WorldWideScience

Sample records for serotonin phenotype chlorpyrifos

  1. Developmental neurotoxicants target neurodifferentiation into the serotonin phenotype: Chlorpyrifos, diazinon, dieldrin and divalent nickel

    International Nuclear Information System (INIS)

    Slotkin, Theodore A.; Seidler, Frederic J.

    2008-01-01

    Developmental exposure to organophosphates (OP) produces long-term changes in serotonin (5HT) synaptic function and associated behaviors, but there are disparities among the different OPs. We contrasted effects of chlorpyrifos and diazinon, as well as non-OP neurotoxicants (dieldrin, Ni 2+ ) using undifferentiated and differentiating PC12 cells, a well-established neurodevelopmental model. Agents were introduced at 30 μM for 24 or 72 h, treatments devoid of cytotoxicity, and we evaluated the mRNAs encoding the proteins for 5HT biosynthesis, storage and degradation, as well as 5HT receptors. Chlorpyrifos and diazinon both induced tryptophan hydroxylase, the rate-limiting enzyme for 5HT biosynthesis, but chlorpyrifos had a greater effect, and both agents suppressed expression of 5HT transporter genes, effects that would tend to augment extracellular 5HT. However, whereas chlorpyrifos enhanced the expression of most 5HT receptor subtypes, diazinon evoked overall suppression. Dieldrin evoked even stronger induction of tryptophan hydroxylase, and displayed a pattern of receptor effects similar to that of diazinon, even though they come from different pesticide classes. In contrast, Ni 2+ had completely distinct actions, suppressing tryptophan hydroxylase and enhancing the vesicular monoamine transporter, while also reducing 5HT receptor gene expression, effects that would tend to lower net 5HT function. Our findings provide some of the first evidence connecting the direct, initial mechanisms of developmental neurotoxicant action on specific transmitter pathways with their long-term effects on synaptic function and behavior, while also providing support for in vitro test systems as tools for establishing mechanisms and outcomes of related and unrelated neurotoxicants

  2. Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice.

    Science.gov (United States)

    Kalueff, A V; Fox, M A; Gallagher, P S; Murphy, D L

    2007-06-01

    Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice.

  3. Human Paraoxonase1 Hydrolysis of Nanomolar Chlorpyrifos-oxon Concentrations is Unaffected by Phenotype or Q192R Genotype

    Science.gov (United States)

    Coombes, R. Hunter; Meek, Edward C.; Dail, Mary Beth; Chambers, Howard W.; Chambers, Janice E.

    2016-01-01

    The organophosphorus insecticide chlorpyrifos has been widely used. Its active metabolite chlorpyrifos-oxon (CPO) is a potent anticholinesterase and is detoxified by paraoxonase-1 (PON1). PON1 activity is influenced by numerous factors including a Q192R polymorphism. Using forty human blood samples bearing homozygous genotypes and either high or low activity phenotypes (as determined by high concentration assays of paraoxon and diazoxon hydrolysis) the serum PON1 hydrolysis of high (320 μM) and low (178 nM) CPO concentrations was assessed using direct or indirect spectrophotometric methods, respectively. PON1 activity at high CPO concentration reflected the phenotype and genotype differences; subjects with the high activity phenotype and homozygous for the PON1R192 alloform hydrolyzed significantly more CPO than subjects with the low activity phenotype and/or PON1Q192 alloform (High RR=11023±722, Low RR=9467±798, High QQ=8809±672, Low QQ=6030±1015 μmoles CPO hydrolyzed/min/L serum). However, PON1 hydrolysis of CPO at the lower, more environmentally relevant concentration showed no significant differences between the PON1192 genotypes and/or between high and low activity phenotypes (High RR=231±27, Low RR=219±52, High QQ=193±59, Low QQ=185±43 nmoles CPO/min/L serum). Low CPO concentrations were probably not saturating, so PON1 did not display maximal velocity and the PON1 genotype/phenotype might not influence the extent of metabolism at environmental exposures. PMID:25093614

  4. CHLORPYRIFOS DEVELOPMENTAL NEUROTOXICITY: INTERACTION WITH GLUCOCORTICOIDS IN PC12 CELLS

    Science.gov (United States)

    Slotkin, Theodore A.; Card, Jennifer; Seidler, Frederic J.

    2012-01-01

    Prenatal coexposures to glucocorticoids and organophosphate pesticides are widespread. Glucocorticoids are elevated by maternal stress and are commonly given in preterm labor; organophosphate exposures are virtually ubiquitous. We used PC12 cells undergoing neurodifferentiation in order to assess whether dexamethasone enhances the developmental neurotoxicity of chlorpyrifos, focusing on concentrations relevant to human exposures. By themselves, each agent reduced the number of cells and the combined exposure elicited a correspondingly greater effect than with either agent alone. There was no general cytotoxicity, as cell growth was actually enhanced, and again, the combined treatment evoked greater cellular hypertrophy than with the individual compounds. The effects on neurodifferentiation were more complex. Chlorpyrifos alone had a promotional effect on neuri to genesis whereas dexamethasone impaired it; combined treatment showed an overall impairment greater than that seen with dexamethasone alone. The effect of chlorpyrifos on differentiation into specific neurotransmitter phenotypes was shifted by dexamethasone. Either agent alone promoted differentiation into the dopaminergic phenotype at the expense of the cholinergic phenotype. However, in dexamethasone-primed cells, chlorpyrifos actually enhanced cholinergic neurodifferentiation instead of suppressing this phenotype. Our results indicate that developmental exposure to glucocorticoids, either in the context of stress or the therapy of preterm labor, could enhance the developmental neurotoxicity of organophosphates and potentially of other neurotoxicants, as well as producing neurobehavioral outcomes distinct from those seen with either individual agent. PMID:22796634

  5. Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats.

    Science.gov (United States)

    Fang, Bing; Li, Jin Wang; Zhang, Ming; Ren, Fa Zheng; Pang, Guo Fang

    2018-01-01

    Chlorpyrifos is a commonly-used pesticide which was reported to interfere with hormone signaling and metabolism, however, little is known about its effect on gut microbiota. In this study, adult male rats fed a normal (NF) or high fat (HF) diet were exposed to 0.3 or 3.0 mg chlorpyrifos/kg bodyweight/day or vehicle alone for 9 weeks. Effects on bodyweight, serum levels of glucose, lipid, cytokines, and gut microbiome community structure were measured. The effects of chlorpyrifos on metabolism were dose- and diet-dependent, with NF-fed rats administered the low dose showing the largest metabolic changes. NF-fed rats exposed to chlorpyrifos exhibited a pro-obesity phenotype compared with their controls, whereas there was no difference in pro-obesity phenotype between HF-fed groups. Chlorpyrifos exposure significantly reduced serum insulin, C-peptide, and amylin concentrations in NF- and HF-fed rats, leaving serum glucose and lipid profiles unaffected. Chlorpyrifos exposure also significantly altered gut microbiota composition, including the abundance of opportunistic pathogens, short chain fatty acid-producing bacteria and other bacteria previously associated with obese and diabetic phenotypes. The abundance of bacteria associated with neurotoxicity and islet injury was also significantly increased by chlorpyrifos. Our results suggest risk assessments for chlorpyrifos exposure should consider other effects in addition to neurotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Chlorpyrifos, chlorpyrifos-oxon, and diisopropylfluorophosphate inhibit kinesin-dependent microtubule motility

    International Nuclear Information System (INIS)

    Gearhart, Debra A.; Sickles, Dale W.; Buccafusco, Jerry J.; Prendergast, Mark A.; Terry, Alvin V.

    2007-01-01

    Diisopropylfluorophosphate, originally developed as a chemical warfare agent, is structurally similar to nerve agents, and chlorpyrifos has extensive worldwide use as an agricultural pesticide. While inhibition of cholinesterases underlies the acute toxicity of these organophosphates, we previously reported impaired axonal transport in the sciatic nerves from rats treated chronically with subthreshold doses of chlorpyrifos. Those data indicate that chlorpyrifos (and/or its active metabolite, chlorpyrifos-oxon) might directly affect the function of kinesin and/or microtubules-the principal proteins that mediate anterograde axonal transport. The current report describes in vitro assays to assess the concentration-dependent effects of chlorpyrifos (0-10 μM), chlorpyrifos-oxon (0-10 μM), and diisopropylfluorophosphate (0-0.59 nM) on kinesin-dependent microtubule motility. Preincubating bovine brain microtubules with the organophosphates did not alter kinesin-mediated microtubule motility. In contrast, preincubation of bovine brain kinesin with diisopropylfluorophosphate, chlorpyrifos, or chlorpyrifos-oxon produced a concentration-dependent increase in the number of locomoting microtubules that detached from the kinesin-coated glass cover slip. Our data suggest that the organophosphates-chlorpyrifos-oxon, chlorpyrifos, and diisopropylfluorophosphate-directly affect kinesin, thereby disrupting kinesin-dependent transport on microtubules. Kinesin-dependent movement of vesicles, organelles, and other cellular components along microtubules is fundamental to the organization of all eukaryotic cells, especially in neurons where organelles and proteins synthesized in the cell body must move down long axons to pre-synaptic sites in nerve terminals. We postulate that disruption of kinesin-dependent intracellular transport could account for some of the long-term effects of organophosphates on the peripheral and central nervous system

  7. Isolation and characterization of a novel native Bacillus thuringiensis strain BRC-HZM2 capable of degrading chlorpyrifos.

    Science.gov (United States)

    Wu, Songqing; Peng, Yan; Huang, Zhangmin; Huang, Zhipeng; Xu, Lei; Ivan, Gelbič; Guan, Xiong; Zhang, Lingling; Zou, Shuangquan

    2015-03-01

    Studies were carried out to isolate chlorpyrifos degrading Bacillus thuringiensis (Bt) strains from chlorpyrifos-contaminated samples. Six Bt strains (isolation rate 2.7%) were isolated by modified sodium acetate antibiotic heat treatment, and one novel strain (BRC-HZM2) was selected for further analysis. Phenotype and phylogeny analysis of this strain was conducted on the basis of biochemical reactions, antibiotic sensitivity, 16s rRNA genes, plasmid profile, insecticidal crystal protein profiles, and PCR-RFLP for cry and cyt genes. The degradation rate of chlorpyrifos in liquid culture was estimated during 48 h of incubation for the isolate BRC-HZM2. More than 50% of the initial chlorpyrifos concentration degraded within 12 h, 88.9% after 48 h. These results highlight the potential of the Bt strain for biological control and the bioremediation of environments contaminated with chlorpyrifos. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. PHYTOREMEDIATION OF CHLORPYRIFOS BY POPULUS AND SALIX

    OpenAIRE

    Young Lee, Keum; Strand, Stuart E.; Doty, Sharon L.

    2012-01-01

    Chlorpyrifos is one of the commonly used organophosphorus insecticides that are implicated in serious environmental and human health problems. To evaluate plant potential for uptake of chlorpyrifos, several plant species of poplar (Populus sp.) and willow (Salix sp.) were investigated. Chlorpyrifos was taken up from nutrient solution by all seven plant species. Significant amounts of chlorpyrifos accumulated in plant tissues, and roots accumulated higher concentrations of chlorpyrifos than di...

  9. High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes

    Science.gov (United States)

    Alout, H; Labbé, P; Berthomieu, A; Makoundou, P; Fort, P; Pasteur, N; Weill, M

    2016-01-01

    We investigated the genetic determinism of high chlorpyrifos resistance (HCR), a phenotype first described in 1999 in Culex pipiens mosquitoes surviving chlorpyrifos doses ⩾1 mg l−1 and more recently found in field samples from Tunisia, Israel or Indian Ocean islands. Through chlorpyrifos selection, we selected several HCR strains that displayed over 10 000-fold resistance. All strains were homozygous for resistant alleles at two main loci: the ace-1 gene, with the resistant ace-1R allele expressing the insensitive G119S acetylcholinesterase, and a resistant allele of an unknown gene (named T) linked to the sex and ace-2 genes. We constructed a strain carrying only the T-resistant allele and studied its resistance characteristics. By crossing this strain with strains harboring different alleles at the ace-1 locus, we showed that the resistant ace-1R and the T alleles act in strong synergy, as they elicited a resistance 100 times higher than expected from a simple multiplicative effect. This effect was specific to chlorpyrifos and parathion and was not affected by synergists. We also examined how HCR was expressed in strains carrying other ace-1-resistant alleles, such as ace-1V or the duplicated ace-1D allele, currently spreading worldwide. We identified two major parameters that influenced the level of resistance: the number and the nature of the ace-1-resistant alleles and the number of T alleles. Our data fit a model that predicts that the T allele acts by decreasing chlorpyrifos concentration in the compartment targeted in insects. PMID:26463842

  10. Degradation of chlorpyrifos by ionizing radiation

    International Nuclear Information System (INIS)

    Mori, M.N.; Oikawa, H.; Sampa, M.H.O.; Duarte, C.L.

