potsdam-Jena managed Land (LPJmL) that facilitate a better representation of actual management systems globally. We describe the model implementation and analyze simulation results with respect to harvest, net primary productivity and soil carbon content and by evaluating them against reported grass yields in Europe. We demonstrate the importance of accounting for differences in grassland management by assessing potential livestock grazing densities as well as the impacts of grazing, grazing intensities and mowing systems on soil carbon stocks. Grazing leads to soil carbon losses in polar or arid regions even at moderate livestock densities (management options enables assessments of the global grassland production and its impact on the terrestrial biogeochemical cycles but requires a global data set on current grassland management.

  20. Effects of large herbivores on grassland arthropod diversity

    NARCIS (Netherlands)

    van Klink, R.; van der Plas, F.; van Noordwijk, C. G. E. (Toos); WallisDeVries, M. F.; Olff, H.

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141

  1. Arbuscular mycorrhiza fungi mediate soil respiration response to climate change in California grasslands

    Science.gov (United States)

    Estruch, Carme; Mcfarland, Jack; Haw, Monica P.; Schulz, Marjorie S.; Pugnaire, Francisco I.; Waldrop, Mark P.

    2017-04-01

    California grasslands store ca. 100 Tg of soil organic carbon (SOC) and almost 40% of those ecosystems are prone to land use changes. The fate of these carbon pools will largely depend on how the main components of soil respiration - i.e., roots, mycorrhiza, and 'bulk soil' communities- respond to such changes. In order to determine the sensitivity to environmental drivers we set up an experiment to address the effect of plant community composition, soil age and warming on soil respiration rate during the 2014-2015 winter. We tested differences among microbial, fungal and root respiration using an exclusion technique to assess the effect of plant community (open grasslands vs oak woodland) in two field sites differing in soil properties as nutrient content, related to geologic soil age (92 and 137 kyr). We also used open top chambers (OTC) to simulate global change effects on grasslands. Our results showed that arbuscular mycorrhizal fungi were the main drivers of differences recorded between soils of different age, and that those differences were linked to nutrient availability. Bulk soil respiration was more sensitive to environmental variation than mycorrhizal or root respiration, indicating that the presence of mycorrhizae and roots can regulate the capacity of CO2 emission to the atmosphere. Soil age affected CO2 flux from grasslands but not under oak canopies, likely due to the high concentration of SOM in oak canopies which moderated any affect of soil mineralogy on nutrient availability. Overall our study shows that the ability of grasslands to mitigate CO2 emissions depends on interactions between vegetation and their rhizosphere on soil microbial communities.

  2. Grasslands of Mexico: A perspective on their conservation (Los pastizales del norte de Mexico: Una perspectiva para su conservacion)

    Science.gov (United States)

    Patricia Manzano; Rurik List

    2006-01-01

    Grasslands are areas dominated by grasses and herbs with few or no trees. Grasslands receive too much rain for a desert environment and too little for a forest. Temperate North American grasslands, especially, have undergone changes on a continental level. Their high productivity and fertility, added to their level topography and lack of trees, make them ideal sites...

  3. Stable carbon isotope analysis of soil organic matter illustrates vegetation change at the grassland/woodland boundary in southeastern Arizona, USA.

    Science.gov (United States)

    McPherson, G R; Boutton, T W; Midwood, A J

    1993-02-01

    In southeastern Arizona, Prosopis juliflora (Swartz) DC. and Quercus emoryi Torr. are the dominant woody species at grassland/woodland boundaries. The stability of the grassland/woodland boundary in this region has been questioned, although there is no direct evidence to confirm that woodland is encroaching into grassland or vice versa. We used stable carbon isotope analysis of soil organic matter to investigate the direction and magnitude of vegetation change along this ecotone. δ 13 C values of soil organic matter and roots along the ecotone indicated that both dominant woody species (C 3 ) are recent components of former grasslands (C 4 ), consistent with other reports of recent increases in woody plant abundance in grasslands and savannas throughout the world. Data on root biomass and soil organic matter suggest that this increase in woody plant abundance in grasslands and savannas may increase carbon storage in these ecosystems, with implications for the global carbon cycle.

  4. Agricultural Set-aside Programs and Grassland Birds: Insights from Broad-scale Population Trends

    Directory of Open Access Journals (Sweden)

    S. Riffell

    2008-10-01

    Full Text Available The Conservation Reserve Program (CRP is a voluntary set-aside program in the United States designed to amelioratesoil erosion, control crop overproduction, enhance water quality, and provide wildlife habitat by replacing crops with other forms of land cover. Because CRP includes primarily grass habitats, it has great potential to benefitdeclining North American grassland bird populations. We looked at the change in national and state population trends of grassland birds and related changes to cover-specific CRP variables (previous research grouped all CRP practices. Changes in national trends after the initiation of the CRP were inconclusive, but we observed signficant bird-CRP relations at the state level. Most bird-CRP relations were positive, except for some species associated with habitats that CRP replaced. Practice- and configuration-specific CRP variables were related to grassland bird trends, rather than a generic measure of all CRP types combined. Considering all CRP land as a single, distinct habitat type may obscure actual relations between birds and set-aside characteristics. Understanding and predictingthe effects of set-aside programs (like CRP or agri-environment schemes on grassland birds is complex and difficult. Because available broad-scale datasets are less than adequate, studies should be conducted at a variety of spatial and temporal scales.

  5. Object-Based Classification of Grasslands from High Resolution Satellite Image Time Series Using Gaussian Mean Map Kernels

    Directory of Open Access Journals (Sweden)

    Mailys Lopes

    2017-07-01

    Full Text Available This paper deals with the classification of grasslands using high resolution satellite image time series. Grasslands considered in this work are semi-natural elements in fragmented landscapes, i.e., they are heterogeneous and small elements. The first contribution of this study is to account for grassland heterogeneity while working at the object level by modeling its pixels distributions by a Gaussian distribution. To measure the similarity between two grasslands, a new kernel is proposed as a second contribution: the α -Gaussian mean kernel. It allows one to weight the influence of the covariance matrix when comparing two Gaussian distributions. This kernel is introduced in support vector machines for the supervised classification of grasslands from southwest France. A dense intra-annual multispectral time series of the Formosat-2 satellite is used for the classification of grasslands’ management practices, while an inter-annual NDVI time series of Formosat-2 is used for old and young grasslands’ discrimination. Results are compared to other existing pixel- and object-based approaches in terms of classification accuracy and processing time. The proposed method is shown to be a good compromise between processing speed and classification accuracy. It can adapt to the classification constraints, and it encompasses several similarity measures known in the literature. It is appropriate for the classification of small and heterogeneous objects such as grasslands.

  6. Modified Light Use Efficiency Model for Assessment of Carbon Sequestration in Grasslands of Kazakhstan: Combining Ground Biomass Data and Remote-sensing

    Science.gov (United States)

    Propastin, Pavel A.; Kappas, Martin W.; Herrmann, Stefanie M.; Tucker, Compton J.

    2012-01-01

    A modified light use efficiency (LUE) model was tested in the grasslands of central Kazakhstan in terms of its ability to characterize spatial patterns and interannual dynamics of net primary production (NPP) at a regional scale. In this model, the LUE of the grassland biome (en) was simulated from ground-based NPP measurements, absorbed photosynthetically active radiation (APAR) and meteorological observations using a new empirical approach. Using coarse-resolution satellite data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), monthly NPP was calculated from 1998 to 2008 over a large grassland region in Kazakhstan. The modelling results were verified against scaled up plot-level observations of grassland biomass and another available NPP data set derived from a field study in a similar grassland biome. The results indicated the reliability of productivity estimates produced by the model for regional monitoring of grassland NPP. The method for simulation of en suggested in this study can be used in grassland regions where no carbon flux measurements are accessible.

  7. 78 FR 19444 - Pawnee National Grassland, Colorado; Oil and Gas Leasing Analysis Environmental Impact Statement

    Science.gov (United States)

    2013-04-01

    ... Leasing Analysis on the Pawnee National Grassland (PNG), was signed. That decision determined which Lands... National Grassland. Much of the PNG's federal mineral estate made available per the 1997 ROD has already... [36 CFR 228.102(e)]. Accordingly, the PNG finds it is necessary to disclose the potential effects of...

  8. Evaluating plant-soil feedback together with competition in a serpentine grassland.

    Science.gov (United States)

    Casper, Brenda B; Castelli, Jeffrey P

    2007-05-01

    Plants can alter biotic and abiotic soil characteristics in ways that feedback to change the performance of that same plant species relative to co-occurring plants. Most evidence for this plant-soil feedback comes from greenhouse studies of potted plants, and consequently, little is known about the importance of feedback in relation to other biological processes known to structure plant communities, such as plant-plant competition. In a field experiment with three C4 grasses, negative feedback was expressed through reduced survival and shoot biomass when seedlings were planted within existing clumps of conspecifics compared with clumps of heterospecifics. However, the combined effects of feedback and competition were species-specific. Only Andropogon gerardii exhibited feedback when competition with the clumps was allowed. For Sorghastrum nutans, strong interspecific competition eliminated the feedback expressed in the absence of competition, and Schizachyrium scoparium showed no feedback at all. That arbuscular mycorrhizal (AM) fungi may play a role in the feedback was indicated by higher AM root colonization with conspecific plant neighbours. We suggest that feedback and competition should not be viewed as entirely separate processes and that their importance in structuring plant communities cannot be judged in isolation from each other.

  9. Purpose and Need for a Grassland Assessment

    Science.gov (United States)

    Deborah M. Finch; Cathy W. Dahms

    2004-01-01

    This report is volume 1 of an ecological assessment of grassland ecosystems in the Southwestern United States, and it is one of a series of planned publications addressing major ecosystems of the Southwest. The first assessment, General Technical Report RM-GTR- 295, An Assessment of Forest Ecosystem Health in the Southwest (by Dahms and Geils, technical editors,...

  10. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    Full Text Available Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2.s(-1 and clipping (2.06 μmol.m(-2.s(-1 than under grazing (1.65 μmol.m-(2.s(-1 over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP. Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content and biotic (ANPP and BNPP factors regulate soil respiration in the semiarid temperate grassland of northern China.

  11. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Science.gov (United States)

    Wang, Zhen; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2).s(-1)) and clipping (2.06 μmol.m(-2).s(-1)) than under grazing (1.65 μmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.

  12. Relationship between soil chemical factors and grassland diversity

    NARCIS (Netherlands)

    Janssens, F; Peeters, A; Tallowin, JRB; Bakker, JP; Bekker, RM; Fillat, F; Oomes, MJM

    Many studies carried out during these last few years have focused on the factors influencing plant diversity in species-rich grasslands. This is due to the fact that these ecosystems, among the most diversified in temperate climates, are extremely threatened; in some areas, they have almost

  13. Grassland habitat restoration: lessons learnt from long term monitoring of Swanworth Quarry, UK, 1997–2014

    Directory of Open Access Journals (Sweden)

    Barbara Maria Smith

    2017-11-01

    Full Text Available Habitat restoration projects are often conducted when prior use or extraction of natural resources results in land degradation. The success of restoration programmes, however, is variable, and studies that provide evidence of long term outcomes are valuable for evaluation purposes. This study focused on the restoration of vegetation within a limestone quarry in Dorset, UK between 1997 and 2014. Using a randomised block design, the effect of seed mix and seed rate on the development of community assemblage was investigated in comparison to a nearby target calcareous grassland site. We hypothesised that seed mix composition and sowing rate would influence both the trajectory of the grassland assemblage and final community composition. We found that species composition (in relation to both richness and community assemblage was strongly influenced by time and to some extent by seed rate and seed mix. However, no treatments achieved strong resemblance to the calcareous grassland target vegetation; rather they resembled mesotrophic communities. We conclude that (as with previous studies there is no “quick fix” for the establishment of a grassland community; long-term monitoring provides useful information on the trajectory of community development; sowing gets you something (in our case mesotrophic grassland, but, it may not be the target vegetation (e.g., calcicolous grassland you want that is difficult to establish and regenerate; it is important to sow a diverse mix as subsequent recruitment opportunities are probably limited; post-establishment management should be explored further and carefully considered as part of a restoration project.

