WorldWideScience

Sample records for serpens molecular core

  1. A Study of THT Cold Cores Population in the Star-Forming Region in Serpens

    Science.gov (United States)

    Fiorellino, Eleonora

    2017-11-01

    The purpose of this work is to produce the Core Mass Function (CMF) of the Serpens star-forming region and confront it with the Initial Mass Function (IMF), the statistical distribution of initial star mass. As Testi & Sergent (1998) discovered, the power-law index of the slope of the CMF is very close to the one of the Salpeter's IMF (Salpeter, 1955): dN/dM / M2.35. This strongly suggests that the stellar IMF results from the fragmentation process in turbulent cloud cores rather than from stellar accretion mechanisms and gives a huge contribute to undestanding the star formation. For this work, we started from the data delivered by the European satellite Herschel and produced the maps of the Serpens with Unimap code (Piazzo et al, 2015). Hence we obtained a core catalogue with two different softwares getsources (Men'shchikov et al, 2012) and CuTEx (Molinari et al, 2011) and we eliminated from it any source that is not a core. A full discussion of the cores physical propreties as well as the whole region is under preparation.

  2. Morphology and kinematics of filaments in Serpens and Perseus molecular clouds: a high resolution study

    Science.gov (United States)

    Dhabal, Arnab; Mundy, Lee; Rizzo, Maxime; Storm, Shaye; Teuben, Peter; CLASSy Collaboration

    2018-01-01

    Filamentary structures are prevalent in molecular clouds over a wide range of scales, and are often associated with active star formation. The study of filament morphology and kinematics provide insights into the physical processes leading to core formation in clustered environments. As part of the CARMA Large Area Star Formation Survey (CLASSy) follow-up, we observed five Herschel filaments in the Serpens Main, Serpens South and NGC1333 molecular clouds using the J=1-0 transitions of dense gas tracers H13CO+, HNC and H13CN. Of these, H13CO+ and H13CN are optically thin and serve as a test of the kinematics previously seen by the CLASSy in N2H+. The observations have an angular resolution of 7'' and a spectral resolution of 0.16 km/s. Although the large scale structure compares well with the CARMA N2H+ (J=1-0) maps and Herschel dust continuum maps, we resolve finer structure within the filaments identified by Herschel. Most regions are found to have multiple structures and filaments partially overlapping in the line-of-sight. In two regions overlapping structures have velocity differences as high as 1.4 km/s. We identify 8 individual filaments with typical widths of 0.03-0.06 pc in these tracers, which is significantly less than widths observed in the Herschel dust column density maps. At least 50% of the filaments have distinct velocity gradients perpendicular to their major axis with average values in the range 4-10 km s-1 pc-1. These findings are in support of the theoretical models of filament formation by 2-D inflow in the shock layer created by colliding turbulent cells. We also find evidence of velocity gradients along the length of two filaments; the gradients suggest that these filaments are inflowing towards the cloud core.

  3. Wide field CO J = 3 → 2 mapping of the Serpens cloud core

    DEFF Research Database (Denmark)

    Dionatos, Odyssefs; Nisini, Brunella; Codella, Claudio

    2010-01-01

    Context. Outflows provide indirect means to gain insight into diverse star formation-associated phenomena. At the level of individual protostellar cores, both outflows and the intrinsic core properties can be used to study the mass accretion/ejection process of heavily embedded protostellar sources...... this homogeneous dataset for a single star-forming site. Methods. An area comprising 460″ × 230″ of the Serpens cloud core was mapped in 12CO J = 3 → 2 with the HARP-B heterodyne array at the James Clerk Maxwell Telescope; J = 3 → 2 observations are more sensitive tracers of hot outflow gas than lower...

  4. VLBA DETERMINATION OF THE DISTANCE TO NEARBY STAR-FORMING REGIONS. IV. A PRELIMINARY DISTANCE TO THE PROTO-HERBIG AeBe STAR EC 95 IN THE SERPENS CORE

    International Nuclear Information System (INIS)

    Dzib, Sergio; Loinard, Laurent; Rodriguez, Luis F.; Mioduszewski, Amy J.; Boden, Andrew F.; Torres, Rosa M.

    2010-01-01

    Using the Very Long Base Array, we observed the young stellar object EC 95 in the Serpens cloud core at eight epochs from 2007 December to 2009 December. Two sources are detected in our field and are shown to form a tight binary system. The primary (EC 95a) is a 4-5 M sun proto-Herbig AeBe object (arguably the youngest such object known), whereas the secondary (EC 95b) is most likely a low-mass T Tauri star. Interestingly, both sources are non-thermal emitters. While T Tauri stars are expected to power a corona because they are convective while they go down the Hayashi track, intermediate-mass stars approach the main sequence on radiative tracks. Thus, they are not expected to have strong superficial magnetic fields, and should not be magnetically active. We review several mechanisms that could produce the non-thermal emission of EC 95a and argue that the observed properties of EC 95a might be most readily interpreted if it possessed a corona powered by a rotation-driven convective layer. Using our observations, we show that the trigonometric parallax of EC 95 is π = 2.41 ± 0.02 mas, corresponding to a distance of 414.9 +4.4 -4.3 pc. We argue that this implies a distance to the Serpens core of 415 ± 5 pc and a mean distance to the Serpens cloud of 415 ± 25 pc. This value is significantly larger than previous estimates (d ∼ 260 pc) based on measurements of the extinction suffered by stars in the direction of Serpens. A possible explanation for this discrepancy is that these previous observations picked out foreground dust clouds associated with the Aquila Rift system rather than Serpens itself.

  5. CARMA LARGE AREA STAR FORMATION SURVEY: OBSERVATIONAL ANALYSIS OF FILAMENTS IN THE SERPENS SOUTH MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-López, M.; Looney, L.; Lee, K.; Segura-Cox, D. [Department of Astronomy, University of Illinois at Urbana—Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Arce, H. G.; Plunkett, A. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Mundy, L. G.; Storm, S.; Teuben, P. J.; Pound, M. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Isella, A.; Kauffmann, J. [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Tobin, J. J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Rosolowsky, E. [Departments of Physics and Statistics, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7 (Canada); Kwon, W. [SRON Netherlands Institute for Space Research, Landleven 12, 9747-AD Groningen (Netherlands); Ostriker, E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Tassis, K. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, P.O. Box 2208, GR-710 03 Heraklion, Crete (Greece); Shirley, Y. L., E-mail: manferna@gmail.com [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-08-01

    We present the N{sub 2}H{sup +} (J = 1 → 0) map of the Serpens South molecular cloud obtained as part of the CARMA Large Area Star Formation Survey. The observations cover 250 arcmin{sup 2} and fully sample structures from 3000 AU to 3 pc with a velocity resolution of 0.16 km s{sup –1}, and they can be used to constrain the origin and evolution of molecular cloud filaments. The spatial distribution of the N{sub 2}H{sup +} emission is characterized by long filaments that resemble those observed in the dust continuum emission by Herschel. However, the gas filaments are typically narrower such that, in some cases, two or three quasi-parallel N{sub 2}H{sup +} filaments comprise a single observed dust continuum filament. The difference between the dust and gas filament widths casts doubt on Herschel ability to resolve the Serpens South filaments. Some molecular filaments show velocity gradients along their major axis, and two are characterized by a steep velocity gradient in the direction perpendicular to the filament axis. The observed velocity gradient along one of these filaments was previously postulated as evidence for mass infall toward the central cluster, but these kind of gradients can be interpreted as projection of large-scale turbulence.

  6. Large Area, High Resolution N2H+ studies of dense gas in the Perseus and Serpens Molecular Clouds

    Science.gov (United States)

    Storm, Shaye; Mundy, Lee

    2014-07-01

    Star formation in molecular clouds occurs over a wide range of spatial scales and physical densities. Understanding the origin of dense cores thus requires linking the structure and kinematics of gas and dust from cloud to core scales. The CARMA Large Area Star Formation Survey (CLASSy) is a CARMA Key Project that spectrally imaged five diverse regions of the Perseus and Serpens Molecular Clouds in N2H+ (J=1-0), totaling over 800 square arcminutes. The observations have 7’’ angular resolution (~0.01 pc spatial resolution) to probe dense gas down to core scales, and use combined interferometric and single-dish data to fully recover line emission up to parsec scales. CLASSy observations are complete, and this talk will focus on three science results. First, the dense gas in regions with existing star formation has complex hierarchical structure. We present a non-binary dendrogram analysis for all regions and show that dense gas hierarchy correlates with star formation activity. Second, well-resolved velocity information for each dendrogram-identified structure allows a new way of looking at linewidth-size relations in clouds. Specifically, we find that non-thermal line-of-sight velocity dispersion varies weakly with structure size, while rms variation in the centroid velocity increases strongly with structure size. We argue that the typical line-of-sight depth of a cloud can be estimated from these relations, and that our regions have depths that are several times less than their extent on the plane of the sky. This finding is consistent with numerical simulations of molecular cloud turbulence that show that high-density sheets are a generic result. Third, N2H+ is a good tracer of cold, dense gas in filaments; we resolve multiple beams across many filaments, some of which are narrower than 0.1 pc. The centroid velocity fields of several filaments show gradients perpendicular to their major axis, which is a common feature in filaments formed from numerical

  7. Wide-field 12CO (J=2-1) and 13CO (J=2-1) Observations toward the Aquila Rift and Serpens Molecular Cloud Complexes. I. Molecular Clouds and Their Physical Properties

    Science.gov (United States)

    Nakamura, Fumitaka; Dobashi, Kazuhito; Shimoikura, Tomomi; Tanaka, Tomohiro; Onishi, Toshikazu

    2017-03-01

    We present the results of wide-field 12CO (J=2{--}1) and 13CO (J=2{--}1) observations toward the Aquila Rift and Serpens molecular cloud complexes (25^\\circ < l< 33^\\circ and 1^\\circ < b< 6^\\circ ) at an angular resolution of 3.‧4 (≈ 0.25 pc) and at a velocity resolution of 0.079 km s-1 with velocity coverage of -5 {km} {{{s}}}-1< {V}{LSR}< 35 {km} {{{s}}}-1. We found that the 13CO emission better traces the structures seen in the extinction map, and derived the {X}{13{CO}}-factor of this region. Applying SCIMES to the 13CO data cube, we identified 61 clouds and derived their mass, radii, and line widths. The line width-radius relation of the identified clouds basically follows those of nearby molecular clouds. The majority of the identified clouds are close to virial equilibrium, although the dispersion is large. By inspecting the 12CO channel maps by eye, we found several arcs that are spatially extended to 0.°2-3° in length. In the longitude-velocity diagrams of 12CO, we also found two spatially extended components that appear to converge toward Serpens South and the W40 region. The existence of two components with different velocities and arcs suggests that large-scale expanding bubbles and/or flows play a role in the formation and evolution of the Serpens South and W40 cloud.

  8. A MULTIWAVELENGTH CHARACTERIZATION OF PROTO-BROWN-DWARF CANDIDATES IN SERPENS

    Energy Technology Data Exchange (ETDEWEB)

    Riaz, B.; Caselli, P. [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Vorobyov, E. [Institute of Astrophysics, University of Vienna, Vienna 1180 (Austria); Research Institute of Physics, Southern Federal University, Rostov-on-Don 344090 (Russian Federation); Harsono, D. [Universitt Heidelberg, Zentrum fr Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120, Heidelberg (Germany); Tikare, K. [IRAP, BP 44346-31028 Toulouse Cedex 4 (France); Gonzalez-Martin, O., E-mail: briaz@mpe.mpg.de [Instituto de Radioastronoma y Astrofsica (IRyA), UNAM, Antigua Carretera a Pátzcuaro # 8701, Col. Ex Hacienda San José de la Huerta, Morelia, Michoacán, C.P. 58089 (Mexico)

    2016-11-10

    We present results from a deep submillimeter survey in the Serpens Main and Serpens/G3–G6 clusters, conducted with the Submillimetre Common-User Bolometer Array (SCUBA-2) at the James Clerk Maxwell Telescope. We have combined near- and mid-infrared spectroscopy, Herschel PACS far-infrared photometry, submillimeter continuum, and molecular gas line observations, with the aim of conducting a detailed multiwavelength characterization of “proto-brown-dwarf” (proto-BD) candidates in Serpens. We have performed continuum and line radiative transfer modeling and have considered various classification schemes to understand the structure and the evolutionary stage of the system. We have identified four proto-BD candidates, of which the lowest-luminosity source has an L {sub bol} ∼ 0.05 L {sub ☉}. Two of these candidates show characteristics consistent with Stage 0/I systems, while the other two are Stage I-T/Class Flat systems with tenuous envelopes. Our work has also revealed a ∼20% fraction of misidentified Class 0/I/Flat sources that show characteristics consistent with Class II edge-on disk systems. We have set constraints on the mass of the central object using the measured bolometric luminosities and numerical simulations of stellar evolution. Considering the available gas+dust mass reservoir and the current mass of the central source, three of these candidates are likely to evolve into BDs.

  9. Phytomonas serpens: immunological similarities with the human trypanosomatid pathogens.

    Science.gov (United States)

    Santos, André L S; d'Avila-Levy, Claudia M; Elias, Camila G R; Vermelho, Alane B; Branquinha, Marta H

    2007-07-01

    The present review provides an overview of recent discoveries concerning the immunological similarities between Phytomonas serpens, a tomato parasite, and human trypanosomatid pathogens, with special emphasis on peptidases. Leishmania spp. and Trypanosoma cruzi express peptidases that are well-known virulence factors, named leishmanolysin and cruzipain. P. serpens synthesizes two distinct classes of proteolytic enzymes, metallo- and cysteine-type peptidases, that share common epitopes with leishmanolysin and cruzipain, respectively. The leishmanolysin-like and cruzipain-like molecules from P. serpens participate in several biological processes including cellular growth and adhesion to the salivary glands of Oncopeltus fasciatus, a phytophagous insect experimental model. Since previous reports demonstrated that immunization of mice with P. serpens induced a partial protective immune response against T. cruzi, this plant trypanosomatid may be a suitable candidate for vaccine studies. Moreover, comparative approaches in the Trypanosomatidae family may be useful to understand kinetoplastid biology, biochemistry and evolution.

  10. THE MID-INFRARED EXTINCTION LAW IN THE OPHIUCHUS, PERSEUS, AND SERPENS MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Chapman, Nicholas L.; Mundy, Lee G.; Lai, Shih-Ping; Evans, Neal J. II

    2009-01-01

    We compute the mid-IR extinction law from 3.6 to 24 μm in three molecular clouds-Ophiuchus, Perseus, and Serpens-by combining data from the 'Cores to Disks' Spitzer Legacy Science program with deep JHK s imaging. Using a new technique, we are able to calculate the line-of-sight (LOS) extinction law toward each background star in our fields. With these LOS measurements, we create, for the first time, maps of the χ 2 deviation of the data from two extinction law models. Because our χ 2 maps have the same spatial resolution as our extinction maps, we can directly observe the changing extinction law as a function of the total column density. In the Spitzer Infrared Array Camera (IRAC) bands, 3.6-8 μm, we see evidence for grain growth. Below A K s = 0.5, our extinction law is well fitted by the Weingartner and Draine R V = 3.1 diffuse interstellar-medium dust model. As the extinction increases, our law gradually flattens, and for A K s ≥1, the data are more consistent with the Weingartner and Draine R V = 5.5 model that uses larger maximum dust grain sizes. At 24 μm, our extinction law is 2-4 times higher than the values predicted by theoretical dust models, but is more consistent with the observational results of Flaherty et al. Finally, from our χ 2 maps we identify a region in Perseus where the IRAC extinction law is anomalously high considering its column density. A steeper near-IR extinction law than the one we have assumed may partially explain the IRAC extinction law in this region.

  11. THE GOULD’S BELT VERY LARGE ARRAY SURVEY. II. THE SERPENS REGION

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-León, Gisela N.; Loinard, Laurent; Rodríguez, Luis F.; Pech, Gerardo; Rivera, Juana L.; González-Lópezlira, Rosa A. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de Mexico, Morelia 58089 (Mexico); Mioduszewski, Amy J. [National Radio Astronomy Observatory, Domenici Science Operations Center, 1003 Lopezville Road, Socorro, NM 87801 (United States); Dzib, Sergio A. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Torres, Rosa M. [Instituto de Astronomía y Meteorología, Universidad de Guadalajara, Av. Vallarta 2602, Col. Arcos Vallarta, 44130, Guadalajara, Jalisco, México (Mexico); Boden, Andrew F. [Division of Physics, Math and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Hartmann, Lee; Kounkel, Marina A. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48105 (United States); II, Neal J. Evans [Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Briceño, Cesar [Cerro Tololo Interamerican Observatory, Casilla 603, La Serena (Chile); Tobin, John, E-mail: g.ortiz@crya.unam.mx [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2015-05-20

    We present deep (∼17 μJy) radio continuum observations of the Serpens molecular cloud, the Serpens south cluster, and the W40 region obtained using the Very Large Array in its A configuration. We detect a total of 146 sources, 29 of which are young stellar objects (YSOs), 2 of which are BV stars, and 5 more of which are associated with phenomena related to YSOs. Based on their radio variability and spectral index, we propose that about 16 of the remaining 110 unclassified sources are also YSOs. For approximately 65% of the known YSOs detected here as radio sources, the emission is most likely non-thermal and related to stellar coronal activity. As also recently observed in Ophiuchus, our sample of YSOs with X-ray counterparts lies below the fiducial Güdel and Benz relation. Finally, we analyze the proper motions of nine sources in the W40 region. This allows us to better constrain the membership of the radio sources in the region.

  12. Multiplicity of the Protostar Serpens SMM 1 Revealed by Millimeter Imaging

    OpenAIRE

    Choi, Minho

    2009-01-01

    The Serpens SMM 1 region was observed in the 6.9 mm continuum with an angular resolution of about 0.6 arcsec. Two sources were found to have steep positive spectra suggesting emission from dust. The stronger one, SMM 1a, is the driving source of the bipolar jet known previously, and the mass of the dense molecular gas traced by the millimeter continuum is about 8 solar mass. The newly found source, SMM 1b, positionally coincides with the brightest mid-IR source in this region, which implies t...

  13. A SPITZER SURVEY OF PROTOPLANETARY DISK DUST IN THE YOUNG SERPENS CLOUD : HOW DO DUST CHARACTERISTICS EVOLVE WITH TIME?

    NARCIS (Netherlands)

    Oliveira, Isa; Pontoppidan, Klaus M.; Merin, Bruno; van Dishoeck, Ewine F.; Lahuis, Fred; Geers, Vincent C.; Jorgensen, Jes K.; Olofsson, Johan; Augereau, Jean-Charles; Brown, Joanna M.

    2010-01-01

    We present Spitzer InfraRed Spectrograph (IRS) mid-infrared (5-35 mu m) spectra of a complete flux-limited sample (>= 3 mJy at 8 mu m) of young stellar object (YSO) candidates selected on the basis of their infrared colors in the Serpens Molecular Cloud. Spectra of 147 sources are presented and

  14. The dynamical state of the Serpens South filamentary infrared dark cloud

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Tomohiro; Awazu, Yuya; Onishi, Toshikazu [Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, Sakai, Osaka 599-8531 (Japan); Nakamura, Fumitaka; Kawabe, Ryohei [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Shimajiri, Yoshito [Nobeyama Radio Observatory, Minamimaki, Minamisaku, Nagano 384-1805 (Japan); Sugitani, Koji [Graduate School of Natural Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8501 (Japan); Yoshida, Hiroshige [Caltech Submillimeter Observatory, 111 Nowelo Street, Hilo, HI 96720 (United States); Higuchi, Aya E., E-mail: fumitaka.nakamura@nao.ac.jp [Joint ALMA Observatory, Alonso de Cordova 3107 OFC 129, Vitacura (Chile)

    2013-11-20

    We present the results of N{sub 2}H{sup +} (J = 1-0) observations toward Serpens South, the nearest cluster-forming, infrared dark cloud. The physical quantities are derived by fitting the hyperfine structure of N{sub 2}H{sup +}. The Herschel and 1.1 mm continuum maps show that a parsec-scale filament fragments into three clumps with radii of 0.1-0.2 pc and masses of 40-230 M {sub ☉}. We find that the clumps contain smaller-scale (∼0.04 pc) structures, i.e., dense cores. We identify 70 cores by applying CLUMPFIND to the N{sub 2}H{sup +} data cube. In the central cluster-forming clump, the excitation temperature and line-width tend to be large, presumably due to protostellar outflow feedback and stellar radiation. However, for all the clumps, the virial ratios are evaluated to be 0.1-0.3, indicating that the internal motions play only a minor role in the clump support. The clumps exhibit no free fall but exhibit low-velocity infall, and thus the clumps should be supported by additional forces. The most promising force is the globally ordered magnetic field observed toward this region. We propose that the Serpens South filament was close to magnetically critical and ambipolar diffusion triggered the cluster formation. We find that the northern clump, which shows no active star formation, has a mass and radius comparable to the central cluster-forming clump and is therefore a likely candidate of a pre-protocluster clump. The initial condition for cluster formation is likely to be a magnetically supported clump of cold, quiescent gas. This appears to contradict the accretion-driven turbulence scenario, for which the turbulence in the clumps is maintained by the accretion flow.

  15. Antifungal diterpenes from Hypoestes serpens (Acanthaceae).

    Science.gov (United States)

    Rasoamiaranjanahary, Lalao; Marston, Andrew; Guilet, David; Schenk, Kurt; Randimbivololona, Fanantenanirainy; Hostettmann, Kurt

    2003-02-01

    Two new diterpenes, fusicoserpenol A and dolabeserpenoic acid A, with antifungal activity, were isolated from leaves of Hypoestes serpens (Acanthaceae). Their structures were elucidated by means of spectrometric methods including 1D and 2D NMR experiments and MS analysis. X-ray crystallographic analysis confirmed the structure of fusicoserpenol A and established the relative configuration.

  16. CLUSTER FORMATION TRIGGERED BY FILAMENT COLLISIONS IN SERPENS SOUTH

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Fumitaka; Kawabe, Ryohei; Shinnaga, Hiroko [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Sugitani, Koji [Graduate School of Natural Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8501 (Japan); Tanaka, Tomohiro; Kimura, Kimihiko; Tokuda, Kazuki; Kozu, Minato; Okada, Nozomi; Hasegawa, Yutaka; Ogawa, Hideo [Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, Sakai, Osaka 599-8531 (Japan); Nishitani, Hiroyuki; Mizuno, Izumi [Nobeyama Radio Observatory, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Dobashi, Kazuhito; Shimoikura, Tomomi [Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Shimajiri, Yoshito [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d' Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Yonekura, Yoshinori [Center for Astronomy, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Kameno, Seiji [Joint ALMA Observatory, Alonso de Crdova 3107 Vitacura, Santiago (Chile); Momose, Munetake [Institute of Astrophysics and Planetary Sciences, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Nakajima, Taku, E-mail: fumitaka.nakamura@nao.ac.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); and others

    2014-08-20

    The Serpens South infrared dark cloud consists of several filamentary ridges, some of which fragment into dense clumps. On the basis of CCS (J{sub N} = 4{sub 3}-3{sub 2}), HC{sub 3}N (J = 5-4), N{sub 2}H{sup +} (J = 1-0), and SiO (J = 2-1, v = 0) observations, we investigated the kinematics and chemical evolution of these filamentary ridges. We find that CCS is extremely abundant along the main filament in the protocluster clump. We emphasize that Serpens South is the first cluster-forming region where extremely strong CCS emission is detected. The CCS-to-N{sub 2}H{sup +} abundance ratio is estimated to be about 0.5 toward the protocluster clump, whereas it is about 3 in the other parts of the main filament. We identify six dense ridges with different V {sub LSR}. These ridges appear to converge toward the protocluster clump, suggesting that the collisions of these ridges may have triggered cluster formation. The collisions presumably happened within a few × 10{sup 5} yr because CCS is abundant only for a short time. The short lifetime agrees with the fact that the number fraction of Class I objects, whose typical lifetime is 0.4 × 10{sup 5} yr, is extremely high, about 70% in the protocluster clump. In the northern part, two ridges appear to have partially collided, forming a V-shape clump. In addition, we detected strong bipolar SiO emission that is due to the molecular outflow blowing out of the protostellar clump, as well as extended weak SiO emission that may originate from the filament collisions.

  17. What can the SEDs of first hydrostatic core candidates reveal about their nature?

    Science.gov (United States)

    Young, Alison K.; Bate, Matthew R.; Mowat, Chris F.; Hatchell, Jennifer; Harries, Tim J.

    2018-02-01

    The first hydrostatic core (FHSC) is the first stable object to form in simulations of star formation. This stage has yet to be observed definitively, although several candidate FHSCs have been reported. We have produced synthetic spectral energy distributions (SEDs) from 3D hydrodynamical simulations of pre-stellar cores undergoing gravitational collapse for a variety of initial conditions. Variations in the initial rotation rate, radius and mass lead to differences in the location of the SED peak and far-infrared flux. Secondly, we attempt to fit the SEDs of five FHSC candidates from the literature and five newly identified FHSC candidates located in the Serpens South molecular cloud with simulated SEDs. The most promising FHSC candidates are fitted by a limited number of model SEDs with consistent properties, which suggests that the SED can be useful for placing constraints on the age and rotation rate of the source. The sources we consider most likely to be in FHSC phase are B1-bN, CB17-MMS, Aqu-MM1 and Serpens South candidate K242. We were unable to fit SerpS-MM22, Per-Bolo 58 and Chamaeleon-MMS1 with reasonable parameters, which indicates that they are likely to be more evolved.

  18. MULTIPLICITY OF THE PROTOSTAR SERPENS SMM 1 REVEALED BY MILLIMETER IMAGING

    International Nuclear Information System (INIS)

    Choi, Minho

    2009-01-01

    The Serpens SMM 1 region was observed in the 6.9 mm continuum with an angular resolution of about 0.''6. Two sources were found to have steep positive spectra suggesting emission from dust. The stronger one, SMM 1a, is the driving source of the bipolar jet previously known, and the mass of the dense molecular gas traced by the millimeter continuum is about 8 M sun . The newly found source, SMM 1b, positionally coincides with the brightest mid-IR source in this region, which implies that SMM 1b is yet another young stellar object. SMM 1b seems to be less deeply embedded than SMM 1a. SMM 1 is probably a protobinary system with a projected separation of 500 AU.

  19. Antifungal isopimaranes from Hypoestes serpens.

    Science.gov (United States)

    Rasoamiaranjanahary, L; Guilet, D; Marston, A; Randimbivololona, F; Hostettmann, K

    2003-09-01

    Five isopimarane diterpenes (7beta-hydroxyisopimara-8,15-dien-14-one, 14alpha-hydroxyisopimara-7,15-dien-1-one, 1beta,14alpha-dihydroxyisopimara-7,15-diene, 7beta-hydroxyisopimara-8(14),15-dien-1-one and 7beta-acetoxyisopimara-8(14),15-dien-1-one) have been isolated from the leaves of Hypoestes serpens (Acanthaceae). All compounds exhibited antifungal activity against both the plant pathogenic fungus Cladosporium cucumerinum and the yeast Candida albicans; two of them also displayed an acetylcholinesterase inhibition. The structures of the compounds were determined by means of spectrometric methods, including 1D and 2D NMR experiments and MS analysis.

  20. Filament and core formation in nearby molecular clouds: results from the CARMA Large Area Star Formation Survey

    Science.gov (United States)

    Storm, Shaye; Mundy, Lee G.; Fernández-López, Manuel; Lee, Katherine I.; Ostriker, Eve C.; Looney, Leslie; Chen, Che-Yu; Classy Collaboration

    2015-01-01

    Stars rarely form in isolation, so it is critical to understand how the parsec-scale molecular cloud environment shapes the formation of individual dense cores at the sub-0.1 pc scale. To address the pathway to core formation in a clustered environment, I co-developed the CARMA Large Area Star Formation Survey, which spectrally imaged dense gas tracer lines across 800 square arcminutes of the Perseus and Serpens Molecular clouds with 7'' angular resolution. There are four key results from initial papers. First, I created a new non-binary dendrogram code that shows correlation between the hierarchical complexity of dense, N2H+ (J=1-0) structures and the amount of star formation activity in a cluster. This may imply that feedback from young protostars changes the structure of dense gas within a cluster and increases the amount of high column density material. Second, we discovered strong radial velocity gradients within filaments that are an order of magnitude larger than detected axial gradients. We see similar radial gradients in filaments formed in numerical simulations of converging, turbulent flows; this suggests that the observed filaments are accreting material from an environment that is flattened at larger scales, and that they are more likely to fragment locally into cores than to support the flow of gas along the filament length. Third, we constructed two size-linewidth relations using the dendrogram-identified gas structures and our high resolution maps of the gas centroid velocity and line-of-sight velocity dispersion. The two relations show distinct behavior, and we developed a theoretical framework based on isotropic turbulence to show that they support the clustered regions being flattened (sheet-like) at parsec scales, with depths on the order 0.1-0.2 pc into the sky. Finally, we found that many filaments seen with Herschel show substructure in our high resolution maps, which implies that measuring the widths of filaments may be more complex than

  1. A Spectroscopic Study of Young Stellar Objects in the Serpens Cloud Core and NGC 1333

    Science.gov (United States)

    Winston, E.; Megeath, S. T.; Wolk, S. J.; Hernandez, J.; Gutermuth, R.; Muzerolle, J.; Hora, J. L.; Covey, K.; Allen, L. E.; Spitzbart, B.; Peterson, D.; Myers, P.; Fazio, G. G.

    2009-06-01

    We present spectral observations of 130 young stellar objects (YSOs) in the Serpens Cloud Core and NGC 1333 embedded clusters. The observations consist of near-IR spectra in the H and K bands from SpeX on the IRTF and far-red spectra (6000-9000 Å) from Hectospec on the Multi-Mirror Telescope. These YSOs were identified in previous Spitzer and Chandra observations, and the evolutionary classes of the YSOs were determined from the Spitzer mid-IR photometry. With these spectra we search for corroborating evidence for the pre-main-sequence nature of the objects, study the properties of the detected emission lines as a function of evolutionary class, and obtain spectral types for the observed YSOs. The temperatures implied by the spectral types are combined with luminosities determined from the near-IR photometry to construct Hertzsprung-Russell (H-R) diagrams for the clusters. By comparing the positions of the YSOs in the H-R diagrams with the pre-main-sequence tracks of Baraffe (1998), we determine the ages of the embedded sources and study the relative ages of the YSOs with and without optically thick circumstellar disks. The apparent isochronal ages of the YSOs in both clusters range from less than 1 Myr to 10 Myr, with most objects below 3 Myr. The observed distributions of ages for the Class II and Class III objects are statistically indistinguishable. We examine the spatial distribution and extinction of the YSOs as a function of their isochronal ages. We find the sources dispersed and are not deeply embedded. Nonetheless, the sources with isochronal ages >3 Myr show all the characteristics of YSOs in their spectra, their IR spectral energy distributions, and their X-ray emission; we find no evidence that they are contaminating background giants or foreground dwarfs. However, we find no corresponding decrease in the fraction of sources with infrared excess with isochronal age; this suggests that the older isochronal ages may not measure the true age of the >3

  2. Surveying the Dense Gas in Barnard 1 and NGC 1333 from Cloud to Core Scales

    Science.gov (United States)

    Storm, Shaye; Mundy, Lee; Teuben, Peter; Lee, Katherine; Fernandez-Lopez, Manuel; Looney, Leslie; Rosolowsky, Erik; Classy Collaboration

    2013-07-01

    The CARMA Large Area Star formation Survey (CLASSy) is mapping molecular emission across large areas of the nearby Perseus and Serpens Molecular Clouds. With an angular resolution of 7 arcsec, CLASSy probes dense gas on scales from a few thousand AU to parsecs with CARMA-23 and single-dish observations. The resulting maps of N2H+, HCN, and HCO+ J=1-0 trace the kinematics and structure of the high-density gas in regions covering a wide range of intrinsic star formation activity. This poster presents an overview of three completed CLASSy fields, NGC 1333, Barnard 1, and Serpens Main, and then focuses on the dendrogram analysis that CLASSy is using to characterize the emission structure. We have chosen a dendrogram analysis over traditional clump finding because dendrograms better encode the hierarchical nature of cloud structure and better facilitate analysis of cloud properties across the range of size scales probed by CLASSy. We present a new dendrogram methodology that allows for non-binary mergers of kernels, which results in a gas hierarchy that is more true to limitations of the S/N in the data. The resulting trees from Barnard 1 and NGC 1333 are used to derive physical parameters of the identified gas structures, and to probe the kinematic relationship between gas structures at different spatial scales and evolutionary stages. We derive a flat relation between mean internal turbulence and structure size for the dense gas in both regions, but find a difference between the magnitude of the internal turbulence in regions with and without protostars; the dense gas in the B1 main core and NGC 1333 are characterized by mostly transonic to supersonic turbulence, while the B1 filaments and clumps southwest of the main core have mostly subsonic turbulence. These initial results, along with upcoming work analyzing the completed CLASSy observations, will be used to test current theories for star formation in turbulent molecular clouds.

  3. TMRT OBSERVATIONS OF CARBON-CHAIN MOLECULES IN SERPENS SOUTH 1a

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan; Shen, Zhi-Qiang; Wang, Junzhi; Chen, Xi; Wu, Ya-Jun; Zhao, Rong-Bing; Wang, Jin-Qing; Zuo, Xiu-Ting; Fan, Qing-Yuan; Hong, Xiao-Yu; Jiang, Dong-Rong; Li, Bin; Liang, Shi-Guang; Ling, Quan-Bao; Liu, Qing-Hui; Qian, Zhi-Han; Zhang, Xiu-Zhong; Zhong, Wei-Ye; Ye, Shu-Hua, E-mail: lijuan@shao.ac.cn [Department of Radio Science and Technology, Shanghai Astronomical Observatory, 80 Nandan RD, Shanghai 200030 (China)

    2016-06-20

    We report Shanghai Tian Ma Radio Telescope (TMRT) detections of several long carbon-chain molecules in the C and Ku bands, including HC{sub 3}N, HC{sub 5}N, HC{sub 7}N, HC{sub 9}N, C{sub 3}S, C{sub 6}H, and C{sub 8}H toward the starless cloud Serpens South 1a. We detected some transitions (HC{sub 9}N J = 13–12, F = 12–11, and F = 14–13; H{sup 13}CCCN J = 2–1, F = 1–0, and F = 1–1; HC{sup 13}CCN J = 2–1, F = 2–2, F = 1–0, and F = 1–1; HCC{sup 13}CN J = 2–1, F = 1–0, and F = 1–1) and resolved some hyperfine components (HC{sub 5}N J = 6–5, F = 5–4; H{sup 13}CCCN J = 2–1, F = 2–1) for the first time in the interstellar medium. The column densities of these carbon-chain molecules in the range 10{sup 12}–10{sup 13} cm{sup −2} are comparable to two carbon-chain molecule rich sources, TMC-1 and Lupus-1A. The abundance ratios are 1.00:(1.11 ± 0.15):(1.47 ± 0.18) for [H{sup 13}CCCN]:[HC{sup 13}CCN]:[HCC{sup 13}CN]. This result implies that the {sup 13}C isotope is also concentrated in the carbon atom adjacent to the nitrogen atom in HC{sub 3}N in Serpens South 1a, which is similar to TMC-1. The [HC{sub 3}N]/[H{sup 13}CCCN] ratio of 78 ± 9, the [HC{sub 3}N]/[HC{sup 13}CCN] ratio of 70 ± 8, and the [HC{sub 3}N]/[HCC{sup 13}CN] ratio of 53 ± 4 are also comparable to those in TMC-1. Serpens South 1a proves to be a suitable testing ground for understanding carbon-chain chemistry.

  4. CARMA LARGE AREA STAR FORMATION SURVEY: STRUCTURE AND KINEMATICS OF DENSE GAS IN SERPENS MAIN

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katherine I.; Storm, Shaye; Mundy, Lee G.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Fernández-López, Manuel; Looney, Leslie W.; Segura-Cox, Dominique [Department of Astronomy, University of Illinois, Urbana-Champaign, IL 61801 (United States); Rosolowsky, Erik [Departments of Physics and Statistics, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna BC V1V 1V7 (Canada); Arce, Héctor G.; Plunkett, Adele L. [Department of Astronomy, Yale University, PO Box 208101, New Haven, CT 06520-8101 (United States); Ostriker, Eve C. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Shirley, Yancy L. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Kwon, Woojin [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands); Kauffmann, Jens [Max Planck Institut für Radioastronomie, Auf dem Hügel 69 D-53121, Bonn Germany (Germany); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Volgenau, N. H. [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Tassis, Konstantinos, E-mail: ijlee9@astro.umd.edu [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, PO Box 2208, GR-710 03, Heraklion, Crete (Greece); and others

    2014-12-20

    We present observations of N{sub 2}H{sup +} (J = 1 → 0), HCO{sup +} (J = 1 → 0), and HCN (J = 1 → 0) toward the Serpens Main molecular cloud from the CARMA Large Area Star Formation Survey (CLASSy). We mapped 150 arcmin{sup 2} of Serpens Main with an angular resolution of ∼7''. The gas emission is concentrated in two subclusters (the NW and SE subclusters). The SE subcluster has more prominent filamentary structures and more complicated kinematics compared to the NW subcluster. The majority of gas in the two subclusters has subsonic to sonic velocity dispersions. We applied a dendrogram technique with N{sub 2}H{sup +}(1-0) to study the gas structures; the SE subcluster has a higher degree of hierarchy than the NW subcluster. Combining the dendrogram and line fitting analyses reveals two distinct relations: a flat relation between nonthermal velocity dispersion and size, and a positive correlation between variation in velocity centroids and size. The two relations imply a characteristic depth of 0.15 pc for the cloud. Furthermore, we have identified six filaments in the SE subcluster. These filaments have lengths of ∼0.2 pc and widths of ∼0.03 pc, which is smaller than a characteristic width of 0.1 pc suggested by Herschel observations. The filaments can be classified into two types based on their properties. The first type, located in the northeast of the SE subcluster, has larger velocity gradients, smaller masses, and nearly critical mass-per-unit-length ratios. The other type, located in the southwest of the SE subcluster, has the opposite properties. Several YSOs are formed along two filaments which have supercritical mass per unit length ratios, while filaments with nearly critical mass-per-unit-length ratios are not associated with YSOs, suggesting that stars are formed on gravitationally unstable filaments.

  5. In vitro culture and apogamy: Alternative pathway in the life cycle of the moss Amblystegium serpens (Amblystegiaceae

    Directory of Open Access Journals (Sweden)

    Cvetić Tijana

    2005-01-01

    Full Text Available In vitro culture of the moss Amblystegium serpens (Amblystegiaceae was established on hormone-free Murashige and Skoog (MS medium that contained a half amount of MS micro- and macro- mineral salts and vitamins, 100 mg/l myoinositol, 30 g/l sucrose, and 0.70% (w/v agar. Spores were germinated and primary protonema developed on the above medium at 16 h day/8 h night 25±2ºC, 60-70% air humidity, and irradiance of 47 μmol/m2s. Three months after development of primary protonema, seven sporophytes appeared directly from primary protonema without generation alternation. The phenomenon of apogamous sporophyte formation is very rare, both in nature and under in vitro conditions. This is the first report of apogamy induced by Amblystegium serpens.

  6. Mechanisms of growth inhibition of Phytomonas serpens by the alkaloids tomatine and tomatidine

    Directory of Open Access Journals (Sweden)

    Jorge Mansur Medina

    2015-02-01

    Full Text Available Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L., which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic, a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT, which is an important enzyme that is responsible for the methylation of sterols at the 24 position. We propose that the main target of tomatidine is the sterols biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results obtained in the present paper suggest a more general effect of alkaloids in trypanosomatids, which opens potential therapeutic possibilities for the treatment of the diseases caused by these pathogens.

  7. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-01-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation

  8. Uncovering the Protostars in Serpens South with ALMA: Continuum Sources and Their Outflow Activity

    Science.gov (United States)

    Plunkett, Adele; Arce, H.; Corder, S.; Dunham, M.

    2017-06-01

    Serpens South is an appealing protostellar cluster to study due the combination of several factors: (1) a high protostar fraction that shows evidence for very recent and ongoing star formation; (2) iconic clustered star formation along a filamentary structure; (3) its relative proximity within a few hundred parsecs. An effective study requires the sensitivity, angular and spectral resolution, and mapping capabilities recently provided with ALMA. Here we present a multi-faceted data set acquired from Cycles 1 through 3 with ALMA, including maps of continuum sources and molecular outflows throughout the region, as well as a more focused kinematical study of the protostar that is the strongest continuum source at the cluster center. Together these data span spatial scales over several orders of magnitude, allowing us to investigate the outflow-driving sources and the impact of the outflows on the cluster environment. Currently, we focus on the census of protostars in the cluster center, numbering about 20, including low-flux, low-mass sources never before detected in mm-wavelengths and evidence for multiplicity that was previously unresolved.

  9. The Lifetimes and Evolution of Molecular Cloud Cores

    Science.gov (United States)

    Vázquez-Semadeni, Enrique; Kim, Jongsoo; Shadmehri, Mohsen; Ballesteros-Paredes, Javier

    2005-01-01

    We discuss the lifetimes and evolution of clumps and cores formed as turbulent density fluctuations in nearly isothermal molecular clouds. In order to maintain a broad perspective, we consider both the magnetic and nonmagnetic cases. In the latter, we argue that clumps are unlikely to reach a hydrostatic state if molecular clouds can in general be described as single-phase media with an effective polytropic exponent γecriticality of their ``parent clouds'' (the numerical boxes). In subcritical boxes, magnetostatic clumps do not form. A minority of moderately gravitationally bound clumps form, which however are dispersed by the turbulence in ~1.3 Myr, suggesting that these few longer lived cores can marginally be ``captured'' by AD to increase their mass-to-flux ratio and eventually collapse, although on timescales not significantly longer than the dynamical ones. In supercritical boxes, some cores manage to become locally supercritical and collapse in typical timescales of 2 tfc (~1 Myr). In the most supercritical simulation, a few longer lived cores are observed, which last for up to ~3 Myr, but these end up re-expanding rather than collapsing, because they are sub-Jeans in spite of being supercritical. Fewer clumps and cores form in these simulations than in their nonmagnetic counterpart. Our results suggest the following: (1) not all cores observed in molecular clouds will necessarily form stars and that a class of ``failed cores'' should exist, which will eventually redisperse and which may be related to the observed starless cores; (2) cores may be out-of-equilibrium, transient structures, rather than quasi-magnetostatic configurations; (3) the magnetic field may help reduce the star formation efficiency by reducing the probability of core formation, rather than by significantly delaying the collapse of individual cores, even in magnetically supercritical clouds.

  10. THE MASS DISTRIBUTION OF STARLESS AND PROTOSTELLAR CORES IN GOULD BELT CLOUDS

    International Nuclear Information System (INIS)

    Sadavoy, Sarah I.; Di Francesco, James; Bontemps, Sylvain; Megeath, S. Thomas; Allgaier, Erin; Rebull, Luisa M.; Carey, Sean; McCabe, Caer-Eve; Noriega-Crespo, Alberto; Padgett, Deborah; Gutermuth, Robert; Hora, Joe; Huard, Tracy; Muzerolle, James; Terebey, Susan

    2010-01-01

    Using data from the SCUBA Legacy Catalogue (850 μm) and Spitzer Space Telescope (3.6-70 μm), we explore dense cores in the Ophiuchus, Taurus, Perseus, Serpens, and Orion molecular clouds. We develop a new method to discriminate submillimeter cores found by Submillimeter Common-User Bolometer Array (SCUBA) as starless or protostellar, using point source photometry from Spitzer wide field surveys. First, we identify infrared sources with red colors associated with embedded young stellar objects (YSOs). Second, we compare the positions of these YSO candidates to our submillimeter cores. With these identifications, we construct new, self-consistent starless and protostellar core mass functions (CMFs) for the five clouds. We find best-fit slopes to the high-mass end of the CMFs of -1.26 ± 0.20, -1.22 ± 0.06, -0.95 ± 0.20, and -1.67 ± 0.72 for Ophiuchus, Taurus, Perseus, and Orion, respectively. Broadly, these slopes are each consistent with the -1.35 power-law slope of the Salpeter initial mass function at higher masses, but suggest some differences. We examine a variety of trends between these CMF shapes and their parent cloud properties, potentially finding a correlation between the high-mass slope and core temperature. We also find a trend between core mass and effective size, but we are very limited by sensitivity. We make similar comparisons between core mass and size with visual extinction (for A V ≥ 3) and find no obvious trends. We also predict the numbers and mass distributions of cores that future surveys with SCUBA-2 may detect in each of these clouds.

  11. SERPENS CLUSTER B AND VV SER OBSERVED WITH HIGH SPATIAL RESOLUTION AT 70, 160, AND 350 μm

    International Nuclear Information System (INIS)

    Harvey, Paul; Dunham, Michael M.

    2009-01-01

    We report on diffraction-limited observations in the far-infrared (FIR) and submillimeter of the Cluster B region of Serpens (G3-G6 Cluster) and of the Herbig Be star to the south, VV Ser. The observations were made with the Spitzer/MIPS instrument in fine-scale mode at 70 μm, in a normal mapping mode at 160 μm (VV Ser only), and the Caltech Submillimeter Observatory (CSO) Submillimeter High Angular Resolution Camera II (SHARC-II) camera at 350 μm (Cluster B only). We use these data to define the spectral energy distributions of the tightly grouped members of Cluster B, many of whose spectral energy distribution (SED)'s peak in the FIR. We compare our results to those of the c2d survey of Serpens and to published models for the FIR emission from VV Ser. We find that values of L bol and T bol calculated with our new photometry show only modest changes from previous values, and that most source SED classifications remain unchanged.

  12. ICE CHEMISTRY IN STARLESS MOLECULAR CORES

    Energy Technology Data Exchange (ETDEWEB)

    Kalvans, J., E-mail: juris.kalvans@venta.lv [Engineering Research Institute “Ventspils International Radio Astronomy Center” of Ventspils University College, Inzenieru 101, Ventspils, LV-3601 (Latvia)

    2015-06-20

    Starless molecular cores are natural laboratories for interstellar molecular chemistry research. The chemistry of ices in such objects was investigated with a three-phase (gas, surface, and mantle) model. We considered the center part of five starless cores, with their physical conditions derived from observations. The ice chemistry of oxygen, nitrogen, sulfur, and complex organic molecules (COMs) was analyzed. We found that an ice-depth dimension, measured, e.g., in monolayers, is essential for modeling of chemistry in interstellar ices. Particularly, the H{sub 2}O:CO:CO{sub 2}:N{sub 2}:NH{sub 3} ice abundance ratio regulates the production and destruction of minor species. It is suggested that photodesorption during the core-collapse period is responsible for the high abundance of interstellar H{sub 2}O{sub 2} and O{sub 2}H and other species synthesized on the surface. The calculated abundances of COMs in ice were compared to observed gas-phase values. Smaller activation barriers for CO and H{sub 2}CO hydrogenation may help explain the production of a number of COMs. The observed abundance of methyl formate HCOOCH{sub 3} could be reproduced with a 1 kyr, 20 K temperature spike. Possible desorption mechanisms, relevant for COMs, are gas turbulence (ice exposure to interstellar photons) or a weak shock within the cloud core (grain collisions). To reproduce the observed COM abundances with the present 0D model, 1%–10% of ice mass needs to be sublimated. We estimate that the lifetime for starless cores likely does not exceed 1 Myr. Taurus cores are likely to be younger than their counterparts in most other clouds.

  13. The complete far-infrared and submillimeter spectrum of the Class 0 protostar Serpens SMM1 obtained with Herschel

    DEFF Research Database (Denmark)

    R. Goicoechea, Javier; Cernicharo, J.; Karska, A.

    2012-01-01

    We present the first complete 55-671 um spectral scan of a low-mass Class 0 protostar (Serpens SMM1) taken with the PACS and SPIRE spectrometers on board Herschel. More than 145 lines have been detected, most of them rotationally excited lines of 12CO (full ladder from J=4-3 to 42-41), H2O, OH, 13...

  14. SMA millimeter observations of hot molecular cores

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Hernández, Vicente; Zapata, Luis; Kurtz, Stan [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72 (Xangari), 58090 Morelia, Michoacán (Mexico); Garay, Guido, E-mail: v.hernandez@crya.unam.mx [Departamento de Astronomía, Universidad de Chile, Camino del Observatorio 1515, Las Condes, Santiago (Chile)

    2014-05-01

    We present Submillimeter Array observations in the 1.3 mm continuum and the CH{sub 3}CN (12 {sub K}-11 {sub K}) line of 17 hot molecular cores associated with young high-mass stars. The angular resolution of the observations ranges from 1.''0 to 4.''0. The continuum observations reveal large (>3500 AU) dusty structures with gas masses from 7 to 375 M {sub ☉}, which probably surround multiple young stars. The CH{sub 3}CN line emission is detected toward all the molecular cores at least up to the K = 6 component and is mostly associated with the emission peaks of the dusty objects. We used the multiple K-components of the CH{sub 3}CN and both the rotational diagram method and a simultaneous synthetic local thermodynamic equilibrium model with the XCLASS program to estimate the temperatures and column densities of the cores. For all sources, we obtained reasonable fits from XCLASS by using a model that combines two components: an extended and warm envelope and a compact hot core of molecular gas, suggesting internal heating by recently formed massive stars. The rotational temperatures lie in the range of 40-132 K and 122-485 K for the extended and compact components, respectively. From the continuum and CH{sub 3}CN results, we infer fractional abundances from 10{sup –9} to 10{sup –7} toward the compact inner components, which increase with the rotational temperature. Our results agree with a chemical scenario in which the CH{sub 3}CN molecule is efficiently formed in the gas phase above 100-300 K, and its abundance increases with temperature.

  15. Detection of Reflection Features in the Neutron Star Low-mass X-Ray Binary Serpens X-1 with NICER

    DEFF Research Database (Denmark)

    Ludlam, R. M.; Miller, J. M.; Arzoumanian, Z.

    2018-01-01

    We present Neutron Star Interior Composition Explorer (NICER) observations of the neutron star (NS) low-mass X-ray binary Serpens X-1 during the early mission phase in 2017. With the high spectral sensitivity and low-energy X-ray passband of NICER, we are able to detect the Fe L line complex in a...

  16. DENSE MOLECULAR CORES BEING EXTERNALLY HEATED

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwanjeong; Lee, Chang Won; Kim, Mi-Ryang [Radio Astronomy division, Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon, 34055 (Korea, Republic of); Gopinathan, Maheswar [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263129 (India); Jeong, Woong-Seob, E-mail: archer81@kasi.re.kr [Department of Astronomy and Space Science, University of Science and Technology, 217 Gajungro, Yuseong-gu, Daejeon, 34113 (Korea, Republic of)

    2016-06-20

    We present results of our study of eight dense cores, previously classified as starless, using infrared (3–160 μ m) imaging observations with the AKARI telescope and molecular line (HCN and N{sub 2}H{sup +}) mapping observations with the KVN telescope. Combining our results with the archival IR to millimeter continuum data, we examined the starless nature of these eight cores. Two of the eight cores are found to harbor faint protostars having luminosities of ∼0.3–4.4 L {sub ⊙}. The other six cores are found to remain starless and probably are in a dynamically transitional state. The temperature maps produced using multi-wavelength images show an enhancement of about 3–6 K toward the outer boundary of these cores, suggesting that they are most likely being heated externally by nearby stars and/or interstellar radiation fields. Large virial parameters and an overdominance of red asymmetric line profiles over the cores may indicate that the cores are set into either an expansion or an oscillatory motion, probably due to the external heating. Most of the starless cores show a coreshine effect due to the scattering of light by the micron-sized dust grains. This may imply that the age of the cores is of the order of ∼10{sup 5} years, which is consistent with the timescale required for the cores to evolve into an oscillatory stage due to external perturbation. Our observational results support the idea that the external feedback from nearby stars and/or interstellar radiation fields may play an important role in the dynamical evolution of the cores.

  17. THE DETECTION OF A HOT MOLECULAR CORE IN THE LARGE MAGELLANIC CLOUD WITH ALMA

    International Nuclear Information System (INIS)

    Shimonishi, Takashi; Onaka, Takashi; Kawamura, Akiko; Aikawa, Yuri

    2016-01-01

    We report the first detection of a hot molecular core outside our Galaxy based on radio observations with ALMA toward a high-mass young stellar object (YSO) in a nearby low metallicity galaxy, the Large Magellanic Cloud (LMC). Molecular emission lines of CO, C 17 O, HCO + , H 13 CO + , H 2 CO, NO, SiO, H 2 CS, 33 SO, 32 SO 2 , 34 SO 2 , and 33 SO 2 are detected from a compact region (∼0.1 pc) associated with a high-mass YSO, ST11. The temperature of molecular gas is estimated to be higher than 100 K based on rotation diagram analysis of SO 2 and 34 SO 2 lines. The compact source size, warm gas temperature, high density, and rich molecular lines around a high-mass protostar suggest that ST11 is associated with a hot molecular core. We find that the molecular abundances of the LMC hot core are significantly different from those of Galactic hot cores. The abundances of CH 3 OH, H 2 CO, and HNCO are remarkably lower compared to Galactic hot cores by at least 1–3 orders of magnitude. We suggest that these abundances are characterized by the deficiency of molecules whose formation requires the hydrogenation of CO on grain surfaces. In contrast, NO shows a high abundance in ST11 despite the notably low abundance of nitrogen in the LMC. A multitude of SO 2 and its isotopologue line detections in ST11 imply that SO 2 can be a key molecular tracer of hot core chemistry in metal-poor environments. Furthermore, we find molecular outflows around the hot core, which is the second detection of an extragalactic protostellar outflow. In this paper, we discuss the physical and chemical characteristics of a hot molecular core in the low metallicity environment.

  18. Magnetic fields and star formation: evidence from imaging polarimetry of the Serpens Reflection Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Warren-Smith, R F; Draper, P W; Scarrott, S M

    1987-08-01

    CCD imaging of the Serpens bipolar reflection nebula shows it to be surrounded by dark material having spiral density structure. Multi-colour polarization mapping also reveals details of the surrounding magnetic field, indicating that this also has spiral structure. These observations are discussed along with current ideas about the role of magnetic fields during star formation. An interpretation involving the non-axisymmetric magnetically braked collapse of a protostellar cloud is proposed and a resulting magnetic field configuration is described which can account for the observations. Evidence is also discussed for the formation of a binary star system within the nebula, resulting from the fragmentation of a magnetized protostellar disc.

  19. FILAMENTARY ACCRETION FLOWS IN THE EMBEDDED SERPENS SOUTH PROTOCLUSTER

    International Nuclear Information System (INIS)

    Kirk, Helen; Myers, Philip C.; Bourke, Tyler L.; Gutermuth, Robert A.; Wilson, Grant W.; Hedden, Abigail

    2013-01-01

    One puzzle in understanding how stars form in clusters is the source of mass—is all of the mass in place before the first stars are born, or is there an extended period when the cluster accretes material which can continuously fuel the star formation process? We use a multi-line spectral survey of the southern filament associated with the Serpens South embedded cluster-forming region in order to determine if mass is accreting from the filament onto the cluster, and whether the accretion rate is significant. Our analysis suggests that material is flowing along the filament's long axis at a rate of ∼30 M ☉ Myr –1 (inferred from the N 2 H + velocity gradient along the filament), and radially contracting onto the filament at ∼130 M ☉ Myr –1 (inferred from HNC self-absorption). These accretion rates are sufficient to supply mass to the central cluster at a similar rate to the current star formation rate in the cluster. Filamentary accretion flows may therefore be very important in the ongoing evolution of this cluster.

  20. Chemical composition, antinociceptive and anti-inflammatory effects in rodents of the essential oil of Peperomia serpens (Sw.) Loud.

    Science.gov (United States)

    Pinheiro, B G; Silva, A S B; Souza, G E P; Figueiredo, J G; Cunha, F Q; Lahlou, S; da Silva, J K R; Maia, J G S; Sousa, P J C

    2011-11-18

    Peperomia serpens (Piperaceae), popularly known as "carrapatinho", is an epiphyte herbaceous liana grown wild on different host trees in the Amazon rainforest. Its leaves are largely used in Brazilian folk medicine to treat inflammation, pain and asthma. This study investigated the effects of essential oil of Peperomia serpens (EOPs) in standard rodent models of pain and inflammation. The antinociceptive activity was evaluated using chemical (acetic acid and formalin) and thermal (hot plate) models of nociception in mice whereas the anti-inflammatory activity was evaluated by carrageenan- and dextran-induced paw edema tests in rats croton oil-induced ear edema, as well as cell migration, rolling and adhesion induced by carrageenan in mice. Additionally, phytochemical analysis of the EOPs has been also performed. Chemical composition of the EOPs was analyzed by gas chromatography and mass spectrometry (GC/MS). Twenty-four compounds, representing 89.6% of total oil, were identified. (E)-Nerolidol (38.0%), ledol (27.1%), α-humulene (11.5%), (E)-caryophyllene (4.0%) and α-eudesmol (2.7%) were found to be the major constituents of the oil. Oral pretreatment with EOPs (62.5-500 mg/kg) significantly reduced the writhing number evoked by acetic acid injection, with an ED(50) value of 188.8 mg/kg that was used thereafter in all tests. EOPs had no significant effect on hot plate test but reduced the licking time in both phases of the formalin test, an effect that was not significantly altered by naloxone (0.4 mg/kg, s.c.). EOPs inhibited the edema formation induced by carrageenan and dextran in rats. In mice, EOPs inhibited the edema formation by croton oil as well as the leukocyte and neutrophil migration, the rolling and the adhesion of leukocytes. These data show for the first time that EOPs has a significant and peripheral antinociceptive effect that seems unrelated to interaction with the opioid system. EOPs also displays a significant anti-inflammatory effect in

  1. THE MOLECULAR EMISSION OF THE IRRADIATED STAR-FORMING CORE AHEAD OF HH 80N

    International Nuclear Information System (INIS)

    Masque, Josep M.; Beltran, Maria T.; Estalella, Robert; Girart, Josep M.; Viti, Serena

    2009-01-01

    We present a Berkeley-Illinois-Maryland Association Array molecular survey of the star-forming core ahead of HH 80N, the optically obscured northern counterpart of the Herbig-Haro objects HH 80/81. Continuum emission at 1.4 mm and 8 μm is detected at the center of the core, which confirms the presence of an embedded very young stellar object in the core. All detected molecular species arise in a ringlike structure, which is most clearly traced by CS (2-1) emission. This molecular ring suggests that strong molecular depletion occurs in the inner part of the core (at a radius of ≅0.1 pc and densities higher than ∼5 x 10 4 cm -3 ). Despite the overall morphology and kinematic similarity between the different species, there is significant molecular differentiation along the ringlike structure. The analysis of the chemistry along the core shows that part of this differentiation may be caused by the UV irradiation of the nearby HH 80N object that illuminates the part of the core facing HH 80N, which results in an abundance enhancement of some of the detected species.

  2. A SPITZER SURVEY OF PROTOPLANETARY DISK DUST IN THE YOUNG SERPENS CLOUD: HOW DO DUST CHARACTERISTICS EVOLVE WITH TIME?

    International Nuclear Information System (INIS)

    Oliveira, Isa; Van Dishoeck, Ewine F.; Lahuis, Fred; Pontoppidan, Klaus M.; MerIn, Bruno; Geers, Vincent C.; Joergensen, Jes K.; Olofsson, Johan; Augereau, Jean-Charles; Brown, Joanna M.

    2010-01-01

    We present Spitzer InfraRed Spectrograph (IRS) mid-infrared (5-35 μm) spectra of a complete flux-limited sample (≥3 mJy at 8 μm) of young stellar object (YSO) candidates selected on the basis of their infrared colors in the Serpens Molecular Cloud. Spectra of 147 sources are presented and classified. Background stars (with slope consistent with a reddened stellar spectrum and silicate features in absorption), galaxies (with redshifted polycyclic aromatic hydrocarbon (PAH) features), and a planetary nebula (with high ionization lines) amount to 22% of contamination in this sample, leaving 115 true YSOs. Sources with rising spectra and ice absorption features, classified as embedded Stage I protostars, amount to 18% of the sample. The remaining 82% (94) of the disk sources are analyzed in terms of spectral energy distribution shapes, PAHs, and silicate features. The presence, strength, and shape of these silicate features are used to infer disk properties for these systems. About 8% of the disks have 30/13 μm flux ratios consistent with cold disks with inner holes or gaps, and 3% of the disks show PAH emission. Comparison with models indicates that dust grains in the surface of these disks have sizes of at least a few μm. The 20 μm silicate feature is sometimes seen in the absence of the 10 μm feature, which may be indicative of very small holes in these disks. No significant difference is found in the distribution of silicate feature shapes and strengths between sources in clusters and in the field. Moreover, the results in Serpens are compared with other well-studied samples: the c2d IRS sample distributed over five clouds and a large sample of disks in the Taurus star-forming region. The remarkably similar distributions of silicate feature characteristics in samples with different environment and median ages-if significant-imply that the dust population in the disk surface results from an equilibrium between dust growth and destructive collision processes

  3. FILAMENTARY ACCRETION FLOWS IN THE EMBEDDED SERPENS SOUTH PROTOCLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Helen; Myers, Philip C.; Bourke, Tyler L. [Radio and Geoastronomy Division, Harvard Smithsonian Center for Astrophysics, MS-42, Cambridge, MA, 02138 (United States); Gutermuth, Robert A.; Wilson, Grant W. [Department of Astronomy, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Hedden, Abigail, E-mail: kirkh@mcmaster.ca [Army Research Labs, Adelphi, MD 20783 (United States)

    2013-04-01

    One puzzle in understanding how stars form in clusters is the source of mass-is all of the mass in place before the first stars are born, or is there an extended period when the cluster accretes material which can continuously fuel the star formation process? We use a multi-line spectral survey of the southern filament associated with the Serpens South embedded cluster-forming region in order to determine if mass is accreting from the filament onto the cluster, and whether the accretion rate is significant. Our analysis suggests that material is flowing along the filament's long axis at a rate of {approx}30 M{sub Sun} Myr{sup -1} (inferred from the N{sub 2}H{sup +} velocity gradient along the filament), and radially contracting onto the filament at {approx}130 M{sub Sun} Myr{sup -1} (inferred from HNC self-absorption). These accretion rates are sufficient to supply mass to the central cluster at a similar rate to the current star formation rate in the cluster. Filamentary accretion flows may therefore be very important in the ongoing evolution of this cluster.

  4. A TEST OF THE NATURE OF THE FE K LINE IN THE NEUTRON STAR LOW-MASS X-RAY BINARY SERPENS X-1

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chia-Ying; Cackett, Edward M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock, Detroit, MI 48202 (United States); Miller, Jon M. [Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI48109-1046 (United States); Barret, Didier [Universite de Toulouse, UPS-OMP, Toulouse (France); Fabian, Andy C.; Parker, Michael L. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); D’Aì, Antonino [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Bhattacharyya, Sudip [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Burderi, Luciano [Dipartimento di Fisica, Università degli Studi di Cagliari, SP Monserrato-Sestu, KM 0.7, I-09042 Monserrato (Italy); Salvo, Tiziana Di; Iaria, Rosario [Dipartimento di Fisica e Chimica, Universitá di Palermo, via Archirafi 36, I-90123 Palermo (Italy); Egron, Elise [INAF-Osservatorio Astronomico di Cagliari, via della Scienza 5, I-09047 Selargius (Italy); Homan, Jeroen [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139 (United States); Lin, Dacheng [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); Miller, M. Coleman, E-mail: ft8320@wayne.edu [Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742-2421 (United States)

    2016-04-20

    Broad Fe K emission lines have been widely observed in the X-ray spectra of black hole systems as well as in neutron star systems. The intrinsically narrow Fe K fluorescent line is generally believed to be part of the reflection spectrum originating in an illuminated accretion disk which is broadened by strong relativistic effects. However, the nature of the lines in neutron star low-mass X-ray binaries (LMXBs) has been a matter of debate. We therefore obtained the longest, high-resolution X-ray spectrum of a neutron star LMXB to date with a 300 ks Chandra High Energy Transmission Grating Spectrometer (HETGS) observation of Serpens X-1. The observation was taken under the “continuous clocking” mode, and thus was free of photon pile-up effects. We carry out a systematic analysis and find that the blurred reflection model fits the Fe line of Serpens X-1 significantly better than a broad Gaussian component does, implying that the relativistic reflection scenario is much preferred. Chandra HETGS also provides a highest spectral resolution view of the Fe K region and we find no strong evidence for additional narrow lines.

  5. Determining the Optimal Number of Core Needle Biopsy Passes for Molecular Diagnostics.

    Science.gov (United States)

    Hoang, Nam S; Ge, Benjamin H; Pan, Lorraine Y; Ozawa, Michael G; Kong, Christina S; Louie, John D; Shah, Rajesh P

    2018-03-01

    The number of core biopsy passes required for adequate next-generation sequencing is impacted by needle cut, needle gauge, and the type of tissue involved. This study evaluates diagnostic adequacy of core needle lung biopsies based on number of passes and provides guidelines for other tissues based on simulated biopsies in ex vivo porcine organ tissues. The rate of diagnostic adequacy for pathology and molecular testing from lung biopsy procedures was measured for eight operators pre-implementation (September 2012-October 2013) and post-implementation (December 2013-April 2014) of a standard protocol using 20-gauge side-cut needles for ten core biopsy passes at a single academic hospital. Biopsy pass volume was then estimated in ex vivo porcine muscle, liver, and kidney using side-cut devices at 16, 18, and 20 gauge and end-cut devices at 16 and 18 gauge to estimate minimum number of passes required for adequate molecular testing. Molecular diagnostic adequacy increased from 69% (pre-implementation period) to 92% (post-implementation period) (p < 0.001) for lung biopsies. In porcine models, both 16-gauge end-cut and side-cut devices require one pass to reach the validated volume threshold to ensure 99% adequacy for molecular characterization, while 18- and 20-gauge devices require 2-5 passes depending on needle cut and tissue type. Use of 20-gauge side-cut core biopsy needles requires a significant number of passes to ensure diagnostic adequacy for molecular testing across all tissue types. To ensure diagnostic adequacy for molecular testing, 16- and 18-gauge needles require markedly fewer passes.

  6. Mapping of the extinction in Giant Molecular Clouds using optical star counts

    OpenAIRE

    Cambresy, L.

    1999-01-01

    This paper presents large scale extinction maps of most nearby Giant Molecular Clouds of the Galaxy (Lupus, rho-Ophiuchus, Scorpius, Coalsack, Taurus, Chamaeleon, Musca, Corona Australis, Serpens, IC 5146, Vela, Orion, Monoceros R1 and R2, Rosette, Carina) derived from a star count method using an adaptive grid and a wavelet decomposition applied to the optical data provided by the USNO-Precision Measuring Machine. The distribution of the extinction in the clouds leads to estimate their total...

  7. Reclassification of Serpens flexibilis Hespell 1977 as Pseudomonas flexibilis comb. nov., with Pseudomonas tuomuerensis Xin et al. 2009 as a later heterotypic synonym.

    Science.gov (United States)

    Shin, Su-Kyoung; Hwang, Chung Yeon; Cho, Yong-Joon; Yi, Hana

    2015-12-01

    Serpens flexibilis was proposed in 1977 and approved in 1980 without the 16S rRNA gene sequence information. The sequence of S. flexibilis became available in 2010, after the publication of Pseudomonas tuomuerensis in 2009. Our preliminary phylogenetic analyses indicated that these two strains share high sequence similarity and therefore showed strong potential to be united into a single species. To clarify the taxonomic status of the two species, a polyphasic taxonomy study was conducted including whole genome sequencing. The value of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between the genome sequences of S. flexibilis ATCC 29606(T) and P. tuomuerensis JCM 14085(T) were 98.1% and 89.0%, respectively. The phenotypic and chemotaxonomic properties including enzymatic activities, substrate utilization profiles, and fatty acids, supported that the two taxa have no pronounced difference and should thus constitute a single species. Therefore, we propose to transfer Serpens flexibilis Hespell 1977 to the genus Pseudomonas as Pseudomonas flexibilis comb. nov. (type strain=ATCC 29606(T)), with Pseudomonas tuomuerensis Xin et al. 2009 as a later heterotypic synonym of Pseudomonas flexibilis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. On the Evolution of the Inner Disk Radius with Flux in the Neutron Star Low-mass X-Ray Binary Serpens X-1

    Science.gov (United States)

    Chiang, Chia - Ying; Morgan, Robert A.; Cackett, Edward M.; Miller, Jon M.; Bhattacharyya, Sudip; Strohmayer, Tod E.