    2006-01-01

    Chlorpyrifos is an organophosphate pesticide commercialized since 1965 and it is now one of the top five commercial insecticides. It is registered for use in over 900 different pesticide formulations in the world. Chlorpyrifos poisoning usually affects many organs of the body, such as the central and peripheral nervous system, eyes, respiratory system, and the digestive tract. Depending on the pesticide formulation and type of application, chlorpyrifos residues may be detectable in water, soil, and on the surfaces from months to years. This paper presents preliminary studies of the removal of chlorpyrifos by exposition to ionizing radiation, to be applied in pesticide container decontamination. Samples containing various concentrations of chlorpyrifos in acetonitrile were irradiated with absorbed doses varying from 5 to 50 kGy, using a 60 Co gamma-source with 5,000 Ci activity (Gamma cell type). The chemical analysis of the chlorpyrifos and the by-products resulted from the radiolytic degradation were made using a gas chromatography associated to mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GCFID). (author)

  11. Particulate and gas-phase products from the atmospheric degradation of chlorpyrifos and chlorpyrifos-oxon

    Science.gov (United States)

    Borrás, Esther; Ródenas, Milagros; Vázquez, Mónica; Vera, Teresa; Muñoz, Amalia

    2015-12-01

    The phosphorothioate structure is highly present in several pesticides. However, there is a lack of information about its degradation process in air and the secondary pollutants formed. Herein, the atmospheric reactions of chlorpyrifos, one of the most world-used insecticide, and its main degradation product - chlorpyrifos-oxon - are described. The photo-oxidation under the presence of NOx was studied in a large outdoor simulation chamber for both chlorpyrifos and chlorpyrifos-oxon, observing a rapid degradation (Half lifetime < 3.5 h for both compounds). Also, the photolysis reactions of both were studied. The formation of particulate matter (aerosol mass yield ranged 6-59%) and gaseous products were monitored. The chemical composition of minor products was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as 3,5,6-trichloropyridin-2-ol and ethyl 3,5,6-trichloropyridin-2-yl hydrogen phosphate. An atmospheric degradation mechanism has been amplified based on an oxidation started with OH-nucleophilic attack to Pdbnd S bond.

  12. Positive regulation of raphe serotonin neurons by serotonin 2B receptors.

    Science.gov (United States)

    Belmer, Arnauld; Quentin, Emily; Diaz, Silvina L; Guiard, Bruno P; Fernandez, Sebastian P; Doly, Stéphane; Banas, Sophie M; Pitychoutis, Pothitos M; Moutkine, Imane; Muzerelle, Aude; Tchenio, Anna; Roumier, Anne; Mameli, Manuel; Maroteaux, Luc

    2018-06-01

    Serotonin is a neurotransmitter involved in many psychiatric diseases. In humans, a lack of 5-HT 2B receptors is associated with serotonin-dependent phenotypes, including impulsivity and suicidality. A lack of 5-HT 2B receptors in mice eliminates the effects of molecules that directly target serotonergic neurons including amphetamine derivative serotonin releasers, and selective serotonin reuptake inhibitor antidepressants. In this work, we tested the hypothesis that 5-HT 2B receptors directly and positively regulate raphe serotonin neuron activity. By ex vivo electrophysiological recordings, we report that stimulation by the 5-HT 2B receptor agonist, BW723C86, increased the firing frequency of serotonin Pet1-positive neurons. Viral overexpression of 5-HT 2B receptors in these neurons increased their excitability. Furthermore, in vivo 5-HT 2B -receptor stimulation by BW723C86 counteracted 5-HT 1A autoreceptor-dependent reduction in firing rate and hypothermic response in wild-type mice. By a conditional genetic ablation that eliminates 5-HT 2B receptor expression specifically and exclusively from Pet1-positive serotonin neurons (Htr2b 5-HTKO mice), we demonstrated that behavioral and sensitizing effects of MDMA (3,4-methylenedioxy-methamphetamine), as well as acute behavioral and chronic neurogenic effects of the antidepressant fluoxetine, require 5-HT 2B receptor expression in serotonergic neurons. In Htr2b 5-HTKO mice, dorsal raphe serotonin neurons displayed a lower firing frequency compared to control Htr2b lox/lox mice as assessed by in vivo extracellular recordings and a stronger hypothermic effect of 5-HT 1A -autoreceptor stimulation was observed. The increase in head-twitch response to DOI (2,5-dimethoxy-4-iodoamphetamine) further confirmed the lower serotonergic tone resulting from the absence of 5-HT 2B receptors in serotonin neurons. Together, these observations indicate that the 5-HT 2B receptor acts as a direct positive modulator of serotonin Pet1

  13. Functional Coding Variation in Recombinant Inbred Mouse Lines Reveals Novel Serotonin Transporter-Associated Phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Ana [Vanderbilt University; Airey, David [University of Tennessee Health Science Center, Memphis; Thompson, Brent [Vanderbilt University; Zhu, C [Vanderbilt University; Rinchik, Eugene M [ORNL; Lu, Lu [University of Tennessee Health Science Center, Memphis; Chesler, Elissa J [ORNL; Erikson, Keith [University of North Carolina; Blakely, Randy [Vanderbilt University

    2009-01-01

    The human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT, SLC6A4) figures prominently in the etiology or treatment of many prevalent neurobehavioral disorders including anxiety, alcoholism, depression, autism and obsessive-compulsive disorder (OCD). Here we utilize naturally occurring polymorphisms in recombinant inbred (RI) lines to identify novel phenotypes associated with altered SERT function. The widely used mouse strain C57BL/6J, harbors a SERT haplotype defined by two nonsynonymous coding variants (Gly39 and Lys152 (GK)). At these positions, many other mouse lines, including DBA/2J, encode Glu39 and Arg152 (ER haplotype), assignments found also in hSERT. Synaptosomal 5-HT transport studies revealed reduced uptake associated with the GK variant. Heterologous expression studies confirmed a reduced SERT turnover rate for the GK variant. Experimental and in silico approaches using RI lines (C57Bl/6J X DBA/2J=BXD) identifies multiple anatomical, biochemical and behavioral phenotypes specifically impacted by GK/ER variation. Among our findings are multiple traits associated with anxiety and alcohol consumption, as well as of the control of dopamine (DA) signaling. Further bioinformatic analysis of BXD phenotypes, combined with biochemical evaluation of SERT knockout mice, nominates SERT-dependent 5-HT signaling as a major determinant of midbrain iron homeostasis that, in turn, dictates ironregulated DA phenotypes. Our studies provide a novel example of the power of coordinated in vitro, in vivo and in silico approaches using murine RI lines to elucidate and quantify the system-level impact of gene variation.

  14. Soil bacterial and fungal community successions under the stress of chlorpyrifos application and molecular characterization of chlorpyrifos-degrading isolates using ERIC-PCR*

    Science.gov (United States)

    Chen, Lie-zhong; Li, Yan-li; Yu, Yun-long

    2014-01-01

    Chlorpyrifos is a widely used insecticide in recent years, and it will produce adverse effects on soil when applied on crops or mixed with soil. In this study, nested polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) were combined to explore the bacterial and fungal community successions in soil treated with 5 and 20 mg/kg of chlorpyrifos. Furthermore, isolates capable of efficiently decomposing chlorpyrifos were molecular-typed using enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). Under the experimental conditions, degradation of chlorpyrifos in soil was interpreted with the first-order kinetics, and the half-lives of chlorpyrifos at 5 and 20 mg/kg doses were calculated to be 8.25 and 8.29 d, respectively. DGGE fingerprint and principal component analysis (PCA) indicated that the composition of the fungal community was obviously changed with the chlorpyrifos treatment, and that samples of chlorpyrifos treatment were significantly separated from those of the control from the beginning to the end. While for the bacterial community, chlorpyrifos-treated soil samples were apparently different in the first 30 d and recovered to a similar level of the control up until 60 d, and the distance in the PCA between the chlorpyrifos-treated samples and the control was getting shorter through time and was finally clustered into one group. Together, our results demonstrated that the application of chlorpyrifos could affect the fungal community structure in a quick and lasting way, while only affecting the bacterial community in a temporary way. Finally, nine typical ERIC types of chlorpyrifos-degrading isolates were screened. PMID:24711353

  15. Chlorpyrifos

    African Journals Online (AJOL)

    Bheema

    investigate the electro-chemical interactions between chlorpyrifos and modified carbon paste sensor along with the redox characteristics at analyte/ sensor interface. The significant enhancement in peak current signals and the improved magnitude of the redox peak potential indicated the awe-inspiring facilitation of the ...

  16. Histopathological and genotoxic effects of chlorpyrifos in rats.

    Science.gov (United States)

    Ezzi, Lobna; Belhadj Salah, Imen; Haouas, Zohra; Sakly, Amina; Grissa, Intissar; Chakroun, Sana; Kerkeni, Emna; Hassine, Mohsen; Mehdi, Meriem; Ben Cheikh, Hassen

    2016-03-01

    This study aims to investigate the effects of chlorpyrifos's sub-acute exposure on male rats. Two groups with six animals each were orally treated, respectively, with 3.1 mg/kg b w and 6.2 mg/kg b w of chlorpyrifos during 4 weeks. The genotoxic effect of chlopyrifos was investigated using the comet assay and the micronucleus test. Some hematological and liver's histopathological changes were also evaluated. Results revealed that chlorpyrifos induced histopathological alterations in liver parenchyma. The lymphoid infiltration observed in liver sections and the increase in white blood cells parameter are signs of inflammation. A significant increase in the platelet' count and in polychromatic erythrocytes/normochromatic erythrocytes (PCE/NCE) ratio was observed in chlorpyrifos-treated groups which could be due to the stimulatory effect of chlorpyrifos on cell formation in the bone marrow at lower doses. In addition, the increase of bone marrow micronucleus percentage and the comet tail length revealed a genotoxic potential of chlorpyrifos in vivo.

  17. 40 CFR 180.342 - Chlorpyrifos; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Chlorpyrifos; tolerances for residues... § 180.342 Chlorpyrifos; tolerances for residues. (a) General. (1) Tolerances are established for residues of the pesticide chlorpyrifos per se (O,O-diethyl- O-(3,5,6-trichloro-2-pyridyl) phosphorothioate...

  18. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas.

    Science.gov (United States)

    Gilani, Razia Alam; Rafique, Mazhar; Rehman, Abdul; Munis, Muhammad Farooq Hussain; Rehman, Shafiq Ur; Chaudhary, Hassan Javed

    2016-02-01

    Chlorpyrifos is an organophosphorus pesticide commonly used in agriculture. It is noxious to a variety of organisms that include living soil biota along with beneficial arthropods, fish, birds, humans, animals, and plants. Exposure to chlorpyrifos may cause detrimental effects as delayed seedling emergence, fruit deformities, and abnormal cell division. Contamination of chlorpyrifos has been found about 24 km from the site of its application. There are many physico-chemical and biological approaches to remove organophosphorus pesticides from the ecosystem, among them most promising is biodegradation. The 3,5,6-trichloro-2-pyridinol (TCP) and diethylthiophosphate (DETP) as primary products are made when chlorpyrifos is degraded by soil microorganisms which further break into nontoxic metabolites as CO(2), H(2)O, and NH(3). Pseudomonas is a diversified genus possessing a series of catabolic pathways and enzymes involved in pesticide degradation. Pseudomonas putida MAS-1 is reported to be more efficient in chlorpyrifos degradation by a rate of 90% in 24 h among Pseudomonas genus. The current review analyzed the comparative potential of bacterial species in Pseudomonas genus for degradation of chlorpyrifos thus, expressing an ecofriendly approach for the treatment of environmental contaminants like pesticides. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Updated Human Health Risk Analyses for Chlorpyrifos

    Science.gov (United States)

    EPA has revised the human health hazard assessment and drinking water exposure assessment for chlorpyrifos that supported our October 2015 proposal to revoke all food residue tolerances for chlorpyrifos.

  20. Irradiation degradation of chlorpyrifos in water solution and asparagus

    International Nuclear Information System (INIS)

    Zhang Qingfang; Wang Feng; Ha Yiming; Li An; Yin Qinggang

    2009-01-01

    In order to seek an effective technique to degrade chlorpyrifos residue, chlorpyrifos water solution and asparagus containing chlorpyrifos as testing materials were irradiated by 60 Co γ-rays and their degradation rate were determined and compared. The results show the degradation rate in water-solution increases with irradiation dose in the range of 0 and 12 kGy, and it reached 95.5% at 4 kGy. The degradation rate of chlorpyrifos in asparagus is low and comes to the maximum of 30.0% when the dose is 8 kGy. Further study indicates that vitamin C, violaquercitrin and total sugar inhibit the irradiation degradation of chlorpyrifos in asparagus. (authors)

  1. Revised Human Health Risk Assessment on Chlorpyrifos

    Science.gov (United States)

    We have revised our human health risk assessment and drinking water exposure assessment for chlorpyrifos that supported our October 2015 proposal to revoke all food residue tolerances for chlorpyrifos. Learn about the revised analysis.

  2. Mobility Studies of (14)C-Chlorpyrifos in Malaysian Oil Palm Soils.

    Science.gov (United States)

    Halimah, Muhamad; Ismail, B Sahid; Nashriyah, Mat; Maznah, Zainol

    2016-01-01

    The mobility of (14)C-chlorpyrifos using soil TLC was investigated in this study. It was found that chlorpyrifos was not mobile in clay, clay loam and peat soil. The mobility of (14)C-chlorpyrifos and non-labelled chlorpyrifos was also tested with silica gel TLC using three types of developing solvent hexane (100%), hexane:ethyl acetate (95:5, v/v); and hexane:ethyl acetate (98:2, v/v). The study showed that both the (14)C-labelled and non-labelled chlorpyrifos have the same Retardation Factor (Rf) for different developing solvent systems. From the soil column study on mobility of chlorpyrifos, it was observed that no chlorpyrifos residue was found below 5 cm depth in three types of soil at simulation rainfall of 20, 50 and 100 mm. Therefore, the soil column and TLC studies have shown similar findings in the mobility of chlorpyrifos.

  3. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    International Nuclear Information System (INIS)

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-01-01

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates

  4. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin, E-mail: binli@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Eyer, Peter, E-mail: peter.eyer@lrz.uni-muenchen.de [Walther-Straub-Institut Für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München (Germany); Eddleston, Michael, E-mail: M.Eddleston@ed.ac.uk [Clinical Pharmacology Unit, University of Edinburgh, Edinburgh (United Kingdom); Jiang, Wei, E-mail: wjiang@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Schopfer, Lawrence M., E-mail: lmschopf@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Lockridge, Oksana, E-mail: olockrid@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States)

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  5. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    Science.gov (United States)

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-01-01

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. PMID:23566956

  6. Transformation of Chlorpyrifos and Chlorpyrifos-Methyl in Prairie Pothole Porewaters

    Science.gov (United States)

    Anderson, R. M.; Chin, Y. P.