  14. Modelling the carbon cycle of grassland in the Netherlands under various management strategies and environmental conditions.

    NARCIS (Netherlands)

    Pol-van Dasselaar, van den A.; Lantinga, E.A.

    1995-01-01

    A simulation model of the grassland carbon cycle (CCGRASS) was developed to evaluate the long-term effects of different management strategies and various environmental conditions on carbon sequestration in a loam soil under permanent grassland in the Netherlands. The model predicted that the rate of

  15. Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands

    International Nuclear Information System (INIS)

    Olsson, Alexander; Campana, Pietro Elia; Lind, Mårten; Yan, Jinyue

    2014-01-01

    Highlights: • A generic method for climate change mitigation feasibility of PVWPS is developed. • Restoration of degraded lands in China has large climate change mitigation potential. • PV produces excess electricity included in the mitigation potential of the system. • The benefit is higher than if the PV were to produce electricity for the grid only. - Abstract: The climate change mitigation potential of irrigation powered by a photovoltaic water pumping system (PVWPS) to restore degraded grasslands has been investigated using the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas Inventories for Agriculture, Forestry and Other Land Use. The purpose of this study is to develop a generic and simple method to estimate the climate change mitigation benefit of a PVWPS. The possibility to develop carbon credits for the carbon offset markets has also been studied comparing carbon sequestration in grasslands to other carbon sequestration projects. The soil carbon sequestration following irrigation of the grassland is calculated as an annual increase in the soil organic carbon pool. The PVWPS can also generate an excess of electricity when irrigation is not needed and the emissions reductions due to substitution of grid electricity give additional climate change mitigation potential. The results from this study show that the carbon sequestration and emissions reductions benefits per land area using a PVWPS for irrigating grasslands are comparable to other carbon sequestration options such as switching to no-till practice. Soil carbon in irrigated grasslands is increased with over 60% relative to severely degraded grasslands and if nitrogen fixing species are introduced the increase in soil organic carbon can be almost 80%. Renewable electricity generation by the PVWPS will further increase the mitigation benefit of the system with 70–90%. When applying the methodology developed in this paper to a case in Qinghai, China

  16. Impact intensities of climatic changes on grassland ecosystems in ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-03-22

    Mar 22, 2012 ... Construction of the impact intensity model of climatic changes on grassland ecosystem ... the temperature and rainfall (Sun and Mu, 2011). Thus, the study ... of the equation, the study transformed the measurement unit Mu of.

  17. Aggregation and C dynamics along an elevation gradient in carbonate-containing grassland soils of the Alps

    Science.gov (United States)

    Garcia-Franco, Noelia; Wiesmeier, Martin; Kiese, Ralf; Dannenmann, Michael; Wolf, Benjamin; Zistl-Schlingmann, Marcus; Kögel-Knabner, Ingrid

    2017-04-01

    C sequestration in mountainous grassland soils is regulated by physical, chemical and biological soil process. An improved knowledge of the relationship between these stabilization mechanisms is decisive to recommend the best management practices for climate change mitigation. In this regard, the identification of a successful indicator of soil structural improvement and C sequestration in mountainous grassland soils is necessary. Alpine and pre-alpine grassland soils in Bavaria represent a good example for mountainous grassland soils faced with climate change. We sampled grassland soils of the northern limestone alps in Bavaria along an elevation gradient from 550 to 1300 m above sea level. We analyzed C dynamics by a comparative analysis of the distribution of C according to aggregate size classes: large-macroaggregates (> 2000 µm), small-macroaggregates (250-2000 µm), microaggregates (63-250 µm), silt plus clay particles (soil. Our preliminary results showed higher C content and changed water-stable aggregate distribution in the high elevation sites compared to lower elevations. Magnesium carbonate seem to play an important role in stabilizing macroaggregates formed from fresh OM. In addition, the isolation of occluded microaggregates within macroaggregates will help us to improve our understanding on the effects of climate change on soil structure and on the sensitivity of different C stabilization mechanisms present in mountainous soils.

  18. Serpentinization and fluid-rock interaction in Jurassic mafic and ultramafic sea-floor: constraints from Ligurian ophiolite sequences

    Science.gov (United States)

    Vogel, Monica; Früh-Green, Gretchen L.; Boschi, Chiara; Schwarzenbach, Esther M.

    2014-05-01

    The Bracco-Levanto ophiolitic complex (Eastern Liguria) represents one of the largest and better-exposed ophiolitic successions in the Northern Apennines. It is considered to be a fragment of heterogeneous Jurassic lithosphere that records tectono-magmatic and alteration histories similar to those documented along the Mid-Atlantic Ridge, such as at the 15°20'N area and the Atlantis Massif at 30°N. Structural and petrological studies on these rocks provide constraints on metamorphic/deformation processes during formation and hydrothermal alteration of the Jurassic oceanic lithosphere. We present a petrological and geochemical study of deformation processes and fluid-rock interaction in the Bracco-Levanto ophiolitic complex and compare these to modern oceanic hydrothermal systems, such as the Lost City Hydrothermal Field hosted in ultramafic rocks on the Atlantis Massif. A focus is on investigating mass transfer and fluid flow paths during high and low temperature hydrothermal activity, and on processes leading to hydrothermal carbonate precipitation and the formation of ophicalcites, which are characteristic of the Bracco-Levanto sequences. Major element and mineral compositional data allow us to distinguish a multiphase history of alteration characterized by: (1) widespread SiO2 metasomatism during progressive serpentinization, and (2) multiple phases of veining and carbonate precipitation associated with circulation of seawater and high fluid-rock ratios in the shallow ultramafic-dominated portions of the Jurassic seafloor. We observe regional variations in MgO, SiO2 and Al2O3, suggesting Si-flux towards stratigraphically higher units. In general, the ophicalcites have higher Si, Al and Fe concentrations and lower Mg than the serpentinite basement rocks or serpentinites with minimal carbonate veins. Bulk rock trace element data and Sr isotope ratios indicate seawater reacting with rocks of more mafic composition, then channeled towards stratigraphically higher

  19. The Kolmården serpentine marble in Sweden, a building stone found at many levels in the society.

    Science.gov (United States)

    Wikström, Anders; Pereira, Dolores

    2013-04-01

    The Kolmården marble is a green serpentine marble of Svekofennian age (c. 1900 Ma). Serpentine is mainly secondary after diopside. The rock has been used as far back as in the 13th century. But it was mainly due to the start of the building of the Royal castles in Stockholm in the 17th century when the stone became more extensively used. The quarries were in operation until the 1970s and during the last years the production was so rationalized that one finds the stone in stairs, pavement and non structural ornaments within "common" houses all over the country. One can also find this stone in many exclusive places all over the world (e.g. the Paris Opera house, League of Nations building in Geneva, Leeds University Library, Uppsala University, Rockefeller Center, etc). The importance of this stone in international architecture, the good physical and mechanical behaviour observed in its emplacements and the possibilities for preservation of some of the quarries makes the Kolmården marble a good candidate as Global Stone Heritage Stone. The nomination will also trigger international publications on this natural stone to spread its knowledge among scientists and architects to be able to select this rock in case that some restoration on the mentioned important buildings is needed at some point.

  20. Efficacy of exclosures in conserving local shrub biodiversity in xeric sandy grassland, Inner Mongolia, China

    Science.gov (United States)

    Feng-Rui Li; Zhi-Yu Zhou; Li-Ya Zhao; Ai-Sheng Zhang; Ling-Fen Kang

    2007-01-01

    This study investigated the abundance and frequency of occurrence of all shrub species present in the standing vegetation at four sites, including a 5-year exclosure (protected grassland) and three adjacent unprotected grazing sites that had been subjected to different levels of degradation (light, moderate and severe), in xeric sandy grassland of Inner Mongolia for...

  1. Channel geometric scales effect on performance and optimization for serpentine proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Youcef, Kerkoub; Ahmed, Benzaoui; Ziari, Yasmina; Fadila, Haddad

    2017-02-01

    A three dimensional computational fluid dynamics model is proposed in this paper to investigate the effect of flow field design and dimensions of bipolar plates on performance of serpentine proton exchange membrane fuel cell (PEMFC). A complete fuel cell of 25 cm2 with 25 channels have been used. The aim of the work is to investigate the effect of flow channels and ribs scales on overall performance of PEM fuel cell. Therefore, geometric aspect ratio parameter defined as (width of flow channel/width of rib) is used. Influences of the ribs and openings current collector scales have been studied and analyzed in order to find the optimum ratio between them to enhance the production of courant density of PEM fuel cell. Six kind of serpentine designs have been used in this paper included different aspect ratio varying from 0.25 to 2.33 while the active surface area and number of channels are keeping constant. Aspect ratio 0.25 corresponding of (0.4 mm channel width/ 1.6mm ribs width), and Aspect ratio2.33 corresponding of (0.6 mm channel width/ 1.4mm ribs width. The results show that the best flow field designs (giving the maximum density of current) are which there dimensions of channels width is minimal and ribs width is maximal (Γ≈0.25). Also decreasing width of channels enhance the pressure drop inside the PEM fuel cell, this causes an increase of gazes velocity and enhance convection process, therefore more power generation.

  2. Feasibility Study on: Reforestation of Degraded Grasslands in Indonesia as a Climate Change Mitigation Option

    Energy Technology Data Exchange (ETDEWEB)

    Dalfelt, A; Naess, L O; Sutamihardja, R T.M.; Gintings, N

    1997-12-31

    The report deals with a cooperation project between Norway and Indonesia dealing with a feasibility study on sustainable reforestation of degraded grasslands in Indonesia. Poor forest management and uncontrolled land use changes contribute a significant share anthropogenic emissions of greenhouse gases, especially CO{sub 2}, and one of many ways to reduce the CO{sub 2} emission is to encourage reforestation and better forest management. The report contains a brief overview of the issue of Imperata (alang-alang) grasslands, an outline of the present status, a discussion of potential costs and benefits associated with reforestation, and suggestions of strategies which could be applied to reach the desired goals. Case studies are presented from three locations where field work has been undertaken. The case studies provide baseline data about the sites and the imperata grasslands, experiences from earlier efforts to rehabilitate the grasslands, the common attitude to reforestation among the local communities, a discussion of the feasibility of reforestation, and finally, recommendations for the future. 142 refs., 11 figs., 15 tabs.