    2016-01-01

    We analyze the latest Suzaku observation of the bright neutron star (NS) low-mass X-ray binary Serpens X-1 taken in 2013 October and 2014 April. The observation was taken using the burst mode and only suffered mild pile-up effects. A broad iron line is clearly detected in the X-ray spectrum. We test different models and find that the iron line is asymmetric and best interpreted by relativistic reflection. The relativistically broadened iron line is generally believed to originate from the innermost regions of the accretion disk, where strong gravity causes a series of special and general relativistic effects. The iron line profile indicates an inner radius of approx. 8 R(sub G), which gives an upper limit on the size of the NS. The asymmetric iron line has been observed in a number of previous observations, which gives several inner radius measurements at different flux states. We find that the inner radius of Serpens X-1 does not evolve significantly over the range of L/L(sub Edd) approx. 0.4-0.6, and the lack of flux dependence of the inner radius implies that the accretion disk may be truncated outside of the innermost stable circular orbit by the boundary layer, rather than the stellar magnetic field.

  9. ON THE EVOLUTION OF THE INNER DISK RADIUS WITH FLUX IN THE NEUTRON STAR LOW-MASS X-RAY BINARY SERPENS X-1

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chia-Ying; Morgan, Robert A.; Cackett, Edward M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock, Detroit, MI 48202 (United States); Miller, Jon M. [Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1046 (United States); Bhattacharyya, Sudip [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Strohmayer, Tod E., E-mail: ft8320@wayne.edu [X-Ray Astrophysics Lab, Astrophysics Science Division, NASA’s Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-11-01

    We analyze the latest Suzaku observation of the bright neutron star (NS) low-mass X-ray binary Serpens X-1 taken in 2013 October and 2014 April. The observation was taken using the burst mode and only suffered mild pile-up effects. A broad iron line is clearly detected in the X-ray spectrum. We test different models and find that the iron line is asymmetric and best interpreted by relativistic reflection. The relativistically broadened iron line is generally believed to originate from the innermost regions of the accretion disk, where strong gravity causes a series of special and general relativistic effects. The iron line profile indicates an inner radius of ∼8 R {sub G}, which gives an upper limit on the size of the NS. The asymmetric iron line has been observed in a number of previous observations, which gives several inner radius measurements at different flux states. We find that the inner radius of Serpens X-1 does not evolve significantly over the range of L / L {sub Edd} ∼ 0.4–0.6, and the lack of flux dependence of the inner radius implies that the accretion disk may be truncated outside of the innermost stable circular orbit by the boundary layer, rather than the stellar magnetic field.

  10. Formation of Massive Molecular Cloud Cores by Cloud-cloud Collision

    OpenAIRE

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-01-01

    Recent observations of molecular clouds around rich massive star clusters including NGC3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by the cloud-cloud collision. We find that the massive mol...

  11. Dust, ice and gas in time (DIGIT): Herschel and Spitzer spectro-imaging of SMM3 and SMM4 in Serpens

    Science.gov (United States)

    Dionatos, O.; Jørgensen, J. K.; Green, J. D.; Herczeg, G. J.; Evans, N. J.; Kristensen, L. E.; Lindberg, J. E.; van Dishoeck, E. F.

    2013-10-01

    Context. Mid- and far-infrared observations of the environment around embedded protostars reveal a plethora of high excitation molecular and atomic emission lines. Different mechanisms for the origin of these lines have been proposed, including shocks induced by protostellar jets and radiation or heating by the embedded protostar of its immediate surroundings. Aims: By studying of the most important molecular and atomic coolants, we aim at constraining the physical conditions around the embedded protostars SMM3 and SMM4 in the Serpens molecular cloud core and measuring the CO/H2 ratio in warm gas. Methods: Spectro-imaging observations from the Spitzer Infrared Spectrograph (IRS) and the Herschel Photodetector Array Camera and Spectrometer (PACS) provide an almost complete wavelength coverage between 5 and 200 μm. Within this range, emission from all major molecular (H2, CO, H2O and OH) and many atomic ([OI], [CII], [FeII], [SiII] and [SI]) coolants of excited gas are detected. Emission line maps reveal the morphology of the observed emission and indicate associations between the different species. The excitation conditions for molecular species are assessed through rotational diagrams. Emission lines from major coolants are compared to the results of steady-state C- and J-type shock models. Results: Line emission tends to peak at distances of ~10-20″ from the protostellar sources with all but [CII] peaking at the positions of outflow shocks seen in near-IR and sub-millimeter interferometric observations. The [CII] emission pattern suggests that it is most likely excited from energetic UV radiation originating from the nearby flat-spectrum source SMM6. Excitation analysis indicates that H2 and CO originate in gas at two distinct rotational temperatures of ~300 K and 1000 K, while the excitation temperature for H2O and OH is ~100-200 K. The morphological and physical association between CO and H2 suggests a common excitation mechanism, which allows direct

  12. Origin of Spontaneous Core-Shell AIGaAs Nanowires Grown by Molecular Beam Epitaxy

    DEFF Research Database (Denmark)

    Dubrovskii, V. G.; Shtrom, I. V.; Reznik, R. R.

    2016-01-01

    Based on the high-angle annular dark-field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy studies, we unravel the origin of spontaneous core shell AlGaAs nanowires grown by gold-assisted molecular beam epitaxy. Our AlGaAs nanowires have a cylindrical core...

  13. ERUPTIVE VARIABLE STARS AND OUTFLOWS IN SERPENS NW

    Energy Technology Data Exchange (ETDEWEB)

    Hodapp, Klaus W. [Institute for Astronomy, University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Chini, Rolf; Watermann, Ramon; Lemke, Roland, E-mail: hodapp@ifa.hawaii.edu [Ruhr Universitaet Bochum, Astronomisches Institut, Universitaetsstrasse 150, D-44801 Bochum (Germany)

    2012-01-01

    We study the outflow activity, photometric variability, and morphology of three very young stellar objects in the Serpens NW star-forming region: OO Serpentis, EC 37 (V370 Ser), and EC 53 (V371 Ser). High spatial resolution Keck/NIRC2 laser guide star adaptive optics images obtained in 2007 and 2009 in broadband K and in a narrowband filter centered on the 1-0 S(1) emission line of H{sub 2} allow us to identify the outflows from all three objects. We also present new, seeing-limited data on the photometric evolution of the OO Ser reflection nebula and re-analyze previously published data. We find that OO Ser declined in brightness from its outburst peak in 1995 to about 2003, but that this decline has recently stopped and actually reversed itself in some areas of the reflection nebula. The morphology and proper motions of the shock fronts MHO 2218 near EC 37 suggest that they all originate in EC 37 and that this is an outflow seen nearly along its axis. We identify an H{sub 2} jet emerging from the cometary nebula EC 53. The star illuminating EC 53 is periodically variable with a period of 543 days and has a close-by, non-variable companion at a projected distance of 92 AU. We argue that the periodic variability is the result of accretion instabilities triggered by another very close, not directly observable, binary companion and that EC 53 can be understood in the model of a multiple system developing into a hierarchical configuration.

  14. A Search for O2 in CO-Depleted Molecular Cloud Cores With Herschel

    Science.gov (United States)

    Wirstroem, Eva S.; Charnley, Steven B.; Cordiner, Martin; Ceccarelli, Cecilia

    2016-01-01

    The general lack of molecular oxygen in molecular clouds is an outstanding problem in astrochemistry. Extensive searches with the Submillimeter Astronomical Satellite, Odin, and Herschel have only produced two detections; upper limits to the O2 abundance in the remaining sources observed are about 1000 times lower than predicted by chemical models. Previous atomic oxygen observations and inferences from observations of other molecules indicated that high abundances of O atoms might be present in dense cores exhibiting large amounts of CO depletion. Theoretical arguments concerning the oxygen gas-grain interaction in cold dense cores suggested that, if O atoms could survive in the gas after most of the rest of the heavy molecular material has frozen out onto dust, then O2 could be formed efficiently in the gas. Using Herschel HIFI, we searched a small sample of four depletion cores-L1544, L694-2, L429, and Oph D-for emission in the low excitation O2 N(sub J)?=?3(sub 3)-1(sub 2) line at 487.249 GHz. Molecular oxygen was not detected and we derive upper limits to its abundance in the range of N(O2)/N (H2) approx. = (0.6-1.6) x10(exp -7). We discuss the absence of O2 in the light of recent laboratory and observational studies.

  15. KINETIC TEMPERATURES OF THE DENSE GAS CLUMPS IN THE ORION KL MOLECULAR CORE

    International Nuclear Information System (INIS)

    Wang, K.-S.; Kuan, Y.-J.; Liu, S.-Y.; Charnley, Steven B.

    2010-01-01

    High angular-resolution images of the J = 18 K -17 K emission of CH 3 CN in the Orion KL molecular core were observed with the Submillimeter Array (SMA). Our high-resolution observations clearly reveal that CH 3 CN emission originates mainly from the Orion Hot Core and the Compact Ridge, both within ∼15'' of the warm and dense part of Orion KL. The clumpy nature of the molecular gas in Orion KL can also be readily seen from our high-resolution SMA images. In addition, a semi-open cavity-like kinematic structure is evident at the location between the Hot Core and the Compact Ridge. We performed excitation analysis with the 'population diagram' method toward the Hot Core, IRc7, and the northern part of the Compact Ridge. Our results disclose a non-uniform temperature structure on small scales in Orion KL, with a range of temperatures from 190-620 K in the Hot Core. Near the Compact Ridge, the temperatures are found to be 170-280 K. Comparable CH 3 CN fractional abundances of 10 -8 to 10 -7 are found around both in the Hot Core and the Compact Ridge. Such high abundances require that a hot gas phase chemistry, probably involving ammonia released from grain mantles, plays an important role in forming these CH 3 CN molecules.

  16. Molecular Diagnostics of the Internal Motions of Massive Cores

    Science.gov (United States)

    Pineda, Jorge; Velusamy, T.; Goldsmith, P.; Li, D.; Peng, R.; Langer, W.

    2009-12-01

    We present models of the internal kinematics of massive cores in the Orion molecular cloud. We use a sample of cores studied by Velusamy et al. (2008) that show red, blue, and no asymmetry in their HCO+ line profiles in equal proportion, and which therefore may represent a sample of cores in different kinematic states. We use the radiative transfer code RATRAN (Hogerheijde & van der Tak 2000) to model several transitions of HCO+ and H13CO+ as well as the dust continuum emission, of a spherical model cloud with radial density, temperature, and velocity gradients. We find that an excitation and velocity gradients are prerequisites to reproduce the observed line profiles. We use the dust continuum emission to constrain the density and temperature gradients. This allows us to narrow down the functional forms of the velocity gradient giving us the opportunity to test several theoretical predictions of velocity gradients produced by the effect of magnetic fields (e.g. Tassis et. al. 2007) and turbulence (e.g. Vasquez-Semanedi et al 2007).

  17. The immune response of hemocytes of the insect Oncopeltus fasciatus against the flagellate Phytomonas serpens.

    Directory of Open Access Journals (Sweden)

    Thiago L Alves e Silva

    Full Text Available The genus Phytomonas includes parasites that are etiological agents of important plant diseases, especially in Central and South America. These parasites are transmitted to plants via the bite of an infected phytophagous hemipteran. Despite the economic impact of these parasites, many basic questions regarding the genus Phytomonas remain unanswered, such as the mechanism by which the parasites cope with the immune response of the insect vector. In this report, using a model of systemic infection, we describe the function of Oncopeltus fasciatus hemocytes in the immune response towards the tomato parasite Phytomonas serpens. Hemocytes respond to infection by trapping parasites in nodular structures and phagocytizing the parasites. In electron microscopy of hemocytes, parasites were located inside vacuoles, which appear fused with lysosomes. The parasites reached the O. fasciatus salivary glands at least six hours post-infection. After 72 hours post-infection, many parasites were attached to the salivary gland outer surface. Thus, the cellular responses did not kill all the parasites.

  18. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection

    Directory of Open Access Journals (Sweden)

    Zhang Yanxin

    2012-11-01

    Full Text Available Abstract Background Sesame (Sesamum indicum L. is one of the four major oil crops in China. A sesame core collection (CC was established in China in 2000, but no complete study on its genetic diversity has been carried out at either the phenotypic or molecular level. To provide technical guidance, a theoretical basis for further collection, effective protection, reasonable application, and a complete analysis of sesame genetic resources, a genetic diversity assessment of the sesame CC in China was conducted using phenotypic and molecular data and by extracting a sesame mini-core collection (MC. Results Results from a genetic diversity assessment of sesame CC in China were significantly inconsistent at the phenotypic and molecular levels. A Mantel test revealed the insignificant correlation between phenotype and molecular marker information (r = 0.0043, t = 0.1320, P = 0.5525. The Shannon-Weaver diversity index (I and Nei genetic diversity index (h were higher (I = 0.9537, h = 0.5490 when calculated using phenotypic data from the CC than when using molecular data (I = 0.3467, h = 0.2218. A mini-core collection (MC containing 184 accessions was extracted based on both phenotypic and molecular data, with a low mean difference percentage (MD, 1.64%, low variance difference percentage (VD, 22.58%, large variable rate of coefficient of variance (VR, 114.86%, and large coincidence rate of range (CR, 95.76%. For molecular data, the diversity indices and the polymorphism information content (PIC for the MC were significantly higher than for the CC. Compared to an alternative random sampling strategy, the advantages of capturing genetic diversity and validation by extracting a MC using an advanced maximization strategy were proven. Conclusions This study provides a comprehensive characterization of the phenotypic and molecular genetic diversities of the sesame CC in China. A MC was extracted using both phenotypic and molecular data. Low MD% and VD%, and

  19. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection

    Science.gov (United States)

    2012-01-01

    Background Sesame (Sesamum indicum L.) is one of the four major oil crops in China. A sesame core collection (CC) was established in China in 2000, but no complete study on its genetic diversity has been carried out at either the phenotypic or molecular level. To provide technical guidance, a theoretical basis for further collection, effective protection, reasonable application, and a complete analysis of sesame genetic resources, a genetic diversity assessment of the sesame CC in China was conducted using phenotypic and molecular data and by extracting a sesame mini-core collection (MC). Results Results from a genetic diversity assessment of sesame CC in China were significantly inconsistent at the phenotypic and molecular levels. A Mantel test revealed the insignificant correlation between phenotype and molecular marker information (r = 0.0043, t = 0.1320, P = 0.5525). The Shannon-Weaver diversity index (I) and Nei genetic diversity index (h) were higher (I = 0.9537, h = 0.5490) when calculated using phenotypic data from the CC than when using molecular data (I = 0.3467, h = 0.2218). A mini-core collection (MC) containing 184 accessions was extracted based on both phenotypic and molecular data, with a low mean difference percentage (MD, 1.64%), low variance difference percentage (VD, 22.58%), large variable rate of coefficient of variance (VR, 114.86%), and large coincidence rate of range (CR, 95.76%). For molecular data, the diversity indices and the polymorphism information content (PIC) for the MC were significantly higher than for the CC. Compared to an alternative random sampling strategy, the advantages of capturing genetic diversity and validation by extracting a MC using an advanced maximization strategy were proven. Conclusions This study provides a comprehensive characterization of the phenotypic and molecular genetic diversities of the sesame CC in China. A MC was extracted using both phenotypic and molecular data. Low MD% and VD%, and large VR% and CR

  20. ON THE FORMATION OF GLYCOLALDEHYDE IN DENSE MOLECULAR CORES

    International Nuclear Information System (INIS)

    Woods, Paul M.; Kelly, George; Viti, Serena; Slater, Ben; Brown, Wendy A.; Puletti, Fabrizio; Burke, Daren J.; Raza, Zamaan

    2012-01-01

    Glycolaldehyde is a simple monosaccharide sugar linked to prebiotic chemistry. Recently, it was detected in a molecular core in the star-forming region G31.41+0.31 at a reasonably high abundance. We investigate the formation of glycolaldehyde at 10 K to determine whether it can form efficiently under typical dense core conditions. Using an astrochemical model, we test five different reaction mechanisms that have been proposed in the astrophysical literature, finding that a gas-phase formation route is unlikely. Of the grain-surface formation routes, only two are efficient enough at very low temperatures to produce sufficient glycolaldehyde to match the observational estimates, with the mechanism culminating in CH 3 OH + HCO being favored. However, when we consider the feasibility of these mechanisms from a reaction chemistry perspective, the second grain-surface route looks more promising, H 3 CO + HCO.

  1. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals

    International Nuclear Information System (INIS)

    Hay, P.J.; Wadt, W.R.

    1985-01-01

    Ab initio effective core potentials (ECP's) have been generated to replace the innermost core electron for third-row (K--Au), fourth-row (Rb--Ag), and fifth-row (Cs--Au) atoms. The outermost core orbitals: corresponding to the ns 2 np 6 configuration for the three rows here: are not replaced by the ECP but are treated on an equal footing with the nd, (n+1)s and (n+1)p valence orbitals. These ECP's have been derived for use in molecular calculations where these outer core orbitals need to be treated explicitly rather than to be replaced by an ECP. The ECP's for the forth and fifth rows also incorporate the mass--velocity and Darwin relativistic effects into the potentials. Analytic fits to the potentials are presented for use in multicenter integral evaluation. Gaussian orbital valence basis sets are developed for the (3s, 3p, 3d, 4s, 4p), (4s, 4p, 4d, 5s, 5p), and (5s, 5p, 5d, 6s, 6p) ortibals of the three respective rows

  2. ON THE FORMATION OF GLYCOLALDEHYDE IN DENSE MOLECULAR CORES

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Paul M.; Kelly, George; Viti, Serena [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Slater, Ben; Brown, Wendy A.; Puletti, Fabrizio; Burke, Daren J.; Raza, Zamaan, E-mail: paul.woods@ucl.ac.uk [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2012-05-01

    Glycolaldehyde is a simple monosaccharide sugar linked to prebiotic chemistry. Recently, it was detected in a molecular core in the star-forming region G31.41+0.31 at a reasonably high abundance. We investigate the formation of glycolaldehyde at 10 K to determine whether it can form efficiently under typical dense core conditions. Using an astrochemical model, we test five different reaction mechanisms that have been proposed in the astrophysical literature, finding that a gas-phase formation route is unlikely. Of the grain-surface formation routes, only two are efficient enough at very low temperatures to produce sufficient glycolaldehyde to match the observational estimates, with the mechanism culminating in CH{sub 3}OH + HCO being favored. However, when we consider the feasibility of these mechanisms from a reaction chemistry perspective, the second grain-surface route looks more promising, H{sub 3}CO + HCO.

  3. AN ANALYSIS OF THE DEUTERIUM FRACTIONATION OF STAR-FORMING CORES IN THE PERSEUS MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, R. K. [National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville, VA 22903 (United States); Kirk, H. M. [Origins Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1 (Canada); Shirley, Y. L., E-mail: friesen@di.utoronto.ca [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)

    2013-03-01

    We have performed a pointed survey of N{sub 2}D{sup +} 2-1 and N{sub 2}D{sup +} 3-2 emission toward 64 N{sub 2}H{sup +}-bright starless and protostellar cores in the Perseus molecular cloud using the Arizona Radio Observatory Submillimeter Telescope and Kitt Peak 12 m telescope. We find a mean deuterium fractionation in N{sub 2}H{sup +}, R{sub D} = N(N{sub 2}D{sup +})/N(N{sub 2}H{sup +}), of 0.08, with a maximum R{sub D} = 0.2. In detected sources, we find no significant difference in the deuterium fractionation between starless and protostellar cores, nor between cores in clustered or isolated environments. We compare the deuterium fraction in N{sub 2}H{sup +} with parameters linked to advanced core evolution. We only find significant correlations between the deuterium fraction and increased H{sub 2} column density, as well as with increased central core density, for all cores. Toward protostellar sources, we additionally find a significant anticorrelation between R{sub D} and bolometric temperature. We show that the Perseus cores are characterized by low CO depletion values relative to previous studies of star-forming cores, similar to recent results in the Ophiuchus molecular cloud. We suggest that the low average CO depletion is the dominant mechanism that constrains the average deuterium fractionation in the Perseus cores to small values. While current equilibrium and dynamic chemical models are able to reproduce the range of deuterium fractionation values we find in Perseus, reproducing the scatter across the cores requires variation in parameters such as the ionization fraction or the ortho-to-para-H{sub 2} ratio across the cloud, or a range in core evolution timescales.

  4. INVESTIGATING PARTICLE ACCELERATION IN PROTOSTELLAR JETS: THE TRIPLE RADIO CONTINUUM SOURCE IN SERPENS

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Kamenetzky, Adriana; Valotto, Carlos [Instituto de Astronomía Teórica y Experimental, (IATE-UNC), X5000BGR Córdoba (Argentina); Carrasco-González, Carlos; Rodríguez, Luis F. [Instituto de Radioastronomía y Astrofísica (IRyA-UNAM), 58089 Morelia, México (Mexico); Araudo, Anabella [University of Oxford, Astrophysics, Keble Road, Oxford OX1 3RH (United Kingdom); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Anglada, Guillem [Instituto de Astrofísica de Andalucía, CSIC, Camino Bajo de Huétor 50, E-18008 Granada (Spain); Martí, Josep [Dept. de Física, EPS de Jaén, Universidad de Jaén, Campus Las Lagunillas s/n, A3-402, E-23071 Jaén (Spain)

    2016-02-10

    While most protostellar jets present free–free emission at radio wavelengths, synchrotron emission has also been proposed to be present in a handful of these objects. The presence of nonthermal emission has been inferred by negative spectral indices at centimeter wavelengths. In one case (the HH 80-81 jet arising from a massive protostar), its synchrotron nature was confirmed by the detection of linearly polarized radio emission. One of the main consequences of these results is that synchrotron emission implies the presence of relativistic particles among the nonrelativistic material of these jets. Therefore, an acceleration mechanism should be taking place. The most probable scenario is that particles are accelerated when the jets strongly impact against the dense envelope surrounding the protostar. Here we present an analysis of radio observations obtained with the Very Large Array of the triple radio source in the Serpens star-forming region. This object is known to be a radio jet arising from an intermediate-mass protostar. It is also one of the first protostellar jets where the presence of nonthermal emission was proposed. We analyze the dynamics of the jet and the nature of the emission and discuss these issues in the context of the physical parameters of the jet and the particle acceleration phenomenon.

  5. DETECTION OF A BIPOLAR MOLECULAR OUTFLOW DRIVEN BY A CANDIDATE FIRST HYDROSTATIC CORE

    International Nuclear Information System (INIS)

    Dunham, Michael M.; Chen Xuepeng; Arce, Héctor G.; Bourke, Tyler L.; Schnee, Scott; Enoch, Melissa L.

    2011-01-01

    We present new 230 GHz Submillimeter Array observations of the candidate first hydrostatic core Per-Bolo 58. We report the detection of a 1.3 mm continuum source and a bipolar molecular outflow, both centered on the position of the candidate first hydrostatic core. The continuum detection has a total flux density of 26.6 ± 4.0 mJy, from which we calculate a total (gas and dust) mass of 0.11 ± 0.05 M ☉ and a mean number density of 2.0 ± 1.6 × 10 7 cm –3 . There is some evidence for the existence of an unresolved component in the continuum detection, but longer-baseline observations are required in order to confirm the presence of this component and determine whether its origin lies in a circumstellar disk or in the dense inner envelope. The bipolar molecular outflow is observed along a nearly due east-west axis. The outflow is slow (characteristic velocity of 2.9 km s –1 ), shows a jet-like morphology (opening semi-angles ∼8° for both lobes), and extends to the edges of the primary beam. We calculate the kinematic and dynamic properties of the outflow in the standard manner and compare them to several other protostars and candidate first hydrostatic cores with similarly low luminosities. We discuss the evidence both in support of and against the possibility that Per-Bolo 58 is a first hydrostatic core, and we outline future work needed to further evaluate the evolutionary status of this object.

  6. High-Resolution Imaging of Dense Gas Structure and Kinematics in Nearby Molecular Clouds with the CARMA Large Area Star Formation Survey

    Science.gov (United States)

    Storm, Shaye

    This thesis utilizes new observations of dense gas in molecular clouds to develop an empirical framework for how clouds form structures which evolve into young cores and stars. Previous observations show the general turbulent and hierarchical nature of clouds. However, current understanding of the star formation pathway is limited by existing data that do not combine angular resolution needed to resolve individual cores with area coverage required to capture entire star-forming regions and with tracers that can resolve gas motions. The original contributions of this thesis to astrophysical research are the creation and analysis of the largest-area high-angular-resolution maps of dense gas in molecular clouds to-date, and the development of a non-binary dendrogram algorithm to quantify the hierarchical nature and three-dimensional morphology of cloud structure. I first describe the CARMA Large Area Star Formation Survey, which provides spectrally imaged N2H+, HCO+, and HCN (J = 1→0) emission across diverse regions of the Perseus and Serpens Molecular Clouds. I then present a detailed analysis of the Barnard 1 and L1451 regions in Perseus. A non-binary dendrogram analysis of Barnard 1 N2H emission and all L1451 emission shows that the most hierarchically complex gas corresponds with sub-regions actively forming young stars. I estimate the typical depth of molecular emission in each region using the spatial and kinematic properties of dendrogram-identified structures. Barnard 1 appears to be a sheet-like region at the largest scales with filamentary substructure, while the L1451 region is composed of more spatially distinct ellipsoidal structures. I then do a uniform comparison of the hierarchical structure and young stellar content of all five regions. The more evolved regions with the most young stellar objects (YSOs) and strongest emission have formed the most hierarchical levels. However, all regions show similar mean branching properties at each level

  7. Towards a Molecular Understanding of the Fanconi Anemia Core Complex

    Directory of Open Access Journals (Sweden)

    Charlotte Hodson

    2012-01-01

    Full Text Available Fanconi Anemia (FA is a genetic disorder characterized by the inability of patient cells to repair DNA damage caused by interstrand crosslinking agents. There are currently 14 verified FA genes, where mutation of any single gene prevents repair of DNA interstrand crosslinks (ICLs. The accumulation of ICL damage results in genome instability and patients having a high predisposition to cancers. The key event of the FA pathway is dependent on an eight-protein core complex (CC, required for the monoubiquitination of each member of the FANCD2-FANCI complex. Interestingly, the majority of patient mutations reside in the CC. The molecular mechanisms underlying the requirement for such a large complex to carry out a monoubiquitination event remain a mystery. This paper documents the extensive efforts of researchers so far to understand the molecular roles of the CC proteins with regard to its main function in the FA pathway, the monoubiquitination of FANCD2 and FANCI.

  8. Towards a Molecular Understanding of the Fanconi Anemia Core Complex

    Science.gov (United States)

    Hodson, Charlotte; Walden, Helen

    2012-01-01

    Fanconi Anemia (FA) is a genetic disorder characterized by the inability of patient cells to repair DNA damage caused by interstrand crosslinking agents. There are currently 14 verified FA genes, where mutation of any single gene prevents repair of DNA interstrand crosslinks (ICLs). The accumulation of ICL damage results in genome instability and patients having a high predisposition to cancers. The key event of the FA pathway is dependent on an eight-protein core complex (CC), required for the monoubiquitination of each member of the FANCD2-FANCI complex. Interestingly, the majority of patient mutations reside in the CC. The molecular mechanisms underlying the requirement for such a large complex to carry out a monoubiquitination event remain a mystery. This paper documents the extensive efforts of researchers so far to understand the molecular roles of the CC proteins with regard to its main function in the FA pathway, the monoubiquitination of FANCD2 and FANCI. PMID:22675617

  9. Search for gravitational redshifted absorption lines in LMXB Serpens X-1

    Science.gov (United States)

    Yoneda, Hiroki; Done, Chris; Paerels, Frits; Takahashi, Tadayuki; Watanabe, Shin

    2018-04-01

    The equation of state for ultradense matter can be tested from observations of the ratio of mass to radius of neutron stars. This could be measured precisely from the redshift of a narrow line produced on the surface. X-rays bursts have been intensively searched for such features, but so far without detection. Here instead we search for redshifted lines in the persistent emission, where the accretion flow dominates over the surface emission. We discuss the requirements for narrow lines to be produced, and show that narrow absorption lines from highly ionized iron can potentially be observable in accreting low-mass X-ray binaries (LMXBs; low B field) that have either low spin or low inclination so that Doppler broadening is small. This selects Serpens X-1 as the only potential candidate persistent LMXB due to its low inclination. Including surface models in the broad-band accretion flow model predicts that the absorption line from He-like iron at 6.7 keV should be redshifted to ˜5.1-5.7 keV (10-15 km for 1.4 M⊙) and have an equivalent width of 0.8-8 eV for surface temperatures of 7-10 × 106 K. We use the high-resolution Chandra grating data to give a firm upper limit of 2-3 eV for an absorption line at ˜5 keV. We discuss possible reasons for this lack of detection (the surface temperature and the geometry of the boundary layer etc.). Future instruments with better sensitivity are required in order to explore the existence of such features.

  10. [Compatibility law of Baizhi formulae and molecular mechanism of core herbal pair "Baizhi-Chuanxiong"].

    Science.gov (United States)

    Su, Jin; Tang, Shi-Huan; Guo, Fei-Fei; Li, De-Feng; Zhang, Yi; Xu, Hai-Yu; Yang, Hong-Jun

    2018-04-01

    By using the traditional Chinese medicine inheritance support system (TCMISS) in this study, the prescription rules of Baizhi formulae were analyzed and the core herbal pair "Baizhi-Chuanxiong" was obtained. Through the systemic analysis of prescription rules of "Baizhi-Chuanxiong" and combined with the pharmacology thinking of "Baizhi-Chuanxiong" in treating headache, the paper was aimed to find out the combination rules containing Baizhi andits molecular mechanisms for treating headaches, and provide the theory basis for further research and reference of Baizhi and its formula. Totally 3 887 prescriptions were included in this study, involving 2 534 Chinese herbs. With a support degree of 20% in analysis, 16 most commonly used drug combinations were screened, which were mainly used to treat 15 types of diseases. Baizhi was often used to treat headache, and the core combination "Baizhi-Chuanxiong" was also often used to treat, consistent with ancient record. A chemical database was established; then the headache and migraine disease targets were retrieved and added in the database to build up the "compounds-targets-pathways "core network of "Baizhi-Chuanxiong" by the internet-based computation platform for IP of TCM (TCM-IP). TCM-IP was then applied to study the molecular mechanism of "Baizhi-Chuanxiong" treatment of headache. The results suggested that37 chemical compounds in the core combination "Baizhi-Chuanxiong" were closely related with headache treatment by adjusting serotonin levels or applying to inflammation-related targets and energy metabolism pathways such as purine metabolism, pyruvate metabolism, fatty acid degradation, carbon metabolism and gluconeogenesis. Copyright© by the Chinese Pharmaceutical Association.

  11. DENSE GAS IN MOLECULAR CORES ASSOCIATED WITH PLANCK GALACTIC COLD CLUMPS

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jinghua; Li, Jin Zeng; Liu, Hong-Li [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Wu, Yuefang; Chen, Ping; Hu, Runjie [Department of Astronomy, Peking University, 100871 Beijing (China); Liu, Tie [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Zhang, Tianwei [Peking University Health Science Center, Xueyuan Road 38th, Haidian District, Beijing 100191 (China); Meng, Fanyi [Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 (Germany); Wang, Ke, E-mail: ywu@pku.edu.cn [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany)

    2016-03-20

    We present the first survey of dense gas toward Planck Galactic Cold Clumps (PGCCs). Observations in the J = 1–0 transitions of HCO{sup +} and HCN toward 621 molecular cores associated with PGCCs were performed using the Purple Mountain Observatory’s 13.7 m telescope. Among them, 250 sources were detected, including 230 cores detected in HCO{sup +} and 158 in HCN. Spectra of the J = 1–0 transitions from {sup 12}CO, {sup 13}CO, and C{sup 18}O at the centers of the 250 cores were extracted from previous mapping observations to construct a multi-line data set. The significantly low detection rate of asymmetric double-peaked profiles, together with the good consistency among central velocities of CO, HCO{sup +}, and HCN spectra, suggests that the CO-selected Planck cores are more quiescent than classical star-forming regions. The small difference between line widths of C{sup 18}O and HCN indicates that the inner regions of CO-selected Planck cores are no more turbulent than the exterior. The velocity-integrated intensities and abundances of HCO{sup +} are positively correlated with those of HCN, suggesting that these two species are well coupled and chemically connected. The detected abundances of both HCO{sup +} and HCN are significantly lower than values in other low- to high-mass star-forming regions. The low abundances may be due to beam dilution. On the basis of an inspection of the parameters given in the PGCC catalog, we suggest that there may be about 1000 PGCC objects that have a sufficient reservoir of dense gas to form stars.

  12. Unusual polymorphism in new bent-shaped liquid crystals based on biphenyl as a central molecular core

    Directory of Open Access Journals (Sweden)

    Anna Kovářová

    2014-04-01

    Full Text Available Bent-shaped mesogens possessing a biphenyl as a central core have been synthesized and the role of the terminal chain and the orientation of the ester as a linkage group have been investigated. For the studied molecular core we have established that both parameters play an important role for the mesomorphic properties. The polyfluoroalkyl terminal chain supports the formation of mesophases, and the introduction of a chiral lactate terminal chain destabilizes mesophases for the first type of mutual orientation of ester groups, attached to the central core. On the contrary, for the opposite orientation of esters, the terminal chain has no effect on the mesomorphic properties, and columnar phases have been found for all compounds. A unique phase sequence has been found for the mesogen with the fluorinated chain. A generalized tilted smectics, SmCG, have been observed in a temperature interval between two different lamellar SmCP phases and characterized by X-ray and dielectric measurements. The dielectric spectroscopy data are unique and presented for the first time in the SmCG phase providing new information about the molecular dynamics.

  13. Molecular dynamics study of dislocation cores in copper: structure and diffusion at high temperatures

    International Nuclear Information System (INIS)

    Huang, Jin

    1989-01-01

    The variation of the core structure of an easy glide dislocation with temperature and its influence on the stacking fault energy (γ) have been investigated for the first time by molecular-dynamics simulation in copper. The calculations have been performed at various temperatures, using an ab-initio pseudo-potential. Our results show that the core of the Shockley partials, into which the perfect edge dislocation dissociates, becomes increasingly extended as temperature increases. However their separation remains constant. The calculated energy values of the infinite extension stacking fault and the ribbon fault between the partials are quite different, but the evolution of the core structure does not affect the temperature dependence of the latter. We have found that a high disorder appears in the core region when temperature increases due to important anharmonicity effects of the atomic vibrations. The core structure remains solid-like for T m (T m : melting point of bulk) in spite of the high disorder. Above T m , the liquid nucleus germinates in the core region, and then propagates into the bulk. In addition we studied the mobility of vacancies and interstitials trapped on the partials. Although fast diffusion is thought to occur exclusively in a pipe surrounding the dislocation core, in the present study a quasi two-dimensional diffusion is observed for both defects not only in the cores but also in the stacking fault ribbon. On the opposite of current assumptions, the activation energy for diffusion is found to be identical for both defects, which may therefore comparably contribute to mass transport along the dislocations. (author) [fr

  14. Assessment on Evaluating Parameters of Rice Core Collections Constructed by Genotypic Values and Molecular Marker Information

    Directory of Open Access Journals (Sweden)

    Jian-cheng WANG

    2007-06-01

    Full Text Available Eleven evaluating parameters for rice core collection were assessed based on genotypic values and molecular marker information. Monte Carlo simulation combined with mixed linear model was used to eliminate the interference from environment in order to draw more reliable results. The coincidence rate of range (CR was the optimal parameter. Mean Simpson index (MD, mean Shannon-Weaver index of genetic diversity (MI and mean polymorphism information content (MPIC were important evaluating parameters. The variable rate of coefficient of variation (VR could act as an important reference parameter for evaluating the variation degree of core collection. Percentage of polymorphic loci (p could be used as a determination parameter for the size of core collection. Mean difference percentage (MD was a determination parameter for the reliability judgment of core collection. The effective evaluating parameters for core collection selected in the research could be used as criteria for sampling percentage in different plant germplasm populations.

  15. A High-Mass Cold Core in the Auriga-California Giant Molecular Cloud

    Science.gov (United States)

    Magnus McGehee, Peregrine; Paladini, Roberta; Pelkonen, Veli-Matti; Toth, Viktor; Sayers, Jack

    2015-08-01

    The Auriga-California Giant Molecular Cloud is noted for its relatively low star formation rate, especially at the high-mass end of the Initial Mass Function. We combine maps acquired by the Caltech Submillimeter Observatory's Multiwavelength Submillimeter Inductance Camera [MUSIC] in the wavelength range 0.86 to 2.00 millimeters with Planck and publicly-available Herschel PACS and SPIRE data in order to characterize the mass, dust properties, and environment of the bright core PGCC G163.32-8.41.

  16. Evolution of complex organic molecules in hot molecular cores. Synthetic spectra at (sub-)mm wavebands

    Science.gov (United States)

    Choudhury, R.; Schilke, P.; Stéphan, G.; Bergin, E.; Möller, T.; Schmiedeke, A.; Zernickel, A.

    2015-03-01

    Context. Hot molecular cores (HMCs) are intermediate stages of high-mass star formation and are also known for their rich chemical reservoirs and emission line spectra at (sub-)mm wavebands. Complex organic molecules (COMs) such as methanol (CH3OH), ethanol (C2H5OH), dimethyl ether (CH3OCH3), and methyl formate (HCOOCH3) produce most of these observed lines. The observed spectral feature of HMCs such as total number of emission lines and associated line intensities are also found to vary with evolutionary stages. Aims: We aim to investigate the spectral evolution of these COMs to explore the initial evolutionary stages of high-mass star formation including HMCs. Methods: We developed various 3D models for HMCs guided by the evolutionary scenarios proposed by recent empirical and modeling studies. We then investigated the spatio-temporal variation of temperature and molecular abundances in HMCs by consistently coupling gas-grain chemical evolution with radiative transfer calculations. We explored the effects of varying physical conditions on molecular abundances including density distribution and luminosity evolution of the central protostar(s) among other parameters. Finally, we simulated the synthetic spectra for these models at different evolutionary timescales to compare with observations. Results: Temperature has a profound effect on the formation of COMs through the depletion and diffusion on grain surface to desorption and further gas-phase processing. The time-dependent temperature structure of the hot core models provides a realistic framework for investigating the spatial variation of ice mantle evaporation as a function of evolutionary timescales. We find that a slightly higher value (15 K) than the canonical dark cloud temperature (10 K) provides a more productive environment for COM formation on grain surface. With increasing protostellar luminosity, the water ice evaporation font (~100 K) expands and the spatial distribution of gas phase abundances of

  17. Chandra Detection of an Evolved Population of Young Stars in Serpens South

    Science.gov (United States)

    Winston, E.; Wolk, S. J.; Gutermuth, R.; Bourke, T. L.

    2018-06-01

    We present a Chandra study of the deeply embedded Serpens South star-forming region, examining cluster structure and disk properties at the earliest stages. In total, 152 X-ray sources are detected. Combined with Spitzer and 2MASS photometry, 66 X-ray sources are reliably matched to an IR counterpart. We identify 21 class I, 6 flat spectrum, 16 class II, and 18 class III young stars; 5 were unclassified. Eighteen sources were variable in X-rays, 8 exhibiting flare-like emission and one source being periodic. The cluster’s X-ray luminosity distance was estimated: the best match was to the nearer distance of 260 pc for the front of the Aquila Rift complex. The ratio of N H to A K is found to be ∼0.68 × 1022, similar to that measured in other young low-mass regions, but lower than that measured in the interstellar medium and high-mass clusters (∼(1.6–2) × 1022). We find that the spatial distribution closely follows that of the dense filament from which the stars have formed, with the class II population still strongly associated with the filament. There are four subclusters in the field, with three forming knots in the filament, and a fourth to the west, which may not be associated but may be contributing to the distributed class III population. A high percentage of diskless class IIIs (upper limit 30% of classified X-ray sources) in such a young cluster could indicate that processing of disks is influenced by the cluster environment and is not solely dependent on timescale.

  18. Extension of the AMBER molecular dynamics software to Intel's Many Integrated Core (MIC) architecture

    Science.gov (United States)

    Needham, Perri J.; Bhuiyan, Ashraf; Walker, Ross C.

    2016-04-01

    We present an implementation of explicit solvent particle mesh Ewald (PME) classical molecular dynamics (MD) within the PMEMD molecular dynamics engine, that forms part of the AMBER v14 MD software package, that makes use of Intel Xeon Phi coprocessors by offloading portions of the PME direct summation and neighbor list build to the coprocessor. We refer to this implementation as pmemd MIC offload and in this paper present the technical details of the algorithm, including basic models for MPI and OpenMP configuration, and analyze the resultant performance. The algorithm provides the best performance improvement for large systems (>400,000 atoms), achieving a ∼35% performance improvement for satellite tobacco mosaic virus (1,067,095 atoms) when 2 Intel E5-2697 v2 processors (2 ×12 cores, 30M cache, 2.7 GHz) are coupled to an Intel Xeon Phi coprocessor (Model 7120P-1.238/1.333 GHz, 61 cores). The implementation utilizes a two-fold decomposition strategy: spatial decomposition using an MPI library and thread-based decomposition using OpenMP. We also present compiler optimization settings that improve the performance on Intel Xeon processors, while retaining simulation accuracy.

  19. CHEMICAL AND PHYSICAL CONDITIONS IN MOLECULAR CLOUD CORE DC 000.4-19.5 (SL42) IN CORONA AUSTRALIS

    Energy Technology Data Exchange (ETDEWEB)

    Hardegree-Ullman, E.; Whittet, D. C. B. [New York Center for Astrobiology and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Harju, J. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Vaeisaelaentie 20, FI-21500, Piikkioe (Finland); Juvela, M.; Sipilae, O. [Department of Physics, P.O. Box 64, FI-00014, University of Helsinki (Finland); Hotzel, S., E-mail: hardee@rpi.edu [Observatory, FI-00014, University of Helsinki (Finland)

    2013-01-20

    Chemical reactions in starless molecular clouds are heavily dependent on interactions between gas phase material and solid phase dust and ices. We have observed the abundance and distribution of molecular gases in the cold, starless core DC 000.4-19.5 (SL42) in Corona Australis using data from the Swedish ESO Submillimeter Telescope. We present column density maps determined from measurements of C{sup 18}O (J = 2-1, 1-0) and N{sub 2}H{sup +} (J = 1-0) emission features. Herschel data of the same region allow a direct comparison to the dust component of the cloud core and provide evidence for gas phase depletion of CO at the highest extinctions. The dust color temperature in the core calculated from Herschel maps ranges from roughly 10.7 to 14.0 K. This range agrees with the previous determinations from Infrared Space Observatory and Planck observations. The column density profile of the core can be fitted with a Plummer-like density distribution approaching n(r) {approx} r {sup -2} at large distances. The core structure deviates clearly from a critical Bonnor-Ebert sphere. Instead, the core appears to be gravitationally bound and to lack thermal and turbulent support against the pressure of the surrounding low-density material: it may therefore be in the process of slow contraction. We test two chemical models and find that a steady-state depletion model agrees with the observed C{sup 18}O column density profile and the observed N(C{sup 18}O) versus A{sub V} relationship.

  20. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kryukova, E.; Megeath, S. T.; Allen, T. S. [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Pipher, J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Allen, L. E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Myers, P. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Muzerolle, J. [Space Telescope Science Institute, Baltimore, MD (United States)

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  1. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Kryukova, E.; Megeath, S. T.; Allen, T. S.; Gutermuth, R. A.; Pipher, J.; Allen, L. E.; Myers, P. C.; Muzerolle, J.

    2012-01-01

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 μm spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 μm), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L ☉ and show a tail extending toward luminosities above 100 L ☉ . The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L ☉ . Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those

  2. Core/shell CdS/ZnS nanoparticles: Molecular modelling and characterization by photocatalytic decomposition of Methylene Blue

    Czech Academy of Sciences Publication Activity Database

    Praus, P.; Svoboda, L.; Tokarský, J.; Hospodková, Alice; Klemm, V.

    2014-01-01

    Roč. 292, Feb (2014), s. 813-822 ISSN 0169-4332 Institutional support: RVO:68378271 Keywords : core/shell nanoparticles * CdS/ZnS * molecular modelling * electron tunnelling * photocatalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.711, year: 2014

  3. The collapse of a molecular cloud core to stellar densities using radiation non-ideal magnetohydrodynamics

    Science.gov (United States)

    Wurster, James; Bate, Matthew R.; Price, Daniel J.

    2018-04-01

    We present results from radiation non-ideal magnetohydrodynamics (MHD) calculations that follow the collapse of rotating, magnetized, molecular cloud cores to stellar densities. These are the first such calculations to include all three non-ideal effects: ambipolar diffusion, Ohmic resistivity, and the Hall effect. We employ an ionization model in which cosmic ray ionization dominates at low temperatures and thermal ionization takes over at high temperatures. We explore the effects of varying the cosmic ray ionization rate from ζcr = 10-10 to 10-16 s-1. Models with ionization rates ≳10-12 s-1 produce results that are indistinguishable from ideal MHD. Decreasing the cosmic ray ionization rate extends the lifetime of the first hydrostatic core up to a factor of 2, but the lifetimes are still substantially shorter than those obtained without magnetic fields. Outflows from the first hydrostatic core phase are launched in all models, but the outflows become broader and slower as the ionization rate is reduced. The outflow morphology following stellar core formation is complex and strongly dependent on the cosmic ray ionization rate. Calculations with high ionization rates quickly produce a fast (≈14 km s-1) bipolar outflow that is distinct from the first core outflow, but with the lowest ionization rate, a slower (≈3-4 km s-1) conical outflow develops gradually and seamlessly merges into the first core outflow.

  4. Unusual polypeptide synthesis in the kinetoplast-mitochondria from Leishmania tarentolae. Identification of individual de novo translation products

    Czech Academy of Sciences Publication Activity Database

    Horváth, A.; Neboháčová, M.; Lukeš, Julius; Maslov, D. A.

    2002-01-01

    Roč. 277, č. 9 (2002), s. 7222-7230 ISSN 0021-9258 Institutional research plan: CEZ:AV0Z6022909 Keywords : cytochrome c oxidase * trypanosamatid Phytomonas serpens * Crithidia fasciculata Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.696, year: 2002

  5. Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core-shell and cage structures

    Science.gov (United States)

    Rong, Qian; Zhang, Yumin; Lv, Tianping; Shen, Kaiyuan; Zi, Baoye; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2018-04-01

    Silver-doped LaFeO3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.

  6. The Gas-Phase Formation of Methyl Formate in Hot Molecular Cores

    Science.gov (United States)

    Horn, Anne; Møllendal, Harald; Sekiguchi, Osamu; Uggerud, Einar; Roberts, Helen; Herbst, Eric; Viggiano, A. A.; Fridgen, Travis D.

    2004-08-01

    Methyl formate, HCOOCH3, is a well-known interstellar molecule prominent in the spectra of hot molecular cores. The current view of its formation is that it occurs in the gas phase from precursor methanol, which is synthesized on the surfaces of grain mantles during a previous colder era and evaporates while temperatures increase during the process of high-mass star formation. The specific reaction sequence thought to form methyl formate, the ion-molecule reaction between protonated methanol and formaldehyde followed by dissociative recombination of the protonated ion [HCO(H)OCH3]+, has not been studied in detail in the laboratory. We present here the results of both a quantum chemical study of the ion-molecule reaction between [CH3OH2]+ and H2CO as well as new experimental work on the system. In addition, we report theoretical and experimental studies for a variety of other possible gas-phase reactions leading to ion precursors of methyl formate. The studied chemical processes leading to methyl formate are included in a chemical model of hot cores. Our results show that none of these gas-phase processes produces enough methyl formate to explain its observed abundance.

  7. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments.

    Science.gov (United States)

    Barski, Michal; Brennan, Benjamin; Miller, Ona K; Potter, Jane A; Vijayakrishnan, Swetha; Bhella, David; Naismith, James H; Elliott, Richard M; Schwarz-Linek, Ulrich

    2017-09-15

    Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83-248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence.

  8. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    International Nuclear Information System (INIS)

    Lu Yan; Yan Changling; Gao Shuyan

    2009-01-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  9. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yan, E-mail: yanlu2001@sohu.com [College of Chemistry and Environmental Science, Henan Normal University, 46 Jlanshe Road, Xinxiang 453007 (China); Yan Changling; Gao Shuyan [College of Chemistry and Environmental Science, Henan Normal University, 46 Jlanshe Road, Xinxiang 453007 (China)

    2009-04-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  10. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    Science.gov (United States)

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  11. Synthesis of core-shell molecularly imprinted polymer microspheres by precipitation polymerization for the inline molecularly imprinted solid-phase extraction of thiabendazole from citrus fruits and orange juice samples.

    Science.gov (United States)

    Barahona, Francisco; Turiel, Esther; Cormack, Peter A G; Martín-Esteban, Antonio

    2011-01-01

    In this work, the synthesis of molecularly imprinted polymer microspheres with narrow particle size distributions and core-shell morphology by a two-step precipitation polymerization procedure is described. Polydivinylbenzene (poly DVB-80) core particles were used as seed particles in the production of molecularly imprinted polymer shells by copolymerization of divinylbenzene-80 with methacrylic acid in the presence of thiabendazole (TBZ) and an appropriate porogen. Thereafter, polymer particles were packed into refillable stainless steel HPLC columns used in the development of an inline molecularly imprinted SPE method for the determination of TBZ in citrus fruits and orange juice samples. Under optimized chromatographic conditions, recoveries of TBZ within the range 81.1-106.4%, depending upon the sample, were obtained, with RSDs lower than 10%. This novel method permits the unequivocal determination of TBZ in the samples under study, according to the maximum residue levels allowed within Europe, in less than 20 min and without any need for a clean-up step in the analytical protocol. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis of Hβ (core)/SAPO-11 (shell) Composite Molecular Sieve and its Catalytic Performances in the Methylation of Naphthalene with Methanol

    International Nuclear Information System (INIS)

    Wang, Xiaoxiao; Zhao, Liangfu; Guo, Shaoqing

    2013-01-01

    Hβ (core)/SAPO-11 (shell) composite molecular sieve was synthesized by the hydrothermal method in order to combine the advantages of Hβ and SAPO-11 for the methylation of naphthalene with methanol. For comparison, the mechanical mixture was prepared through the blending of Hβ and SAPO-11. The physicochemical properties of Hβ, SAPO-11, the composite and the mechanical mixture were characterized by various characterization methods. The characterization results indicated that Hβ/SAPO-11 composite molecular sieve exhibited a core-shell structure, with the Hβ phase as the core and the SAPO-11 phase as the shell. The pore diameter of the composite was between that of Hβ and SAPO-11. The composite had fewer acid sites than Hβ and mechanical mixture while more acid sites than SAPO-11. The experimental results indicated that the composite exhibited high catalytic performances for the methylation of naphthalene with methanol

  13. Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid Membranes for Highly Selective CO2 Separation.

    Science.gov (United States)

    Song, Zhuonan; Qiu, Fen; Zaia, Edmond W; Wang, Zhongying; Kunz, Martin; Guo, Jinghua; Brady, Michael; Mi, Baoxia; Urban, Jeffrey J

    2017-11-08

    A novel core/shell porous crystalline structure was prepared using a large pore metal organic framework (MOF, UiO-66-NH 2 , pore size, ∼ 0.6 nm) as core surrounded by a small pore zeolitic imidazolate framework (ZIF, ZIF-8, pore size, ∼ 0.4 nm) through a layer-by-layer deposition method and subsequently used as an engineered filler to construct hybrid polysulfone (PSF) membranes for CO 2 capture. Compared to traditional fillers utilizing only one type of porous material with rigid channels (either large or small), our custom designed core/shell fillers possess clear advantages via pore engineering: the large internal channels of the UiO-66-NH 2 MOFs create molecular highways to accelerate molecular transport through the membrane, while the thin shells with small pores (ZIF-8) or even smaller pores generated at the interface by the imperfect registry between the overlapping pores of ZIF and MOF enhance molecular sieving thus serving to distinguish slightly larger N 2 molecules (kinetic diameter, 0.364 nm) from smaller CO 2 molecules (kinetic diameter, 0.33 nm). The resultant core/shell ZIF@MOF and as-prepared hybrid PSF membranes were characterized by transmission electron microscopy, X-ray diffraction, wide-angle X-ray scattering, scanning electron microscopy, Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, and contact angle tests. The dependence of the separation performance of the membranes on the MOF/ZIF ratio was also studied by varying the number of layers of ZIF coatings. The integrated PSF-ZIF@MOF hybrid membrane (40 wt % loading) with optimized ZIF coating cycles showed improved hydrophobicity and excellent CO 2 separation performance by simultaneously increasing CO 2 permeability (CO 2 permeability of 45.2 barrer, 710% higher than PSF membrane) and CO 2 /N 2 selectivity (CO 2 /N 2 selectivity of 39, 50% higher than PSF membrane), which is superior to most reported hybrid PSF membranes. The strategy of using

  14. COLLAPSING HOT MOLECULAR CORES: A MODEL FOR THE DUST SPECTRUM AND AMMONIA LINE EMISSION OF THE G31.41+0.31 HOT CORE

    International Nuclear Information System (INIS)

    Osorio, Mayra; Anglada, Guillem; Lizano, Susana; D'Alessio, Paola

    2009-01-01

    We present a model aimed to reproduce the observed spectral energy distribution (SED) as well as the ammonia line emission of the G31.41+0.31 hot core. The hot core is modeled as an infalling envelope onto a massive star that is undergoing an intense accretion phase. We assume an envelope with a density and velocity structure resulting from the dynamical collapse of a singular logatropic sphere. The stellar and envelope physical properties are determined by fitting the observed SED. From these physical conditions, the emerging ammonia line emission is calculated and compared with subarcsecond resolution VLA data of the (4,4) transition taken from the literature. The only free parameter in this line fitting is the ammonia abundance. The observed intensities of the main and satellite ammonia (4,4) lines and their spatial distribution can be well reproduced provided the steep increase of the gas-phase ammonia abundance in the hotter (>100 K), inner regions of the core produced by the sublimation of icy mantles where ammonia molecules are trapped is taken into account. The model predictions for the (2,2), (4,4), and (5,5) transitions, obtained with the same set of parameters, are also reasonably in agreement, given the observational uncertainties, with the single-dish spectra of the region available in the literature. The best fit is obtained for a model with a central star of ∼25M sun , a mass accretion rate of ∼3 x 10 -3 M sun yr -1 , and a total luminosity of ∼2 x 10 5 L sun . The outer radius of the envelope is 30,000 AU, where kinetic temperatures as high as ∼40 K are reached. The gas-phase ammonia abundance ranges from ∼2 x 10 -8 in the outer region to ∼3 x 10 -6 in the inner region. To our knowledge, this is the first time that the dust and molecular line data of a hot molecular core, including subarcsecond resolution data that spatially resolve the structure of the core, have been simultaneously explained by a detailed, physically self

  15. THE BLAST SURVEY OF THE VELA MOLECULAR CLOUD: PHYSICAL PROPERTIES OF THE DENSE CORES IN VELA-D

    International Nuclear Information System (INIS)

    Olmi, Luca; Angles-Alcazar, Daniel; Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Bock, James J.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; De Luca, Massimo; Devlin, Mark J.; Dicker, Simon; Klein, Jeff; Elia, Davide; Fazio, Giovanni G.; Marengo, Massimo; Giannini, Teresa; Lorenzetti, Dario; Gundersen, Joshua O.; Hughes, David H.

    2009-01-01

    The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350, and 500 μm survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest dense cores possibly associated with the earliest stages of star formation. Here, we present the results from observations of the Vela-D region, covering about 4 deg 2 , in which we find 141 BLAST cores. We exploit existing data taken with the Spitzer MIPS, IRAC, and SEST-SIMBA instruments to constrain their (single-temperature) spectral energy distributions, assuming a dust emissivity index β = 2.0. This combination of data allows us to determine the temperature, luminosity, and mass of each BLAST core, and also enables us to separate starless from protostellar sources. We also analyze the effects that the uncertainties on the derived physical parameters of the individual sources have on the overall physical properties of starless and protostellar cores, and we find that there appear to be a smooth transition from the pre- to the protostellar phase. In particular, for protostellar cores we find a correlation between the MIPS24 flux, associated with the central protostar, and the temperature of the dust envelope. We also find that the core mass function of the Vela-D cores has a slope consistent with other similar (sub)millimeter surveys.

  16. Effects of core needle biopsy and subsequent neoadjuvant chemotherapy on molecular alterations and outcome in breast cancer

    Directory of Open Access Journals (Sweden)

    Xie L

    2018-02-01

    Full Text Available Lingmin Xie,1 Xiaolei Li,2 Qinchuan Wang,1 Jichun Zhou,1 Jun Shen,1 Lixi Luo,1 Yi Lu,1 Linbo Wang1 1Division of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 2Division of Surgical Oncology, The First People’s Hospital of Wenling, Zhejiang, China Objectives: The aim of our study is to evaluate the effect of core needle biopsy (CNB and subsequent neoadjuvant chemotherapy (NAC on the expression of estrogen receptor (ER, progesterone receptor (PR, human epidermal growth hormone receptor 2 (HER2 and Ki67 in breast cancer, and the associated influencing factors.Materials and methods: In this retrospective cohort study, 143 patients with primary operable breast cancer who received NAC were included. ER, PR, HER2 and Ki67 statuses were compared between pretreatment and posttreatment residual samples. A control group of paired core and excision tumors from 123 patients who did not receive NAC within the same study period was also assessed. Data on patients’ clinicopathologic features were collected to identify associated influencing factors.Results: Ki67 value significantly increased in excision tumors compared with paired core samples in controls without presurgery treatment (P<0.01, which was associated with the pathologic lymph node status and the interaction of PR and HER2 status (P=0.008 and 0.028, respectively. In 143 patients who underwent NAC, a significant decrease was observed in the expression of PR and Ki67 after NAC (P=0.003 and P<0.01, respectively. Further subgroup analysis showed that PR decrease was more obvious in premenopausal patients and Luminal A patients (P=0.006 and 0.002, respectively.Conclusion: Core samples could provide more reliable information on determination of molecular subtype than surgical excisions. Decreases in PR and Ki67 expression following NAC could be used as positive prognostic factors. We recommend repeat testing of these biologic markers following NAC for

  17. Detection of Reflection Features in the Neutron Star Low-mass X-Ray Binary Serpens X-1 with NICER

    Science.gov (United States)

    Ludlam, R. M.; Miller, J. M.; Arzoumanian, Z.; Bult, P. M.; Cackett, E. M.; Chakrabarty, D.; Enoto, T.; Fabian, A. C.; Gendreau, K. C.; Guillot, S.; Homan, J.; Jaisawal, G. K.; Keek, L.; La Marr, B.; Malacaria, C.; Markwardt, C. B.; Steiner, J. F.; Strohmayer, T. E.

    2018-05-01

    We present Neutron Star Interior Composition Explorer (NICER) observations of the neutron star (NS) low-mass X-ray binary Serpens X-1 during the early mission phase in 2017. With the high spectral sensitivity and low-energy X-ray passband of NICER, we are able to detect the Fe L line complex in addition to the signature broad, asymmetric Fe K line. We confirm the presence of these lines by comparing the NICER data to archival observations with XMM-Newton/Reflection Grating Spectrometer (RGS) and NuSTAR. Both features originate close to the innermost stable circular orbit (ISCO). When modeling the lines with the relativistic line model RELLINE, we find that the Fe L blend requires an inner disk radius of {1.4}-0.1+0.2 R ISCO and Fe K is at {1.03}-0.03+0.13 R ISCO (errors quoted at 90%). This corresponds to a position of {17.3}-1.2+2.5 km and {12.7}-0.4+1.6 km for a canonical NS mass ({M}NS}=1.4 {M}ȯ ) and dimensionless spin value of a = 0. Additionally, we employ a new version of the RELXILL model tailored for NSs and determine that these features arise from a dense disk and supersolar Fe abundance.

  18. Study of the effect of varying core diameter, shell thickness and strain velocity on the tensile properties of single crystals of Cu-Ag core-shell nanowire using molecular dynamics simulations

    Science.gov (United States)

    Sarkar, Jit; Das, D. K.

    2018-01-01

    Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.

  19. Comparison of prestellar core elongations and large-scale molecular cloud structures in the Lupus I region

    Energy Technology Data Exchange (ETDEWEB)

    Poidevin, Frédérick [UCL, KLB, Department of Physics and Astronomy, Gower Place, London WC1E 6BT (United Kingdom); Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Angile, Francesco E.; Devlin, Mark J.; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Benton, Steven J.; Netterfield, Calvin B. [Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7 (Canada); Chapin, Edward L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Canãda, Madrid (Spain); Fissel, Laura M.; Gandilo, Natalie N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Fukui, Yasuo [Department of Physics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Matthews, Tristan G.; Novak, Giles [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Moncelsi, Lorenzo; Mroczkowski, Tony K. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Olmi, Luca, E-mail: fpoidevin@iac.es [Physics Department, University of Puerto Rico, Rio Piedras Campus, Box 23343, UPR station, San Juan, PR 00931 (United States); and others

    2014-08-10

    Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 μm maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 μm with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics—including secondary filaments that often run orthogonally to the primary filament—and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.

  20. Epoxy/anhydride thermosets modified with end-capped star polymers with poly(ethyleneimine cores of different molecular weight and poly(ε–caprolactone arms

    Directory of Open Access Journals (Sweden)

    C. Acebo

    2015-09-01

    Full Text Available Multiarm star polymers, with a hyperbranched poly(ethyleneimine (PEI core and poly(ε-caprolactone (PCL arms end-capped with acetyl groups were synthesized by ring-opening polymerization of ε-caprolactone from PEI cores of different molecular weight. These star polymers were used as toughening agents for epoxy/anhydride thermosets. The curing process was studied by calorimetry, thermomechanical analysis and infrared spectroscopy. The final properties of the resulting materials were determined by thermal and mechanical tests. The addition of the star polymers led to an improvement up to 130% on impact strength and a reduction in the thermal stresses up to 55%. The structure and molecular weight of the modifier used affected the morphology of the resulting materials. Electron microscopy showed phase-separated morphologies with nano-sized fine particles well adhered to the epoxy/anhydride matrix when the higher molecular weight modifier was used.

  1. Transmission properties of hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  2. Core-level spectra and molecular deformation in adsorption: V-shaped pentacene on Al(001)

    Science.gov (United States)

    Lin, He; Brivio, Gian Paolo; Floreano, Luca; Fratesi, Guido

    2015-01-01

    Summary By first-principle simulations we study the effects of molecular deformation on the electronic and spectroscopic properties as it occurs for pentacene adsorbed on the most stable site of Al(001). The rationale for the particular V-shaped deformed structure is discussed and understood. The molecule–surface bond is made evident by mapping the charge redistribution. Upon X-ray photoelectron spectroscopy (XPS) from the molecule, the bond with the surface is destabilized by the electron density rearrangement to screen the core hole. This destabilization depends on the ionized carbon atom, inducing a narrowing of the XPS spectrum with respect to the molecules adsorbed hypothetically undistorted, in full agreement to experiments. When looking instead at the near-edge X-ray absorption fine structure (NEXAFS) spectra, individual contributions from the non-equivalent C atoms provide evidence of the molecular orbital filling, hybridization, and interchange induced by distortion. The alteration of the C–C bond lengths due to the V-shaped bending decreases by a factor of two the azimuthal dichroism of NEXAFS spectra, i.e., the energy splitting of the sigma resonances measured along the two in-plane molecular axes. PMID:26734516

  3. Core-level spectra and molecular deformation in adsorption: V-shaped pentacene on Al(001

    Directory of Open Access Journals (Sweden)

    Anu Baby

    2015-11-01

    Full Text Available By first-principle simulations we study the effects of molecular deformation on the electronic and spectroscopic properties as it occurs for pentacene adsorbed on the most stable site of Al(001. The rationale for the particular V-shaped deformed structure is discussed and understood. The molecule–surface bond is made evident by mapping the charge redistribution. Upon X-ray photoelectron spectroscopy (XPS from the molecule, the bond with the surface is destabilized by the electron density rearrangement to screen the core hole. This destabilization depends on the ionized carbon atom, inducing a narrowing of the XPS spectrum with respect to the molecules adsorbed hypothetically undistorted, in full agreement to experiments. When looking instead at the near-edge X-ray absorption fine structure (NEXAFS spectra, individual contributions from the non-equivalent C atoms provide evidence of the molecular orbital filling, hybridization, and interchange induced by distortion. The alteration of the C–C bond lengths due to the V-shaped bending decreases by a factor of two the azimuthal dichroism of NEXAFS spectra, i.e., the energy splitting of the sigma resonances measured along the two in-plane molecular axes.

  4. Very Deep inside the SN 1987A Core Ejecta: Molecular Structures Seen in 3D

    Energy Technology Data Exchange (ETDEWEB)

    Abellán, F. J.; Marcaide, J. M. [Departamento de Astronomía y Astrofísica, Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Indebetouw, R.; Chevalier, R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Gabler, M.; Janka, H.-Th. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching (Germany); Fransson, C.; Lundqvist, P. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, Alba Nova University Centre, SE-106 91 Stockholm (Sweden); Spyromilio, J. [ESO, Karl-Schwarzschild-Straße 2, D-85748 Garching (Germany); Burrows, D. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Cigan, P.; Gomez, H. L.; Matsuura, M. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Gaensler, B. M. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Kirshner, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Larsson, J. [KTH, Department of Physics, and the Oskar Klein Centre, AlbaNova, SE-106 91 Stockholm (Sweden); McCray, R. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Park, S. [Department of Physics, University of Texas at Arlington, 108 Science Hall, Box 19059, Arlington, TX 76019 (United States); Roche, P., E-mail: francisco.abellan@uv.es [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); and others

    2017-06-20

    Most massive stars end their lives in core-collapse supernova explosions and enrich the interstellar medium with explosively nucleosynthesized elements. Following core collapse, the explosion is subject to instabilities as the shock propagates outward through the progenitor star. Observations of the composition and structure of the innermost regions of a core-collapse supernova provide a direct probe of the instabilities and nucleosynthetic products. SN 1987A in the Large Magellanic Cloud is one of very few supernovae for which the inner ejecta can be spatially resolved but are not yet strongly affected by interaction with the surroundings. Our observations of SN 1987A with the Atacama Large Millimeter/submillimeter Array are of the highest resolution to date and reveal the detailed morphology of cold molecular gas in the innermost regions of the remnant. The 3D distributions of carbon and silicon monoxide (CO and SiO) emission differ, but both have a central deficit, or torus-like distribution, possibly a result of radioactive heating during the first weeks (“nickel heating”). The size scales of the clumpy distribution are compared quantitatively to models, demonstrating how progenitor and explosion physics can be constrained.

  5. Very Deep inside the SN 1987A Core Ejecta: Molecular Structures Seen in 3D

    International Nuclear Information System (INIS)

    Abellán, F. J.; Marcaide, J. M.; Indebetouw, R.; Chevalier, R.; Gabler, M.; Janka, H.-Th.; Fransson, C.; Lundqvist, P.; Spyromilio, J.; Burrows, D. N.; Cigan, P.; Gomez, H. L.; Matsuura, M.; Gaensler, B. M.; Kirshner, R.; Larsson, J.; McCray, R.; Ng, C.-Y.; Park, S.; Roche, P.

    2017-01-01

    Most massive stars end their lives in core-collapse supernova explosions and enrich the interstellar medium with explosively nucleosynthesized elements. Following core collapse, the explosion is subject to instabilities as the shock propagates outward through the progenitor star. Observations of the composition and structure of the innermost regions of a core-collapse supernova provide a direct probe of the instabilities and nucleosynthetic products. SN 1987A in the Large Magellanic Cloud is one of very few supernovae for which the inner ejecta can be spatially resolved but are not yet strongly affected by interaction with the surroundings. Our observations of SN 1987A with the Atacama Large Millimeter/submillimeter Array are of the highest resolution to date and reveal the detailed morphology of cold molecular gas in the innermost regions of the remnant. The 3D distributions of carbon and silicon monoxide (CO and SiO) emission differ, but both have a central deficit, or torus-like distribution, possibly a result of radioactive heating during the first weeks (“nickel heating”). The size scales of the clumpy distribution are compared quantitatively to models, demonstrating how progenitor and explosion physics can be constrained.