    2014-12-01

    The prairie pothole region (PPR) extends over approximately 700,000 km2 in the Great Plains region in United States and Canada and is a critical breeding ground for migratory waterfowl, as well as an important ecosystem for diverse invertebrates and aquatic plants (van der Valk, 2003). Consisting of up to 12 million permanent and temporary depressional wetlands, the PPR is negatively impacted by non-point source pesticide pollution due to extensive agricultural development in the region. Recent studies have shown that high (mM) levels of sulfate in the pothole lakes are capable of abiotically reducing dinitroaniline and chloroacetanilide pesticides (Zeng, 2011; Zeng, 2012). In this study the transformation of the organophosphorus pesticide chlorpyrifos (CP) and its analog chlorpyrifos-methyl (CPM) was studied using pore waters sampled from two pothole lakes. CP and CPM have been found to react in the laboratory with sulfur species via a SN2 mechanism, with degradation by sulfur compounds occurring faster than hydrolysis at high pH (Wu, 2006). To date the reaction of CP and CPM in natural environments with sulfur species has not been studied. Chlorpyrifos-methyl underwent rapid degradation in the presence of reduced sulfur species in pore water, while chlorpyrifos degradation occurred at significantly slower rates. Both CP and CPM degradation occurred at comparable rates to what has been previously observed in the laboratory (Wu, 2006). References van der Valk, Arnold G., and Roger L. Pederson. "The SWANCC decision and its implications for prairie potholes." Wetlands 23.3 (2003): 590-596. Wu, Tong, Qiu Gan, and Urs Jans. "Nucleophilic Substitution of Phosphorothionate Ester Pesticides with Bisulfide (HS-) and Polysulfides (Sn2-)." Environmental science & technology 40.17 (2006): 5428-5434. Zeng, Teng, et al. "Pesticide processing potential in prairie pothole porewaters."Environmental science & technology 45.16 (2011): 6814-6822. Zeng, Teng, Yu-Ping Chin, and William

  7. Modifying effects of vitamin E on chlorpyrifos toxicity in atlantic salmon.

    Directory of Open Access Journals (Sweden)

    Pål A Olsvik

    Full Text Available The aim of this study was to elucidate how vitamin E (alpha tocopherol may ameliorate the toxicity of the pesticide chlorpyrifos in Atlantic salmon. Freshly isolated hepatocytes were exposed to vitamin E, chlorpyrifos or a combination of vitamin E and chlorpyrifos (all 100 μM. Transcriptomics (RNA-seq and metabolomics were used to screen for effects of vitamin E and chlorpyrifos. By introducing vitamin E, the number of upregulated transcripts induced by chlorpyrifos exposure was reduced from 941 to 626, while the number of downregulated transcripts was reduced from 901 to 742 compared to the control. Adding only vitamin E had no effect on the transcriptome. Jak-STAT signaling was the most significantly affected pathway by chlorpyrifos treatment according to the transcriptomics data. The metabolomics data showed that accumulation of multiple long chain fatty acids and dipeptides and amino acids in chlorpyrifos treated cells was partially alleviated by vitamin E treatment. Significant interaction effects between chlorpyrifos and vitamin E were seen for 15 metabolites, including 12 dipeptides. The antioxidant had relatively modest effects on chlorpyrifos-induced oxidative stress. By combining the two data sets, the study suggests that vitamin E supplementation prevents uptake and accumulation of fatty acids, and counteracts inhibited carbohydrate metabolism. Overall, this study shows that vitamin E only to a moderate degree modifies chlorpyrifos toxicity in Atlantic salmon liver cells.

  8. Extreme variability in the formation of chlorpyrifos oxon (CPO) in patients poisoned by chlorpyrifos (CPF)

    OpenAIRE

    Eyer, Florian; Roberts, Darren M.; Buckley, Nicholas A.; Eddleston, Michael; Thiermann, Horst; Worek, Franz; Eyer, Peter

    2009-01-01

    Abstract Chlorpyrifos (CPF) is a pesticide that causes tens of thousands of deaths per year worldwide. Chlorpyrifos oxon (CPO) is the active metabolite of CPF that inhibits acetylcholinesterase. However, this presumed metabolite has escaped detection in human samples by conventional methods (HPLC, GC-MS, LC-MS) until now. A recently developed enzyme-based assay allowed the determination of CPO in the nanomolar range and was successfully employed to detect this metabolite. CPO and C...

  9. Repeated batch and continuous degradation of chlorpyrifos by Pseudomonas putida.

    Science.gov (United States)

    Pradeep, Vijayalakshmi; Subbaiah, Usha Malavalli

    2015-01-01

    The present study was undertaken with the objective of studying repeated batch and continuous degradation of chlorpyrifos (O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate) using Ca-alginate immobilized cells of Pseudomonas putida isolated from an agricultural soil, and to study the genes and enzymes involved in degradation. The study was carried out to reduce the toxicity of chlorpyrifos by degrading it to less toxic metabolites. Long-term stability of pesticide degradation was studied during repeated batch degradation of chlorpyrifos, which was carried out over a period of 50 days. Immobilized cells were able to show 65% degradation of chlorpyrifos at the end of the 50th cycle with a cell leakage of 112 × 10(3) cfu mL(-1). During continuous treatment, 100% degradation was observed at 100 mL h(-1) flow rate with 2% chlorpyrifos, and with 10% concentration of chlorpyrifos 98% and 80% degradation was recorded at 20 mL h(-1) and 100 mL h(-1) flow rate respectively. The products of degradation detected by liquid chromatography-mass spectrometry analysis were 3,5,6-trichloro-2-pyridinol and chlorpyrifos oxon. Plasmid curing experiments with ethidium bromide indicated that genes responsible for the degradation of chlorpyrifos are present on the chromosome and not on the plasmid. The results of Polymerase chain reaction indicate that a ~890-bp product expected for mpd gene was present in Ps. putida. Enzymatic degradation studies indicated that the enzymes involved in the degradation of chlorpyrifos are membrane-bound. The study indicates that immobilized cells of Ps. putida have the potential to be used in bioremediation of water contaminated with chlorpyrifos.

  10. Degradation of chlorpyrifos in tropical rice soils.

    Science.gov (United States)

    Das, Subhasis; Adhya, Tapan K

    2015-04-01

    Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinol) phosphorothioate] is used worldwide as an agricultural insecticide against a broad spectrum of insect pests of economically important crops including rice, and soil application to control termites. The insecticide mostly undergoes hydrolysis to diethyl thiophosphoric acid (DETP) and 3,5,6-trichloro-2-pyridinol (TCP), and negligible amounts of other intermediate products. In a laboratory-cum-greenhouse study, chlorpyrifos, applied at a rate of 10 mg kg(-1) soil to five tropical rice soils of wide physico-chemical variability, degraded with a half-life ranging from 27.07 to 3.82 days. TCP was the major metabolite under both non-flooded and flooded conditions. Chlorpyrifos degradation had significant negative relationship with electrical conductivity (EC), cation exchange capacity (CEC), clay and sand contents of the soils under non-flooded conditions. Results indicate that degradation of chlorpyrifos was accelerated with increase in its application frequency, across the representative rice soils. Management regimes including moisture content and presence or absence of rice plants also influenced the process. Biotic factors also play an important role in the degradation of chlorpyrifos as demonstrated by its convincing degradation in mineral salts medium inoculated with non-sterile soil suspension. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. DETERMINATION OF CHLORPYRIFOS IN APPLE FROM THE RESEN REGION

    Directory of Open Access Journals (Sweden)

    Vezirka JANKULOSKA

    2017-03-01

    Full Text Available The aim of this research is to determine the presence of chlorpyrifos in two varieties of apples: Golden Delicious and Idared in two different locations (Evla and Krveni from the Resen region in the country. Chlorpyrifos is organophosphate pesticide (insecticide used to protect apples from insects which can cause significant damage in apple production. The apples are analyzed in four development phases and in each phase the presence of chlorpyrifos is determined. Chlorpiryfos analysis of the apples is performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS followed by an extraction/separation cleansing with acetonitrile and the dispersive SPE - QuEChERS - method. The results are compared with the maximum residue levels (MRL prescribed by the legislation of the Republic of Macedonia. The conclusion is that chlorpyrifos is variously represented in most phases, regardless of the phase and location where the apple is grown. At certain phase the concentration exceedes MRL, however during the harvest, apples are safe to be consumed. Higher presence of chlorpyrifos is found in Idared apples at Kriveni location as compared to Evla. Тhe presence of chlorpyrifos in Golden Delicious is almost equal in both locations. From the statistical analysis of the data it is noticeable that the use of chlorpyrifos does not depend on the (type variety of apple but rather on the location where the apple is grown.

  12. Radioiodine-Labeling of Chlorpyrifos and Its Biodistribution in Mice

    Directory of Open Access Journals (Sweden)

    DIAO Yao

    2015-11-01

    Full Text Available To investigate the preparation of radioiodinated Chlorpyrifos and its biodistribution in mice, Chlorpyrifos was labeled with 131I using the Iodogen method. Biodistribution studies were carried out in KM mice. At different times after radiopharmaceutical i.v. administration (185 kBq 131I-Chlorpyrifos/mouse, n=5, the animals were sacrificed. Blood samples and the tissues of interested were collected, weighted and counted. The percentage of injected does per gram (%ID/g was calculated for each sample. The labeling yield of 131I-Chlorpyrifos was 93.5%, The radiochemical purity (RCP was 96.9%. Biodistribution in mice demonstrated that 131I-Chlorpyrifos was extensive, and the uptakes mainly occur in lung, stomach, small-intestine, colon, musle, and submaxillay gland, as indicated by their amount of 37.12%ID/g, 6.18%ID/g, 8.12%ID/g, 8.15%ID/g, 7.04%ID/g, and 7.02%ID/g at 10 min, respectively. And it was metabolized in liver and kidney, as indicated by their uptake of 4.34%ID/g and 8.50%ID/g at 5 min, and 0.22%ID/g and 0.69%ID/g at 4 h, respectively. In addition, 131I-Chlorpyrifos was cleared out from blood quickly, and the uptake of 131I-Chlorpyrifos in blood was 37.27%ID/g at 5 min, and decreased to 1.35%ID/g at 4 h post injection. In conclusion, 131I-Chlorpyrifos was stable in vitro and it was absorbed in lung and digestive tract, and it was metabolized mainly in liver and kidney, worthy of further investigation to trace the compound in vivo and in vitro.

  13. The Effect of Chlorpyrifos on Isolated Thoracic Aorta in Rats

    Directory of Open Access Journals (Sweden)

    Ebru Yıldırım

    2013-01-01

    Full Text Available This study investigated the effect of chlorpyrifos on thoracic aorta and on the level of NO in plasma and aorta. The effect of chlorpyrifos on thoracic aorta in organ bath was determined in 10 rats. Another 45 rats were assigned to 3 groups with 15 rats each: control group 1 received distilled water, control group 2 was given corn oil, and the last group was given 13.5 mg/kg chlorpyrifos dissolved in corn oil every other day for 8 weeks orally. Chlorpyrifos (10−10 M–10−5 M showed no effect on isolated thoracic aorta. Plasma AChE activity was decreased, while LDH, ALT, GGT, and AST activities were increased in chlorpyrifos group compared to control groups. Plasma NO level was increased in chlorpyrifos group compared to control groups. iNOS expression was present in all groups in the cytoplasm of the endothelia and in the smooth muscle cells of aorta. According to semiquantitative histomorphological analysis, iNOS immunopositive reactions were seen in the decreasing order in chlorpyrifos, control 2, and control 1 groups. eNOS immunopositive reactions were observed in the endothelial cell cytoplasm, rarely in the subintimal layer, and the smooth muscle cells of aorta. There were no differences among the groups in terms of eNOS immunostaining. In conclusion, chlorpyrifos induced NO production in aorta following an increase in NOS expression.

  14. The Effect of Chlorpyrifos on Isolated Thoracic Aorta in Rats

    Science.gov (United States)

    Yıldırım, Ebru; Baydan, Emine; Kanbur, Murat; Kul, Oğuz; Çınar, Miyase; Ekici, Hüsamettin; Atmaca, Nurgül

    2013-01-01

    This study investigated the effect of chlorpyrifos on thoracic aorta and on the level of NO in plasma and aorta. The effect of chlorpyrifos on thoracic aorta in organ bath was determined in 10 rats. Another 45 rats were assigned to 3 groups with 15 rats each: control group 1 received distilled water, control group 2 was given corn oil, and the last group was given 13.5 mg/kg chlorpyrifos dissolved in corn oil every other day for 8 weeks orally. Chlorpyrifos (10−10 M–10−5 M) showed no effect on isolated thoracic aorta. Plasma AChE activity was decreased, while LDH, ALT, GGT, and AST activities were increased in chlorpyrifos group compared to control groups. Plasma NO level was increased in chlorpyrifos group compared to control groups. iNOS expression was present in all groups in the cytoplasm of the endothelia and in the smooth muscle cells of aorta. According to semiquantitative histomorphological analysis, iNOS immunopositive reactions were seen in the decreasing order in chlorpyrifos, control 2, and control 1 groups. eNOS immunopositive reactions were observed in the endothelial cell cytoplasm, rarely in the subintimal layer, and the smooth muscle cells of aorta. There were no differences among the groups in terms of eNOS immunostaining. In conclusion, chlorpyrifos induced NO production in aorta following an increase in NOS expression. PMID:23878805

  15. Distribution of chlorpyrifos in rice paddy environment and its potential dietary risk.

    Science.gov (United States)

    Fu, Yan; Liu, Feifei; Zhao, Chenglin; Zhao, Ying; Liu, Yihua; Zhu, Guonian

    2015-09-01

    Chlorpyrifos is one of the most extensively used insecticides in China. The distribution and residues of chlorpyrifos in a paddy environment were characterized under field and laboratory conditions. The half-lives of chlorpyrifos in the two conditions were 0.9-3.8days (field) and 2.8-10.3days (laboratory), respectively. The initial distribution of chlorpyrifos followed the increasing order of waterchlorpyrifos was rather low compared to the acceptable daily intake (ADI=0.01mg/kg bw) due to rice consumption. The chronic exposure risk from chlorpyrifos in rice grain was 5.90% and 1.30% ADI from field and laboratory results respectively. Concerning the acute dietary exposure, intake estimated for the highest chlorpyrifos level did not exceed the acute reference dose (ARfD=0.1mg/kg bw). The estimated short-term intakes (ESTIs) were 0.78% and 0.25% of the ARfD for chlorpyrifos. The results showed that the use of chlorpyrifos in rice paddies was fairly safe for consumption of rice grain by consumers. Copyright © 2015. Published by Elsevier B.V.