  3. Feasibility Study on: Reforestation of Degraded Grasslands in Indonesia as a Climate Change Mitigation Option

    Energy Technology Data Exchange (ETDEWEB)

    Dalfelt, A.; Naess, L.O.; Sutamihardja, R.T.M.; Gintings, N.

    1996-12-31

    The report deals with a cooperation project between Norway and Indonesia dealing with a feasibility study on sustainable reforestation of degraded grasslands in Indonesia. Poor forest management and uncontrolled land use changes contribute a significant share anthropogenic emissions of greenhouse gases, especially CO{sub 2}, and one of many ways to reduce the CO{sub 2} emission is to encourage reforestation and better forest management. The report contains a brief overview of the issue of Imperata (alang-alang) grasslands, an outline of the present status, a discussion of potential costs and benefits associated with reforestation, and suggestions of strategies which could be applied to reach the desired goals. Case studies are presented from three locations where field work has been undertaken. The case studies provide baseline data about the sites and the imperata grasslands, experiences from earlier efforts to rehabilitate the grasslands, the common attitude to reforestation among the local communities, a discussion of the feasibility of reforestation, and finally, recommendations for the future. 142 refs., 11 figs., 15 tabs.

  4. Grassland Growth in Response to Climate Variability in the Upper Indus Basin, Pakistan

    Directory of Open Access Journals (Sweden)

    Sawaid Abbas

    2015-08-01

    Full Text Available Grasslands in the upper Indus basin provide a resource base for nomadic livestock grazing which is one of the major traditional livelihood practices in the area. The study presents climate patterns, grassland phenology, productivity and spatio-temporal climate controls on grassland growth using satellite data over the upper Indus basin of the Himalayan region, Pakistan. Phenology and productivity metrics of the grasses were estimated using a combination of derivative and threshold methods applied on fitted seasonal vegetation indices data over the period of 2001–2011. Satellite based rainfall and land surface temperature data are considered as representative explanatory variables to climate variability. The results showed distinct phenology and productivity patterns across four bioclimatic regions: (i humid subtropical region (HSR—late start and early end of season with short length of season and low productivity (ii temperate region (TR—early start and late end of season with higher length of season and moderate productivity (iii sub alpine region (SAR—late start and late end of season with very high length of season and the most productive grasses, and (iv alpine region (AR—late start and early end of season with small length of season and least productive grasses. Grassland productivity is constrained by temperature in the alpine region and by rainfall in the humid sub-tropical region. Spring temperature, winter and summer rainfall has shown significant and varied impact on phenology across different altitudes. The productivity is being influenced by summer and annual rainfall in humid subtropical regions, spring temperature in alpine and sub-alpine regions and both temperature and rainfall are contributing in temperate regions. The results revealing a strong relationship between grassland dynamics and climate variability put forth strong signals for drawing more scientific management of rangelands in the area.

  5. Reducing classification error of grassland overgrowth by combing low-density lidar acquisitions and optical remote sensing data

    Science.gov (United States)

    Pitkänen, T. P.; Käyhkö, N.

    2017-08-01

    Mapping structural changes in vegetation dynamics has, for a long time, been carried out using satellite images, orthophotos and, more recently, airborne lidar acquisitions. Lidar has established its position as providing accurate material for structure-based analyses but its limited availability, relatively short history, and lack of spectral information, however, are generally impeding the use of lidar data for change detection purposes. A potential solution in respect of detecting both contemporary vegetation structures and their previous trajectories is to combine lidar acquisitions with optical remote sensing data, which can substantially extend the coverage, span and spectral range needed for vegetation mapping. In this study, we tested the simultaneous use of a single low-density lidar data set, a series of Landsat satellite frames and two high-resolution orthophotos to detect vegetation succession related to grassland overgrowth, i.e. encroachment of woody plants into semi-natural grasslands. We built several alternative Random Forest models with different sets of variables and tested the applicability of respective data sources for change detection purposes, aiming at distinguishing unchanged grassland and woodland areas from overgrown grasslands. Our results show that while lidar alone provides a solid basis for indicating structural differences between grassland and woodland vegetation, and orthophoto-generated variables alone are better in detecting successional changes, their combination works considerably better than its respective parts. More specifically, a model combining all the used data sets reduces the total error from 17.0% to 11.0% and omission error of detecting overgrown grasslands from 56.9% to 31.2%, when compared to model constructed solely based on lidar data. This pinpoints the efficiency of the approach where lidar-generated structural metrics are combined with optical and multitemporal observations, providing a workable framework to

  6. Nesting success of grassland and savanna birds on reclaimed surface coal mines of the midwestern United States

    Energy Technology Data Exchange (ETDEWEB)

    Galligan, E.W.; DeVault, T.L.; Lima, S.L. [Indiana State University, Terre Haute, IN (United States)

    2006-12-15

    Reclaimed surface coal mines in southwestern Indiana support many grassland and shrub/savanna bird species of conservation concern. We examined the nesting success of birds on these reclaimed mines to assess whether such 'unnatural' places represent productive breeding habitats for such species. We established eight study sites on two large, grassland-dominated mines in southwestern Indiana and classified them into three categories (open grassland, shrub/savanna, and a mixture of grassland and shrub/savanna) based on broad vegetation and landscape characteristics. During the 1999 and 2000 breeding seasons, we found and monitored 911 nests of 31 species. Daily nest survival for the most commonly monitored grassland species ranged from 0.903 (Dickcissel, Spiza americana) to 0.961 (Grasshopper Sparrow, Ammodramus savannarum). Daily survival estimates for the dominant shrub/savanna nesting species ranged from 0.932 (Brown Thrasher, Toxostoma rufum) to 0.982 (Willow Flycatcher, Empidonax traillii). Vegetation and landscape effects on nesting success were minimal, and only Eastern Meadowlarks (Sturnella magna) showed a clear time-of-season effect, with greater nesting success in the first half of the breeding season. Rates of Brown-headed Cowbird (Molothrus ater) parasitism were only 2.1% for grassland species and 12.0% for shrub/savanna species. The nesting success of birds on reclaimed mine sites was comparable to that in other habitats, indicating that reclaimed habitats on surface mines do not necessarily represent reproductive traps for birds.

  7. Two-Dimensional Numerical Study on the Migration of Particle in a Serpentine Channel

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2018-01-01

    Full Text Available In this work, the momentum exchange scheme-based lattice Boltzmann method is adopted to numerically study the migration of a circular particle in a serpentine channel for the range of 20 ≤ Re ≤ 120. The effects of the Reynolds number, particle density, and the initial particle position are taken into account. Numerical results include the streamlines, particle trajectories, and final equilibrium positions. Close attention is also paid to the time it takes for the particle to travel in the channel. It has been found that the particle is likely to migrate to a similar equilibrium position irrespective of its initial position when Re is large. Furthermore, there exists a critical solid-to-fluid density ratio for which the particle travels fastest in the channel.

  8. Quantitative ecological relationships in the alpine grassland of ...

    African Journals Online (AJOL)

    A survey, based on 56 000 points at 102 sampling sites in the Tsehlanyane valley of the Oxbow (Madibamatso) Dam catchment in the alpine grassland of Lesotho, indicates that the area is generally in good condition. Physiographic and floristic criteria were measured and the association between pairs of criteria statistically ...

  9. Conservation reserve program: benefit for grassland birds in the northern plains

    Science.gov (United States)

    Reynolds, R.E.; Shaffer, T.L.; Sauer, J.R.; Peterjohn, B.G.

    1994-01-01

    During the past few decades numbers of some species of upland-nesting birds in North America have declined. Duck species such as mallard (Anas platyrhynchos), northern pintail (A. acuta) and blue-winged teal (A. discors) have declined since the early 1970s and have remained low since 1985 (Caithamer et al. 1993). Some grassland-dependent nonwaterfowl species also have declined since 1966, as indicated by the North American Breeding Bird Survey (BBS) (Robbins et al. 1986). For prairie-nesting ducks, population declines can be attributed mostly to low recruitment, partially as a result of low nest success. Klett et al. (1988) concluded that nest success (probability of ≥1 egg of clutch hatches) in much of the U.S. Prairie Pothole Region was inadequate to maintain populations of the five most common upland-nesting duck species studied, and that predators were the most important cause of nest failure. Over the years, as grassland areas have been converted to cropland, ducks have concentrated their nesting in the remaining areas of available habitat, where predators such as red fox (Vulpes vulpes), striped skunk (Mephitis mephitis) and badger (Taxidea taxus) forage (Cowardin et al. 1983). The reasons for declining populations of grassland nonwaterfowl birds are not clear but the loss of suitable grassland-nesting habitat probably is an important factor. Currently, approximately 95 percent of the land in North Dakota is used for agricultural purposes, of which over 60 percent is used for annual crop production (Haugse 1990). Of the grassland that remains, 95 percent is used for livestock production. This probably had a severe impact on grassland bird species that seek idle grass cover for nesting. The 1985 and 1990 U.S. Farm Bills include provisions under the Food Security Act to fund a cropland-idling program called the Conservation Reserve Program (CRP). Over 36 million acres have been enrolled nationwide in the CRP since 1985 (Osborn 1993), and up to 25 percent of

  10. Farming for pests? Local and landscape-scale effects of grassland management on rabbit densities

    OpenAIRE

    Petrovan , Silviu O.; Barrio , Isabel C.; Ward , Alastair I.; Wheeler , Philip M.

    2010-01-01

    Abstract In recent decades in the UK, there has been an increasing trend in numbers of the European wild rabbit, a significant agricultural pest typically associated with grassland habitats. However, the relationship between rabbit abundance and grassland management, in particular grazing, has not been sufficiently explained. We studied rabbit densities in seven pasture-dominated sites in north-east England between autumn and spring in two consecutive years, and used generalised li...

  11. Carbohydrates and thermal analysis reflects changes in soil organic matter stability after forest expansion on abandoned grassland

    Science.gov (United States)

    Guidi, Claudia; Vesterdal, Lars; Cannella, David; Leifeld, Jens; Gianelle, Damiano; Rodeghiero, Mirco

    2014-05-01

    Grassland abandonment, followed by progressive forest expansion, is the dominant land-use change in the Southern Alps, Europe. Land-use change can affect not only the amount of organic matter (OM) in soil but also its composition and stability. Our objective was to investigate changes in organic matter properties after forest expansion on abandoned grasslands, combining analysis of carbohydrates, indicative of labile OM compounds with prevalent plant or microbial origin, with thermal analysis. Thermal analysis was used as a rapid assessment method for the characterization of SOM stability. A land-use gradient was investigated in four land-use types in the subalpine area of Trentino region, Italy: i) managed grassland, mown and fertilized for the past 100 years; ii) grassland abandoned since 10 years, with sparse shrubs and Picea abies saplings; iii) early-stage forest, dominated by P. abies and established on a grassland abandoned around 1970; iv) old forest, dominated by Fagus sylvatica and P. abies. Mineral soil was sampled at three subplots in each land use type with eight soil cores, which were subsequently pooled by depth (0-5 cm, 5-10 cm, 10-20 cm). Sugars were extracted from bulk soil samples through acid hydrolysis with H2SO4 (0.5 M). The analytical composition of sugar monomers was performed with HPAEC technology (Dionex ICS5000), equipped with PAD-detection. Thermal stability was assessed with a differential scanning calorimeter DSC100, heating soil samples up to 600°C at a heating rate of 10°C min-1 in synthetic air. Peak height (W g OC-1) of 1st DSC exotherm, dominated by burning of labile OM compounds, was used as thermal stability index. In the abandoned grassland, carbohydrates compounds accounted for a greater proportion of soil OC than in other land use types. Microbially derived sugars, as rhamnose and galactose, were more abundant in managed and abandoned grasslands compared with early-stage and old forest. The amount of thermally labile sugars

  12. Potential autotrophic metabolisms in ultra-basic reducing springs associated with present-day continental serpentinization

    Science.gov (United States)

    Morrill, P. L.; Miles, S.; Kohl, L.; Kavanagh, H.; Ziegler, S. E.; Brazelton, W. J.; Schrenk, M. O.