  6. More Than Filaments and Cores: Statistical Study of Structure Formation and Dynamics in Nearby Molecular Clouds

    Science.gov (United States)

    Chen, How-Huan; Goodman, Alyssa

    2018-01-01

    In the past decade, multiple attempts at understanding the connection between filaments and star forming cores have been made using observations across the entire epectrum. However, the filaments and the cores are usually treated as predefined--and well-defined--entities, instead of structures that often come at different sizes, shapes, with substantially different dynamics, and inter-connected at different scales. In my dissertation, I present an array of studies using different statistical methods, including the dendrogram and the probability distribution function (PDF), of structures at different size scales within nearby molecular clouds. These structures are identified using observations of different density tracers, and where possible, in the multi-dimensional parameter space of key dynamic properties--the LSR velocity, the velocity dispersion, and the column density. The goal is to give an overview of structure formation in nearby star-forming clouds, as well as of the dynamics in these structures. I find that the overall statistical properties of a larger structure is often the summation/superposition of sub-structures within, and that there could be significant variations due to local physical processes. I also find that the star formation process within molecular clouds could in fact take place in a non-monolithic manner, connecting potentially merging and/or transient structures, at different scales.

  7. Study of the Molecular Dynamics of Multiarm Star Polymers with a Poly(ethyleneimine) Core and Poly(lactide) Multiarms.

    Science.gov (United States)

    Román, Frida; Colomer, Pere; Calventus, Yolanda; Hutchinson, John M

    2017-02-04

    Multiarm star polymers, denoted PEI x -PLA y and containing a hyperbranched poly(ethyleneimine) (PEI) core of different molecular weights x and poly(lactide) (PLA) arms with y ratio of lactide repeat units to N links were used in this work. Samples were preconditioned to remove the moisture content and then characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy (DRS). The glass transition temperature, T g , is between 48 and 50 °C for all the PEI x -PLA y samples. The dielectric curves show four dipolar relaxations: γ, β, α, and α' in order of increasing temperature. The temperatures at which these relaxations appear, together with their dependence on the frequency, allows relaxation maps to be drawn, from which the activation energies of the sub- T g γ- and β-relaxations and the Vogel-Fulcher-Tammann parameters of the α-relaxation glass transition are obtained. The dependence of the characteristic features of these relaxations on the molecular weight of the PEI core and on the ratio of lactide repeat units to N links permits the assignation of molecular motions to each relaxation. The γ-relaxation is associated with local motions of the -OH groups of the poly(lactide) chains, the β-relaxation with motions of the main chain of poly(lactide), the α-relaxation with global motions of the complete assembly of PEI core and PLA arms, and the α'-relaxation is related to the normal mode relaxation due to fluctuations of the end-to-end vector in the PLA arms, without excluding the possibility that it could be a Maxwell-Wagner-Sillars type ionic peak because the material may have nano-regions of different conductivity.

  8. Study of the Molecular Dynamics of Multiarm Star Polymers with a Poly(ethyleneimine Core and Poly(lactide Multiarms

    Directory of Open Access Journals (Sweden)

    Frida Román

    2017-02-01

    Full Text Available Multiarm star polymers, denoted PEIx-PLAy and containing a hyperbranched poly(ethyleneimine (PEI core of different molecular weights x and poly(lactide (PLA arms with y ratio of lactide repeat units to N links were used in this work. Samples were preconditioned to remove the moisture content and then characterized by thermogravimetric analysis (TGA, differential scanning calorimetry (DSC and dielectric relaxation spectroscopy (DRS. The glass transition temperature, Tg, is between 48 and 50 °C for all the PEIx-PLAy samples. The dielectric curves show four dipolar relaxations: γ, β, α, and α′ in order of increasing temperature. The temperatures at which these relaxations appear, together with their dependence on the frequency, allows relaxation maps to be drawn, from which the activation energies of the sub-Tg γ- and β-relaxations and the Vogel–Fulcher–Tammann parameters of the α-relaxation glass transition are obtained. The dependence of the characteristic features of these relaxations on the molecular weight of the PEI core and on the ratio of lactide repeat units to N links permits the assignation of molecular motions to each relaxation. The γ-relaxation is associated with local motions of the –OH groups of the poly(lactide chains, the β-relaxation with motions of the main chain of poly(lactide, the α-relaxation with global motions of the complete assembly of PEI core and PLA arms, and the α′-relaxation is related to the normal mode relaxation due to fluctuations of the end-to-end vector in the PLA arms, without excluding the possibility that it could be a Maxwell–Wagner–Sillars type ionic peak because the material may have nano-regions of different conductivity.

  9. INTERFEROMETRIC OBSERVATIONS OF NITROGEN-BEARING MOLECULAR SPECIES IN THE STAR-FORMING CORE AHEAD OF HH 80N

    Energy Technology Data Exchange (ETDEWEB)

    Masqué, Josep M.; Estalella, Robert [Departament d' Astronomia i Meteorologia, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Catalunya (Spain); Girart, Josep M. [Institut de Ciències de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciències, Torre C5 - parell 2, E-08193 Bellaterra, Catalunya (Spain); Anglada, Guillem; Osorio, Mayra [Instituto de Astrofísica de Andalucía, CSIC, Camino Bajo de Huétor 50, E-18008 Granada (Spain); Beltrán, Maria T. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2013-10-10

    We present Very Large Array NH{sub 3} and Plateau de Bure Interferometer NH{sub 2}D and HN{sup 13}C observations of the star-forming core ahead of HH 80N, the optically obscured northern counterpart of the Herbig-Haro objects HH 80/81. The main goal is to determine the kinematical information of the high density regions of the core (n ∼> 10{sup 5} cm{sup –3}) missed in previous works due to the depletion of the species observed (e.g., CS). The obtained maps show different kinematical signatures between the eastern and western parts of the core, suggesting a possible dynamical interaction of the core with the HH 80/81/80N outflow. The analysis of the position-velocity (P-V) plots of these species rules out a previous interpretation of having a molecular ring-like structure with a radius of 6 × 10{sup 4} AU traced by CS infalling onto a central protostar found in the core (IRS1). A high degree of NH{sub 3} deuteration, with respect to the central part of the core harboring IRS1, is derived in the eastern part, where a dust condensation (SE) is located. This deuteration trend of NH{sub 3} suggests that SE is in a pre-stellar evolutionary stage, earlier than that of IRS1. Since SE is the closest condensation to the HH 80N/81/80N outflow, in a case of outflow-core dynamical interaction, it should be perturbed first and be the most evolved condensation in the core. Therefore, the derived evolutionary sequence for SE and IRS1 makes outflow triggered star formation on IRS1 unlikely.

  10. Melting of iron at the Earth's core conditions by molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Y. N. Wu

    2011-09-01

    Full Text Available By large scale molecular dynamics simulations of solid-liquid coexistence, we have investigated the melting of iron under pressures from 0 to 364 GPa. The temperatures of liquid and solid regions, and the pressure of the system are calculated to estimate the melting point of iron. We obtain the melting temperature of iron is about 6700±200K under the inner-outer core boundary, which is in good agreement with the result of Alfè et al. By the pair analysis technique, the microstructure of liquid iron under higher pressures is obviously different from that of lower pressures and ambient condition, indicating that the pressure-induced liquid-liquid phase transition may take place in iron melts.

  11. The JCMT Transient Survey: Detection of Submillimeter Variability in a Class I Protostar EC 53 in Serpens Main

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyunju; Cho, Jungyeon [Department of Astronomy and Space Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Lee, Jeong-Eun [School of Space Research, Kyung Hee University, 1732, Deogyeong-Daero, Giheung-gu Yongin-shi, Gyunggi-do 17104 (Korea, Republic of); Mairs, Steve; Johnstone, Doug [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada); Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics, Peking University, Yiheyuan 5, Haidian Qu, 100871 Beijing (China); Kang, Sung-ju; Kang, Miju, E-mail: jeongeun.lee@khu.ac.kr [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Collaboration: JCMT Transient Team

    2017-11-01

    During the protostellar phase of stellar evolution, accretion onto the star is expected to be variable, but this suspected variability has been difficult to detect because protostars are deeply embedded. In this paper, we describe a submillimeter luminosity burst of the Class I protostar EC 53 in Serpens Main, the first variable found during our dedicated JCMT/SCUBA-2 monitoring program of eight nearby star-forming regions. EC 53 remained quiescent for the first six months of our survey, from 2016 February to August. The submillimeter emission began to brighten in 2016 September, reached a peak brightness of 1.5 times the faint state, and has been decaying slowly since 2017 February. The change in submillimeter brightness is interpreted as dust heating in the envelope, generated by a luminosity increase of the protostar of a factor of ≥4. The 850 μ m light curve resembles the historical K -band light curve, which varies by a factor of ∼6 with a 543 period and is interpreted as accretion variability excited by interactions between the accretion disk and a close binary system. The predictable detections of accretion variability observed at both near-infrared and submillimeter wavelengths make the system a unique test-bed, enabling us to capture the moment of the accretion burst and to study the consequences of the outburst on the protostellar disk and envelope.

  12. CONSTRAINTS ON THE NEUTRON STAR AND INNER ACCRETION FLOW IN SERPENS X-1 USING NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. M. [Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1046 (United States); Parker, M. L.; Fabian, A. C. [Institute of Astronomy, The University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Fuerst, F.; Grefenstette, B. W.; Tendulkar, S.; Harrison, F. A.; Rana, V. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bachetti, M.; Barret, D. [Universite de Toulouse, UPS-OMP, Toulouse (France); Boggs, S. E.; Craig, W. W.; Tomsick, J. A. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Chakrabarty, D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 70 Vassar Street, Cambridge, MA 02139 (United States); Christensen, F. E. [Danish Technical University, Lyngby (Denmark); Hailey, C. J.; Paerels, F. [Columbia Astrophysics Laboratory and Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Natalucci, L. [Istituto di Astrofisica e Planetologia Spaziali (INAF), Via Fosso del Cavaliere 100, Roma I-00133 (Italy); Stern, D. K. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Zhang, W. W., E-mail: jonmm@umich.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-12-10

    We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5σ level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering ''hump'' peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be z {sub NS} ≥ 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case, z {sub NS} ≥ 0.22 and R {sub NS} ≤ 12.6 km (assuming M {sub NS} = 1.4 M {sub ☉} and a = 0, where a = cJ/GM {sup 2}). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.

  13. The effect of extreme ionization rates during the initial collapse of a molecular cloud core

    Science.gov (United States)

    Wurster, James; Bate, Matthew R.; Price, Daniel J.

    2018-05-01

    What cosmic ray ionization rate is required such that a non-ideal magnetohydrodynamics (MHD) simulation of a collapsing molecular cloud will follow the same evolutionary path as an ideal MHD simulation or as a purely hydrodynamics simulation? To investigate this question, we perform three-dimensional smoothed particle non-ideal MHD simulations of the gravitational collapse of rotating, one solar mass, magnetized molecular cloud cores, which include Ohmic resistivity, ambipolar diffusion, and the Hall effect. We assume a uniform grain size of ag = 0.1 μm, and our free parameter is the cosmic ray ionization rate, ζcr. We evolve our models, where possible, until they have produced a first hydrostatic core. Models with ζcr ≳ 10-13 s-1 are indistinguishable from ideal MHD models, and the evolution of the model with ζcr = 10-14 s-1 matches the evolution of the ideal MHD model within 1 per cent when considering maximum density, magnetic energy, and maximum magnetic field strength as a function of time; these results are independent of ag. Models with very low ionization rates (ζcr ≲ 10-24 s-1) are required to approach hydrodynamical collapse, and even lower ionization rates may be required for larger ag. Thus, it is possible to reproduce ideal MHD and purely hydrodynamical collapses using non-ideal MHD given an appropriate cosmic ray ionization rate. However, realistic cosmic ray ionization rates approach neither limit; thus, non-ideal MHD cannot be neglected in star formation simulations.

  14. THE ANGULAR MOMENTUM OF MAGNETIZED MOLECULAR CLOUD CORES: A TWO-DIMENSIONAL-THREE-DIMENSIONAL COMPARISON

    International Nuclear Information System (INIS)

    Dib, Sami; Csengeri, Timea; Audit, Edouard; Hennebelle, Patrick; Pineda, Jaime E.; Goodman, Alyssa A.; Bontemps, Sylvain

    2010-01-01

    In this work, we present a detailed study of the rotational properties of magnetized and self-gravitating dense molecular cloud (MC) cores formed in a set of two very high resolution three-dimensional (3D) MC simulations with decaying turbulence. The simulations have been performed using the adaptative mesh refinement code RAMSES with an effective resolution of 4096 3 grid cells. One simulation represents a mildly magnetically supercritical cloud and the other a strongly magnetically supercritical cloud. We identify dense cores at a number of selected epochs in the simulations at two density thresholds which roughly mimic the excitation densities of the NH 3 (J - K) = (1,1) transition and the N 2 H + (1-0) emission line. A noticeable global difference between the two simulations is the core formation efficiency (CFE) of the high-density cores. In the strongly supercritical simulations, the CFE is 33% per unit free-fall time of the cloud (t ff,cl ), whereas in the mildly supercritical simulations this value goes down to ∼6 per unit t ff,cl . A comparison of the intrinsic specific angular momentum (j 3D ) distributions of the cores with the specific angular momentum derived using synthetic two-dimensional (2D) velocity maps of the cores (j 2D ) shows that the synthetic observations tend to overestimate the true value of the specific angular momentum by a factor of ∼8-10. We find that the distribution of the ratio j 3D /j 2D of the cores peaks at around ∼0.1. The origin of this discrepancy lies in the fact that contrary to the intrinsic determination of j which sums up the individual gas parcels' contributions to the angular momentum, the determination of the specific angular momentum using the standard observational procedure which is based on a measurement on the global velocity gradient under the hypothesis of uniform rotation smoothes out the complex fluctuations present in the 3D velocity field. Our results may well provide a natural explanation for the

  15. Circumstellar Disks and Outflows in Turbulent Molecular Cloud Cores: Possible Formation Mechanism for Misaligned Systems

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Tomoaki [Faculty of Sustainability Studies, Hosei University, Fujimi, Chiyoda-ku, Tokyo 102-8160 (Japan); Machida, Masahiro N. [Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 812-8581 (Japan); Inutsuka, Shu-ichiro, E-mail: matsu@hosei.ac.jp [Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan)

    2017-04-10

    We investigate the formation of circumstellar disks and outflows subsequent to the collapse of molecular cloud cores with the magnetic field and turbulence. Numerical simulations are performed by using an adaptive mesh refinement to follow the evolution up to ∼1000 years after the formation of a protostar. In the simulations, circumstellar disks are formed around the protostars; those in magnetized models are considerably smaller than those in nonmagnetized models, but their size increases with time. The models with stronger magnetic fields tend to produce smaller disks. During evolution in the magnetized models, the mass ratios of a disk to a protostar is approximately constant at ∼1%–10%. The circumstellar disks are aligned according to their angular momentum, and the outflows accelerate along the magnetic field on the 10–100 au scale; this produces a disk that is misaligned with the outflow. The outflows are classified into two types: a magnetocentrifugal wind and a spiral flow. In the latter, because of the geometry, the axis of rotation is misaligned with the magnetic field. The magnetic field has an internal structure in the cloud cores, which also causes misalignment between the outflows and the magnetic field on the scale of the cloud core. The distribution of the angular momentum vectors in a core also has a non-monotonic internal structure. This should create a time-dependent accretion of angular momenta onto the circumstellar disk. Therefore, the circumstellar disks are expected to change their orientation as well as their sizes in the long-term evolutions.

  16. Two emissive-magnetic composite platforms for Hg(II) sensing and removal: The combination of magnetic core, silica molecular sieve and rhodamine chemosensors

    Science.gov (United States)

    Mao, Hanping; Liu, Zhongshou

    2018-01-01

    In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe3O4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples.

  17. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis.

    Science.gov (United States)

    Kumar, Sudhir; Stecher, Glen; Peterson, Daniel; Tamura, Koichiro

    2012-10-15

    There is a growing need in the research community to apply the molecular evolutionary genetics analysis (MEGA) software tool for batch processing a large number of datasets and to integrate it into analysis workflows. Therefore, we now make available the computing core of the MEGA software as a stand-alone executable (MEGA-CC), along with an analysis prototyper (MEGA-Proto). MEGA-CC provides users with access to all the computational analyses available through MEGA's graphical user interface version. This includes methods for multiple sequence alignment, substitution model selection, evolutionary distance estimation, phylogeny inference, substitution rate and pattern estimation, tests of natural selection and ancestral sequence inference. Additionally, we have upgraded the source code for phylogenetic analysis using the maximum likelihood methods for parallel execution on multiple processors and cores. Here, we describe MEGA-CC and outline the steps for using MEGA-CC in tandem with MEGA-Proto for iterative and automated data analysis. http://www.megasoftware.net/.

  18. Ab initio R-matrix/Multi-channel Quantum Defect Theory applied to Molecular Core Excitation and Ionization

    International Nuclear Information System (INIS)

    Hiyama, M.; Kosugi, N.

    2004-01-01

    Full text: Ab initio R-matrix/MQDT approach, which is a combination of ab initio R-matrix techniques and the multi channel quantum defect theory (MQDT), has recently been developed by one of the present authors (MH) and Child, to successfully obtain the potential energy curves of Rydberg states converging to not only the lowest but also the higher ionized states. This approach is also applied to estimate the valence state interaction with Rydberg and continuum (ionization) channels. Very recently we have made an original ab initio polyatomic R-matrix/MQDT program package, GSCF4R based on Gaussian type basis functions for the bound and continuum states, to extensively study molecular excitation and ionization in the X-ray region as well as in the VUV region. We are going to report the results for core excitation and ionization of diatomic molecules such as NO and O 2 to show that the R-matrix/MQDT method is indispensable to describe the core-to-Rydberg states with the higher quantum number and the continuum states. These results lead us to the conclusion that the close-coupling approximation augmented with the correlation term within the R-matrix/MQDT formalism is powerful to calculate the Rydberg-valence mixing and the interchannel coupling between several core-ionized states

  19. Exploring molecular complexity with ALMA (EMoCA): Detection of three new hot cores in Sagittarius B2(N)

    Science.gov (United States)

    Bonfand, M.; Belloche, A.; Menten, K. M.; Garrod, R. T.; Müller, H. S. P.

    2017-08-01

    Context. The Sagittarius B2 molecular cloud contains several sites forming high-mass stars. Sgr B2(N) is one of its main centers of activity. It hosts several compact and ultra-compact HII regions, as well as two known hot molecular cores (Sgr B2(N1) and Sgr B2(N2)) in the early stage of the high-mass star formation process, where complex organic molecules (COMs) are detected in the gas phase. Aims: Our goal is to use the high sensitivity of the Atacama Large Millimeter/submillimeter Array (ALMA) to characterize the hot core population in Sgr B2(N) and thereby shed new light on the star formation process in this star-forming region. Methods: We use a complete 3 mm spectral line survey conducted with ALMA to search for faint hot cores in the Sgr B2(N) region. The chemical composition of the detected sources and the column densities are derived by modeling the whole spectra under the assumption of local thermodynamic equilibrium. Population diagrams are constructed to fit rotational temperatures. Integrated intensity maps are produced to derive the peak position and fit the size of each molecule's emission distribution. The kinematic structure of the hot cores is investigated by analyzing the line wing emission of typical outflow tracers. The H2 column densities are computed from ALMA and SMA continuum emission maps. Results: We report the discovery of three new hot cores in Sgr B2(N) that we call Sgr B2(N3), Sgr B2(N4), and Sgr B2(N5). The three sources are associated with class II methanol masers, well known tracers of high-mass star formation, and Sgr B2(N5), also with a UCHII region. Their H2 column densities are found to be between approximately 16 and 36 times lower than the one of the main hot core Sgr B2(N1). The spectra of these new hot cores have spectral line densities of 11 up to 31 emission lines per GHz above the 7σ level, assigned to 22-25 molecules plus 13-20 less abundant isotopologs. We derive rotational temperatures of approximately 140-180 K for

  20. Unveiling the Hot Molecular Core in the Ultracompact H II Region with Extended Emission G12.21-0.10

    Science.gov (United States)

    de la Fuente, E.; Trinidad, M. A.; Porras, A.; Rodríguez-Rico, C.; Araya, E. D.; Kurtz, S.; Hofner, P.; Nigoche-Netro, A.

    2018-04-01

    We present a multiwavelength study of the cometary H II region G12.21-0.10 using the VLA and OVRO. Both radio continuum (0.3, 0.7, 2 and 3.6 cm) and spectral lines of H41α, 13CS(2-1) & (1-0), and NH3(2,2) & (4,4) observations are included. We find two 3 mm continuum peaks toward G12.21-0.10; one of them is spatially coincident with the UC H II region, while the other coincides spatially with a molecular clump. We also find that the 0.7, 2 and 3.6 cm continuum and H41α line are only detected toward the UC H II region, while the 13CS, and NH3 are spatially associated with the molecular clump. Based on the morphology, kinetic temperature (≍86 K), volumetric density (≍1.5×106 cm-3) and linear size (≍0.22 pc) of the molecular clump, we suggest this source is consistent with a hot molecular core.

  1. Preoperative core needle biopsy is accurate in determining molecular subtypes in invasive breast cancer

    International Nuclear Information System (INIS)

    Chen, Xiaosong; Yuan, Ying; Fei, Xiaochun; Jin, Xiaolong; Shen, Kunwei; Sun, Long; Mao, Yan; Zhu, Siji; Wu, Jiayi; Huang, Ou; Li, Yafen; Chen, Weiguo; Wang, Jianhua

    2013-01-01

    Estrogen receptor (ER), progesterone receptor (PgR), HER2, and Ki67 have been increasingly evaluated by core needle biopsy (CNB) and are recommended for classifying breast cancer into molecular subtypes. However, the concordance rate between CNB and open excision biopsy (OEB) has not been well documented. Patients with paired CNB and OEB samples from Oct. 2009 to Feb. 2012 in Ruijin Hospital were included. ER, PgR, HER2, and Ki67 were determined by immunohistochemistry (IHC). Patients with HER2 IHC 2+ were further examined by FISH. Cutoff value for Ki67 high expression was 14%. Molecular subtypes were constructed as follows: Luminal A, Luminal B, Triple Negative, and HER2 positive. There were 298 invasive breast cancer patients analyzed. Concordance rates for ER, PgR, and HER2 were 93.6%, 85.9%, and 96.3%, respectively. Ki67 expression was slightly higher in OEB than in CNB samples (29.3% vs. 26.8%, P = 0.046). Good agreement (κ = 0.658) was demonstrated in evaluating molecular subtypes between CNB and OEB, with a concordance rate of 77.2%. We also used a different Ki67 cutoff value (20%) for determining Luminal A and B subtypes in HR (hormone receptor) +/HER2- diseases and the overall concordance rate was 79.2%. However, using a cut-point of Ki67 either 14% or 20% for both specimens, there will be about 14% of HR+/HER2- specimens that are called Luminal A on CNB and Luminal B on OEB. CNB was accurate in determining ER, PgR, and HER2 status as well as non-Luminal molecular subtypes in invasive breast cancer. Ki67 should be retested on OEB samples in HR+/HER2- patients to accurately distinguish Luminal A from B tumors

  2. How cores grow by pebble accretion. I. Direct core growth

    Science.gov (United States)

    Brouwers, M. G.; Vazan, A.; Ormel, C. W.

    2018-03-01

    Context. Planet formation by pebble accretion is an alternative to planetesimal-driven core accretion. In this scenario, planets grow by the accretion of cm- to m-sized pebbles instead of km-sized planetesimals. One of the main differences with planetesimal-driven core accretion is the increased thermal ablation experienced by pebbles. This can provide early enrichment to the planet's envelope, which influences its subsequent evolution and changes the process of core growth. Aims: We aim to predict core masses and envelope compositions of planets that form by pebble accretion and compare mass deposition of pebbles to planetesimals. Specifically, we calculate the core mass where pebbles completely evaporate and are absorbed before reaching the core, which signifies the end of direct core growth. Methods: We model the early growth of a protoplanet by calculating the structure of its envelope, taking into account the fate of impacting pebbles or planetesimals. The region where high-Z material can exist in vapor form is determined by the temperature-dependent vapor pressure. We include enrichment effects by locally modifying the mean molecular weight of the envelope. Results: In the pebble case, three phases of core growth can be identified. In the first phase (Mcore mixes outwards, slowing core growth. In the third phase (Mcore > 0.5M⊕), the high-Z inner region expands outwards, absorbing an increasing fraction of the ablated material as vapor. Rainout ends before the core mass reaches 0.6 M⊕, terminating direct core growth. In the case of icy H2O pebbles, this happens before 0.1 M⊕. Conclusions: Our results indicate that pebble accretion can directly form rocky cores up to only 0.6 M⊕, and is unable to form similarly sized icy cores. Subsequent core growth can proceed indirectly when the planet cools, provided it is able to retain its high-Z material.

  3. Pronounced Effects of a Triazine Core on Photovoltaic Performance-Efficient Organic Solar Cells Enabled by a PDI Trimer-Based Small Molecular Acceptor.

    Science.gov (United States)

    Duan, Yuwei; Xu, Xiaopeng; Yan, He; Wu, Wenlin; Li, Zuojia; Peng, Qiang

    2017-02-01

    A novel-small molecular acceptor with electron-deficient 1,3,5-triazine as the core and perylene diimides as the arms is developed as the acceptor material for efficient bulk heterojunction organic solar cells with an efficiency of 9.15%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Melting and solidification behavior of Cu/Al and Ti/Al bimetallic core/shell nanoparticles during additive manufacturing by molecular dynamics simulation

    Science.gov (United States)

    Rahmani, Farzin; Jeon, Jungmin; Jiang, Shan; Nouranian, Sasan

    2018-05-01

    Molecular dynamics (MD) simulations were performed to investigate the role of core volume fraction and number of fusing nanoparticles (NPs) on the melting and solidification of Cu/Al and Ti/Al bimetallic core/shell NPs during a superfast heating and slow cooling process, roughly mimicking the conditions of selective laser melting (SLM). One recent trend in the SLM process is the rapid prototyping of nanoscopically heterogeneous alloys, wherein the precious core metal maintains its particulate nature in the final manufactured part. With this potential application in focus, the current work reveals the fundamental role of the interface in the two-stage melting of the core/shell alloy NPs. For a two-NP system, the melting zone gets broader as the core volume fraction increases. This effect is more pronounced for the Ti/Al system than the Cu/Al system because of a larger difference between the melting temperatures of the shell and core metals in the former than the latter. In a larger six-NP system (more nanoscopically heterogeneous), the melting and solidification temperatures of the shell Al roughly coincide, irrespective of the heating or cooling rate, implying that in the SLM process, the part manufacturing time can be reduced due to solidification taking place at higher temperatures. The nanostructure evolution during the cooling of six-NP systems is further investigated. [Figure not available: see fulltext.

  5. Ultrafast molecular dynamics illuminated with synchrotron radiation

    International Nuclear Information System (INIS)

    Bozek, John D.; Miron, Catalin

    2015-01-01

    Highlights: • Ultrafast molecular dynamics probed with synchrotron radiation. • Core-excitation as probe of ultrafast dynamics through core-hole lifetime. • Review of experimental and theoretical methods in ultrafast dynamics using core-level excitation. - Abstract: Synchrotron radiation is a powerful tool for studying molecular dynamics in small molecules in spite of the absence of natural matching between the X-ray pulse duration and the time scale of nuclear motion. Promoting core level electrons to unoccupied molecular orbitals simultaneously initiates two ultrafast processes, nuclear dynamics on the potential energy surfaces of the highly excited neutral intermediate state of the molecule on the one hand and an ultrafast electronic decay of the intermediate excited state to a cationic final state, characterized by a core hole lifetime. The similar time scales of these processes enable core excited pump-probe-type experiments to be performed with long duration X-ray pulses from a synchrotron source. Recent results obtained at the PLIEADES beamline concerning ultrafast dissociation of core excited states and molecular potential energy curve mapping facilitated by changes in the geometry of the short-lived intermediate core excited state are reviewed. High brightness X-ray beams combined with state-of-the art electron and ion-electron coincidence spectrometers and highly sophisticated theoretical methods are required to conduct these experiments and to achieve a full understanding of the experimental results.

  6. Evidence for nucleosynthetic enrichment of the protosolar molecular cloud core by multiple supernova events

    DEFF Research Database (Denmark)

    Schiller, Martin; Paton, Chad; Bizzarro, Martin

    2015-01-01

    The presence of isotope heterogeneity of nucleosynthetic origin amongst meteorites and their components provides a record of the diverse stars that contributed matter to the protosolar molecular cloud core. Understanding how and when the solar system's nucleosynthetic heterogeneity was established...... and preserved within the solar protoplanetary disk is critical for unraveling the earliest formative stages of the solar system. Here, we report calcium and magnesium isotope measurements of primitive and differentiated meteorites as well as various types of refractory inclusions, including refractory...... and differentiated meteorites along with canonical and FUN-CAIs define correlated, mass-independent variations in 43Ca, 46Ca and 48Ca. Moreover, sequential dissolution experiments of the Ivuna carbonaceous chondrite aimed at identifying the nature and number of presolar carriers of isotope anomalies within primitive...

  7. Do protostellar fountains shape the regional core mass function?

    International Nuclear Information System (INIS)

    Li Jin-Zeng; Huang Ya-Fang; Carlos Mallamaci Claudio; César Podestà Ricardo; Actis Vicente Eloy; Maria Pacheco Ana

    2013-01-01

    The emerging massive binary system associated with AFGL 961 signifies the latest generation of massive star and cluster formation in the Rosette Molecular Complex. We present the detection of a compact cluster of dusty cores toward the AFGL 961 region based on continuum imaging at 1.3 mm by the Submillimeter Array. The binary components of AFGL 961 are associated with the most intensive millimeter emission cores or envelopes, confirming that they are indeed in an early stage of evolution. The other massive cores, however, are found to congregate in the close vicinity of the central high-mass protostellar binary. They have no apparent infrared counterparts and are, in particular, well aligned transverse to the bipolar molecular outflows originating from AFGL 961. This provides evidence for a likely triggered origin of the massive cores. All 40 individual cores with masses ranging between 0.6 and 15 Msun were detected above a 3 σ level of 3.6 mJy beam −1 (or 0.4 Msun), based on which we derive a total core mass of 107 Msun in the AFGL 961 region. As compared to the stellar initial mass function, a shallow slope of 1.8 is, however, derived from the best fit to the mass spectrum of the millimeter cores with a prestellar and/or protostellar origin. The flatter core mass distribution in the AFGL 961 region is attributed here to dynamic perturbations from the massive molecular outflows that originated from the massive protostellar binary, which may have altered the otherwise more quiescent conditions of core or star formation, enhanced the formation of more massive cores and, as a result, influenced the core mass distribution in its close vicinity.

  8. HOW STARLESS ARE STARLESS CORES?

    International Nuclear Information System (INIS)

    Schnee, Scott; Friesen, Rachel; Di Francesco, James; Johnstone, Doug; Enoch, Melissa; Sadavoy, Sarah

    2012-01-01

    In this paper, we present the results of Combined Array for Research in Millimeter-wave Astronomy continuum and spectral line observations of the dense core Per-Bolo 45. Although this core has previously been classified as starless, we find evidence for an outflow and conclude that Per-Bolo 45 is actually an embedded, low-luminosity protostar. We discuss the impact of newly discovered, low-luminosity, embedded objects in the Perseus molecular cloud on starless core and protostar lifetimes. We estimate that the starless core lifetime has been overestimated by 4%-18% and the Class 0/I protostellar lifetime has been underestimated by 5%-20%. Given the relatively large systematic uncertainties involved in these calculations, variations on the order of 10% do not significantly change either core lifetimes or the expected protostellar luminosity function. Finally, we suggest that high-resolution (sub)millimeter surveys of known cores lacking near-infrared and mid-infrared emission are necessary to make an accurate census of starless cores.

  9. COLLAPSE AND FRAGMENTATION OF MAGNETIC MOLECULAR CLOUD CORES WITH THE ENZO AMR MHD CODE. I. UNIFORM DENSITY SPHERES

    International Nuclear Information System (INIS)

    Boss, Alan P.; Keiser, Sandra A.

    2013-01-01

    Magnetic fields are important contributors to the dynamics of collapsing molecular cloud cores, and can have a major effect on whether collapse results in a single protostar or fragmentation into a binary or multiple protostar system. New models are presented of the collapse of magnetic cloud cores using the adaptive mesh refinement code Enzo2.0. The code was used to calculate the ideal magnetohydrodynamics (MHD) of initially spherical, uniform density, and rotation clouds with density perturbations, i.e., the Boss and Bodenheimer standard isothermal test case for three-dimensional (3D) hydrodynamics codes. After first verifying that Enzo reproduces the binary fragmentation expected for the non-magnetic test case, a large set of models was computed with varied initial magnetic field strengths and directions with respect to the cloud core axis of rotation (parallel or perpendicular), density perturbation amplitudes, and equations of state. Three significantly different outcomes resulted: (1) contraction without sustained collapse, forming a denser cloud core; (2) collapse to form a single protostar with significant spiral arms; and (3) collapse and fragmentation into binary or multiple protostar systems, with multiple spiral arms. Comparisons are also made with previous MHD calculations of similar clouds with a barotropic equations of state. These results for the collapse of initially uniform density spheres illustrate the central importance of both magnetic field direction and field strength for determining the outcome of dynamic protostellar collapse.

  10. YOUNG STARLESS CORES EMBEDDED IN THE MAGNETICALLY DOMINATED PIPE NEBULA

    International Nuclear Information System (INIS)

    Frau, P.; Girart, J. M.; Alves, F. O.; Beltran, M. T.; Morata, O.; Masque, J. M.; Busquet, G.; Sanchez-Monge, A.; Estalella, R.; Franco, G. A. P.

    2010-01-01

    The Pipe Nebula is a massive, nearby dark molecular cloud with a low star formation efficiency which makes it a good laboratory in which to study the very early stages of the star formation process. The Pipe Nebula is largely filamentary and appears to be threaded by a uniform magnetic field at scales of a few parsecs, perpendicular to its main axis. The field is only locally perturbed in a few regions, such as the only active cluster-forming core B59. The aim of this study is to investigate primordial conditions in low-mass pre-stellar cores and how they relate to the local magnetic field in the cloud. We used the IRAM 30 m telescope to carry out a continuum and molecular survey at 3 and 1 mm of early- and late-time molecules toward four selected starless cores inside the Pipe Nebula. We found that the dust continuum emission maps trace the densest regions better than previous Two Micron All Sky Survey (2MASS) extinction maps, while 2MASS extinction maps trace the diffuse gas better. The properties of the cores derived from dust emission show average radii of ∼0.09 pc, densities of ∼1.3x10 5 cm -3 , and core masses of ∼2.5 M sun . Our results confirm that the Pipe Nebula starless cores studied are in a very early evolutionary stage and present a very young chemistry with different properties that allow us to propose an evolutionary sequence. All of the cores present early-time molecular emission with CS detections in the whole sample. Two of them, cores 40 and 109, present strong late-time molecular emission. There seems to be a correlation between the chemical evolutionary stage of the cores and the local magnetic properties that suggests that the evolution of the cores is ruled by a local competition between the magnetic energy and other mechanisms, such as turbulence.

  11. Effect of Ligand Molecular Weight and Nanoparticle Core Size on Polymer-Coated Gold Nanoparticle Location in Block Copolymers

    Science.gov (United States)

    Petrie, Joshua; Kim, Bumjoon; Fredrickson, Glenn; Kramer, Ed

    2008-03-01

    Gold nanoparticles modified by short chain polymer thiols [Au-PS] can be designed to strongly localize in either domain of a polystyrene-b-poly(2-vinylpyridine) [PS-PVP] block copolymer or at the interface. The P2VP block has a stronger attractive interaction with bare gold than the PS block. Thus, when the areal chain density σ of end-attached PS chains falls below a critical areal chain density σc the Au-PS nanoparticles adsorb to the PS-b-P2VP interface. The effect of the polymer ligand molecular weight on the σchas been shown to scale as σc˜ ((R+Rg)/(R*Rg))̂2, where R is the curvature of the Au nanoparticle core radius. To test this scaling relation for σc further we are synthesizing gold nanoparticles with different core radii and will present preliminary results on σcas a function of R.

  12. DEEP JHKs AND SPITZER IMAGING OF FOUR ISOLATED MOLECULAR CLOUD CORES

    International Nuclear Information System (INIS)

    Chapman, Nicholas L.; Mundy, Lee G.

    2009-01-01

    We present observations in eight wavebands from 1.25 to 24 μm of four dense cores: L204C-2, L1152, L1155C-2, and L1228. Our goals are to study the young stellar object (YSO) population of these cores and to measure the mid-infrared extinction law. With our combined near-infrared and Spitzer photometry, we classify each source in the cores as, among other things, background stars, galaxies, or embedded YSOs. L1152 contains three YSOs and L1228 has seven, but neither L204C-2 nor L1155C-2 appear to contain any YSOs. We estimate an upper limit of 7 x 10 -5 to 5 x 10 -4 L sun for any undiscovered YSOs in our cores. We also compute the line-of-sight extinction law toward each background star. These measurements are averaged spatially, to create χ 2 maps of the changes in the mid-infrared extinction law throughout our cores, and also in different ranges of extinction. From the χ 2 maps, we identify two small regions in L1152 and L1228 where the outflows in those cores appear to be destroying the larger dust grains, thus altering the extinction law in those regions. On average, however, our extinction law is relatively flat from 3.6 to 24 μm for all ranges of extinction and in all four cores. From 3.6 to 8 μm, this law is consistent with a dust model that includes larger dust grains than the diffuse interstellar medium, which suggests grain growth has occurred in our cores. At 24 μm, our extinction law is two to four times higher than predicted by dust models. However, it is similar to other empirical measurements.

  13. Interplay of intra-atomic and interatomic effects: An investigation of the 2p core level spectra of atomic Fe and molecular FeCl2

    International Nuclear Information System (INIS)

    Richter, T.; Wolff, T.; Zimmermann, P.; Godehusen, K.; Martins, M.

    2004-01-01

    The 2p photoabsorption and photoelectron spectra of atomic Fe and molecular FeCl 2 were studied by photoion and photoelectron spectroscopy using monochromatized synchrotron radiation and atomic or molecular beam technique. The atomic spectra were analyzed with configuration interaction calculations yielding excellent agreement between experiment and theory. For the analysis of the molecular photoelectron spectrum which shows pronounced interatomic effects, a charge transfer model was used, introducing an additional 3d 7 configuration. The resulting good agreement between the experimental and theoretical spectrum and the remarkable similarity of the molecular with the corresponding spectrum in the solid phase opens a way to a better understanding of the interplay of the interatomic and intra-atomic interactions in the 2p core level spectra of the 3d metal compounds

  14. ACVP-02: Plasma SIV/SHIV RNA Viral Load Measurements through the AIDS and Cancer Virus Program Quantitative Molecular Diagnostics Core | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The SIV plasma viral load assay performed by the Quantitative Molecular Diagnostics Core (QMDC) utilizes reagents specifically designed to detect and accurately quantify the full range of SIV/SHIV viral variants and clones in common usage in the rese

  15. OT1_ebergin_5: A Systematic Survery of the Water D to H Ratio in Hot Molecular Cores

    Science.gov (United States)

    Bergin, E.

    2010-07-01

    The D/H ratio of water and the enrichment of HDO relative to H2O in comets, oceans, and interstellar water vapor, has been posited as one of the primary links between chemistry in the cold (T = 10-20 K) dense interstellar medium (ISM) and chemistry in the Solar Nebula. However, there are only ~10 measurements of HDO/H2O, even in hot (T > 100 K) molecular cores, which have the most favorable chemistry (due to fossil evaporation of D-enriched ices) and excitation. In addition the existing measurements have a wide range of uncertainty, making it impossible to discern the presence of source-to-source variations, which could hint at the origin of deuterium enrichments in the dense ISM. We propose here to change this statistic with a systematic survey of HDO and H2O in a sample of 20 hot molecular cores spanning a two order of magnitude range in mass and luminosity. This will increase the number of known water D/H ratios by ~200%. This program is unique in scope for Herschel and requires the uniformity in calibration and high spectral resolution offered by the HIFI instrument. With the stability of HIFI we will be able to derive D/H ratios with significantly less uncertainty. Our observations will be combined with theoretical chemical models to explore the statistics offered by this sample. By looking at a large number of objects with a range of conditions we aim to unlock the secrets of water deuteration in the interstellar space.

  16. THE MASS-SIZE RELATION FROM CLOUDS TO CORES. I. A NEW PROBE OF STRUCTURE IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Kauffmann, J.; Shetty, R.; Goodman, A. A.; Pillai, T.; Myers, P. C.

    2010-01-01

    We use a new contour-based map analysis technique to measure the mass and size of molecular cloud fragments continuously over a wide range of spatial scales (0.05 ≤ r/pc ≤ 10), i.e., from the scale of dense cores to those of entire clouds. The present paper presents the method via a detailed exploration of the Perseus molecular cloud. Dust extinction and emission data are combined to yield reliable scale-dependent measurements of mass. This scale-independent analysis approach is useful for several reasons. First, it provides a more comprehensive characterization of a map (i.e., not biased toward a particular spatial scale). Such a lack of bias is extremely useful for the joint analysis of many data sets taken with different spatial resolution. This includes comparisons between different cloud complexes. Second, the multi-scale mass-size data constitute a unique resource to derive slopes of mass-size laws (via power-law fits). Such slopes provide singular constraints on large-scale density gradients in clouds.

  17. Spontaneous core-shell elemental distribution in In-rich InxGa1-xN nanowires grown by molecular beam epitaxy

    Science.gov (United States)

    Gómez-Gómez, M.; Garro, N.; Segura-Ruiz, J.; Martinez-Criado, G.; Cantarero, A.; Mengistu, H. T.; García-Cristóbal, A.; Murcia-Mascarós, S.; Denker, C.; Malindretos, J.; Rizzi, A.

    2014-02-01

    The elemental distribution of self-organized In-rich InxGa1-xN nanowires grown by plasma-assisted molecular beam epitaxy has been investigated using three different techniques with spatial resolution on the nanoscale. Two-dimensional images and elemental profiles of single nanowires obtained by x-ray fluorescence and energy-dispersive x-ray spectroscopy, respectively, have revealed a radial gradient in the alloy composition of each individual nanowire. The spectral selectivity of resonant Raman scattering has been used to enhance the signal from very small volumes with different elemental composition within single nanowires. The combination of the three techniques has provided sufficient sensitivity and spatial resolution to prove the spontaneous formation of a core-shell nanowire and to quantify the thicknesses and alloy compositions of the core and shell regions. A theoretical model based on continuum elastic theory has been used to estimate the strain fields present in such inhomogeneous nanowires. These results suggest new strategies for achieving high quality non-polar heterostructures.

  18. Quantum mechanics capacitance molecular mechanics modeling of core-electron binding energies of methanol and methyl nitrite on Ag(111) surface.

    Science.gov (United States)

    Löytynoja, T; Li, X; Jänkälä, K; Rinkevicius, Z; Ågren, H

    2016-07-14

    We study a newly devised quantum mechanics capacitance molecular mechanics (QMCMM) method for the calculation of core-electron binding energies in the case of molecules adsorbed on metal surfaces. This yet untested methodology is applied to systems with monolayer of methanol/methyl nitrite on an Ag(111) surface at 100 K temperature. It was found out that the studied C, N, and O 1s core-hole energies converge very slowly as a function of the radius of the metallic cluster, which was ascribed to build up of positive charge on the edge of the Ag slab. Further analysis revealed that an extrapolation process can be used to obtain binding energies that deviated less than 0.5 eV against experiments, except in the case of methanol O 1s where the difference was as large as 1.8 eV. Additional QM-cluster calculations suggest that the latter error can be connected to the lack of charge transfer over the QM-CMM boundary. Thus, the results indicate that the QMCMM and QM-cluster methods can complement each other in a holistic picture of molecule-adsorbate core-ionization studies, where all types of intermolecular interactions are considered.

  19. The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Helen; Di Francesco, James [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Rd, Victoria, BC, V9E 2E7 (Canada); Friesen, Rachel K. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario M5S 3H4 (Canada); Pineda, Jaime E.; Caselli, Paola; Alves, Felipe O.; Chacón-Tanarro, Ana; Punanova, Anna [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748, Garching (Germany); Rosolowsky, Erik [Department of Physics, University of Alberta, Edmonton, AB (Canada); Offner, Stella S. R. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Matzner, Christopher D.; Singh, Ayushi [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario, M5S 3H4 (Canada); Myers, Philip C.; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Chen, Michael Chun-Yuan; Keown, Jared [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2 (Canada); Seo, Young Min [Jet Propulsion Laboratory, NASA, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Shirley, Yancy [Steward Observatory, 933 North Cherry Ave., Tucson, AZ 85721 (United States); Ginsburg, Adam [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Hall, Christine [Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, Ontario, K7L 3N6 (Canada); and others

    2017-09-10

    We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests that most of the dense cores are pressure-confined.

  20. The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A

    International Nuclear Information System (INIS)

    Kirk, Helen; Di Francesco, James; Friesen, Rachel K.; Pineda, Jaime E.; Caselli, Paola; Alves, Felipe O.; Chacón-Tanarro, Ana; Punanova, Anna; Rosolowsky, Erik; Offner, Stella S. R.; Matzner, Christopher D.; Singh, Ayushi; Myers, Philip C.; Chen, How-Huan; Chen, Michael Chun-Yuan; Keown, Jared; Seo, Young Min; Shirley, Yancy; Ginsburg, Adam; Hall, Christine

    2017-01-01

    We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests that most of the dense cores are pressure-confined.

  1. A flattened cloud core in NGC 2024

    Science.gov (United States)

    Ho, Paul T. P.; Peng, Yun-Lou; Torrelles, Jose M.; Gomez, Jose F.; Rodriguez, Luis F.; Canto, Jorge

    1993-01-01

    The (J, K) (1, 1) and (2, 2) NH3 lines were mapped toward a molecular cloud core in NGC 2024 using the VLA in its C/D-configuration. This region is associated with one of the most highly collimated molecular outflows. We find that the molecular condensations associated with the far-infrared sources FIR 5, FIR 6, and FIR 7 have kinetic temperatures of about 40 K. We also find line broadening toward FIR 6 and FIR 7. This suggests that these condensations may not be protostars heated by gravitational energy released during collapse but that they have an internal heating source. A flattened structure of ammonia emission is found extending parallel to the unipolar CO outflow structure, but displaced systematically to the east. If the NH3 emission traces the denser gas environment, there is no evidence that a dense gas structure is confining the molecular outflow. Instead, the location of the high-velocity outflow along the surface of the NH3 structure suggests that a wind is sweeping material from the surface of this elongated cloud core.

  2. Molecularly Imprinted Polymer/Metal Organic Framework Based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Zhenzhong Guo

    2016-10-01

    Full Text Available The present review describes recent advances in the concept of molecular imprinting using metal organic frameworks (MOF for development of chemical sensors. Two main strategies regarding the fabrication, performance and applications of recent sensors based on molecularly imprinted polymers associated with MOF are presented: molecularly imprinted MOF films and molecularly imprinted core-shell nanoparticles using MOF as core. The associated transduction modes are also discussed. A brief conclusion and future expectations are described herein.

  3. Real-time monitoring of disintegration activity of catalytic core domain of HIV-1 integrase using molecular beacon.

    Science.gov (United States)

    Zhang, Da-wei; Zhao, Ming-ming; He, Hong-qiu; Guo, Shun-xing

    2013-09-15

    HIV-1 integrase, an essential enzyme for retroviral replication, is a validated target for anti-HIV therapy development. The catalytic core domain of integrase (IN-CCD) is capable of catalyzing disintegration reaction. In this work, a hairpin-shaped disintegration substrate was designed and validated by enzyme-linked immunosorbent assay; a molecular beacon-based assay was developed for disintegration reaction of IN-CCD. Results showed that the disintegration substrate could be recognized and catalyzed by IN-CCD, and the disintegration reaction can be monitored according to the increase of fluorescent signal. The assay can be applied to real-time detection of disintegration with advantages of simplicity, high sensitivity, and excellent specificity. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Candidate molten salt investigation for an accelerator driven subcritical core

    International Nuclear Information System (INIS)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-01-01

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated

  5. Candidate molten salt investigation for an accelerator driven subcritical core

    Energy Technology Data Exchange (ETDEWEB)

    Sooby, E., E-mail: soobyes@tamu.edu [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Baty, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Beneš, O. [European Commission, DG Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); McIntyre, P.; Pogue, N. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Salanne, M. [Université Pierre et Marie Curie, CNRS, Laboratoire PECSA, F-75005 Paris (France); Sattarov, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States)

    2013-09-15

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated.

  6. Pre-cometary ice composition from hot core chemistry.

    Science.gov (United States)

    Tornow, Carmen; Kührt, Ekkehard; Motschmann, Uwe

    2005-10-01

    Pre-cometary ice located around star-forming regions contains molecules that are pre-biotic compounds or pre-biotic precursors. Molecular line surveys of hot cores provide information on the composition of the ice since it sublimates near these sites. We have combined a hydrostatic hot core model with a complex network of chemical reactions to calculate the time-dependent abundances of molecules, ions, and radicals. The model considers the interaction between the ice and gas phase. It is applied to the Orion hot core where high-mass star formation occurs, and to the solar-mass binary protostar system IRAS 16293-2422. Our calculations show that at the end of the hot core phase both star-forming sites produce the same prebiotic CN-bearing molecules. However, in the Orion hot core these molecules are formed in larger abundances. A comparison of the calculated values with the abundances derived from the observed line data requires a chemically unprocessed molecular cloud as the initial state of hot core evolution. Thus, it appears that these objects are formed at a much younger cloud stage than previously thought. This implies that the ice phase of the young clouds does not contain CN-bearing molecules in large abundances before the hot core has been formed. The pre-biotic molecules synthesized in hot cores cause a chemical enrichment in the gas phase and in the pre-cometary ice. This enrichment is thought to be an important extraterrestrial aspect of the formation of life on Earth and elsewhere.

  7. [caCORE: core architecture of bioinformation on cancer research in America].

    Science.gov (United States)

    Gao, Qin; Zhang, Yan-lei; Xie, Zhi-yun; Zhang, Qi-peng; Hu, Zhang-zhi

    2006-04-18

    A critical factor in the advancement of biomedical research is the ease with which data can be integrated, redistributed and analyzed both within and across domains. This paper summarizes the Biomedical Information Core Infrastructure built by National Cancer Institute Center for Bioinformatics in America (NCICB). The main product from the Core Infrastructure is caCORE--cancer Common Ontologic Reference Environment, which is the infrastructure backbone supporting data management and application development at NCICB. The paper explains the structure and function of caCORE: (1) Enterprise Vocabulary Services (EVS). They provide controlled vocabulary, dictionary and thesaurus services, and EVS produces the NCI Thesaurus and the NCI Metathesaurus; (2) The Cancer Data Standards Repository (caDSR). It provides a metadata registry for common data elements. (3) Cancer Bioinformatics Infrastructure Objects (caBIO). They provide Java, Simple Object Access Protocol and HTTP-XML application programming interfaces. The vision for caCORE is to provide a common data management framework that will support the consistency, clarity, and comparability of biomedical research data and information. In addition to providing facilities for data management and redistribution, caCORE helps solve problems of data integration. All NCICB-developed caCORE components are distributed under open-source licenses that support unrestricted usage by both non-profit and commercial entities, and caCORE has laid the foundation for a number of scientific and clinical applications. Based on it, the paper expounds caCORE-base applications simply in several NCI projects, of which one is CMAP (Cancer Molecular Analysis Project), and the other is caBIG (Cancer Biomedical Informatics Grid). In the end, the paper also gives good prospects of caCORE, and while caCORE was born out of the needs of the cancer research community, it is intended to serve as a general resource. Cancer research has historically

  8. CARMA Large Area Star Formation Survey: Project Overview with Analysis of Dense Gas Structure and Kinematics in Barnard 1

    Science.gov (United States)

    Storm, Shaye; Mundy, Lee G.; Fernández-López, Manuel; Lee, Katherine I.; Looney, Leslie W.; Teuben, Peter; Rosolowsky, Erik; Arce, Héctor G.; Ostriker, Eve C.; Segura-Cox, Dominique M.; Pound, Marc W.; Salter, Demerese M.; Volgenau, Nikolaus H.; Shirley, Yancy L.; Chen, Che-Yu; Gong, Hao; Plunkett, Adele L.; Tobin, John J.; Kwon, Woojin; Isella, Andrea; Kauffmann, Jens; Tassis, Konstantinos; Crutcher, Richard M.; Gammie, Charles F.; Testi, Leonardo

    2014-10-01

    We present details of the CARMA Large Area Star Formation Survey (CLASSy), while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that spectrally imaged N2H+, HCO+, and HCN (J = 1 → 0 transitions) across over 800 square arcminutes of the Perseus and Serpens Molecular Clouds. The observations have angular resolution near 7'' and spectral resolution near 0.16 km s-1. We imaged ~150 square arcminutes of Barnard 1, focusing on the main core, and the B1 Ridge and clumps to its southwest. N2H+ shows the strongest emission, with morphology similar to cool dust in the region, while HCO+ and HCN trace several molecular outflows from a collection of protostars in the main core. We identify a range of kinematic complexity, with N2H+ velocity dispersions ranging from ~0.05 to 0.50 km s-1 across the field. Simultaneous continuum mapping at 3 mm reveals six compact object detections, three of which are new detections. A new, non-binary dendrogram algorithm is used to analyze dense gas structures in the N2H+ position-position-velocity (PPV) cube. The projected sizes of dendrogram-identified structures range from about 0.01 to 0.34 pc. Size-linewidth relations using those structures show that non-thermal line-of-sight velocity dispersion varies weakly with projected size, while rms variation in the centroid velocity rises steeply with projected size. Comparing these relations, we propose that all dense gas structures in Barnard 1 have comparable depths into the sky, around 0.1-0.2 pc this suggests that overdense, parsec-scale regions within molecular clouds are better described as flattened structures rather than spherical collections of gas. Science-ready PPV cubes for Barnard 1 molecular emission are available for download.

  9. CT-guided transthoracic core needle biopsy for small pulmonary lesions: diagnostic performance and adequacy for molecular testing.

    Science.gov (United States)

    Tian, Panwen; Wang, Ye; Li, Lei; Zhou, Yongzhao; Luo, Wenxin; Li, Weimin

    2017-02-01

    Computed tomography (CT)-guided transthoracic needle biopsy is a well-established, minimally invasive diagnostic tool for pulmonary lesions. Few large studies have been conducted on the diagnostic performance and adequacy for molecular testing of transthoracic core needle biopsy (TCNB) for small pulmonary lesions. This study included CT-guided TCNB with 18-gauge cutting needles in 560 consecutive patients with small (≤3 cm) pulmonary lesions from January 2012 to January 2015. There were 323 males and 237 females, aged 51.8±12.7 years. The size of the pulmonary lesions was 1.8±0.6 cm. The sensitivity, specificity, accuracy and complications of the biopsies were investigated. The risk factors of diagnostic failure were assessed using univariate and multivariate analyses. The sample's adequacy for molecular testing of non-small cell lung cancer (NSCLC) was analyzed. The overall sensitivity, specificity, and accuracy for diagnosis of malignancy were 92.0% (311/338), 98.6% (219/222), and 94.6% (530/560), respectively. The incidence of bleeding complications was 22.9% (128/560), and the incidence of pneumothorax was 10.4% (58/560). Logistic multivariate regression analysis showed that the independent risk factors for diagnostic failure were a lesion size ≤1 cm [odds ratio (OR), 3.95; P=0.007], lower lobe lesions (OR, 2.83; P=0.001), and pneumothorax (OR, 1.98; P=0.004). Genetic analysis was successfully performed on 95.45% (168/176) of specimens diagnosed as NSCLC. At least 96.8% of samples with two or more passes from a lesion were sufficient for molecular testing. The diagnostic yield of small pulmonary lesions by CT-guided TCNB is high, and the procedure is relatively safe. A lesion size ≤1 cm, lower lobe lesions, and pneumothorax are independent risk factors for biopsy diagnostic failure. TCNB specimens could provide adequate tissues for molecular testing.

  10. THE JCMT GOULD BELT SURVEY: DENSE CORE CLUSTERS IN ORION A

    International Nuclear Information System (INIS)

    Lane, J.; Kirk, H.; Johnstone, D.; Mairs, S.; Francesco, J. Di; Sadavoy, S.; Hatchell, J.; Berry, D. S.; Jenness, T.; Hogerheijde, M. R.; Ward-Thompson, D.

    2016-01-01

    The Orion A molecular cloud is one of the most well-studied nearby star-forming regions, and includes regions of both highly clustered and more dispersed star formation across its full extent. Here, we analyze dense, star-forming cores identified in the 850 and 450 μ m SCUBA-2 maps from the JCMT Gould Belt Legacy Survey. We identify dense cores in a uniform manner across the Orion A cloud and analyze their clustering properties. Using two independent lines of analysis, we find evidence that clusters of dense cores tend to be mass segregated, suggesting that stellar clusters may have some amount of primordial mass segregation already imprinted in them at an early stage. We also demonstrate that the dense core clusters have a tendency to be elongated, perhaps indicating a formation mechanism linked to the filamentary structure within molecular clouds.

  11. THE JCMT GOULD BELT SURVEY: DENSE CORE CLUSTERS IN ORION A

    Energy Technology Data Exchange (ETDEWEB)

    Lane, J.; Kirk, H.; Johnstone, D.; Mairs, S.; Francesco, J. Di [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Sadavoy, S. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Hatchell, J. [Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Berry, D. S. [East Asian Observatory, 660 N. A‘ohōkū Place, University Park, Hilo, Hawaii 96720 (United States); Jenness, T. [Joint Astronomy Centre, 660 N. A‘ohōkū Place, University Park, Hilo, Hawaii 96720 (United States); Hogerheijde, M. R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Ward-Thompson, D. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, Lancashire, PR1 2HE (United Kingdom); Collaboration: JCMT Gould Belt Survey Team

    2016-12-10

    The Orion A molecular cloud is one of the most well-studied nearby star-forming regions, and includes regions of both highly clustered and more dispersed star formation across its full extent. Here, we analyze dense, star-forming cores identified in the 850 and 450 μ m SCUBA-2 maps from the JCMT Gould Belt Legacy Survey. We identify dense cores in a uniform manner across the Orion A cloud and analyze their clustering properties. Using two independent lines of analysis, we find evidence that clusters of dense cores tend to be mass segregated, suggesting that stellar clusters may have some amount of primordial mass segregation already imprinted in them at an early stage. We also demonstrate that the dense core clusters have a tendency to be elongated, perhaps indicating a formation mechanism linked to the filamentary structure within molecular clouds.

  12. DENSE CORES IN THE PIPE NEBULA: AN IMPROVED CORE MASS FUNCTION

    International Nuclear Information System (INIS)

    Rathborne, J. M.; Lada, C. J.; Muench, A. A.; Alves, J. F.; Kainulainen, J.; Lombardi, M.

    2009-01-01

    In this paper, we derive an improved core mass function (CMF) for the Pipe Nebula from a detailed comparison between measurements of visual extinction and molecular-line emission. We have compiled a refined sample of 201 dense cores toward the Pipe Nebula using a two-dimensional threshold identification algorithm informed by recent simulations of dense core populations. Measurements of radial velocities using complimentary C 18 O (1-0) observations enable us to cull out from this sample those 43 extinction peaks that are either not associated with dense gas or are not physically associated with the Pipe Nebula. Moreover, we use the derived C 18 O central velocities to differentiate between single cores with internal structure and blends of two or more physically distinct cores, superposed along the same line of sight. We then are able to produce a more robust dense core sample for future follow-up studies and a more reliable CMF than was possible previously. We confirm earlier indications that the CMF for the Pipe Nebula departs from a single power-law-like form with a break or knee at M ∼ 2.7 ± 1.3 M sun . Moreover, we also confirm that the CMF exhibits a similar shape to the stellar initial mass function (IMF), but is scaled to higher masses by a factor of ∼4.5. We interpret this difference in scaling to be a measure of the star formation efficiency (22% ± 8%). This supports earlier suggestions that the stellar IMF may originate more or less directly from the CMF.

  13. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi

    International Nuclear Information System (INIS)

    Wadt, W.R.; Hay, P.J.

    1985-01-01

    A consistent set of ab initio effective core potentials (ECP) has been generated for the main group elements from Na to Bi using the procedure originally developed by Kahn. The ECP's are derived from all-electron numerical Hartree--Fock atomic wave functions and fit to analytical representations for use in molecular calculations. For Rb to Bi the ECP's are generated from the relativistic Hartree--Fock atomic wave functions of Cowan which incorporate the Darwin and mass--velocity terms. Energy-optimized valence basis sets of (3s3p) primitive Gaussians are presented for use with the ECP's. Comparisons between all-electron and valence-electron ECP calculations are presented for NaF, NaCl, Cl 2 , Cl 2 - , Br 2 , Br 2 - , and Xe 2 + . The results show that the average errors introduced by the ECP's are generally only a few percent

  14. Applications of core level spectroscopy to adsorbates

    International Nuclear Information System (INIS)

    Nilsson, Anders

    2002-01-01

    In the following review different applications of core-level spectroscopy to atomic and molecular adsorbates will be shown. Core-holes are created through core-level ionization and X-ray absorption processes and the core-hole decays by radiant and non-radiant processes. This forms the basis for X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, Auger electron spectroscopy and X-ray emission spectroscopy. We will demonstrate how we can use the different methods to obtain information about the chemical state, local geometric structure, nature of chemical bonding and dynamics in electron transfer processes. The adsorption of N 2 and CO on Ni(100) will be used as prototype systems for chemisorption while N 2 on graphite and Ar on Pt for physisorption

  15. Nonlinear and Nonsymmetric Single-Molecule Electronic Properties Towards Molecular Information Processing.

    Science.gov (United States)

    Tamaki, Takashi; Ogawa, Takuji

    2017-09-05

    This review highlights molecular design for nonlinear and nonsymmetric single-molecule electronic properties such as rectification, negative differential resistance, and switching, which are important components of future single-molecule information processing devices. Perspectives on integrated "molecular circuits" are also provided. Nonlinear and nonsymmetric single-molecule electronics can be designed by utilizing (1) asymmetric molecular cores, (2) asymmetric anchoring groups, (3) an asymmetric junction environment, and (4) asymmetric electrode materials. This review mainly focuses on the design of molecular cores.

  16. Aqueous poly(amidoamine) dendrimer G3 and G4 generations with several interior cores at pHs 5 and 7: a molecular dynamics simulation study.

    Science.gov (United States)

    Kavyani, Sajjad; Amjad-Iranagh, Sepideh; Modarress, Hamid

    2014-03-27

    Poly(amidoamine) (PAMAM) dendrimers play an important role in drug delivery systems, because the dendrimers are susceptible to gain unique features with modification of their structure such as changing their terminals or improving their interior core. To investigate the core improvement and the effect of core nature on PAMAM dendrimers, we studied two generations G3 and G4 PAMAM dendrimers with the interior cores of commonly used ethylendiamine (EDA), 1,5-diaminohexane (DAH), and bis(3-aminopropyl) ether (BAPE) solvated in water, as an aqueous dendrimer system, by using molecular dynamics simulation and applying a coarse-grained (CG) dendrimer force field. To consider the electrostatic interactions, the simulations were performed at two protonation states, pHs 5 and 7. The results indicated that the core improvement of PAMAM dendrimers with DAH produces the largest size for G3 and G4 dendrimers at both pHs 5 and 7. The increase in the size was also observed for BAPE core but it was not so significant as that for DAH core. By considering the internal structure of dendrimers, it was found that PAMAM dendrimer shell with DAH core had more cavities than with BAPE core at both pHs 5 and 7. Also the moment of inertia calculations showed that the generation G3 is more open-shaped and has higher structural asymmetry than the generation G4. Possessing these properties by G3, specially due to its structural asymmetry, make penetration of water beads into the dendrimer feasible. But for higher generation G4 with its relatively structural symmetry, the encapsulation efficiency for water molecules can be enhanced by changing its core to DAH or BAPE. It is also observed that for the higher generation G4 the effect of core modification is more profound than G3 because the core modification promotes the structural asymmetry development of G4 more significantly. Comparing the number of water beads that penetrate into the PAMAM dendrimers for EDA, DAH, and BAPE cores indicates a

  17. METHANOL IN THE STARLESS CORE, TAURUS MOLECULAR CLOUD-1

    Energy Technology Data Exchange (ETDEWEB)

    Soma, Tatsuya; Sakai, Nami; Watanabe, Yoshimasa; Yamamoto, Satoshi, E-mail: soma@taurus.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-04-01

    To explore the formation mechanisms of gas phase CH{sub 3}OH in cold starless cores, we have conducted high spectral resolution observations toward the cyanopolyyne peak of Taurus Molecular Cloud-1 (TMC-1 CP) with the IRAM 30 m telescope, the Green Bank Telescope, and the Nobeyama 45 m telescope. The spectral lines of CH{sub 3}OH toward TMC-1 CP are found to have a double-peaked profile separated by 0.5 km s{sup −1}. Since the double-peaked profile is observed for {sup 13}CH{sub 3}OH, it is not due to optical depth and/or self-absorption effects. The spectral line profile of CH{sub 3}OH is much different from those of C{sup 34}S, C{sub 3}S, and HC{sub 7}N observed toward this source. The H{sub 2} densities of the emitting region of CH{sub 3}OH for the blueshifted and redshifted components are derived to be (1.7 ± 0.5) × 10{sup 4} cm{sup −3} and (4.3 ± 1.2) × 10{sup 4} cm{sup −3}, respectively. These densities are similar to or slightly lower than those found for the other molecules. These results suggest a chemical differentiation between CH{sub 3}OH and the other molecules, which has indeed been confirmed by mapping observations of the CH{sub 3}OH and C{sup 34}S lines. These results are consistent with the general idea that CH{sub 3}OH is formed on dust grains and is liberated into the gas phase by non-thermal desorption. The grain-surface origin of CH{sub 3}OH is further confirmed by the CH{sub 3}OH/{sup 13}CH{sub 3}OH ratio. Weak shocks caused by accreting diffuse gas to the TMC-1 filament, photoevaporation caused by cosmic-ray induced UV radiation, and the desorption of excess reaction energy in the formation of CH{sub 3}OH on dust grains are discussed for the desorption mechanisms.

  18. Structure and optical properties of cored wurtzite (Zn,Mg)O heteroepitaxial nanowires

    International Nuclear Information System (INIS)

    Heo, Y.W.; Abernathy, C.; Pruessner, K.; Sigmund, W.; Norton, D.P.; Overberg, M.; Ren, F.; Chisholm, M.F.

    2004-01-01

    The synthesis, structure, and optical properties of one-dimensional heteroepitaxial cored (Zn,Mg)O semiconductor nanowires grown by a catalyst-driven molecular beam epitaxy technique are discussed. The structures form spontaneously in a Zn, Mg and O 2 /O 3 flux, consisting of a single crystal, Zn-rich Zn 1-x Mg x O(x 1-y Mg y O(y>>0.02) sheath. High resolution Z-contrast scanning transmission electron microscopy shows core diameters as small as 4 nm. The cored structure forms spontaneously under constant flux due to a bimodal growth mechanism in which the core forms via bulk like vapor-liquid-solid growth, while the outer sheath grows as a heteroepitaxial layer. Temperature-dependent photoluminescence shows a slight blueshift in the near band edge peak, which is attributed to a few percent Mg doping in the nanoscale ZnO core. The catalyst-driven molecular beam epitaxy technique provides for site-specific nanorod growth on arbitrary substrates

  19. The Study of Spherical Cores with a Toroidal Magnetic Field Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, Mahmoud [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)—Maragha, P.O. Box 55134-441 (Iran, Islamic Republic of)

    2017-04-01

    Observational studies of the magnetic fields in molecular clouds have significantly improved the theoretical models developed for the structure and evolution of dense clouds and for the star formation process as well. The recent observational analyses on some cores indicate that there is a power-law relationship between magnetic field and density in the molecular clouds. In this study, we consider the stability of spherical cores with a toroidal magnetic field configuration in the molecular clouds. For this purpose, we model a spherical core that is in magnetostatic equilibrium. Herein, we propose an equation of density structure, which is a modified form of the isothermal Lane–Emden equation in the presence of the toroidal magnetic field. The proposed equation describes the effect of the toroidal magnetic field on the cloud structure and the mass cloud. Furthermore, we found an upper limit for this configuration of magnetic field in the molecular clouds. Then, the virial theorem is used to consider the cloud evolution leading to an equation in order to obtain the lower limit of the field strength in the molecular cloud. However, the results show that the field strength of the toroidal configuration has an important effect on the cloud structure, whose upper limit is related to the central density and field gradient. The obtained results address some regions of clouds where the cloud decomposition or star formation can be seen.