  16. Studies on 14C labelled chlorpyrifos in model marine ecosystem

    International Nuclear Information System (INIS)

    Pandit, G.G.; Mohan Rao, A.M.; Kale, S.P.; Murthy, N.B.K.; Raghu, K.

    1997-01-01

    Chlorpyrifos is one of the widely used organophosphorus insecticides in tropical countries. Experiments were conducted with 14 C labelled chlorpyrifos to study the distribution of this compound in model marine ecosystem. Less than 50 per cent of the applied activity remained in water in 24 h. Major portion of the applied chlorpyrifos (about 4.2 % residue per g) accumulated into the clams with sediment containing a maximum of 5 to 6 per cent of applied compound. No degradation of chlorpyrifos was observed in water or sediment samples. However, metabolic products were formed in clams. (author). 4 refs., 3 tabs

  17. Effect of processing on residues of chlorpyrifos in stored corn and rice

    International Nuclear Information System (INIS)

    Tejada, A.W.; Calumpang, S.M.F.; Gambalan, N.B.

    1990-01-01

    The effect of processing on residues of chlorpyrifos in rice and corn was determined. Chlorpyrifos solution (0.1%) sprayed on jute sacks containing corn resulted in absorption of residues in kernel and cob up to six months. A similar trend was observed in rice. Radiotracer studies revealed very low levels of bound residues (0.2 - 0.8 mg/kg) present in rice only. The usual practice of washing rice and corn before cooking reduced chlorpyrifos residues as much as 57% to 100%. Residues in wash water declined with each washing. Cooking further reduced the residues of chlorpyrifos only when volatilization was possible. Chlorpyrifos appeared to be persistent. Cooking rice in plot with the lid on did not produce any substantial reduction in the chlorpyrifos content. The practice of storing rice and corn in the Philippines does not give rice to chlorpyrifos residues which may exceed the recommended daily intake of 0.01 mg/kg-bw. (Auth.) 13 refs., 12 tabs., 3 figs

  18. Serotonin-related pathways and developmental plasticity: relevance for psychiatric disorders

    Science.gov (United States)

    Dayer, Alexandre

    2014-01-01

    Risk for adult psychiatric disorders is partially determined by early-life alterations occurring during neural circuit formation and maturation. In this perspective, recent data show that the serotonin system regulates key cellular processes involved in the construction of cortical circuits. Translational data for rodents indicate that early-life serotonin dysregulation leads to a wide range of behavioral alterations, ranging from stress-related phenotypes to social deficits. Studies in humans have revealed that serotonin-related genetic variants interact with early-life stress to regulate stress-induced cortisol responsiveness and activate the neural circuits involved in mood and anxiety disorders. Emerging data demonstrate that early-life adversity induces epigenetic modifications in serotonin-related genes. Finally, recent findings reveal that selective serotonin reuptake inhibitors can reinstate juvenile-like forms of neural plasticity, thus allowing the erasure of long-lasting fear memories. These approaches are providing new insights on the biological mechanisms and clinical application of antidepressants. PMID:24733969

  19. Chlorpyrifos chronic toxicity in broilers and effect of vitamin C

    Directory of Open Access Journals (Sweden)

    A.M. Kammon

    2011-02-01

    Full Text Available An experiment was conducted to study chlorpyrifos chronic toxicity in broilers and the protective effect of vitamin C. Oral administration of 0.8 mg/kg body weight (bw (1/50 LD50 chlorpyrifos (Radar®, produced mild diarrhea and gross lesions comprised of paleness, flaccid consistency and slightly enlargement of liver. Histopathologically, chlorpyrifos produced degenerative changes in various organs. Oral administration of 100 mg/kg bw vitamin C partially ameliorated the degenerative changes in kidney and heart. There was insignificant alteration in biochemical and haematological profiles. It is concluded that supplementation of vitamin C reduced the severity of lesions induced by chronic chlorpyrifos toxicity in broilers.

  20. Determination of Chlorpyrifos in Human Blood by Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xinhua Dai

    2017-01-01

    Full Text Available Gas chromatography-mass spectrometry method was developed for the qualitative and quantitative analyses of chlorpyrifos in human blood samples. The chlorpyrifos and parathion (internal standard in human blood were extracted with a mixed solvent of hexane and acetonitrile. Chlorpyrifos was well separated from the internal standard. The linear range of chlorpyrifos was 0.01–2 μg/ml in blood. The limit of detection and limit of quantification were estimated at 0.002 and 0.01 μg/ml, respectively. The inter- and intra-day precisions, accuracy, and recovery were assessed to verify this method. The results showed that the developed method is rapid, sensitive, and reliable. It is suitable for the determination of chlorpyrifos in forensic toxicological analysis and clinical diagnosis.

  1. Biological monitoring of chlorpyrifos exposure to rice farmers in Vietnam.

    Science.gov (United States)

    Phung, Dung Tri; Connell, Des; Miller, Greg; Hodge, Mary; Patel, Renu; Cheng, Ron; Abeyewardene, Manel; Chu, Cordia

    2012-04-01

    Chlorpyrifos is the most common organophosphate insecticide registered for use in Vietnam and is widely used in agriculture, particularly rice farming. However, chlorpyrifos exposure to and adverse effects on farmers has not been evaluated. In this study, biological monitoring of chlorpyrifos exposure in a group of rice farmers was conducted after a typical application event using back-pack spraying. Urine samples (24 h) were collected from the rice farmers before and post insecticide application. Samples were analysed for 3,5,6-trichloropyridinol (TCP), the major urinary metabolite of chlorpyrifos, using an enzymatic pre-treatment before extraction followed by HPLC-MS/MS. Absorbed Daily Dose (ADD) of chlorpyrifos for farmers were then estimated from urinary TCP levels, expressed as μg g(-1)creatinine. The analytical method for urinary TCP had a low detection limit (0.6 μg L(-1)), acceptable recovery values (80-114%), and low relative percentage differences in duplicate and repeated samples. Post-application chlorpyrifos ADD of farmers varied from 0.4 to 94.2 μg kg(-1) (body weight) d(-1) with a mean of 19.4 μg kg(-1) d(-1) which was approximately 80-fold higher than the mean baseline exposure level (0.24 μg kg(-1) d(-1)). Hazard Quotients (ratio of the mean ADD for rice farmers to acute oral reference dose) calculated using acute oral reference doses recommended by United States and Australian agencies varied from 2.1 (Australian NRA), 4.2 (US EPA) to 6.9 (ATSDR). Biological monitoring using HPLC-MS/MS analysis of urinary TCP (24 h) was found to be an effective method for measuring chlorpyrifos exposure among farmers. This case study found that Vietnamese rice farmers had relatively high exposures to chlorpyrifos after application, which were likely to have adverse health effects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Residues of 14C-chlorpyrifos in coconut by radiotracer techniques

    International Nuclear Information System (INIS)

    Tejada, A.W.; Calumpang, S.M.F.; Magallona, E.D.

    1992-01-01

    A coconut tree was root-infused with 5 g a.i. chlorpyrifos (Lorsban plus 1.4 uCi of 14 C-chlorpyrifos. Coconut samples both young and mature, were taken 24 h up to 60 days after root infusion. Analysis of the meat and water was done. The maximum uptake of chlorpyrifos equivalents was on the 13th day after root infusion both in mature and young fruit. The residue in water reached the peak on the 20th day after infusion and declined thereafter. A preharvest interval (PHI) of more than 60 days maybe recommended for safe consumption. The usual practice of storing copra in treated warehouses until it is processed into oil was simulated in the laboratory to determine the residues absorbed on the meat. Forty kg of copra with moisture content of 7-12% were stored in an improvised warehouse, i.e. 1 m x 1.5 m x 1 m wooden box, which was treated with 100 ml 1% a.i. Lorsban 50 WP plus 100 uCi 14 C-chlorpyrifos for protection against insects. Analysis showed that 14 C-chlorpyrifos equivalents ranged from 22.6 mg/kg on the 30th day to 8.2 mg/kg on the 90th day with a 63.7% reduction in residues. Bound residues were detected on samples stored for 60-90 days, with levels of 1.0 to 0.2 ug/g 14 C-chlorpyrifos equivalents. This is within the Maximum Residue Limit of 2 mg/kg set by FAO/WHO for chlorpyrifos in most agricultural commodities. Chlorpyrifos residues were also determined at various stages of refining and processing of crude coconut oil. It was subjected to alkali refining, bleaching and finally steaming. The residues were reduced by as much as 32.7%. (author). 18 refs.; 2 figs.; 3 tabs

  3. Effect of chlorpyrifos and enrofloxacin on selected enzymes in rats.

    Science.gov (United States)

    Barski, D; Spodniewska, A

    2018-03-01

    This study examined the effect of chlorpyrifos and/or enrofloxacin on the activity of acetylcholinesterase (AChE) in the blood and brain, and the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum. The experiment was conducted on Wistar strain rats. Chlorpyrifos was administered with a stomach tube at a dose of 0.04 LD50 for 28 days and enrofloxacin at a dose of 5 mg/kg bw for 5 consecutive days. The experiment found that enrofloxacin changed the activity of the enzymes under study only to a small extent. At the dose applied in the experiment, chlorpyrifos decreased the activity of AChE significantly, both in blood and in the brain, and increased the activity of ALT and AST in rat serum. The administration of chlorpyrifos in combination with enrofloxacin changed the activity of the enzymes under study only slightly. A weaker, but longer, inhibition of AChE activity in both blood and the brain was observed in this group compared to the animals exposed only to chlorpyrifos. However, although enrofloxacin, like chlorpyrifos, increases the activity of ALT and AST in serum, their combined administration did not increase the hepatotoxic effect. Copyright© by the Polish Academy of Sciences.

  4. 78 FR 40138 - Chlorpyrifos; Cancellation Order for Certain Pesticide Registrations

    Science.gov (United States)

    2013-07-03

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2005-0057; FRL-9389-6] Chlorpyrifos; Cancellation... and accepted by the Agency, of products containing chlorpyrifos, pursuant to the Federal Insecticide... 40139

  5. Effects of storage and processing on residue levels of chlorpyrifos in soybeans.

    Science.gov (United States)

    Zhao, Liuwei; Ge, Jing; Liu, Fengmao; Jiang, Naiwen

    2014-05-01

    The residue levels of chlorpyrifos in soybeans during storage and processing were investigated. Soybeans were treated with chlorpyrifos aqueous solution and placed in a sealed plastic container. The residue of chlorpyrifos was determined in soybeans at six time points within 0 and 112days during storage and oil processing of the soybeans was conducted. The analysis of the residues of chlorpyrifos was carried out by gas chromatography-mass spectrometry (GC-MS). Results show that the dissipation of chlorpyrifos in soybeans is about 62% during the storage period. Moreover, the carryover of the residues from soybeans into oil is found to be related to the processing methods. Processing factor, which is defined as the ratio of chlorpyrifos residue concentration in oil sample to that in the soybean samples, was 11 and 0.25 after cold and hot pressing, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Characterization of chlorpyrifos-induced apoptosis in placental cells

    International Nuclear Information System (INIS)

    Saulsbury, Marilyn D.; Heyliger, Simone O.; Wang, Kaiyu; Round, Dorothy

    2008-01-01

    The mechanism by which chlorpyrifos exerts its toxicity in fetal and perinatal animals has yet to be elucidated. Since the placenta is responsible for transport of nutrients and is a major supplier hormone to the fetus, exposure to xenobiotics that alter the function or viability of placenta cells could ostensibly alter the development of the fetus. In this study, JAR cells were used to determine if CPF and the metabolites 3,5,6-trichloro-2-pyridinol (TCP) and chlorpyrifos-oxon (CPO) are toxic to the placenta. Our results indicate that chlorpyrifos (CPF), and its metabolite chlorpyrifos-oxon (CPO) caused a dose-dependent reduction in cellular viability with CPF being more toxic than its metabolites. Chlorpyrifos-induced toxicity was characterized by the loss of mitochondrial potential, the appearance of nuclear condensation and fragmentation, down-regulation of Bcl-2 as well as up-regulation of TNFα and FAS mRNA. Pharmacological inhibition of FAS, nicotinic and TNF-α receptors did not attenuate CPF-induced toxicity. Atropine exhibited minimal ability to reverse toxicity. Furthermore, signal transduction inhibitors PD98059, SP600125, LY294002 and U0126 failed to attenuate toxicity; however, SB202190 (inhibitor of p38α and p38ss MAPK) sensitized cells to CPF-induced toxicity. Pan-caspase inhibitor Q-VD-OPh produced a slight but significant reversal of CPF-induced toxicity indicating that the major caspase pathways are not integral to CPF-induced toxicity. Taken collectively, these results suggest that chlorpyrifos induces apoptosis in placental cells through pathways not dependent on FAS/TNF signaling, activation of caspases or inhibition of cholinesterase. In addition, our data further indicates that activation of p38 MAPK is integral to the protection cells against CPF-induced injury

  7. [The rabbit experimental study for toxicokinetics of chlorpyrifos impacted by hemoperfusion].