    2013-12-01

    Ultra-basic reducing springs at continental sites of serpentinization act as windows into the biogeochemistry of this subsurface exothermic environment rich in H2 and CH4 gases. Biogeochemical carbon transformations in these systems are of interest because serpentinization creates conditions that are amenable to abiotic and biotic reduction of carbon. However, little is known about the metabolic capabilities of the microorganisms that live in this environment. To determine the potential for autotrophic metabolisms, bicarbonate and CO substrate addition microcosm experiments were performed using water and sediment from an ultra-basic reducing spring in the Tablelands, Newfoundland, Canada, a site of present-day continental serpentinization. CO was consistently observed to be utilized in the Live but not the Killed controlled replicates amended with 10% 13C labelled CO and non-labelled (natural C isotope abundance) CO. In the Live CO microcosms with natural C isotope abundance, the residual CO became enriched in 13C (~10 ‰) consistent with a decrease in the fraction of CO remaining. In the Killed CO controlled replicates with natural C isotope abundance the CO showed little 13C enrichment (~1.3 ‰). The data from the Live CO microcosms were well described by a Rayleigh isotopic distillation model, yielding an isotopic enrichment factor for microbial CO uptake of 15.7 ×0.5 ‰ n=2. These data suggest that there was microbial CO utilization in these experiments. The sediment and water from the 13C-labelled and non-labelled, Live and Killed microcosms were extracted for phospholipid fatty acids (PLFAs) to determine changes in community composition between treatments as well as to determine the microbial uptake of CO. The difference in community composition between the Live and Killed microcosms was not readily resolvable based on PLFA distributions. Additionally, the microbial uptake of 13CO had minimal to no affect on the δ13C of the cellular biomarkers, with the

  13. Recent trends, drivers, and projections of carbon cycle processes in forests and grasslands of North America

    Science.gov (United States)

    Domke, G. M.; Williams, C. A.; Birdsey, R.; Pendall, E.

    2017-12-01

    In North America forest and grassland ecosystems play a major role in the carbon cycle. Here we present the latest trends and projections of United States and North American carbon cycle processes, stocks, and flows in the context of interactions with global scale budgets and climate change impacts in managed and unmanaged grassland and forest ecosystems. We describe recent trends in natural and anthropogenic disturbances in these ecosystems as well as the carbon dynamics associated with land use and land cover change. We also highlight carbon management science and tools for informing decisions and opportunities for improving carbon measurements, observations, and projections in forests and grasslands.

  14. Herbage intake regulation and growth of rabbits raised on grasslands: back to basics and looking forward.

    Science.gov (United States)

    Martin, G; Duprat, A; Goby, J-P; Theau, J-P; Roinsard, A; Descombes, M; Legendre, H; Gidenne, T

    2016-10-01

    Organic agriculture is developing worldwide, and organic rabbit production has developed within this context. It entails raising rabbits in moving cages or paddocks, which enables them to graze grasslands. As organic farmers currently lack basic technical information, the objective of this article is to characterize herbage intake, feed intake and the growth rate of rabbits raised on grasslands in different environmental and management contexts (weather conditions, grassland type and complete feed supplementation). Three experiments were performed with moving cages at an experimental station. From weaning, rabbits grazed a natural grassland, a tall fescue grassland and a sainfoin grassland in experiments 1, 2 and 3, respectively. Rabbit diets were supplemented with a complete pelleted feed limited to 69 g dry matter (DM)/rabbit per day in experiment 1 and 52 g DM/rabbit per day in experiments 2 and 3. Herbage allowance and fiber, DM and protein contents, as well as rabbit intake and live weight, were measured weekly. Mean herbage DM intake per rabbit per day differed significantly (P<0.001) between experiments. It was highest in experiment 1 (78.5 g DM/day) and was 43.9 and 51.2 g DM/day in experiments 2 and 3, respectively. Herbage allowance was the most significant determinant of herbage DM intake during grazing, followed by rabbit metabolic weight (live weight0.75) and herbage protein and fiber contents. Across experiments, a 10 g DM increase in herbage allowance and a 100 g increase in rabbit metabolic weight corresponded to a mean increase of 6.8 and 9.6 g of herbage DM intake, respectively. When including complete feed, daily mean DM intakes differed significantly among experiments (P<0.001), ranging from 96.1 g DM/rabbit per day in experiment 2 to 163.6 g DM/rabbit per day in experiment 1. Metabolic weight of rabbits raised on grasslands increased linearly over time in all three experiments, yielding daily mean growth rates of 26.2, 19.2 and 28.5 g/day in

  15. High-quality GaN epitaxially grown on Si substrate with serpentine channels

    Science.gov (United States)

    Wei, Tiantian; Zong, Hua; Jiang, Shengxiang; Yang, Yue; Liao, Hui; Xie, Yahong; Wang, Wenjie; Li, Junze; Tang, Jun; Hu, Xiaodong

    2018-06-01

    A novel serpentine-channeled mask was introduced to Si substrate for low-dislocation GaN epitaxial growth and the fully coalesced GaN film on the masked Si substrate was achieved for the first time. Compared with the epitaxial lateral overgrowth (ELOG) growth method, this innovative mask only requires one-step epitaxial growth of GaN which has only one high-dislocation region per mask opening. This new growth method can effectively reduce dislocation density, thus improving the quality of GaN significantly. High-quality GaN with low dislocation density ∼2.4 × 107 cm-2 was obtained, which accounted for about eighty percent of the GaN film in area. This innovative technique is promising for the growth of high-quality GaN templates and the subsequent fabrication of high-performance GaN-based devices like transistors, laser diodes (LDs), and light-emitting diodes (LEDs) on Si substrate.

  16. Black-tailed prairie dogs, cattle, and the conservation of North America's arid grasslands.

    Directory of Open Access Journals (Sweden)

    Rodrigo Sierra-Corona

    Full Text Available Prairie dogs (Cynomys spp. have been eliminated from over 95% of their historic range in large part from direct eradication campaigns to reduce their purported competition with cattle for forage. Despite the longstanding importance of this issue to grassland management and conservation, the ecological interactions between cattle and prairie dogs have not been well examined. We address this issue through two complementary experiments to determine if cattle and prairie dogs form a mutualistic grazing association similar to that between prairie dogs and American bison. Our experimental results show that cattle preferentially graze along prairie dog colony edges and use their colony centers for resting, resembling the mutualistic relationship prairie dogs have with American bison. Our results also show that prairie dog colonies are not only an important component of the grassland mosaic for maintaining biodiversity, but also provide benefits to cattle, thereby challenging the long-standing view of prairie dogs as an undesirable pest species in grasslands.

  17. Understanding the causes of changing grassland use and productivity in Inner Mongolia, China

    Science.gov (United States)

    Zhang, Y.; Gao, L.; Qiao, G.; Chen, J.

    2012-12-01

    Some dramatic changes of grassland use and productivity have been taking place in Inner Mongolia in the past half century. While the changes are apparently driven by both socio-economic factors and climate, their contribution and interaction are largely unknown. We hypothesize that population growth is an important driving force behind the loss and degradation of the grassland, the market forces and institutional factors such as de-collectivization are become more important factors as the economy is moving from planned economy to market economy. This paper assesses the effects of socio-economic, demographic, institutional and climate factors on grassland use and productivity using a panel data set. The panel data compose the years from 1970s to 2000s and all prefectures in Inner Mongolia. A generalized least squares estimation method, allowing individual effects for prefecture level are applied to the examination. The effect of climate change is tested as well and the coupled socio-economic system and the natural system are investigated.

  18. Seasonal and Interannual Variation in Energy Balance in the Semiarid Grassland Area of China

    Directory of Open Access Journals (Sweden)

    Qun’ou Jiang

    2015-01-01

    Full Text Available Near surface energy budget changes have been proved to be induced by the land cover conversion through changing the surface physical properties, which can further impact the regional climate change. This study applies the DLS model to simulate the land cover under the business as usual (BAU scenario and then analyses the seasonal and interannual variation of energy balance in the semiarid grassland area of China based on the simulated land cover with the Weather Research and Forecasting (WRF model. The results indicate that the grassland will show a growing trend under the BAU scenario. Downward long wave radiation and downward short wave radiation will all have small-scale increase with time going by, while the surface net radiation will decrease from 2030 to 2050. However, there is obvious seasonal variation. Summer has the highest downward long wave radiation and downward short wave radiation, followed by spring and autumn. The lowest are in winter. As for the net surface radiation, there is obvious decrease in southeast of study area due to returning cropland to grassland. Those research conclusions can offer valuable information for the land use planning and relieving the effects of land cover change on climate change at the semiarid grassland area.

  19. DIVERSITY OF PLANT COMMUNITIES IN SECONDARY SUCCESSION OF IMPERATA GRASSLANDS IN SAMBOJA LESTARI, EAST KALIMANTAN, INDONESIA

    Directory of Open Access Journals (Sweden)

    Ishak Yassir

    2016-06-01

    Full Text Available Regeneration of  Imperata grassland areas is becoming increasingly important, both to create new secondary forest and to recover the original biodiversity. The diversity of  plant communities in secondary succession of  Imperata grasslands was studied using 45 subplots of  9 linear transects (10 m x 100 m. Data was collected and all stems over 10 cm dbh were identified, the Importance Values Index (IVI for all trees were calculated, saplings and seedlings were counted  and analysed, and soil samples were taken and analysed. Results showed that  after more than 10 years of  regeneration, 65 families were encountered consisting of  164 species, which were dominated by Vernonia arborea Buch.-Ham, Vitex pinnata L., Macaranga gigantea (Reichb.f. & Zoll. Muell.Arg., Symplocos crassipes C.B. Clarke, Artocarpus odoratissimus Miq., and Bridelia glauca Blume. The effects of  regeneration, from Imperata grassland to secondary forest, on soil were the strongest in the A-horizon where an increase in carbon, N content, and pH were observed. Our result shows that Imperata grasslands appear to be permanent because of  frequent fires and human interferences and so far few efforts have been made to promote sustainable rehabilitation. If  protected from fire and other disturbances, such as shifting cultivation, Imperata grassland will grow and develop into secondary forest.