  20. Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.

    Science.gov (United States)

    Vogel, O; Hoehn, B; Henning, U

    1972-06-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex.

  1. Axial strain in GaAs/InAs core-shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas; Pietsch, Ullrich [Universitaet Siegen, Festkoerperphysik, 57068 Siegen (Germany); Rieger, Torsten; Gruetzmacher, Detlev; Ion Lepsa, Mihail [Peter Gruenberg Institute (PGI-9), Forschungszentrum, 52425 Juelich (Germany); JARA-Fundamentals of Future Information Technology, 52425 Juelich (Germany); Bussone, Genziana [Universitaet Siegen, Festkoerperphysik, 57068 Siegen (Germany); ESRF, 6 rue Jules Horowitz, BP220, F-38043 Grenoble Cedex (France)

    2013-01-28

    We study the axial strain relaxation in GaAs/InAs core-shell nanowire heterostructures grown by molecular beam epitaxy. Besides a gradual strain relaxation of the shell material, we find a significant strain in the GaAs core, increasing with shell thickness. This strain is explained by a saturation of the dislocation density at the core-shell interface. Independent measurements of core and shell lattice parameters by x-ray diffraction reveal a relaxation of 93% in a 35 nm thick InAs shell surrounding cores of 80 nm diameter. The compressive strain of -0.5% compared to bulk InAs is accompanied by a tensile strain up to 0.9% in the GaAs core.

  2. Molecularly Imprinted Core-Shell CdSe@SiO2/CDs as a Ratiometric Fluorescent Probe for 4-Nitrophenol Sensing

    Science.gov (United States)

    Liu, Mingyue; Gao, Zhao; Yu, Yanjun; Su, Rongxin; Huang, Renliang; Qi, Wei; He, Zhimin

    2018-01-01

    4-Nitrophenol (4-NP) is a priority pollutant in water and is both carcinogenic and genotoxic to humans and wildlife even at very low concentrations. Thus, we herein fabricated a novel molecularly imprinted core-shell nanohybrid as a ratiometric fluorescent sensor for the highly sensitive and selective detection of 4-NP. This sensor was functioned by the transfer of fluorescence resonance energy between photoluminescent carbon dots (CDs) and 4-NP. This sensor was synthesized by linking organosilane-functionalized CDs to silica-coated CdSe quantum dots (CdSe@SiO2) via Si-O bonds. The nanohybrids were further modified by anchoring a molecularly imprinted polymer (MIP) layer on the ratiometric fluorescent sensor through a facile sol-gel polymerization method. The morphology, chemical structure, and optical properties of the resulting molecularly imprinted dual-emission fluorescent probe were characterized by transmission electron microscopy and spectroscopic analysis. The probe was then applied in the detection of 4-NP and exhibited good linearity between 0.051 and 13.7 μg/mL, in addition to a low detection limit of 0.026 μg/mL. Furthermore, the simplicity, reliability, high selectivity, and high sensitivity of the developed sensor demonstrate that the combination of MIPs and ratiometric fluorescence allows the preparation of excellent fluorescent sensors for the detection of trace or ultra-trace analytes.

  3. The Molecular Gas Environment in the 20 km s{sup −1} Cloud in the Central Molecular Zone

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xing; Gu, Qiusheng [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China); Zhang, Qizhou; Battersby, Cara [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kauffmann, Jens; Pillai, Thushara [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Longmore, Steven N. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Kruijssen, J. M. Diederik [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Liu, Hauyu Baobab; Zhang, Zhi-Yu [European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching (Germany); Ginsburg, Adam [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Mills, Elisabeth A. C., E-mail: xinglv.nju@gmail.com [Department of Physics and Astronomy, San Jose State University, One Washington Square, San Jose, CA 95192 (United States)

    2017-04-10

    We recently reported a population of protostellar candidates in the 20 km s{sup −1} cloud in the Central Molecular Zone of the Milky Way, traced by H{sub 2}O masers in gravitationally bound dense cores. In this paper, we report molecular line studies with high angular resolution (∼3″) of the environment of star formation in this cloud. Maps of various molecular line transitions as well as the continuum at 1.3 mm are obtained using the Submillimeter Array. Five NH{sub 3} inversion lines and the 1.3 cm continuum are observed with the Karl G. Jansky Very Large Array. The interferometric observations are complemented with single-dish data. We find that the CH{sub 3}OH, SO, and HNCO lines, which are usually shock tracers, are better correlated spatially with the compact dust emission from dense cores among the detected lines. These lines also show enhancement in intensities with respect to SiO intensities toward the compact dust emission, suggesting the presence of slow shocks or hot cores in these regions. We find gas temperatures of ≳100 K at 0.1 pc scales based on RADEX modeling of the H{sub 2}CO and NH{sub 3} lines. Although no strong correlations between temperatures and linewidths/H{sub 2}O maser luminosities are found, in high-angular-resolution maps we note several candidate shock-heated regions offset from any dense cores, as well as signatures of localized heating by protostars in several dense cores. Our findings suggest that at 0.1 pc scales in this cloud star formation and strong turbulence may together affect the chemistry and temperature of the molecular gas.

  4. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    Science.gov (United States)

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  5. NON-EQUILIBRIUM CHEMISTRY OF DYNAMICALLY EVOLVING PRESTELLAR CORES. II. IONIZATION AND MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Willacy, Karen; Yorke, Harold W.; Turner, Neal J.

    2012-01-01

    We study the effect that non-equilibrium chemistry in dynamical models of collapsing molecular cloud cores has on measurements of the magnetic field in these cores, the degree of ionization, and the mean molecular weight of ions. We find that OH and CN, usually used in Zeeman observations of the line-of-sight magnetic field, have an abundance that decreases toward the center of the core much faster than the density increases. As a result, Zeeman observations tend to sample the outer layers of the core and consistently underestimate the core magnetic field. The degree of ionization follows a complicated dependence on the number density at central densities up to 10 5 cm –3 for magnetic models and 10 6 cm –3 in non-magnetic models. At higher central densities, the scaling approaches a power law with a slope of –0.6 and a normalization which depends on the cosmic-ray ionization rate ζ and the temperature T as (ζT) 1/2 . The mean molecular weight of ions is systematically lower than the usually assumed value of 20-30, and, at high densities, approaches a value of 3 due to the asymptotic dominance of the H + 3 ion. This significantly lower value implies that ambipolar diffusion operates faster.

  6. YOUNG STARLESS CORES EMBEDDED IN THE MAGNETICALLY DOMINATED PIPE NEBULA. II. EXTENDED DATA SET

    Energy Technology Data Exchange (ETDEWEB)

    Frau, P.; Girart, J. M.; Padovani, M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C-5p, E-08193 Bellaterra, Catalunya (Spain); Beltran, M. T.; Sanchez-Monge, A. [INAF-Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Busquet, G. [INAF-Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, I-00133 Roma (Italy); Morata, O. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Masque, J. M.; Estalella, R. [Departament d' Astronomia i Meteorologia and Institut de Ciencies del Cosmos (IEEC-UB), Universitat de Barcelona, Marti i Franques 1, E-08028 Barcelona, Catalunya (Spain); Alves, F. O. [Argelander-Institut fuer Astronomie der Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany); Franco, G. A. P. [Departamento de Fisica-ICEx-UFMG, Caixa Postal 702, 30.123-970, Belo Horizonte (Brazil)

    2012-11-01

    The Pipe nebula is a massive, nearby, filamentary dark molecular cloud with a low star formation efficiency threaded by a uniform magnetic field perpendicular to its main axis. It harbors more than a hundred, mostly quiescent, very chemically young starless cores. The cloud is therefore a good laboratory to study the earliest stages of the star formation process. We aim to investigate the primordial conditions and the relation among physical, chemical, and magnetic properties in the evolution of low-mass starless cores. We used the IRAM 30 m telescope to map the 1.2 mm dust continuum emission of five new starless cores, which are in good agreement with previous visual extinction maps. For the sample of nine cores, which includes the four cores studied in a previous work, we derived an A {sub V} to N{sub H{sub 2}} factor of (1.27 {+-} 0.12) Multiplication-Sign 10{sup -21} mag cm{sup 2} and a background visual extinction of {approx}6.7 mag possibly arising from the cloud material. We derived an average core diameter of {approx}0.08 pc, density of {approx}10{sup 5} cm{sup -3}, and mass of {approx}1.7 M {sub Sun }. Several trends seem to exist related to increasing core density: (1) the diameter seems to shrink, (2) the mass seems to increase, and (3) the chemistry tends to be richer. No correlation is found between the direction of the surrounding diffuse medium magnetic field and the projected orientation of the cores, suggesting that large-scale magnetic fields seem to play a secondary role in shaping the cores. We also used the IRAM 30 m telescope to extend the previous molecular survey at 1 and 3 mm of early- and late-time molecules toward the same five new Pipe nebula starless cores, and analyzed the normalized intensities of the detected molecular transitions. We confirmed the chemical differentiation toward the sample and increased the number of molecular transitions of the 'diffuse' (e.g., the 'ubiquitous' CO, C{sub 2}H, and CS), &apos

  7. YOUNG STARLESS CORES EMBEDDED IN THE MAGNETICALLY DOMINATED PIPE NEBULA. II. EXTENDED DATA SET

    International Nuclear Information System (INIS)

    Frau, P.; Girart, J. M.; Padovani, M.; Beltrán, M. T.; Sánchez-Monge, Á.; Busquet, G.; Morata, O.; Masqué, J. M.; Estalella, R.; Alves, F. O.; Franco, G. A. P.

    2012-01-01

    The Pipe nebula is a massive, nearby, filamentary dark molecular cloud with a low star formation efficiency threaded by a uniform magnetic field perpendicular to its main axis. It harbors more than a hundred, mostly quiescent, very chemically young starless cores. The cloud is therefore a good laboratory to study the earliest stages of the star formation process. We aim to investigate the primordial conditions and the relation among physical, chemical, and magnetic properties in the evolution of low-mass starless cores. We used the IRAM 30 m telescope to map the 1.2 mm dust continuum emission of five new starless cores, which are in good agreement with previous visual extinction maps. For the sample of nine cores, which includes the four cores studied in a previous work, we derived an A V to N H 2 factor of (1.27 ± 0.12) × 10 –21 mag cm 2 and a background visual extinction of ∼6.7 mag possibly arising from the cloud material. We derived an average core diameter of ∼0.08 pc, density of ∼10 5 cm –3 , and mass of ∼1.7 M ☉ . Several trends seem to exist related to increasing core density: (1) the diameter seems to shrink, (2) the mass seems to increase, and (3) the chemistry tends to be richer. No correlation is found between the direction of the surrounding diffuse medium magnetic field and the projected orientation of the cores, suggesting that large-scale magnetic fields seem to play a secondary role in shaping the cores. We also used the IRAM 30 m telescope to extend the previous molecular survey at 1 and 3 mm of early- and late-time molecules toward the same five new Pipe nebula starless cores, and analyzed the normalized intensities of the detected molecular transitions. We confirmed the chemical differentiation toward the sample and increased the number of molecular transitions of the 'diffuse' (e.g., the 'ubiquitous' CO, C 2 H, and CS), 'oxo-sulfurated' (e.g., SO and CH 3 OH), and 'deuterated' (e.g., N 2 H + , CN, and HCN) starless core groups

  8. HIGH-VELOCITY MOLECULAR OUTFLOW IN CO J = 7-6 EMISSION FROM THE ORION HOT CORE

    International Nuclear Information System (INIS)

    Furuya, Ray S.; Shinnaga, Hiroko

    2009-01-01

    Using the Caltech Submillimeter Observatory 10.4 m telescope, we performed sensitive mapping observations of 12 CO J = 7-6 emission at 807 GHz toward Orion IRc2. The image has an angular resolution of 10'', which is the highest angular resolution data toward the Orion Hot Core published for this transition. In addition, thanks to the on-the-fly mapping technique, the fidelity of the new image is rather high, particularly in comparison with previous images. We have succeeded in mapping the northwest-southeast high-velocity molecular outflow, whose terminal velocity is shifted by ∼70-85 km s -1 with respect to the systemic velocity of the cloud. This yields an extremely short dynamical time scale of ∼900 years. The estimated outflow mass loss rate shows an extraordinarily high value, on the order of 10 -3 M sun yr -1 . Assuming that the outflow is driven by Orion IRc2, our result agrees with the picture so far obtained for a 20 M sun (proto)star in the process of formation.

  9. Ultrafast Raman scattering in gas-filled hollow-core fibers

    OpenAIRE

    Belli, Federico

    2017-01-01

    The experimental and numerical work reported here is rooted in ultrafast molecular phenomena and nonlinear fiber optics, which are brought together in a deceptively simple system: a homo-nuclear molecular gas (e.g. H2,D2) loaded in the hollow-core of a broad-band guiding photonic crystal fiber (PCF) and exposed to ultrashort pulses of moderate energies (∼ μJ). On one hand, the choice of a molecular gas as the nonlinear medium provides a rich playground for light-matter interactions. ...

  10. Grain alignment in starless cores

    International Nuclear Information System (INIS)

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to A V ∼48. We find that P K /τ K continues to decline with increasing A V with a power law slope of roughly −0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by A V ≳20 the slope for P versus τ becomes ∼−1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than A V ∼20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  11. Grain alignment in starless cores

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. J.; Bagley, M. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Krejny, M. [Cree Inc., 4600 Silicon Dr., Durham, NC (United States); Andersson, B.-G. [SOFIA Science Center, USRA, Moffett Field, CA (United States); Bastien, P., E-mail: tjj@astro.umn.edu [Centre de recherche en astrophysique du Québec and Départment de Physique, Université de Montréal, Montréal (Canada)

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to A{sub V}∼48. We find that P{sub K}/τ{sub K} continues to decline with increasing A{sub V} with a power law slope of roughly −0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by A{sub V}≳20 the slope for P versus τ becomes ∼−1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than A{sub V}∼20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  12. Size-exclusion chromatography using core-shell particles.

    Science.gov (United States)

    Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J

    2017-02-24

    Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Molecular dynamics and Monte Carlo calculations in statistical mechanics

    International Nuclear Information System (INIS)

    Wood, W.W.; Erpenbeck, J.J.

    1976-01-01

    Monte Carlo and molecular dynamics calculations on statistical mechanical systems is reviewed giving some of the more significant recent developments. It is noted that the term molecular dynamics refers to the time-averaging technique for hard-core and square-well interactions and for continuous force-law interactions. Ergodic questions, methodology, quantum mechanical, Lorentz, and one-dimensional, hard-core, and square and triangular-well systems, short-range soft potentials, and other systems are included. 268 references

  14. AN OBSERVED LACK OF SUBSTRUCTURE IN STARLESS CORES

    International Nuclear Information System (INIS)

    Schnee, Scott; Johnstone, Doug; Enoch, Melissa; Culverhouse, Thomas; Leitch, Erik; Marrone, Daniel P.; Sargent, Anneila

    2010-01-01

    In this paper, we present the results of a high resolution (5'') Combined Array for Research in Millimeter-wave Astronomy and Sunyaev-Zeldovich Array survey of the 3 mm continuum emission from 11 of the brightest (at 1.1 mm) starless cores in the Perseus molecular cloud. We detect 2 of the 11 cores, both of which are composed of single structures, and the median 3σ upper limit for the non-detections is 0.2 M sun in a ∼5'' beam. These results are consistent with, and as stringent as, the low detection rate of compact 3 mm continuum emission in dense cores in Perseus reported by Olmi et al. From the non-detection of multiple components in any of the 11 cores, we conclude that starless core mass functions derived from bolometer maps at resolutions range 10''-30'' (e.g., with MAMBO, SCUBA, or Bolocam) are unlikely to be significantly biased by the blending of lower mass cores with small separations. These observations provide additional evidence that the majority of starless cores in Perseus have inner density profiles shallower than r -2 .

  15. HCV Core Residues Critical for Infectivity Are Also Involved in Core-NS5A Complex Formation

    Science.gov (United States)

    Gawlik, Katarzyna; Baugh, James; Chatterji, Udayan; Lim, Precious J.; Bobardt, Michael D.; Gallay, Philippe A.

    2014-01-01

    Hepatitis C virus (HCV) infection is a major cause of liver disease. The molecular machinery of HCV assembly and particle release remains obscure. A better understanding of the assembly events might reveal new potential antiviral strategies. It was suggested that the nonstructural protein 5A (NS5A), an attractive recent drug target, participates in the production of infectious particles as a result of its interaction with the HCV core protein. However, prior to the present study, the NS5A-binding site in the viral core remained unknown. We found that the D1 domain of core contains the NS5A-binding site with the strongest interacting capacity in the basic P38-K74 cluster. We also demonstrated that the N-terminal basic residues of core at positions 50, 51, 59 and 62 were required for NS5A binding. Analysis of all substitution combinations of R50A, K51A, R59A, and R62A, in the context of the HCVcc system, showed that single, double, triple, and quadruple mutants were fully competent for viral RNA replication, but deficient in secretion of viral particles. Furthermore, we found that the extracellular and intracellular infectivity of all the mutants was abolished, suggesting a defect in the formation of infectious particles. Importantly, we showed that the interaction between the single and quadruple core mutants and NS5A was impaired in cells expressing full-length HCV genome. Interestingly, mutations of the four basic residues of core did not alter the association of core or NS5A with lipid droplets. This study showed for the first time that basic residues in the D1 domain of core that are critical for the formation of infectious extracellular and intracellular particles also play a role in core-NS5A interactions. PMID:24533158

  16. A Massive Prestellar Clump Hosting No High-mass Cores

    Energy Technology Data Exchange (ETDEWEB)

    Sanhueza, Patricio; Lu, Xing; Tatematsu, Ken’ichi [National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Jackson, James M. [School of Mathematical and Physical Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308 (Australia); Zhang, Qizhou; Stephens, Ian W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Guzmán, Andrés E. [Departamento de Astronomía, Universidad de Chile, Camino el Observatorio 1515, Las Condes, Santiago (Chile); Wang, Ke, E-mail: patricio.sanhueza@nao.ac.jp [European Southern Observatory (ESO) Headquarters, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany)

    2017-06-01

    The infrared dark cloud (IRDC) G028.23-00.19 hosts a massive (1500 M {sub ⊙}), cold (12 K), and 3.6–70 μ m IR dark clump (MM1) that has the potential to form high-mass stars. We observed this prestellar clump candidate with the Submillimeter Array (∼3.″5 resolution) and Jansky Very Large Array (∼2.″1 resolution) in order to characterize the early stages of high-mass star formation and to constrain theoretical models. Dust emission at 1.3 mm wavelength reveals five cores with masses ≤15 M {sub ⊙}. None of the cores currently have the mass reservoir to form a high-mass star in the prestellar phase. If the MM1 clump will ultimately form high-mass stars, its embedded cores must gather a significant amount of additional mass over time. No molecular outflows are detected in the CO (2-1) and SiO (5-4) transitions, suggesting that the SMA cores are starless. By using the NH{sub 3} (1, 1) line, the velocity dispersion of the gas is determined to be transonic or mildly supersonic (Δ V {sub nt}/Δ V {sub th} ∼ 1.1–1.8). The cores are not highly supersonic as some theories of high-mass star formation predict. The embedded cores are four to seven times more massive than the clump thermal Jeans mass and the most massive core (SMA1) is nine times less massive than the clump turbulent Jeans mass. These values indicate that neither thermal pressure nor turbulent pressure dominates the fragmentation of MM1. The low virial parameters of the cores (0.1–0.5) suggest that they are not in virial equilibrium, unless strong magnetic fields of ∼1–2 mG are present. We discuss high-mass star formation scenarios in a context based on IRDC G028.23-00.19, a study case believed to represent the initial fragmentation of molecular clouds that will form high-mass stars.

  17. Molecular ions, Rydberg spectroscopy and dynamics

    International Nuclear Information System (INIS)

    Jungen, Ch.

    2015-01-01

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering

  18. Molecular ions, Rydberg spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jungen, Ch. [Laboratoire Aimé Cotton, Université de Paris-Sud, 91405 Orsay (France)

    2015-01-22

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.

  19. Piezoelectric constants for ZnO calculated using classical polarizable core-shell potentials

    International Nuclear Information System (INIS)

    Dai Shuangxing; Dunn, Martin L; Park, Harold S

    2010-01-01

    We demonstrate the feasibility of using classical atomistic simulations, i.e. molecular dynamics and molecular statics, to study the piezoelectric properties of ZnO using core-shell interatomic potentials. We accomplish this by reporting the piezoelectric constants for ZnO as calculated using two different classical interatomic core-shell potentials: that originally proposed by Binks and Grimes (1994 Solid State Commun. 89 921-4), and that proposed by Nyberg et al (1996 J. Phys. Chem. 100 9054-63). We demonstrate that the classical core-shell potentials are able to qualitatively reproduce the piezoelectric constants as compared to benchmark ab initio calculations. We further demonstrate that while the presence of the shell is required to capture the electron polarization effects that control the clamped ion part of the piezoelectric constant, the major shortcoming of the classical potentials is a significant underprediction of the clamped ion term as compared to previous ab initio results. However, the present results suggest that overall, these classical core-shell potentials are sufficiently accurate to be utilized for large scale atomistic simulations of the piezoelectric response of ZnO nanostructures.

  20. CARMA Large Area Star Formation Survey: project overview with analysis of dense gas structure and kinematics in Barnard 1

    Energy Technology Data Exchange (ETDEWEB)

    Storm, Shaye; Mundy, Lee G.; Lee, Katherine I.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu; Gong, Hao [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Fernández-López, Manuel; Looney, Leslie W.; Segura-Cox, Dominique M. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Rosolowsky, Erik [Departments of Physics and Statistics, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna BC V1V 1V7 (Canada); Arce, Héctor G.; Plunkett, Adele L. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Ostriker, Eve C. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Volgenau, Nikolaus H. [Owens Valley Radio Observatory, MC 105-24 OVRO, Pasadena, CA 91125 (United States); Shirley, Yancy L. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Kwon, Woojin [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands); Isella, Andrea, E-mail: sstorm@astro.umd.edu [Astronomy Department, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125 (United States); and others

    2014-10-20

    We present details of the CARMA Large Area Star Formation Survey (CLASSy), while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that spectrally imaged N{sub 2}H{sup +}, HCO{sup +}, and HCN (J = 1 → 0 transitions) across over 800 square arcminutes of the Perseus and Serpens Molecular Clouds. The observations have angular resolution near 7'' and spectral resolution near 0.16 km s{sup –1}. We imaged ∼150 square arcminutes of Barnard 1, focusing on the main core, and the B1 Ridge and clumps to its southwest. N{sub 2}H{sup +} shows the strongest emission, with morphology similar to cool dust in the region, while HCO{sup +} and HCN trace several molecular outflows from a collection of protostars in the main core. We identify a range of kinematic complexity, with N{sub 2}H{sup +} velocity dispersions ranging from ∼0.05 to 0.50 km s{sup –1} across the field. Simultaneous continuum mapping at 3 mm reveals six compact object detections, three of which are new detections. A new, non-binary dendrogram algorithm is used to analyze dense gas structures in the N{sub 2}H{sup +} position-position-velocity (PPV) cube. The projected sizes of dendrogram-identified structures range from about 0.01 to 0.34 pc. Size-linewidth relations using those structures show that non-thermal line-of-sight velocity dispersion varies weakly with projected size, while rms variation in the centroid velocity rises steeply with projected size. Comparing these relations, we propose that all dense gas structures in Barnard 1 have comparable depths into the sky, around 0.1-0.2 pc; this suggests that overdense, parsec-scale regions within molecular clouds are better described as flattened structures rather than spherical collections of gas. Science-ready PPV cubes for Barnard 1 molecular emission are available for download.

  1. TWO MASS DISTRIBUTIONS IN THE L 1641 MOLECULAR CLOUDS: THE HERSCHEL CONNECTION OF DENSE CORES AND FILAMENTS IN ORION A

    International Nuclear Information System (INIS)

    Polychroni, D.; Schisano, E.; Elia, D.; Molinari, S.; Turrini, D.; Rygl, K. L. J.; Benedettini, M.; Busquet, G.; Di Giorgio, A. M.; Pestalozzi, M.; Pezzuto, S.; Roy, A.; André, Ph.; Hennemann, M.; Hill, T.; Könyves, V.; Martin, P.; Di Francesco, J.; Arzoumanian, D.; Bontemps, S.

    2013-01-01

    We present Herschel survey maps of the L 1641 molecular clouds in Orion A. We extracted both the filaments and dense cores in the region. We identified which of the dense sources are proto- or pre-stellar, and studied their association with the identified filaments. We find that although most (71%) of the pre-stellar sources are located on filaments there, is still a significant fraction of sources not associated with such structures. We find that these two populations (on and off the identified filaments) have distinctly different mass distributions. The mass distribution of the sources on the filaments is found to peak at 4 M ☉ and drives the shape of the core mass function (CMF) at higher masses, which we fit with a power law of the form dN/dlogM∝M –1.4±0.4 . The mass distribution of the sources off the filaments, on the other hand, peaks at 0.8 M ☉ and leads to a flattening of the CMF at masses lower than ∼4 M ☉ . We postulate that this difference between the mass distributions is due to the higher proportion of gas that is available in the filaments, rather than in the diffuse cloud

  2. TWO MASS DISTRIBUTIONS IN THE L 1641 MOLECULAR CLOUDS: THE HERSCHEL CONNECTION OF DENSE CORES AND FILAMENTS IN ORION A

    Energy Technology Data Exchange (ETDEWEB)

    Polychroni, D. [Department of Astrophysics, University of Athens, Astronomy and Mechanics, Faculty of Physics, Panepistimiopolis, 15784 Zografos, Athens (Greece); Schisano, E.; Elia, D.; Molinari, S.; Turrini, D.; Rygl, K. L. J.; Benedettini, M.; Busquet, G.; Di Giorgio, A. M.; Pestalozzi, M.; Pezzuto, S. [Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Roy, A.; André, Ph.; Hennemann, M.; Hill, T.; Könyves, V. [Laboratoire AIM, CEA/IRFU CNRS/INSU Université Paris Diderot, Paris-Saclay, F-91191 Gif-sur-Yvette (France); Martin, P. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Di Francesco, J. [National Research Council Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Arzoumanian, D. [IAS, CNRS (UMR 8617), Université Paris-Sud, Bâtiment 121, F-91400 Orsay (France); Bontemps, S., E-mail: dpolychroni@phys.uoa.gr [Université de Bordeaux, Laboratoire d' Astrophysique de Bordeaux, CNRS/INSU, UMR 5804, BP 89, F-33271, Floirac Cedex (France); and others

    2013-11-10

    We present Herschel survey maps of the L 1641 molecular clouds in Orion A. We extracted both the filaments and dense cores in the region. We identified which of the dense sources are proto- or pre-stellar, and studied their association with the identified filaments. We find that although most (71%) of the pre-stellar sources are located on filaments there, is still a significant fraction of sources not associated with such structures. We find that these two populations (on and off the identified filaments) have distinctly different mass distributions. The mass distribution of the sources on the filaments is found to peak at 4 M {sub ☉} and drives the shape of the core mass function (CMF) at higher masses, which we fit with a power law of the form dN/dlogM∝M {sup –1.4±0.4}. The mass distribution of the sources off the filaments, on the other hand, peaks at 0.8 M {sub ☉} and leads to a flattening of the CMF at masses lower than ∼4 M {sub ☉}. We postulate that this difference between the mass distributions is due to the higher proportion of gas that is available in the filaments, rather than in the diffuse cloud.

  3. MOLECULAR ENVIRONMENTS OF 51 PLANCK COLD CLUMPS IN THE ORION COMPLEX

    International Nuclear Information System (INIS)

    Liu Tie; Wu Yuefang; Zhang Huawei

    2012-01-01

    A mapping survey of 51 Planck cold clumps projected on the Orion complex was performed with J = 1–0 lines of 12 CO and 13 CO with the 13.7 m telescope at the Purple Mountain Observatory. The mean column densities of the Planck gas clumps range from 0.5 to 9.5 × 10 21 cm –2 , with an average value of (2.9 ± 1.9) × 10 21 cm –2 . The mean excitation temperatures of these clumps range from 7.4 to 21.1 K, with an average value of 12.1 ± 3.0 K and the average three-dimensional velocity dispersion σ 3D in these molecular clumps is 0.66 ± 0.24 km s –1 . Most of the clumps have σ NT larger than or comparable to σ Therm . The H 2 column density of the molecular clumps calculated from molecular lines correlates with the aperture flux at 857 GHz of the dust emission. By analyzing the distributions of the physical parameters, we suggest that turbulent flows can shape the clump structure and dominate their density distribution on large scales, but not function on small scales due to local fluctuations. Eighty-two dense cores are identified in the molecular clumps. The dense cores have an average radius and local thermal equilibrium (LTE) mass of 0.34 ± 0.14 pc and 38 +5 –30 M ☉ , respectively. The structures of low column density cores are more affected by turbulence, while the structures of high column density cores are more affected by other factors, especially by gravity. The correlation of velocity dispersion versus core size is very weak for the dense cores. The dense cores are found to be most likely gravitationally bounded rather than pressure confined. The relationship between M vir and M LTE can be well fitted with a power law. The core mass function here is much flatter than the stellar initial mass function. The lognormal behavior of the core mass distribution is most likely determined by internal turbulence.

  4. Korrelasjon mellom core styrke, core stabilitet og utholdende styrke i core

    OpenAIRE

    Berg-Olsen, Andrea Marie; Fugelsøy, Eivor; Maurstad, Ann-Louise

    2010-01-01

    Formålet med studien var å se hvilke korrelasjon det er mellom core styrke, core stabilitet og utholdende styrke i core. Testingen bestod av tre hoveddeler hvor vi testet core styrke, core stabilitet og utholdende styrke i core. Innenfor core styrke og utholdende styrke i core ble tre ulike tester utført. Ved måling av core stabilitet ble det gjennomført kun en test. I core styrke ble isometrisk abdominal fleksjon, isometrisk rygg ekstensjon og isometrisk lateral fleksjon testet. Sit-ups p...

  5. Electronic Rydberg wavepacket effects on molecular vibration

    International Nuclear Information System (INIS)

    Hughes, I.G.; Meacher, D.R.

    1994-01-01

    Electronic wavepacket states of molecular hydrogen are considered which represent the situation of a spectator electron orbiting a molecular core. A quantum defect theory approach is used to determine the energy level structure, wavefunctions and molecular potentials, which is valid in regions where the quantum defects approach zero. In such a region the orbital motion of the wavepacket leads to a periodic variation in the molecular vibration frequency of the order of 100 cm -1 . Possible detection schemes are discussed. (author)

  6. Star Forming Dense Cloud Cores in the TeV -ray SNR RX J1713.7-3946

    Energy Technology Data Exchange (ETDEWEB)

    Sano, H.; Sato, J.; Yamamoto, H.; Hayakawa, T.; Torii, K.; Moribe, N.; Kawamura, A.; Okuda, T.; Mizuno, N.; Onishi, T.; Maezawa, H.; Inoue, T.; Inutsuka, S.; Tanaka, T.; Mizuno, A.; Ogawa, H.; Stutzki, J.; Bertoldi, F.; Anderl, S.; Bronfman, L.; Koo, B.C.

    2010-10-27

    RX J1713.7-3946 is one of the TeV {gamma}-ray supernova remnants (SNRs) emitting synchrotron X rays. The SNR is associated with molecular gas located at {approx}1 kpc. We made new molecular observations toward the dense cloud cores, peaks A, C and D, in the SNR in the {sup 12}CO(J=2-1) and {sup 13}CO(J=2-1) transitions at angular resolution of 90 degrees. The most intense core in {sup 13}CO, peak C, was also mapped in the {sup 12}CO(J=4-3) transition at angular resolution of 38 degrees. Peak C shows strong signs of active star formation including bipolar outflow and a far-infrared protostellar source and has a steep gradient with a r{sup -2.2 {+-} 0.4} variation in the average density within radius r. Peak C and the other dense cloud cores are rim-brightened in synchrotron X rays, suggesting that the dense cloud cores are embedded within or on the outer boundary of the SNR shell. This confirms the earlier suggestion that the X rays are physically associated with the molecular gas (Fukui et al. 2003). We present a scenario where the densest molecular core, peak C, survived against the blast wave and is now embedded within the SNR. Numerical simulations of the shock-cloud interaction indicate that a dense clump can indeed survive shock erosion, since shock propagation speed is stalled in the dense clump. Additionally, the shock-cloud interaction induces turbulence and magnetic field amplification around the dense clump that may facilitate particle acceleration in the lower-density inter-clump space leading to the enhanced synchrotron X rays around dense cores.

  7. Thermal starless ammonia core surrounded by CCS in the Orion a cloud

    Energy Technology Data Exchange (ETDEWEB)

    Tatematsu, Ken' ichi; Hirota, Tomoya; Umemoto, Tomofumi; Kandori, Ryo; Mizuno, Norikazu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ohashi, Satoshi [Department of Astronomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Choi, Minho; Kang, Miju [Korea Astronomy and Space Science Institute, Daedeokdaero 776, Yuseong, Daejeon 305-348 (Korea, Republic of); Lee, Jeong-Eun [School of Space Research, Kyung Hee University, Seocheon-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Yamamoto, Satoshi, E-mail: k.tatematsu@nao.ac.jp, E-mail: tomoya.hirota@nao.ac.jp, E-mail: umemoto.tomofumi@nao.ac.jp, E-mail: r.kandori@nao.ac.jp, E-mail: norikazu.mizuno@nao.ac.jp, E-mail: satoshi.ohashi@nao.ac.jp, E-mail: minho@kasi.re.kr, E-mail: mjkang@kasi.re.kr, E-mail: jeongeun.lee@khu.ac.kr, E-mail: yamamoto@taurus.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-07-01

    We imaged two starless molecular cloud cores, TUKH083 and TUKH122, in the Orion A giant molecular cloud in the CCS and NH{sub 3} emission with the Very Large Array. TUKH122 contains one NH{sub 3} core 'TUKH122-n', which is elongated and has a smooth oval boundary. Where observed, the CCS emission surrounds the NH{sub 3} core. This configuration resembles that of the N{sub 2}H{sup +} and CCS distribution in the Taurus starless core L1544, a well-studied example of a dense prestellar core exhibiting infall motions. The linewidth of TUKH122-n is narrow (0.20 km s{sup –1}) in the NH{sub 3} emission line and therefore dominated by thermal motions. The smooth oval shape of the core boundary and narrow linewidth in N{sub 2}H{sup +} seem to imply that TUKH122-n is dynamically relaxed and quiescent. TUKH122-n is similar to L1544 in the kinetic temperature (10 K), linear size (0.03 pc), and virial mass (∼2 M {sub ☉}). Our results strongly suggest that TUKH122-n is on the verge of star formation. TUKH122-n is embedded in the 0.2 pc massive (virial mass ∼30 M {sub ☉}) turbulent parent core, while the L1544 NH{sub 3} core is embedded in the 0.2 pc less-massive (virial mass ∼10 M {sub ☉}) thermal parent core. TUKH083 shows complicated distribution in NH{sub 3}, but was not detected in CCS. The CCS emission toward TUKH083 appears to be extended, and is resolved out in our interferometric observations.

  8. A near-infrared spectroscopic study of the starburst core of M82

    International Nuclear Information System (INIS)

    Lester, D.F.; Gaffney, N.; Carr, J.S.; Joy, M.

    1990-01-01

    Near-IR spectroscopy of the M82 starburst core is presented, including complete J, H, and K band spectra with a resolution of 0.0035-micron for the inner 60 pc of the galaxy. Also, spatial profiles along the starburst ridge are presented for Br-gamma, molecular hydrogen, and forbidden Fe II line fluxes. Emission from shocked molecular hydrogen is detected from the core of M82. The distribution of features across the starburst disk are mapped to study the relationships between spectral diagnostics. The observations are used to test the appropriateness of single-beam, aggregate models for studying the physical conditions in starbursts. 68 refs

  9. A near-infrared spectroscopic study of the starburst core of M82

    Science.gov (United States)

    Lester, D. F.; Gaffney, N.; Carr, J. S.; Joy, M.

    1990-01-01

    Near-IR spectroscopy of the M82 starburst core is presented, including complete J, H, and K band spectra with a resolution of 0.0035-micron for the inner 60 pc of the galaxy. Also, spatial profiles along the starburst ridge are presented for Br-gamma, molecular hydrogen, and forbidden Fe II line fluxes. Emission from shocked molecular hydrogen is detected from the core of M82. The distribution of features across the starburst disk are mapped to study the relationships between spectral diagnostics. The observations are used to test the appropriateness of single-beam, aggregate models for studying the physical conditions in starbursts.

  10. Core Clinical Data Elements for Cancer Genomic Repositories: A Multi-stakeholder Consensus.

    Science.gov (United States)

    Conley, Robert B; Dickson, Dane; Zenklusen, Jean Claude; Al Naber, Jennifer; Messner, Donna A; Atasoy, Ajlan; Chaihorsky, Lena; Collyar, Deborah; Compton, Carolyn; Ferguson, Martin; Khozin, Sean; Klein, Roger D; Kotte, Sri; Kurzrock, Razelle; Lin, C Jimmy; Liu, Frank; Marino, Ingrid; McDonough, Robert; McNeal, Amy; Miller, Vincent; Schilsky, Richard L; Wang, Lisa I

    2017-11-16

    The Center for Medical Technology Policy and the Molecular Evidence Development Consortium gathered a diverse group of more than 50 stakeholders to develop consensus on a core set of data elements and values essential to understanding the clinical utility of molecularly targeted therapies in oncology. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Optical polarimetry and molecular line studies of L1157 dark molecular cloud

    Science.gov (United States)

    Sharma, Ekta; Soam, Archana; Gopinathan, Maheswar

    2018-04-01

    Filaments are omnipresent in molecular clouds which are believed to fragment into cores. The detailed process of the evolution from filaments to cores depends critically on the physical conditions in the star forming region. This study aims at characterising gas motions using velocity structure and finding the dynamical importance of magnetic fields in the filament morphology. The plane-of-the-sky component of the magnetic field has been measured using optical polarization of the background stars. The orientation is found to be almost perpendicular to the filament implying its dynamical importance in the evolution of the cloud. Optical polarimetric results match very well with the sub millimetre polarization angles obtained in the inner core regions. The magnetic fields are found to have an orientation of 130° east with respect to north. The angular offset between the outflow axis and the magnetic field direction is found to be 25°. Values for parameters like the excitation temperature, optical depth and column densities have been derived using molecular lines. Optically thick lines show non-gaussian features. The non-thermal widths tell about the presence of turbulent motions whereas the C180 lines follow Gaussian features almost at all the locations observed in the filament.

  12. Genetics Home Reference: core binding factor acute myeloid leukemia

    Science.gov (United States)

    ... binding factor acute myeloid leukemia Core binding factor acute myeloid leukemia Printable PDF Open All Close All Enable Javascript ... on PubMed (1 link) PubMed OMIM (1 link) LEUKEMIA, ACUTE MYELOID Sources for This Page Goyama S, Mulloy JC. Molecular ...

  13. Effect of Ambipolar Diffusion on Ion Abundances in Contracting Protostellar Cores

    Science.gov (United States)

    Ciolek, Glenn E.; Mouschovias, Telemachos Ch.

    1998-09-01

    Numerical simulations and analytical solutions have established that ambipolar diffusion can reduce the dust-to-gas ratio in magnetically and thermally supercritical cores during the epoch of core formation. We study the effect that this has on the ion chemistry in contracting protostellar cores and present a simplified analytical method that allows one to calculate the ion power-law exponent k (≡d ln ni/d ln nn, where ni and nn are the ion and neutral densities, respectively) as a function of core density. We find that, as in earlier numerical simulations, no single value of k can adequately describe the ion abundance for nn 1/2 during the core formation epoch (densities principle, to determine whether ambipolar diffusion is responsible for core formation in interstellar molecular clouds. For densities >>105 cm-3, k is generally <<1/2.

  14. The Evolution of High-Mass Star-Forming Cores in the Nessie Nebula

    Science.gov (United States)

    Jackson, James; Rathborne, Jill; Sanhueza, Patricio; Whitaker, John Scott; Camarata, Matthew

    2013-04-01

    We aim to deduce the evolution of the ensemble properties of high-mass star-forming cores within a cluster-forming molecular clump. Two different theories of high-mass star-formation, "competitive accretion" and "monolithic collapse" make very different predictions for this evolution. In "competitive accretion" the clump will contain only low-mass cores in the early phases, and high-mass cores will be found in the later stages. In "monolithic collapse" high-mass cores are found early on, and the mass distribution of the cores will remain essentially unchanged. Both models predict cores to increase in temperature. We can classify evolutionary stage from Spitzer mid-IR images. We choose to study 6 cores in the Nessie nebula that span the complete range of protostellar evolution. Nessie is an ideal laboratory because all the cores are at the same distance and in the same Galactic environment.

  15. HYDROGEN IN THE EARTH’S OUTER CORE, AND ITS ROLE IN THE DEEP EARTH GEODYNAMICS

    Directory of Open Access Journals (Sweden)

    V. N. Rumyantsev

    2016-01-01

    Full Text Available The content of hydrogen in the outer core of the Earth is roughly quantified from the dependence of the density of iron (viewed as the main component of the core on the amount of hydrogen dissolved in the core, with account of the most likely presence of iron hydrogen in the outer core, and the matter’s density jumps at the boundaries between the outer liquid core and the internal solid core (that is devoid of hydrogen and the mantle. Estimations for the outer liquid core show that the hydrogen content varies from 0.67 wt. % at the boundary with the solid inner core to 3.04 wt. % at the boundary with the mantle.Iron occlusion is viewed as the most likely mechanism for the iron–nickel core to capture such a significant amount of hydrogen. Iron occlusion took place at the stage of the young sun when the metallic core emerged in the cooling protoplanetary cloud containing hydrogen in high amounts, and non-volatile hydrogen was accumulated. Absorption (occlusion of molecular hydrogen was preceded by dissociation of molecules into atoms and ionization of the atoms, as proved by results of studies focused on Fe–H2 system, and hydrogen dissipation was thus prevented. The core matter was subject to gravitational compression at high pressures that contributed to the forced rapprochement of protons and electrons which interaction resulted by the formation of hydrogen atoms. Highly active hydrogen atoms reacted with metals and produced hydrides of iron and nickel, FeH and NiH. While the metallic core and then the silicate mantle were growing and consolidating, the stability of FeH and NiH was maintained due to pressures that were steadily increasing. Later on, due to the impacts of external forces on the Earth, marginal layers at the mantle–core boundary were detached and displaced, pressures decreased in the system, and iron and nickel hydrides were decomposed to produce molecular hydrogen. Consequences of the hydrides transformation into

  16. A review of molecular effects in gas-phase KL X-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Guillemin, Renaud; Carniato, Stéphane; Journel, Loïc [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); Stolte, Wayne C. [Department of Chemistry, University of Nevada, Las Vegas, NV 89154-4003 (United States); Marchenko, Tatiana; Khoury, Lara El; Kawerk, Elie; Piancastelli, Maria Novella [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); Hudson, Amanda C.; Lindle, Dennis W. [Department of Chemistry, University of Nevada, Las Vegas, NV 89154-4003 (United States); Simon, Marc, E-mail: marc.simon@upmc.fr [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)

    2013-06-15

    The unique capabilities of resonant inelastic X-ray scattering (RIXS) to provide a deep insight into molecular dynamics following core excitation are reviewed here. Characteristic features of molecular X-ray emission are experimentally observed and theoretically interpreted. Some of our most significant results on molecular dynamics following deep core excitation are presented. In particular, we provide several examples of nuclear dynamics on the femtosecond or subfemtosecond time scale; line-narrowing effects related to the quenching of vibrational structure due to parallelism of intermediate and final state curves; anomalous line dispersion across a resonance, which is due to core-hole lifetime effects; spin–orbit-state populations derived from polarized RIXS experiments. We also show how to connect the RIXS results to the general chemical properties of the investigated systems.

  17. A review of molecular effects in gas-phase KL X-ray emission

    International Nuclear Information System (INIS)

    Guillemin, Renaud; Carniato, Stéphane; Journel, Loïc; Stolte, Wayne C.; Marchenko, Tatiana; Khoury, Lara El; Kawerk, Elie; Piancastelli, Maria Novella; Hudson, Amanda C.; Lindle, Dennis W.; Simon, Marc

    2013-01-01

    The unique capabilities of resonant inelastic X-ray scattering (RIXS) to provide a deep insight into molecular dynamics following core excitation are reviewed here. Characteristic features of molecular X-ray emission are experimentally observed and theoretically interpreted. Some of our most significant results on molecular dynamics following deep core excitation are presented. In particular, we provide several examples of nuclear dynamics on the femtosecond or subfemtosecond time scale; line-narrowing effects related to the quenching of vibrational structure due to parallelism of intermediate and final state curves; anomalous line dispersion across a resonance, which is due to core-hole lifetime effects; spin–orbit-state populations derived from polarized RIXS experiments. We also show how to connect the RIXS results to the general chemical properties of the investigated systems

  18. The Kinematics of Molecular Cloud Cores in the Presence of Driven and Decaying Turbulence: Comparisons with Observations

    Energy Technology Data Exchange (ETDEWEB)

    Offner, S R; Krumholz, M R; Klein, R I; McKee, C F

    2007-12-17

    In this study we investigate the formation and properties of prestellar and protostellar cores using hydrodynamic, self-gravitating Adaptive Mesh Refinement simulations, comparing the cases where turbulence is continually driven and where it is allowed to decay. We model observations of these cores in the C{sup 18}O(2 {yields} 1), NH{sub 3}(1, 1), and N{sub 2}H{sup +}(1 {yields} 0) lines, and from the simulated observations we measure the linewidths of individual cores, the linewidths of the surrounding gas, and the motions of the cores relative to one another. Some of these distributions are significantly different in the driven and decaying runs, making them potential diagnostics for determining whether the turbulence in observed star-forming clouds is driven or decaying. Comparing our simulations with observed cores in the Perseus and {rho} Ophiuchus clouds shows reasonably good agreement between the observed and simulated core-to-core velocity dispersions for both the driven and decaying cases. However, we find that the linewidths through protostellar cores in both simulations are too large compared to the observations. The disagreement is noticeably worse for the decaying simulation, in which cores show highly supersonic in fall signatures in their centers that decrease toward their edges, a pattern not seen in the observed the regions.

  19. Internalisation of hepatitis C virus core protein by human conjunctival fibroblasts.

    Science.gov (United States)

    Rajalakshmy, A R; Malathi, J; Madhavan, H N; Bhaskar, S; Iyer, G K

    2016-01-01

    Recent studies indicate that hepatitis C virus (HCV) proteins can mediate innate immune response and inflammation in conjunctival fibroblasts which contributes to the pathology of dry eye condition associated with chronic HCV infection. The present study investigates the phagocytic potential of human conjunctival fibroblasts (HCFj) for HCV core protein. HCFj cells were incubated with HCV core antigen for different periods of time, and fluorescent micrographs were taken to observe protein internalisation. HCFj cells were capable of internalising HCV core antigen within 1 h; this gives an insight into another molecular mechanism which may contribute towards HCV-associated conjunctival inflammation.

  20. Mucoadhesive properties of low molecular weight chitosan- or glycol chitosan- and corresponding thiomer-coated poly(isobutylcyanoacrylate) core-shell nanoparticles.

    Science.gov (United States)

    Palazzo, Claudio; Trapani, Giuseppe; Ponchel, Gilles; Trapani, Adriana; Vauthier, Christine

    2017-08-01

    The aim of the present work was to evaluate the mucoadhesive properties of poly(isobutyl cyanoacrylate) (PIBCA) nanoparticles (NPs) coated with Low Molecular Weight (LMW) chitosan (CS)- and glycol chitosan (GCS)-based thiomers as well as with the corresponding LMW unmodified polysaccharides. For this purpose, all the CS- and GCS-based thiomers were prepared under simple and mild conditions starting from the LMW unmodified polymers CS and GCS. The resulting NPs were of spherical shape with diameters ranging from 400 to 600nm and 187 to 309nm, for CS- and GCS-based NPs, respectively. The mucoadhesive characteristics of these core shell NPs were studied in Ussing chambers measuring the percentage of NPs stuck on the mucosal of fresh intestinal tissue after 2h of incubation. Moreover, incubation of nanoparticle formulations with the intestinal tissue induced changes in transmucosal electrical resistance which were measured to gain information into the opening of tight junctions and to control the integrity of the mucosa. Thus, it was found that PIBCA NPs coated with the GCS-Glutathione conjugate (GCGPIBCA NPs) possessed the most favorable mucoadhesive performances. Moreover, both GCGPIBCA- and GCS-N-acetyl-cysteine (GCNPIBCA)-core-shell NPs might induced an enlargement of the epithelial cell tight junctions. In conclusion, coating of PIBCA NPs with GCS-based thiomers may be useful for improving the mucoadhesive and permeation properties of these nanocarriers. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1983-01-01

    In this review an approach is outlined for studying molecules containing heavy atoms with the use of relativistic effective core potentials (RECP's). These potentials play the dual roles of (1) replacing the chemically-inert core electrons and (2) incorporating the mass velocity and Darwin term into a one-electron effective potential. This reduces the problem to a valence-electron problem and avoids computation of additional matrix elements involving relativistic operators. The spin-orbit effects are subsequently included using the molecular orbitals derived from the RECP calculation as a basis

  2. MOLECULAR ENVIRONMENTS OF 51 PLANCK COLD CLUMPS IN THE ORION COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tie; Wu Yuefang; Zhang Huawei, E-mail: liutiepku@gmail.com, E-mail: ywu@pku.edu.cn [Department of Astronomy, Peking University, 100871 Beijing (China)

    2012-09-15

    A mapping survey of 51 Planck cold clumps projected on the Orion complex was performed with J = 1-0 lines of {sup 12}CO and {sup 13}CO with the 13.7 m telescope at the Purple Mountain Observatory. The mean column densities of the Planck gas clumps range from 0.5 to 9.5 Multiplication-Sign 10{sup 21} cm{sup -2}, with an average value of (2.9 {+-} 1.9) Multiplication-Sign 10{sup 21} cm{sup -2}. The mean excitation temperatures of these clumps range from 7.4 to 21.1 K, with an average value of 12.1 {+-} 3.0 K and the average three-dimensional velocity dispersion {sigma}{sub 3D} in these molecular clumps is 0.66 {+-} 0.24 km s{sup -1}. Most of the clumps have {sigma}{sub NT} larger than or comparable to {sigma}{sub Therm}. The H{sub 2} column density of the molecular clumps calculated from molecular lines correlates with the aperture flux at 857 GHz of the dust emission. By analyzing the distributions of the physical parameters, we suggest that turbulent flows can shape the clump structure and dominate their density distribution on large scales, but not function on small scales due to local fluctuations. Eighty-two dense cores are identified in the molecular clumps. The dense cores have an average radius and local thermal equilibrium (LTE) mass of 0.34 {+-} 0.14 pc and 38{sup +5}{sub -30} M{sub Sun }, respectively. The structures of low column density cores are more affected by turbulence, while the structures of high column density cores are more affected by other factors, especially by gravity. The correlation of velocity dispersion versus core size is very weak for the dense cores. The dense cores are found to be most likely gravitationally bounded rather than pressure confined. The relationship between M{sub vir} and M{sub LTE} can be well fitted with a power law. The core mass function here is much flatter than the stellar initial mass function. The lognormal behavior of the core mass distribution is most likely determined by internal turbulence.

  3. THE SPITZER c2d SURVEY OF NEARBY DENSE CORES: JET AND MOLECULAR OUTFLOW ASSOCIATED WITH A YOUNG STELLAR OBJECT IN CORE A OF L1251

    International Nuclear Information System (INIS)

    Lee, Jeong-Eun; Kim, Il-Suk; Choi, Yunhee; Lee, Ho-Gyu; Shinn, Jong-Ho; Dunham, Michael M.; Evans, Neal J.; Kim, Chang Hee; Bourke, Tyler L.

    2010-01-01

    A long infrared jet has been discovered by the Spitzer c2d Legacy Program in core A of L1251. It is associated with a very embedded Class 0 object with an accretion luminosity of about 0.9 L sun derived by radiative transfer model fitting to the observed spectral energy distribution. Comparing the observed Infrared Array Camera colors along the infrared jet with those calculated from a model of an admixture of gas with a power-law temperature distribution indicates that the jet is possibly created by a paraboloidal bow shock propagating into the ambient medium of n(H 2 ) = 10 5 cm -3 . In addition, the variation of the power-law index along the jet suggests that the portion of hot gas decreases with distance from the jet engine. The molecular outflow in this region has been mapped for the first time using CO data. From the calculated outflow momentum flux, a very strong lower limit to the average accretion luminosity is 3.6 sin i/cos 3 i L sun , indicative of a decrease in the accretion rate with time.

  4. Molecular Characterization of Methanogenic Communities in Core Sediments of the Dajiuhu Peatland, Central China

    Science.gov (United States)

    Wang, R.; Wang, H.

    2017-12-01

    Methane (CH4) is an important greenhouse gas with a global warming potential 22 times greater than carbon dioxide. Large amounts of CH4 can be produced and released by methanogenesis in peatland ecosystems, which make peatland ecosystems play an important role in mediating global climate change. Here we report the abundance and distribution of methanogenic communities and their correlation with physicochemical parameters along two sediment cores in the Dajiuhu Peatland via quantitative PCR, clone library construction of functional genes and statistical analysis. Uncultured Group and Fen Cluster were found to be the dominant methanogens at the upper part of the cores, and Rice and Related Rice Cluster became dominant in the bottom of the cores. Quantitative PCR showed that abundances of methanogenic communities ranged from 104 to 106 copies/ng DNA throughout the cores. Canonical Correlation Analysis (CCA) indicated that dissolved oxygen (DO) (P=0.046, F=1.4) was the main factor significantly controlling methanogenic communities. Our results enhance the understanding of the compositions and variations of methanogenic communities vertically and greatly help us to further investigate process of microbial methanogenesis in Dajiuhu Peatland.

  5. Sub-structure formation in starless cores

    Science.gov (United States)

    Toci, C.; Galli, D.; Verdini, A.; Del Zanna, L.; Landi, S.

    2018-02-01

    Motivated by recent observational searches of sub-structure in starless molecular cloud cores, we investigate the evolution of density perturbations on scales smaller than the Jeans length embedded in contracting isothermal clouds, adopting the same formalism developed for the expanding Universe and the solar wind. We find that initially small amplitude, Jeans-stable perturbations (propagating as sound waves in the absence of a magnetic field) are amplified adiabatically during the contraction, approximately conserving the wave action density, until they either become non-linear and steepen into shocks at a time tnl, or become gravitationally unstable when the Jeans length decreases below the scale of the perturbations at a time tgr. We evaluate analytically the time tnl at which the perturbations enter the non-linear stage using a Burgers' equation approach, and we verify numerically that this time marks the beginning of the phase of rapid dissipation of the kinetic energy of the perturbations. We then show that for typical values of the rms Mach number in molecular cloud cores, tnl is smaller than tgr, and therefore density perturbations likely dissipate before becoming gravitational unstable. Solenoidal modes grow at a faster rate than compressible modes, and may eventually promote fragmentation through the formation of vortical structures.

  6. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes.

    Science.gov (United States)

    Wu, Kaifeng; Song, Nianhui; Liu, Zheng; Zhu, Haiming; Rodríguez-Córdoba, William; Lian, Tianquan

    2013-08-15

    Recent studies of group II-VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD-molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III-V semiconductor) and InP/CdS core/shell (a heterostructure beween group III-V and II-VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP-methylviologen (MV(2+)) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV(2+) from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV(2+) complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III-V and II-VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.

  7. Noncovalent Molecular Electronics.

    Science.gov (United States)

    Gryn'ova, G; Corminboeuf, C

    2018-05-03

    Molecular electronics covers several distinctly different conducting architectures, including organic semiconductors and single-molecule junctions. The noncovalent interactions, abundant in the former, are also often found in the latter, i.e., the dimer junctions. In the present work, we draw the parallel between the two types of noncovalent molecular electronics for a range of π-conjugated heteroaromatic molecules. In silico modeling allows us to distill the factors that arise from the chemical nature of their building blocks and from their mutual arrangement. We find that the same compounds are consistently the worst and the best performers in the two types of electronic assemblies, emphasizing the universal imprint of the underlying chemistry of the molecular cores on their diverse charge transport characteristics. The interplay between molecular and intermolecular factors creates a spectrum of noncovalent conductive architectures, which can be manipulated using the design strategies based upon the established relationships between chemistry and transport.

  8. Synthesis and Plasmonic Understanding of Core/Satellite and Core Shell Nanostructures

    Science.gov (United States)

    Ruan, Qifeng

    Au nanospheres with molecular linkers. The plasmon resonances of the core/satellite nanostructures undergo red shifts in comparison to those of the sole Au cores, which is consistent with Mie theory analysis. As predicted by finite-difference time-domain simulations, the assembled core/satellite nanostructures exhibit large enhancements for Raman scattering. The facile growth of Au nanospheres and assembly of core/satellite nanostructures blaze a new way to the design of nanoarchitectures with desired plasmonic properties and functions. Coating semiconductors onto Au nanocrystals to form core shell configurations can increase the interactions between the two materials, benefiting from their large active interfacial area. The shell can also protect the Au nanocrystal core from aggregation, reshaping, and chemical corrosion. In this thesis, (Au nanocrystal core) (titania shell) nanostructures with tunable shell thicknesses were prepared by a facile wetchemistry method. Au nanocrystals with strong and tunable plasmon resonances in the visible and near-infrared regions can enhance and broaden the light utilization of TiO2 through the scattering/absorption enhancement, sensitization, and hot-electron injection. The integration of Au nanocrystals therefore hold the prospect of breaking the light-harvesting limit of TiO2 arising from its wide band gap. The resultant (Au core) (TiO2 shell) nanostructures were examined to be capable of efficiently generating reactive oxygen species under near-infrared resonant excitation. On the other hand, the transverse plasmon modes of Au nanorods, which are often too weak to be observed on scattering spectra, are enhanced by the TiO2 shell through energy transfer. With the increment of the shell thickness, the intensity of the transverse plasmon mode increases significantly and even becomes comparable with the longitudinal plasmon mode. Interestingly, both the transverse and longitudinal modes of the (Au core) (TiO2 shell) nanostructures

  9. THE EVOLUTION OF CLOUD CORES AND THE FORMATION OF STARS

    International Nuclear Information System (INIS)

    Broderick, Avery E.; Keto, Eric

    2010-01-01

    For a number of starless cores, self-absorbed molecular line and column density observations have implied the presence of large-amplitude oscillations. We examine the consequences of these oscillations on the evolution of the cores and the interpretation of their observations. We find that the pulsation energy helps support the cores and that the dissipation of this energy can lead toward instability and star formation. In this picture, the core lifetimes are limited by the pulsation-decay timescales, dominated by non-linear mode-mode coupling, and on the order of ≅ few x 10 5 -10 6 yr. Notably, this is similar to what is required to explain the relatively low rate of conversion of cores into stars. For cores with large-amplitude oscillations, dust continuum observations may appear asymmetric or irregular. As a consequence, some of the cores that would be classified as super-critical may be dynamically stable when oscillations are taken into account. Thus, our investigation motivates a simple hydrodynamic picture, capable of reproducing many of the features of the progenitors of stars without the inclusion of additional physical processes, such as large-scale magnetic fields.

  10. THE EVOLUTION OF CLOUD CORES AND THE FORMATION OF STARS

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Keto, Eric [Smithsonian Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2010-09-20

    For a number of starless cores, self-absorbed molecular line and column density observations have implied the presence of large-amplitude oscillations. We examine the consequences of these oscillations on the evolution of the cores and the interpretation of their observations. We find that the pulsation energy helps support the cores and that the dissipation of this energy can lead toward instability and star formation. In this picture, the core lifetimes are limited by the pulsation-decay timescales, dominated by non-linear mode-mode coupling, and on the order of {approx_equal} few x 10{sup 5}-10{sup 6} yr. Notably, this is similar to what is required to explain the relatively low rate of conversion of cores into stars. For cores with large-amplitude oscillations, dust continuum observations may appear asymmetric or irregular. As a consequence, some of the cores that would be classified as super-critical may be dynamically stable when oscillations are taken into account. Thus, our investigation motivates a simple hydrodynamic picture, capable of reproducing many of the features of the progenitors of stars without the inclusion of additional physical processes, such as large-scale magnetic fields.

  11. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1981-01-01

    Starting with one-component Cowan-Griffin relativistic Hartree-Fock orbitals, which successfully incorporate the mass-velocity and Darwin terms present in more complicated wavefunctions such as Dirac-Hartree-Fock, one can derive relativistic effective core potentials (RECP's) to carry out molecular calculations. These potentials implicitly include the dominant relativistic terms for molecules while allowing one to use the traditional quantum chemical techniques for studying the electronic structure of molecules. The effects of spin-orbit coupling can then be included using orbitals from such calculations using an effective 1-electron, 1-center spin-orbit operator. Applications to molecular systems involving heavy atoms, show good agreement with available spectroscopic data on molecular geometries and excitation energies

  12. Formation and fragmentation of protostellar dense cores

    International Nuclear Information System (INIS)

    Maury, Anaelle

    2009-01-01

    Stars form in molecular clouds, when they collapse and fragment to produce protostellar dense cores. These dense cores are then likely to contract under their own gravity, and form young protostars, that further evolve while accreting their circumstellar mass, until they reach the main sequence. The main goal of this thesis was to study the formation and fragmentation of protostellar dense cores. To do so, two main studies, described in this manuscript, were carried out. First, we studied the formation of protostellar cores by quantifying the impact of protostellar outflows on clustered star formation. We carried out a study of the protostellar outflows powered by the young stellar objects currently formed in the NGc 2264-C proto-cluster, and we show that protostellar outflows seem to play a crucial role as turbulence progenitors in clustered star forming regions, although they seem unlikely to significantly modify the global infall processes at work on clump scales. Second, we investigated the formation of multiple systems by core fragmentation, by using high - resolution observations that allow to probe the multiplicity of young protostars on small scales. Our results suggest that the multiplicity rate of protostars on small scales increase while they evolve, and thus favor dynamical scenarios for the formation of multiple systems. Moreover, our results favor magnetized scenarios of core collapse to explain the small-scale properties of protostars at the earliest stages. (author) [fr

  13. SOFIA/EXES High Spectral Resolution Observations of the Orion Hot Core

    Science.gov (United States)

    Rangwala, Naseem; Colgan, Sean; Le Gal, Romane; Acharya, Kinsuk; Huang, Xinchuan; Herbst, Eric; Lee, Timothy J.; Richter, Matthew J.; Boogert, Adwin

    2018-01-01

    The Orion hot core has one of the richest molecular chemistries observed in the ISM. In the MIR, the Orion hot core composition is best probed by the closest, compact, bright background continuum source in this region, IRc2. We present high-spectral resolution observations from 12.96 - 13.33 μm towards Orion IRc2 using the mid-infrared spectrograph, EXES, on SOFIA, to probe the physical and chemical conditions of the Orion hot core. All ten of the rovibrational C2H2 transitions expected in our spectral coverage, are detected with high S/N, yielding continuous coverage of the R-branch lines from J=9-8 to J=18-17, including both ortho and para species. Eight of these rovibrational transitions are newly reported detections. These data show distinct ortho and para ladders towards the Orion hot core for the first time, with an ortho to para ratio (OPR) of only 0.6 - much lower than the high temperature equilibrium value of 3. A non-equilibrium OPR is a further indication of the Orion hot core being heated externally by shocks likely resulting from a well-known explosive event which occurred 500 yrs ago. The OPR conversion timescales are much longer than the 500 yr shock timescale and thus a low OPR might be a remnant from an earlier colder pre-stellar phase before the density enhancement (now the hot core) was impacted by shocks.We will also present preliminary results from an on-going SOFIA Cycle-5 impact program to use EXES to conduct an unbiased, high-S/N, continuous, molecular line survey of the Orion hot core from 12.5 - 28.3 microns. This survey is expected to be 50 times better than ISO in detecting isolated, narrow lines to (a) resolve the ro-vibrational structure of the gas phase molecules and their kinematics, (b) detect new gas phase molecules missed by ISO, and (c) provide useful constraints on the hot core chemistry and the source of Orion hot core excitation. This survey will greatly enhance the inventory of resolved line features in the MIR for hot cores

  14. Dendrogram Analysis of Large-Area CARMA Images in Perseus: the Dense Gas in NGC 1333, Barnard 1, and L1451

    Science.gov (United States)

    Storm, Shaye; Mundy, L. G.; Teuben, P. J.; Lee, K.; Looney, L.; Fernandez Lopez, M.; Rosolowsky, E.; Arce, H. G.; Shirley, Y. L.; Segura-Cox, D.; Isella, A.; CLASSy Team

    2014-01-01

    We present spectral line maps of the dense gas across 400 square arcminutes of the Perseus Molecular Cloud, focused on NGC 1333, Barnard 1, and L1451. We constructed these maps as part of the CARMA Large Area Star-formation Survey (CLASSy), which is a CARMA key project that connects star forming cores to their natal cloud environment. This is achieved by leveraging CARMA's high angular resolution, imaging capability, and high efficiency at mosaicing large areas of the sky. CLASSy maps capture the structure and kinematics of N2H+, HCN, and HCO+ J=1-0 emission from thousand AU to parsec scales in three evolutionarily distinct regions of Perseus (in addition to two regions in Serpens). We show results from a non-binary dendrogram analysis of the Perseus N2H+ emission, which answers questions about the turbulent properties of the dense gas across evolutionary stages and across the range of size scales probed by CLASSy. There is a flat relation between mean internal turbulence and structure size for the dense gas in NGC 1333 and Barnard 1, but the magnitude of internal turbulence increases with nearby protostellar activity; the dense gas in the B1 main core and NGC 1333, which have active young stars, are characterized by mostly transonic to supersonic turbulence, while the filaments and clumps southwest of the B1 main core, which have no active young stars, have mostly subsonic turbulence. We have recently completed the observations of L1451, and results for that region will be revealed at the meeting. Released CLASSy data products can be found on our project website.

  15. ALMA Images of the Orion Hot Core at 349 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M. C. H.; Plambeck, R. L., E-mail: wright@astro.berkeley.edu [Radio Astronomy Laboratory, University of California, Berkeley, CA 94720 (United States)

    2017-07-10

    We present ALMA images of the dust and molecular line emission in the Orion Hot Core at 349 GHz. At 0.″2 angular resolution the images reveal multiple clumps in an arc ∼1″ east of Orion Source I, the protostar at the center of the Kleinmann–Low Nebula, and another chain of peaks from IRc7 toward the southwest. The molecular line images show narrow filamentary structures at velocities >10 km s{sup −1} away from the heavily resolved ambient cloud velocity ∼5 km s{sup −1}. Many of these filaments trace the SiO outflow from Source I, and lie along the edges of the dust emission. Molecular line emission at excitation temperatures 300–2000 K, and velocities >10 km s{sup −1} from the ambient cloud, suggest that the Hot Core may be heated in shocks by the outflow from Source I or from the Becklin–Neugebauer (BN)/SrcI explosion. The spectral line observations also reveal a remarkable molecular ring, ∼2″ south of SrcI, with a diameter ∼600 au. The ring is seen in high-excitation transitions of HC{sub 3}N, HCN v 2 = 1, and SO{sub 2}. An impact of ejecta from the BN/SrcI explosion with a dense dust clump could result in the observed ring of shocked material.

  16. Photodissociation dynamics of core-excited molecular oxygen

    International Nuclear Information System (INIS)

    Coutinho, L.H.; Homem, M.G.P.; Marinho, R.R.T.; Mocellin, A.; Naves de Brito, A.; Burmeister, F.