    Science.gov (United States)

    Guo, Xiang; Chen, Xiao; Zhang, Hongshun; Long, Xin; He, Qian; Sun, Chengye; Huang, Xianqing; He, Jian

    2015-11-01

    To investigate toxicokinetic parameters impacted by hemoperfusion after oral chlorpyrifos exposure, to investigate the adsorption effect of hemoperhusion for chlorpyrifos poisoning. 12 rabbits were divided into two groups after oral exposure with chlorpyrifos 300 mg/kg body weight. Control group: without hemoperfusion; hemoperfusion group: hemoperfusion starts 0.5 h after chlorpyrifos exposure and lasts for 2h. Blood samples were collected at different times, concentrations of chlorpyrifos were tested by GC, then, toxicokinetic parameterswere calculated and analysis by DAS3.0. In hemoperfusion group, peak time was (7.19±3.74) h, peak concentrations was (1.37±0.56) mg/L, clearance rate was (13.93±10.27) L/h/kg, apparent volume of distribution was (418.18±147.15) L/kg The difference of these parameter were statistically significant compared with control group (Pchlorpyrifos poisoning.

  8. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice.

    Directory of Open Access Journals (Sweden)

    Jimena Laporta

    Full Text Available Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood into the ductal lumen (milk. Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1, which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2 and basolateral (CaSR, ORAI-1 membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2. Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2 are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation.

  9. Paraoxonase Enzyme Protects Retinal Pigment Epithelium from Chlorpyrifos Insult

    Science.gov (United States)

    Jasna, Jagan Mohan; Anandbabu, Kannadasan; Bharathi, Subramaniam Rajesh; Angayarkanni, Narayanasamy

    2014-01-01

    Retinal pigment epithelium (RPE) provides nourishment and protection to the eye. RPE dysfunction due to oxidative stress and inflammation is one of the major reason for many of the retinal disorders. Organophosphorus pesticides are widely used in the agricultural, industrial and household activities in India. However, their effects on the eye in the context of RPE has not been studied. In this study the defense of the ARPE19 cells exposed to Chlorpyrifos (1 nM to 100 µM) in terms of the enzyme paraoxonase (PON) was studied at 24 hr and 9 days of treatment. Chlorpyrifos was found to induce oxidative stress in the ARPE19 cells as seen by significant increase in ROS and decrease in glutathione (GSH) levels without causing cell death. Tissue resident Paraoxonase 2 (PON2) mRNA expression was elevated with chlorpyrifos exposure. The three enzymatic activities of PON namely, paraoxonase (PONase), arylesterase (PON AREase) and thiolactonase (PON HCTLase) were also found to be significantly altered to detoxify and as an antioxidant defense. Among the transcription factors regulating PON2 expression, SP1 was significantly increased with chlorpyrifos exposure. PON2 expression was found to be crucial as ARPE19 cells showed a significant loss in their ability to withstand oxidative stress when the cells were subjected to chlorpyrifos after silencing PON2 expression. Treatment with N-acetyl cysteine positively regulated the PON 2 expression, thus promoting the antioxidant defense put up by the cells in response to chlorpyrifos. PMID:24979751

  10. Feasibility of using drinking water treatment residuals as a novel chlorpyrifos adsorbent.

    Science.gov (United States)

    Zhao, Yuanyuan; Wang, Changhui; Wendling, Laura A; Pei, Yuansheng

    2013-08-07

    Recent efforts have increasingly focused on the development of low-cost adsorbents for pesticide retention. In this work, the novel reuse of drinking water treatment residuals (WTRs), a nonhazardous ubiquitous byproduct, as an adsorbent for chlorpyrifos was investigated. Results showed that the kinetics and isothermal processes of chlorpyrifos sorption to WTRs were better described by a pseudo-second-order model and by the Freundlich equation, respectively. Moreover, compared with paddy soil and other documented absorbents, the WTRs exhibited a greater affinity for chlorpyrifos (log Koc = 4.76-4.90) and a higher chlorpyrifos sorption capacity (KF = 5967 mg(1-n)·L·kg(-1)) owing to the character and high content of organic matter. Further investigation demonstrated that the pH had a slight but statistically insignificant effect on chlorpyrifos sorption to WTRs; solution ionic strength and the presence of low molecular weight organic acids both resulted in concentration-dependent inhibition effects. Overall, these results confirmed the feasibility of using WTRs as a novel chlorpyrifos adsorbent.

  11. Competitive immunochromatographic assay for the detection of the organophosphorus pesticide chlorpyrifos

    Science.gov (United States)

    Kim, Young Ah; Lee, Eun-Hye; Kim, Kwang-Ok; Lee, Yong Tae; Hammock, Bruce D.; Lee, Hye-Sung

    2014-01-01

    An immunochromatographic assay (ICA) based on competitive antigen-coated format using colloidal gold as the label was developed for the detection of the organophosphorus insecticide chlorpyrifos. The ICA test strip consisted of a membrane with a detection zone, a sample pad and an absorbent pad. The membrane was separately coated with chlorpyrifos hapten-OVA conjugate (test line) and anti-mouse IgG (control line). Based on the fact that the competition is between the migrating analyte in the sample and the analyte hapten immobilized on the test strip for the binding sites of the antibody-colloidal gold (Ab-CG) conjugate migrating on the test strip, this study suggests that the relative migration speed between the two migrating substances is a critically important factor for the sensitive detection by competitive ICA. This criterion was utilized for the confirmation of appropriateness of a nitrocellulose (NC) membrane for chlorpyrifos ICA. The detection limit of the ICA for chlorpyrifos standard and chlorpyrifos spiked into agricultural samples were 10 and 50 ng mL−1, respectively. The assay time for the ICA test was less than 10 min, suitable for rapid on-site testing of chlorpyrifos. PMID:21504817

  12. Preparation of Magnetic Molecularly Imprinted Polymer for Chlorpyrifos Adsorption and Enrichment

    Science.gov (United States)

    Chen, M.; Ma, X.; Sheng, J.

    2017-11-01

    Magnetic molecularly imprinted polymer (MMIP) for chlorpyrifos was prepared and characterized. The adsorption performance of MMIP for chlorpyrifos was evaluated under various conditions. The results showed that the adsorption equilibrium was achieved within 1 h, the adsorption capacity was 16.8 mg/g, and the adsorption process could be well described by Langmuir isotherm model and pseudo-second-order kinetic model. The MMIP was used as the selective sorbent for solid-phase extraction of chlorpyrifos from environmental water and vegetable samples. Combined with gas chromatography-mass spectrometry, a LOD of 30 ng/L, spiked recovery of 89.6%-107.3% and RSD of 1.9%-3.8% for chlorpyrifos were obtained.

  13. The adsorption coefficient (KOC) of chlorpyrifos in clay soil

    International Nuclear Information System (INIS)

    Halimah Muhamad; Nashriyah Mat; Tan Yew Ai; Ismail Sahid

    2005-01-01

    The purpose of this study was to determine the adsorption coefficient (KOC) of chlorpyrifos in clay soil by measuring the Freundlich adsorption coefficient (Kads(f)) and desorption coefficient (1/n value) of chlorpyrifos. It was found that the Freundlich adsorption coefficient (Kads(f)) and the linear regression (r2) of the Freundlich adsorption isotherm for chlorpyrifos in the clay soil were 52.6 L/kg and 0.5244, respectively. Adsorption equilibrium time was achieved within 24 hours for clay soil. This adsorption equilibrium time was used to determine the effect of concentration on adsorption. The adsorption coefficient (KOC) of clay soil was found to be 2783 L/kg with an initial concentration solution of 1 μg/g, soil-solution ratio (1:5) at 300 C when the equilibrium between the soil matrix and solution was 24 hours. The Kdes decreased over four repetitions of the desorption process. The chlorpyrifos residues may be strongly adsorbed onto the surface of clay. (Author)

  14. Type I Interferon-Mediated Skewing of the Serotonin Synthesis Is Associated with Severe Disease in Systemic Lupus Erythematosus

    Science.gov (United States)

    Lood, Christian; Tydén, Helena; Gullstrand, Birgitta; Klint, Cecilia; Wenglén, Christina; Nielsen, Christoffer T.; Heegaard, Niels H. H.; Jönsen, Andreas; Kahn, Robin; Bengtsson, Anders A.

    2015-01-01

    Serotonin, a highly pro-inflammatory molecule released by activated platelets, is formed by tryptophan. Tryptophan is also needed in the production of kynurenine, a process mediated by the type I interferon (IFN)-regulated rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO). The aim of this study was to investigate levels of serotonin in patients with the autoimmune disease systemic lupus erythematosus (SLE), association to clinical phenotype and possible involvement of IDO in regulation of serotonin synthesis. Serotonin levels were measured in serum and plasma from patients with SLE (n=148) and healthy volunteers (n=79) by liquid chromatography and ELISA, as well as intracellularly in platelets by flow cytometry. We found that SLE patients had decreased serotonin levels in serum (p=0.01) and platelets (pserotonin (p=0.0008) as well as increased IDO activity (pserotonin levels in platelets and serum (pserotonin levels were associated with severe SLE with presence of anti-dsDNA antibodies and nephritis. In all, reduced serum serotonin levels in SLE patients were related to severe disease phenotype, including nephritis, suggesting involvement of important immunopathological processes. Further, our data suggest that type I IFNs, present in SLE sera, are able to up-regulate IDO expression, which may lead to decreased serum serotonin levels. PMID:25897671

  15. Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement

    Directory of Open Access Journals (Sweden)

    Shamsa Akbar

    Full Text Available ABSTRACT Background: Since 1960s, the organophosphate pesticide chlorpyrifos has been widely used for the purpose of pest control. However, given its persistence and toxicity towards life forms, the elimination of chlorpyrifos from contaminated sites has become an urgent issue. For this process bioremediation is the method of choice. Results: Two bacterial strains, JCp4 and FCp1, exhibiting chlorpyrifos-degradation potential were isolated from pesticide contaminated agricultural fields. These isolates were able to degrade 84.4% and 78.6% of the initial concentration of chlorpyrifos (100 mg L-1 within a period of only 10 days. Based on 16S rRNA sequence analysis, these strains were identified as Achromobacter xylosoxidans (JCp4 and Ochrobactrum sp. (FCp1. These strains exhibited the ability to degrade chlorpyrifos in sterilized as well as non-sterilized soils, and were able to degrade 93-100% of the input concentration (200 mg kg-1 within 42 days. The rate of degradation in inoculated soils ranged from 4.40 to 4.76 mg-1 kg-1 d-1 with rate constants varying between 0.047 and 0.069 d-1. These strains also displayed substantial plant growth promoting traits such as phosphate solubilization, indole acetic acid production and ammonia production both in absence as well as in the presence of chlorpyrifos. However, presence of chlorpyrifos (100 and 200 mg L-1 was found to have a negative effect on indole acetic acid production and phosphate solubilization with percentage reduction values ranging between 2.65-10.6% and 4.5-17.6%, respectively. Plant growth experiment demonstrated that chlorpyrifos has a negative effect on plant growth and causes a decrease in parameters such as percentage germination, plant height and biomass. Inoculation of soil with chlorpyrifos-degrading strains was found to enhance plant growth significantly in terms of plant length and weight. Moreover, it was noted that these strains degraded chlorpyrifos at an increased rate (5

  16. Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement.

    Science.gov (United States)

    Akbar, Shamsa; Sultan, Sikander

    2016-01-01

    Since 1960s, the organophosphate pesticide chlorpyrifos has been widely used for the purpose of pest control. However, given its persistence and toxicity towards life forms, the elimination of chlorpyrifos from contaminated sites has become an urgent issue. For this process bioremediation is the method of choice. Two bacterial strains, JCp4 and FCp1, exhibiting chlorpyrifos-degradation potential were isolated from pesticide contaminated agricultural fields. These isolates were able to degrade 84.4% and 78.6% of the initial concentration of chlorpyrifos (100mgL(-1)) within a period of only 10 days. Based on 16S rRNA sequence analysis, these strains were identified as Achromobacter xylosoxidans (JCp4) and Ochrobactrum sp. (FCp1). These strains exhibited the ability to degrade chlorpyrifos in sterilized as well as non-sterilized soils, and were able to degrade 93-100% of the input concentration (200mgkg(-1)) within 42 days. The rate of degradation in inoculated soils ranged from 4.40 to 4.76mg(-1)kg(-1)d(-1) with rate constants varying between 0.047 and 0.069d(-1). These strains also displayed substantial plant growth promoting traits such as phosphate solubilization, indole acetic acid production and ammonia production both in absence as well as in the presence of chlorpyrifos. However, presence of chlorpyrifos (100 and 200mgL(-1)) was found to have a negative effect on indole acetic acid production and phosphate solubilization with percentage reduction values ranging between 2.65-10.6% and 4.5-17.6%, respectively. Plant growth experiment demonstrated that chlorpyrifos has a negative effect on plant growth and causes a decrease in parameters such as percentage germination, plant height and biomass. Inoculation of soil with chlorpyrifos-degrading strains was found to enhance plant growth significantly in terms of plant length and weight. Moreover, it was noted that these strains degraded chlorpyrifos at an increased rate (5.69mg(-1)kg(-1)d(-1)) in planted soil. The

  17. 78 FR 14540 - Chlorpyrifos Registration Review; Preliminary Volatilization Assessment; Extension of Comment Period

    Science.gov (United States)

    2013-03-06

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2008-0850; FRL-9380-7] Chlorpyrifos Registration... Federal Register issue of February 6, 2013, concerning Chlorpyrifos Registration Review; Preliminary... volatilization assessment for the registration review of chlorpyrifos. EPA received requests from several...