  20. Urban Power Line Corridors as Novel Habitats for Grassland and Alien Plant Species in South-Western Finland.

    Directory of Open Access Journals (Sweden)

    Jussi Lampinen

    Full Text Available Regularly managed electric power line corridors may provide habitats for both early-successional grassland plant species and disturbance-dependent alien plant species. These habitats are especially important in urban areas, where they can help conserve native grassland species and communities in urban greenspace. However, they can also provide further footholds for potentially invasive alien species that already characterize urban areas. In order to implement power line corridors into urban conservation, it is important to understand which environmental conditions in the corridors favor grassland species and which alien species. Likewise it is important to know whether similar environmental factors in the corridors control the species composition of the two groups. We conducted a vegetation study in a 43 kilometer long urban power line corridor network in south-western Finland, and used generalized linear models and distance-based redundancy analysis to determine which environmental factors best predict the occurrence and composition of grassland and alien plant species in the corridors. The results imply that old corridors on dry soils and steep slopes characterized by a history as open areas and pastures are especially suitable for grassland species. Corridors suitable for alien species, in turn, are characterized by productive soils and abundant light and are surrounded by a dense urban fabric. Factors controlling species composition in the two groups are somewhat correlated, with the most important factors including light abundance, soil moisture, soil calcium concentration and soil productivity. The results have implications for grassland conservation and invasive alien species control in urban areas.

  1. Indirect Effects of Energy Development in Grasslands

    Science.gov (United States)

    Duquette, Cameron Albert

    Grassland landscapes in North America are undergoing rapid industrialization due to energy development facilitated by the growing popularity of fracking and horizontal drilling technology. Each year over 3 million hectares are lost from grassland and shrubland habitats to well infrastructure. Direct footprints from energy infrastructure cause impacts to vegetation cover, available cattle forage, carbon sequestration potential, and usable space for wildlife. However, legacy effects from well construction and noise pollution, light pollution, and altered viewsheds have the potential to impact areas beyond this direct footprint, causing additive and persistent changes to nearby grassland function. While these additional areas may be small on a well pad basis, they may have substantial cumulative impacts over time. To investigate these effects via a diversity of mechanisms, we studied the seasonal habitat selection of northern bobwhite (Colinus virginianus, hereafter bobwhite) in an energy-producing landscape to evaluate space use patterns relative to energy infrastructure. Habitat selection was modeled in the breeding and nonbreeding season using resource Utilization functions (RUFs). We then investigated patterns of vegetation, arthropod, and soil characteristics surrounding well pads to assess small scale environmental gradients extending away from drilling pads via a combination of multivariate and univariate techniques (i.e., Nonmetric dimensional scaling and ANOVA). We found minimal avoidance of energy structures by quail, suggesting a tolerance of moderate development levels. All small-scale effects studied except for soil moisture were impacted at the pad itself (P < 0.01). Off-pad impacts to arthropod abundance and biomass were spatially limited to areas close to pads, while vegetation cover was typically lower than the surrounding habitat beyond 10 m of pads. Soil surface temperature was higher at distances close to well pads, and soil moisture was not

  2. Direct effects of cattle on grassland birds in Canada.

    Science.gov (United States)

    Bleho, Barbara I; Koper, Nicola; Machtans, Craig S

    2014-06-01

    Effects of grazing on grassland birds are generally thought to be indirect, through alteration of vegetation structure; however, livestock can also affect nest survival directly through trampling and other disturbances (e.g., livestock-induced abandonment). We extracted data on nest fates from 18 grazing studies conducted in Canada. We used these data to assess rates of nest destruction by cattle among 9 ecoregions and between seasonal and rotational grazing systems. Overall, few nests were destroyed by cattle (average 1.5% of 9132 nests). Nest destruction was positively correlated with grazing pressure (i.e., stocking rate or grazing intensity), but nest survival was higher in more heavily grazed areas for some species. Because rates of destruction of grassland bird nests by cattle are low in Canada, management efforts to reduce such destruction may not be of ecological or economic value in Canada. © 2014 Society for Conservation Biology.

  3. Modelling stomatal ozone flux and deposition to grassland communities across Europe

    International Nuclear Information System (INIS)

    Ashmore, M.R.; Bueker, P.; Emberson, L.D.; Terry, A.C.; Toet, S.

    2007-01-01

    Regional scale modelling of both ozone deposition and the risk of ozone impacts is poorly developed for grassland communities. This paper presents new predictions of stomatal ozone flux to grasslands at five different locations in Europe, using a mechanistic model of canopy development for productive grasslands to generate time series of leaf area index and soil water potential as inputs to the stomatal component of the DO 3 SE ozone deposition model. The parameterisation of both models was based on Lolium perenne, a dominant species of productive pasture in Europe. The modelled seasonal time course of stomatal ozone flux to both the whole canopy and to upper leaves showed large differences between climatic zones, which depended on the timing of the start of the growing season, the effect of soil water potential, and the frequency of hay cuts. Values of modelled accumulated flux indices and the AOT40 index showed a five-fold difference between locations, but the locations with the highest flux differed depending on the index used; the period contributing to the accumulation of AOT40 did not always coincide with the modelled period of active ozone canopy uptake. Use of a fixed seasonal profile of leaf area index in the flux model produced very different estimates of annual accumulated total canopy and leaf ozone flux when compared with the flux model linked to a simulation of canopy growth. Regional scale model estimates of both the risks of ozone impacts and of total ozone deposition will be inaccurate unless the effects of climate and management in modifying grass canopy growth are incorporated. - Modelled stomatal flux of ozone to productive grasslands in Europe shows different spatial and temporal variation to AOT40, and is modified by management and soil water status

  4. Supporting biodiversity by prescribed burning in grasslands - A multi-taxa approach.

    Science.gov (United States)

    Valkó, Orsolya; Deák, Balázs; Magura, Tibor; Török, Péter; Kelemen, András; Tóth, Katalin; Horváth, Roland; Nagy, Dávid D; Debnár, Zsuzsanna; Zsigrai, György; Kapocsi, István; Tóthmérész, Béla

    2016-12-01

    There are contrasting opinions on the use of prescribed burning management in European grasslands. On the one hand, prescribed burning can be effectively used for the management of open landscapes, controlling dominant species, reducing accumulated litter or decreasing wildfire risk. On the other hand burning can have a detrimental impact on grassland biodiversity by supporting competitor grasses and by threatening several rare and endangered species, especially arthropods. We studied the effects of prescribed burning in alkaline grasslands of high conservation interest. Our aim was to test whether dormant-season prescribed burning can be an alternative conservation measure in these grasslands. We selected six sites in East-Hungary: in three sites, a prescribed fire was applied in November 2011, while three sites remained unburnt. We studied the effects of burning on soil characteristics, plant biomass and on the composition of vegetation and arthropod assemblages (isopods, spiders, ground beetles and rove beetles). Soil pH, organic matter, potassium and phosphorous did not change, but soluble salt content increased significantly in the burnt sites. Prescribed burning had several positive effects from the nature conservation viewpoint. Shannon diversity and the number of flowering shoots were higher, and the cover of the dominant grass Festuca pseudovina was lower in the burnt sites. Graminoid biomass was lower, while total, green and forb biomass were higher in the burnt plots compared to the control. The key finding of our study was that prescribed burning did not decrease the abundance and diversity of arthropod taxa. Species-level analyses showed that out of the most abundant invertebrate species, 10 were not affected, 1 was negatively and 1 was positively affected by burning. Moreover, our results suggest that prescribed burning leaving unburnt patches can be a viable management tool in open landscapes, because it supports plant diversity and does not threaten

  5. Does resource availability, resource heterogeneity or species turnover mediate changes in plant species richness in grazed grasslands?

    NARCIS (Netherlands)

    Bakker, C; Blair, JM; Knapp, AK

    2003-01-01

    Grazing by large ungulates often increases plant species richness in grasslands of moderate to high productivity. In a mesic North American grassland with and without the presence of bison (Bos bison), a native ungulate grazer, three non-exclusive hypotheses for increased plant species richness in

  6. China's Grassland Contract Policy and its Impacts on Herder Ability to Benefit in Inner Mongolia: Tragic Feedbacks

    Directory of Open Access Journals (Sweden)

    Wenjun Li

    2011-06-01

    Full Text Available Northern China's grasslands have been losing productivity since the 1980s, when a policy known as the "grassland contracting policy" allocated commonly used grazing lands to individual herder households. Examined here is the connection between implementation of the grassland contracting policy and the loss of grassland production using the analytic concepts of ability to benefit and community failure. A gacha (village of the Sunite Left Banner of the Xilingol League in Inner Mongolia is used as a case study to compare herder ability to benefit from rangeland resources during adverse climate events before and after policy implementation. Social-ecological resilience, access to social and ecological assets, and institutions supporting crisis relief have been affected. We find that the privatization of grassland use rights has weakened pastoralist ability to benefit from rangelands by weakening or dismantling what are identified as the rights-, structure-, and relations-based abilities that enabled pastoralists to cope with nonequilibrium conditions. This has led to a community failure that engenders feedbacks of increased impoverishment and environmental deterioration. The inflexible boundaries of quasi-private household property rights have caused the pastoral system to lose capacity to respond to drought and weather events through the flexibility of "otor" and other forms of herd movement, increasing vulnerability to environmental change.

  7. Contrasting responses of grassland water and carbon exchanges to climate change between Tibetan Plateau and Inner Mongolia

    Science.gov (United States)

    Liu, D.; Li, Y.; Wang, T.; Peylin, P. P.; MacBean, N.; Ciais, P.; Jia, G.; Ma, M.; Ma, Y.; Shen, M.; Zhang, X.; Piao, S.

    2017-12-01

    he grassland in Tibetan Plateau (TP) and Inner Mongolia (IM) of China play important roles in climate change mitigation. These two regions have increasingly experienced warming and changing precipitation regimes over the past three decades. However, it remains uncertain to what extent temperature and water availability regulate the water and carbon fluxes across alpine (TP) and temperate (IM) grasslands. Here, we optimize a process-based model of carbon and water fluxes using eddy covariance (EC) data and analyze the simulated results based upon the optimized model exposed to a range of annual temperature and precipitation anomalies. We found that the changes of NEE of TP grassland are relatively small because of compatible increasing rate of ecosystem respiration (Re) and the gross primary productivity (GPP) under warming. The NEE of IM grassland increases with warming due to faster reduction of GPP than Re under warm-induced drought. We also found suppression of plant transpiration as the primary cause for the muted response of evapotranspiration to warming in IM, which is in contrast to enhanced transpiration in TP. We therefore highlight that the underlying processes regulating the responses of water and carbon cycles to warming are fundamentally different between TP and IM grasslands.

  8. Evaluation of Rgb-Based Vegetation Indices from Uav Imagery to Estimate Forage Yield in Grassland

    Science.gov (United States)

    Lussem, U.; Bolten, A.; Gnyp, M. L.; Jasper, J.; Bareth, G.

    2018-04-01

    Monitoring forage yield throughout the growing season is of key importance to support management decisions on grasslands/pastures. Especially on intensely managed grasslands, where nitrogen fertilizer and/or manure are applied regularly, precision agriculture applications are beneficial to support sustainable, site-specific management decisions on fertilizer treatment, grazing management and yield forecasting to mitigate potential negative impacts. To support these management decisions, timely and accurate information is needed on plant parameters (e.g. forage yield) with a high spatial and temporal resolution. However, in highly heterogeneous plant communities such as grasslands, assessing their in-field variability non-destructively to determine e.g. adequate fertilizer application still remains challenging. Especially biomass/yield estimation, as an important parameter in assessing grassland quality and quantity, is rather laborious. Forage yield (dry or fresh matter) is mostly measured manually with rising plate meters (RPM) or ultrasonic sensors (handheld or mounted on vehicles). Thus the in-field variability cannot be assessed for the entire field or only with potential disturbances. Using unmanned aerial vehicles (UAV) equipped with consumer grade RGB cameras in-field variability can be assessed by computing RGB-based vegetation indices. In this contribution we want to test and evaluate the robustness of RGB-based vegetation indices to estimate dry matter forage yield on a recently established experimental grassland site in Germany. Furthermore, the RGB-based VIs are compared to indices computed from the Yara N-Sensor. The results show a good correlation of forage yield with RGB-based VIs such as the NGRDI with R2 values of 0.62.