    2004-01-01

    Full text: The fragmentation of molecules after the excitation of a core orbital is of particular interest due to the localization of these orbitals and the possibility to observe dissociation in the same time scale as the electronic decay. This process, which occurs in a few femtoseconds and is known as ultrafast dissociation, has been observed for O 2 and the results will be presented. We used the PhotoElectron-PhotoIon COincidence (PEPICO) and PhotoElectron-PhotoIon-PhotoIon COincidence (PEPIPICO) spectroscopy technique to analyze the produced fragments in the 529 to 540 eV photon energy range. Usually Electron Spectroscopy (ES) is employed to establish whether this peculiar phenomenon occurs or not. Here we successfully put forward the use of partial ion yield (PIY) spectroscopy to investigate ultrafast dissociation. The experiment was performed at the Brazilian Synchrotron Light Laboratory (LNLS). The SGM beamline was equipped with an end-station composed by a time-of-flight mass spectrometer able to rotate with respect to the polarization of the exciting beam. The measurements were taken with the TOF axis performing an angle of 54.7 deg with respect to the polarization vector of the light. The data were corrected for non-unitary detection efficiency in the detectors

  17. Massachusetts Stony Brook galactic plane CO survey - disk and spiral arm molecular cloud populations

    International Nuclear Information System (INIS)

    Solomon, P.M.; Sanders, D.B.; Rivolo, A.R.; Five College Radio Astronomy Observatory, Pasadena, CA; Space Telescope Science Institute, Baltimore, MD)

    1985-01-01

    A preliminary analysis of a new high-resolution CO survey of the galactic disk is presented, which can detect and measure essentially all molecular clouds and cloud components in the inner Galaxy with size greater than 10 pc. In the region of l between 20 and 50 deg approximately 2000 emission centers are identified. Two populations which separate according to temperature are found. The disk population of cold molecular cores contains about three-quarters of the total number of cores, is not confined to any large-scale pattern in longitude-velocity space, and must be widespread in the Galaxy both in and out of spiral arms. The spiral arm population of warm molecular cores contains about one-quarter of the population with one-half of the emission and is very closely associated with radio H II regions. Between longitudes 20 and 50 deg their radial distribution shows two peaks at R = 5 and 7.5 kpc. The warm molecular cloud cores have a nonaxisymmetric galactic distribution, occur in clusters, and are confined to restricted regions and patterns in longitude-velocity space and in the galactic disk. 20 references

  18. Molecular toxicity of nanomaterials.

    Science.gov (United States)

    Chang, Xue-Ling; Yang, Sheng-Tao; Xing, Gengmei

    2014-10-01

    With the rapid developments in the fields of nanoscience and nanotechnlogy, more and more nanomaterials and their based consumer products have been used into our daily life. The safety concerns of nanomaterials have been well recognized by the scientific community and the public. Molecular mechanism of interactions between nanomaterials and biosystems is the most essential topic and final core of the biosafety. In the last two decades, nanotoxicology developed very fast and toxicity phenomena of nanomaterials have been reported. To achieve better understanding and detoxication of nanomaterials, thorough studies of nanotoxicity at molecular level are important. The interactions between nanomaterials and biomolecules have been widely investigated as the first step toward the molecular nanotoxicology. The consequences of such interactions have been discussed in the literature. Besides this, the chemical mechanism of nanotoxicology is gaining more attention, which would lead to a better design of nontoxic nanomaterials. In this review, we focus on the molecular nanotoxicology and explore the toxicity of nanomaterials at molecular level. The molecular level studies of nanotoxicology are summarized and the published nanotoxicological data are revisited.

  19. PROPERTIES OF THE MOLECULAR CORES OF LOW LUMINOSITY OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Tien-Hao; Lai, Shih-Ping [Institute of Astronomy, National Tsing Hua University (NTHU), Hsinchu 30013, Taiwan (China); Belloche, Arnaud; Wyrowski, Friedrich [Max-Planck-Institut für Radioastronomie (MPIfR), Bonn (Germany); Hung, Chao-Ling, E-mail: slai@phys.nthu.edu.tw, E-mail: shawinchone@gmail.com [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2015-04-01

    We present a survey toward 16 low luminosity objects (LLOs with an internal luminosity, L{sub int}, lower than 0.2 L{sub ⊙}) with N{sub 2}H{sup +} (1–0), N{sub 2}H{sup +} (3–2), N{sub 2}D{sup +} (3–2), HCO{sup +} (3–2), and HCN (3–2) using the Arizona Radio Observatory Kitt Peak 12 m Telescope and Submillimeter Telescope. Our goal is to probe the nature of these faint protostars which are believed to be either very low mass or extremely young protostars. We find that the N{sub 2}D{sup +}/N{sub 2}H{sup +} column density ratios of LLOs are similar to those of typical starless cores and Class 0 objects. The N{sub 2}D{sup +}/N{sub 2}H{sup +} column density ratios are relatively high (>0.05) for LLOs with kinetic temperatures less than 10 K in our sample. The distribution of N{sub 2}H{sup +} (1–0) line widths spreads between that of starless cores and young Class 0 objects. If we use the line width as a dynamic evolutionary indicator, LLOs are likely young Class 0 protostellar sources. We further use the optically thick tracers, HCO{sup +} (3–2) and HCN (3–2), to probe the infall signatures of our targets. We derive the asymmetry parameters from both lines and estimate the infall velocities by fitting the HCO{sup +} (3–2) spectra with two-layer models. As a result, we identify eight infall candidates based on the infall velocities and seven candidates have infall signatures supported by asymmetry parameters from at least one of HCO{sup +} (3–2) and HCN (3–2)

  20. Molecular photoelectron holography with circularly polarized laser pulses.

    Science.gov (United States)

    Yang, Weifeng; Sheng, Zhihao; Feng, Xingpan; Wu, Miaoli; Chen, Zhangjin; Song, Xiaohong

    2014-02-10

    We investigate the photoelectron momentum distribution of molecular-ion H2+driven by ultrashort intense circularly polarized laser pulses. Both numerical solutions of the time-dependent Schrödinger equation (TDSE) and a quasiclassical model indicate that the photoelectron holography (PH) with circularly polarized pulses can occur in molecule. It is demonstrated that the interference between the direct electron wave and rescattered electron wave from one core to its neighboring core induces the PH. Moreover, the results of the TDSE predict that there is a tilt angle between the interference pattern of the PH and the direction perpendicular to the molecular axis. Furthermore, the tilt angle is sensitively dependent on the wavelength of the driven circularly polarized pulse, which is confirmed by the quasiclassical calculations. The PH induced by circularly polarized laser pulses provides a tool to resolve the electron dynamics and explore the spatial information of molecular structures.

  1. En route to surface-bound electric field-driven molecular motors.

    Science.gov (United States)

    Jian, Huahua; Tour, James M

    2003-06-27

    Four caltrop-shaped molecules that might be useful as surface-bound electric field-driven molecular motors have been synthesized. The caltrops are comprised of a pair of electron donor-acceptor arms and a tripod base. The molecular arms are based on a carbazole or oligo(phenylene ethynylene) core with a strong net dipole. The tripod base uses a silicon atom as its core. The legs of the tripod bear sulfur-tipped bonding units, as acetyl-protected benzylic thiols, for bonding to a gold surface. The geometry of the tripod base allows the caltrop to project upward from a metallic surface after self-assembly. Ellipsometric studies show that self-assembled monolayers of the caltrops are formed on Au surfaces with molecular thicknesses consistent with the desired upright-shaft arrangement. As a result, the zwitterionic molecular arms might be controllable when electric fields are applied around the caltrops, thereby constituting field-driven motors.

  2. JSPS-CAS Core University Program seminar. Proceedings of Japan-China joint seminar on atomic and molecular processes in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Fumihiro [Kitasato Univ., Tokyo (Japan); Dong, Chenzhong [Northwest Normal Univ., Lanzhou (China)

    2005-02-01

    As one of the activities of JSPS-CAS Core University Program, Japan-China Joint Seminar on Atomic and Molecular Processes in Plasma was held on March 6 - 11, 2004 in Lanzhou, China. The total number of the officially registered participants was 29, in which 17 from Japan, 10 from China, and 2 from Germany. In the nuclear fusion plasma, there are quite a variety of atomic processes such as ionization, excitation, radiative recombination, non-radiative recombination (di-electronic recombination, collisional electron transfer), cascade radiation, and cascade Auger decay over the wide range of plasma temperature. The knowledge of such the processes is indispensable for the evaluation and improvement of the plasma properties, which is desirable to be investigated by international collaboration groups. The present Japan-China Joint Seminar constitutes one of such the activities to realize the above stated aim. The 21 of the presented papers are indexed individually. (J.P.N.)

  3. The Kinematics of Molecular Cloud Cores in the Presence of Driven and Decaying Turbulence: Comparisons with Observations

    Energy Technology Data Exchange (ETDEWEB)

    Offner, S R; Krumholz, M R; Klein, R I; McKee, C F

    2008-04-18

    In this study we investigate the formation and properties of prestellar and protostellar cores using hydrodynamic, self-gravitating Adaptive Mesh Refinement simulations, comparing the cases where turbulence is continually driven and where it is allowed to decay. We model observations of these cores in the C{sup 18}O(2 {yields} 1), NH{sub 3}(1,1), and N{sub 2}H{sup +} (1 {yields} 0) lines, and from the simulated observations we measure the linewidths of individual cores, the linewidths of the surrounding gas, and the motions of the cores relative to one another. Some of these distributions are significantly different in the driven and decaying runs, making them potential diagnostics for determining whether the turbulence in observed star-forming clouds is driven or decaying. Comparing our simulations with observed cores in the Perseus and {rho} Ophiuchus clouds shows reasonably good agreement between the observed and simulated core-to-core velocity dispersions for both the driven and decaying cases. However, we find that the linewidths through protostellar cores in both simulations are too large compared to the observations. The disagreement is noticeably worse for the decaying simulation, in which cores show highly supersonic infall signatures in their centers that decrease toward their edges, a pattern not seen in the observed regions. This result gives some support to the use of driven turbulence for modeling regions of star formation, but reaching a firm conclusion on the relative merits of driven or decaying turbulence will require more complete data on a larger sample of clouds as well as simulations that include magnetic fields, outflows, and thermal feedback from the protostars.

  4. Realizing A Mid-Infrared Optically Pumped Molecular Gas Laser Inside Hollow-Core Photonic Crystal Fiber

    Science.gov (United States)

    2012-01-01

    structure resembling a star- of- David pattern can clearly be seen surrounding the hollow core region. The fiber’s hollow core is created by leaving out...O.R. Wood, An optically pumped CO2 laser. IEEE Journal of Quantum Electronics, 1972. 8(6): p. 598. 19. Schlossberg, H.R. and H.R. Fetterman

  5. Selecting core-hole localization or delocalization in CS2 by photofragmentation dynamics.

    Science.gov (United States)

    Guillemin, R; Decleva, P; Stener, M; Bomme, C; Marin, T; Journel, L; Marchenko, T; Kushawaha, R K; Jänkälä, K; Trcera, N; Bowen, K P; Lindle, D W; Piancastelli, M N; Simon, M

    2015-01-21

    Electronic core levels in molecules are highly localized around one atomic site. However, in single-photon ionization of symmetric molecules, the question of core-hole localization versus delocalization over two equivalent atoms has long been debated as the answer lies at the heart of quantum mechanics. Here, using a joint experimental and theoretical study of core-ionized carbon disulfide (CS2), we demonstrate that it is possible to experimentally select distinct molecular-fragmentation pathways in which the core hole can be considered as either localized on one sulfur atom or delocalized between two indistinguishable sulfur atoms. This feat is accomplished by measuring photoelectron angular distributions within the frame of the molecule, directly probing entanglement or disentanglement of quantum pathways as a function of how the molecule dissociates.

  6. Addressing the challenges of standalone multi-core simulations in molecular dynamics

    Science.gov (United States)

    Ocaya, R. O.; Terblans, J. J.

    2017-07-01

    Computational modelling in material science involves mathematical abstractions of force fields between particles with the aim to postulate, develop and understand materials by simulation. The aggregated pairwise interactions of the material's particles lead to a deduction of its macroscopic behaviours. For practically meaningful macroscopic scales, a large amount of data are generated, leading to vast execution times. Simulation times of hours, days or weeks for moderately sized problems are not uncommon. The reduction of simulation times, improved result accuracy and the associated software and hardware engineering challenges are the main motivations for many of the ongoing researches in the computational sciences. This contribution is concerned mainly with simulations that can be done on a "standalone" computer based on Message Passing Interfaces (MPI), parallel code running on hardware platforms with wide specifications, such as single/multi- processor, multi-core machines with minimal reconfiguration for upward scaling of computational power. The widely available, documented and standardized MPI library provides this functionality through the MPI_Comm_size (), MPI_Comm_rank () and MPI_Reduce () functions. A survey of the literature shows that relatively little is written with respect to the efficient extraction of the inherent computational power in a cluster. In this work, we discuss the main avenues available to tap into this extra power without compromising computational accuracy. We also present methods to overcome the high inertia encountered in single-node-based computational molecular dynamics. We begin by surveying the current state of the art and discuss what it takes to achieve parallelism, efficiency and enhanced computational accuracy through program threads and message passing interfaces. Several code illustrations are given. The pros and cons of writing raw code as opposed to using heuristic, third-party code are also discussed. The growing trend

  7. Theoretical study of the electronic structure of different states of the KRb+ molecular ion

    International Nuclear Information System (INIS)

    Korek, M.; Younis, G.

    2000-01-01

    Full text.The molecular activities in ultra-cold alkali atom trapping stimulate theoretical developments to compute relevant adiabatic potential curves, especially in the framework of the pseudopotential methods. For these methods the molecular ion KRb+ is treated as system with one active electron moving in a field of two ionic cores, where core valence electron interactions are presented by an effective potential. Potential energies have been calculated over a wide range of internuclear distance (5.0-60a o ) for the lowest states of symmetry 2 Σ, 2 Π, 2 Δ and Ω for the molecular ion KRb+. To avoid an over estimation of the dissociation energy the perturbative treatment is replaced by an l-dependent core-polarization potential of the Foucrault et al. For the one valence electron of the two considered atoms, we recalculated the polarization potential cut-off parameters r k l , and r R b l by taking l=0,1,2 and r i 2 =r i 3 . Molecular orbital for the molecular ion KRb+ were derived from Self Consistent Field calculations (SCF), and full valence Configuration Interaction (IC) calculations were performed. Extensive tables of energy values versus internuclear distance are displayed and molecular spectroscopic constants have been derived, for the first time, for the bound states with regular shape

  8. Concordance of DNA methylation profiles between breast core biopsy and surgical excision specimens containing ductal carcinoma in situ (DCIS).

    Science.gov (United States)

    Chen, Youdinghuan; Marotti, Jonathan D; Jenson, Erik G; Onega, Tracy L; Johnson, Kevin C; Christensen, Brock C

    2017-08-01

    The utility and reliability of assessing molecular biomarkers for translational applications on pre-operative core biopsy specimens assume consistency of molecular profiles with larger surgical specimens. Whether DNA methylation in ductal carcinoma in situ (DCIS), measured in core biopsy and surgical specimens are similar, remains unclear. Here, we compared genome-scale DNA methylation measured in matched core biopsy and surgical specimens from DCIS, including specific DNA methylation biomarkers of subsequent invasive cancer. DNA was extracted from guided 2mm cores of formalin fixed paraffin embedded (FFPE) specimens, bisulfite-modified, and measured on the Illumina HumanMethylation450 BeadChip. DNA methylation profiles of core biopsies exhibited high concordance with matched surgical specimens. Within-subject variability in DNA methylation was significantly lower than between-subject variability (all Pcore biopsy and surgical specimens, 15%, and a pathway analysis of these CpGs indicated enrichment for genes related with wound healing. Our results indicate that DNA methylation measured in core biopsies are representative of the matched surgical specimens and suggest that DCIS biomarkers measured in core biopsies can inform clinical decision-making. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. A hybrid algorithm for parallel molecular dynamics simulations

    Science.gov (United States)

    Mangiardi, Chris M.; Meyer, R.

    2017-10-01

    This article describes algorithms for the hybrid parallelization and SIMD vectorization of molecular dynamics simulations with short-range forces. The parallelization method combines domain decomposition with a thread-based parallelization approach. The goal of the work is to enable efficient simulations of very large (tens of millions of atoms) and inhomogeneous systems on many-core processors with hundreds or thousands of cores and SIMD units with large vector sizes. In order to test the efficiency of the method, simulations of a variety of configurations with up to 74 million atoms have been performed. Results are shown that were obtained on multi-core systems with Sandy Bridge and Haswell processors as well as systems with Xeon Phi many-core processors.

  10. Optimizing the Performance of Reactive Molecular Dynamics Simulations for Multi-core Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Aktulga, Hasan Metin [Michigan State Univ., East Lansing, MI (United States); Coffman, Paul [Argonne National Lab. (ANL), Argonne, IL (United States); Shan, Tzu-Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knight, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Jiang, Wei [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-12-01

    Hybrid parallelism allows high performance computing applications to better leverage the increasing on-node parallelism of modern supercomputers. In this paper, we present a hybrid parallel implementation of the widely used LAMMPS/ReaxC package, where the construction of bonded and nonbonded lists and evaluation of complex ReaxFF interactions are implemented efficiently using OpenMP parallelism. Additionally, the performance of the QEq charge equilibration scheme is examined and a dual-solver is implemented. We present the performance of the resulting ReaxC-OMP package on a state-of-the-art multi-core architecture Mira, an IBM BlueGene/Q supercomputer. For system sizes ranging from 32 thousand to 16.6 million particles, speedups in the range of 1.5-4.5x are observed using the new ReaxC-OMP software. Sustained performance improvements have been observed for up to 262,144 cores (1,048,576 processes) of Mira with a weak scaling efficiency of 91.5% in larger simulations containing 16.6 million particles.

  11. Lane-Emden equation with inertial force and general polytropic dynamic model for molecular cloud cores

    Science.gov (United States)

    Li, DaLei; Lou, Yu-Qing; Esimbek, Jarken

    2018-01-01

    We study self-similar hydrodynamics of spherical symmetry using a general polytropic (GP) equation of state and derive the GP dynamic Lane-Emden equation (LEE) with a radial inertial force. In reference to Lou & Cao, we solve the GP dynamic LEE for both polytropic index γ = 1 + 1/n and the isothermal case n → +∞; our formalism is more general than the conventional polytropic model with n = 3 or γ = 4/3 of Goldreich & Weber. For proper boundary conditions, we obtain an exact constant solution for arbitrary n and analytic variable solutions for n = 0 and n = 1, respectively. Series expansion solutions are derived near the origin with the explicit recursion formulae for the series coefficients for both the GP and isothermal cases. By extensive numerical explorations, we find that there is no zero density at a finite radius for n ≥ 5. For 0 ≤ n 0 for monotonically decreasing density from the origin and vanishing at a finite radius for c being less than a critical value Ccr. As astrophysical applications, we invoke our solutions of the GP dynamic LEE with central finite boundary conditions to fit the molecular cloud core Barnard 68 in contrast to the static isothermal Bonnor-Ebert sphere by Alves et al. Our GP dynamic model fits appear to be sensibly consistent with several more observations and diagnostics for density, temperature and gas pressure profiles.

  12. 3D-printed PMMA Preform for Hollow-core POF Drawing

    DEFF Research Database (Denmark)

    Zubel, M. G.; Fasano, Andrea; Woyessa, Getinet

    2016-01-01

    In this paper we report the first, to our knowledge, 3D-printed hollow-core poly(methyl methacrylate) (PMMA) preform for polymer optical fibre drawing. It was printed of commercial PMMA by means of fused deposition modelling technique. The preform was drawn to cane, proving good enough quality...... of drawing process and the PMMA molecular weight to be appropriate for drawing. This ascertains that the manufacturing process provides preforms suitable for hollow-core fibre drawing. The paper focuses on maximisation of transparency of PMMA 3D printouts by optimising printing process parameters: nozzle...... temperature, printing speed and infill...

  13. Molecular outflows in protostellar evolution

    International Nuclear Information System (INIS)

    Fukui, Y.; Iwata, T.; Mizuno, A.; Ogawa, H.; Kawabata, K.; Sugitani, K.

    1989-01-01

    Molecular outflow is an energetic mass-ejection phenomenon associated with very early stage of stellar evolution. The large kinetic energy involved in the phenomenon indicates that outflow may play an essential role in the process of star formation, particularly by extracting angular momentum. Most of the previous searches have been strongly biased toward optical or near-infrared signposts of star formation. They are not able, therefore, to provide the complete database necessary for a statistical study of the evolutionary status of molecular outflow. To overcome this difficulty, it is of vital importance to make an unbiased search of single molecular clouds for molecular outflows; here we report the final result of such a survey of the Lynds 1641 dark cloud. We show that molecular outflows are characterized by a total luminosity significantly greater than that of T Tauri stars. This indicates that molecular outflow corresponds to the main accretion phase of protostellar evolution, in which the luminosity excess is due to the gravitational energy released by dynamical mass accretion onto the protostellar core. (author)

  14. Impact of nuclear 'pasta' on neutrino transport in collapsing stellar cores

    International Nuclear Information System (INIS)

    Sonoda, Hidetaka; Watanabe, Gentaro; Sato, Katsuhiko; Takiwaki, Tomoya; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2007-01-01

    Nuclear 'pasta', nonspherical nuclei in dense matter, is predicted to occur in collapsing supernova cores. We show how pasta phases affect the neutrino transport cross section via weak neutral current using several nuclear models. This is the first calculation of the neutrino opacity of the phases with rod-like and slab-like nuclei taking account of finite temperature effects, which are well described by the quantum molecular dynamics. We also show that pasta phases can occupy 10-20% of the mass of supernova cores in the later stage of the collapse

  15. Molecular cogs of the insect circadian clock.

    Science.gov (United States)

    Shirasu, Naoto; Shimohigashi, Yasuyuki; Tominaga, Yoshiya; Shimohigashi, Miki

    2003-08-01

    During the last five years, enormous progress has been made in understanding the molecular basis of circadian systems, mainly by molecular genetic studies using the mouse and fly. Extensive evidence has revealed that the core clock machinery involves "clock genes" and "clock proteins" functioning as molecular cogs. These participate in transcriptional/translational feedback loops and many homologous clock-components in the fruit fly Drosophila are also expressed in mammalian clock tissues with circadian rhythms. Thus, the mechanisms of the central clock seem to be conserved across animal kingdom. However, some recent studies imply that the present widely accepted molecular models of circadian clocks may not always be supported by the experimental evidence.

  16. JSPS-CAS core university program seminar. Proceedings of Japan-China joint seminar on atomic and molecular processes in plasma

    International Nuclear Information System (INIS)

    Koike, Fumihiro; Dong Chenzhong

    2008-03-01

    As one of the activities of JSPS-CAS Core University Program, Japan-China Joint Seminar on Atomic and Molecular Processes in Plasma was held on October 8 - 12, 2007 in Dunhuang, China. The total number of the officially registered participants was 41, in which 12 from Japan, 25 from China, and 4 from EU. And this seminar is an extension of the last seminar that was held on March 6 - 11, 2004 in Lanzhou, China. In the nuclear fusion plasma, there are quite a variety of atomic processes such as ionization, excitation, radiative recombination, non-radiative recombination (di-electronic recombination, collisional electron transfer), cascade radiation, and cascade Auger decay over the wide range of plasma temperature. The knowledge of such processes is indispensable for the evaluation and improvement of the plasma properties, which is desirable to be investigated by international collaboration groups. The present seminar constitutes one of such activities to realize the above stated aim; especially it has given an opportunity for the collaborative workers to illustrate their achievements. The 32 of the presented papers are indexed individually. (J.P.N.)

  17. Molecular potentials and relaxation dynamics

    International Nuclear Information System (INIS)

    Karo, A.M.

    1981-01-01

    The use of empirical pseudopotentials, in evaluating interatomic potentials, provides an inexpensive and convenient method for obtaining highly accurate potential curves and permits the modeling of core-valence correlation, and the inclusion of relativistic effects when these are significant. Recent calculations of the X 1 Σ + and a 3 Σ + states of LiH, NaH, KH, RbH, and CsH and the X 2 Σ + states of their anions are discussed. Pseudopotentials, including core polarization terms, have been used to replace the core electrons, and this has been coupled with the development of compact, higly-optimized basis sets for the corresponding one- and two-electron atoms. Comparisons of the neutral potential curves with experiment and other ab initio calculations show good agreement (within 1000 cm -1 over most of the potential curves) with the difference curves being considerably more accurate. In the method of computer molecular dynamics, the force acting on each particle is the resultant of all interactions with other atoms in the neighborhood and is obtained as the derivative of an effective many-body potential. Exploiting the pseudopotential approach, in obtaining the appropriate potentials may be very fruitful in the future. In the molecular dynamics example considered here, the conventional sum-of-pairwise-interatomic-potentials (SPP) approximation is used with the potentials derived either from experimental spectroscopic data or from Hartree-Fock calculations. The problem is the collisional de-excitation of vibrationally excited molecular hydrogen at an Fe surface. The calculations have been carried out for an initial vibrotational state v = 8, J = 1 and a translational temperature corresponding to a gas temperature of 500 0 K. Different angles of approach and different initial random impact points on the surface have been selected. For any given collision with the wall, the molecule may pick up or lose vibrotatonal and translational energy

  18. High performance in silico virtual drug screening on many-core processors

    Science.gov (United States)

    Price, James; Sessions, Richard B; Ibarra, Amaurys A

    2015-01-01

    Drug screening is an important part of the drug development pipeline for the pharmaceutical industry. Traditional, lab-based methods are increasingly being augmented with computational methods, ranging from simple molecular similarity searches through more complex pharmacophore matching to more computationally intensive approaches, such as molecular docking. The latter simulates the binding of drug molecules to their targets, typically protein molecules. In this work, we describe BUDE, the Bristol University Docking Engine, which has been ported to the OpenCL industry standard parallel programming language in order to exploit the performance of modern many-core processors. Our highly optimized OpenCL implementation of BUDE sustains 1.43 TFLOP/s on a single Nvidia GTX 680 GPU, or 46% of peak performance. BUDE also exploits OpenCL to deliver effective performance portability across a broad spectrum of different computer architectures from different vendors, including GPUs from Nvidia and AMD, Intel’s Xeon Phi and multi-core CPUs with SIMD instruction sets. PMID:25972727

  19. High performance in silico virtual drug screening on many-core processors.

    Science.gov (United States)

    McIntosh-Smith, Simon; Price, James; Sessions, Richard B; Ibarra, Amaurys A

    2015-05-01

    Drug screening is an important part of the drug development pipeline for the pharmaceutical industry. Traditional, lab-based methods are increasingly being augmented with computational methods, ranging from simple molecular similarity searches through more complex pharmacophore matching to more computationally intensive approaches, such as molecular docking. The latter simulates the binding of drug molecules to their targets, typically protein molecules. In this work, we describe BUDE, the Bristol University Docking Engine, which has been ported to the OpenCL industry standard parallel programming language in order to exploit the performance of modern many-core processors. Our highly optimized OpenCL implementation of BUDE sustains 1.43 TFLOP/s on a single Nvidia GTX 680 GPU, or 46% of peak performance. BUDE also exploits OpenCL to deliver effective performance portability across a broad spectrum of different computer architectures from different vendors, including GPUs from Nvidia and AMD, Intel's Xeon Phi and multi-core CPUs with SIMD instruction sets.

  20. WARM EXTENDED DENSE GAS AT THE HEART OF A COLD COLLAPSING DENSE CORE

    International Nuclear Information System (INIS)

    Shinnaga, Hiroko; Phillips, Thomas G.; Furuya, Ray S.; Kitamura, Yoshimi

    2009-01-01

    In order to investigate when and how the birth of a protostellar core occurs, we made survey observations of four well-studied dense cores in the Taurus molecular cloud using CO transitions in submillimeter bands. We report here the detection of unexpectedly warm (∼30-70 K), extended (radius of ∼2400 AU), dense (a few times 10 5 cm -3 ) gas at the heart of one of the dense cores, L1521F (MC27), within the cold dynamically collapsing components. We argue that the detected warm, extended, dense gas may originate from shock regions caused by collisions between the dynamically collapsing components and outflowing/rotating components within the dense core. We propose a new stage of star formation, 'warm-in-cold core stage (WICCS)', i.e., the cold collapsing envelope encases the warm extended dense gas at the center due to the formation of a protostellar core. WICCS would constitute a missing link in evolution between a cold quiescent starless core and a young protostar in class 0 stage that has a large-scale bipolar outflow.

  1. Core - shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy

    Science.gov (United States)

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-02-01

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

  2. Core Hunter 3: flexible core subset selection.

    Science.gov (United States)

    De Beukelaer, Herman; Davenport, Guy F; Fack, Veerle

    2018-05-31

    Core collections provide genebank curators and plant breeders a way to reduce size of their collections and populations, while minimizing impact on genetic diversity and allele frequency. Many methods have been proposed to generate core collections, often using distance metrics to quantify the similarity of two accessions, based on genetic marker data or phenotypic traits. Core Hunter is a multi-purpose core subset selection tool that uses local search algorithms to generate subsets relying on one or more metrics, including several distance metrics and allelic richness. In version 3 of Core Hunter (CH3) we have incorporated two new, improved methods for summarizing distances to quantify diversity or representativeness of the core collection. A comparison of CH3 and Core Hunter 2 (CH2) showed that these new metrics can be effectively optimized with less complex algorithms, as compared to those used in CH2. CH3 is more effective at maximizing the improved diversity metric than CH2, still ensures a high average and minimum distance, and is faster for large datasets. Using CH3, a simple stochastic hill-climber is able to find highly diverse core collections, and the more advanced parallel tempering algorithm further increases the quality of the core and further reduces variability across independent samples. We also evaluate the ability of CH3 to simultaneously maximize diversity, and either representativeness or allelic richness, and compare the results with those of the GDOpt and SimEli methods. CH3 can sample equally representative cores as GDOpt, which was specifically designed for this purpose, and is able to construct cores that are simultaneously more diverse, and either are more representative or have higher allelic richness, than those obtained by SimEli. In version 3, Core Hunter has been updated to include two new core subset selection metrics that construct cores for representativeness or diversity, with improved performance. It combines and outperforms the

  3. Atomic and molecular processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K. [International Atomic Energy Agency, Vienna (Austria)

    1997-01-01

    The role of atomic and molecular processes in achieving and maintaining the conditions for thermonuclear burn in a magnetically confined fusion plasma is described. Emphasis is given to the energy balance and power and particle exhaust issues. The most important atomic and molecular processes which affect the radiation losses and impurity transport in the core plasma, the neutral particle transport in the plasma edge and the radiative cooling of divertor plasmas are discussed in greater detail. (author)

  4. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111) substrate

    OpenAIRE

    P. Sangeetha; K. Jeganathan; V. Ramakrishnan

    2013-01-01

    The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE) on Si (111) substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E2 (high) and A1 (LO) phonon mode of InN core at 490 and 590 cm−1 respectively and E2 (high) phonon mode of GaN shell at 573 cm−1. The free carrier concentration of InN core is foun...

  5. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    Directory of Open Access Journals (Sweden)

    Xianjun Shen

    Full Text Available How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment. It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  6. EXTERNALLY HEATED PROTOSTELLAR CORES IN THE OPHIUCHUS STAR-FORMING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, Johan E.; Charnley, Steven B.; Cordiner, Martin A. [NASA Goddard Space Flight Center, Astrochemistry Laboratory, Mail Code 691, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Jørgensen, Jes K.; Bjerkeli, Per, E-mail: johan.lindberg@nasa.gov [Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K (Denmark)

    2017-01-20

    We present APEX 218 GHz observations of molecular emission in a complete sample of embedded protostars in the Ophiuchus star-forming region. To study the physical properties of the cores, we calculate H{sub 2}CO and c -C{sub 3}H{sub 2} rotational temperatures, both of which are good tracers of the kinetic temperature of the molecular gas. We find that the H{sub 2}CO temperatures range between 16 K and 124 K, with the highest H{sub 2}CO temperatures toward the hot corino source IRAS 16293-2422 (69–124 K) and the sources in the ρ Oph A cloud (23–49 K) located close to the luminous Herbig Be star S1, which externally irradiates the ρ Oph A cores. On the other hand, the c -C{sub 3}H{sub 2} rotational temperature is consistently low (7–17 K) in all sources. Our results indicate that the c -C{sub 3}H{sub 2} emission is primarily tracing more shielded parts of the envelope whereas the H{sub 2}CO emission (at the angular scale of the APEX beam; 3600 au in Ophiuchus) mainly traces the outer irradiated envelopes, apart from in IRAS 16293-2422, where the hot corino emission dominates. In some sources, a secondary velocity component is also seen, possibly tracing the molecular outflow.

  7. Analysis Of Core Management For The Transition Cores Of RSG-GAS Reactor To Full-Silicide Core

    International Nuclear Information System (INIS)

    Malem Sembiring, Tagor; Suparlina, Lily; Tukiran

    2001-01-01

    The core conversion of RSG-GAS reactor from oxide to silicide core with meat density of 2.96 g U/cc is still doing. At the end of 2000, the reactor has been operated for 3 transition cores which is the mixed core of oxide-silicide. Based on previous work, the calculated core parameter for the cores were obtained and it is needed 10 transition cores to achieve a full-silicide core. The objective of this work is to acquire the effect of the increment of the number of silicide fuel on the core parameters such as excess reactivity and shutdown margin. The measurement of the core parameters was carried out using the method of compensation of couple control rods. The experiment shows that the excess reactivity trends lower with the increment of the number of silicide fuel in the core. However, the shutdown margin is not change with the increment of the number of silicide fuel. Therefore, the transition cores can be operated safety to a full-silicide core

  8. A molecular marker map for roses

    NARCIS (Netherlands)

    Debener, T.; Mattiesch, L.; Vosman, B.

    2001-01-01

    n addition to an existing core map for diploid roses which comprised 305 molecular markers 60 additional markers were mapped to extend the map. As a first application of the information contained in the map, the map position of a resistance gene from roses, Rdr1, was determined by identifying

  9. Core-to-core uniformity improvement in multi-core fiber Bragg gratings

    Science.gov (United States)

    Lindley, Emma; Min, Seong-Sik; Leon-Saval, Sergio; Cvetojevic, Nick; Jovanovic, Nemanja; Bland-Hawthorn, Joss; Lawrence, Jon; Gris-Sanchez, Itandehui; Birks, Tim; Haynes, Roger; Haynes, Dionne

    2014-07-01

    Multi-core fiber Bragg gratings (MCFBGs) will be a valuable tool not only in communications but also various astronomical, sensing and industry applications. In this paper we address some of the technical challenges of fabricating effective multi-core gratings by simulating improvements to the writing method. These methods allow a system designed for inscribing single-core fibers to cope with MCFBG fabrication with only minor, passive changes to the writing process. Using a capillary tube that was polished on one side, the field entering the fiber was flattened which improved the coverage and uniformity of all cores.

  10. Candidate molten salt investigation for an accelerator driven subcritical core

    Science.gov (United States)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-09-01

    We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated. A special thanks is due to Prof. Paul Madden for introducing the ADSMS group to the concept of using the molten salt as the spallation target, rather than a conventional heavy metal spallation target. This feature helps to optimize this core as a Pu/TRU burner.

  11. Structural and magnetic properties of CoO-Pt core-shell nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Zeleňáková, A.; Zeleňák, V.; Michalik, Štefan; Kováč, J.; Meisel, M. W.

    2014-01-01

    Roč. 89, č. 10 (2014), "104417-1"-"104417-10" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : CoO-Pt core shell nanoparticles * superparamagnetism * superspin glass state * x-ray diffraction * x-ray absorption spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.736, year: 2014

  12. Identification of molecular markers associated with fruit traits in olive and assessment of olive core collection with AFLP markers and fruit traits.

    Science.gov (United States)

    Ipek, M; Seker, M; Ipek, A; Gul, M K

    2015-03-31

    The purpose of this study was to characterize olive core collection with amplified fragment length polymorphism (AFLP) markers and fruit traits and to determine AFLP markers significantly associated with these fruit characters in olive. A total of 168 polymorphic AFLP markers generated by five primer combinations and nine fruit traits were used to characterize relationships between 18 olive cultivars. Although all olive cultivars were discriminated from each other by either AFLP markers (markers and fruit traits was not significantly correlated (r = 0.13). Partial clustering of olive cultivars by AFLP markers according to their geographical origin was observed. Associations of AFLP markers with fruits were determined using a multiple-regression analysis with stepwise addition of AFLP markers. Significant associations between eight AFLP markers and fruit traits were identified. While five AFLP markers demonstrated significant negative correlation with fruit and stone weight, width and length and total polyphenols (P markers displayed significant positive correlation with α-tocopherol and γ-tocopherol (P molecular markers with fruit traits in olive. Molecular markers associated with morphological and agronomic traits could be utilized for the breeding of olive cultivars. However, the association power of these markers needs to be confirmed in larger populations, and highly correlated markers should then be converted to PCR-based DNA markers such as sequence-characterized amplified region markers for better utilization.

  13. Interaction sorting method for molecular dynamics on multi-core SIMD CPU architecture.

    Science.gov (United States)

    Matvienko, Sergey; Alemasov, Nikolay; Fomin, Eduard

    2015-02-01

    Molecular dynamics (MD) is widely used in computational biology for studying binding mechanisms of molecules, molecular transport, conformational transitions, protein folding, etc. The method is computationally expensive; thus, the demand for the development of novel, much more efficient algorithms is still high. Therefore, the new algorithm designed in 2007 and called interaction sorting (IS) clearly attracted interest, as it outperformed the most efficient MD algorithms. In this work, a new IS modification is proposed which allows the algorithm to utilize SIMD processor instructions. This paper shows that the improvement provides an additional gain in performance, 9% to 45% in comparison to the original IS method.

  14. Pearl-necklace structures in core-shell molecular brushes: Experiments, Monte Carlo simulations and self-consistent field modeling

    NARCIS (Netherlands)

    Polotsky, A.; Charlaganov, M.; Xu, Y.P.; Leermakers, F.A.M.; Daoud, M.; Muller, A.H.E.; Dotera, T.; Borisov, O.V.

    2008-01-01

    We present theoretical arguments and experimental evidence for a longitudinal instability in core-shell cylindrical polymer brushes with a solvophobic inner (core) block and a solvophilic outer (shell) block in selective solvents. The two-gradient self-consistent field Scheutjens-Fleer (SCF-SF)

  15. Tangible Models and Haptic Representations Aid Learning of Molecular Biology Concepts

    Science.gov (United States)

    Johannes, Kristen; Powers, Jacklyn; Couper, Lisa; Silberglitt, Matt; Davenport, Jodi

    2016-01-01

    Can novel 3D models help students develop a deeper understanding of core concepts in molecular biology? We adapted 3D molecular models, developed by scientists, for use in high school science classrooms. The models accurately represent the structural and functional properties of complex DNA and Virus molecules, and provide visual and haptic…

  16. Properties of molecular clouds containing Herbig-Haro objects

    International Nuclear Information System (INIS)

    Loren, R.B.; Evans, N.J. II; Knapp, G.R.

    1979-01-01

    We have studied the physical conditions in the molecular clouds associated with a large number of Herbig-Haro and related objects. Formaldehyde emission at 2 mm was detected in the direction of approx.15 out of 30 objects observed. Using the 2 mm H 2 CO emission and observations of 2 cm H 2 CO absorption, along the the 2.6 mm CO line, we calculate core densities of these molecular clouds. Dense cores are found near but not necessarily coincident with the HH objects. Known embedded infrared sources are more likely to be at the position of greatest density than are the HH objects themselves. The densities determined for the cloud cores are intermediate between the densities of cold, dark clouds such as L134 N and the hot clouds associated with H II regions. Thus, a continuous spectrum of densities is observed in molecular clouds. The temperature and density of the clouds in this study are not well correlated. The cores associated with HH 29 IR and T Tau are very dense (6 x 10 4 and 9 x 10 4 cm -3 ), yet have temperatures typical of cold dark clouds.The strong inverse correlation between X (H 2 CO) and density found by Wootten et al. is also found in the clouds associated with HH objects. This correlation also holds within a single cloud, indicating that the correlation is not due to differences in cloud age and evolution toward gas-phase chemical equilibrium. The decrease of X (H 2 CO) with density is more rapid than predicted by steady state ion-molecule chemistry and may be the result of increased depletion of molecules onto grain surfaces at higher density

  17. Excited state dynamics & optical control of molecular motors

    Science.gov (United States)

    Wiley, Ted; Sension, Roseanne

    2014-03-01

    Chiral overcrowded alkenes are likely candidates for light driven rotary molecular motors. At their core, these molecular motors are based on the chromophore stilbene, undergoing ultrafast cis/trans photoisomerization about their central double bond. Unlike stilbene, the photochemistry of molecular motors proceeds in one direction only. This unidirectional rotation is a result of helicity in the molecule induced by steric hindrance. However, the steric hindrance which ensures unidirectional excited state rotation, has the unfortunate consequence of producing large ground state barriers which dramatically decrease the overall rate of rotation. These molecular scale ultrafast motors have only recently been studied by ultrafast spectroscopy. Our lab has studied the photochemistry and photophysics of a ``first generation'' molecular motor with UV-visible transient absorption spectroscopy. We hope to use optical pulse shaping to enhance the efficiency and turnover rate of these molecular motors.

  18. Coupling between core and cladding modes in a helical core fiber with large core offset

    International Nuclear Information System (INIS)

    Napiorkowski, Maciej; Urbanczyk, Waclaw

    2016-01-01

    We analyzed the effect of resonant coupling between core and cladding modes in a helical core fiber with large core offset using the fully vectorial method based on the transformation optics formalism. Our study revealed that the resonant couplings to lower order cladding modes predicted by perturbative methods and observed experimentally in fibers with small core offsets are in fact prohibited for larger core offsets. This effect is related to the lack of phase matching caused by elongation of the optical path of the fundamental modes in the helical core. Moreover, strong couplings to the cladding modes of the azimuthal modal number much higher than predicted by perturbative methods may be observed for large core offsets, as the core offset introduces higher order angular harmonics in the field distribution of the fundamental modes. Finally, in contrast to previous studies, we demonstrate the existence of spectrally broad polarization sensitive couplings to the cladding modes suggesting that helical core fibers with large core offsets may be used as broadband circular polarizers. (paper)

  19. Evaluation of In-Core Fuel Management for the Transition Cores of RSG-GAS Reactor to Full-Silicide Core

    International Nuclear Information System (INIS)

    S, Tukiran; MS, Tagor; P, Surian

    2003-01-01

    The core conversion of RSG-GAS reactor from oxide to silicide core with meat density of 2.96 gU/cc has been done. The core-of RSG-GAS reactor has been operated full core of silicide fuels which is started with the mixed core of oxide-silicide start from core 36. Based on previous work, the calculated core parameter for the cores were obtained and it is needed 9 transition cores (core 36 - 44) to achieve a full-silicide core (core 45). The objective of this work is to acquire the effect of the increment of the number of silicide fuel on the core parameters. Conversion core was achieved by transition cores mixed oxide-silicide fuels. Each transition core is calculated and measured core parameter such as, excess reactivity and shutdown margin. Calculation done by Batan-EQUIL-2D code and measurement of the core parameters was carried out using the method of compensation of couple control rods. The results of calculation and experiment shows that the excess reactivity trends lower with the increment of the number of silicide fuel in the core. However, the shutdown margin is not change with the increment of the number of silicide fuel. Therefore, the transition cores can be operated safely to a full-silicide core

  20. THE FRAGMENTATION OF MAGNETIZED, MASSIVE STAR-FORMING CORES WITH RADIATIVE FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Andrew T.; McKee, Christopher F. [Department of Physics, University of California, Berkeley, Berkeley, CA 94720 (United States); Cunningham, Andrew J. [Lawrence Livermore National Laboratory, P.O. Box 808, L-23, Livermore, CA 94550 (United States); Klein, Richard I. [Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720 (United States); Krumholz, Mark R., E-mail: atmyers@berkeley.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-04-01

    We present a set of three-dimensional, radiation-magnetohydrodynamic calculations of the gravitational collapse of massive (300 M{sub Sun }), star-forming molecular cloud cores. We show that the combined effects of magnetic fields and radiative feedback strongly suppress core fragmentation, leading to the production of single-star systems rather than small clusters. We find that the two processes are efficient at suppressing fragmentation in different regimes, with the feedback most effective in the dense, central region and the magnetic field most effective in more diffuse, outer regions. Thus, the combination of the two is much more effective at suppressing fragmentation than either one considered in isolation. Our work suggests that typical massive cores, which have mass-to-flux ratios of about 2 relative to critical, likely form a single-star system, but that cores with weaker fields may form a small star cluster. This result helps us understand why the observed relationship between the core mass function and the stellar initial mass function holds even for {approx}100 M{sub Sun} cores with many thermal Jeans masses of material. We also demonstrate that a {approx}40 AU Keplerian disk is able to form in our simulations, despite the braking effect caused by the strong magnetic field.

  1. ON THE SIMULTANEOUS EVOLUTION OF MASSIVE PROTOSTARS AND THEIR HOST CORES

    International Nuclear Information System (INIS)

    Kuiper, R.; Yorke, H. W.

    2013-01-01

    Studies of the evolution of massive protostars and the evolution of their host molecular cloud cores are commonly treated as separate problems. However, interdependencies between the two can be significant. Here, we study the simultaneous evolution of massive protostars and their host molecular cores using a multi-dimensional radiation hydrodynamics code that incorporates the effects of the thermal pressure and radiative acceleration feedback of the centrally forming protostar. The evolution of the massive protostar is computed simultaneously using the stellar evolution code STELLAR, modified to include the effects of variable accretion. The interdependencies are studied in three different collapse scenarios. For comparison, stellar evolutionary tracks at constant accretion rates and the evolution of the host cores using pre-computed stellar evolutionary tracks are computed. The resulting interdependencies of the protostellar evolution and the evolution of the environment are extremely diverse and depend on the order of events, in particular the time of circumstellar accretion disk formation with respect to the onset of the bloating phase of the star. Feedback mechanisms affect the instantaneous accretion rate and the protostar's radius, temperature, and luminosity on timescales t ≤ 5 kyr, corresponding to the accretion timescale and Kelvin-Helmholtz contraction timescale, respectively. Nevertheless, it is possible to approximate the overall protostellar evolution in many cases by pre-computed stellar evolutionary tracks assuming appropriate constant average accretion rates

  2. Prospects of molecular markers in Fusarium species diversity

    DEFF Research Database (Denmark)

    Nayaka, S. Chandra; Wulff, Ednar Gadelha; Udayashankar, A.C.

    2011-01-01

    focuses of various molecular-based techniques employed to study the diversity of Fusarium species causing diseases in major food crops. An introduction of fusarial diseases and their mycotoxins and molecular-marker-based methods for detection introduce the concept of marker application. Various well...... for generation of probes and their use in phylogeny of Fusarium spp. are also presented. The concluding part emphasizes the value of molecular markers for assessing genetic variability and reveals that molecular tools are indispensable for providing information not only of one Fusarium species but on whole......-known molecular techniques such as random amplified polymorphic DNA, amplification fragment length polymorphism, etc. to more modern ones such as DNA microarrays, DNA barcoding, and pyrosequencing and their application form the core of the review. Target regions in the genome which can be potential candidates...

  3. Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation

    Science.gov (United States)

    Castilho, Alexandra; Gruber, Clemens; Thader, Andreas; Oostenbrink, Chris; Pechlaner, Maria; Steinkellner, Herta; Altmann, Friedrich

    2015-01-01

    We investigated N-glycan processing of immunoglobulin G1 using the monoclonal antibody cetuximab (CxMab), which has a glycosite in the Fab domain in addition to the conserved Fc glycosylation, as a reporter. Three GlcNAc (Gn) terminating bi-antennary glycoforms of CxMab differing in core fucosylation (α1,3- and α1,6-linkage) were generated in a plant-based expression platform. These GnGn, GnGnF3, and GnGnF6 CxMab variants were subjected in vivo to further processing toward sialylation and GlcNAc diversification (bisected and branching structures). Mass spectrometry-based glycan analyses revealed efficient processing of Fab glycans toward envisaged structures. By contrast, Fc glycan processing largely depend on the presence of core fucose. A particularly strong support of glycan processing in the presence of plant-specific core α1,3-fucose was observed. Consistently, molecular modeling suggests changes in the interactions of the Fc carbohydrate chain depending on the presence of core fucose, possibly changing the accessibility. Here, we provide data that reveal molecular mechanisms of glycan processing of IgG antibodies, which may have implications for the generation of glycan-engineered therapeutic antibodies with improved efficacies. PMID:26067753

  4. Identification and characterization of a core fucosidase from the bacterium Elizabethkingia meningoseptica.

    Science.gov (United States)

    Li, Tiansheng; Li, Mengjie; Hou, Linlin; Guo, Yameng; Wang, Lei; Sun, Guiqin; Chen, Li

    2018-01-26

    All reported α-l-fucosidases catalyze the removal of nonreducing terminal l-fucoses from oligosaccharides or their conjugates, while having no capacity to hydrolyze core fucoses in glycoproteins directly. Here, we identified an α-fucosidase from the bacterium Elizabethkingia meningoseptica with catalytic activity against core α-1,3-fucosylated substrates, and we named it core fucosidase I (cFase I). Using site-specific mutational analysis, we found that three acidic residues (Asp-242, Glu-302, and Glu-315) in the predicted active pocket are critical for cFase I activity, with Asp-242 and Glu-315 acting as a pair of classic nucleophile and acid/base residues and Glu-302 acting in an as yet undefined role. These findings suggest a catalytic mechanism for cFase I that is different from known α-fucosidase catalytic models. In summary, cFase I exhibits glycosidase activity that removes core α-1,3-fucoses from substrates, suggesting cFase I as a new tool for glycobiology, especially for studies of proteins with core fucosylation. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Effect of Molecular Guest Binding on the d-d Transitions of Ni2+ of CPO-27-Ni: A Combined UV-Vis, Resonant-Valence-to-Core X-ray Emission Spectroscopy, and Theoretical Study.

    Science.gov (United States)

    Gallo, Erik; Gorelov, Evgeny; Guda, Alexander A; Bugaev, Aram L; Bonino, Francesca; Borfecchia, Elisa; Ricchiardi, Gabriele; Gianolio, Diego; Chavan, Sachin; Lamberti, Carlo

    2017-12-04

    We used Ni K-edge resonant-valence-to-core X-ray emission spectroscopy (RVtC-XES, also referred to as direct RIXS), an element-selective bulk-sensitive synchrotron-based technique, to investigate the electronic structure of the CPO-27-Ni metal-organic framework (MOF) upon molecular adsorption of significant molecular probes: H 2 O, CO, H 2 S, and NO. We compare RVtC-XES with UV-vis spectroscopy, and we show that the element selectivity of RVtC-XES is of strategic significance to observe the full set of d-d excitations in Ni 2+ , which are partially overshadowed by the low-energy π-π* transitions of the Ni ligands in standard diffuse-reflectance UV-vis experiments. Our combined RVtC-XES/UV-vis approach provides access to the whole set of d-d excitations, allowing us a complete discussion of the changes undergone by the electronic configuration of the Ni 2+ sites hosted within the MOF upon molecular adsorption. The experimental data have been interpreted by multiplet ligand-field theory calculations based on Wannier orbitals. This study represents a step further in understanding the ability of the CPO-27-Ni MOFs in molecular sorption and separation applications.

  6. Ultrafast probing of core hole localization in N2.

    Science.gov (United States)

    Schöffler, M S; Titze, J; Petridis, N; Jahnke, T; Cole, K; Schmidt, L Ph H; Czasch, A; Akoury, D; Jagutzki, O; Williams, J B; Cherepkov, N A; Semenov, S K; McCurdy, C W; Rescigno, T N; Cocke, C L; Osipov, T; Lee, S; Prior, M H; Belkacem, A; Landers, A L; Schmidt-Böcking, H; Weber, Th; Dörner, R

    2008-05-16

    Although valence electrons are clearly delocalized in molecular bonding frameworks, chemists and physicists have long debated the question of whether the core vacancy created in a homonuclear diatomic molecule by absorption of a single x-ray photon is localized on one atom or delocalized over both. We have been able to clarify this question with an experiment that uses Auger electron angular emission patterns from molecular nitrogen after inner-shell ionization as an ultrafast probe of hole localization. The experiment, along with the accompanying theory, shows that observation of symmetry breaking (localization) or preservation (delocalization) depends on how the quantum entangled Bell state created by Auger decay is detected by the measurement.

  7. Formation of massive, dense cores by cloud-cloud collisions

    Science.gov (United States)

    Takahira, Ken; Shima, Kazuhiro; Habe, Asao; Tasker, Elizabeth J.

    2018-05-01

    We performed sub-parsec (˜ 0.014 pc) scale simulations of cloud-cloud collisions of two idealized turbulent molecular clouds (MCs) with different masses in the range of (0.76-2.67) × 104 M_{⊙} and with collision speeds of 5-30 km s-1. Those parameters are larger than in Takahira, Tasker, and Habe (2014, ApJ, 792, 63), in which study the colliding system showed a partial gaseous arc morphology that supports the NANTEN observations of objects indicated to be colliding MCs using numerical simulations. Gas clumps with density greater than 10-20 g cm-3 were identified as pre-stellar cores and tracked through the simulation to investigate the effects of the mass of colliding clouds and the collision speeds on the resulting core population. Our results demonstrate that the smaller cloud property is more important for the results of cloud-cloud collisions. The mass function of formed cores can be approximated by a power-law relation with an index γ = -1.6 in slower cloud-cloud collisions (v ˜ 5 km s-1), and is in good agreement with observation of MCs. A faster relative speed increases the number of cores formed in the early stage of collisions and shortens the gas accretion phase of cores in the shocked region, leading to the suppression of core growth. The bending point appears in the high-mass part of the core mass function and the bending point mass decreases with increase in collision speed for the same combination of colliding clouds. The higher-mass part of the core mass function than the bending point mass can be approximated by a power law with γ = -2-3 that is similar to the power index of the massive part of the observed stellar initial mass function. We discuss implications of our results for the massive-star formation in our Galaxy.

  8. Earth's inner core: Innermost inner core or hemispherical variations?

    NARCIS (Netherlands)

    Lythgoe, K. H.; Deuss, A.|info:eu-repo/dai/nl/412396610; Rudge, J. F.; Neufeld, J. A.

    2014-01-01

    The structure of Earth's deep inner core has important implications for core evolution, since it is thought to be related to the early stages of core formation. Previous studies have suggested that there exists an innermost inner core with distinct anisotropy relative to the rest of the inner core.

  9. Dependence of Core and Extended Flux on Core Dominance ...

    Indian Academy of Sciences (India)

    Abstract. Based on two extragalactic radio source samples, the core dominance parameter is calculated, and the correlations between the core/extended flux density and core dominance parameter are investi- gated. When the core dominance parameter is lower than unity, it is linearly correlated with the core flux density, ...

  10. Molecular dynamics simulation of dislocations in uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Fossati, Paul [CEA, DEN, DPC, SCCME, F-91191 Gif-sur-Yvette Cedex (France); Van Brutzel, Laurent, E-mail: laurent.vanbrutzel@cea.fr [CEA, DEN, DPC, SCCME, F-91191 Gif-sur-Yvette Cedex (France); Devincre, Benoît [LEM, CNRS-ONERA, 29 avenue de la Division Leclerc, F-92322 Châtillon Cedex (France)

    2013-11-15

    The plasticity of the fluorite structure in UO{sub 2} is investigated with molecular dynamics simulation and empirical potential. The stacking fault energies and the dislocation core structures with Burgers vector a/2 〈110〉 are systematically calculated. All dislocation core structures show a significant increase of the oxygen sub-lattice disorder at temperatures higher than 1500 K. The threshold stress for dislocation glide is found to decrease with increasing temperature but its values is always very high, several GPa at 0 K and several hundred of MPa at 2000 K. A relation between the dislocation mobility dependence with temperature and the increase of the oxygen sub-lattice disorder in the dislocation cores is established.

  11. On-line core monitoring with CORE MASTER / PRESTO

    International Nuclear Information System (INIS)

    Lindahl, S.O.; Borresen, S.; Ovrum, S.

    1986-01-01

    Advanced calculational tools are instrumental in improving reactor plant capacity factors and fuel utilization. The computer code package CORE MASTER is an integrated system designed to achieve this objective. The system covers all main activities in the area of in-core fuel management for boiling water reactors; design, operation support, and on-line core monitoring. CORE MASTER operates on a common data base, which defines the reactor and documents the operating history of the core and of all fuel bundles ever used

  12. Molecular Design of Branched and Binary Molecules at Ordered Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Genson, Kirsten Larson [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    This study examined five different branched molecular architectures to discern the effect of design on the ability of molecules to form ordered structures at interfaces. Photochromic monodendrons formed kinked packing structures at the air-water interface due to the cross-sectional area mismatch created by varying number of alkyl tails and the hydrophilic polar head group. The lower generations formed orthorhombic unit cell with long range ordering despite the alkyl tails tilted to a large degree. Favorable interactions between liquid crystalline terminal groups and the underlying substrate were observed to compel a flexible carbosilane dendrimer core to form a compressed elliptical conformation which packed stagger within lamellae domains with limited short range ordering. A twelve arm binary star polymer was observed to form two dimensional micelles at the air-water interface attributed to the higher polystyrene block composition. Linear rod-coil molecules formed a multitude of packing structures at the air-water interface due to the varying composition. Tree-like rod-coil molecules demonstrated the ability to form one-dimensional structures at the air-water interface and at the air-solvent interface caused by the preferential ordering of the rigid rod cores. The role of molecular architecture and composition was examined and the influence chemically competing fragments was shown to exert on the packing structure. The amphiphilic balance of the different molecular series exhibited control on the ordering behavior at the air-water interface and within bulk structures. The shell nature and tail type was determined to dictate the preferential ordering structure and molecular reorganization at interfaces with the core nature effect secondary.

  13. CHEMICAL SEGREGATION TOWARD MASSIVE HOT CORES: THE AFGL2591 STAR-FORMING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Serra, I.; Zhang, Q. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Viti, S. [Department of Physics and Astronomy, University College London, Gower Place, London WC1E 6BT (United Kingdom); Martin-Pintado, J. [Centro de Astrobiologia (CSIC/INTA), Ctra. de Torrejon a Ajalvir km 4, E-28850 Torrejon de Ardoz, Madrid (Spain); De Wit, W.-J., E-mail: ijimenez-serra@cfa.harvard.edu, E-mail: qzhang@cfa.harvard.edu, E-mail: sv@star.ucl.ac.uk, E-mail: jmartin@cab.inta-csic.es, E-mail: wdewit@eso.org [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile)

    2012-07-01

    We present high angular resolution observations (0.''5 Multiplication-Sign 0.''3) carried out with the Submillimeter Array (SMA) toward the AFGL2591 high-mass star-forming region. Our SMA images reveal a clear chemical segregation within the AFGL2591 VLA 3 hot core, where different molecular species (Types I, II, and III) appear distributed in three concentric shells. This is the first time that such a chemical segregation is ever reported at linear scales {<=}3000 AU within a hot core. While Type I species (H{sub 2}S and {sup 13}CS) peak at the AFGL2591 VLA 3 protostar, Type II molecules (HC{sub 3}N, OCS, SO, and SO{sub 2}) show a double-peaked structure circumventing the continuum peak. Type III species, represented by CH{sub 3}OH, form a ring-like structure surrounding the continuum emission. The excitation temperatures of SO{sub 2}, HC{sub 3}N, and CH{sub 3}OH (185 {+-} 11 K, 150 {+-} 20 K, and 124 {+-} 12 K, respectively) show a temperature gradient within the AFGL2591 VLA 3 envelope, consistent with previous observations and modeling of the source. By combining the H{sub 2}S, SO{sub 2}, and CH{sub 3}OH images, representative of the three concentric shells, we find that the global kinematics of the molecular gas follow Keplerian-like rotation around a 40 M{sub Sun} star. The chemical segregation observed toward AFGL2591 VLA 3 is explained by the combination of molecular UV photodissociation and a high-temperature ({approx}1000 K) gas-phase chemistry within the low extinction innermost region in the AFGL2591 VLA 3 hot core.

  14. On the minimum core mass for giant planet formation at wide separations

    International Nuclear Information System (INIS)

    Piso, Ana-Maria A.; Youdin, Andrew N.

    2014-01-01

    In the core accretion hypothesis, giant planets form by gas accretion onto solid protoplanetary cores. The minimum (or critical) core mass to form a gas giant is typically quoted as 10 M ⊕ . The actual value depends on several factors: the location in the protoplanetary disk, atmospheric opacity, and the accretion rate of solids. Motivated by ongoing direct imaging searches for giant planets, this study investigates core mass requirements in the outer disk. To determine the fastest allowed rates of gas accretion, we consider solid cores that no longer accrete planetesimals, as this would heat the gaseous envelope. Our spherical, two-layer atmospheric cooling model includes an inner convective region and an outer radiative zone that matches onto the disk. We determine the minimum core mass for a giant planet to form within a typical disk lifetime of 3 Myr. The minimum core mass declines with disk radius, from ∼8.5 M ⊕ at 5 AU to ∼3.5 M ⊕ at 100 AU, with standard interstellar grain opacities. Lower temperatures in the outer disk explain this trend, while variations in disk density are less influential. At all distances, a lower dust opacity or higher mean molecular weight reduces the critical core mass. Our non-self-gravitating, analytic cooling model reveals that self-gravity significantly affects early atmospheric evolution, starting when the atmosphere is only ∼10% as massive as the core.

  15. Polarization of far-infrared radiation from molecular clouds

    Science.gov (United States)

    Novak, G.; Gonatas, D. P.; Hildebrand, R. H.; Platt, S. R.; Dragovan, M.

    1989-01-01

    The paper reports measurements of the polarization of far-infrared emission from dust in nine molecular clouds. Detections were obtained in Mon R2, in the Kleinmann-Low (KL) nebula in Orion, and in Sgr A. Upper limits were set for six other clouds. A comparison of the 100 micron polarization of KL with that previously measured at 270 microns provides new evidence that the polarization is due to emission from magnetically aligned dust grains. Comparing the results for Orion with measurements at optical wavelengths, it is inferred that the magnetic field direction in the outer parts of the Orion cloud is the same as that in the dense core. This direction is nearly perpendicular to the ridge of molecular emission and is parallel to both the molecular outflow in KL and the axis of rotation of the cloud core. In Mon R2, the field direction which the measurements imply does not agree withthat derived from 0.9-2.2 micron polarimetry. The discrepancy is attributed to scattering in the near-infrared. In Orion and Sgr A, where comparisons are possible, the measurements are in good agreement with 10 micron polarization measurements.

  16. Transmission properties of hollow-core photonic bandgap fibers in relation to molecular spectroscopy

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    The transmission properties of five types of hollow-core photonic bandgap fibers (HC-PBFs) are characterized in the telecom wavelength range around 1:5 μm. The variations in optical transmission are measured as a function of laser frequency over a 2GHz scan range as well as a function of time over...

  17. Restraint system for core elements of a reactor core

    International Nuclear Information System (INIS)

    Class, G.

    1975-01-01

    In a nuclear reactor, a core element bundle formed of a plurality of side-by-side arranged core elements is surrounded by restraining elements that exert a radially inwardly directly restraining force generating friction forces between the core elements in a restraining plane that is transverse to the core element axes. The adjoining core elements are in rolling contact with one another in the restraining plane by virtue of rolling-type bearing elements supported in the core elements. (Official Gazette)

  18. Computational Exploration of Molecular Scaffolds in Medicinal Chemistry.

    Science.gov (United States)

    Hu, Ye; Stumpfe, Dagmar; Bajorath, Jürgen

    2016-05-12

    The scaffold concept is widely applied in medicinal chemistry. Scaffolds are mostly used to represent core structures of bioactive compounds. Although the scaffold concept has limitations and is often viewed differently from a chemical and computational perspective, it has provided a basis for systematic investigations of molecular cores and building blocks, going far beyond the consideration of individual compound series. Over the past 2 decades, alternative scaffold definitions and organization schemes have been introduced and scaffolds have been studied in a variety of ways and increasingly on a large scale. Major applications of the scaffold concept include the generation of molecular hierarchies, structural classification, association of scaffolds with biological activities, and activity prediction. This contribution discusses computational approaches for scaffold generation and analysis, with emphasis on recent developments impacting medicinal chemistry. A variety of scaffold-based studies are discussed, and a perspective on scaffold methods is provided.

  19. The Jeans Condition and Collapsing Molecular Cloud Cores: Filaments or Binaries?

    International Nuclear Information System (INIS)

    Boss, Alan P.; Fisher, Robert T.; Klein, Richard I.; McKee, Christopher F.

    2000-01-01

    consistent results. However, the B and M barotropic result differs significantly from the B and M Eddington result at the same maximum density, demonstrating the importance of detailed radiative transfer effects. Finally, we confirm that even in the case of isothermal collapse, an initially uniform density sphere can collapse and fragment into a binary system, in agreement with the 1998 results of Truelove et al. Fragmentation of molecular cloud cores thus appears to remain as a likely explanation of the formation of binary stars, but the sensitivity of these calculations to the numerical resolution and to the thermodynamical treatment demonstrates the need for considerable caution in computing and interpreting three-dimensional protostellar collapse calculations. (c) (c) 2000. The American Astronomical Society

  20. Quantitative conformational analysis of the core region of N-glycans using residual dipolar couplings, aqueous molecular dynamics, and steric alignment

    International Nuclear Information System (INIS)

    Almond, Andrew; Duus, Jens O.

    2001-01-01

    A method is described for quantitatively investigating the dynamic conformation of small oligosaccharides containing an α(1 → 6) linkage. It was applied to the oligosaccharide Man-α(1 → 3) {Man-α (1 → 6)}Man-α-O-Me, which is a core region frequently observed in N-linked glycans. The approach tests an aqueous molecular dynamics simulation, capable of predicting microscopic dynamics, against experimental residual dipolar couplings, by assuming that alignment is caused purely by steric hindrance. The experimental constraints were heteronuclear and homonuclear residual dipolar couplings, and in particular those within the α(1 → 6) linkage itself. Powerful spin-state-selective pulse sequences and editing schemes were used to obtain the most relevant couplings for testing the model. Molecular dynamics simulations in water over a period of 50 ns were not able to predict the correct rotamer population at the α(1 → 6) linkage to agree with the experimental data. However, this sampling problem could be corrected using a simple maximum likelihood optimisation, indicating that the simulation was modelling local dynamics correctly. The maximum likelihood prediction of the residual dipolar couplings was found to be an almost equal population of the gg and gt rotamer conformations at the α(1 → 6) linkage, and the tg conformation was predicted to be unstable and unpopulated in aqueous solution. In this case all twelve measured residual dipolar couplings could be satisfied. This conformer population could also be used to make predictions of scalar couplings with the use of a previously derived empirical equation, and is qualitatively in agreement with previous predictions based on NMR, X-ray crystallography and optical data

  1. A NEW RECIPE FOR OBTAINING CENTRAL VOLUME DENSITIES OF PRESTELLAR CORES FROM SIZE MEASUREMENTS

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Yorke, Harold W.

    2011-01-01

    We propose a simple analytical method for estimating the central volume density of prestellar molecular cloud cores from their column density profiles. Prestellar cores feature a flat central part of the column density and volume density profiles of the same size indicating the existence of a uniform-density inner region. The size of this region is set by the thermal pressure force which depends only on the central volume density and temperature of the core, and can provide a direct measurement of the central volume density. Thus, a simple length measurement can immediately yield a central density estimate independent of any dynamical model for the core and without the need for fitting. Using the radius at which the column density is 90% of the central value as an estimate of the size of the flat inner part of the column density profile yields an estimate of the central volume density within a factor of two for well-resolved cores.