  18. Cu(2+) and Fe(2+) mediated photodegradation studies of soil-incorporated chlorpyrifos.

    Science.gov (United States)

    Rafique, Nazia; Tariq, Saadia R; Ahad, Karam; Taj, Touqeer

    2016-03-01

    The influences of Cu(2+) and Fe(2+) on the photodegradation of soil-incorporated chlorpyrifos were investigated in the present study. The soil samples spiked with chlorpyrifos and selected metal ions were irradiated with UV light for different intervals of time and analyzed by HPLC. The unsterile and sterile control soil samples amended with pesticides and selected metals were incubated in the dark at 25 °C for the same time intervals. The results of the study evidenced that photodegradation of chlorpyrifos followed the first-order kinetics. The dissipation t0.5 of chlorpyrifos was found to decrease from 41 to 20 days under UV irradiation. The rate of chlorpyrifos photodegradation was increased in the presence of both metals, i.e., Cu(2+) and Fe(2+). Thus, initially observed t0.5 of 19.8 days was decreased to 4.39 days in the case of Cu(+2) and 19.25 days for Fe(+2). Copper was found to increase the rate of photodegradation by 4.5 orders of magnitude while the microbial degradation of chlorpyrifos was increased only twofold. The microbial degradation of chlorpyrifos was only negligibly affected by Fe(2+) amendment. The studied trace metals also affected the abiotic degradation of the pesticide in the order Cu(2+) > Fe(2+).

  19. Acute Toxicity of an Organophosphate Insecticide Chlorpyrifos to an Anuran, Rana cyanophlyctis

    Directory of Open Access Journals (Sweden)

    Ajai Kumar Srivastav

    2017-02-01

    Full Text Available Background: Chlorpyrifos is an organophosphate pesticide that elicits broad-spectrum insecticidal activity against a number of important arthropod pests. Determining the insecticides’ toxicity to amphibians can give us a better understanding regarding the role of toxicants in amphibian declines. This information would be beneficial to assess their ecological relevance at environmental concentrations. The present study assessed toxicity of chlorpyrifos to an anuran Rana cyanophlyctis. Methods: For the determination of LC50 values for chlorpyrifos, four-day static renewal acute toxicity test was used. Five replicates each containing ten frogs were subjected to each concentration of chlorpyrifos (2, 4, 6, 8, 10, 12, 14 and 16 mg/L for the test. Mortality of the frog at different exposure periods (24, 48, 72 and 96 h was subjected to Probit analysis with the POLO-PC software (LeOra Software to calculate the LC50 and 95% confidence level. Results: The LC50 values of chlorpyrifos for the frog R. cyanophlyctis at 24, 48, 72, and 96 h were 8.252, 7.254, 6.247 and 4.993mg/L, respectively. Conclusion: Mortality has been noticed in chlorpyrifos treated frogs related to the decline in amphibian population. Therefore, chlorpyrifos should not be used near water reservoirs.

  20. Effects of chlorpyrifos on soil carboxylesterase activity at an aggregate-size scale.

    Science.gov (United States)

    Sanchez-Hernandez, Juan C; Sandoval, Marco

    2017-08-01

    The impact of pesticides on extracellular enzyme activity has been mostly studied on the bulk soil scale, and our understanding of the impact on an aggregate-size scale remains limited. Because microbial processes, and their extracellular enzyme production, are dependent on the size of soil aggregates, we hypothesized that the effect of pesticides on enzyme activities is aggregate-size specific. We performed three experiments using an Andisol to test the interaction between carboxylesterase (CbE) activity and the organophosphorus (OP) chlorpyrifos. First, we compared esterase activity among aggregates of different size spiked with chlorpyrifos (10mgkg -1 wet soil). Next, we examined the inhibition of CbE activity by chlorpyrifos and its metabolite chlorpyrifos-oxon in vitro to explore the aggregate size-dependent affinity of the pesticides for the active site of the enzyme. Lastly, we assessed the capability of CbEs to alleviate chlorpyrifos toxicity upon soil microorganisms. Our principal findings were: 1) CbE activity was significantly inhibited (30-67% of controls) in the microaggregates (1.0mm) compared with the corresponding controls (i.e., pesticide-free aggregates), 2) chlorpyrifos-oxon was a more potent CbE inhibitor than chlorpyrifos; however, no significant differences in the CbE inhibition were found between micro- and macroaggregates, and 3) dose-response relationships between CbE activity and chlorpyrifos concentrations revealed the capability of the enzyme to bind chlorpyrifos-oxon, which was dependent on the time of exposure. This chemical interaction resulted in a safeguarding mechanism against chlorpyrifos-oxon toxicity on soil microbial activity, as evidenced by the unchanged activity of dehydrogenase and related extracellular enzymes in the pesticide-treated aggregates. Taken together, these results suggest that environmental risk assessments of OP-polluted soils should consider the fractionation of soil in aggregates of different size to measure

  1. 78 FR 8522 - Chlorpyrifos Registration Review; Preliminary Evaluation of the Potential Risk From...

    Science.gov (United States)

    2013-02-06

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2008-0850; FRL-9376-5] Chlorpyrifos Registration... preliminary volatilization assessment for the registration review of chlorpyrifos and opens a public comment... assessment for chlorpyrifos uses. After reviewing comments received during the public comment period, EPA...

  2. Structural and metabolic responses of microbial community to sewage-borne chlorpyrifos in constructed wetlands.

    Science.gov (United States)

    Zhang, Dan; Wang, Chuan; Zhang, Liping; Xu, Dong; Liu, Biyun; Zhou, Qiaohong; Wu, Zhenbin

    2016-06-01

    Long-term use of chlorpyrifos poses a potential threat to the environment that cannot be ignored, yet little is known about the succession of substrate microbial communities in constructed wetlands (CWs) under chlorpyrifos stress. Six pilot-scale CW systems receiving artificial wastewater containing 1mg/L chlorpyrifos were established to investigate the effects of chlorpyrifos and wetland vegetation on the microbial metabolism pattern of carbon sources and community structure, using BIOLOG and denaturing gradient gel electrophoresis (DGGE) approaches. Based on our samples, BIOLOG showed that Shannon diversity (H') and richness (S) values distinctly increased after 30days when chlorpyrifos was added. At the same time, differences between the vegetated and the non-vegetated systems disappeared. DGGE profiles indicated that H' and S had no significant differences among four different treatments. The effect of chlorpyrifos on the microbial community was mainly reflected at the physiological level. Principal component analysis (PCA) of both BIOLOG and DGGE showed that added chlorpyrifos made a difference on test results. Meanwhile, there was no difference between the vegetation and no-vegetation treatments after addition of chlorpyrifos at the physiological level. Moreover, the vegetation had no significant effect on the microbial community at the genetic level. Comparisons were made between bacteria in this experiment and other known chlorpyrifos-degrading bacteria. The potential chlorpyrifos-degrading ability of bacteria in situ may be considerable. Copyright © 2016. Published by Elsevier B.V.

  3. Decontamination of Chlorpyrifos packing using ionizing radiation: processing optimization

    International Nuclear Information System (INIS)

    Mori, Manoel Nunes; Sampa, Maria Helena de Oliveira; Duarte, Celina Lopes

    2007-01-01

    The discharge of empty plastic packing of pesticide can be an environmental concern causing problems to human health, animals and plants if done without inspection and monitoring. Among the commercial pesticides, chlorpyrifos, o, o- Diethyl - o- (3,5,6 - trichloro - 2 - pyridyl) phosphorothioate, has significant importance because of its wide distribution, extensive use and persistence. The most commonly used formulations include the emulsified concentrate, granule, wet powder and dispersible granule has significant importance because of its wide distribution and extensive use and persistence. The hydroxyl .OH attack is the most efficient process of chemical oxidation. The degradation-induced of chlorpyrifos by gamma radiolysis was studied in packaging of high-density polyethylene tree layer coextruded, named COEX, irradiated intact and fragments. The intact packing was irradiated with water and the fragmented packing was irradiated with water and with a solution of 50% of water and 50% of acetonitrile. An AECL 'Gammacell 2201 60 Co source and a multipurpose gamma irradiator were used in the processing. The chemical analysis of the chlorpyrifos and by-products were made using a gas chromatography associated to the mass spectrometry (MSGC-Shimadzu QP5000. Radiation processing of packing in pieces showed higher efficiency in removing chlorpyrifos than whole packing. The presence of water showed fundamental to promote the formation of frees radicals and acetonitrile facilitate the dissolution of chlorpyrifos and consequently its removal. (author)

  4. Decontamination of Chlorpyrifos packing using ionizing radiation: processing optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Manoel Nunes; Sampa, Maria Helena de Oliveira; Duarte, Celina Lopes [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: mnmori@ipen.br; mhosampa@ipen.br; clduarte@ipen.br

    2007-07-01

    The discharge of empty plastic packing of pesticide can be an environmental concern causing problems to human health, animals and plants if done without inspection and monitoring. Among the commercial pesticides, chlorpyrifos, o, o- Diethyl - o- (3,5,6 - trichloro - 2 - pyridyl) phosphorothioate, has significant importance because of its wide distribution, extensive use and persistence. The most commonly used formulations include the emulsified concentrate, granule, wet powder and dispersible granule has significant importance because of its wide distribution and extensive use and persistence. The hydroxyl .OH attack is the most efficient process of chemical oxidation. The degradation-induced of chlorpyrifos by gamma radiolysis was studied in packaging of high-density polyethylene tree layer coextruded, named COEX, irradiated intact and fragments. The intact packing was irradiated with water and the fragmented packing was irradiated with water and with a solution of 50% of water and 50% of acetonitrile. An AECL 'Gammacell 2201 {sup 60}Co source and a multipurpose gamma irradiator were used in the processing. The chemical analysis of the chlorpyrifos and by-products were made using a gas chromatography associated to the mass spectrometry (MSGC-Shimadzu QP5000. Radiation processing of packing in pieces showed higher efficiency in removing chlorpyrifos than whole packing. The presence of water showed fundamental to promote the formation of frees radicals and acetonitrile facilitate the dissolution of chlorpyrifos and consequently its removal. (author)

  5. Degradation of chlorpyrifos residues in apple under temperate conditions of Kashmir Valley.

    Science.gov (United States)

    Mukhtar, Malik; Sherwani, Asma; Wani, Ashraf Alam; Ahmed, Sheikh Bilal; Sofi, Javid Ahmad; Bano, Parveena

    2015-08-01

    The present studies were carried out to observe the dissipation pattern of chlorpyrifos on apple in Kashmir Valley. Persistence of chlorpyrifos in apple was studied following two applications rates of chlorpyrifos (Dursban 20 EC) at 200 g a.i. ha(-1) (single dose T 1) and 400 g a.i. ha(-1) (double dose T 2). The average initial deposit of chlorpyrifos was found to be 1.61 and 1.98 μg g(-1) for T 1 and T 2 application rates respectively on apple. The residues dissipated to 0.09 and 0.06 μg g(-1) after 15- and 30-day post treatment with half-life periods of 3.34 and 5.47 days in T 1 and T 2 application rates, respectively. The residues of chlorpyrifos dissipated to below limit of quantification (LOQ) of 0.04 μg g(-1) after 30 day at T 1 application rate. A waiting period of 6 days must be observed for chlorpyrifos on apple at recommended application rate for the safety of consumers. Theoretical maximum residue contribution (TMRC) values were found to be far less than maximum permissible intake (MPI) at 0 day in both the dosages suggesting chlorpyrifos on apple in Kashmir is unlikely to cause health risks.

  6. A human life-stage physiologically based pharmacokinetic and pharmacodynamic model for chlorpyrifos: development and validation.

    Science.gov (United States)

    Smith, Jordan Ned; Hinderliter, Paul M; Timchalk, Charles; Bartels, Michael J; Poet, Torka S

    2014-08-01

    Sensitivity to some chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to predict disposition of chlorpyrifos and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, previously measured age-dependent metabolism of chlorpyrifos and chlorpyrifos-oxon were integrated into age-related descriptions of human anatomy and physiology. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ⩾0.6mg/kg of chlorpyrifos (100- to 1000-fold higher than environmental exposure levels), 6months old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent doses. At lower doses more relevant to environmental exposures, simulations predict that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict chlorpyrifos disposition and biological response over various postnatal life stages. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Acute Toxicity and Neurotoxicity of Chlorpyrifos in Black Tiger Shrimp, Penaeus monodon

    Directory of Open Access Journals (Sweden)

    Tassanee Eamkamon

    2012-01-01

    Full Text Available Acute toxicity and neurotoxicity of chlorpyrifos were determined in black tiger shrimp, P. monodon. LC50 values after 24 to 96 h of exposure were between 149.55 and 59.16 nmol/L. To determine the neurotoxicity of chlorpyrifos, the inhibition of acetylcholinesterase was monitored in the gill of the shrimps exposed to lethal (0.019, 0.194, and 1.942 µmol/L and sub-lethal (0.019, 0.194, and 1.942 nmol/L concentrations of chlorpyrifos. In lethal dose exposure, the AChE activities observed in shrimp exposed to 0.194, and 1.942 µmol/L of chlorpyrifos were significantly lower (1.7 and 3.3 times than that of control shrimp after 30 min of exposure (p<0.05. In sub-lethal exposure tests, the AChE activity of shrimp was significantly lower (1.9 times than that of control shrimp after exposure to 1.942 nmol/L of chlorpyrifos for 72 h (p<0.05. The sensitive reduction of AChE activity at the sub-lethal concentration, which was 30 times lower than 96 h LC50 value found in this study, indicates the potential use as a biomarker of chlorpyrifos exposure.