  9. Controlling nitrous oxide emissions from grassland livestock production systems

    NARCIS (Netherlands)

    Oenema, O.; Gebauer, G.; Rodriguez, M.; Sapek, A.; Jarvis, S.C.; Corré, W.J.; Yamulki, S.

    1998-01-01

    There is growing awareness that grassland livestock production systems are major sources of nitrous oxide (N2O). Controlling these emissions requires a thorough understanding of all sources and controlling factors at the farm level. This paper examines the various controlling factors and proposes

  10. Potassium cycling and losses in grassland systems : a review

    NARCIS (Netherlands)

    Kayser, M; Isselstein, J

    Cycling of potassium in grassland systems has received relatively little attention in research and practice in recent years. Balanced nutrient systems require consideration of nutrients other than nitrogen (N). Potassium (K) is needed in large amounts and is closely related to N nutrition. In

  11. Organic matter dynamics and N mineralization in grassland soils

    NARCIS (Netherlands)

    Hassink, J.

    1995-01-01


    The aims of this study are i) to improve our understanding of the interactions between soil texturelsoil structure, soil organic matter, soil biota and mineralization in grassland soils, ii) to develop a procedure that yields soil organic matter fractions that can be determined directly

  12. Study on Climate and Grassland Fire in HulunBuir, Inner Mongolia Autonomous Region, China

    Directory of Open Access Journals (Sweden)

    Meifang Liu

    2017-03-01

    Full Text Available Grassland fire is one of the most important disturbance factors of the natural ecosystem. Climate factors influence the occurrence and development of grassland fire. An analysis of the climate conditions of fire occurrence can form the basis for a study of the temporal and spatial variability of grassland fire. The purpose of this paper is to study the effects of monthly time scale climate factors on the occurrence of grassland fire in HulunBuir, located in the northeast of the Inner Mongolia Autonomous Region in China. Based on the logistic regression method, we used the moderate-resolution imaging spectroradiometer (MODIS active fire data products named thermal anomalies/fire daily L3 Global 1km (MOD14A1 (Terra and MYD14A1 (Aqua and associated climate data for HulunBuir from 2000 to 2010, and established the model of grassland fire climate index. The results showed that monthly maximum temperature, monthly sunshine hours and monthly average wind speed were all positively correlated with the fire climate index; monthly precipitation, monthly average temperature, monthly average relative humidity, monthly minimum relative humidity and the number of days with monthly precipitation greater than or equal to 5 mm were all negatively correlated with the fire climate index. We used the active fire data from 2011 to 2014 to validate the fire climate index during this time period, and the validation result was good (Pearson’s correlation coefficient was 0.578, which showed that the fire climate index model was suitable for analyzing the occurrence of grassland fire in HulunBuir. Analyses were conducted on the temporal and spatial distribution of the fire climate index from January to December in the years 2011–2014; it could be seen that from March to May and from September to October, the fire climate index was higher, and that the fire climate index of the other months is relatively low. The zones with higher fire climate index are mainly

  13. Grassland degradation caused by tourism activities in Hulunbuir, Inner Mongolia, China

    International Nuclear Information System (INIS)

    Le, C; Ikazaki, K; Siriguleng; Kosaki, T; Kadono, A

    2014-01-01

    The recent increase in the number of tourists has raised serious concerns about grassland degradation by tourism activities in Inner Mongolia. Thus, we evaluated the effects of tourism activities on the vegetation and soil in Hulunbuir grassland. We identified all the plant species, measured the number and height of plant and plant coverage rate, and calculated species diversity, estimated above-ground biomass in use plot and non-use plot. We also measured soil hardness, and collected soil samples for physical and chemical analysis in both plots. The obtained results were as follows: a) the height of the dominant plants, plant coverage rate, species diversity, and above-ground biomass were significantly lower in use plot than in non-use plot, b) Carex duriuscula C.A.Mey., indicator plant for soil degradation, was dominant in use plot, c) soil hardness was significantly higher in use plot than in non-use plot, and spatial dependence of soil hardness was only found in the use plot, d) CEC, TC, TN and pH in the topsoil were significantly lower in use plot than non-use plot. On the basis of the results, we concluded that the tourism activities can be another major cause of the grassland degradation in Inner Mongolia

  14. Grassland degradation caused by tourism activities in Hulunbuir, Inner Mongolia, China

    Science.gov (United States)

    Le, C.; Ikazaki, K.; Siriguleng; Kadono, A.; Kosaki, T.

    2014-02-01

    The recent increase in the number of tourists has raised serious concerns about grassland degradation by tourism activities in Inner Mongolia. Thus, we evaluated the effects of tourism activities on the vegetation and soil in Hulunbuir grassland. We identified all the plant species, measured the number and height of plant and plant coverage rate, and calculated species diversity, estimated above-ground biomass in use plot and non-use plot. We also measured soil hardness, and collected soil samples for physical and chemical analysis in both plots. The obtained results were as follows: a) the height of the dominant plants, plant coverage rate, species diversity, and above-ground biomass were significantly lower in use plot than in non-use plot, b) Carex duriuscula C.A.Mey., indicator plant for soil degradation, was dominant in use plot, c) soil hardness was significantly higher in use plot than in non-use plot, and spatial dependence of soil hardness was only found in the use plot, d) CEC, TC, TN and pH in the topsoil were significantly lower in use plot than non-use plot. On the basis of the results, we concluded that the tourism activities can be another major cause of the grassland degradation in Inner Mongolia.

  15. Nearly Increased Dry-season Flows after Reforesting Degraded Fire-climax Grassland in the Philippines

    Science.gov (United States)

    van Meerveld, I. H. J.; Zhang, J.; Bruijnzeel, L. A.; Tripoli, R.; Quiñones, C. M. O.

    2017-12-01

    After decades of logging and shifting cultivation, vast tracts in tropical SE Asia have turned to fire-climax grassland. Whilst the hydrological functioning of Imperata grasslands has been studied little, the general perception is they are major contributors to downstream flooding and siltation. As such, Imperata grasslands are targeted widely for reforestation in the expectation to improve regional hydrology. Yet, numerous small catchment studies within and outside the tropics have typically shown decreased annual water yield after reforestation of grass- or cropland, with the bulk of the decrease observed during times of baseflow. Yet, it is theoretically possible that the higher water use of the planted trees is compensated by improved soil infiltration capacity after reforestation which should lead to higher baseflows, the so-called infiltration trade-off. To examine a rare claim of increased baseflow after reforesting an Imperata grassland in northern Leyte (Philippines) we compared a 3.2 ha degraded headwater catchment under Imperata with a nearby 8.7 ha catchment under 23-year-old reforestation. Both catchments were underlain by mafic rock, had perennial flow and were demonstrably watertight, thus allowing comparisons to be made. Grassland saturated soil hydraulic conductivity (Ksat) decreased from 10 mm h-1 at the surface to 2.9 mm h-1 at 20-40 cm depth and <1 mm h-1 below 60 cm, suggesting not only possibly frequent overland flow but also perched groundwater conditions at 20 cm depth. By contrast, Ksat of the forest soil decreased from 370 mm h-1 in the top 5 cm via 60 mm h-1 at 20 cm, with lower values found only deeper in the profile (7.3 and 2.6 mm h-1 at 60 and 90 cm, respectively). Thus, stormflows Qq for the reforestation were smaller and less `flashy' compared to the grassland catchment. Depending on how the annual reduction in catchment-wide infiltration (assumed equal to the difference in total Qq between catchments) was estimated, the trade

  16. Improved parameterization of managed grassland in a global process-based vegetation model using Bayesian statistics

    Science.gov (United States)

    Rolinski, S.; Müller, C.; Lotze-Campen, H.; Bondeau, A.

    2010-12-01

    More than a quarter of the Earth’s land surface is covered by grassland, which is also the major part (~ 70 %) of the agricultural area. Most of this area is used for livestock production in different degrees of intensity. The dynamic global vegetation model LPJmL (Sitch et al., Global Change Biology, 2003; Bondeau et al., Global Change Biology, 2007) is one of few process-based model that simulates biomass production on managed grasslands at the global scale. The implementation of managed grasslands and its evaluation has received little attention so far, as reference data on grassland productivity are scarce and the definition of grassland extent and usage are highly uncertain. However, grassland productivity is related to large areas, and strongly influences global estimates of carbon and water budgets and should thus be improved. Plants are implemented in LPJmL in an aggregated form as plant functional types assuming that processes concerning carbon and water fluxes are quite similar between species of the same type. Therefore, the parameterization of a functional type is possible with parameters in a physiologically meaningful range of values. The actual choice of the parameter values from the possible and reasonable phase space should satisfy the condition of the best fit of model results and measured data. In order to improve the parameterization of managed grass we follow a combined procedure using model output and measured data of carbon and water fluxes. By comparing carbon and water fluxes simultaneously, we expect well-balanced refinements and avoid over-tuning of the model in only one direction. The comparison of annual biomass from grassland to data from the Food and Agriculture Organization of the United Nations (FAO) per country provide an overview about the order of magnitude and the identification of deviations. The comparison of daily net primary productivity, soil respiration and water fluxes at specific sites (FluxNet Data) provides

  17. [Fractal features of soil particle size in the process of desertification in desert grassland of Ningxia, China].

    Science.gov (United States)

    Yan, Xin; An, Hui

    2017-10-01

    The variation of soil properties, the fractal dimension of soil particle size, and the relationships between fractal dimension of soil particle size and soil properties in the process of desertification in desert grassland of Ningxia were discussed. The results showed that the fractal dimension (D) at different desertification stages in desert grassland varied greatly, the value of D was between 1.69 and 2.62. Except for the 10-20 cm soil layer, the value of D gradually declined with increa sing desertification of desert grassland at 0-30 cm soil layer. In the process of desertification in de-sert grassland, the grassland had the highest values of D , the volume percentage of clay and silt, and the lowest values of the volume percentage of very fine sand and fine sand. However, the mobile dunes had the lowest value of D , the volume percentage of clay and silt, and the highest value of the volume percentage of very fine sand and fine sand. There was a significant positive correlation between the soil fractal dimension value and the volume percentage of soil particles 50 μm. The grain size of 50 μm was the critical value for deciding the relationship between the soil particle fractal dimension and the volume percentage. Soil organic matter (SOM) and total nitrogen (TN) decreased gradually with increasing desertification of desert grassland, but soil bulk density increased gradually. Qualitative change from fixed dunes to semi fixed dunes with the rapid decrease of the volume percentage of clay and silt, SOM, TN and the rapid increase of volume percentage of very fine sand and fine sand, soil bulk density. Fractal dimension was significantly correlated to SOM, TN and soil bulk density. Fractal dimension 2.58 was a critical value of fixed dunes and semi fixed dunes. So, the fractal dimension of 2.58 could be taken as the desertification indicator of desert grassland.