  2. Microtubules provide directional information for core PCP function

    Science.gov (United States)

    Matis, Maja; Russler-Germain, David A; Hu, Qie; Tomlin, Claire J; Axelrod, Jeffrey D

    2014-01-01

    Planar cell polarity (PCP) signaling controls the polarization of cells within the plane of an epithelium. Two molecular modules composed of Fat(Ft)/Dachsous(Ds)/Four-jointed(Fj) and a ‘PCP-core’ including Frizzled(Fz) and Dishevelled(Dsh) contribute to polarization of individual cells. How polarity is globally coordinated with tissue axes is unresolved. Consistent with previous results, we find that the Ft/Ds/Fj-module has an effect on a MT-cytoskeleton. Here, we provide evidence for the model that the Ft/Ds/Fj-module provides directional information to the core-module through this MT organizing function. We show Ft/Ds/Fj-dependent initial polarization of the apical MT-cytoskeleton prior to global alignment of the core-module, reveal that the anchoring of apical non-centrosomal MTs at apical junctions is polarized, observe that directional trafficking of vesicles containing Dsh depends on Ft, and demonstrate the feasibility of this model by mathematical simulation. Together, these results support the hypothesis that Ft/Ds/Fj provides a signal to orient core PCP function via MT polarization. DOI: http://dx.doi.org/10.7554/eLife.02893.001 PMID:25124458

  3. Rubrene: The interplay between intramolecular and intermolecular interactions determines the planarization of its tetracene core in the solid state

    KAUST Repository

    Sutton, Christopher

    2015-06-15

    Rubrene is one of the most studied molecular semiconductors; its chemical structure consists of a tetracene backbone with four phenyl rings appended to the two central fused rings. Derivatization of these phenyl rings can lead to two very different solid-state molecular conformations and packings: One in which the tetracene core is planar and there exists substantive overlap among neighboring π-conjugated backbones; and another where the tetracene core is twisted and the overlap of neighboring π-conjugated backbones is completely disrupted. State-of-the-art electronic-structure calculations show for all isolated rubrene derivatives that the twisted conformation is more favorable (by -1.7 to -4.1 kcal mol-1), which is a consequence of energetically unfavorable exchange-repulsion interactions among the phenyl side groups. Calculations based on available crystallographic structures reveal that planar conformations of the tetracene core in the solid state result from intermolecular interactions that can be tuned through well-chosen functionalization of the phenyl side groups, and lead to improved intermolecular electronic couplings. Understanding the interplay of these intramolecular and intermolecular interactions provides insight into how to chemically modify rubrene and similar molecular semiconductors to improve the intrinsic materials electronic properties.

  4. Multiscale simulations in face-centered cubic metals: A method coupling quantum mechanics and molecular mechanics

    International Nuclear Information System (INIS)

    Yu Xiao-Xiang; Wang Chong-Yu

    2013-01-01

    An effective multiscale simulation which concurrently couples the quantum-mechanical and molecular-mechanical calculations based on the position continuity of atoms is presented. By an iterative procedure, the structure of the dislocation core in face-centered cubic metal is obtained by first-principles calculation and the long-range stress is released by molecular dynamics relaxation. Compared to earlier multiscale methods, the present work couples the long-range strain to the local displacements of the dislocation core in a simpler way with the same accuracy. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Coordination Chemistry inside Polymeric Nanoreactors: Metal Migration and Cross-Exchange in Amphiphilic Core-Shell Polymer Latexes

    Directory of Open Access Journals (Sweden)

    Si Chen

    2016-01-01

    Full Text Available A well-defined amphiphilic core-shell polymer functionalized with bis(p-methoxy-phenylphosphinophenylphosphine (BMOPPP in the nanogel (NG core has been obtained by a convergent RAFT polymerization in emulsion. This BMOPPP@NG and the previously-reported TPP@NG (TPP = triphenylphosphine and core cross-linked micelles (L@CCM; L = TPP, BMOPPP having a slightly different architecture were loaded with [Rh(acac(CO2] or [RhCl(COD]2 to yield [Rh(acac(CO(L@Pol] or [RhCl(COD(L@Pol] (Pol = CCM, NG. The interparticle metal migration from [Rh(acac(CO(TPP@NG] to TPP@NG is fast at natural pH and much slower at high pH, the rate not depending significantly on the polymer architecture (CCM vs. NG. The cross-exchange using [Rh(acac(CO(BMOPPP@Pol] and [RhCl(COD(TPP@Pol] (Pol = CCM or NG as reagents at natural pH is also rapid (ca. 1 h, although slower than the equivalent homogeneous reaction on the molecular species (<5 min. On the other hand, the subsequent rearrangement of [Rh(acac(CO(TPP@Pol] and [RhCl(COD(TPP@Pol] within the TPP@Pol core and of [Rh(acac(CO(BMOPPP@Pol] and [RhCl(COD(BMOPPP@Pol] within the BMOPPP@Pol core, leading respectively to [RhCl(CO(TPP@Pol2] and [RhCl(CO(BMOPPP@Pol2], is much more rapid (<30 min than on the corresponding homogeneous process with the molecular species (>24 h.

  6. Carbohydrates and phenols as quantitative molecular vegetation proxies in peats

    Science.gov (United States)

    Kaiser, K.; Benner, R. H.

    2012-12-01

    Vegetation in peatlands is intricately linked to local environmental conditions and climate. Here we use chemical analyses of carbohydrates and phenols to reconstruct paleovegetation in peat cores collected from 56.8°N (SIB04), 58.4°N (SIB06), 63.8°N (G137) and 66.5°N (E113) in the Western Siberian Lowland. Lignin phenols (vanillyl and syringyl phenols) were sensitive biomarkers for vascular plant contributions and provided additional information on the relative contributions of angiosperm and gymnosperm plants. Specific neutral sugar compositions allowed identification of sphagnum mosses, sedges (Cyperaceae) and lichens. Hydroxyphenols released by CuO oxidation were useful tracers of sphagnum moss contributions. The three independent molecular proxies were calibrated with a diverse group of peat-forming plants to yield quantitative estimates (%C) of vascular plant, sphagnum moss and lichen contributions in peat core samples. Correlation analysis indicated the three molecular proxies produced fairly similar results for paleovegetation compositions, generally within the error interval of each approach (≤26%). The lignin-based method generally lead to higher estimates of vascular plant vegetation. Several significant deviations were also observed due to different reactivities of carbohydrate and phenolic polymers during peat decomposition. Rapid vegetation changes on timescales of 50-200 years were observed in the southern cores SIB04 and SIB06 over the last 2000 years. Vanillyl and syringyl phenol ratios indicated these vegetation changes were largely due to varying inputs of angiosperm and gymnosperm plants. The northern permafrost cores G137 and E113 showed a more stable development. Lichens briefly replaced sphagnum mosses and vascular plants in both of these cores. Shifts in vegetation did not correlate well with Northern hemisphere climate variability over the last 2000 years. This suggested that direct climate forcing of peatland dynamics was overridden

  7. A SEARCH FOR CARBON-CHAIN-RICH CORES IN DARK CLOUDS

    International Nuclear Information System (INIS)

    Hirota, Tomoya; Ohishi, Masatoshi; Yamamoto, Satoshi

    2009-01-01

    We present results of a survey of CCS, HC 3 N, and HC 5 N toward 40 dark cloud cores to search for 'Carbon-Chain-Producing Regions (CCPRs)', where carbon-chain molecules are extremely abundant relative to NH 3 , as in L1495B, L1521B, L1521E, and the cyanopolyyne peak of TMC-1. We have mainly observed toward cores where the NH 3 lines are weak, not detected, or not observed in previous surveys, and the CCS, HC 3 N, and HC 5 N lines have been detected toward 17, 17, and 5 sources, respectively. Among them, we have found a CCPR, L492, and its possible candidates, L1517D, L530D, L1147, and L1172B. They all show low abundance ratios of [NH 3 ]/[CCS] (hereafter called the NH 3 /CCS ratio) indicating the chemical youth. Combining our results with those of previous surveys, we have found a significant variation of the NH 3 /CCS ratio among dark cloud cores and among molecular cloud complexes. Such a variation is also suggested by the detection rates of carbon-chain molecules. For instance, the NH 3 /CCS ratios are higher and the detection rates of carbon-chain molecules are lower in the Ophiuchus cores than in the Taurus cores. An origin of these systematic abundance variation is discussed in terms of the difference in the evolutionary stage or the contraction timescale. We have also identified a carbon-chain-rich star-forming core, L483, where intense HC 3 N and HC 5 N lines are detected. This is a possible candidate for a core with 'Warm Carbon-Chain Chemistry'.

  8. NEWLY IDENTIFIED EXTENDED GREEN OBJECTS (EGOs) FROM THE SPITZER GLIMPSE II SURVEY. II. MOLECULAR CLOUD ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xi; Gan Conggui; Shen Zhiqiang [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Ellingsen, Simon P.; Titmarsh, Anita [School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania (Australia); He Jinhua, E-mail: chenxi@shao.ac.cn [Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Astronomical Observatory/National Astronomical Observatory, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011, Yunnan Province (China)

    2013-06-01

    We have undertaken a survey of molecular lines in the 3 mm band toward 57 young stellar objects using the Australia Telescope National Facility Mopra 22 m radio telescope. The target sources were young stellar objects with active outflows (extended green objects (EGOs)) newly identified from the GLIMPSE II survey. We observe a high detection rate (50%) of broad line wing emission in the HNC and CS thermal lines, which combined with the high detection rate of class I methanol masers toward these sources (reported in Paper I) further demonstrates that the GLIMPSE II EGOs are associated with outflows. The physical and kinematic characteristics derived from the 3 mm molecular lines for these newly identified EGOs are consistent with these sources being massive young stellar objects with ongoing outflow activity and rapid accretion. These findings support our previous investigations of the mid-infrared properties of these sources and their association with other star formation tracers (e.g., infrared dark clouds, methanol masers and millimeter dust sources) presented in Paper I. The high detection rate (64%) of the hot core tracer CH{sub 3}CN reveals that the majority of these new EGOs have evolved to the hot molecular core stage. Comparison of the observed molecular column densities with predictions from hot core chemistry models reveals that the newly identified EGOs from the GLIMPSE II survey are members of the youngest hot core population, with an evolutionary time scale of the order of 10{sup 3} yr.

  9. Phase diagram of nuclear 'pasta' and its uncertainties in supernova cores

    International Nuclear Information System (INIS)

    Sonoda, Hidetaka; Watanabe, Gentaro; Sato, Katsuhiko; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2008-01-01

    We examine the model dependence of the phase diagram of inhomogeneous nulcear matter in supernova cores using the quantum molecular dynamics (QMD). Inhomogeneous matter includes crystallized matter with nonspherical nuclei--''pasta'' phases--and the liquid-gas phase-separating nuclear matter. Major differences between the phase diagrams of the QMD models can be explained by the energy of pure neutron matter at low densities and the saturation density of asymmetric nuclear matter. We show the density dependence of the symmetry energy is also useful to understand uncertainties of the phase diagram. We point out that, for typical nuclear models, the mass fraction of the pasta phases in the later stage of the collapsing cores is higher than 10-20%

  10. Hollow-Core Photonic Crystal Fibers for Surface-Enhanced Raman Scattering Probes

    Directory of Open Access Journals (Sweden)

    Xuan Yang

    2011-01-01

    Full Text Available Photonic crystal fiber (PCF sensors based on surface-enhanced Raman scattering (SERS have become increasingly attractive in chemical and biological detections due to the molecular specificity, high sensitivity, and flexibility. In this paper, we review the development of PCF SERS sensors with emphasis on our recent work on SERS sensors utilizing hollow-core photonic crystal fibers (HCPCFs. Specifically, we discuss and compare various HCPCF SERS sensors, including the liquid-filled HCPCF and liquid-core photonic crystal fibers (LCPCFs. We experimentally demonstrate and theoretically analyze the high sensitivity of the HCPCF SERS sensors. Various molecules including Rhodamine B, Rhodamine 6G, human insulin, and tryptophan have been tested to show the excellent performance of these fiber sensors.

  11. Core lifter

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, N G; Edel' man, Ya A

    1981-02-15

    A core lifter is suggested which contains a housing, core-clamping elements installed in the housing depressions in the form of semirings with projections on the outer surface restricting the rotation of the semirings in the housing depressions. In order to improve the strength and reliability of the core lifter, the semirings have a variable transverse section formed from the outside by the surface of the rotation body of the inner arc of the semiring aroung the rotation axis and from the inner a cylindrical surface which is concentric to the outer arc of the semiring. The core-clamping elements made in this manner have the possibility of freely rotating in the housing depressions under their own weight and from contact with the core sample. These semirings do not have weakened sections, have sufficient strength, are inserted into the limited ring section of the housing of the core lifter without reduction in its through opening and this improve the reliability of the core lifter in operation.

  12. Side core lifter

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, Ya A

    1982-01-01

    A side core lifter is proposed which contains a housing with guide slits and a removable core lifter with side projections on the support section connected to the core receiver. In order to preserve the structure of the rock in the core sample by means of guaranteeing rectilinear movement of the core lifter in the rock, the support and core receiver sections are hinged. The device is equipped with a spring for angular shift in the core-reception part.

  13. Core mechanics and configuration behavior of advanced LMFBR core restraint concepts

    International Nuclear Information System (INIS)

    Fox, J.N.; Wei, B.C.

    1978-02-01

    Core restraint systems in LMFBRs maintain control of core mechanics and configuration behavior. Core restraint design is complex due to the close spacing between adjacent components, flux and temperature gradients, and irradiation-induced material property effects. Since the core assemblies interact with each other and transmit loads directly to the core restraint structural members, the core assemblies themselves are an integral part of the core restraint system. This paper presents an assessment of several advanced core restraint system and core assembly concepts relative to the expected performance of currently accepted designs. A recommended order for the development of the advanced concepts is also presented

  14. Molecular basis of development in petaloid monocot flowers

    DEFF Research Database (Denmark)

    Johansen, Bo; Frederiksen, Signe; Skipper, Martin

    2006-01-01

    -class genes apparently are expressed in meristems of both flower and inflorescence. Morphologically petaloid stamens and styles are well known within the petaloid monocots, whereas the phenomenon is rare in core eudicots. A simple model based on the extra copies of B-class genes can explain the molecular...

  15. ALMA OBSERVATIONS OF A HIGH-DENSITY CORE IN TAURUS: DYNAMICAL GAS INTERACTION AT THE POSSIBLE SITE OF A MULTIPLE STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Tokuda, Kazuki; Onishi, Toshikazu [Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Saigo, Kazuya; Kawamura, Akiko [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Fukui, Yasuo; Inutsuka, Shu-ichiro; Tachihara, Kengo [Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Matsumoto, Tomoaki [Faculty of Humanity and Environment, Hosei University, Fujimi, Chiyoda-ku, Tokyo 102-8160 (Japan); Machida, Masahiro N. [Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 812-8581 (Japan); Tomida, Kengo, E-mail: s_k.tokuda@p.s.osakafu-u.ac.jp [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-07-01

    Starless dense cores eventually collapse dynamically, forming protostars inside them, and the physical properties of the cores determine the nature of the forming protostars. We report ALMA observations of dust continuum emission and molecular rotational lines toward MC27 or L1521F, which is considered to be very close to the first protostellar core phase. We found a few starless high-density cores, one of which has a very high density of ∼10{sup 7} cm{sup –3}, within a region of several hundred AU around a very low-luminosity protostar detected by Spitzer. A very compact bipolar outflow with a dynamical timescale of a few hundred years was found toward the protostar. The molecular line observation shows several cores with an arc-like structure, possibly due to the dynamical gas interaction. These complex structures revealed in the present observations suggest that the initial condition of star formation is highly dynamical in nature, which is considered to be a key factor in understanding fundamental issues of star formation such as the formation of multiple stars and the origin of the initial mass function of stars.

  16. Molecular biomarkers in idiopathic pulmonary fibrosis

    Science.gov (United States)

    Ley, Brett; Brown, Kevin K.

    2014-01-01

    Molecular biomarkers are highly desired in idiopathic pulmonary fibrosis (IPF), where they hold the potential to elucidate underlying disease mechanisms, accelerated drug development, and advance clinical management. Currently, there are no molecular biomarkers in widespread clinical use for IPF, and the search for potential markers remains in its infancy. Proposed core mechanisms in the pathogenesis of IPF for which candidate markers have been offered include alveolar epithelial cell dysfunction, immune dysregulation, and fibrogenesis. Useful markers reflect important pathological pathways, are practically and accurately measured, have undergone extensive validation, and are an improvement upon the current approach for their intended use. The successful development of useful molecular biomarkers is a central challenge for the future of translational research in IPF and will require collaborative efforts among those parties invested in advancing the care of patients with IPF. PMID:25260757

  17. JSPS-CAS Core University Program seminar. Proceedings of Japan-China joint seminar on atomic and molecular processes in plasma

    International Nuclear Information System (INIS)

    Koike, Fumihiro; Dong Chenzhong

    2010-02-01

    As one of the activities of JSPS-CAS Core University Program, Japan-China Joint Seminar on Atomic and Molecular Processes in Plasma was held on October 26 - 31, 2009 in Xi'an, China. The total number of the officially registered participants was 54, in which 18 from Japan, 35 from China, and 1 from USA. And this seminar is an extension of the last two seminars that were held on March 6 - 11, 2004 in Lanzhou, China, and on October 6 - 12, 2007 in Dunhuang, China. In the nuclear fusion plasma, there are quite a variety of atomic processes such as ionization, excitation, radiative recombination, non-radiative recombination (di-electronic recombination, collisional electron transfer), cascade radiation, and cascade Auger decay over the wide range of plasma temperature. The knowledge of those processes is indispensable for the evaluation and improvement of the plasma properties. Because of the diversity of the subject, it is desirable to investigate them by international collaboration groups. The present seminar may contribute to realize the above stated aim; especially it has given an opportunity for the collaborative workers to illustrate their achievements. This seminar summarizes the collaborative researches for the last decade and propose the issues for the future prospect. The 30 of the presented papers are indexed individually. (J.P.N.)

  18. Molecular epidemiology of Epizootic haematopoietic necrosis virus (EHNV).

    Science.gov (United States)

    Hick, Paul M; Subramaniam, Kuttichantran; Thompson, Patrick M; Waltzek, Thomas B; Becker, Joy A; Whittington, Richard J

    2017-11-01

    Low genetic diversity of Epizootic haematopoietic necrosis virus (EHNV) was determined for the complete genome of 16 isolates spanning the natural range of hosts, geography and time since the first outbreaks of disease. Genomes ranged from 125,591-127,487 nucleotides with 97.47% pairwise identity and 106-109 genes. All isolates shared 101 core genes with 121 potential genes predicted within the pan-genome of this collection. There was high conservation within 90,181 nucleotides of the core genes with isolates separated by average genetic distance of 3.43 × 10 -4 substitutions per site. Evolutionary analysis of the core genome strongly supported historical epidemiological evidence of iatrogenic spread of EHNV to naïve hosts and establishment of endemic status in discrete ecological niches. There was no evidence of structural genome reorganization, however, the complement of non-core genes and variation in repeat elements enabled fine scale molecular epidemiological investigation of this unpredictable pathogen of fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. PanCoreGen - Profiling, detecting, annotating protein-coding genes in microbial genomes.

    Science.gov (United States)

    Paul, Sandip; Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V; Chattopadhyay, Sujay

    2015-12-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing the pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen - a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for a species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars - Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Core Level Spectra of Organic Molecules Adsorbed on Graphene

    Directory of Open Access Journals (Sweden)

    Abhilash Ravikumar

    2018-03-01

    Full Text Available We perform first principle calculations based on density functional theory to investigate the effect of the adsorption of core-excited organic molecules on graphene. We simulate Near Edge X-ray absorption Fine Structure (NEXAFS and X-ray Photoemission Spectroscopy (XPS at the N and C edges for two moieties: pyridine and the pyridine radical on graphene, which exemplify two different adsorption characters. The modifications of molecular and graphene energy levels due to their interplay with the core-level excitation are discussed. We find that upon physisorption of pyridine, the binding energies of graphene close to the adsorption site reduce mildly, and the NEXAFS spectra of the molecule and graphene resemble those of gas phase pyridine and pristine graphene, respectively. However, the chemisorption of the pyridine radical is found to significantly alter these core excited spectra. The C 1s binding energy of the C atom of graphene participating in chemisorption increases by ∼1 eV, and the C atoms of graphene alternate to the adsorption site show a reduction in the binding energy. Analogously, these C atoms also show strong modifications in the NEXAFS spectra. The NEXAFS spectrum of the chemisorbed molecule is also modified as a result of hybridization with and screening by graphene. We eventually explore the electronic properties and magnetism of the system as a core-level excitation is adiabatically switched on.

  1. Measurement and simulation of anisotropic magnetoresistance in single GaAs/MnAs core/shell nanowires

    International Nuclear Information System (INIS)

    Liang, J.; Wang, J.; Cooley, B. J.; Rench, D. W.; Samarth, N.; Paul, A.; Dellas, N. S.; Mohney, S. E.; Engel-Herbert, R.

    2012-01-01

    We report four probe measurements of the low field magnetoresistance (MR) in single core/shell GaAs/MnAs nanowires (NWs) synthesized by molecular beam epitaxy, demonstrating clear signatures of anisotropic magnetoresistance that track the field-dependent magnetization. A comparison with micromagnetic simulations reveals that the principal characteristics of the magnetoresistance data can be unambiguously attributed to the nanowire segments with a zinc blende GaAs core. The direct correlation between magnetoresistance, magnetization, and crystal structure provides a powerful means of characterizing individual hybrid ferromagnet/semiconductor nanostructures.

  2. Comparison of facility characteristics between SCTF Core-I and Core-II

    International Nuclear Information System (INIS)

    Adachi, Hiromichi; Iwamura, Takamichi; Sobajima, Makoto; Ohnuki, Akira; Abe, Yutaka; Murao, Yoshio.

    1990-08-01

    The Slab Core Test Facility (SCTF) was constructed to investigate two-dimensional thermal-hydraulics in the core and fluid behavior of carryover water out of the core including its feed-back effect to the core behavior mainly during the reflood phase of a large break loss-of-coolant accident (LOCA) of a pressurized water reactor (PWR). Since three simulated cores are used in the SCTF Test Program and the design of these three cores are slightly different one by one, repeatability test is required to justify a direct comparison of data obtained with different cores. In the present report, data of Test S2-13 (Run 618) obtained with SCTF Core-II were compared with those of Test S1-05 (Run 511) obtained with the Core-I, which were performed under the forced-flooding condition. Thermal-hydraulic behaviors in these two tests showed quite similar characteristics of both system behavior and two-dimensional core behaviors. Therefore, the test data obtained from the two cores can be compared directly with each other. After the turnaround of clad temperatures, however, some differences were found in upper plenum water accumulation and resultant two-dimensional core cooling behaviors such as quench front propagation from bottom to top of the core. (author)

  3. Pathology informatics fellowship training: Focus on molecular pathology

    Directory of Open Access Journals (Sweden)

    Diana Mandelker

    2014-01-01

    Full Text Available Background: Pathology informatics is both emerging as a distinct subspecialty and simultaneously becoming deeply integrated within the breadth of pathology practice. As specialists, pathology informaticians need a broad skill set, including aptitude with information fundamentals, information systems, workflow and process, and governance and management. Currently, many of those seeking training in pathology informatics additionally choose training in a second subspecialty. Combining pathology informatics training with molecular pathology is a natural extension, as molecular pathology is a subspecialty with high potential for application of modern biomedical informatics techniques. Methods and Results: Pathology informatics and molecular pathology fellows and faculty evaluated the current fellowship program′s core curriculum topics and subtopics for relevance to molecular pathology. By focusing on the overlap between the two disciplines, a structured curriculum consisting of didactics, operational rotations, and research projects was developed for those fellows interested in both pathology informatics and molecular pathology. Conclusions: The scope of molecular diagnostics is expanding dramatically as technology advances and our understanding of disease extends to the genetic level. Here, we highlight many of the informatics challenges facing molecular pathology today, and outline specific informatics principles necessary for the training of future molecular pathologists.

  4. Pathology informatics fellowship training: Focus on molecular pathology.

    Science.gov (United States)

    Mandelker, Diana; Lee, Roy E; Platt, Mia Y; Riedlinger, Gregory; Quinn, Andrew; Rao, Luigi K F; Klepeis, Veronica E; Mahowald, Michael; Lane, William J; Beckwith, Bruce A; Baron, Jason M; McClintock, David S; Kuo, Frank C; Lebo, Matthew S; Gilbertson, John R

    2014-01-01

    Pathology informatics is both emerging as a distinct subspecialty and simultaneously becoming deeply integrated within the breadth of pathology practice. As specialists, pathology informaticians need a broad skill set, including aptitude with information fundamentals, information systems, workflow and process, and governance and management. Currently, many of those seeking training in pathology informatics additionally choose training in a second subspecialty. Combining pathology informatics training with molecular pathology is a natural extension, as molecular pathology is a subspecialty with high potential for application of modern biomedical informatics techniques. Pathology informatics and molecular pathology fellows and faculty evaluated the current fellowship program's core curriculum topics and subtopics for relevance to molecular pathology. By focusing on the overlap between the two disciplines, a structured curriculum consisting of didactics, operational rotations, and research projects was developed for those fellows interested in both pathology informatics and molecular pathology. The scope of molecular diagnostics is expanding dramatically as technology advances and our understanding of disease extends to the genetic level. Here, we highlight many of the informatics challenges facing molecular pathology today, and outline specific informatics principles necessary for the training of future molecular pathologists.

  5. Temporal Change of Seismic Earth's Inner Core Phases: Inner Core Differential Rotation Or Temporal Change of Inner Core Surface?

    Science.gov (United States)

    Yao, J.; Tian, D.; Sun, L.; Wen, L.

    2017-12-01

    Since Song and Richards [1996] first reported seismic evidence for temporal change of PKIKP wave (a compressional wave refracted in the inner core) and proposed inner core differential rotation as its explanation, it has generated enormous interests in the scientific community and the public, and has motivated many studies on the implications of the inner core differential rotation. However, since Wen [2006] reported seismic evidence for temporal change of PKiKP wave (a compressional wave reflected from the inner core boundary) that requires temporal change of inner core surface, both interpretations for the temporal change of inner core phases have existed, i.e., inner core rotation and temporal change of inner core surface. In this study, we discuss the issue of the interpretation of the observed temporal changes of those inner core phases and conclude that inner core differential rotation is not only not required but also in contradiction with three lines of seismic evidence from global repeating earthquakes. Firstly, inner core differential rotation provides an implausible explanation for a disappearing inner core scatterer between a doublet in South Sandwich Islands (SSI), which is located to be beneath northern Brazil based on PKIKP and PKiKP coda waves of the earlier event of the doublet. Secondly, temporal change of PKIKP and its coda waves among a cluster in SSI is inconsistent with the interpretation of inner core differential rotation, with one set of the data requiring inner core rotation and the other requiring non-rotation. Thirdly, it's not reasonable to invoke inner core differential rotation to explain travel time change of PKiKP waves in a very small time scale (several months), which is observed for repeating earthquakes in Middle America subduction zone. On the other hand, temporal change of inner core surface could provide a consistent explanation for all the observed temporal changes of PKIKP and PKiKP and their coda waves. We conclude that

  6. Fe-based nanocrystalline powder cores with ultra-low core loss

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiangyue, E-mail: wangxiangyue1986@163.com [China Iron and Steel Research Institute Group, Beijing 100081 (China); Center of Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Lu, Zhichao; Lu, Caowei; Li, Deren [China Iron and Steel Research Institute Group, Beijing 100081 (China); Center of Advanced Technology and Materials Co., Ltd., Beijing 100081 (China)

    2013-12-15

    Melt-spun amorphous Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 15.5}B{sub 7} alloy strip was crushed to make flake-shaped fine powders. The passivated powders by phosphoric acid were mixed with organic and inorganic binder, followed by cold compaction to form toroid-shaped bonded powder-metallurgical magnets. The powder cores were heat-treated to crystallize the amorphous structure and to control the nano-grain structure. Well-coated phosphate-oxide insulation layer on the powder surface decreased the the core loss with the insulation of each powder. FeCuNbSiB nanocrystalline alloy powder core prepared from the powder having phosphate-oxide layer exhibits a stable permeability up to high frequency range over 2 MHz. Especially, the core loss could be reduced remarkably. At the other hand, the softened inorganic binder in the annealing process could effectively improve the intensity of powder cores. - Highlights: • Fe-based nanocrystalline powder cores were prepared with low core loss. • Well-coated phosphate-oxide insulation layer on the powder surface decreased the core loss. • Fe-based nanocrystalline powder cores exhibited a stable permeability up to high frequency range over 2 MHz. • The softened inorganic binder in the annealing process could effectively improve the intensity of powder cores.

  7. Material dimensionality effects on the nanoindentation behavior of Al/a-Si core-shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Robert A. [Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Center for Advanced Surface Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Goss, Josue A. [Center for Advanced Surface Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Zou, Min, E-mail: mzou@uark.edu [Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Center for Advanced Surface Engineering, University of Arkansas, Fayetteville, AR 72701 (United States)

    2017-08-01

    Highlights: • Nanoindentation behavior of Al/a-Si core-shell nanostructures were studied. • 3D core confinement enables significant deformation recovery beyond elastic limit. • As the confinement is reduced, the deformation recovery is reduced or suppressed. • Atomistic simulations suggest core confinement affects dislocation dynamics. • 3D confinement has the highest percentage of dislocation removal after unloading. - Abstract: The nanoindentation behavior of hemispherical Al/a-Si core-shell nanostructures (CSNs), horizontally-aligned Al/a-Si core-shell nanorods (CSRs) with various lengths, and an Al/a-Si layered thin film has been studied to understand the effects of geometrical confinement of the Al core on the CSN deformation behavior. When loaded beyond the elastic limit, the CSNs have an unconventional load-displacement behavior with no residual displacement after unloading, resulting in no net shape change after indentation. This behavior is enabled by dislocation activities within the confined Al core, as indicated by discontinuous indentation signatures (load-drops and load-jumps) observed in the load-displacement data. When the geometrical confinement of the core is slightly reduced, as in the case of CSRs with the shortest rod length, the discontinuous indentation signatures and deformation resistance are heavily reduced. Further decreases in core confinement result in conventional nanoindentation behavior, regardless of geometry. Supporting molecular dynamics simulations show that dislocations nucleated in the core of a CSN are more effectively removed during unloading compared to CSRs, which supports the hypothesis that the unique deformation resistance of Al/a-Si CSNs are enabled by 3-dimensional confinement of the Al core.

  8. Material dimensionality effects on the nanoindentation behavior of Al/a-Si core-shell nanostructures

    International Nuclear Information System (INIS)

    Fleming, Robert A.; Goss, Josue A.; Zou, Min

    2017-01-01

    Highlights: • Nanoindentation behavior of Al/a-Si core-shell nanostructures were studied. • 3D core confinement enables significant deformation recovery beyond elastic limit. • As the confinement is reduced, the deformation recovery is reduced or suppressed. • Atomistic simulations suggest core confinement affects dislocation dynamics. • 3D confinement has the highest percentage of dislocation removal after unloading. - Abstract: The nanoindentation behavior of hemispherical Al/a-Si core-shell nanostructures (CSNs), horizontally-aligned Al/a-Si core-shell nanorods (CSRs) with various lengths, and an Al/a-Si layered thin film has been studied to understand the effects of geometrical confinement of the Al core on the CSN deformation behavior. When loaded beyond the elastic limit, the CSNs have an unconventional load-displacement behavior with no residual displacement after unloading, resulting in no net shape change after indentation. This behavior is enabled by dislocation activities within the confined Al core, as indicated by discontinuous indentation signatures (load-drops and load-jumps) observed in the load-displacement data. When the geometrical confinement of the core is slightly reduced, as in the case of CSRs with the shortest rod length, the discontinuous indentation signatures and deformation resistance are heavily reduced. Further decreases in core confinement result in conventional nanoindentation behavior, regardless of geometry. Supporting molecular dynamics simulations show that dislocations nucleated in the core of a CSN are more effectively removed during unloading compared to CSRs, which supports the hypothesis that the unique deformation resistance of Al/a-Si CSNs are enabled by 3-dimensional confinement of the Al core.

  9. [Principles for molecular identification of traditional Chinese materia medica using DNA barcoding].

    Science.gov (United States)

    Chen, Shi-Lin; Yao, Hui; Han, Jian-Ping; Xin, Tian-Yi; Pang, Xiao-Hui; Shi, Lin-Chun; Luo, Kun; Song, Jing-Yuan; Hou, Dian-Yun; Shi, Shang-Mei; Qian, Zhong-Zhi

    2013-01-01

    Since the research of molecular identification of Chinese Materia Medica (CMM) using DNA barcode is rapidly developing and popularizing, the principle of this method is approved to be listed in the Supplement of the Pharmacopoeia of the People's Republic of China. Based on the study on comprehensive samples, the DNA barcoding systems have been established to identify CMM, i.e. ITS2 as a core barcode and psbA-trnH as a complementary locus for identification of planta medica, and COI as a core barcode and ITS2 as a complementary locus for identification of animal medica. This article introduced the principle of molecular identification of CMM using DNA barcoding and its drafting instructions. Furthermore, its application perspective was discussed.

  10. Interaction of molecular oxygen with single wall nanotubes: Role of surfactant contamination

    International Nuclear Information System (INIS)

    Larciprete, R.; Goldoni, A.; Lizzit, S.

    2003-01-01

    The interaction of molecular oxygen with single wall nanotubes in the form of a commercial bucky paper was investigated by high resolution photoemission spectroscopy. Sodium contamination was found in the sample, which was completely removed only after prolonged heating at 1250 K. The C 1s core level spectrum measured on the sample annealed to 1020 K dramatically changed upon exposure to molecular oxygen. On the contrary, when exposing the Na-free SWNTs to several KL of O 2 , the sample remained oxygen free and no modification in the C 1s core level was observed. Therefore the observed sensitivity of the sample to O 2 was due to a Na mediated oxidation, determining a charge transfer from the C tubes to the Na-O complex

  11. Simulations of the Light Scattering Properties of Metal/Oxide Core/Shell Nanospheres

    International Nuclear Information System (INIS)

    Ruffino, F.; Piccitto, G.; Grimaldi, M.G.; Ruffino, F.; Grimaldi, M.G.

    2014-01-01

    Given the importance of the optical properties of metal/dielectric core/shell nanoparticles, in this work we focus our attention on the light scattering properties, within the Mie framework, of some specific categories of these noteworthy nano structures. In particular, we report theoretical results of angle-dependent light scattering intensity and scattering efficiency for Ag/Ag 2 O, Al/Al 2 O 2 , Cu/Cu 2 O, Pd/PdO, and Ti/TiO 2 core/shell nanoparticles as a function of the core radius/shell thickness ratio and on a relative comparison. The results highlight the light scattering characteristics of these systems as a function of the radius/shell thickness ratio, helping in the choice of the more suitable materials and sizes for specific applications (i.e., dynamic light scattering for biological and molecular recognition, increasing light trapping in thin-film silicon, organic solar cells for achieving a higher photocurrent).

  12. In-core Instrument Subcritical Verification (INCISV) - Core Design Verification Method - 358

    International Nuclear Information System (INIS)

    Prible, M.C.; Heibel, M.D.; Conner, S.L.; Sebastiani, P.J.; Kistler, D.P.

    2010-01-01

    According to the standard on reload startup physics testing, ANSI/ANS 19.6.1, a plant must verify that the constructed core behaves sufficiently close to the designed core to confirm that the various safety analyses bound the actual behavior of the plant. A large portion of this verification must occur before the reactor operates at power. The INCISV Core Design Verification Method uses the unique characteristics of a Westinghouse Electric Company fixed in-core self powered detector design to perform core design verification after a core reload before power operation. A Vanadium self powered detector that spans the length of the active fuel region is capable of confirming the required core characteristics prior to power ascension; reactivity balance, shutdown margin, temperature coefficient and power distribution. Using a detector element that spans the length of the active fuel region inside the core provides a signal of total integrated flux. Measuring the integrated flux distributions and changes at various rodded conditions and plant temperatures, and comparing them to predicted flux levels, validates all core necessary core design characteristics. INCISV eliminates the dependence on various corrections and assumptions between the ex-core detectors and the core for traditional physics testing programs. This program also eliminates the need for special rod maneuvers which are infrequently performed by plant operators during typical core design verification testing and allows for safer startup activities. (authors)

  13. Waves in the core and mechanical core-mantle interactions

    DEFF Research Database (Denmark)

    Jault, D.; Finlay, Chris

    2015-01-01

    This Chapter focuses on time-dependent uid motions in the core interior, which can beconstrained by observations of the Earth's magnetic eld, on timescales which are shortcompared to the magnetic diusion time. This dynamics is strongly inuenced by the Earth's rapid rotation, which rigidies...... the motions in the direction parallel to the Earth'srotation axis. This property accounts for the signicance of the core-mantle topography.In addition, the stiening of the uid in the direction parallel to the rotation axis gives riseto a magnetic diusion layer attached to the core-mantle boundary, which would...... otherwisebe dispersed by Alfven waves. This Chapter complements the descriptions of large-scaleow in the core (8.04), of turbulence in the core (8.06) and of core-mantle interactions(8.12), which can all be found in this volume. We rely on basic magnetohydrodynamictheory, including the derivation...

  14. A core design study for 'zero-sodium-void-worth' cores

    International Nuclear Information System (INIS)

    Kawashima, Masatoshi; Suzuki, Masao; Hill, R.N.

    1992-01-01

    Recently, a number of low sodium-void-worth metal-fueled core design concepts have been proposed; to provide for flexibility in transuranic nuclide management strategy, core designs which exhibit a wide range of breeding characteristics have been developed. Two core concepts, a flat annular (transuranic burning) core and an absorber-type parfait (transuranic self-sufficient) core, are selected for this study. In this paper, the excess reactivity management schemes applied in the two designs are investigated in detail. In addition, the transient effect of reactivity insertions on the parfait core design is assessed. The upper and lower core regions in the parfait design are neutronically decoupled; however, the common coolant channel creates thermalhydraulic coupling. This combination of neutronic and thermalhydraulic characteristics leads to unique behavior in anticipated transient overpower events. (author)

  15. Development of the Northern European Ribes core collection based on a microsatellite (SSR) marker diversity analysis

    DEFF Research Database (Denmark)

    Antonius, Kristiina; Karhu, S.; Kaldmäe, H.

    2012-01-01

    The purpose of the study was to support the selection process of the most valuable currant and gooseberry accessions cultivated in Northern Europe, in order to establish a decentralized core collection and, following the selection, to ensure sufficient genetic diversity in the selected collection....... Molecular analyses of the material from nine project partners were run at seven different laboratories. The results were first analysed for each partner separately, and then combined to ensure sufficient genetic diversity in the core collection....

  16. k-core covers and the core

    NARCIS (Netherlands)

    Sanchez-Rodriguez, E.; Borm, Peter; Estevez-Fernandez, A.; Fiestras-Janeiro, G.; Mosquera, M.A.

    This paper extends the notion of individual minimal rights for a transferable utility game (TU-game) to coalitional minimal rights using minimal balanced families of a specific type, thus defining a corresponding minimal rights game. It is shown that the core of a TU-game coincides with the core of

  17. Design and intestinal mucus penetration mechanism of core-shell nanocomplex.

    Science.gov (United States)

    Zhang, Xin; Cheng, Hongbo; Dong, Wei; Zhang, Meixia; Liu, Qiaoyu; Wang, Xiuhua; Guan, Jian; Wu, Haiyang; Mao, Shirui

    2018-02-28

    The objective of this study was to design intestinal mucus-penetrating core-shell nanocomplex by functionally mimicking the surface of virus, which can be used as the carrier for peroral delivery of macromolecules, and further understand the influence of nanocomplex surface properties on the mucosal permeation capacity. Taking insulin as a model drug, the core was formed by the self-assembly among positively charged chitosan, insulin and negatively charged sodium tripolyphosphate, different types of alginates were used as the shell forming material. The nanocomplex was characterized by dynamic light scattering (DLS), atomic force microscopy (AFM) and FTIR. Nanocomplex movement in mucus was recorded using multiple particle tracking (MPT) method. Permeation and uptake of different nanocomplex were studied in rat intestine. It was demonstrated that alginate coating layer was successfully formed on the core and the core-shell nanocomplex showed a good physical stability and improved enzymatic degradation protection. The mucus penetration and MPT study showed that the mucus penetration capacity of the nanocomplex was surface charge and coating polymer structure dependent, nanocomplex with negative alginate coating had 1.6-2.5 times higher mucus penetration ability than that of positively charged chitosan-insulin nanocomplex. Moreover, the mucus penetration ability of the core-shell nanocomplex was alginate structure dependent, whereas alginate with lower G content and lower molecular weight showed the best permeation enhancing ability. The improvement of intestine permeation and intestinal villi uptake of the core-shell nanocomplex were further confirmed in rat intestine and multiple uptake mechanisms were involved in the transport process. In conclusion, core-shell nanocomplex composed of oppositely charged materials could provide a strategy to overcome the mucus barrier and enhance the mucosal permeability. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Hepatitis B Virus Core Protein Dephosphorylation Occurs during Pregenomic RNA Encapsidation.

    Science.gov (United States)

    Zhao, Qiong; Hu, Zhanying; Cheng, Junjun; Wu, Shuo; Luo, Yue; Chang, Jinhong; Hu, Jianming; Guo, Ju-Tao

    2018-07-01

    Hepatitis B virus (HBV) core protein consists of an N-terminal assembly domain and a C-terminal domain (CTD) with seven conserved serines or threonines that are dynamically phosphorylated/dephosphorylated during the viral replication cycle. Sulfamoylbenzamide derivatives are small molecular core protein allosteric modulators (CpAMs) that bind to the heteroaryldihydropyrimidine (HAP) pocket between the core protein dimer-dimer interfaces. CpAM binding alters the kinetics and pathway of capsid assembly and can result in the formation of morphologically "normal" capsids devoid of viral pregenomic RNA (pgRNA) and DNA polymerase. In order to investigate the mechanism underlying CpAM inhibition of pgRNA encapsidation, we developed an immunoblotting assay that can resolve core protein based on its phosphorylation status and demonstrated, for the first time, that core protein is hyperphosphorylated in free dimers and empty capsids from both mock-treated and CpAM-treated cells but is hypophosphorylated in pgRNA- and DNA-containing nucleocapsids. Interestingly, inhibition of pgRNA encapsidation by a heat shock protein 90 (HSP90) inhibitor prevented core protein dephosphorylation. Moreover, core proteins with point mutations at the wall of the HAP pocket, V124A and V124W, assembled empty capsids and nucleocapsids with altered phosphorylation status. The results thus suggest that core protein dephosphorylation occurs in the assembly of pgRNA and that interference with the interaction between core protein subunits at dimer-dimer interfaces during nucleocapsid assembly alters not only capsid structure, but also core protein dephosphorylation. Hence, inhibition of pgRNA encapsidation by CpAMs might be due to disruption of core protein dephosphorylation during nucleocapsid assembly. IMPORTANCE Dynamic phosphorylation of HBV core protein regulates multiple steps of viral replication. However, the regulatory function was mainly investigated by phosphomimetic mutagenesis, which

  19. Further studies of the role of dense molecular clouds around outflow sources

    International Nuclear Information System (INIS)

    Verdes-Montenegro, L.; Torrelles, J.M.; Rodriguez, L.F.; Anglada, G.; Lopez, R.

    1989-01-01

    The (J,K) = (1,1) and (2,2) ammonia inversion transitions toward six regions with active star formation and evidence of gas outflows have been observed. Ammonia emission has been detected and mapped in five of these regions: AFGL 5142, AFGL 5157, AFGL 6366S, HHL 73, and S140N. NH3 (2,2) emission was detected toward the peak of the NH3 (1,1) core of AFGL 5157 and S140N. A rotational temperature of T(R) (2,2;1,1) = about 16 K was estimated for the two regions. Two new H2O masers of intense emission, S(nu) greater or equal 40 Jy, were detected toward the ammonia cores of AFGL 5142 and AFGL 5157. It is clear that the dense NH3 gas is closely associated with the star formation activities, since the ammonia cores in all peak close to the centers of activity. In particular, the AFGL 5157 ammonia condensation coincides with the geometrical center of a bipolar molecular outflow, suggesting that the exciting source is embedded in the ammonia core. In contrast, the molecular outflow in the AFGL 6366S region is located at the southeast edge of the NH3 condensation, suggesting that the exciting source is outside the ammonia core and that the morphology of the outflow may be influenced by the interaction with the dense ambient gas. 52 refs

  20. Core catcher for nuclear reactor core meltdown containment

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Bowman, F.L.

    1978-01-01

    A bed of graphite particles is placed beneath a nuclear reactor core outside the pressure vessel but within the containment building to catch the core debris in the event of failure of the emergency core cooling system. Spray cooling of the debris and graphite particles together with draining and flooding of coolant fluid of the graphite bed is provided to prevent debris slump-through to the bottom of the bed

  1. PanCoreGen – profiling, detecting, annotating protein-coding genes in microbial genomes

    Science.gov (United States)

    Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V.

    2015-01-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen – a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars – Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. PMID:26456591

  2. Synthesis and characterization of core-shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Rhodamine B in food.

    Science.gov (United States)

    Su, Xiaomeng; Li, Xiaoyan; Li, Junjie; Liu, Min; Lei, Fuhou; Tan, Xuecai; Li, Pengfei; Luo, Weiqiang

    2015-03-15

    Core-shell magnetic molecularly imprinted polymers (MIPs) nanoparticles (NPs), in which a Rhodamine B-imprinted layer was coated on Fe3O4 NPs. were synthesized. First, Fe3O4 NPs were prepared by a coprecipitation method. Then, amino-modified Fe3O4 NPs (Fe3O4@SiO2-NH2) was prepared. Finally, the MIPs were coated on the Fe3O4@SiO2-NH2 surface by the copolymerization with functional monomer, acrylamide, using a cross-linking agent, ethylene glycol dimethacrylate; an initiator, azobisisobutyronitrile and a template molecule, Rhodamine B. The Fe3O4@MIPs were characterized using a scanning electron microscope, Fourier transform infrared spectrometer, vibrating sample magnetometer, and re-binding experiments. The Fe3O4@MIPs showed a fast adsorption equilibrium, a highly improved imprinting capacity, and significant selectivity; they could be used as a solid-phase extraction material and detect illegal addition Rhodamine B in food. A method was developed for the selective isolation and enrichment of Rhodamine B in food samples with recoveries in the range 78.47-101.6% and the relative standard deviation was <2%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The Nature of VeLLOs

    Science.gov (United States)

    Huard, Tracy L.; Pound, Marc W.; Mundy, Lee; Dunham, Michael

    2018-01-01

    Very Low Luminosity Objects (VeLLOs) are young stellar sources that are defined by luminosities less than 0.1 solar luminosity and rising mid-infrared spectral energy distributions. But, what exactly are they? Brown dwarfs or low-mass stars in formation? Systems exhibiting low accretion rates? Extremely young objects? We have completed an ALMA survey of 33 candidates in the nearby Serpens, Ophiuchus, and Lupus star-forming molecular clouds. Continuum emission at 1.3 mm, consistent with the presence of an inner envelope and/or disk, was detected toward 17 candidates, with at least 6 of these candidates exhibiting CO outflow emission, suggesting ongoing formation. We will present these observations and results, and discuss their implications concerning the nature of VeLLOs.

  4. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

    Science.gov (United States)

    Kumar, Sudhir; Stecher, Glen; Li, Michael; Knyaz, Christina; Tamura, Koichiro

    2018-06-01

    The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.

  5. Genomic variation in Salmonella enterica core genes for epidemiological typing

    DEFF Research Database (Denmark)

    Leekitcharoenphon, Pimlapas; Lukjancenko, Oksana; Rundsten, Carsten Friis

    2012-01-01

    Background: Technological advances in high throughput genome sequencing are making whole genome sequencing (WGS) available as a routine tool for bacterial typing. Standardized procedures for identification of relevant genes and of variation are needed to enable comparison between studies and over...... genomes and evaluate their value as typing targets, comparing whole genome typing and traditional methods such as 16S and MLST. A consensus tree based on variation of core genes gives much better resolution than 16S and MLST; the pan-genome family tree is similar to the consensus tree, but with higher...... that there is a positive selection towards mutations leading to amino acid changes. Conclusions: Genomic variation within the core genome is useful for investigating molecular evolution and providing candidate genes for bacterial genome typing. Identification of genes with different degrees of variation is important...

  6. Defining the Core Genome of Salmonella enterica Serovar Typhimurium for Genomic Surveillance and Epidemiological Typing

    Science.gov (United States)

    Fu, Songzhe; Octavia, Sophie; Tanaka, Mark M.; Sintchenko, Vitali

    2015-01-01

    Salmonella enterica serovar Typhimurium is the most common Salmonella serovar causing foodborne infections in Australia and many other countries. Twenty-one S. Typhimurium strains from Salmonella reference collection A (SARA) were analyzed using Illumina high-throughput genome sequencing. Single nucleotide polymorphisms (SNPs) in 21 SARA strains ranged from 46 to 11,916 SNPs, with an average of 1,577 SNPs per strain. Together with 47 strains selected from publicly available S. Typhimurium genomes, the S. Typhimurium core genes (STCG) were determined. The STCG consist of 3,846 genes, a set that is much larger than that of the 2,882 Salmonella core genes (SCG) found previously. The STCG together with 1,576 core intergenic regions (IGRs) were defined as the S. Typhimurium core genome. Using 93 S. Typhimurium genomes from 13 epidemiologically confirmed community outbreaks, we demonstrated that typing based on the S. Typhimurium core genome (STCG plus core IGRs) provides superior resolution and higher discriminatory power than that based on SCG for outbreak investigation and molecular epidemiology of S. Typhimurium. STCG and STCG plus core IGR typing achieved 100% separation of all outbreaks compared to that of SCG typing, which failed to separate isolates from two outbreaks from background isolates. Defining the S. Typhimurium core genome allows standardization of genes/regions to be used for high-resolution epidemiological typing and genomic surveillance of S. Typhimurium. PMID:26019201

  7. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg

    International Nuclear Information System (INIS)

    Hay, P.J.; Wadt, W.R.

    1985-01-01

    Ab initio effective core potentials (ECP's) have been generated to replace the Coulomb, exchange, and core-orthogonality effects of the chemically inert core electron in the transition metal atoms Sc to Hg. For the second and third transition series relative ECP's have been generated which also incorporate the mass--velocity and Darwin relativistic effects into the potential. The ab initio ECP's should facilitate valence electron calculations on molecules containing transition-metal atoms with accuracies approaching all-electron calculations at a fraction of the computational cost. Analytic fits to the potentials are presented for use in multicenter integral evaluation. Gaussian orbital valence basis sets are developed for the (3d,4s,4p), (4d,5s,5p), and (5d,6s,6p) orbitals of the first, second, and third transition series atoms, respectively. All-electron and valence-electron atomic excitation energies are also compared for the low-lying states of Sc--Hg, and the valence-electron calculations are found to reproduce the all-electron excitation energies (typically within a few tenths of an eV)

  8. Isotope Fractionation Studies in Prestellar Cores: The Case of Nitrogen

    Science.gov (United States)

    Milam, Stefanie N.; Charnley, Steven B.

    2011-01-01

    Isotopically fractionated material is found in many solar system objects, including meteorites and comets. It is considered, in some cases, to trace interstellar material that was incorporated into the solar system without undergoing significant processing, thus preserving the fractionation. In interstellar molecular clouds, ion-molecule chemistry continually cycles nitrogen between the two main reservoirs - N and N2 - leading to only minor N-15 enrichments. Charnley and Rodgers showed that depletion of CO removes oxygen from the gas and weakens this cycle such that significant N-15 fractionation can occur for N2 and other N-bearing species in such cores. Observations are being conducted at millimeter and submillimeter wavelengths employing various facilities in order to both spatially and spectrally, resolve emission from these cores. A preliminary study to obtain the N-14/N-15 ratio in nitriles (HCN and HNC) was conducted at the Arizona Radio Observatory's 12m telescope on Kitt Peak, AZ. Spectra were obtained at high resolution (0.08 km/s) in order to resolve dynamic properties of each source as well as to resolve hyperfine structure present in certain isotopologues. This study included four dark cloud cores, observed to have varying levels of molecular depletion: L1521E, L1498, L1544, and L1521F. Previous studies of the N-14/N-15 ratio towards LI544 were obtained with N2H+ and NIH3, yielding ratios of 446 and >700, respectively. The discrepancy observed in these two measurements suggests a strong chemical dependence on the fractionation of nitrogen. Ratios (C,N, and D) obtained from isotopologues for a particular molecule are likely tracing the same chemical heritage and are directly comparable within a given source. Results and comparisons between the protostellar evolutionary state and isomer isotope fractionation as well as between other N-bearing species will be presented.

  9. [Precision medicine: new opportunities and challenges for molecular epidemiology].

    Science.gov (United States)

    Song, Jing; Hu, Yonghua

    2016-04-01

    Since the completion of the Human Genome Project in 2003 and the announcement of the Precision Medicine Initiative by U.S. President Barack Obama in January 2015, human beings have initially completed the " three steps" of " genomics to biology, genomics to health as well as genomics to society". As a new inter-discipline, the emergence and development of precision medicine have relied on the support and promotion from biological science, basic medicine, clinical medicine, epidemiology, statistics, sociology and information science, etc. Meanwhile, molecular epidemiology is considered to be the core power to promote precision medical as a cross discipline of epidemiology and molecular biology. This article is based on the characteristics and research progress of medicine and molecular epidemiology respectively, focusing on the contribution and significance of molecular epidemiology to precision medicine, and exploring the possible opportunities and challenges in the future.

  10. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    International Nuclear Information System (INIS)

    Wang, Jiaqi; Shin, Seungha

    2017-01-01

    Room temperature (T room , 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T room . The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T room , compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  11. Strain in GaAs / InAs core-shell nanowire heterostructures grown on GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas; Davydok, Anton; Pietsch, Ullrich [Universitaet Siegen, Festkoerperphysik (Germany); Rieger, Torsten; Lepsa, Mihail Ion [Peter Gruenberg Institut 9, Forschungszentrum Juelich (Germany); JARA - Fundamentals of Future Information Technology (Germany)

    2012-07-01

    The growth of semiconductor nanowires (NWs) has attracted significant interest in recent years due to the possible fabrication of novel semiconductor devices for future electronic and opto-electronic applications. Compared to planar heterostructures, the nanowire approach offers an advantage regarding the possibility to form heterostructures between highly lattice mismatched systems, because the free surface of the nanowires allows to relieve the strain more efficiently. One particular way to form heterostructures in the NW geometry, is the fabrication of core-shell devices, in which a NW core is surrounded by a shell of different material. The understanding of the mutual strain between core and shell, as well as the relaxation behavior of the system are crucial for the fabrication of functional devices. In this contribution we report on first X-ray diffraction measurements of GaAs-core/InAs-shell nanowires grown on GaAs(111) by molecular beam epitaxy. Using symmetric- and grazing-incidence X-ray diffraction, the relaxation state of the InAs shell as well as the strain in the GaAs core are measured as function of the InAs shell thickness, showing a gradual relaxation behavior of the shell.

  12. Drilling equipment for difficult coring conditions: a new type of core lifter and triple tube core barrel

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J B

    1968-08-01

    Although considerable improvements in diamond drilling equipment have been made since the early 1950's, deficiencies in existing equipment led to the development of a new type core lifter and special 20 ft triple tube core barrel designed to operate in bad coring conditions. It is claimed that although developed essentially for coal drilling, the new equipment could be adapted to other fields of diamond drilling with the cost advantage of increased life of the core lifter.

  13. PEG-stabilized core-shell surface-imprinted nanoparticles.

    Science.gov (United States)

    Moczko, Ewa; Guerreiro, Antonio; Piletska, Elena; Piletsky, Sergey

    2013-08-06

    Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging.

  14. A DOUBLE CLUSTER AT THE CORE OF 30 DORADUS

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, E.; De Mink, S. E.; Walborn, N. R.; Anderson, J.; Bellini, A.; Panagia, N.; Van der Marel, R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lennon, D. J. [ESA/STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gieles, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Apellaniz, J. Maiz, E-mail: sabbi@stsci.edu [Instituto de Astrofisica de Andalucia-CSIC, Glorieta de la Astronomia s/n, E-18008, Granada (Spain)

    2012-08-01

    Based on an analysis of data obtained with the Wide Field Camera 3 on the Hubble Space Telescope we report the identification of two distinct stellar populations in the core of the giant H II region 30 Doradus in the Large Magellanic Cloud. The most compact and richest component coincides with the center of R136 and is {approx}1 Myr younger than a second more diffuse clump, located {approx}5.4 pc toward the northeast. We note that published spectral types of massive stars in these two clumps lend support to the proposed age difference. The morphology and age difference between the two sub-clusters suggests that an ongoing merger may be occurring within the core of 30 Doradus. This finding is consistent with the predictions of models of hierarchical fragmentation of turbulent giant molecular clouds, according to which star clusters would be the final products of merging smaller sub-structures.

  15. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Tsuyoshi [Joint ALMA Office, Alonso de Cordova 3107, Vitacura, Santiago 763-0355 (Chile); Hasegawa, Tetsuo [NAOJ Chile Observatory, Joaquin Montero 3000 Oficina 702, Vitacura, Santiago 763-0409 (Chile); Koda, Jin, E-mail: sawada.tsuyoshi@nao.ac.jp [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2012-11-01

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

  16. HIERARCHICAL FRAGMENTATION OF THE ORION MOLECULAR FILAMENTS

    International Nuclear Information System (INIS)

    Takahashi, Satoko; Ho, Paul T. P.; Su, Yu-Nung; Teixeira, Paula S.; Zapata, Luis A.

    2013-01-01

    We present a high angular resolution map of the 850 μm continuum emission of the Orion Molecular Cloud-3 (OMC 3) obtained with the Submillimeter Array (SMA); the map is a mosaic of 85 pointings covering an approximate area of 6.'5 × 2.'0 (0.88 × 0.27 pc). We detect 12 spatially resolved continuum sources, each with an H 2 mass between 0.3-5.7 M ☉ and a projected source size between 1400-8200 AU. All the detected sources are on the filamentary main ridge (n H 2 ≥10 6 cm –3 ), and analysis based on the Jeans theorem suggests that they are most likely gravitationally unstable. Comparison of multi-wavelength data sets indicates that of the continuum sources, 6/12 (50%) are associated with molecular outflows, 8/12 (67%) are associated with infrared sources, and 3/12 (25%) are associated with ionized jets. The evolutionary status of these sources ranges from prestellar cores to protostar phase, confirming that OMC-3 is an active region with ongoing embedded star formation. We detect quasi-periodical separations between the OMC-3 sources of ≈17''/0.035 pc. This spatial distribution is part of a large hierarchical structure that also includes fragmentation scales of giant molecular cloud (≈35 pc), large-scale clumps (≈1.3 pc), and small-scale clumps (≈0.3 pc), suggesting that hierarchical fragmentation operates within the Orion A molecular cloud. The fragmentation spacings are roughly consistent with the thermal fragmentation length in large-scale clumps, while for small-scale cores it is smaller than the local fragmentation length. These smaller spacings observed with the SMA can be explained by either a helical magnetic field, cloud rotation, or/and global filament collapse. Finally, possible evidence for sequential fragmentation is suggested in the northern part of the OMC-3 filament.

  17. Characterizing the Core via K-Core Covers

    NARCIS (Netherlands)

    Sanchez, S.M.; Borm, P.E.M.; Estevez, A.

    2013-01-01

    This paper extends the notion of individual minimal rights for a transferable utility game (TU-game) to coalitional minimal rights using minimal balanced families of a specific type, thus defining a corresponding minimal rights game. It is shown that the core of a TU-game coincides with the core of

  18. Determination of PWR core water level using ex-core detectors signals

    International Nuclear Information System (INIS)

    Bernal, Alvaro; Abarca, Agustin; Miro, Rafael; Verdu, Gumersindo

    2013-01-01

    The core water level provides relevant neutronic and thermalhydraulic information of the reactor such as power, k eff and cooling ability; in fact, core water level monitoring could be used to predict LOCA and cooling reduction which may deal with core damage. Although different detection equipment is used to monitor several parameters such as the power, core water level monitoring is not an evident task. However, ex-core detectors can measure the fast neutrons leaking the core and several studies demonstrate the existence of a relationship between fast neutron leakage and core water level due to the shielding effect of the water. In addition, new ex-core detectors are being developed, such as silicon carbide semiconductor radiation detectors, monitoring the neutron flux with higher accuracy and in higher temperatures conditions. Therefore, a methodology to determine this relationship has been developed based on a Monte Carlo calculation using MCNP code and applying variance reduction with adjoint functions based on the adjoint flux obtained with the discrete ordinates code TORT. (author)

  19. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  20. LONG CARBON-CHAIN MOLECULES AND THEIR ANIONS IN THE STARLESS CORE, LUPUS-1A

    International Nuclear Information System (INIS)

    Sakai, Nami; Shiino, Tatsuya; Yamamoto, Satoshi; Hirota, Tomoya; Sakai, Takeshi

    2010-01-01

    We have recently discovered a new starless core with bright radio emissions of long carbon-chain molecules in the Lupus molecular cloud, which we have named as Lupus-1A. Toward this source, the peak intensities of the C 6 H and C 8 H lines are found to be higher than toward TMC-1 by a factor of 2-3. Even the lines of their anions, C 6 H - and C 8 H - , are also brighter than in TMC-1. Moreover, the line of C 4 H - has been detected for the first time in a starless core. The column densities of these long carbon-chain molecules are almost comparable to those in TMC-1, and hence, this source can be regarded as the second 'TMC-1 like cloud'. TMC-1 has long been an outstanding molecular cloud with rich carbon-chain molecules since its discovery in 1976. In spite of extensive efforts, no comparable sources have been found so far. Lupus-1A will be used for hunting of new interstellar molecules as well as understanding of carbon-chain chemistry through critical comparison of physical and chemical properties with TMC-1. This source is important not only for astronomy but also for molecular science as an ideal spectroscopic laboratory because of narrow line shapes and bright intensities.

  1. Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces

    International Nuclear Information System (INIS)

    Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.

    2011-01-01

    The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both many-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.

  2. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Benhadjala, W., E-mail: warda.benhadjala@cea.fr [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); CEA, LETI, Minatec Campus, 38000 Grenoble (France); Gravoueille, M.; Weiss, M. [EDF, Centre d' Expertise et d' Inspection dans les Domaines de la Réalisation et de l' Exploitation (CEIDRE), Chinon, BP 80, 37420 Avoine (France); Bord-Majek, I.; Béchou, L.; Ousten, Y. [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Suhir, E. [Maseeh College of Engineering and Computer Science, Portland State University, Oregon 97201 (United States); Buet, M.; Louarn, M.; Rougé, F.; Gaud, V. [Polyrise SAS, 16 Avenue Pey Berland, 33607 Pessac (France)

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlighted that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.

  3. Rice Cellulose SynthaseA8 Plant-Conserved Region Is a Coiled-Coil at the Catalytic Core Entrance

    Energy Technology Data Exchange (ETDEWEB)

    Rushton, Phillip S.; Olek, Anna T.; Makowski, Lee; Badger, John; Steussy, C. Nicklaus; Carpita, Nicholas C.; Stauffacher, Cynthia V. (NEU); (Purdue)

    2016-11-22

    The crystallographic structure of a rice (Oryza sativa) cellulose synthase, OsCesA8, plant-conserved region (P-CR), one of two unique domains in the catalytic domain of plant CesAs, was solved to 2.4 Å resolution. Two antiparallel α-helices form a coiled-coil domain linked by a large extended connector loop containing a conserved trio of aromatic residues. The P-CR structure was fit into a molecular envelope for the P-CR domain derived from small-angle X-ray scattering data. The P-CR structure and molecular envelope, combined with a homology-based chain trace of the CesA8 catalytic core, were modeled into a previously determined CesA8 small-angle X-ray scattering molecular envelope to produce a detailed topological model of the CesA8 catalytic domain. The predicted position for the P-CR domain from the molecular docking models places the P-CR connector loop into a hydrophobic pocket of the catalytic core, with the coiled-coil aligned near the entrance of the substrate UDP-glucose into the active site. In this configuration, the P-CR coiled-coil alone is unlikely to regulate substrate access to the active site, but it could interact with other domains of CesA, accessory proteins, or other CesA catalytic domains to control substrate delivery.

  4. Rotary core drills

    Energy Technology Data Exchange (ETDEWEB)

    1967-11-30

    The design of a rotary core drill is described. Primary consideration is given to the following component parts of the drill: the inner and outer tube, the core bit, an adapter, and the core lifter. The adapter has the form of a downward-converging sleeve and is mounted to the lower end of the inner tube. The lifter, extending from the adapter, is split along each side so that it can be held open to permit movement of a core. It is possible to grip a core by allowing the lifter to assume a closed position.

  5. Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties.

    Science.gov (United States)

    Bardhan, Rizia; Grady, Nathaniel K; Ali, Tamer; Halas, Naomi J

    2010-10-26

    It is well-known that the geometry of a nanoshell controls the resonance frequencies of its plasmon modes; however, the properties of the core material also strongly influence its optical properties. Here we report the synthesis of Au nanoshells with semiconductor cores of cuprous oxide and examine their optical characteristics. This material system allows us to systematically examine the role of core material on nanoshell optical properties, comparing Cu(2)O core nanoshells (ε(c) ∼ 7) to lower core dielectric constant SiO(2) core nanoshells (ε(c) = 2) and higher dielectric constant mixed valency iron oxide nanoshells (ε(c) = 12). Increasing the core dielectric constant increases nanoparticle absorption efficiency, reduces plasmon line width, and modifies plasmon energies. Modifying the core medium provides an additional means of tailoring both the near- and far-field optical properties in this unique nanoparticle system.

  6. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  7. New formula for dependence of molecular electronic energy on internuclear distance

    International Nuclear Information System (INIS)

    Rebane, T.K.

    1988-01-01

    We formulate an integral virial theorem which connects the change in the molecular electronic energy during finite changes in the size of the nuclear core (in the case of a diatomic molecule, during finite changes of the internuclear distance) with a matrix element of the kinetic electronic energy operator and with an overlap integral between wave functions. Our results can be used to calculate the dependence of the molecular electronic energy on the internuclear distance, as well as to check the quality of, and to improve, the approximate electronic wave functions. The theory is illustrated by the simplest example of the approximate MO LCAO wave function for the hydrogen molecular ion

  8. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  9. A core performance study on an actinide recycling 'zero-sodium-void worth' core

    International Nuclear Information System (INIS)

    Kawashima, M.; Nakagawa, M.; Yamaoka, M.; Kasahara, F.

    1994-01-01

    A core performance study was made for an absorber-type parfait core (A-APC) as one of 'Zero-sodium-void-worth' core concepts. This evaluation study pursued different two aspects; one for transuranic (TRU) management strategy, and another for a loss-of-coolant anticipated transient behavior considering the unique core configuration. The results indicated that this core has a large flexibility for actinide recycling in terms of self-sufficiency and minor actinide burning. The result also showed that this core has kept a large mitigation potential for ULOF events as well as a simple flat core concept, reflecting detailed three dimensional core bowing behavior for the A-APC configuration. (author)

  10. Preliminaries on core image analysis using fault drilling samples; Core image kaiseki kotohajime (danso kussaku core kaisekirei)

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, T; Ito, H [Geological Survey of Japan, Tsukuba (Japan)

    1996-05-01

    This paper introduces examples of image data analysis on fault drilling samples. The paper describes the following matters: core samples used in the analysis are those obtained from wells drilled piercing the Nojima fault which has moved in the Hygoken-Nanbu Earthquake; the CORESCAN system made by DMT Corporation, Germany, used in acquiring the image data consists of a CCD camera, a light source and core rotation mechanism, and a personal computer, its resolution being about 5 pixels/mm in both axial and circumferential directions, and 24-bit full color; with respect to the opening fractures in core samples collected by using a constant azimuth coring, it was possible to derive values of the opening width, inclination angle, and travel from the image data by using a commercially available software for the personal computer; and comparison of this core image with the BHTV record and the hydrophone VSP record (travel and inclination obtained from the BHTV record agree well with those obtained from the core image). 4 refs., 4 figs.

  11. THE JCMT GOULD BELT SURVEY: A FIRST LOOK AT DENSE CORES IN ORION B

    International Nuclear Information System (INIS)

    Kirk, H.; Francesco, J. Di; Johnstone, D.; Duarte-Cabral, A.; Hatchell, J.; Sadavoy, S.; Mottram, J. C.; Buckle, J.; Salji, C.; Berry, D. S.; Currie, M. J.; Jenness, T.; Broekhoven-Fiene, H.; Fich, M.; Tisi, S.; Nutter, D.; Quinn, C.; Pattle, K.; Pineda, J. E.; Hogerheijde, M. R.