  8. Binding and detoxification of chlorpyrifos by lactic acid bacteria on rice straw silage fermentation.

    Science.gov (United States)

    Wang, Yan-Su; Wu, Tian-Hao; Yang, Yao; Zhu, Cen-Ling; Ding, Cheng-Long; Dai, Chuan-Chao

    2016-01-01

    This investigation examined the reduction of pesticide residues on straw inoculated with lactic acid bacteria (LAB) during ensiling. Lactobacillus casei WYS3 was isolated from rice straw that contained pesticide residues. Non-sterilized rice straw, which was inoculated with L. casei WYS3, showed increased removal of chlorpyrifos after ensiling, compared with rice straw that was not inoculated with L. casei WYS3 or sterilized rice straw. In pure culture, these strains can bind chlorpyrifos as indicated by high-performance liquid chromatography analysis. Viable L. casei WYS3 was shown to bind 33.3-42% of exogenously added chlorpyrifos. These results are similar to those of acid-treated cells but less than those of heat-treated cells, which were found to bind 32.0% and 77.2% of the added chlorpyrifos respectively. Furthermore, gas chromatography-mass spectrometry analysis determined that L. casei WYS3 detoxified chlorpyrifos via P-O-C cleavage. Real-time polymerized chain reaction analysis determined that organophosphorus hydrolase gene expression tripled after the addition of chlorpyrifos to LAB cultures, compared with the control group (without chlorpyrifos). This paper highlights the potential use of LAB starter cultures for the detoxification and removal of chlorpyrifos residues in the environment.

  9. 76 FR 52945 - Chlorpyrifos Registration Review; Preliminary Human Health Risk Assessment; Extension of Comment...

    Science.gov (United States)

    2011-08-24

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2008-0850; FRL-8886-6] Chlorpyrifos Registration... chlorpyrifos registration review; preliminary human health risk assessment. This document extends the comment... . SUPPLEMENTARY INFORMATION: This document extends the public comment period for the chlorpyrifos reregistration...

  10. Assessment of biochemical mechanisms of tolerance to chlorpyrifos in ancient and contemporary Daphnia pulicaria genotypes.

    Science.gov (United States)

    Simpson, Adam M; Jeyasingh, Punidan D; Belden, Jason B

    2017-12-01

    The evolution of tolerance to environmental contaminants in non-target taxa has been largely studied by comparing extant populations experiencing contrasting exposure. Previous research has demonstrated that "resurrected" genotypes from a population of Daphnia pulicaria express temporal variation in sensitivity to the insecticide chlorpyrifos. Ancient genotypes (1301-1646AD.) were on average more sensitive to this chemical compared to the contemporary genotypes (1967-1977AD.). To determine the physiological mechanisms of tolerance, a series of biochemical assays was performed on three ancient and three contemporary genotypes; these six genotypes exhibited the most sensitive and most tolerant phenotypes within the population, respectively. Metabolic tolerance mechanisms were evaluated using acute toxicity testing, while target-site tolerance was assessed via in vitro acetylcholinesterase (AChE) assays. Acute toxicity tests were conducted using i) the toxic metabolite chlorpyrifos-oxon (CPF-oxon) and ii) CPF-oxon co-applied with piperonyl butoxide (PBO), a known Phase-I metabolic inhibitor. Both series of toxicity tests reduced the mean variation in sensitivity between tolerant and sensitive genotypes. Exposure to CPF-O reduced the disparity from a 4.7-fold to 1.6-fold difference in sensitivity. The addition of PBO further reduced the variation to a 1.2-fold difference in sensitivity. In vitro acetylcholinesterase assays yielded no significant differences in constitutive activity or target-site sensitivity. These findings suggest that pathways involving Phase-I detoxification and/or bioactivation of chlorpyrifos play a significant role in dictating the microevolutionary trajectories of tolerance in this population. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Order Denying Petition to Revoke All Tolerances for the Pesticide Chlorpyrifos

    Science.gov (United States)

    In this Order, EPA denies a petition requesting that EPA revoke all tolerances for the pesticide chlorpyrifos under section 408(d) of the Federal Food, Drug, and Cosmetic Act and cancel all chlorpyrifos registrations under FIFRA.

  12. Biodegradation of Chlorpyrifos by Pseudomonas Resinovarans Strain AST2.2 Isolated from Enriched Cultures.

    OpenAIRE

    Anish Sharma*,; Jyotsana Pandit; Ruchika Sharma and; Poonam Shirkot

    2016-01-01

    A bacterial strain AST2.2 with chlorpyrifos degrading ability was isolated by enrichment technique from apple orchard soil with previous history of chlorpyrifos use. Based on the morphological, biochemical tests and 16S rRNA sequence analysis, AST2.2 strain was identified as Pseudomonas resinovarans. The strain AST2.2 utilized chlorpyrifos as the sole source of carbon and energy. This strain exhibited growth upto 400mg/l concentration of chlorpyrifos and exhibited high extracellular organopho...

  13. Serotonin syndrome

    Science.gov (United States)

    Hyperserotonemia; Serotonergic syndrome; Serotonin toxicity; SSRI - serotonin syndrome; MAO - serotonin syndrome ... brain area. For example, you can develop this syndrome if you take migraine medicines called triptans together ...

  14. Toxicity of chlorpyrifos on some marine cyanobacteria species

    International Nuclear Information System (INIS)

    Shoaib, N.; Siddiqui, A.; Khalid, H.

    2012-01-01

    Pakistan is an agricultural country and a wide variety of pesticides are used on its cropland. Pesticides pose serious threats to the natural ecosystem. In the present study cyanobacteria (blue green algae) were used to assess the ecotoxicological effect of chlorpyrifos (organophosphate pesticide). Cyanobacteria are the base of the food web providing food resource to consumers in higher trophic level. Cyanobacteria were isolated and purified from water samples collected from Manora channel. Fast growing cultures of cyanobacteria were used to assess the toxicity of test pesticide . The Light and Dark method was used to determine the primary production of the organisms. The acute toxicity of chlorpyrifos was determined by calculating IC/sub 50/ of the test organisms. The IC/sub 50/ was found to be 0.074, 0.013, 0.08 and 0.3 ppm for Synechocystis aquatilis, Komvophoron minutum, Gloeocapsa crepidinum and Gloeocapsa sanguinea when exposed to chlorpyrifos pesticide . Laboratory experiments with cyanobacteria have demonstrated that organophosphate pesticides are potent inhibitors of photosynthesis. (author)

  15. Dissipation of 14C chlorpyrifos in the rhizosphere of rice

    International Nuclear Information System (INIS)

    Sharungbam, Geeta Devi; Kapadnis, B.P.; Deopurkar, R.L.; Kale, S.P.

    2004-01-01

    The root exudates from the plants contribute to the biodegradation of insecticides. Although, different mechanisms have been proposed, there is no clear elucidation of any mechanism. This study investigates the dissipation of an organophosphorus insecticide, chlorpyrifos in the rhizospheric soil planted with rice plant. Two sets of experimental tanks were maintained with or without plants using soil spiked with 1 mg kg -1 and 10 mg kg -1 of chlorpyrifos. Experiment was conducted for 180 days till the rice plant starts bearing seeds. The 14 C activity decreased rapidly in the rhizospheric soil as compare to the non-rhizospheric soil. The total culturable microflora were higher in the rhizospheric than the non-rhizospheric soil. The plant extract had given few counts indicating some negligible amount of chlorpyrifos uptake. The 14 C activity in the water was disappeared after 30 days. It was observed that very low amount of residue persisted in soil. This studies revealed that the plants play an important role in the dissipation of the chlorpyrifos from the rice flooded rhizospheric soil. (author)

  16. Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos

    International Nuclear Information System (INIS)

    Qiao, Dan; Seidler, Frederic J.; Slotkin, Theodore A.

    2005-01-01

    Nicotine and chlorpyrifos are developmental neurotoxicants that, despite their differences in structure and mechanism of action, share many aspects for damage to the developing brain. Both are thought to generate oxidative radicals; in the current study, we evaluated their ability to produce lipid peroxidation in two in vitro models of neural cell development (PC12 and SH-SY5Y cells) and for nicotine, with treatment of adolescent rats in vivo. Nicotine and chlorpyrifos, in concentrations relevant to human exposures, elicited an increase in thiobarbituric-acid-reactive species (TBARS) in undifferentiated cells, an effect that was prevented by addition of the antioxidant, Vitamin E. Initiating differentiation with nerve growth factor, which enhances nicotinic acetylcholine receptor expression, increased the TBARS response to nicotine but not chlorpyrifos, suggesting that the two agents act by different originating mechanisms to converge on the endpoint of oxidative damage. Furthermore, nicotine protected the cells from oxidative damage evoked by chlorpyrifos and similarly blocked the antimitotic effect of chlorpyrifos. Treatment of adolescent rats with nicotine elicited increases in TBARS in multiple brain regions when given in doses that simulate plasma nicotine concentrations found in smokers or at one-tenth the dose. Our results indicate that nicotine and chlorpyrifos elicit oxidative damage to developing neural cells both in vitro and in vivo, a mechanism that explains some of the neurodevelopmental endpoints that are common to the two agents. The balance between neuroprotectant and neurotoxicant actions of nicotine may be particularly important in situations where exposure to tobacco smoke is combined with other prooxidant insults

  17. Nanoimages show disruption of tubulin polymerization by chlorpyrifos oxon: Implications for neurotoxicity

    International Nuclear Information System (INIS)

    Grigoryan, Hasmik; Lockridge, Oksana

    2009-01-01

    Organophosphorus agents cause cognitive deficits and depression in some people. We hypothesize that the mechanism by which organophosphorus agents cause these disorders is by modification of proteins in the brain. One such protein could be tubulin. Tubulin polymerizes to make the microtubules that transport cell components to nerve axons. The goal of the present work was to measure the effect of the organophosphorus agent chlorpyrifos oxon on tubulin polymerization. An additional goal was to identify the amino acids covalently modified by chlorpyrifos oxon in microtubule polymers and to compare them to the amino acids modified in unpolymerized tubulin dimers. Purified bovine tubulin (0.1 mM) was treated with 0.005-0.1 mM chlorpyrifos oxon for 30 min at room temperature and then polymerized by addition of 1 mM GTP to generate microtubules. Microtubules were visualized by atomic force microscopy. Chlorpyrifos oxon-modified residues were identified by tandem ion trap electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry of tryptic peptides. Nanoimaging showed that low concentrations (0.005 and 0.01 mM) of chlorpyrifos oxon yielded short, thin microtubules. A concentration of 0.025 mM stimulated polymerization, while high concentrations (0.05 and 0.1 mM) caused aggregation. Of the 17 tyrosines covalently modified by chlorpyrifos oxon in unpolymerized tubulin dimers, only 2 tyrosines were labeled in polymerized microtubules. The two labeled tyrosines in polymerized tubulin were Tyr 103 in EDAANNY*R of alpha tubulin, and Tyr 281 in GSQQY*R of beta tubulin. In conclusion, chlorpyrifos oxon binding to tubulin disrupts tubulin polymerization. These results may lead to an understanding of the neurotoxicity of organophosphorus agents.

  18. Taurine ameliorated thyroid function in rats co-administered with chlorpyrifos and lead.

    Science.gov (United States)

    Akande, Motunrayo Ganiyat; Shittu, Muftau; Uchendu, Chidiebere; Yaqub, Lukuman Surakat

    2016-12-01

    Chlorpyrifos is a widely used organophosphate insecticide for domestic, agricultural and industrial purposes. Lead is a toxic heavy metal and it is used for domestic and industrial purposes. Taurine is a semi essential amino acid with bioprotective properties. The aim of this study was to investigate the effects of taurine on thyroid function in Wistar rats co-administered with chlorpyrifos and lead. The rats were divided into 5 groups of 10 rats each. The first two groups were administered with distilled water and soya oil (1 ml/kg) respectively. The other groups received taurine (50 mg/kg), chlorpyrifos + lead [chlorpyrifos (4.25 mg/kg, 1/20 median lethal dose] and lead (233.25 mg/kg, 1/20 median lethal dose) and taurine + chlorpyrifos + lead respectively. The treatments were administered once daily by oral gavage for 16 weeks. The rats were euthanized after the completion of the study and the thyroid function and thyroid histoarchitecture were evaluated. The results revealed that co-administration of chlorpyrifos and lead to the rats induced perturbations in thyroid function and this was manifested by reductions in the concentrations of triiodothyronine and thyroxine, increased thyroid stimulating hormone concentration and degeneration of the follicular epithelia of the thyroid gland. Taurine alleviated the perturbations in thyroid function and improved thyroid gland histoarchitecture. The beneficial effects of taurine may be attributed to its ability to protect the body from toxicity and oxidative stress. Taurine may be useful for prophylaxis against disruptions in thyroid function in animals that are exposed to environmental chlorpyrifos and lead.

  19. Identification of genetic modifiers of behavioral phenotypes in serotonin transporter knockout rats

    NARCIS (Netherlands)

    Homberg, J.R.; Nijman, I.J.; Kuijpers, S.; Cuppen, E.

    2010-01-01

    BACKGROUND: Genetic variation in the regulatory region of the human serotonin transporter gene (SLC6A4) has been shown to affect brain functionality and personality. However, large heterogeneity in its biological effects is observed, which is at least partially due to genetic modifiers. To gain

  20. Examining the joint toxicity of chlorpyrifos and atrazine in the aquatic species: Lepomis macrochirus, Pimephales promelas and Chironomus tentans

    International Nuclear Information System (INIS)

    Tyler Mehler, W.; Schuler, Lance J.; Lydy, Michael J.