  18. Flow in Rotating Serpentine Coolant Passages With Skewed Trip Strips

    Science.gov (United States)

    Tse, David G.N.; Steuber, Gary

    1996-01-01

    Laser velocimetry was utilized to map the velocity field in serpentine turbine blade cooling passages with skewed trip strips. The measurements were obtained at Reynolds and Rotation numbers of 25,000 and 0.24 to assess the influence of trips, passage curvature and Coriolis force on the flow field. The interaction of the secondary flows induced by skewed trips with the passage rotation produces a swirling vortex and a corner recirculation zone. With trips skewed at +45 deg, the secondary flows remain unaltered as the cross-flow proceeds from the passage to the turn. However, the flow characteristics at these locations differ when trips are skewed at -45 deg. Changes in the flow structure are expected to augment heat transfer, in agreement with the heat transfer measurements of Johnson, et al. The present results show that trips are skewed at -45 deg in the outward flow passage and trips are skewed at +45 deg in the inward flow passage maximize heat transfer. Details of the present measurements were related to the heat transfer measurements of Johnson, et al. to relate fluid flow and heat transfer measurements.

  19. NPP Grassland: Beacon Hill, U.K., 1972-1993, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains two ASCII text files, one providing productivity measurements for a chalk grassland on Beacon Hill, West Sussex, U.K. (50.92 N, -0.85 W) and...

  20. Spatio-Temporal Patterns and Climate Variables Controlling of Biomass Carbon Stock of Global Grassland Ecosystems from 1982 to 2006

    Directory of Open Access Journals (Sweden)

    Jiangzhou Xia

    2014-02-01

    Full Text Available Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production. The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.

  1. Long-term grassland management effects on soil Phosphorus status on rewetted Histosols

    Science.gov (United States)

    Heller, Sebastian; Müller, Jürgen; Kayser, Manfred

    2017-04-01

    Since the Neolithic Period, the cultivation of wetlands has played a significant role for the settlement of Humans northwest Germany. A continuing drainage of the wetlands over the centuries and an intensified soil cultivation during the last decades has caused irreversible peat degradation and led to fundamental changes in the landscape. Nowadays, almost 70 % of the 4345 km2 peatland of Lower Saxony is altered by agriculture. For the revitalization of wetland ecosystems, permanent rewetting is an integral component to preserve the functions of organic soils and achieve resilient, speciesrich wetlands. However, permanent rewetting measures are not always feasible. In our study area at the Osterfeiner Moor, a fen located in the Dümmer lowlands near Osnabrück, intensive forage cropping areas were converted into extensive permanent grasslands accompanied by temporary rewetting during winter. This management practice combined with zero fertilization and a low mowing and grazing intensity aims at mitigating mineralisation of peat layers and creating a habitat for endangered meadow bird species. In this semi-natural ecosystem soil phosphorus (P) dynamics play a crucial role. However, longterm research results on P availability of degraded and rewetted fens are still lacking. Thus, we investigated the interaction of different grassland uses and P dynamics in the soil. We described P depletion of the topsoil over a time scale of 17 years after the implementation of restoration measures. Our study site comprises of 180 ha protected grassland divided into 52 management plots. According to the management system, we divided the plots into meadows, pastures and combinations of cutting and grazing. The soils in our study area can be characterised as drained organic soils, WRB: Rheic Sapric Histosols (Drainic), with drastic degradation properties through moorsh forming processes. Plant-available P (double lactate extraction method: PDL) was analysed from representative topsoil

  2. Responses of nocturnal rodents to shrub encroachment in Banni grasslands, Gujarat, India

    Science.gov (United States)

    Jayadevan, A.

    2016-12-01

    Shrub encroachment is one of the greatest threats to grasslands globally. These woodlands can strongly influence the behaviour of small mammals adapted to more open habitats, which rely on high visibility for early detection of predators. In semi-arid grasslands, rodents are considered keystone species. Although shrub encroachment is known to negatively affect rodent assemblages, its impact on the foraging behaviour of rodents, which is known to vary in response to risky situations, is unknown. Understanding whether shrub encroachment alters such antipredator behaviour is important as antipredator behaviour can alter the distribution, abundance and ultimately, survival of prey species. In this study, I explored the effects of shrub encroachment on the foraging behaviour of nocturnal rodent communities in the Banni grasslands, India. I examined foraging behaviour, quantified using the giving-up density (GUD) framework and the number of rodent crossings around food patches, in two habitats that differed in the extent of shrub encroachment. Under the GUD framework, the amount of food left behind by a forager in a food patch reflects the costs of feeding at the patch. Higher GUDs imply higher foraging costs. I also investigated how removal of an invasive woody plant, Prosopis juliflora would affect foraging behaviour of nocturnal rodents. High shrub encroachment was associated with higher foraging costs (higher GUDs) and lower activity than the sparsely wooded habitat, likely due to low visibility in the densely wooded habitat. The dense habitat also supported a higher richness and relative abundance of generalist rodents than the sparse habitat, likely due to the increased heterogeneity of the habitat. The tree removal experiment revealed that rodents had lower GUDs (i.e., low foraging costs) after the event of tree cutting. This may be due to the reduction of cover in the habitat, leading to higher visibility and lower predation risk. My results suggest that shrub

  3. The Effect of Re-Planting Trees on Soil Microbial Communities in a Wildfire-Induced Subalpine Grassland

    Directory of Open Access Journals (Sweden)

    Ed-Haun Chang

    2017-10-01

    Full Text Available Wildfire often causes tremendous changes in ecosystems, particularly in subalpine and alpine areas, which are vulnerable due to severe climate conditions such as cold temperature and strong wind. This study aimed to clarify the effect of tree re-planting on ecosystem services such as the soil microbial community after several decades. We compared the re-planted forest and grassland with the mature forest as a reference in terms of soil microbial biomass C and N (Cmic and Nmic, enzyme activities, phospholipid fatty acids (PLFA composition, and denaturing gradient gel electrophoresis (DGGE. The Cmic and Nmic did not differ among the grassland, re-planted forest and mature forest soil; however, ratios of Cmic/Corg and Nmic/Ntot decreased from the grassland to re-planted forest and mature forest soil. The total PLFAs and those attributed to bacteria and Gram-positive and Gram-negative bacteria did not differ between the re-planted forest and grassland soil. Principle component analysis of the PLFA content separated the grassland from re-planted forest and mature forest soil. Similarly, DGGE analysis revealed changes in both bacterial and fungal community structures with changes in vegetation. Our results suggest that the microbial community structure changes with the re-planting of trees after a fire event in this subalpine area. Recovery of the soil microbial community to the original state in a fire-damaged site in a subalpine area may require decades, even under a re-planted forest.

  4. Density and success of bird nests relative to grazing on western Montana grasslands

    Science.gov (United States)

    Fondell, Thomas F.; Ball, I.J.

    2004-01-01

    Grassland birds are declining at a faster rate than any other group of North American bird species. Livestock grazing is the primary economic use of grasslands in the western United States, but the effects of this use on distribution and productivity of grassland birds are unclear. We examined nest density and success of ground-nesting birds on grazed and ungrazed grasslands in western Montana. In comparison to grazed plots, ungrazed plots had reduced forb cover, increased litter cover, increased litter depth, and increased visual obstruction readings (VOR) of vegetation. Nest density among 10 of 11 common bird species was most strongly correlated with VOR of plots, and greatest nest density for each species occurred where mean VOR of the plot was similar to mean VOR at nests. Additionally, all bird species were relatively consistent in their choice of VOR at nests despite substantial differences in VOR among plots. We suggest that birds selected plots based in part on availability of suitable nest sites and that variation in nest density relative to grazing reflected the effect of grazing on availability of nest sites. Nest success was similar between grazed plots and ungrazed plots for two species but was lower for nests on grazed plots than on ungrazed plots for two other species because of increased rates of predation, trampling, or parasitism by brown-headed cowbirds (Molothrus ater). Other species nested almost exclusively on ungrazed plots (six species) or grazed plots (one species), precluding evaluation of the effects of grazing on nest success. We demonstrate that each species in a diverse suite of ground-nesting birds preferentially used certain habitats for nesting and that grazing altered availability of preferred nesting habitats through changes in vegetation structure and plant species composition. We also show that grazing directly or indirectly predisposed some bird species to increased nesting mortality. Management alternatives that avoid

  5. Performance of Polycrystalline Photovoltaic and Thermal Collector (PVT on Serpentine-Parallel Absor

    Directory of Open Access Journals (Sweden)

    Mustofa

    2015-10-01

    Full Text Available This paper presents the performance of an unglazed polycrystalline photovoltaic-thermal PVT on 0.045 kg/s mass flow rate. PVT combine photovoltaic modules and solar thermal collectors, forming a single device that receive solar radiation and produces heat and electricity simultaneously. The collector figures out serpentine-parallel tubes that can prolong fluid heat conductivity from morning till afternoon. During testing, cell PV, inlet and outlet fluid temperatures were recorded by thermocouple digital LM35 Arduino Mega 2560. Panel voltage and electric current were also noted in which they were connected to computer and presented each second data recorded. But, in this performance only shows in the certain significant time data. This because the electric current was only noted by multimeter device not the digital one. Based on these testing data, average cell efficiency was about 19%, while thermal efficiency of above 50% and correspondent cell efficiency of 11%, respectively.

  6. Kinetics of Grinding of Secondary Serpentine Raw Material at Cascade Operating Mode

    Directory of Open Access Journals (Sweden)

    Marek Matik

    2004-12-01

    Full Text Available The paper deals with the grinding of secondary serpentine material from the Dobšiná´s heap in a ball ceramic mill. The raw material was pre-sieved to prepare fraction of +250 –1,000 µm that was fed to the mill. During batch experiment an amount of oversize on the screen with a mesh size of 200 µm was observed as a function of time. Two speed modes were tested. Firstly, it was the mode designed by mill producer implicit from the structure of milling stand equipped by electromotor, friction gear onto driving shaft with given diameter. The speed of this original alignment attains 40 rmp. Secondly, it was cascade speed mode according to the Haase´s equation, namely 53 rmp, achieved by enlargement of driving shaft diameter. As to winning of required final product 90 % –200 µm, increased speed resulted in the shortening of grinding time from 17.5 to15.7 hour.

  7. Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.; Kamal, S.M.