    2016-01-01

    We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2024, and NGC 2068/2071 respectively, using the SCUBA-2 850 μm map, and present their basic properties, including their peak fluxes, total fluxes, and sizes, and an estimate of the corresponding 450 μm peak fluxes and total fluxes, using the FellWalker source extraction algorithm. Assuming a constant temperature of 20 K, the starless dense cores have a mass function similar to that found in previous dense core analyses, with a Salpeter-like slope at the high-mass end. The majority of cores appear stable to gravitational collapse when considering only thermal pressure; indeed, most of the cores which have masses above the thermal Jeans mass are already associated with at least one protostar. At higher cloud column densities, above 1–2 × 10 23 cm −2 , most of the mass is found within dense cores, while at lower cloud column densities, below 1 × 10 23 cm −2 , this fraction drops to 10% or lower. Overall, the fraction of dense cores associated with a protostar is quite small (<8%), but becomes larger for the densest and most centrally concentrated cores. NGC 2023/2024 and NGC 2068/2071 appear to be on the path to forming a significant number of stars in the future, while L1622 has little additional mass in dense cores to form many new stars

  12. Understanding twinning nucleation and dislocation core structure through interscale hybrid method

    DEFF Research Database (Denmark)

    Xu, Ben; Zhang, Xiaodan

    2014-01-01

    The variety of emerging simulation methods and improved computational power advance the understanding in nanometals as a good compensation of the experiments. In this paper, the first principle methods are discussed, especially as a useful combination of the classical molecular dynamics, to overc......, to overcome the disadvantages of the latter method. Two examples are given as: the nucleation of the {10-12} deformation twinning in magnesium, and the screw dislocation core structure with/without hydrogen in tungsten....

  13. Evolution of cell cycle control: same molecular machines, different regulation

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Brunak, Søren

    2007-01-01

    Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated or deacti......Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated...... for assembling the same molecular machines just in time for action....

  14. Self-sustained detachment in the Large Helical Device

    International Nuclear Information System (INIS)

    Miyazawa, J.; Masuzaki, S.; Sakamoto, R.; Arimoto, H.; Kondo, K.; Tamura, N.; Shoji, M.; Nishiura, M.; Murakami, S.; Funaba, H.; Peterson, B.J.; Sakakibara, S.; Kobayashi, M.; Tanaka, K.; Narihara, K.; Yamada, I.; Morita, S.; Goto, M.; Osakabe, M.; Ashikawa, N.; Morisaki, T.; Nishimura, K.; Yamada, H.; Ohyabu, N.; Komori, A.; Motojima, O.

    2006-01-01

    Self-sustained detachment has been obtained in the Large Helical Device (LHD). Strong hydrogen gas puffing of ∼200 Pa m 3 s -1 after a density feedback phase detaches the plasma from the divertor plates with high reproducibility. High electron density of over 1 x 10 20 m -3 is sustained without gas puffing until the heating beam stops and a high-density flat top for 2 s has been demonstrated. Throughout the self-sustained detachment phase, the minor radius of the hot plasma column shrinks to ∼90% of the last-closed-flux-surface, which corresponds to the ι-bar ι/2π = 1/q =1 rational surface. This new state has been named the 'Serpens mode', for self-regulated plasma edge 'neath the last-closed-flux-surface. Global energy confinement of the Serpens mode is compared with the international stellarator scaling 1995 (ISS95) and the recently established scaling for high-density LHD plasmas (HD scaling), where shrinking confinement volume and shallow penetration of the heating beams are taken into account. Although the energy confinement of the Serpens mode seems deteriorated compared with ISS95, as in the case of high-density attached plasmas, it is consistent with the HD scaling. This suggests that the energy confinement properties of detached plasmas in LHD are similar to those in high-density attached plasmas

  15. Magnetized Converging Flows toward the Hot Core in the Intermediate/High-mass Star-forming Region NGC 6334 V

    International Nuclear Information System (INIS)

    Juárez, Carmen; Girart, Josep M.; Zamora-Avilés, Manuel; Palau, Aina; Ballesteros-Paredes, Javier; Tang, Ya-Wen; Koch, Patrick M.; Liu, Hauyu Baobab; Zhang, Qizhou; Qiu, Keping

    2017-01-01

    We present Submillimeter Array (SMA) observations at 345 GHz toward the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern toward the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km s −1 , converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with magnetohydrodynamic simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (∼0.1 pc) of NGC 6334 V toward the higher-density hot core region (∼0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.

  16. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these ......Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  17. Sidewall coring shell

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, Ya A; Konstantinov, L P; Martyshin, A N

    1966-12-12

    A sidewall coring shell consists of a housing and a detachable core catcher. The core lifter is provided with projections, the ends of which are situated in another plane, along the longitudinal axis of the lifter. The chamber has corresponding projections.

  18. Cryo-EM Structure of the TOM Core Complex from Neurospora crassa.

    Science.gov (United States)

    Bausewein, Thomas; Mills, Deryck J; Langer, Julian D; Nitschke, Beate; Nussberger, Stephan; Kühlbrandt, Werner

    2017-08-10

    The TOM complex is the main entry gate for protein precursors from the cytosol into mitochondria. We have determined the structure of the TOM core complex by cryoelectron microscopy (cryo-EM). The complex is a 148 kDa symmetrical dimer of ten membrane protein subunits that create a shallow funnel on the cytoplasmic membrane surface. In the core of the dimer, the β-barrels of the Tom40 pore form two identical preprotein conduits. Each Tom40 pore is surrounded by the transmembrane segments of the α-helical subunits Tom5, Tom6, and Tom7. Tom22, the central preprotein receptor, connects the two Tom40 pores at the dimer interface. Our structure offers detailed insights into the molecular architecture of the mitochondrial preprotein import machinery. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Self-catalyzed growth of dilute nitride GaAs/GaAsSbN/GaAs core-shell nanowires by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kasanaboina, Pavan Kumar [Department of Electrical and Computer Engineering, North Carolina A& T State University, Greensboro, North Carolina 27411 (United States); Ahmad, Estiak [Nanoengineering, Joint School of Nanoscience and Nanoengineering, NCA& T State University, Greensboro, North Carolina 27401 (United States); Li, Jia; Iyer, Shanthi [Department of Electrical and Computer Engineering, North Carolina A& T State University, Greensboro, North Carolina 27411 (United States); Nanoengineering, Joint School of Nanoscience and Nanoengineering, NCA& T State University, Greensboro, North Carolina 27401 (United States); Reynolds, C. Lewis; Liu, Yang [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-07

    Bandgap tuning up to 1.3 μm in GaAsSb based nanowires by incorporation of dilute amount of N is reported. Highly vertical GaAs/GaAsSbN/GaAs core-shell configured nanowires were grown for different N contents on Si (111) substrates using plasma assisted molecular beam epitaxy. X-ray diffraction analysis revealed close lattice matching of GaAsSbN with GaAs. Micro-photoluminescence (μ-PL) revealed red shift as well as broadening of the spectra attesting to N incorporation in the nanowires. Replication of the 4K PL spectra for several different single nanowires compared to the corresponding nanowire array suggests good compositional homogeneity amongst the nanowires. A large red shift of the Raman spectrum and associated symmetric line shape in these nanowires have been attributed to phonon localization at point defects. Transmission electron microscopy reveals the dominance of stacking faults and twins in these nanowires. The lower strain present in these dilute nitride nanowires, as opposed to GaAsSb nanowires having the same PL emission wavelength, and the observation of room temperature PL demonstrate the advantage of the dilute nitride system offers in the nanowire configuration, providing a pathway for realizing nanoscale optoelectronic devices in the telecommunication wavelength region.

  20. Electromagnetically driven westward drift and inner-core superrotation in Earth's core.

    Science.gov (United States)

    Livermore, Philip W; Hollerbach, Rainer; Jackson, Andrew

    2013-10-01

    A 3D numerical model of the earth's core with a viscosity two orders of magnitude lower than the state of the art suggests a link between the observed westward drift of the magnetic field and superrotation of the inner core. In our model, the axial electromagnetic torque has a dominant influence only at the surface and in the deepest reaches of the core, where it respectively drives a broad westward flow rising to an axisymmetric equatorial jet and imparts an eastward-directed torque on the solid inner core. Subtle changes in the structure of the internal magnetic field may alter not just the magnitude but the direction of these torques. This not only suggests that the quasi-oscillatory nature of inner-core superrotation [Tkalčić H, Young M, Bodin T, Ngo S, Sambridge M (2013) The shuffling rotation of the earth's inner core revealed by earthquake doublets. Nat Geosci 6:497-502.] may be driven by decadal changes in the magnetic field, but further that historical periods in which the field exhibited eastward drift were contemporaneous with a westward inner-core rotation. The model further indicates a strong internal shear layer on the tangent cylinder that may be a source of torsional waves inside the core.

  1. Improving the calculated core stability by the core nuclear design optimization

    International Nuclear Information System (INIS)

    Partanen, P.

    1995-01-01

    Three different equilibrium core loadings for TVO II reactor have been generated in order to improve the core stability properties at uprated power level. The reactor thermal power is assumed to be uprated from 2160 MW th to 2500 MW th , which moves the operating point after a rapid pump rundown where the core stability has been calculated from 1340 MW th and 3200 kg/s to 1675 MW th and 4000 kg/s. The core has been refuelled with ABB Atom Svea-100 -fuel, which has 3,64% w/o U-235 average enrichment in the highly enriched zone. PHOENIX lattice code has been used to provide the homogenized nuclear constants. POLCA4 static core simulator has been used for core loadings and cycle simulations and RAMONA-3B program for simulating the dynamic response to the disturbance for which the stability behaviour has been evaluated. The core decay ratio has been successfully reduced from 0,83 to 0,55 mainly by reducing the power peaking factors. (orig.) (7 figs., 1 tab.)

  2. Heterogeneous condensation of ice mantle around silicate core grain in molecular cloud

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    Interstellar water ice grains are observed in the cold and dense regions such as molecular clouds, HII regions and protostellar objects. The water ice is formed from gas phase during the cooling stage of cosmic gas with solid grain surfaces of high temperature silicate minerals. It is a question whether the ice is formed through the homogeneous condensation process (as the ice alone) or the heterogeneous one (as the ice around the pre-existing high temperature mineral grains). (author)

  3. Core Values | NREL

    Science.gov (United States)

    Core Values Core Values NREL's core values are rooted in a safe and supportive work environment guide our everyday actions and efforts: Safe and supportive work environment Respect for the rights physical and social environment Integrity Maintain the highest standard of ethics, honesty, and integrity

  4. Seismic core shroud

    International Nuclear Information System (INIS)

    Puri, A.; Mullooly, J.F.

    1981-01-01

    A core shroud is provided, comprising: a coolant boundary, following the shape of the core boundary, for channeling the coolant through the fuel assemblies; a cylindrical band positioned inside the core barrel and surrounding the coolant boundary; and support members extending from the coolant boundary to the band, for transferring load from the coolant boundary to the band. The shroud may be assembled in parts using automated welding techniques, and it may be adjusted to fit the reactor core easily

  5. MAGNETIZATION OF CLOUD CORES AND ENVELOPES AND OTHER OBSERVATIONAL CONSEQUENCES OF RECONNECTION DIFFUSION

    International Nuclear Information System (INIS)

    Lazarian, A.; Esquivel, A.; Crutcher, R.

    2012-01-01

    Recent observational results for magnetic fields in molecular clouds reviewed by Crutcher seem to be inconsistent with the predictions of the ambipolar diffusion theory of star formation. These include the measured decrease in mass to flux ratio between envelopes and cores, the failure to detect any self-gravitating magnetically subcritical clouds, the determination of the flat probability distribution function (PDF) of the total magnetic field strengths implying that there are many clouds with very weak magnetic fields, and the observed scaling B∝ρ 2/3 that implies gravitational contraction with weak magnetic fields. We consider the problem of magnetic field evolution in turbulent molecular clouds and discuss the process of magnetic field diffusion mediated by magnetic reconnection. For this process that we termed 'reconnection diffusion', we provide a simple physical model and explain that this process is inevitable in view of the present-day understanding of MHD turbulence. We address the issue of the expected magnetization of cores and envelopes in the process of star formation and show that reconnection diffusion provides an efficient removal of magnetic flux that depends only on the properties of MHD turbulence in the core and the envelope. We show that as the amplitude of turbulence as well as the scale of turbulent motions decrease from the envelope to the core of the cloud, the diffusion of the magnetic field is faster in the envelope. As a result, the magnetic flux trapped during the collapse in the envelope is being released faster than the flux trapped in the core, resulting in much weaker fields in envelopes than in cores, as observed. We provide simple semi-analytical model calculations which support this conclusion and qualitatively agree with the observational results. Magnetic reconnection is also consistent with the lack of subcritical self-gravitating clouds, with the observed flat PDF of field strengths, and with the scaling of field strength

  6. MAGNETIZATION OF CLOUD CORES AND ENVELOPES AND OTHER OBSERVATIONAL CONSEQUENCES OF RECONNECTION DIFFUSION

    Energy Technology Data Exchange (ETDEWEB)

    Lazarian, A. [Astronomy Department, University of Wisconsin, Madison, WI 53706 (United States); Esquivel, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 Mexico D.F. (Mexico); Crutcher, R. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801 (United States)

    2012-10-01

    Recent observational results for magnetic fields in molecular clouds reviewed by Crutcher seem to be inconsistent with the predictions of the ambipolar diffusion theory of star formation. These include the measured decrease in mass to flux ratio between envelopes and cores, the failure to detect any self-gravitating magnetically subcritical clouds, the determination of the flat probability distribution function (PDF) of the total magnetic field strengths implying that there are many clouds with very weak magnetic fields, and the observed scaling B{proportional_to}{rho}{sup 2/3} that implies gravitational contraction with weak magnetic fields. We consider the problem of magnetic field evolution in turbulent molecular clouds and discuss the process of magnetic field diffusion mediated by magnetic reconnection. For this process that we termed 'reconnection diffusion', we provide a simple physical model and explain that this process is inevitable in view of the present-day understanding of MHD turbulence. We address the issue of the expected magnetization of cores and envelopes in the process of star formation and show that reconnection diffusion provides an efficient removal of magnetic flux that depends only on the properties of MHD turbulence in the core and the envelope. We show that as the amplitude of turbulence as well as the scale of turbulent motions decrease from the envelope to the core of the cloud, the diffusion of the magnetic field is faster in the envelope. As a result, the magnetic flux trapped during the collapse in the envelope is being released faster than the flux trapped in the core, resulting in much weaker fields in envelopes than in cores, as observed. We provide simple semi-analytical model calculations which support this conclusion and qualitatively agree with the observational results. Magnetic reconnection is also consistent with the lack of subcritical self-gravitating clouds, with the observed flat PDF of field strengths, and

  7. Structural and spectroscopic properties of the second generation phosphorus-viologen "molecular asterisk".

    Science.gov (United States)

    Furer, V L; Vandukov, A E; Katir, N; Majoral, J P; El Kadib, A; Caminade, A M; Bousmina, M; Kovalenko, V I

    2013-11-01

    The FTIR and FT Raman spectra of the second generation phosphorus-viologen "molecular asterisk" G2 built from cyclotriphosphazene core with 12 viologen units and 6 terminal phosphonate groups have been recorded and analyzed. The experimental X-ray data of 1,1-bis(4-formylbenzyl)-4,4'-bipyridinium bis(hexaflurophosphate) was used in molecular modeling studies. The optimization of isolated 1,1-bis(4-formylbenzyl)-4,4'-bipyridinium (BFBP) molecule without counter ions PF6(-) does not lead to significant changes of dihedral angles, thus the molecular conformation does not depend on interactions with the counter ions. The structural optimization and normal mode analysis were performed for G2 on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that G2 has a kind of "egg timer" structure with planar OC6H4CHNN(CH3) fragments and slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of G2 were interpreted by means of potential energy distribution. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Mechanism for radiative recombination and defect properties of GaP/GaNP core/shell nanowires

    International Nuclear Information System (INIS)

    Dobrovolsky, A.; Stehr, J. E.; Chen, S. L.; Chen, W. M.; Buyanova, I. A.; Kuang, Y. J.; Sukrittanon, S.; Tu, C. W.

    2012-01-01

    Recombination processes in GaP/GaNP core/shell nanowires (NWs) grown on a Si substrate by molecular beam epitaxy are examined using a variety of optical characterization techniques, including cw- and time-resolved photoluminescence and optically detected magnetic resonance (ODMR). Superior optical quality of the structures is demonstrated based on the observation of intense emission from a single NW at room temperature. This emission is shown to originate from radiative transitions within N-related localized states. From ODMR, growth of GaP/GaNP NWs is also found to facilitate formation of complex defects containing a P atom at its core that act as centers of competing non-radiative recombination.

  9. Molecular frame photoelectron angular distribution for oxygen 1s photoemission from CO2 molecules

    International Nuclear Information System (INIS)

    Saito, N; Ueda, K; De Fanis, A

    2005-01-01

    We have measured photoelectron angular distributions in the molecular frame (MF-PADs) for O 1s photoemission from CO 2 , using photoelectron-O + -CO + coincidence momentum imaging. Results for the molecular axis at 0, 45 and 90 0 to the electric vector of the light are reported. The major features of the MF-PADs are fairly well reproduced by calculations employing a relaxed-core Hartree-Fock approach. Weak asymmetric features are seen through a plane perpendicular to the molecular axis and attributed to symmetry lowering by anti-symmetric stretching motion. (letter to the editor)

  10. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiaqi; Shin, Seungha, E-mail: sshin@utk.edu [The University of Tennessee, Department of Mechanical, Aerospace and Biomedical Engineering (United States)

    2017-02-15

    Room temperature (T{sub room}, 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T{sub room}. The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T{sub room}, compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  11. Shape resonances in molecular fields

    International Nuclear Information System (INIS)

    Dehmer, J.L.

    1984-01-01

    A shape resonance is a quasibound state in which a particle is temporarily trapped by a potential barrier (i.e., the shape of the potential), through which it may eventually tunnel and escape. This simple mechanism plays a prominent role in a variety of excitation processes in molecules, ranging from vibrational excitation by slow electrons to ionization of deep core levels by x-rays. Moreover, their localized nature makes shape resonances a unifying link between otherwise dissimilar circumstances. One example is the close connection between shape resonances in electron-molecule scattering and in molecular photoionization. Another is the frequent persistence of free-molecule shape resonant behavior upon adsorption on a surface or condensation into a molecular solid. The main focus of this article is a discussion of the basic properties of shape resonances in molecular fields, illustrated by the more transparent examples studied over the last ten years. Other aspects to be discussed are vibrational effects of shape resonances, connections between shape resonances in different physical settings, and examples of shape resonant behavior in more complex cases, which form current challenges in this field

  12. Analysis of core and core barrel heat-up under conditions simulating severe reactor accidents

    International Nuclear Information System (INIS)

    Chellaiah, S.; Viskanta, R.; Ranganathan, P.; Anand, N.K.

    1987-01-01

    This paper reports on the development of a model for estimating the temperature distributions in the reactor core, core barrel, thermal shield and reactor pressure vessel of a PWR during an undercooling transient. A number of numerical calculations simulating the core uncovering of the TMI-2 reactor and the subsequent heat-up of the core have been performed. The results of the calculations show that the exothermic heat release due to Zircaloy oxidation contributes to the sharp heat-up of the core. However, the core barrel temperature rise which is driven by the temperature increase of the edge of the core (e.g., the core baffle) is very modest. The maximum temperature of the core barrel never exceeded 610 K (at a system pressure of 68 bar) after a 75 minute simulation following the start of core uncovering

  13. Overview of core designs and requirements/criteria for core restraint systems

    International Nuclear Information System (INIS)

    Sutherland, W.H.

    1984-09-01

    The requirements and lifetime criteria for the design of a Liquid Metal Fast Breeder Reactor (LMFBR) Core Restraint System are presented. A discussion of the three types of core restraint systems used in LMFBR core design is given. Details of the core restraint system selected for FFTF are presented and the reasons for this selection given. Structural analysis procedures being used to manage the FFTF assembly irradiations are discussed. Efforts that are ongoing to validate the calculational methods and lifetime criteria are presented

  14. On estimating the molecular viscosity of the Earth's outer core: comment on the paper by D E Smylie et al

    International Nuclear Information System (INIS)

    Zharkov, Vladimir N

    2009-01-01

    The paper 'Direct observations of the viscosity of Earth's outer core and extrapolation of measurements of the viscosity of liquid iron' by D.E. Smylie, V.V. Brazhkin, and A. Palmer [Phys. Usp. 52 (1) 79 (2009)] is subject to critique for its proposed approach to estimating the viscosity of the Earth's outer core. (methodological notes)

  15. Theoretical Investigation of Inter-core Crosstalk Properties in Homogeneous Trench-Assisted Multi-Core Fibers

    DEFF Research Database (Denmark)

    Ye, Feihong; Morioka, Toshio; Tu, Jiajing

    2014-01-01

    We derive analytical expressions for inter-core crosstalk, its dependence on core pitch and wavelength in homogeneous trench-assisted multi-core fibers. They are in excellent agreement with numerical simulation results.......We derive analytical expressions for inter-core crosstalk, its dependence on core pitch and wavelength in homogeneous trench-assisted multi-core fibers. They are in excellent agreement with numerical simulation results....

  16. The GBT 3mm Survey of Infall and Fragmentation of Dense Cores in Taurus

    Science.gov (United States)

    Seo, Youngmin; Goldsmith, Paul; Shirley, Yancy L.; Church, Sara; Frayer, David

    2018-01-01

    We present preliminary results of the infall and fragmentation survey toward a complete population of prestellar cores in Taurus that was carried out with the 16-element W-band focal plane array receiver (Argus) on the 100m Green Bank Telescope. The survey is designed take advantage of the 8.5” angular resolution and high sensitivity of Argus on the GBT to trace infall motions in HCN 1-0 & HCO+ 1-0 and find any evidence of fragmentation in N2H+ & NH2D within prestellar cores ranging in size from 0.05 pc to 0.0075 pc (1500 AU), which is a typical size scale of individual planetary systems. The scientific goal is to estimate the fraction of infall candidates from a complete population of prestellar cores and to understand internal velocity structure during the final gravitational collapse before forming stars. The survey started in the winter of 2016 and is to continue to the end of January 2018. So far, we observed 23 prestellar cores out of 65 targets in HCN 1-0 and HCO+ 1-0. We have so far found only two prestellar cores (L1495A-N, L1521D) out of 23 observed that show infall signatures, which is a fraction of infalling cores less than half of that reported by the previous surveys toward the bright, dense cores in various molecular clouds (Lee et al. 2004; Sohn et al. 2007). We also found that L1495A-N has a highly asymmetric infall motion which does not fit to a conventional model of dense core collapse, while L1521D has a slow infall motion similar to L1544.

  17. THE JCMT GOULD BELT SURVEY: A FIRST LOOK AT DENSE CORES IN ORION B

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, H.; Francesco, J. Di; Johnstone, D. [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Rd, Victoria, BC, V9E 2E7 (Canada); Duarte-Cabral, A.; Hatchell, J. [Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Sadavoy, S.; Mottram, J. C. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Buckle, J.; Salji, C. [Astrophysics Group, Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Berry, D. S.; Currie, M. J.; Jenness, T. [Joint Astronomy Centre, 660 N. A‘ohōkū Place, University Park, Hilo, Hawaii 96720 (United States); Broekhoven-Fiene, H. [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada); Fich, M.; Tisi, S. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Nutter, D.; Quinn, C. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF24 3AA (United Kingdom); Pattle, K. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, Lancashire, PR1 2HE (United Kingdom); Pineda, J. E. [European Southern Observatory (ESO), Garching (Germany); Hogerheijde, M. R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); and others

    2016-02-01

    We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2024, and NGC 2068/2071 respectively, using the SCUBA-2 850 μm map, and present their basic properties, including their peak fluxes, total fluxes, and sizes, and an estimate of the corresponding 450 μm peak fluxes and total fluxes, using the FellWalker source extraction algorithm. Assuming a constant temperature of 20 K, the starless dense cores have a mass function similar to that found in previous dense core analyses, with a Salpeter-like slope at the high-mass end. The majority of cores appear stable to gravitational collapse when considering only thermal pressure; indeed, most of the cores which have masses above the thermal Jeans mass are already associated with at least one protostar. At higher cloud column densities, above 1–2 × 10{sup 23} cm{sup −2}, most of the mass is found within dense cores, while at lower cloud column densities, below 1 × 10{sup 23} cm{sup −2}, this fraction drops to 10% or lower. Overall, the fraction of dense cores associated with a protostar is quite small (<8%), but becomes larger for the densest and most centrally concentrated cores. NGC 2023/2024 and NGC 2068/2071 appear to be on the path to forming a significant number of stars in the future, while L1622 has little additional mass in dense cores to form many new stars.

  18. Kinematics of a Young Low-mass Star-forming Core: Understanding the Evolutionary State of the First-core Candidate L1451-mm

    Energy Technology Data Exchange (ETDEWEB)

    Maureira, María José; Arce, Héctor G. [Astronomy Department, Yale University, New Haven, CT 06511 (United States); Dunham, Michael M. [Department of Physics, State University of New York at Fredonia, Fredonia, NY 14063 (United States); Pineda, Jaime E. [Max-Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany); Fernández-López, Manuel [Instituto Argentino de Radioastronomía, CCT-La Plata (CONICET), C.C.5, 1894, Villa Elisa (Argentina); Chen, Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Mardones, Diego, E-mail: mariajose.maureira@yale.edu, E-mail: hector.arce@yale.edu [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile)

    2017-03-20

    We use 3 mm multiline and continuum CARMA observations toward the first hydrostatic core (FHSC) candidate L1451-mm to characterize the envelope kinematics at 1000 au scales and investigate its evolutionary state. We detect evidence of infall and rotation in the NH{sub 2}D(1{sub 1,1}–1{sub 0,1}), N{sub 2}H{sup +}(1–0), and HCN(1–0) molecular lines. We compare the position–velocity diagram of the NH{sub 2}D(1{sub 1,1}–1{sub 0,1}) line with a simple kinematic model and find that it is consistent with an envelope that is both infalling and rotating while conserving angular momentum around a central mass of about 0.06 M {sub ⊙}. The N{sub 2}H{sup +}(1–0) LTE mass of the envelope along with the inferred infall velocity leads to a mass infall rate of approximately 6 × 10{sup −6} M {sub ⊙} yr{sup −1}, implying a young age of 10{sup 4} years for this FHSC candidate. Assuming that the accretion onto the central object is the same as the infall rate, we obtain a minimum source size of 1.5–5 au, consistent with the size expected for a first core. We do not see any evidence of outflow motions or signs of outflow–envelope interaction at scales ≳2000 au. This is consistent with previous observations that revealed a very compact outflow (≲500 au). We conclude that L1451-mm is indeed at a very early stage of evolution, either a first core or an extremely young Class 0 protostar. Our results provide strong evidence that L1451-mm is the best candidate for being a bona fide first core.

  19. Intra-molecular Charge Transfer and Electron Delocalization in Non-fullerene Organic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qinghe [Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China; Zhao, Donglin [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States; Goldey, Matthew B. [Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; Filatov, Alexander S. [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States; Sharapov, Valerii [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States; Colón, Yamil J. [Institute for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States; Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; Cai, Zhengxu [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States; Chen, Wei [Institute for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States; Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; de Pablo, Juan [Institute for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States; Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; Galli, Giulia [Institute for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States; Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; Yu, Luping [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States

    2018-03-02

    Two types of electron acceptors were synthesized by coupling two kinds of electron-rich cores with four equivalent perylene diimides (PDIs) at the a position. With fully aromatic cores, TPB and TPSe have pi-orbitals spread continuously over the whole aromatic conjugated backbone, unlike TPC and TPSi, which contain isolated PDI units due to the use of a tetrahedron carbon or silicon linker. Density functional theory calculations of the projected density of states showed that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) for TPB are localized in separate regions of space. Further, the LUMO of TPB shows a greater contribution from the orbitals belonging to the connective core of the molecules than that of TPC. Overall, the properties of the HOMO and LUMO point at increased intra-molecular delocalization of negative charge carriers for TPB and TPSe than for TPC and TPSi and hence at a more facile intra-molecular charge transfer for the former. The film absorption and emission spectra showed evidences for the inter -molecular electron delocalization in TPB and TPSe, which is consistent with the network structure revealed by X-ray diffraction studies on single crystals of TPB. These features benefit the formation of charge transfer states and/or facilitate charge transport. Thus, higher electron mobility and higher charge dissociation probabilities under J(sc) condition were observed in blend films of TPB:PTB7-Th and TPSe:PTB7-Th than those in TPC:PTB7Th and TPSi:PTB7-Th blend films. As a result, the J(sc) and fill factor values of 15.02 mA/cm(2), 0.58 and 14.36 mA/cm(2), 0.55 for TPB- and TPSe-based solar cell are observed, whereas those for TPC and TPSi are 11.55 mA/cm2, 0.47 and 10.35 mA/cm(2), 0.42, respectively.

  20. THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD

    International Nuclear Information System (INIS)

    Parravano, Antonio; Sánchez, Néstor; Alfaro, Emilio J.

    2012-01-01

    The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.

  1. Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules.

    Science.gov (United States)

    Lépinay, Sandrine; Ianoul, Anatoli; Albert, Jacques

    2014-10-01

    A biomimetic optical probe for detecting low molecular weight molecules (maltol, 3-hydroxy-2-methyl-4H-pyran-4-one, molecular weight of 126.11 g/mol), was designed, fabricated, and characterized. The sensor couples a molecular imprinted polymer (MIP) and the Bragg grating refractometry technology into an optical fiber. The probe is fabricated first by inscribing tilted grating planes in the core of the fiber, and then by photopolymerization to immobilize a maltol imprinted MIP on the fiber cladding surface over the Bragg grating. The sensor response to the presence of maltol in different media is obtained by spectral interrogation of the fiber transmission signal. The results showed that the limit of detection of the sensor reached 1 ng/mL in pure water with a sensitivity of 6.3 × 10(8)pm/M. The selectivity of the sensor against other compounds and its reusability were also studied experimentally. Finally, the unambiguous detection of concentrations as little as 10nM of maltol in complex media (real food samples) by the MIP-coated tilted fiber Bragg grating sensor was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Neutronic design of mixed oxide-silicide cores for the core conversion of rsg-gas reactor

    International Nuclear Information System (INIS)

    Sembiring, Tagor Malem; Tukiran; Pinem surian; Febrianto

    2001-01-01

    The core conversion of rsg-gas reactor from an all-oxide (U 3 O 8 -Al) core, through a series of mixed oxide-silicide core, to an all-silicide (U 3 Si 2 -Al) core for the same meat density of 2.96 g U/cc is in progress. The conversion is first step of the step-wise conversion and will be followed by the second step that is the core conversion from low meat density of silicide core, through a series of mixed lower-higher density of silicide core, to an all-higher meat density of 3.55 g/cc core. Therefore, the objectives of this work is to design the mixed cores on the neutronic performance to achieve safety a first full-silicide core for the reactor with the low uranium meat density of 2.96gU/cc. The neutronic design of the mixed cores was performed by means of Batan-EQUIL-2D and Batan-3DIFF computer codes for 2 and 3 dimension diffusion calculation, respectively. The result shows that all mixed oxide-silicide cores will be feasible to achieve safety a fist full-silicide core. The core performs the same neutronic core parameters as those of the equilibrium silicide core. Therefore, the reactor availability and utilization during the core conversion is not changed

  3. Overview of core designs and requirements/criteria for core restraint systems

    International Nuclear Information System (INIS)

    Sutherland, W.H.

    1984-01-01

    The requirements and lifetime criteria for the design of a Liquid Metal Fast Breeder Reactor (LMFBR) Core Restraint System is presented. A discussion of the three types of core restraint systems used in LMFBR core design is given. Details of the core restraint system selected for FFTF are presented and the reasons for this selection given. Structural analysis procedures being used to manage the FFTF assembly irradiations are discussed. Efforts that are ongoing to validate the calculational methods and lifetime criteria are presented. (author)

  4. Nuclear reactor core flow baffling

    International Nuclear Information System (INIS)

    Berringer, R.T.

    1979-01-01

    A flow baffling arrangement is disclosed for the core of a nuclear reactor. A plurality of core formers are aligned with the grids of the core fuel assemblies such that the high pressure drop areas in the core are at the same elevations as the high pressure drop areas about the core periphery. The arrangement minimizes core bypass flow, maintains cooling of the structure surrounding the core, and allows the utilization of alternative beneficial components such as neutron reflectors positioned near the core

  5. Chemical segregation in hot cores with disk candidates. An investigation with ALMA

    Science.gov (United States)

    Allen, V.; van der Tak, F. F. S.; Sánchez-Monge, Á.; Cesaroni, R.; Beltrán, M. T.

    2017-07-01

    Context. In the study of high-mass star formation, hot cores are empirically defined stages where chemically rich emission is detected toward a massive YSO. It is unknown whether the physical origin of this emission is a disk, inner envelope, or outflow cavity wall and whether the hot core stage is common to all massive stars. Aims: We investigate the chemical makeup of several hot molecular cores to determine physical and chemical structure. We use high spectral and spatial resolution submillimeter observations to determine how this stage fits into the formation sequence of a high-mass star. Methods: The submillimeter interferometer ALMA (Atacama Large Millimeter Array) was used to observe the G35.20-0.74N and G35.03+0.35 hot cores at 350 GHz in Cycle 0. We analyzed spectra and maps from four continuum peaks (A, B1, B2 and B3) in G35.20-0.74N, separated by 1000-2000 AU, and one continuum peak in G35.03+0.35. We made all possible line identifications across 8 GHz of spectral windows of molecular emission lines down to a 3σ line flux of 0.5 K and determined column densities and temperatures for as many as 35 species assuming local thermodynamic equilibrium (LTE). Results: In comparing the spectra of the four continuum peaks, we find each has a distinct chemical composition expressed in over 400 different transitions. In G35.20, B1 and B2 contain oxygen- and sulfur-bearing organic and inorganic species but few nitrogen-bearing species whereas A and B3 are strong sources of O-, S-, and N-bearing organic and inorganic species (especially those with the CN bond). Column densities of vibrationally excited states are observed to be equal to or greater than the ground state for a number of species. Deuterated methyl cyanide is clearly detected in A and B3 with D/H ratios of 8 and 13%, respectively, but is much weaker at B1 and undetected at B2. No deuterated species are detected in G35.03, but similar molecular abundances to G35.20 were found in other species. We also

  6. Synthesis, characterization and evaluation of uniformly sized core-shell imprinted microspheres for the separation trans-resveratrol from giant knotweed

    International Nuclear Information System (INIS)

    Zhang Zhaohui; Liu Li; Li Hui; Yao Shouzhuo

    2009-01-01

    A novel core-shell molecularly imprinting microspheres (MIMs) with trans-resveratrol as the template molecule; acrylamide (AA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker, was prepared based on SiO 2 microspheres with surface imprinting technique. These core-shell trans-resveratrol imprinted microspheres were characterized by infrared spectra (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and high performance liquid chromatography (HPLC). The results showed that these core-shell imprinted microspheres, which take on perfect spherical shape with average shell thickness of 150 nm, exhibit especially selective recognition for trans-resveratrol. These imprinted microspheres were applied as solid-phase extraction materials for selective extraction of trans-resveratrol from giant knotweed extracting solution successfully.

  7. Synthesis, characterization and evaluation of uniformly sized core-shell imprinted microspheres for the separation trans-resveratrol from giant knotweed

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhaohui, E-mail: zhaohuizhang77@hotmail.com [College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082 (China); Liu Li; Li Hui [College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000 (China); Yao Shouzhuo [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082 (China)

    2009-09-15

    A novel core-shell molecularly imprinting microspheres (MIMs) with trans-resveratrol as the template molecule; acrylamide (AA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker, was prepared based on SiO{sub 2} microspheres with surface imprinting technique. These core-shell trans-resveratrol imprinted microspheres were characterized by infrared spectra (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and high performance liquid chromatography (HPLC). The results showed that these core-shell imprinted microspheres, which take on perfect spherical shape with average shell thickness of 150 nm, exhibit especially selective recognition for trans-resveratrol. These imprinted microspheres were applied as solid-phase extraction materials for selective extraction of trans-resveratrol from giant knotweed extracting solution successfully.

  8. Physics at the biomolecular interface fundamentals for molecular targeted therapy

    CERN Document Server

    Fernández, Ariel

    2016-01-01

    This book focuses primarily on the role of interfacial forces in understanding biological phenomena at the molecular scale. By providing a suitable statistical mechanical apparatus to handle the biomolecular interface, the book becomes uniquely positioned to address core problems in molecular biophysics. It highlights the importance of interfacial tension in delineating a solution to the protein folding problem, in unravelling the physico-chemical basis of enzyme catalysis and protein associations, and in rationally designing molecular targeted therapies. Thus grounded in fundamental science, the book develops a powerful technological platform for drug discovery, while it is set to inspire scientists at any level in their careers determined to address the major challenges in molecular biophysics. The acknowledgment of how exquisitely the structure and dynamics of proteins and their aqueous environment are related attests to the overdue recognition that biomolecular phenomena cannot be effectively understood w...

  9. Physical and chemical characteristics of L1689-SMM16, an oscillating prestellar core in Ophiuchus

    International Nuclear Information System (INIS)

    Chitsazzadeh, S.; Di Francesco, J.; Sadavoy, S. I.; Schnee, S.; Friesen, R. K.; Shimajiri, Y.; Langston, G. I.; Bourke, T. L.; Keto, E. R.; Pineda, J. E.; Takakuwa, S.; Tatematsu, K.

    2014-01-01

    We present single-dish observations of the L1689-SMM16 core in the Ophiuchus molecular cloud in NH 3 (1, 1) and (2, 2) emission using the Green Bank Telescope, in N 2 H + (1-0) emission using the Nobeyama Radio Observatory, and in NH 2 D (1 1,1 a (--)1 0,1 s ), HCN (1-0), HNC (1-0), H 13 CO + (1-0), and HCO + (1-0) emission using the Mopra telescope. The morphologies of the integrated NH 3 (1, 1) and N 2 H + (1-0) emission well match that of 250 μm continuum emission. Line widths of NH 3 (1, 1) and N 2 H + (1-0) show the presence of transonic turbulence across the core. Jeans and virial analyses made using updated measurements of core mass and size confirm that L1689-SMM16 is prestellar, i.e., gravitationally bound. It also has accumulated more mass compared to its corresponding Jeans mass in the absence of magnetic fields and therefore is a 'super-Jeans' core. The high levels of X(NH 3 )/X(N 2 H + ) and deuterium fractionation reinforce the idea that the core has not yet formed a protostar. Comparing the physical parameters of the core with those of a Bonnor-Ebert sphere reveals the advanced evolutionary stage of L1689-SMM16 and shows that it might be unstable to collapse. We do not detect any evidence of infall motions toward the core. Instead, red asymmetry in the line profiles of HCN (1-0) and HNC (1-0) indicates the expansion of the outer layers of the core at a speed of ∼0.2 km s –1 to 0.3 km s –1 . For a gravitationally bound core, expansion in the outer layers might indicate that the core is experiencing oscillations.

  10. Espaço de cores

    Directory of Open Access Journals (Sweden)

    Claudia Feitosa-Santana

    2006-01-01

    Full Text Available O artigo apresenta definições para os termos espaço de cores e sistemas de cores; classifica, de acordo com David Brainard (2003, os sistemas de cores em dois grupos: aparência de cores e diferenças de cores. Dentre os diversos sistemas de cores existentes, o artigo descreve dois deles: o sistema de cores Munsell &– um dos mais utilizados entre os sistemas de aparência de cores &– e a descrição do sistema de cores CIE 1931 &– um dos mais utilizados dentre os sistemas de diferença de cores. Faz-se uma retrospectiva histórica da busca por espaços de cores que representem a percepção de cores humana assim como as diversas reconstruções de espaços de cores por métodos eletrofisiológicos ou psicofísicos. Muitas dessas reconstruções utilizam a escala multidimensional (mds. O artigo também introduz a possibilidade da reconstrução dos espaços de cores de pacientes com discromatopsia adquirida como uma distorção do espaço de indivíduos tricromatas normais.

  11. Core antigen and circulating anti-core antibody in hepatitis B infection

    Energy Technology Data Exchange (ETDEWEB)

    Howard, C R; Zuckerman, A J [London School of Hygiene and Tropical Medicine (UK)

    1977-02-01

    Core antigen was obtained from the sera of persistent chronic carriers of hepatitis B virus by centrifugation and treatment with Nonidet P40 and 2-mercaptoethanol. The separated core antigen was radiolabelled and identified as a nucleoprotein structure of buoyant density 1.36 g/cm/sup 3/ and possessing an isoelectric point of 4.4. This material was employed in a radioimmnoassay procedure of high sensitivity for the detection of core antibody. In a series of sera from patients with acute type B hepatitis, core antibody was demonstrated 2 to 3 weeks after the onset of jaundice during the period of surface antigenaemia. The presence of core antibody may therefore provide an accurate serological marker for the detection of active or recent virus replication in future epidemiological studies of hepatitis B infection.

  12. Internal core tightener

    International Nuclear Information System (INIS)

    Brynsvold, G.V.; Snyder, H.J. Jr.

    1976-01-01

    An internal core tightener is disclosed which is a linear actuated (vertical actuation motion) expanding device utilizing a minimum of moving parts to perform the lateral tightening function. The key features are: (1) large contact areas to transmit loads during reactor operation; (2) actuation cam surfaces loaded only during clamping and unclamping operation; (3) separation of the parts and internal operation involved in the holding function from those involved in the actuation function; and (4) preloaded pads with compliant travel at each face of the hexagonal assembly at the two clamping planes to accommodate thermal expansion and irradiation induced swelling. The latter feature enables use of a ''fixed'' outer core boundary, and thus eliminates the uncertainty in gross core dimensions, and potential for rapid core reactivity changes as a result of core dimensional change. 5 claims, 12 drawing figures

  13. Application Service Providers (ASP Adoption in Core and Non-Core Functions

    Directory of Open Access Journals (Sweden)

    Aman Y.M. Chan

    2009-10-01

    Full Text Available With the further improvement in internet bandwidth, connection stability and data transmission security, a new wave of Application Service Providers (ASP is on his way. The recent booming on some models such as Software Application as Service (SaaS and On-Demand in 2008, has led to emergence of ASP model in core business functions. The traditional IS outsourcing covers the non-core business functions that are not critical to business performance and competitive advantages. Comparing with traditional IS outsourcing, ASP is a new phenomenon that can be considered as an emerging innovation as it covers both core and non-core business functions. Most of the executives do not comprehend the difference and similarity between traditional IS outsourcing and ASP mode. Hence, we propose to conduct a research so as to identify the determinants (cost benefit, gap in IS capability complementing the company's strategic goal, and trust to ASP's service and security level and moderating factors (management's attitude in ownership & control, and company aggressiveness of ASP adoption decision in both core and non-core business functions.

  14. Reactor core

    International Nuclear Information System (INIS)

    Azekura, Kazuo; Kurihara, Kunitoshi.

    1992-01-01

    In a BWR type reactor, a great number of pipes (spectral shift pipes) are disposed in the reactor core. Moderators having a small moderating cross section (heavy water) are circulated in the spectral shift pipes to suppress the excess reactivity while increasing the conversion ratio at an initial stage of the operation cycle. After the intermediate stage of the operation cycle in which the reactor core reactivity is lowered, reactivity is increased by circulating moderators having a great moderating cross section (light water) to extend the taken up burnup degree. Further, neutron absorbers such as boron are mixed to the moderator in the spectral shift pipe to control the concentration thereof. With such a constitution, control rods and driving mechanisms are no more necessary, to simplify the structure of the reactor core. This can increase the fuel conversion ratio and control great excess reactivity. Accordingly, a nuclear reactor core of high conversion and high burnup degree can be attained. (I.N.)

  15. Electromagnetically driven westward drift and inner-core superrotation in Earth’s core

    Science.gov (United States)

    Livermore, Philip W.; Hollerbach, Rainer; Jackson, Andrew

    2013-01-01

    A 3D numerical model of the earth’s core with a viscosity two orders of magnitude lower than the state of the art suggests a link between the observed westward drift of the magnetic field and superrotation of the inner core. In our model, the axial electromagnetic torque has a dominant influence only at the surface and in the deepest reaches of the core, where it respectively drives a broad westward flow rising to an axisymmetric equatorial jet and imparts an eastward-directed torque on the solid inner core. Subtle changes in the structure of the internal magnetic field may alter not just the magnitude but the direction of these torques. This not only suggests that the quasi-oscillatory nature of inner-core superrotation [Tkalčić H, Young M, Bodin T, Ngo S, Sambridge M (2013) The shuffling rotation of the earth’s inner core revealed by earthquake doublets. Nat Geosci 6:497–502.] may be driven by decadal changes in the magnetic field, but further that historical periods in which the field exhibited eastward drift were contemporaneous with a westward inner-core rotation. The model further indicates a strong internal shear layer on the tangent cylinder that may be a source of torsional waves inside the core. PMID:24043841

  16. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111) substrate

    Science.gov (United States)

    Sangeetha, P.; Jeganathan, K.; Ramakrishnan, V.

    2013-06-01

    The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE) on Si (111) substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E2 (high) and A1 (LO) phonon mode of InN core at 490 and 590 cm-1 respectively and E2 (high) phonon mode of GaN shell at 573 cm-1. The free carrier concentration of InN core is found to be low in the order ˜ 1016 cm-3 due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of ˜15 nm. The phonon-life time of core-shell nanowire structure is estimated to be ˜0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E2 (high) phonon mode of GaN shell at 573 cm-1 as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.

  17. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111 substrate

    Directory of Open Access Journals (Sweden)

    P. Sangeetha

    2013-06-01

    Full Text Available The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE on Si (111 substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E2 (high and A1 (LO phonon mode of InN core at 490 and 590 cm−1 respectively and E2 (high phonon mode of GaN shell at 573 cm−1. The free carrier concentration of InN core is found to be low in the order ∼ 1016 cm−3 due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of ∼15 nm. The phonon-life time of core-shell nanowire structure is estimated to be ∼0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E2 (high phonon mode of GaN shell at 573 cm−1 as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.

  18. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111) substrate

    International Nuclear Information System (INIS)

    Sangeetha, P.; Ramakrishnan, V.; Jeganathan, K.

    2013-01-01

    The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE) on Si (111) substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E 2 (high) and A 1 (LO) phonon mode of InN core at 490 and 590 cm −1 respectively and E 2 (high) phonon mode of GaN shell at 573 cm −1 . The free carrier concentration of InN core is found to be low in the order ∼ 10 16 cm −3 due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of ∼15 nm. The phonon-life time of core-shell nanowire structure is estimated to be ∼0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E 2 (high) phonon mode of GaN shell at 573 cm −1 as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.

  19. One-by-one imprinting in two eccentric layers of hollow core-shells: Sequential electroanalysis of anti-HIV drugs.

    Science.gov (United States)

    Singh, Kislay; Jaiswal, Swadha; Singh, Richa; Fatma, Sana; Prasad, Bhim Bali

    2018-07-15

    Double layered one-by-one imprinted hollow core-shells@ pencil graphite electrode was fabricated for sequential sensing of anti-HIV drugs. For this, two eccentric layers were developed on the surface of vinylated silica nanospheres to obtain double layered one-by-one imprinted solid core-shells. This yielded hollow core-shells on treatment with hydrofluoric acid. The modified hollow core-shells (single layered dual imprinted) evolved competitive diffusion of probe/analyte molecules. However, the corresponding double layered one-by-one imprinted hollow core-shells (outer layer imprinted with Zidovudine, and inner layer with Lamivudine) were found relatively better owing to their bilateral diffusions into molecular cavities, without any competition. The entire work is based on differential pulse anodic stripping voltammetry at double layered one-by-one imprinted hollow core-shells. This resulted in indirect detection of electro inactive targets with limits of detection as low as 0.91 and 0.12 (aqueous sample), 0.94 and 0.13 (blood serum), and 0.99 and 0.20 ng mL -1 (pharmaceutics) for lamivudine and zidovudine, respectively in anti-HIV drug combination. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    Science.gov (United States)

    Voorhies, C. V.

    1999-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.

  1. Fission product behaviour during operation of the second Peach Bottom core

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Nordwall, H.J. de; Dyer, F.F.; Wichner, R.P.; Martin, W.J.; Kolb, J.O.

    1976-01-01

    The Peach Bottom high-temperature, gas-cooled reactor began operation on 1 June 1967 and continued power production until 9 October 1969, accumulating 452 equivalent full power days (EFPD) operation. After reload, power production with Core 2 began 14 July 1970 and terminated 31 October 1974 after 897 EFPD operation. Surveillance of fission product release and behaviour was intensified during Core 2 operation to permit a wider range of measurements to be made. In addition to monitoring the noble gas content of the fuel element purge system and the coolant circuit, the programme was extended to include measurements of radioactive and other condensible species (including dust) entering or exiting the core and steam generator, and of surface concentrations of gamma-emitting nuclides deposited on the primary coolant surfaces. These data, which were obtained over the operating period April 1971 - October 1974, are summarized and discussed. The data demonstrate that caesium behaviour in the coolant circuit during the first two-thirds of Core 2 life was primarily governed by caesium released during Core 1 operation. The data also indicate that whereas the steam generator surfaces attenuate molecular caesium concentrations in the coolant, the dust-borne component is remarkably persistent. Driver fuel elements were removed from the reactor after 385 EFPD, 701 EFPD, and at end-of-life. These fuel elements are at various stages of an intensive post-irradiation examination. Some of the axial and radial concentration profiles of fission products which have been obtained are likewise presented. Although these profiles indicate varied fission product behaviour, the observations can in general be qualitatively described on the basis of the operational histories of the fuel elements. (author)

  2. INTERMEDIATE-MASS HOT CORES AT ∼500 AU: DISKS OR OUTFLOWS?

    International Nuclear Information System (INIS)

    Palau, Aina; Girart, Josep M.; Fuente, Asunción; Alonso-Albi, Tomás; Fontani, Francesco; Sánchez-Monge, Álvaro; Boissier, Jérémie; Piétu, Vincent; Neri, Roberto; Busquet, Gemma; Estalella, Robert; Zapata, Luis A.; Zhang, Qizhou; Ho, Paul T. P.; Audard, Marc

    2011-01-01

    Observations with the Plateau de Bure Interferometer in the most extended configuration toward two intermediate-mass star-forming regions, IRAS 22198+6336 and AFGL 5142, reveal the presence of several complex organic molecules at ∼500 AU scales, confirming the presence of hot cores in both regions. The hot cores are not rich in CN-bearing molecules, as often seen in massive hot cores, and are mainly traced by CH 3 CH 2 OH, (CH 2 OH) 2 , CH 3 COCH 3 , and CH 3 OH, with, additionally, CH 3 CHO, CH 3 OD, and HCOOD for IRAS 22198+6336, and C 6 H and O 13 CS for AFGL 5142. The emission of complex molecules is resolved down to sizes of ∼300 and ∼600 AU, for IRAS 22198+6336 and AFGL 5142, respectively, and most likely is tracing protostellar disks rather than flattened envelopes or toroids as is usually found. This is especially clear for the case of IRAS 22198+6336, where we detect a velocity gradient for all the mapped molecules perpendicular to the most chemically rich outflow of the region, yielding a dynamic mass ∼> 4 M ☉ . As for AFGL 5142, the hot core emission is resolved into two elongated cores separated ∼1800 AU. A detailed comparison of the complex molecule peaks to the new CO (2-1) data and H 2 O maser data from the literature suggests also that for AFGL 5142 the complex molecules are mainly associated with disks, except for a faint and extended molecular emission found to the west, which is possibly produced in the interface between one of the outflows and the dense surrounding gas.

  3. Photo-response behavior of organic transistors based on thermally annealed semiconducting diketopyrrolopyrrole core

    Science.gov (United States)

    Tarsoly, Gergely; Pyo, Seungmoon

    2018-06-01

    We report the opto-electrical response of organic field-effect transistors based on a thin-film of a semiconducting diketopyrrolopyrrole (DPP) core, a popular building block for molecular semiconductors, and a polymeric gate dielectric. The thin-film of the DPP core was thermally annealed at different temperatures under N2 atmosphere to investigate the relationship between the annealing temperature and the electrical properties of the device. The results showed that the annealing process induces morphological changes in the thin film, and properly controlling the thermal annealing conditions can enhance the device performance. In addition, we also investigated in detail the photo-response behaviors by analyzing the responsivity (R) of the device with the optimally annealed DPP-core thin film under two light illumination conditions by considering the irradiance absorbed by the thin film instead of the total irradiance of the light source. We found that the proposed model could lead to a light-source-independent description of the photo-response behavior of the device, and which can be used for other applications.

  4. Molecular beacon-decorated polymethylmethacrylate core-shell fluorescent nanoparticles for the detection of survivin mRNA in human cancer cells.

    Science.gov (United States)

    Adinolfi, Barbara; Pellegrino, Mario; Giannetti, Ambra; Tombelli, Sara; Trono, Cosimo; Sotgiu, Giovanna; Varchi, Greta; Ballestri, Marco; Posati, Tamara; Carpi, Sara; Nieri, Paola; Baldini, Francesco

    2017-02-15

    One of the main goals of nanomedicine in cancer is the development of effective drug delivery systems, primarily nanoparticles. Survivin, an overexpressed anti-apoptotic protein in cancer, represents a pharmacological target for therapy and a Molecular Beacon (MB) specific for survivin mRNA is available. In this study, the ability of polymethylmethacrylate nanoparticles (PMMA-NPs) to promote survivin MB uptake in human A549 cells was investigated. Fluorescent and positively charged core PMMA-NPs of nearly 60nm, obtained through an emulsion co-polymerization reaction, and the MB alone were evaluated in solution, for their analytical characterization; then, the MB specificity and functionality were verified after adsorption onto the PMMA-NPs. The carrier ability of PMMA-NPs in A549 was examined by confocal microscopy. With the optimized protocol, a hardly detectable fluorescent signal was obtained after incubation of the cells with the MB alone (fluorescent spots per cell of 1.90±0.40 with a mean area of 1.04±0.20µm 2 ), while bright fluorescent spots inside the cells were evident by using the MB loaded onto the PMMA-NPs. (27.50±2.30 fluorescent spots per cell with a mean area of 2.35±0.16µm 2 ). These results demonstrate the ability of the PMMA-NPs to promote the survivin-MB internalization, suggesting that this complex might represent a promising strategy for intracellular sensing and for the reduction of cancer cell proliferation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Magnetized Converging Flows toward the Hot Core in the Intermediate/High-mass Star-forming Region NGC 6334 V

    Energy Technology Data Exchange (ETDEWEB)

    Juárez, Carmen; Girart, Josep M. [Institut de Ciències de l’Espai, (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, S/N, E-08193 Cerdanyola del Vallès, Catalonia (Spain); Zamora-Avilés, Manuel; Palau, Aina; Ballesteros-Paredes, Javier [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090, Morelia, Michoacán (Mexico); Tang, Ya-Wen; Koch, Patrick M.; Liu, Hauyu Baobab [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei, 10617, Taiwan (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping, E-mail: juarez@ice.cat [School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China)

    2017-07-20

    We present Submillimeter Array (SMA) observations at 345 GHz toward the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern toward the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km s{sup −1}, converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with magnetohydrodynamic simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (∼0.1 pc) of NGC 6334 V toward the higher-density hot core region (∼0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.

  6. Epistemology and ontology in core ontologies: FOLaw and LRI-Core, two core ontologies for law

    NARCIS (Netherlands)

    Breukers, J.A.P.J.; Hoekstra, R.J.

    2004-01-01

    For more than a decade constructing ontologies for legal domains, we, at the Leibniz Center for Law, felt really the need to develop a core ontology for law that would enable us to re-use the common denominator of the various legal domains. In this paper we present two core ontologies for law. The

  7. Genetic variation in the US Peanut Mini-core collection for agronomy, seed chemistry and nutrient quality traits in peanut

    Science.gov (United States)

    The ongoing genome sequencing effort in peanut will result in numerous molecular markers that can be applied to the diverse collection of recently purified mini-core germplasm. This will provide an opportunity to mine valuable genes for peanut cultivar improvement. Association mapping based on linka...

  8. Probing molecular orientations in thin films by x-ray photoelectron spectroscopy

    Science.gov (United States)

    Li, Y.; Li, P.; Lu, Z.-H.

    2018-03-01

    A great number of functional organic molecules in active thin-film layers of optoelectronic devices have highly asymmetric structures, such as plate-like, rod-like, etc. This makes molecular orientation an important aspect in thin-films as it can significantly affect both the optical and electrical performance of optoelectronic devices. With a combination of in-situ ultra violet photoelectron spectroscopy (UPS) and x-ray photoelectron spectroscopy (XPS) investigations for organic molecules having a broad range of structural properties, we discovered a rigid connection of core levels and frontier highest occupied molecular orbital levels at organic interfaces. This finding opens up opportunities of using X-ray photoemission spectroscopy as an alternative tool to UPS for providing an easy and unambiguous data interpretation in probing molecular orientations.

  9. Ice in the Taurus molecular cloud: modelling of the 3-μm profile

    International Nuclear Information System (INIS)

    Bult, C.E.P.M. van de; Greenberg, J.M.; Whittet, D.C.B.

    1985-01-01

    Detailed calculations of the absorption by interstellar core-mantle particles with mantles of different compositions are compared with observations of the 3μm ice band in the Taurus molecular cloud. The strength and shape of the 3-μm band is shown to be a remarkably good diagnostic of the physical state and evolution of the dust in molecular clouds. The strength of the band is consistent with large fractional H 2 O mantle concentrations, in the range 60-70 per cent, as predicted by theoretical studies of cloud chemistry and as expected from the high oxygen abundance in pre-molecular clouds. (author)

  10. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2008-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  11. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2010-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  12. [Core muscle chains activation during core exercises determined by EMG-a systematic review].

    Science.gov (United States)

    Rogan, Slavko; Riesen, Jan; Taeymans, Jan

    2014-10-15

    Good core muscles strength is essential for daily life and sports activities. However, the mechanism how core muscles may be effectively triggered by exercises is not yet precisely described in the literature. The aim of this systematic review was to evaluate the rate of activation as measured by electromyography of the ventral, lateral and dorsal core muscle chains during core (trunk) muscle exercises. A total of 16 studies were included. Exercises with a vertical starting position, such as the deadlift or squat activated significantly more core muscles than exercises in the horizontal initial position.

  13. 16O + 16O molecular structures of superdeformed states in S isotopes

    Science.gov (United States)

    Taniguchi, Y.

    2017-06-01

    Structures of excited states in S isotopes are investigated by using the antisymmetrized molecular dynamics and generator coordinate method (GCM). The GCM basis wave functions are calculated via energy variation with a constraint on the quadrupole deformation parameter β. By applying the GCM after parity and angular momentum projections, the coexistence of positive- and negative-parity superdeformed (SD) bands are predicted in 33-36S except for negative-parity states in 36S. The SD bands have structures of 16O + 16O + valence neutron(s) in molecular orbitals around the two 16O cores in a cluster picture. The configurations of the valence neutron(s) in the SD states are δ and/or π molecular orbitals.

  14. Risk reduction of core-melt accidents in advaned CAPRA burner cores

    International Nuclear Information System (INIS)

    Maschek, W.; Struwe, D.; Eigemann, M.

    1997-01-01

    As part of the CAPRA Program (Consommation Accrue de Plutonium dans les RApides) the feasibility of fast reactors is investigated to burn plutonium and also to destruct minor actinides. The design of CAPRA cores shows significant differences compared to conventional cores. Especially the high Pu-enrichment has an important influence on the core melt-down behavior and the associated recriticality risk. To cope with this risk, inherent design features and special measures/devices are investigated for their potential of early fuel discharge to reduce the criticality of the reactor core. An assessment of such measures/devices is given and experimental needs are formulated. 11 refs., 5 figs

  15. Novel fluorescent core-shell nanocontainers for cell membrane transport.

    Science.gov (United States)

    Yin, Meizhen; Kuhlmann, Christoph R W; Sorokina, Ksenia; Li, Chen; Mihov, George; Pietrowski, Eweline; Koynov, Kaloian; Klapper, Markus; Luhmann, Heiko J; Müllen, Klaus; Weil, Tanja

    2008-05-01

    The synthesis and characterization of novel core-shell macromolecules consisting of a fluorescent perylene-3,4,9,10-tetracarboxdiimide chromophore in the center surrounded by a hydrophobic polyphenylene shell as a first and a flexible hydrophilic polymer shell as a second layer was presented. Following this strategy, several macromolecules bearing varying polymer chain lengths, different polymer shell densities, and increasing numbers of positive and negative charges were achieved. Because all of these macromolecules reveal a good water solubility, their ability to cross cellular membranes was investigated. In this way, a qualitative relationship between the molecular architecture of these macromolecules and the biological response was established.

  16. Considerations for standardizing predictive molecular pathology for cancer prognosis.

    Science.gov (United States)

    Fiorentino, Michelangelo; Scarpelli, Marina; Lopez-Beltran, Antonio; Cheng, Liang; Montironi, Rodolfo

    2017-01-01

    Molecular tests that were once ancillary to the core business of cyto-histopathology are becoming the most relevant workload in pathology departments after histopathology/cytopathology and before autopsies. This has resulted from innovations in molecular biology techniques, which have developed at an incredibly fast pace. Areas covered: Most of the current widely used techniques in molecular pathology such as FISH, direct sequencing, pyrosequencing, and allele-specific PCR will be replaced by massive parallel sequencing that will not be considered next generation, but rather, will be considered to be current generation sequencing. The pre-analytical steps of molecular techniques such as DNA extraction or sample preparation will be largely automated. Moreover, all the molecular pathology instruments will be part of an integrated workflow that traces the sample from extraction to the analytical steps until the results are reported; these steps will be guided by expert laboratory information systems. In situ hybridization and immunohistochemistry for quantification will be largely digitalized as much as histology will be mostly digitalized rather than viewed using microscopy. Expert commentary: This review summarizes the technical and regulatory issues concerning the standardization of molecular tests in pathology. A vision of the future perspectives of technological changes is also provided.

  17. Molecular-Level Simulations of the Turbulent Taylor-Green Flow

    Science.gov (United States)

    Gallis, M. A.; Bitter, N. P.; Koehler, T. P.; Plimpton, S. J.; Torczynski, J. R.; Papadakis, G.

    2017-11-01

    The Direct Simulation Monte Carlo (DSMC) method, a statistical, molecular-level technique that provides accurate solutions to the Boltzmann equation, is applied to the turbulent Taylor-Green vortex flow. The goal of this work is to investigate whether DSMC can accurately simulate energy decay in a turbulent flow. If so, then simulating turbulent flows at the molecular level can provide new insights because the energy decay can be examined in detail from molecular to macroscopic length scales, thereby directly linking molecular relaxation processes to macroscopic transport processes. The DSMC simulations are performed on half a million cores of Sequoia, the 17 Pflop platform at Lawrence Livermore National Laboratory, and the kinetic-energy dissipation rate and the energy spectrum are computed directly from the molecular velocities. The DSMC simulations are found to reproduce the Kolmogorov -5/3 law and to agree with corresponding Navier-Stokes simulations obtained using a spectral method. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  18. Distortion of Magnetic Fields in a Starless Core: Near-infrared Polarimetry of FeSt 1–457

    Energy Technology Data Exchange (ETDEWEB)

    Kandori, Ryo; Tamura, Motohide; Kusakabe, Nobuhiko [Department of Astronomy, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakajima, Yasushi [Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo 186-8601 (Japan); Kwon, Jungmi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Nagayama, Takahiro [Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Nagata, Tetsuya [Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Tomisaka, Kohji; Tatematsu, Ken’ichi, E-mail: r.kandori@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2017-08-10

    Magnetic fields are believed to play an important role in controlling the stability and contraction of the dense condensations of gas and dust that lead to the formation of stars and planetary systems. In the present study, the magnetic field of FeSt 1–457, a cold starless molecular cloud core, was mapped on the basis of the polarized near-infrared light from 185 background stars after being dichroically absorbed by dust aligned with the magnetic field in the core. A distinct “hourglass-shaped” magnetic field was identified in the region of the core, and was interpreted as the first evidence of a magnetic field structure distorted by mass condensation in a starless core. The steep curvature of the magnetic field lines obtained in the present study indicates that the distortion was mainly created during the formation phase of the dense core. The derived mass-to-magnetic flux ratio indicates that the core is in a magnetically supercritical state. However, the stability of the core can be considered to be in a nearly critical state if the additional contributions from the thermal and turbulent support are included. Further diffusion of the magnetic field and/or turbulent dissipation would cause the onset of the dynamical collapse of the core. The geometrical relationship between the direction of the magnetic field lines and the elongation of the core was found to be in good agreement with theoretical predictions for the formation of Sun-like stars under the influence of a magnetic field.

  19. Accelerating Molecular Dynamic Simulation on Graphics Processing Units

    Science.gov (United States)

    Friedrichs, Mark S.; Eastman, Peter; Vaidyanathan, Vishal; Houston, Mike; Legrand, Scott; Beberg, Adam L.; Ensign, Daniel L.; Bruns, Christopher M.; Pande, Vijay S.

    2009-01-01

    We describe a complete implementation of all-atom protein molecular dynamics running entirely on a graphics processing unit (GPU), including all standard force field terms, integration, constraints, and implicit solvent. We discuss the design of our algorithms and important optimizations needed to fully take advantage of a GPU. We evaluate its performance, and show that it can be more than 700 times faster than a conventional implementation running on a single CPU core. PMID:19191337

  20. Molecular dynamics simulation of cascade damage in gold

    International Nuclear Information System (INIS)

    Alonso, E.; Caturla, M.J.; Tang, M.; Huang, H.; Diaz de la Rubia, T.

    1997-01-01

    High-energy cascades have been simulated in gold using molecular dynamics with a modified embedded atom method potential. The results show that both vacancy and interstitial clusters form with high probability as a result of intracascade processes. The formation of clusters has been interpreted in terms of the high pressures generated in the core of the cascade during the early stages. The authors provide evidence that correlation between interstitial and vacancy clustering exists

  1. Molecular recognition by gold, silver and copper nanoparticles

    Science.gov (United States)

    Tauran, Yannick; Brioude, Arnaud; Coleman, Anthony W; Rhimi, Moez; Kim, Beonjoom

    2013-01-01

    The intrinsic physical properties of the noble metal nanoparticles, which are highly sensitive to the nature of their local molecular environment, make such systems ideal for the detection of molecular recognition events. The current review describes the state of the art concerning molecular recognition of Noble metal nanoparticles. In the first part the preparation of such nanoparticles is discussed along with methods of capping and stabilization. A brief discussion of the three common methods of functionalization: Electrostatic adsorption; Chemisorption; Affinity-based coordination is given. In the second section a discussion of the optical and electrical properties of nanoparticles is given to aid the reader in understanding the use of such properties in molecular recognition. In the main section the various types of capping agents for molecular recognition; nucleic acid coatings, protein coatings and molecules from the family of supramolecular chemistry are described along with their numerous applications. Emphasis for the nucleic acids is on complementary oligonucleotide and aptamer recognition. For the proteins the recognition properties of antibodies form the core of the section. With respect to the supramolecular systems the cyclodextrins, calix[n]arenes, dendrimers, crown ethers and the cucurbitales are treated in depth. Finally a short section deals with the possible toxicity of the nanoparticles, a concern in public health. PMID:23977421

  2. TRF2 Protein Interacts with Core Histones to Stabilize Chromosome Ends.

    Science.gov (United States)

    Konishi, Akimitsu; Izumi, Takashi; Shimizu, Shigeomi

    2016-09-23

    Mammalian chromosome ends are protected by a specialized nucleoprotein complex called telomeres. Both shelterin, a telomere-specific multi-protein complex, and higher order telomeric chromatin structures combine to stabilize the chromosome ends. Here, we showed that TRF2, a component of shelterin, binds to core histones to protect chromosome ends from inappropriate DNA damage response and loss of telomeric DNA. The N-terminal Gly/Arg-rich domain (GAR domain) of TRF2 directly binds to the globular domain of core histones. The conserved arginine residues in the GAR domain of TRF2 are required for this interaction. A TRF2 mutant with these arginine residues substituted by alanine lost the ability to protect telomeres and induced rapid telomere shortening caused by the cleavage of a loop structure of the telomeric chromatin. These findings showed a previously unnoticed interaction between the shelterin complex and nucleosomal histones to stabilize the chromosome ends. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Analysis of Hydrogen Cyanide Hyperfine Spectral Components towards Star Forming Cores

    Directory of Open Access Journals (Sweden)

    Loughnane R. M.

    2011-12-01

    Full Text Available Although hydrogen cyanide has become quite a common molecular tracing species for a variety of astrophysical sources, it, however, exhibits dramatic non-LTE behaviour in its hyperfine line structure. Individual hyperfine components can be strongly boosted or suppressed. If these so-called hyperfine line anomalies are present in the HCN rotational spectra towards low or high mass cores, this will affect the interpretation of various physical properties such as the line opacity and excitation temperature in the case of low mass objects and infall velocities in the case of their higher mass counterparts. Anomalous line ratios are present either through the relative strengths of neighboring hyperfine lines or through the varying widths of hyperfine lines belonging to a particular rotational line. This work involves the first observational investigation of these anomalies in two HCN rotational transitions, J=1→0 and J=3→2, towards both low mass starless cores and high mass protostellar objects. The degree of anomaly in these two rotational transitions is considered by computing the ratios of neighboring hyperfine lines in individual spectra. Results indicate some degree of anomaly is present in all cores considered in our survey, the most likely cause being line overlap effects among hyperfine components in higher rotational transitions.

  4. Evidence that assembly of the yeast cytochrome bc1 complex involves formation of a large core structure in the inner mitochondrial membrane

    Science.gov (United States)

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L.

    2009-01-01

    The assembly status of the cytochrome bc1 complex has been analyzed in distinct yeast deletion strains in which genes for one or more of the bc1 subunits had been deleted. In all the yeast strains tested a bc1 sub-complex of about 500 kDa was found when the mitochondrial membranes were analyzed by blue native electrophoresis. The subsequent molecular characterization of this sub-complex, carried out in the second dimension by SDS-PAGE and immunodecoration, revealed the presence of the two catalytic subunits cytochrome b and cytochrome c1, associated with the non catalytic subunits core protein 1, core protein 2, Qcr7p and Qcr8p. Altogether these bc1 subunits build up the core structure of the cytochrome bc1 complex which is then able to sequentially bind the remaining subunits, such as Qcr6p, Qcr9p, the Rieske iron-sulfur protein and Qcr10p. This bc1 core structure may represent a true assembly intermediate during the maturation of the bc1 complex, first because of its wide distribution in distinct yeast deletion strains and second for its characteristics of stability which resemble those of the intact homodimeric bc1 complex. Differently from this latter, however, the bc1 core structure is not able to interact with the cytochrome c oxidase complex to form respiratory supercomplexes. The characterization of this novel core structure of the bc1 complex provides a number of new elements for clarification of the molecular events leading to the maturation of the yeast cytochrome bc1 complex in the inner mitochondrial membrane. PMID:19236481

  5. Animal MRI Core

    Data.gov (United States)

    Federal Laboratory Consortium — The Animal Magnetic Resonance Imaging (MRI) Core develops and optimizes MRI methods for cardiovascular imaging of mice and rats. The Core provides imaging expertise,...

  6. A prawn core histone 4: derivation of N- and C-terminal peptides and their antimicrobial properties, molecular characterization and mRNA transcription.

    Science.gov (United States)

    Chaurasia, Mukesh Kumar; Palanisamy, Rajesh; Bhatt, Prasanth; Kumaresan, Venkatesh; Gnanam, Annie J; Pasupuleti, Mukesh; Kasi, Marimuthu; Harikrishnan, Ramaswamy; Arockiaraj, Jesu

    2015-01-01

    This study investigates the complete molecular characterization including bioinformatics characterization, gene expression, synthesis of N and C terminal peptides and their antimicrobial activity of the core histone 4 (H4) from freshwater giant prawn Macrobrachium rosenbergii (Mr). A cDNA encoding MrH4 was identified from the constructed cDNA library of M. rosenbergii during screening and the sequence was obtained using internal sequencing primers. The MrH4 coding region possesses a polypeptide of 103 amino acids with a calculated molecular weight of 11kDa and an isoelectric point of 11.5. The bioinformatics analysis showed that the MrH4 polypeptide contains a H4 signature at (15)GAKRH(19). Multiple sequence alignment of MrH4 showed that the N-terminal (21-42) and C-terminal (87-101) antimicrobial peptide regions and the pentapeptide or H4 signature (15-19) are highly conserved including in humans. The phylogenetic tree formed two separate clades of vertebrate and invertebrate H4, wherein MrH4 was located within the arthropod monophyletic clade of invertebrate H4 groups. Three-dimensional model of MrH4 was established using I-TASSER program and the model was validated using Ramachandran plot analysis. Schiffer-Edmundson helical wheel modeling was used to predict the helix propensity of N (21-42) and C (87-101) terminal derived Mr peptides. The highest gene expression was observed in gills and is induced by viral [white spot syndrome baculovirus (WSBV) and M. rosenbergii nodovirus (MrNV)] and bacterial (Aeromonas hydrophila and Vibrio harveyi) infections. The N and C terminal peptides were synthesized and their antimicrobial and hemolytic properties were examined. Both peptides showed activity against the tested Gram negative and Gram positive bacteria; however, the highest activity was noticed against Gram negative bacteria. Among the two peptides used in this study, C-terminal peptide yielded better results than the N-terminal peptide. Therefore, C terminal

  7. Selective interface transparency in graphene nanoribbon based molecular junctions.

    Science.gov (United States)

    Dou, K P; Kaun, C C; Zhang, R Q

    2018-03-08

    A clear understanding of electrode-molecule interfaces is a prerequisite for the rational engineering of future generations of nanodevices that will rely on single-molecule coupling between components. With a model system, we reveal a peculiar dependence on interfaces in all graphene nanoribbon-based carbon molecular junctions. The effect can be classified into two types depending on the intrinsic feature of the embedded core graphene nanoflake (GNF). For metallic GNFs with |N A - N B | = 1, good/poor contact transparency occurs when the core device aligns with the center/edge of the electrode. The situation is reversed when a semiconducting GNF is the device, where N A = N B . These results may shed light on the design of real connecting components in graphene-based nanocircuits.

  8. Error Analysis of High Frequency Core Loss Measurement for Low-Permeability Low-Loss Magnetic Cores

    DEFF Research Database (Denmark)

    Niroumand, Farideh Javidi; Nymand, Morten

    2016-01-01

    in magnetic cores is B-H loop measurement where two windings are placed on the core under test. However, this method is highly vulnerable to phase shift error, especially for low-permeability, low-loss cores. Due to soft saturation and very low core loss, low-permeability low-loss magnetic cores are favorable...... in many of the high-efficiency high power-density power converters. Magnetic powder cores, among the low-permeability low-loss cores, are very attractive since they possess lower magnetic losses in compared to gapped ferrites. This paper presents an analytical study of the phase shift error in the core...... loss measuring of low-permeability, low-loss magnetic cores. Furthermore, the susceptibility of this measurement approach has been analytically investigated under different excitations. It has been shown that this method, under square-wave excitation, is more accurate compared to sinusoidal excitation...

  9. HackaMol: An Object-Oriented Modern Perl Library for Molecular Hacking on Multiple Scales.

    Science.gov (United States)

    Riccardi, Demian; Parks, Jerry M; Johs, Alexander; Smith, Jeremy C

    2015-04-27

    HackaMol is an open source, object-oriented toolkit written in Modern Perl that organizes atoms within molecules and provides chemically intuitive attributes and methods. The library consists of two components: HackaMol, the core that contains classes for storing and manipulating molecular information, and HackaMol::X, the extensions that use the core. The core is well-tested, well-documented, and easy to install across computational platforms. The goal of the extensions is to provide a more flexible space for researchers to develop and share new methods. In this application note, we provide a description of the core classes and two extensions: HackaMol::X::Calculator, an abstract calculator that uses code references to generalize interfaces with external programs, and HackaMol::X::Vina, a structured class that provides an interface with the AutoDock Vina docking program.

  10. A fermionic molecular dynamics technique to model nuclear matter

    International Nuclear Information System (INIS)

    Vantournhout, K.; Jachowicz, N.; Ryckebusch, J.

    2009-01-01

    Full text: At sub-nuclear densities of about 10 14 g/cm 3 , nuclear matter arranges itself in a variety of complex shapes. This can be the case in the crust of neutron stars and in core-collapse supernovae. These slab like and rod like structures, designated as nuclear pasta, have been modelled with classical molecular dynamics techniques. We present a technique, based on fermionic molecular dynamics, to model nuclear matter at sub-nuclear densities in a semi classical framework. The dynamical evolution of an antisymmetric ground state is described making the assumption of periodic boundary conditions. Adding the concepts of antisymmetry, spin and probability distributions to classical molecular dynamics, brings the dynamical description of nuclear matter to a quantum mechanical level. Applications of this model vary from investigation of macroscopic observables and the equation of state to the study of fundamental interactions on the microscopic structure of the matter. (author)

  11. Evidence that the assembly of the yeast cytochrome bc1 complex involves the formation of a large core structure in the inner mitochondrial membrane.

    Science.gov (United States)

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L

    2009-04-01

    The assembly status of the cytochrome bc(1) complex has been analyzed in distinct yeast deletion strains in which genes for one or more of the bc(1) subunits were deleted. In all the yeast strains tested, a bc(1) sub-complex of approximately 500 kDa was found when the mitochondrial membranes were analyzed by blue native electrophoresis. The subsequent molecular characterization of this sub-complex, carried out in the second dimension by SDS/PAGE and immunodecoration, revealed the presence of the two catalytic subunits, cytochrome b and cytochrome c(1), associated with the noncatalytic subunits core protein 1, core protein 2, Qcr7p and Qcr8p. Together, these bc(1) subunits build up the core structure of the cytochrome bc(1) complex, which is then able to sequentially bind the remaining subunits, such as Qcr6p, Qcr9p, the Rieske iron-sulfur protein and Qcr10p. This bc(1) core structure may represent a true assembly intermediate during the maturation of the bc(1) complex; first, because of its wide distribution in distinct yeast deletion strains and, second, for its characteristics of stability, which resemble those of the intact homodimeric bc(1) complex. By contrast, the bc(1) core structure is unable to interact with the cytochrome c oxidase complex to form respiratory supercomplexes. The characterization of this novel core structure of the bc(1) complex provides a number of new elements clarifying the molecular events leading to the maturation of the yeast cytochrome bc(1) complex in the inner mitochondrial membrane.

  12. The core paradox.

    Science.gov (United States)

    Kennedy, G. C.; Higgins, G. H.

    1973-01-01

    Rebuttal of suggestions from various critics attempting to provide an escape from the seeming paradox originated by Higgins and Kennedy's (1971) proposed possibility that the liquid in the outer core was thermally stably stratified and that this stratification might prove a powerful inhibitor to circulation of the outer core fluid of the kind postulated for the generation of the earth's magnetic field. These suggestions are examined and shown to provide no reasonable escape from the core paradox.

  13. Potential curves and spectroscopic study of the electronic states of the molecular ion LiCs+

    International Nuclear Information System (INIS)

    Moughrabi, A.; Korek, M.; Allouche, A.R.

    2004-01-01

    Full text.Due to a very accurate high-resolution techniques and to the spectacular developments in ultracold alkali atom trapping developments which are at the root of photo association spectroscopy there has been a renewed interest on the spectroscopic study of alkali dimers. The existence of new experimental data on these species has stimulated theoretical approaches, necessary to provide predictions accurate enough to be useful for interpretation and evenly for guidance of experiments. With the aim of improving the accuracy of predictions we will perform a theoretical study of the electronic structure of the molecular ion LiCs + , using a method mainly in the way by which core-valence effects are taken into account. To investigate the electronic structure of LiCs + we will use the package CIPSI (Configuration Interaction by Perturbation of a multiconfiguration wave function Selected Interactively) of the Laboratoire de Physique Quantique (Toulouse, France). The atoms Li and Cs will be treated through non-empirical effective one electron core potentials of Durand and Barthelat type. Molecular orbitals for LiCs + will be derived from Self Consistent Field Calculations (SCF) and full valence Configuration Interaction (IC) calculations. A core-core interaction more elaborated than the usual approximation 1/R will be taken into account as the sum of an exponential repulsive term plus a long range dispersion term approximated by the well known London formula. Potential energy calculations will be performed for different molecular states, for numerous values of the inter-nuclear distance R in a wide range. Spectroscopic constants have been derived for the bound states with a regular shape A ro vibrational study have been performed for the ground states with a calculation of the rotational and centrifugal distortion constants. A calculation for the transition dipole moment and matrix elements have been done for the bound states

  14. s-core network decomposition: A generalization of k-core analysis to weighted networks

    Science.gov (United States)

    Eidsaa, Marius; Almaas, Eivind

    2013-12-01

    A broad range of systems spanning biology, technology, and social phenomena may be represented and analyzed as complex networks. Recent studies of such networks using k-core decomposition have uncovered groups of nodes that play important roles. Here, we present s-core analysis, a generalization of k-core (or k-shell) analysis to complex networks where the links have different strengths or weights. We demonstrate the s-core decomposition approach on two random networks (ER and configuration model with scale-free degree distribution) where the link weights are (i) random, (ii) correlated, and (iii) anticorrelated with the node degrees. Finally, we apply the s-core decomposition approach to the protein-interaction network of the yeast Saccharomyces cerevisiae in the context of two gene-expression experiments: oxidative stress in response to cumene hydroperoxide (CHP), and fermentation stress response (FSR). We find that the innermost s-cores are (i) different from innermost k-cores, (ii) different for the two stress conditions CHP and FSR, and (iii) enriched with proteins whose biological functions give insight into how yeast manages these specific stresses.

  15. The AVRDC - The World Vegetable Center mungbean (Vigna radiata) core and mini core collections.

    Science.gov (United States)

    Schafleitner, Roland; Nair, Ramakrishnan Madhavan; Rathore, Abhishek; Wang, Yen-wei; Lin, Chen-yu; Chu, Shu-hui; Lin, Pin-yun; Chang, Jian-Cheng; Ebert, Andreas W

    2015-04-29

    Large ex situ germplasm collections generally harbor a wide range of crop diversity. AVRDC--The World Vegetable Center is holding in trust the world's second largest mungbean (Vigna radiata) germplasm collection with more than 6,700 accessions. Screening large collections for traits of interest is laborious and expensive. To enhance the access of breeders to the diversity of the crop, mungbean core and mini core collections have been established. The core collection of 1,481 entries has been built by random selection of 20% of the accessions after geographical stratification and subsequent cluster analysis of eight phenotypic descriptors in the whole collection. Summary statistics, especially the low differences of means, equal variance of the traits in both the whole and core collection and the visual inspection of quantile-quantile plots comparing the variation of phenotypic traits present in both collections indicated that the core collection well represented the pattern of diversity of the whole collection. The core collection was genotyped with 20 simple sequence repeat markers and a mini core set of 289 accessions was selected, which depicted the allele and genotype diversity of the core collection. The mungbean core and mini core collections plus their phenotypic and genotypic data are available for distribution to breeders. It is expected that these collections will enhance the access to biodiverse mungbean germplasm for breeding.

  16. INTERMEDIATE-MASS HOT CORES AT {approx}500 AU: DISKS OR OUTFLOWS?

    Energy Technology Data Exchange (ETDEWEB)

    Palau, Aina; Girart, Josep M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB-Facultat de Ciencies, Torre C5-parell 2, 08193 Bellaterra, Catalunya (Spain); Fuente, Asuncion; Alonso-Albi, Tomas [Observatorio Astronomico Nacional, P.O. Box 112, 28803 Alcala de Henares, Madrid (Spain); Fontani, Francesco; Sanchez-Monge, Alvaro [Osservatorio Astrofisico di Arcetri, INAF, Largo E. Fermi 5, 50125 Firenze (Italy); Boissier, Jeremie [Istituto di Radioastronomia, INAF, Via Gobetti 101, Bologna (Italy); Pietu, Vincent; Neri, Roberto [IRAM, 300 Rue de la piscine, 38406 Saint Martin d' Heres (France); Busquet, Gemma [Istituto di Fisica dello Spazio Interplanetario, INAF, Area di Recerca di Tor Vergata, Via Fosso Cavaliere 100, 00133 Roma (Italy); Estalella, Robert [Departament d' Astronomia i Meteorologia (IEEC-UB), Institut Ciencies Cosmos, Universitat Barcelona, Marti Franques 1, 08028 Barcelona (Spain); Zapata, Luis A. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, P.O. Box 3-72, 58090 Morelia, Michoacan (Mexico); Zhang, Qizhou; Ho, Paul T. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Audard, Marc, E-mail: palau@ieec.uab.es [Geneva Observatory, University of Geneva, Ch. des Maillettes 51, 1290 Versoix (Switzerland)

    2011-12-20

    Observations with the Plateau de Bure Interferometer in the most extended configuration toward two intermediate-mass star-forming regions, IRAS 22198+6336 and AFGL 5142, reveal the presence of several complex organic molecules at {approx}500 AU scales, confirming the presence of hot cores in both regions. The hot cores are not rich in CN-bearing molecules, as often seen in massive hot cores, and are mainly traced by CH{sub 3}CH{sub 2}OH, (CH{sub 2}OH){sub 2}, CH{sub 3}COCH{sub 3}, and CH{sub 3}OH, with, additionally, CH{sub 3}CHO, CH{sub 3}OD, and HCOOD for IRAS 22198+6336, and C{sub 6}H and O{sup 13}CS for AFGL 5142. The emission of complex molecules is resolved down to sizes of {approx}300 and {approx}600 AU, for IRAS 22198+6336 and AFGL 5142, respectively, and most likely is tracing protostellar disks rather than flattened envelopes or toroids as is usually found. This is especially clear for the case of IRAS 22198+6336, where we detect a velocity gradient for all the mapped molecules perpendicular to the most chemically rich outflow of the region, yielding a dynamic mass {approx}> 4 M{sub Sun }. As for AFGL 5142, the hot core emission is resolved into two elongated cores separated {approx}1800 AU. A detailed comparison of the complex molecule peaks to the new CO (2-1) data and H{sub 2}O maser data from the literature suggests also that for AFGL 5142 the complex molecules are mainly associated with disks, except for a faint and extended molecular emission found to the west, which is possibly produced in the interface between one of the outflows and the dense surrounding gas.

  17. The Effect of an Inert Solid Reservoir on Molecular Abundances in Dense Interstellar Clouds

    Directory of Open Access Journals (Sweden)

    Kalvāns Juris

    2012-12-01

    Full Text Available The question, what is the role of freeze-out of chemical species in determining the molecular abundances in the interstellar gas is a matter of debate. We investigate a theoretical case of a dense interstellar molecular cloud core by time-dependent modeling of chemical kinetics, where grain surface reactions deliberately are not included. That means, the gas-phase and solid-phase abundances are influenced only by gas reactions, accretion on grains and desorption. We compare the results to a reference model where no accretion occurs, and only gas-phase reactions are included. We can trace that the purely physical processes of molecule accretion and desorption have major chemical consequences on the gas-phase chemistry. The main effect of introduction of the gas-grain interaction is long-term molecule abundance changes that come nowhere near an equilibrium during the typical lifetime of a prestellar core.

  18. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells

    Science.gov (United States)

    Surnar, Bapurao; Sharma, Kavita; Jayakannan, Manickam

    2015-10-01

    Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited embryonic fibroblast cells (Wt-MEFs), and breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri-nuclear environments. The present investigation lays a new foundation for the polymer-based core-shell nanoparticles approach for overcoming detoxification in platinum drugs for the treatment of GSH over-expressed breast cancer cells.Platinum drug delivery against the detoxification

  19. Accelerator driven sub-critical core

    Science.gov (United States)

    McIntyre, Peter M; Sattarov, Akhdiyor

    2015-03-17

    Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.

  20. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Kan Xianwen; Geng Zhirong; Zhao Yao; Wang Zhilin; Zhu Junjie [State Key Laboratory of Coordination Chemistry, MOE Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)], E-mail: wangzl@nju.edu.cn, E-mail: jjzhu@nju.edu.cn

    2009-04-22

    Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe{sub 3}O{sub 4} nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.

  1. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release

    International Nuclear Information System (INIS)

    Kan Xianwen; Geng Zhirong; Zhao Yao; Wang Zhilin; Zhu Junjie

    2009-01-01

    Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe 3 O 4 nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.

  2. A smart core-sheath nanofiber that captures and releases red blood cells from the blood

    Science.gov (United States)

    Shi, Q.; Hou, J.; Zhao, C.; Xin, Z.; Jin, J.; Li, C.; Wong, S.-C.; Yin, J.

    2016-01-01

    A smart core-sheath nanofiber for non-adherent cell capture and release is demonstrated. The nanofibers are fabricated by single-spinneret electrospinning of poly(N-isopropylacrylamide) (PNIPAAm), polycaprolactone (PCL) and nattokinase (NK) solution blends. The self-assembly of PNIPAAm and PCL blends during the electrospinning generates the core-sheath PCL/PNIPAAm nanofibers with PNIPAAm as the sheath. The PNIPAAm-based core-sheath nanofibers are switchable between hydrophobicity and hydrophilicity with temperature change and enhance stability in the blood. When the nanofibers come in contact with blood, the NK is released from the nanofibers to resist platelet adhesion on the nanofiber surface, facilitating the direct capture and isolation of red blood cells (RBCs) from the blood above phase-transition temperature of PNIPAAm. Meanwhile, the captured RBCs are readily released from the nanofibers with temperature stimuli in an undamaged manner. The release efficiency of up to 100% is obtained while maintaining cellular integrity and function. This work presents promising nanofibers to effectively capture non-adherent cells and release for subsequent molecular analysis and diagnosis of single cells.A smart core-sheath nanofiber for non-adherent cell capture and release is demonstrated. The nanofibers are fabricated by single-spinneret electrospinning of poly(N-isopropylacrylamide) (PNIPAAm), polycaprolactone (PCL) and nattokinase (NK) solution blends. The self-assembly of PNIPAAm and PCL blends during the electrospinning generates the core-sheath PCL/PNIPAAm nanofibers with PNIPAAm as the sheath. The PNIPAAm-based core-sheath nanofibers are switchable between hydrophobicity and hydrophilicity with temperature change and enhance stability in the blood. When the nanofibers come in contact with blood, the NK is released from the nanofibers to resist platelet adhesion on the nanofiber surface, facilitating the direct capture and isolation of red blood cells (RBCs) from

  3. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, P.; Ramakrishnan, V. [Department of Laser Studies, School of Physics, Madurai Kamaraj University, Madurai-625 021 (India); Jeganathan, K. [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli-620 024 (India)

    2013-06-15

    The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE) on Si (111) substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E{sub 2} (high) and A{sub 1} (LO) phonon mode of InN core at 490 and 590 cm{sup -1} respectively and E{sub 2} (high) phonon mode of GaN shell at 573 cm{sup -1}. The free carrier concentration of InN core is found to be low in the order {approx} 10{sup 16} cm{sup -3} due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of {approx}15 nm. The phonon-life time of core-shell nanowire structure is estimated to be {approx}0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E{sub 2} (high) phonon mode of GaN shell at 573 cm{sup -1} as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.

  4. Foundational Concepts and Underlying Theories for Majors in "Biochemistry and Molecular Biology"

    Science.gov (United States)

    Tansey, John T.; Baird, Teaster, Jr.; Cox, Michael M.; Fox, Kristin M.; Knight, Jennifer; Sears, Duane; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members and science educators from around the country that focused on identifying: 1) core principles of biochemistry and molecular biology, 2) essential concepts and underlying theories from physics, chemistry, and mathematics, and 3)…

  5. In-core flow rate distribution measurement test of the JOYO irradiation core

    International Nuclear Information System (INIS)

    Suzuki, Toshihiro; Isozaki, Kazunori; Suzuki, Soju

    1996-01-01

    A flow rate distribution measurement test was carried out for the JOYO irradiation core (the MK-II core) after the 29th duty cycle operation. The main object of the test is to confirm the proper flow rate distribution at the final phase of the MK-II core. The each flow rate at the outlet of subassemblies was measured by the permanent magnetic flowmeter inserted avail of fuel exchange hole in the rotating plug. This is third test in the MK-II core, after 10 years absence from the final test (1985). Total of 550 subassemblies were exchanged and accumulated reactor operation time reached up to 38,000 hours from the previous test. As a conclusion, it confirmed that the flow rate distribution has been kept suitable in the final phase of the MK-II core. (author)

  6. Models of the earth's core

    International Nuclear Information System (INIS)

    Stevenson, D.J.

    1981-01-01

    The combination of seismology, high pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to strong constraints on core models. The synthesis presented here is devoted to the defense of the following properties: (1) core formation was contemporaneous with earth accretion; (2) the outer, liquid core is predominately iron but cannot be purely iron; (3) the inner core-outer core boundary represents a thermodynamic equilibrium between a liquid alloys and a predominanately iron solid; (4) thermodynamic and transport properties of outer core can be estimated from liquid-state theories; and (5) the outer core is probably adiabatic and uniform in composition. None of these propositions are universally accepted by geophysicists. But, the intent of this paper is to present a coherent picture which explains most of the data with the fewest ad hoc assumptions. Areas in which future progress is both essential and likely are geo- and cosmochronology, seismological determinations of core structure, fluid dynamics of the core and mantle, and condensed matter physics

  7. Physical and chemical characteristics of L1689-SMM16, an oscillating prestellar core in Ophiuchus

    Energy Technology Data Exchange (ETDEWEB)

    Chitsazzadeh, S.; Di Francesco, J.; Sadavoy, S. I. [Department of Physics and Astronomy, The University of Victoria, Victoria, BC V8P 5C2 (Canada); Schnee, S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Friesen, R. K. [The Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON M5S 3H4 (Canada); Shimajiri, Y. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d' Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Langston, G. I. [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Bourke, T. L.; Keto, E. R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pineda, J. E. [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Takakuwa, S. [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Tatematsu, K., E-mail: schitsaz@uvic.ca [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2014-08-01

    We present single-dish observations of the L1689-SMM16 core in the Ophiuchus molecular cloud in NH{sub 3} (1, 1) and (2, 2) emission using the Green Bank Telescope, in N{sub 2}H{sup +} (1-0) emission using the Nobeyama Radio Observatory, and in NH{sub 2}D (1{sub 1,1}{sup a}(--)1{sub 0,1}{sup s}), HCN (1-0), HNC (1-0), H{sup 13}CO{sup +} (1-0), and HCO{sup +} (1-0) emission using the Mopra telescope. The morphologies of the integrated NH{sub 3} (1, 1) and N{sub 2}H{sup +} (1-0) emission well match that of 250 μm continuum emission. Line widths of NH{sub 3} (1, 1) and N{sub 2}H{sup +} (1-0) show the presence of transonic turbulence across the core. Jeans and virial analyses made using updated measurements of core mass and size confirm that L1689-SMM16 is prestellar, i.e., gravitationally bound. It also has accumulated more mass compared to its corresponding Jeans mass in the absence of magnetic fields and therefore is a 'super-Jeans' core. The high levels of X(NH{sub 3})/X(N{sub 2}H{sup +}) and deuterium fractionation reinforce the idea that the core has not yet formed a protostar. Comparing the physical parameters of the core with those of a Bonnor-Ebert sphere reveals the advanced evolutionary stage of L1689-SMM16 and shows that it might be unstable to collapse. We do not detect any evidence of infall motions toward the core. Instead, red asymmetry in the line profiles of HCN (1-0) and HNC (1-0) indicates the expansion of the outer layers of the core at a speed of ∼0.2 km s{sup –1} to 0.3 km s{sup –1}. For a gravitationally bound core, expansion in the outer layers might indicate that the core is experiencing oscillations.

  8. Introducing MINA--The Molecularly Imprinted Nanoparticle Assay.

    Science.gov (United States)

    Shutov, Roman V; Guerreiro, Antonio; Moczko, Ewa; de Vargas-Sansalvador, Isabel Perez; Chianella, Iva; Whitcombe, Michael J; Piletsky, Sergey A

    2014-03-26

    A new ELISA- (enzyme-linked immunosorbent assay)-like assay is demonstrated in which no elements of biological origin are used for molecular recognition or signaling. Composite imprinted nanoparticles that contain a catalytic core and which are synthesized by using a solid-phase approach can simultaneously act as recognition/signaling elements, and be used with minimal modifications to standard assay protocols. This assay provides a new route towards replacement of unstable biomolecules in immunoassays. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Probing molecular orientations in thin films by x-ray photoelectron spectroscopy

    Directory of Open Access Journals (Sweden)

    Y. Li

    2018-03-01

    Full Text Available A great number of functional organic molecules in active thin-film layers of optoelectronic devices have highly asymmetric structures, such as plate-like, rod-like, etc. This makes molecular orientation an important aspect in thin-films as it can significantly affect both the optical and electrical performance of optoelectronic devices. With a combination of in-situ ultra violet photoelectron spectroscopy (UPS and x-ray photoelectron spectroscopy (XPS investigations for organic molecules having a broad range of structural properties, we discovered a rigid connection of core levels and frontier highest occupied molecular orbital levels at organic interfaces. This finding opens up opportunities of using X-ray photoemission spectroscopy as an alternative tool to UPS for providing an easy and unambiguous data interpretation in probing molecular orientations.

  10. Models of the earth's core

    Science.gov (United States)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  11. Study of the mechanism of clamping and detachment of a core sample by core lever lifters

    Energy Technology Data Exchange (ETDEWEB)

    Barabashkin, I I; Mizyakin, V M; Nikitin, S V

    1981-01-01

    Geometric dimensions of the basic elements of a core lifter should be determined depending on the clamping conditions. The changes should be determined depending on the conditions of the core sample diameter, critical angle between the lever and the core samples in the necessary depth of submersion of the contact edge of the lever into its surface. The core lifter KTsRZ-80 with eccentric core reception makes it possible to arrange more efficiently the core removing elements on the edge of the band. The use of the core lifters with eccentric plan of arrangement of the levers and their optimal length increases the removal of the core sample.

  12. Understanding the Synthesis and Properties of Molecular Silver Nanoparticles

    Science.gov (United States)

    Ashenfelter, Brian A.

    Molecular nanoparticles have emerged as an interesting class of materials whose atomically precise structures and discrete properties set them apart from their larger counterparts. Molecular silver nanoparticles are of particular interest because they provide a host of advantages as optical materials for possible use in sensing and imaging applications. However, relatively little is known about molecular silver nanoparticles including the details of their formation and their optical and mechanical properties. Size control remains a longstanding challenge in the production of glutathionate (SG) protected silver nanoparticles. Singular Ag:SG nanoparticle products have been difficult to obtain directly, but size focusing of larger distributions through attrition has been found to lead to useful isolation of particular species. Here, we present a methodology for controlling the size of Ag:SG molecular nanoparticles that leverages the stability of the most robust species. These results were then used to develop a facile approach for achieving two of the most stable species in the Ag:SG system. Molecular metal nanoparticles are known to be much more fluorescent than larger plasmonic nanoparticles, however the nature and origin of this fluorescence are not fully understood. Fluorescence can originate from either the quantum states within the metal core or mixed ligand states at the inorganic-organic interface. We have presented compelling evidence that fluorescence from molecular silver glutathionate nanoparticles has its origin in interfacial electronic states. Fluorescence spectra were found to be independent of size, with very similar wavelength and bandwidth, although the quantum yield was not. Excitation spectra indicated that the strongest fluorescence had its origin in that part of the spectrum that is dominated by ligand-related states. Further, excitations to strictly core states and to higher lying d-band states had little to no contribution to the fluorescence

  13. How Does Amino Acid Ligand Modulate Au Core Structure and Characteristics in Peptide Coated Au Nanocluster?

    Science.gov (United States)

    Li, Nan; Li, Xu; Zhao, Hongkang; Zhao, Lina

    2018-03-01

    The atomic structures and the corresponding physicochemical properties of peptide coated Au nanoclusters determine their distinctive biological targeting applications. To learn the modulation of amino acid ligand on the atomic structure and electronic characteristics of coated Au core is the fundamental knowledge for peptide coated Au nanocluster design and construction. Based on our recent coated Au nanocluster configuration study (Nanoscale, 2016, 8, 11454), we built the typically simplified Au13(Cys-Au-Cys) system to more clearly learn the basic modulation information of amino acid ligand on Au core by the density functional theory (DFT) calculations. There are two isomers as ligand adjacent bonding (Iso1) and diagonal bonding (Iso2) to Au13 cores. The geometry optimizations indicate the adjacent bonding Iso1 is more stable than Iso2. More important, the Au13 core of Iso1 distorts much more significantly than that of Iso2 by Cys-Au-Cys bonding through the root-mean-square deviation (RMSD) analysis, which modulate their electronic characteristics in different ways. In addition, the frontier molecular orbital results of Au13(Cys-Au-Cys) isomers confirm that the Au cores mainly determine the blue shifts of Au13(Cys-Au-Cys) systems versus the original Au13 core in their UV-visible absorption spectrum studies. The configuration of Au13 core performs deformation under Cys-Au-Cys ligand modulation to reach new stability with distinct atomic structure and electronic properties, which could be the theory basis for peptide coated AuNCs design and construction.

  14. Inflation targeting and core inflation

    OpenAIRE

    Julie Smith

    2005-01-01

    This paper examines the interaction of core inflation and inflation targeting as a monetary policy regime. Interest in core inflation has grown because of inflation targeting. Core inflation is defined in numerous ways giving rise to many potential measures; this paper defines core inflation as the best forecaster of inflation. A cross-country study finds before the start of inflation targeting, but not after, core inflation differs between non-inflation targeters and inflation targeters. Thr...

  15. Synthesis, characterization and nitrite ion sensing performance of reclaimable composite samples through a core-shell structure

    Science.gov (United States)

    Cui, Xiao; Yuqing, Zhao; Cui, Jiantao; Zheng, Qian; Bo, Wang

    2018-02-01

    The following paper reported and discussed a nitrite ion optical sensing platform based on a core-shell structure, using superamagnetic nanoparticles as the core, a silica molecular sieve MCM-41 as the shell and two rhodamine derivatives as probe, respectively. This superamagnetic core made this sensing platform reclaimable after finishing nitrite ion sensing procedure. This sensing platform was carefully characterized by means of electron microscopy images, porous structure analysis, magnetic response, IR spectra and thermal stability analysis. Detailed analysis suggested that the emission of these composite samples was quenchable by nitrite ion, showing emission turn off effect. A static sensing mechanism based on an additive reaction between chemosensors and nitrite ion was proposed. These composite samples followed Demas quenching equation against different nitrite ion concentrations. Limit of detection value was obtained as low as 0.4 μM. It was found that, after being quenched by nitrite ion, these composite samples could be reclaimed and recovered by sulphamic acid, confirming their recyclability.

  16. Collapsing stellar cores and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, R J [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Noorgaard, H [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Chicago Univ., IL (USA). Enrico Fermi Inst.); Bond, J R [Niels Bohr Institutet, Copenhagen (Denmark); California Inst. of Tech., Pasadena (USA). W.K. Kellogg Radiation Lab.)

    1979-05-01

    The evolution of a stellar core is studied during its final quasi-hydrostatic contraction. The core structure and the (poorly known) properties of neutron rich matter are parametrized to include most plausible cases. It is found that the density-temperature trajectory of the material in the central part of the core (the core-center) is insensitive to nearly all reasonable parameter variations. The central density at the onset of the dynamic phase of the collapse (when the core-center begins to fall away from the rest of the star) and the fraction of the emitted neutrinos which are trapped in the collapsing core-center depend quite sensitively on the properties of neutron rich matter. We estimate that the amount of energy Ecm which is imparted to the core-mantle by the neutrinos which escape from the imploded core-center can span a large range of values. For plausible choices of nuclear and model parameters Ecm can be large enough to yield a supernova event.

  17. R and D on thermal hydraulics of core and core-bottom structure

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Hino, Ryutaro; Kunitomi, Kazuhiko; Takase, Kazuyuki; Ioka, Ikuo; Maruyama, So

    2004-01-01

    Thermal hydraulic tests on the core and core-bottom structure of the high-temperature engineering test reactor (HTTR) were carried out with the helium engineering demonstration loop (HENDEL) under simulated reactor operating conditions. The HENDEL was composed of helium gas circulation loops, mother sections (M 1 and M 2 ) and adaptor section (A), and two test sections, i.e. the fuel stack test section (T 1 ) and in-core structure test section (T 2 ). In the T 1 test section simulating a fuel stack of the core, thermal and hydraulic performances of helium gas flowing through a fuel block were investigated for thermal design of the HTTR core. In the T 2 test section simulating the core-bottom structure, demonstration tests were performed to verify the structural integrity of graphite and metal components, seal performance against helium gas leakage among the graphite permanent blocks and thermal mixing performance of helium gas. The above test results in the T 1 and T 2 test sections were applied to the detailed design and licensing works of the HTTR and the HENDEL-loop was dismantled in 1999

  18. STAR FORMATION IN THE TAURUS FILAMENT L 1495: FROM DENSE CORES TO STARS

    International Nuclear Information System (INIS)

    Schmalzl, Markus; Kainulainen, Jouni; Henning, Thomas; Launhardt, Ralf; Quanz, Sascha P.; Alves, Joao; Goodman, Alyssa A.; Pineda, Jaime E.; Roman-Zuniga, Carlos G.

    2010-01-01

    We present a study of dense structures in the L 1495 filament in the Taurus Molecular Cloud and examine its star-forming properties. In particular, we construct a dust extinction map of the filament using deep near-infrared observations, exposing its small-scale structure in unprecedented detail. The filament shows highly fragmented substructures and a high mass-per-length value of M line = 17 M sun pc -1 , reflecting star-forming potential in all parts of it. However, a part of the filament, namely B 211, is remarkably devoid of young stellar objects. We argue that in this region the initial filament collapse and fragmentation is still taking place and star formation is yet to occur. In the star-forming part of the filament, we identify 39 cores with masses from 0.4 to 10 M sun and preferred separations in agreement with the local Jeans length. Most of these cores exceed the Bonnor-Ebert critical mass, and are therefore likely to collapse and form stars. The dense core mass function follows a power law with exponent Γ = 1.2 ± 0.2, a form commonly observed in star-forming regions.

  19. Synthesis and application of magnetic molecularly imprinted polymers in sample preparation.

    Science.gov (United States)

    Huang, Shuyao; Xu, Jianqiao; Zheng, Jiating; Zhu, Fang; Xie, Lijun; Ouyang, Gangfeng

    2018-04-12

    Magnetic molecularly imprinted polymers (MMIPs) have superior advantages in sample pretreatment because of their high selectivity for target analytes and the fast and easy isolation from samples. To meet the demand of both good magnetic property and good extraction performance, MMIPs with various structures, from traditional core-shell structures to novel composite structures with a larger specific surface area and more accessible binding sites, are fabricated by different preparation technologies. Moreover, as the molecularly imprinted polymer (MIP) layers determine the affinity, selectivity, and saturated adsorption amount of MMIPs, the development and innovation of the MIP layer are attracting attention and are reviewed here. Many studies that used MMIPs as sorbents in dispersive solid-phase extraction of complex samples, including environmental, food, and biofluid samples, are summarized. Graphical abstract The application of magnetic molecularly imprinted polymers (MIPs) in the sample preparation procedure improves the analytical performances for complex samples. MITs molecular imprinting technologies.

  20. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology. © 2013 by The International Union of Biochemistry and Molecular Biology.

  1. Perspectives in molecular imaging through translational research, human medicine, and veterinary medicine.

    Science.gov (United States)

    Berry, Clifford R; Garg, Predeep

    2014-01-01

    The concept of molecular imaging has taken off over the past 15 years to the point of the renaming of the Society of Nuclear Medicine (Society of Nuclear Medicine and Molecular Imaging) and Journals (European Journal of Nuclear Medicine and Molecular Imaging) and offering of medical fellowships specific to this area of study. Molecular imaging has always been at the core of functional imaging related to nuclear medicine. Even before the phrase molecular imaging came into vogue, radionuclides and radiopharmaceuticals were developed that targeted select physiological processes, proteins, receptor analogs, antibody-antigen interactions, metabolites and specific metabolic pathways. In addition, with the advent of genomic imaging, targeted genomic therapy, and theranostics, a number of novel radiopharmaceuticals for the detection and therapy of specific tumor types based on unique biological and cellular properties of the tumor itself have been realized. However, molecular imaging and therapeutics as well as the concept of theranostics are yet to be fully realized. The purpose of this review article is to present an overview of the translational approaches to targeted molecular imaging with application to some naturally occurring animal models of human disease. © 2013 Published by Elsevier Inc.

  2. Biosynthesis of human sialophorins and analysis of the polypeptide core

    International Nuclear Information System (INIS)

    Remold-O'Donnell, E.; Kenney, D.; Rosen, F.S.

    1987-01-01

    Biosynthesis was examined of sialophorin (formerly called gpL115) which is altered in the inherited immunodeficiency Wiskott-Aldrich syndrome. Sialophorin is greater than 50% carbohydrate, primarily O-linked units of sialic acid, galactose, and galactosamine. Pulse-labeling with [ 35 S]methionine and chase incubation established that sialophorin is synthesized in CEM lymphoblastoid cells as an Mr 62,000 precursor which is converted within 45 min to mature glycosylated sialophorin, a long-lived molecule. Experiments with tunicamycin and endoglycosidase H demonstrated that sialophorin contains N-linked carbohydrate (approximately two units per molecule) and is therefore an N,O-glycoprotein. Pulse-labeling of tunicamycin-treated CEM cells together with immunoprecipitation provided the means to isolate the [ 35 S]-methionine-labeled polypeptide core of sialophorin and determine its molecular weight (58,000). This datum allowed us to express the previously established composition on a per molecule basis and determine that sialophorin molecules contain approximately 520 amino acid residues and greater than or equal to 100 O-linked carbohydrate units. A recent study showed that various blood cells express sialophorin and that there are two molecular forms: lymphocyte/monocyte sialophorin and platelet/neutrophil sialophorin. Biosynthesis of the two forms was compared by using sialophorin of CEM cells and sialophorin of MOLT-4 cells (another lymphoblastoid line) as models for lymphocyte/monocyte sialophorin and platelet/neutrophil sialophorin, respectively. The time course of biosynthesis and the content of N units were found to be identical for the two sialophorin species. [ 35 S]Methionine-labeled polypeptide cores of CEM sialophorin and MOLT sialophorin were isolated and compared by electrophoresis, isoelectrofocusing, and a newly developed peptide mapping technique

  3. 78 FR 56174 - In-Core Thermocouples at Different Elevations and Radial Positions in Reactor Core

    Science.gov (United States)

    2013-09-12

    ... 52 [Docket No. PRM-50-105; NRC-2012-0056] In-Core Thermocouples at Different Elevations and Radial Positions in Reactor Core AGENCY: Nuclear Regulatory Commission. ACTION: Petition for rulemaking; denial...-core thermocouples at different elevations and radial positions throughout the reactor core to enable...

  4. The Synthesis and Characterization of Gold-Core/LDH-Shell Nanoparticles

    Science.gov (United States)

    Rearick, Colton

    In recent years, the field of nanomedicine has progressed at an astonishing rate, particularly with respect to applications in cancer treatment and molecular imaging. Although organic systems have been the frontrunners, inorganic systems have also begun to show promise, especially those based upon silica and magnetic nanoparticles (NPs). Many of these systems are being designed for simultaneous therapeutic and diagnostic capabilities, thus coining the term, theranostics. A unique class of inorganic systems that shows great promise as theranostics is that of layered double hydroxides (LDH). By synthesis of a core/shell structures, e.g. a gold nanoparticle (NP) core and LDH shell, the multifunctional theranostic may be developed without a drastic increase in the structural complexity. To demonstrate initial proof-of-concept of a potential (inorganic) theranostic platform, a Au-core/LDH-shell nanovector has been synthesized and characterized. The LDH shell was heterogeneously nucleated and grown on the surface of silica coated gold NPs via a coprecipitation method. Polyethylene glycol (PEG) was introduced in the initial synthesis steps to improve crystallinity and colloidal stability. Additionally, during synthesis, fluorescein isothiocyanate (FITC) was intercalated into the interlayer spacing of the LDH. In contrast to the PEG stabilization, a post synthesis citric acid treatment was used as a method to control the size and short-term stability. The heterogeneous core-shell system was characterized with scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), dynamic light scattering (DLS), and powder x-ray diffraction (PXRD). A preliminary in vitro study carried out with the assistance of Dr. Kaushal Rege's group at Arizona State University was to demonstrate the endocytosis capability of homogeneously-grown LDH NPs. The DLS measurements of the core-shell NPs indicated an average particle size of 212nm. The PXRD analysis showed that PEG

  5. IGCSE core mathematics

    CERN Document Server

    Wall, Terry

    2013-01-01

    Give your core level students the support and framework they require to get their best grades with this book dedicated to the core level content of the revised syllabus and written specifically to ensure a more appropriate pace. This title has been written for Core content of the revised Cambridge IGCSE Mathematics (0580) syllabus for first teaching from 2013. ? Gives students the practice they require to deepen their understanding through plenty of practice questions. ? Consolidates learning with unique digital resources on the CD, included free with every book. We are working with Cambridge

  6. Molecular pathology of prostate cancer.

    Science.gov (United States)

    Cazares, L H; Drake, R R; Esquela-Kirscher, A; Lance, R S; Semmes, O J; Troyer, D A

    2010-01-01

    This chapter includes discussion of the molecular pathology of tissue, blood, urine, and expressed prostatic secretions. Because we are unable to reliably image the disease in vivo, a 12 core method that oversamples the peripheral zone is widely used. This generates large numbers of cores that need to be carefully processed and sampled. In spite of the large number of tissue cores, the amount of tumor available for study is often quite limited. This is a particular challenge for research, as new biomarker assays will need to preserve tissue architecture intact for histopathology. Methods of processing and reporting pathology are discussed. With the exception of ductal variants, recognized subtypes of prostate cancer are largely confined to research applications, and most prostate cancers are acinar. Biomarker discovery in urine and expressed prostatic secretions would be useful since these are readily obtained and are proximate fluids. The well-known challenges of biomarker discovery in blood and urine are referenced and discussed. Mediators of carcinogenesis can serve as biomarkers as exemplified by mutations in PTEN and TMPRSS2:ERG fusion. The use of proteomics in biomarker discovery with an emphasis on imaging mass spectroscopy of tissues is discussed. Small RNAs are of great interest, however, their usefulness as biomarkers in clinical decision making remains the subject of ongoing research. The chapter concludes with an overview of blood biomarkers such as circulating nucleic acids and tumor cells and bound/free isoforms of prostate specific antigen (PSA).

  7. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  8. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  9. Genetic diversity analysis of common beans based on molecular markers.

    Science.gov (United States)

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  10. Analytical Core Mass Function (CMF) from Filaments: Under Which Circumstances Can Filament Fragmentation Reproduce the CMF?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yueh-Ning; Hennebelle, Patrick [IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Chabrier, Gilles, E-mail: yueh-ning.lee@cea.fr [École normale supérieure de Lyon, CRAL, UMR CNRS 5574, Université de Lyon, F-69364 Lyon Cedex 07 (France)

    2017-10-01

    Observations suggest that star formation in filamentary molecular clouds occurs in a two-step process, with the formation of filaments preceding that of prestellar cores and stars. Here, we apply the gravoturbulent fragmentation theory of Hennebelle and Chabrier to a filamentary environment, taking into account magnetic support. We discuss the induced geometrical effect on the cores, with a transition from 3D geometry at small scales to 1D at large ones. The model predicts the fragmentation behavior of a filament for a given mass per unit length (MpL) and level of magnetization. This core mass function (CMF) for individual filaments is then convolved with the distribution of filaments to obtain the final system CMF. The model yields two major results. (i) The filamentary geometry naturally induces a hierarchical fragmentation process, first into groups of cores, separated by a length equal to a few filament Jeans lengths, i.e., a few times the filament width. These groups then fragment into individual cores. (ii) Non-magnetized filaments with high MpL are found to fragment excessively, at odds with observations. This is resolved by taking into account the magnetic field (treated simply as additional pressure support). The present theory suggests two complementary modes of star formation: although small (spherical or filamentary) structures will collapse directly into prestellar cores, according to the standard Hennebelle–Chabrier theory, the large (filamentary) ones, the dominant population according to observations, will follow the aforedescribed two-step process.

  11. Replaceable LMFBR core components

    International Nuclear Information System (INIS)

    Evans, E.A.; Cunningham, G.W.

    1976-01-01

    Much progress has been made in understanding material and component performance in the high temperature, fast neutron environment of the LMFBR. Current data have provided strong assurance that the initial core component lifetime objectives of FFTF and CRBR can be met. At the same time, this knowledge translates directly into the need for improved core designs that utilize improved materials and advanced fuels required to meet objectives of low doubling times and extended core component lifetimes. An industrial base for the manufacture of quality core components has been developed in the US, and all procurements for the first two core equivalents for FFTF will be completed this year. However, the problem of fabricating recycled plutonium while dramatically reducing fabrication costs, minimizing personnel exposure, and protecting public health and safety must be addressed

  12. Dual-core Itanium Processor

    CERN Multimedia

    2006-01-01

    Intel’s first dual-core Itanium processor, code-named "Montecito" is a major release of Intel's Itanium 2 Processor Family, which implements the Intel Itanium architecture on a dual-core processor with two cores per die (integrated circuit). Itanium 2 is much more powerful than its predecessor. It has lower power consumption and thermal dissipation.

  13. Core TuLiP

    NARCIS (Netherlands)

    Czenko, M.R.; Etalle, Sandro

    2007-01-01

    We propose CoreTuLiP - the core of a trust management language based on Logic Programming. CoreTuLiP is based on a subset of moded logic programming, but enjoys the features of TM languages such as RT; in particular clauses are issued by different authorities and stored in a distributed manner. We

  14. Beyond the Core: Peer Observation Brings Common Core to Vocational and Electives Classes

    Science.gov (United States)

    Thurber Rasmussen, Harriette

    2014-01-01

    This article describes how a Washington State School District increased professional learning around the Common Core State Standards. The challenge was how to establish a way for career and technical education and electives teachers to learn and apply Common Core in their classes. Weaving Common Core literacy standards into vocational and…

  15. FBR type reactor core

    International Nuclear Information System (INIS)

    Tamiya, Tadashi; Kawashima, Katsuyuki; Fujimura, Koji; Murakami, Tomoko.

    1995-01-01

    Neutron reflectors are disposed at the periphery of a reactor core fuel region and a blanket region, and a neutron shielding region is disposed at the periphery of them. The neutron reflector has a hollow duct structure having a sealed upper portion, a lower portion opened to cooling water, in which a gas and coolants separately sealed in the inside thereof. A driving pressure of a primary recycling pump is lowered upon reduction of coolant flow rate, then the liquid level of coolants in the neutron reflector is lowered due to imbalance between the driving pressure and a gas pressure, so that coolants having an effect as a reflector are eliminated from the outer circumference of the reactor core. Therefore, the amount of neutrons leaking from the reactor core is increased, and negative reactivity is charged to the reactor core. The negative reactivity of the neutron reflector is made greater than a power compensation reactivity. Since this enables reactor scram by using an inherent performance of the reactor core, the reactor core safety of an LMFBR-type reactor can be improved. (I.N.)

  16. Reactor core

    International Nuclear Information System (INIS)

    Matsuura, Tetsuaki; Nomura, Teiji; Tokunaga, Kensuke; Okuda, Shin-ichi

    1990-01-01

    Fuel assemblies in the portions where the gradient of fast neutron fluxes between two opposing faces of a channel box is great are kept loaded at the outermost peripheral position of the reactor core also in the second operation cycle in the order to prevent interference between a control rod and the channel box due to bending deformation of the channel box. Further, the fuel assemblies in the second row from the outer most periphery in the first operation cycle are also kept loaded at the second row in the second operation cycle. Since the gradient of the fast neutrons in the reactor core is especially great at the outer circumference of the reactor core, the channel box at the outer circumference is bent such that the surface facing to the center of the reactor core is convexed and the channel box in the second row is also bent to the identical direction, the insertion of the control rod is not interfered. Further, if the positions for the fuels at the outermost periphery and the fuels in the second row are not altered in the second operation cycle, the gaps are not reduced to prevent the interference between the control rod and the channel box. (N.H.)

  17. Molecular Diagnostics of the Interstellar Medium and Star Forming Regions

    Science.gov (United States)

    Hartquist, T. W.; Dalgarno, A.

    1996-03-01

    Selected examples of the use of observationally inferred molecular level populations and chemical compositions in the diagnosis of interstellar sources and processes important in them (and in other diffuse astrophysical sources) are given. The sources considered include the interclump medium of a giant molecular cloud, dark cores which are the progenitors of star formation, material responding to recent star formation and which may form further stars, and stellar ejecta (including those of supernovae) about to merge with the interstellar medium. The measurement of the microwave background, mixing of material between different nuclear burning zones in evolved stars and turbulent boundary layers (which are present in and influence the structures and evolution of all diffuse astrophysical sources) are treated.

  18. Revealing H2D+ depletion and compact structure in starless and protostellar cores with ALMA

    DEFF Research Database (Denmark)

    Friesen, R. K.; Di Francesco, J.; Bourke, T. L.

    2014-01-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the submillimeter dust continuum and H2D+ 110-111 emission toward two evolved, potentially protostellar cores within the Ophiuchus molecular cloud, Oph A SM1 and SM1N. The data reveal small-scale condensations within b...

  19. Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.

    Science.gov (United States)

    Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier

    2018-04-17

    The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational

  20. Core concepts for ''zero-sodium-void-worth core'' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fueled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a ''pancaked'' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. 16 refs., 2 figs., 3 tabs

  1. Core concepts for 'zero-sodium-void-worth core' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fuelled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a 'pancaked' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket-zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. (author)

  2. On-line generation of core monitoring power distribution in the SCOMS couppled with core design code

    International Nuclear Information System (INIS)

    Lee, K. B.; Kim, K. K.; In, W. K.; Ji, S. K.; Jang, M. H.

    2002-01-01

    The paper provides the description of the methodology and main program module of power distribution calculation of SCOMS(SMART COre Monitoring System). The simulation results of the SMART core using the developed SCOMS are included. The planar radial peaking factor(Fxy) is relatively high in SMART core because control banks are inserted to the core at normal operation. If the conventional core monitoring method is adapted to SMART, highly skewed planar radial peaking factor Fxy yields an excessive conservatism and reduces the operation margin. In addition to this, the error of the core monitoring would be enlarged and thus operating margin would be degraded, because it is impossible to precalculate the core monitoring constants for all the control banks configurations taking into account the operation history in the design stage. To get rid of these drawbacks in the conventional power distribution calculation methodology, new methodology to calculate the three dimensional power distribution is developed. Core monitoring constants are calculated with the core design code (MASTER) which is on-line coupled with SCOMS. Three dimensional (3D) power distribution and the several peaking factors are calculated using the in-core detector signals and core monitoring constant provided at real time. Developed methodology is applied to the SMART core and the various core states are simulated. Based on the simulation results, it is founded that the three dimensional peaking factor to calculate the Linear Power Density and the pseudo hot-pin axial power distribution to calculate the Departure Nucleate Boiling Ratio show the more conservative values than those of the best-estimated core design code, and SCOMS adapted developed methodology can secures the more operation margin than the conventional methodology

  3. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    An analytical method of estimating the mass of a stellar iron core, just prior to core collapse, is described in this paper. The method employed depends, in part, upon an estimate of the true relativistic mass increase experienced by electrons within a highly compressed iron core, just prior to core collapse, and is significantly ...

  4. Wavelength-Dependence of Inter-Core Crosstalk in Homogeneous Multi-Core Fibers

    DEFF Research Database (Denmark)

    Ye, Feihong; Saitoh, Kunimasa; Takenaga, Katsuhiro

    2016-01-01

    The wavelength dependence of inter-core crosstalk in homogeneous multi-core fibers (MCFs) is investigated, and the corresponding analytical expressions are derived. The derived analytical expressions can be used to determine the crosstalk at any wavelength necessary for designing future MCF...

  5. Core/shell particles containing liquid cores : morphology prediction, synthesis and characterization

    NARCIS (Netherlands)

    Zyl, van A.J.P.; Sanderson, R.D.; Wet-Roos, de D.; Klumperman, B.

    2003-01-01

    The ability to synthesize core/shell particles with distinct geometries is becoming increasingly important due to their potential applications. In this study structured particles with liquid cores and polymeric shells were synthesized by an in situ miniemulsion polymerization reaction. The resulting

  6. SCTF Core-I test results

    International Nuclear Information System (INIS)

    Adachi, Hiromichi; Sudo, Yukio; Iwamura, Takamichi; Osakabe, Masahiro; Ohnuki, Akira; Hirano, Kemmei

    1982-07-01

    The Slab Core Test Facility (SCTF) of Japan Atomic Energy Research Institute (JAERI) was constructed to investigate two-dimensional thermohydrodynamics in the core and the communication in fluid behavior between the core and the upper plenum during the last part of blowdown, refill and reflood phases of a posturated loss-of-coolant accident (LOCA) of a pressurized water reactor (PWR). In the present report, effects of system pressure on reflooding phenomena shall be discussed based on the data of Tests S1-SH2, S1-01 and S1-02 which are the parameteris tests for system pressure effects belonging to the SCTF Core-I forced flooding test series. Major items discussed in this report are (1) hydrodynamic behavior in the system, (2) core thermal behavior, (3) core heat transfer and (4) two-dimensional hydrodynamic behavior in the pressure vessel including the core. (author)

  7. Windscale pile core surveys

    International Nuclear Information System (INIS)

    Curtis, R.F.; Mathews, R.F.

    1996-01-01

    The two Windscale Piles were closed down, defueled as far as possible and mothballed for thirty years following a fire in the core of Pile 1 in 1957 resulting from the spontaneous release of stored Wigner energy in the graphite moderator. Decommissioning of the reactors commenced in 1987 and has reached the stage where the condition of both cores needs to be determined. To this end, non-intrusive and intrusive surveys and sampling of the cores have been planned and partly implemented. The objectives for each Pile differ slightly. The location and quantity of fuel remaining in the damaged core of Pile 1 needed to be established, whereas the removal of all fuel from Pile 2 needed to be confirmed. In Pile 1, the possible existence of a void in the core is to be explored and in Pile 2, the level of Wigner energy remaining required to be quantified. Levels of radioactivity in both cores needed to be measured. The planning of the surveys is described including strategy, design, safety case preparation and the remote handling and viewing equipment required to carry out the inspection, sampling and monitoring work. The results from the completed non-intrusive survey of Pile 2 are summarised. They confirm that the core is empty and the graphite is in good condition. The survey of Pile 1 has just started. (UK)

  8. Core body temperature in obesity.

    Science.gov (United States)

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C; Yanovski, Jack A

    2011-05-01

    A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. In study 1, nonobese [body mass index (BMI; in kg/m(2)) temperature-sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18-25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P body temperature. It may be necessary to study individuals with function-altering mutations in core temperature-regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500.

  9. Probing charge transfer dynamics in self-assembled monolayers by core hole clock approach

    International Nuclear Information System (INIS)

    Zharnikov, Michael

    2015-01-01

    This article reviews recent progress in the application of core hole clock approach in the framework of resonant Auger electron spectroscopy to the monomolecular assembles of alkyl, oligophenyl, and oligo(phenylene–ethynylene) based molecules on Au(1 1 1) substrates, referring mostly to the work by the author et al. The major goal was to study electron transfer (ET) dynamics in these systems serving as prototypes of molecular electronics (ME) devices. The ET pathway to the conductive substrate was unambiguously defined by resonant excitation of the nitrile tailgroup attached to the molecular backbone. Characteristic ET times within the femtosecond domain were determined, along with the attenuation factors for the ET dynamics, analogous to the case of the static transport. The above parameters were found to exhibit strong dependence on the character of the molecular orbital which mediates the ET process. In addition, certain spectral features, which can be associated with an inverse ET from the molecular backbone to the excitation site, were observed upon exchange of the nitrile group by strongly electronegative nitro moiety. The reported results represent a valuable input for theory and a certain potential for applications such as ME devices where optimization of ET can have significant technological impact.

  10. Winning Cores in Parity Games

    DEFF Research Database (Denmark)

    Vester, Steen

    2016-01-01

    We introduce the novel notion of winning cores in parity games and develop a deterministic polynomial-time under-approximation algorithm for solving parity games based on winning core approximation. Underlying this algorithm are a number properties about winning cores which are interesting...... in their own right. In particular, we show that the winning core and the winning region for a player in a parity game are equivalently empty. Moreover, the winning core contains all fatal attractors but is not necessarily a dominion itself. Experimental results are very positive both with respect to quality...

  11. Hollow-Core Fiber Lamp

    Science.gov (United States)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  12. MDGRAPE-4: a special-purpose computer system for molecular dynamics simulations.

    Science.gov (United States)

    Ohmura, Itta; Morimoto, Gentaro; Ohno, Yousuke; Hasegawa, Aki; Taiji, Makoto

    2014-08-06

    We are developing the MDGRAPE-4, a special-purpose computer system for molecular dynamics (MD) simulations. MDGRAPE-4 is designed to achieve strong scalability for protein MD simulations through the integration of general-purpose cores, dedicated pipelines, memory banks and network interfaces (NIFs) to create a system on chip (SoC). Each SoC has 64 dedicated pipelines that are used for non-bonded force calculations and run at 0.8 GHz. Additionally, it has 65 Tensilica Xtensa LX cores with single-precision floating-point units that are used for other calculations and run at 0.6 GHz. At peak performance levels, each SoC can evaluate 51.2 G interactions per second. It also has 1.8 MB of embedded shared memory banks and six network units with a peak bandwidth of 7.2 GB s(-1) for the three-dimensional torus network. The system consists of 512 (8×8×8) SoCs in total, which are mounted on 64 node modules with eight SoCs. The optical transmitters/receivers are used for internode communication. The expected maximum power consumption is 50 kW. While MDGRAPE-4 software has still been improved, we plan to run MD simulations on MDGRAPE-4 in 2014. The MDGRAPE-4 system will enable long-time molecular dynamics simulations of small systems. It is also useful for multiscale molecular simulations where the particle simulation parts often become bottlenecks.

  13. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles

    Science.gov (United States)

    Shen, Zhiqiang; Loe, David T.; Awino, Joseph K.; Kröger, Martin; Rouge, Jessica L.; Li, Ying

    2016-08-01

    Herein a new multifunctional formulation, referred to as a core-polyethylene glycol-lipid shell (CPLS) nanoparticle, has been proposed and studied in silico via large scale coarse-grained molecular dynamics simulations. A PEGylated core with surface tethered polyethylene glycol (PEG) chains is used as the starting configuration, where the free ends of the PEG chains are covalently bonded with lipid molecules (lipid heads). A complete lipid bilayer is formed at the surface of the PEGylated particle core upon addition of free lipids, driven by the hydrophobic properties of the lipid tails, leading to the formation of a CPLS nanoparticle. The self-assembly process is found to be sensitive to the grafting density and molecular weight of the tethered PEG chains, as well as the amount of free lipids added. At low grafting densities the assembly of CPLS nanoparticles cannot be accomplished. As demonstrated by simulations, a lipid bud/vesicle can be formed on the surface when an excess amount of free lipids is added at high grafting density. Therefore, the CPLS nanoparticles can only be formed under appropriate conditions of both PEG and free lipids. The CPLS nanoparticle has been recognized to be able to store a large quantity of water molecules, particularly with high molecular weight of PEG chains, indicating its capacity for carrying hydrophilic molecules such as therapeutic biomolecules or imaging agents. Under identical size and surface chemistry conditions of a liposome, it has been observed that the CPLS particle can be more efficiently wrapped by the lipid membrane, indicating its potential for a greater efficiency in delivering its hydrophilic cargo. As a proof-of-concept, the experimental realization of CPLS nanoparticles is explicitly demonstrated in this study. To test the capacity of the CPLS to store small molecule cargo a hydrophilic dye was successfully encapsulated in the particles' water soluble layer. The results of this study show the power and

  14. Optimal core acquisition and remanufacturing policies under uncertain core quality fractions

    NARCIS (Netherlands)

    Teunter, R.H.; Flapper, S.D.P.

    2011-01-01

    Cores acquired by a remanufacturer are typically highly variable in quality. Even if the expected fractions of the various quality levels are known, then the exact fractions when acquiring cores are still uncertain. Our model incorporates this uncertainty in determining optimal acquisition decisions

  15. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Han, K.I.

    1977-01-01

    Preliminary investigations of a heterogeneous gas core reactor (HGCR) concept suggest that this potential power reactor offers distinct advantages over other existing or conceptual reactor power plants. One of the most favorable features of the HGCR is the flexibility of the power producing system which allows it to be efficiently designed to conform to a desired optimum condition without major conceptual changes. The arrangement of bundles of moderator/coolant channels in a fissionable gas or mixture of gases makes a truly heterogeneous nuclear reactor core. It is this full heterogeneity for a gas-fueled reactor core which accounts for the novelty of the heterogeneous gas core reactor concept and leads to noted significant advantages over previous gas core systems with respect to neutron and fuel economy, power density, and heat transfer characteristics. The purpose of this work is to provide an insight into the design, operating characteristics, and safety of a heterogeneous gas core reactor system. The studies consist mainly of neutronic, energetic and kinetic analyses of the power producing and conversion systems as a preliminary assessment of the heterogeneous gas core reactor concept and basic design. The results of the conducted research indicate a high potential for the heterogeneous gas core reactor system as an electrical power generating unit (either large or small), with an overall efficiency as high as 40 to 45%. The HGCR system is found to be stable and safe, under the conditions imposed upon the analyses conducted in this work, due to the inherent safety of ann expanding gaseous fuel and the intrinsic feedback effects of the gas and water coolant

  16. Reactor-core-reactivity control device

    International Nuclear Information System (INIS)

    Miura, Teruo; Sakuranaga, Tomonobu.

    1983-01-01

    Purpose: To improve the reactor safety upon failures of control rod drives by adapting a control rod not to drop out accidentally from the reactor core but be inserted into the reactor core. Constitution: The control rod is entered or extracted as usual from the bottom of the pressure vessel. A space is provided above the reactor core within the pressure vessel, in which the moving scope of the control rod is set between the space above the reactor core and the reactor core. That is, the control rod is situated above the reactor core upon extraction thereof and, if an accident occurs to the control rod drive mechanisms to detach the control rod and the driving rod, the control rod falls gravitationally into the reactor core to improve the reactor safety. In addition, since the speed limiter is no more required to the control rod, the driving force can be decreased to reduce the size of the rod drive mechanisms. (Ikeda, J.)

  17. Core Design Concept and Core Structural Material Development for a Prototype SFR

    International Nuclear Information System (INIS)

    Chang, Jinwook

    2013-01-01

    Core design Concept: – Initial core is Uranium metal fueled core, then it will evolve into TRU core; – Tight pressure drop constraint lowers power density; – Trade-off studies with relaxed pressure drop constraint (~0.4MPa) are on-going; – Major feature will be finalized this year. • KAERI is developing advanced cladding for high burnup fuel in Ptototype SFR: – Advanced cladding materials are now developing, which shows superior high temperature mechanical property to the conventional material; – Processing technologies related to tube making process are now developed to enhance high temperature mechanical propertyl – Preliminary HT9 cladding tube was manufactured and out-of pile mechanical properties were evaluated. Advanced cladding tube is now being developed and being prepared for irradiation test

  18. Lunar Core and Tides

    Science.gov (United States)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  19. Constraints on the initial conditions of stellar formation from ISOCAM observations of dense cores seen in absorption

    International Nuclear Information System (INIS)

    Bacmann, Aurore

    1999-01-01

    Stars form in molecular clouds by gravitational collapse of small condensations called pre-stellar cores. This stage of the star formation process is still relatively unknown since these dense cores are deeply embedded within a thick cocoon of matter. The collapse, as well as the accretion phase depend on the structure of these objects. In order to constrain the initial conditions of star formation. We have carried out a study of the density structure of a vast sample of pre-stellar cores that we observed with the mid-infrared camera ISOCAM aboard the ISO satellite. As the cores are very dense and cold, they are seen in absorption against the diffuse mid-infrared background. This absorption method is highly interesting for our study since it is sensitive to the density structure in the outer parts of the cores. The study of these cores enabled us to confirm the presence of a flattening in their central parts, to show that their column density profiles were composed of a portion close to a NH_2 ∝ r"-"1 power-law, and that some of them presented an edge, i.e. that the slope in the outer parts of the profiles became steeper than NH_2 ∝ r"-"2. An implication of the presence of an edge is that the mass reservoir available for star formation in these cores is finite, supporting the idea that the stellar initial mass function is partly determined at a pre-stellar stage. Comparison of our results with various models of core structure shows that the column density profiles we obtained are consistent with ambipolar diffusion models of magnetically supported cores, although they require a strong background magnetic field which has up to now not been observed in these kinds of regions. (author) [fr

  20. Electromagnetically driven westward drift and inner-core superrotation in Earth’s core

    OpenAIRE

    Livermore, Philip W.; Hollerbach, Rainer; Jackson, Andrew

    2013-01-01

    Seismic probing of the earth’s deep interior has shown that the inner core, the solid core of our planet, rotates slightly faster (i.e., eastward) than the rest of the earth. Quite independently, observations of the geomagnetic field provide evidence of westward-drifting features at the edge of the liquid outer core. This paper describes a computer model that suggests that the geomagnetic field itself may provide a link between them: The associated electromagnetic torque currently is westward...