    1994-01-01

    The present study involves adapting a formal decision methodology to the selection of alternative nuclear reactor concrete shielding. Multiattribute utility theory is selected to accommodate decision maker's preferences. Multiattribute utility theory (MAU) is here employed to evaluate two appropriate nuclear reactor shielding concretes in terms of effectiveness to determine the optimal choice in order to meet the radiation protection regulations. These concretes are Ordinary concrete (O.C.) and Illmenite Serpentile concrete (I.S.C.). These are normal weight concrete and heavy weight heat resistive concrete, respectively. The effectiveness objective of the nuclear reactor shielding is defined and structured into definite attributes and subattributes to evaluate the best alternative. Factors affecting the decision are dose received by reactor's workers, the material properties as well as cost of concrete shield. A computer program is employed to assist in performing utility analysis. Based upon data, the result shows the superiority of Ordinary concrete over Illmenite Serpentine concrete. (Author)

  8. Ornamental Eudicotyledons from grasslands of Pampa biome in Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    Ana De Araújo Carrion

    2012-10-01

    Full Text Available The present study aims at investigating the group of Eudicotyledons native plants with ornamental potential of grasslands from the Pampa biome in the south of Brazil. The Pampa presents a high level of biodiversity; however, it requires studies related to the richness of vascular plants and its biological and ecological knowledge. The purpose of this work is to elaborate a preliminary inventory of this group of plants, analyzing the ornamental potential of each specie and indicating those that could be considered as being priorities for the purpose of sustainable use with this objective. Some grassland species were selected through the search for information in herbarium registers, national and international works about decorative plants, floristic surveys, besides the authors´ practical knowledge. Some parameters and values were associated, aiming at reducing the subjectivity of the choice. The survey resulted in a list of 177 species distributed in 36 families and 101 genera. Among these species, ten presented high ornamental potential. These data show that the richness of the grassland native ornamental flora is high, even though its use is poorly known. The use of these plants, if in a sustainable manner, can produce economic and ecological benefits.

  9. Roles of Arbuscular Mycorrhizal Fungi and Soil Abiotic Conditions in the Establishment of a Dry Grassland Community.

    Directory of Open Access Journals (Sweden)

    Jana Knappová

    Full Text Available The importance of soil biota in the composition of mature plant communities is commonly acknowledged. In contrast, the role of soil biota in the early establishment of new plant communities and their relative importance for soil abiotic conditions are still poorly understood.The aim of this study was to understand the effects of soil origin and soil fungal communities on the composition of a newly established dry grassland plant community. We used soil from two different origins (dry grassland and abandoned field with different pH and nutrient and mineral content. Grassland microcosms were established by sowing seeds of 54 species of dry grassland plants into the studied soils. To suppress soil fungi, half of the pots were regularly treated with fungicide. In this way, we studied the independent and combined effects of soil origin and soil community on the establishment of dry grassland communities.The effect of suppressing the soil fungal community on the richness and composition of the plant communities was much stronger than the effect of soil origin. Contrary to our expectations, the effects of these two factors were largely additive, indicating the same degree of importance of soil fungal communities in the establishment of species-rich plant communities in the soils from both origins. The negative effect of suppressing soil fungi on species richness, however, occurred later in the soil from the abandoned field than in the soil from the grassland. This result likely occurred because the negative effects of the suppression of fungi in the field soil were caused mainly by changes in plant community composition and increased competition. In contrast, in the grassland soil, the absence of soil fungi was limiting for plants already at the early stages of their establishment, i.e., in the phases of germination and early recruitment. While fungicide affects not only arbuscular mycorrhizal fungi but also other biota, our data indicate that changes

  10. Hierarchical traits distances explain grassland Fabaceae species' ecological niches distances

    Science.gov (United States)

    Fort, Florian; Jouany, Claire; Cruz, Pablo

    2015-01-01

    Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e., ecological niches. We measured a wide range of functional traits (root traits, leaf traits, and whole plant traits) in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species' ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems) are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems) are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance. PMID:25741353

  11. Hierarchical traits distances explain grassland Fabaceae species’ ecological niches distances

    Directory of Open Access Journals (Sweden)

    Florian eFort

    2015-02-01

    Full Text Available Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e. ecological niches. We measured a wide range of functional traits (root traits, leaf traits and whole plant traits in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species’ ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance.

  12. Biodiversity of Soil Microbial Communities Following Woody Plant Invasion of Grassland: An Assessment Using Molecular Methods

    Science.gov (United States)

    Kantola, I. B.; Gentry, T. J.; Filley, T. R.; Boutton, T. W.

    2012-12-01

    Woody plants have encroached into grasslands, savannas, and other grass-dominated ecosystems throughout the world during the last century. This dramatic vegetation change is likely driven by livestock grazing, altered fire frequencies, elevated atmospheric CO2 concentrations, and/or changes in atmospheric deposition patterns. Woody invasion often results in significant changes in ecosystem function, including alterations in above- and belowground primary productivity, soil C, N, and P storage and turnover, and the size and activity of the soil microbial biomass pool. The purpose of this study was to examine the relationships and interactions between plant communities and soil microbial communities in the Rio Grande Plains region of southern Texas where grasslands have been largely replaced by woodlands. Research was conducted along a successional chronosequence representing the stages of woody plant encroachment from open grassland to closed-canopy woodland. To characterize soil microbial community composition, soil samples (0-7.5 cm) were collected in remnant grasslands (representing time 0) and near the centers of woody plant clusters, groves, and drainage woodlands ranging in age from 10 to 130 yrs. Ages of woody plant stands were determined by dendrochronology. Community DNA was extracted from each soil sample with a MoBio PowerMax Soil DNA isolation kit. The DNA concentrations were quantified on a NanoDrop ND-1000 spectrophotometer and diluted to a standard concentration. Pyrosequencing was performed by the Research and Testing Laboratory (Lubbock, TX) according to Roche 454 Titanium chemistry protocols. Samples were amplified with primers 27F and 519R for bacteria, and primers ITS1F and ITS4 for fungi. Sequences were aligned using BioEdit and the RDP Pipeline and analyzed in MOTHUR. Non-metric multidimensional scaling of the operational taxonomic units identified by pyrosequencing revealed that both bacterial and fungal community composition were

  13. Evaluation of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) for N2O mitigation after grassland cultivation

    DEFF Research Database (Denmark)

    Kong, Xianwang

    Temporary grasslands cover ca. 11 million ha and constitute more than 10% of the total arable land within EU-28; in Denmark, ca. 60% of the grasslands are included in crop rotations. The high productivity and the positive residual effect on succeeding crops are the main reasons of placing...... archaea (AOA), as revealed by mRNA transcripts of amoA gene. This inhibitory effect could be limited to the soil volume in close contact with residues, where residue decomposition and subsequent nitrification took place. In the field study, there was a trend towards lower biomass yield and N...... grasslands in crop rotations. At the transition phase, the mineralization of grass and clover residues incorporated by grassland cultivation can supply nitrogen to a succeeding crop; however, the plant N-uptake is low for several weeks at the early growth stage. During this period, as a result of increasing...

  14. Achieving grassland production and quality that matches animal needs

    NARCIS (Netherlands)

    Pol, van den A.; Busqué, Juan; Golinski, P.; Noorkõiv, Katrin; O'Donovan, Michael; Peratoner, Giovanni; Reheul, D.

    2016-01-01

    Permanent grasslands are exploited by grazing animals or as meadows depending on different
    constraints. Grazing is the most common use in large parts of Europe, especially in the northwest of
    Europe. However, certain areas are less suitable for grazing. In the Alps e.g. meadows are the

  15. Achieving grassland production and quality that matching animal needs

    NARCIS (Netherlands)

    Pol, van den A.; Busqué, Juan; Golinski, P.; Noorkõiv, Katrin; O'Donovan, Michael; Peratoner, Giovanni; Reheul, D.

    2016-01-01

    Permanent grasslands are exploited by grazing animals or as meadows depending on different constraints. Grazing is the most common use in large parts of Europe, especially in the northwest of Europe. However, certain areas are less suitable for grazing. In the Alps e.g. meadows are the most relevant

  16. Crude protein changes on grassland along a degradation gradient ...

    African Journals Online (AJOL)

    Evapotranspiration was determined by quantifying the soil-water balance equation with the aid of runoff plots and soil-water content measurements. Crude protein ... The study shows that it is important to keep grassland in optimal condition to utilize limited soil water for sustainable plant and therefore animal production.

  17. Changing patterns of basic household consumption in the Inner Mongolian grasslands: a case study of policy-oriented adoptive changes in the use of grasslands

    NARCIS (Netherlands)

    Du, B.; Zhen, L.; Groot, de R.S.; Goulden, C.E.; Long, X.; Cao, X.; Wu, R.; Sun, C.

    2014-01-01

    Grassland ecosystems, as the basic natural resources in the Inner Mongolia Autonomous Region, are becoming increasingly sensitive to human intervention, leading to deterioration in fragile ecosystems. The goal of this study was to describe the restoration policy-oriented adoptive changes to basic

  18. Use of the Cropland Data Layer to monitor grassland conversion in the U.S. Western Corn Belt (Invited)

    Science.gov (United States)

    Wright, C.; Wimberly, M. C.

    2013-12-01

    The U.S. Department of Agriculture's Cropland Data Layer (CDL) provides new opportunities for monitoring land cover/land use change (LCLUC) related to U.S. agricultural policy, bioenergy development, and recent commodity price increases. We used the CDL to assess the conversion of grasslands to corn/soy cultivation along the western periphery of the U.S. Corn Belt. Here, we find rapid grassland conversion (1-5% annually) as the Corn Belt expands westward and northward into North Dakota and South Dakota. This LCLUC is occurring in close proximity to wetlands in the Prairie Pothole Region. In most counties in the eastern Dakotas, grassland conversion exceeds declines in land area enrolled in the Conservation Reserve Program (CRP). Within the core corn/soy growing area in Iowa and southern Minnesota, LCLUC is occurring on marginal lands characterized by high erosion potential and less-productive soils. In Minnesota, particularly, corn/soy production is increasing on lands previously too wet to farm without an expansion of agricultural drainage practices. Over the period 2006-2011, we estimate a net greenhouse gas impact of grassland conversion in the Western Corn Belt of approximately 4*106 metric tons CO2-equivalent. Although not designed for monitoring grasslands, we suggest that the CDL can be used judiciously to identify grassland conversion at farm- to sub-county scales, and, in conjunction with other national-level datasets (e.g., the National Wetlands Inventory and SSURGO database), to provide timely feedback to policymakers and the public on likely environmental impacts of U.S. agricultural policies and shifting market forces.

  19. Effects of erosion from mounds of different termite genera on distinct functional grassland types in an African savannah

    NARCIS (Netherlands)

    Gosling, Cleo M.; Cromsigt, Joris P. G. M.; Mpanza, Nokukhanya; Olff, Han

    A key aspect of savannah vegetation heterogeneity is mosaics formed by two functional grassland types, bunch grasslands, and grazing lawns. We investigated the role of termites, important ecosystem engineers, in creating high-nutrient patches in the form of grazing lawns. Some of the ways termites

  20. Variations of Near Surface Energy Balance Caused by Land Cover Changes in the Semiarid Grassland Area of China

    Directory of Open Access Journals (Sweden)

    Qun’ou Jiang

    2014-01-01

    Full Text Available This study applies the Dynamics of Land System (DLS model to simulating the land cover under the designed scenarios and then analyzes the effects of land cover conversion on energy flux in the semiarid grassland area of China with the Weather Research and Forecasting (WRF model. The results indicate that the grassland will show a steadily upgrowing trend under the coordinated environmental sustainability (CES scenario. Compared to the CES scenario, the rate of increase in grassland cover is lower, while the rate of increase in urban land cover will be higher under the rapid economic growth (REG scenario. Although the conversion from cropland to grassland will reduce the energy flux, the expansion of urban area and decreasing of forestry area will bring about more energy flux. As a whole, the energy flux of near surface will obviously not change under the CES scenario, and the climate therefore will not be possible to be influenced greatly by land cover change. The energy flux under the REG scenario is higher than that under the CES scenario. Those research conclusions can offer valuable information for the land use planning and climate change adaptation in the semiarid grassland area of China.