    2008-01-01

    The joint toxicity of chlorpyrifos and atrazine was compared to that of chlorpyrifos alone to discern any greater than additive response using both acute toxicity testing and whole-body residue analysis. In addition, acetylcholinesterase (AChE) inhibition and biotransformation were investigated to evaluate the toxic mode of action of chlorpyrifos in the presence of atrazine. The joint toxicity of atrazine and chlorpyrifos exhibited no significant difference in Lepomis macrochirus compared to chlorpyrifos alone; while studies performed with Pimephales promelas and Chironomus tentans, did show significant differences. AChE activity and biotransformation showed no significant differences between the joint toxicity of atrazine and chlorpyrifos and that of chlorpyrifos alone. From the data collected, the combination of atrazine and chlorpyrifos pose little additional risk than that of chlorpyrifos alone to the tested fish species. - The joint toxicity between atrazine and chlorpyrifos caused greater than additive responses in invertebrates, but the interactions in vertebrates was less pronounced

  1. Examining the joint toxicity of chlorpyrifos and atrazine in the aquatic species: Lepomis macrochirus, Pimephales promelas and Chironomus tentans

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Mehler, W.; Schuler, Lance J. [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University at Carbondale, Carbondale, IL 62901-6511 (United States); Lydy, Michael J. [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University at Carbondale, Carbondale, IL 62901-6511 (United States)], E-mail: mlydy@siu.edu

    2008-03-15

    The joint toxicity of chlorpyrifos and atrazine was compared to that of chlorpyrifos alone to discern any greater than additive response using both acute toxicity testing and whole-body residue analysis. In addition, acetylcholinesterase (AChE) inhibition and biotransformation were investigated to evaluate the toxic mode of action of chlorpyrifos in the presence of atrazine. The joint toxicity of atrazine and chlorpyrifos exhibited no significant difference in Lepomis macrochirus compared to chlorpyrifos alone; while studies performed with Pimephales promelas and Chironomus tentans, did show significant differences. AChE activity and biotransformation showed no significant differences between the joint toxicity of atrazine and chlorpyrifos and that of chlorpyrifos alone. From the data collected, the combination of atrazine and chlorpyrifos pose little additional risk than that of chlorpyrifos alone to the tested fish species. - The joint toxicity between atrazine and chlorpyrifos caused greater than additive responses in invertebrates, but the interactions in vertebrates was less pronounced.

  2. Environmental Behavior of Chlorpyrifos and Endosulfan in a Tropical Soil in Central Brazil.

    Science.gov (United States)

    Dores, Eliana F G C; Spadotto, Claudio A; Weber, Oscarlina L S; Dalla Villa, Ricardo; Vecchiato, Antonio B; Pinto, Alicio A

    2016-05-25

    The environmental behavior of chlorpyrifos and endosulfan in soil was studied in the central-western region of Brazil by means of a field experiment. Sorption was evaluated in laboratory batch experiments. Chlorpyrifos and endosulfan were applied to experimental plots on uncultivated soil and the following processes were studied: leaching, runoff, and dissipation in top soil. Field dissipation of chlorpyrifos and endosulfan was more rapid than reported in temperate climates. Despite the high Koc of the studied pesticides, the two endosulfan isomers and endosulfan sulfate as well as chlorpyrifos were detected in percolated water. In runoff water and sediment, both endosulfan isomers and endosulfan sulfate were detected throughout the period of study. Observed losses of endosulfan by leaching (below a depth of 50 cm) and runoff were 0.0013 and 1.04% of the applied amount, whereas chlorpyrifos losses were 0.003 and 0.032%, respectively. Leaching of these highly adsorbed pesticides was attributed to preferential flow.

  3. Chlorpyrifos induces anxiety-like behavior in offspring rats exposed during pregnancy.

    Science.gov (United States)

    Silva, Jonas G; Boareto, Ana C; Schreiber, Anne K; Redivo, Daiany D B; Gambeta, Eder; Vergara, Fernanda; Morais, Helen; Zanoveli, Janaína M; Dalsenter, Paulo R

    2017-02-22

    Chlorpyrifos is a pesticide, member of the organophosphate class, widely used in several countries to manage insect pests on many agricultural crops. Currently, chlorpyrifos health risks are being reevaluated due to possible adverse effects, especially on the central nervous system. The aim of this study was to investigate the possible action of this pesticide on the behaviors related to anxiety and depression of offspring rats exposed during pregnancy. Wistar rats were treated orally with chlorpyrifos (0.01, 0.1, 1 and 10mg/kg/day) on gestational days 14-20. Male offspring behavior was evaluated on post-natal days 21 and 70 by the elevated plus-maze test, open field test and forced swimming test. The results demonstrated that exposure to 0.1, 1 or 10mg/kg/day of chlorpyrifos could induce anxiogenic-like, but not depressive-like behavior at post-natal day 21, without causing fetal toxicity. This effect was reversed on post-natal day 70. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Energetic Cost of Subacute Chlorpyrifos Intoxication in the German Cockroach (Dictyoptera: Blattellidae)

    DEFF Research Database (Denmark)

    Nielsen, Søren Achim; Jensen, Karl-Martin Vagn; Kristensen, Michael

    2006-01-01

    The energetic cost of a sublethal treatment with chlorpyrifos was estimated by use of direct microcalorimetry to measure metabolic heat in susceptible and resistant strains of the German cockroach Blattella germanica L. Moreover, one of the detoxifcation enzyme systems known to be involved...... in detoxifcation of chlorpyrifos, glutathione-S-transferase, was measured. Individual cockroaches were exposed for 20 min on a glass-surfaces treated with 1.14 ...  g/cm2 of chlorpyrifos. There was no difference in glutathione-S-transferase activity of susceptible or resistant strains after the treatment. The heat...

  5. Feasibility of constructed wetlands for removing chlorothalonil and chlorpyrifos from aqueous mixtures

    International Nuclear Information System (INIS)

    Sherrard, R.M.; Bearr, J.S.; Murray-Gulde, C.L.; Rodgers, J.H.; Shah, Y.T.

    2004-01-01

    Chlorpyrifos (an insecticide) and chlorothalonil (a fungicide) are transported in stormwater runoff and can be lethal to receiving aquatic system biota. This study determined removal rates of chlorpyrifos and chlorothalonil in simulated stormwater runoff treated in constructed wetland mesocosms. Using sentinel species, Ceriodaphnia dubia and Pimephales promelas, observed declines in toxicity of the simulated runoff after treatment were 98 and 100%, respectively. First order removal rates were 0.039/h for chlorpyrifos and 0.295/h for chlorothalonil in these experiments. Constructed wetland mesocosms were effective for decreasing concentrations of chlorpyrifos and chlorothalonil in simulated stormwater runoff, and decreasing P. promelas and C. dubia mortality resulting from these exposures. The results from this study indicate that constructed wetlands could be part of an efficient mitigation strategy for stormwater runoff containing these pesticides. - Constructed wetlands have potential for treatment of pesticide mixtures in stormwater runoff

  6. Feasibility of constructed wetlands for removing chlorothalonil and chlorpyrifos from aqueous mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sherrard, R.M.; Bearr, J.S.; Murray-Gulde, C.L.; Rodgers, J.H.; Shah, Y.T

    2004-02-01

    Chlorpyrifos (an insecticide) and chlorothalonil (a fungicide) are transported in stormwater runoff and can be lethal to receiving aquatic system biota. This study determined removal rates of chlorpyrifos and chlorothalonil in simulated stormwater runoff treated in constructed wetland mesocosms. Using sentinel species, Ceriodaphnia dubia and Pimephales promelas, observed declines in toxicity of the simulated runoff after treatment were 98 and 100%, respectively. First order removal rates were 0.039/h for chlorpyrifos and 0.295/h for chlorothalonil in these experiments. Constructed wetland mesocosms were effective for decreasing concentrations of chlorpyrifos and chlorothalonil in simulated stormwater runoff, and decreasing P. promelas and C. dubia mortality resulting from these exposures. The results from this study indicate that constructed wetlands could be part of an efficient mitigation strategy for stormwater runoff containing these pesticides. - Constructed wetlands have potential for treatment of pesticide mixtures in stormwater runoff.

  7. Concentration of hepatic vitamins A and E in rats exposed to chlorpyrifos and/or enrofloxacin.

    Science.gov (United States)

    Spodniewska, A; Barski, D

    2016-01-01

    The aim of the study was to determine the level of antioxidant vitamins A and E in the liver of rats exposed to chlorpyrifos and/or enrofloxacin. Chlorpyrifos (Group I) was administered at a dose of 0.04 LD50 (6 mg/kg b.w.) for 28 days, and enrofloxacin (Group II) at a dose of 5 mg/kg b.w. for 5 consecutive days. The animals of group III were given both of the mentioned above compounds at the same manner as groups I and II, but enrofloxacin was applied to rats for the last 5 days of chlorpyrifos exposure (i.e. on day 24, 25, 26, 27 and 28). Chlorpyrifos and enrofloxacin were administered to rats intragastrically via a gastric tube. The quantitative determination of vitamins was made by the HPLC method. The results of this study indicated a reduction in the hepatic concentrations of vitamins A and E, compared to the control, which sustained for the entire period of the experiment. The four-week administration of chlorpyrifos to rats resulted in a significant decrease of vitamins in the initial period of the experiment, i.e. up to 24 hours after exposure. For vitamin A the maximum drop was observed after 24 hours (19.24%) and for vitamin E after 6 hours (23.19%). Enrofloxacin caused a slight (3-9%) reduction in the level of the analysed vitamins. In the chlorpyrifos-enrofloxacin co-exposure group reduced vitamins A and E levels were also noted, but changes in this group were less pronounced in comparison to the animals intoxicated with chlorpyrifos only. The decrease in the antioxidant vitamin levels, particularly noticeable in the chlorpyrifos- and the chlorpyrifos combined with enrofloxacin-treated groups, may result not only from the increase in the concentration of free radicals, but also from the intensification of the secondary stages of lipid peroxidation.

  8. Effects of chlorpyrifos on enzymatic systems of Cydia pomonella (Lepidoptera: Tortricidae) adults.

    Science.gov (United States)

    Parra Morales, Laura Beatriz; Alzogaray, Raúl Adolfo; Cichón, Liliana; Garrido, Silvina; Soleño, Jimena; Montagna, Cristina Mónica

    2017-06-01

    The control program of codling moth (Cydia pomonella L.) in the Río Negro and Neuquén Valley is intended to neonate larvae. However, adults may be subjected to sublethal pesticide concentrations generating stress which might enhance both mutation rates and activity of the detoxification system. This study assessed the exposure effects of chlorpyrifos on target enzyme and, both detoxifying and antioxidant systems of surviving adults from both a laboratory susceptible strain (LSS) and a field population (FP). The results showed that the FP was as susceptible to chlorpyrifos as the LSS and, both exhibited a similar chlorpyrifos-inhibitory concentration 50 (IC 50 ) of acetylcholinesterase (AChE). The FP displayed higher carboxylesterase (CarE) and 7-ethoxycoumarine O-deethylase (ECOD) activities than LSS. Both LSS and FP showed an increase on CarE activity after the exposure to low-chlorpyrifos concentrations, followed by enzyme inhibition at higher concentrations. There were no significant differences neither in the activities of glutathione S-transferases (GST), catalase (CAT) and superoxide dismutase (SOD) nor in the reduced glutathione (GSH) content between LSS and FP. Moreover, these enzymes were unaffected by chlorpyrifos. In conclusion, control adults from the FP exhibited higher CarE and ECOD activities than control adults from the LSS. AChE and CarE activities were the most affected by chlorpyrifos. Control strategies used for C. pomonella, such as rotations of insecticides with different modes of action, will probably delay the evolution of insecticide resistance in FPs from the study area. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  9. Development of a Freeze-Dried Fungal Wettable Powder Preparation Able to Biodegrade Chlorpyrifos on Vegetables

    Science.gov (United States)

    Chen, Shaohua; Xiao, Ying; Hu, Meiying; Zhong, Guohua

    2014-01-01

    Continuous use of the pesticide chlorpyrifos has resulted in harmful contaminations in environment and species. Based on a chlorpyrifos-degrading fungus Cladosporium cladosporioides strain Hu-01 (collection number: CCTCC M 20711), a fungal wettable powder preparation was developed aiming to efficiently remove chlorpyrifos residues from vegetables. The formula was determined to be 11.0% of carboxymethyl cellulose-Na, 9.0% of polyethylene glycol 6000, 5.0% of primary alcohol ethoxylate, 2.5% of glycine, 5.0% of fucose, 27.5% of kaolin and 40% of freeze dried fungi by response surface methodology (RSM). The results of quality inspection indicated that the fungal preparation could reach manufacturing standards. Finally, the degradation of chlorpyrifos by this fungal preparation was determined on pre-harvest cabbage. Compared to the controls without fungal preparation, the degradation of chlorpyrifos on cabbages, which was sprayed with the fungal preparation, was up to 91% after 7 d. These results suggested this freeze-dried fungal wettable powder may possess potential for biodegradation of chlorpyrifos residues on vegetables and provide a potential strategy for food and environment safety against pesticide residues. PMID:25061758

  10. An Amperometric Immunosensor Based on Graphene Composite Film and Protein a for Chlorpyrifos Detection

    Directory of Open Access Journals (Sweden)

    Xiangyou Wang

    2014-09-01

    Full Text Available In this paper, an immunosensor was designed for chlorpyrifos detection, which was based on graphene-multi-walled carbon nanotubes-gold nanoparticle-chitosan (GR-MWCNTs-AuNPs- CHIT nanocomposite film. Protein A (SPA can combine with gold nanoparticles, which made anti- chlorpyrifos antibody immobilized orientedly, eventually the modified immunosensor was developed for the detection of chlorpyrifos residues. Under the optimized conditions, a regression equation: y=9.5676 lgC (ng/mL +18.164 (R2=0.9976 was obtained with a detection limit as low as 0.037 ng/mL. The proposed chlorpyrifos immunosensor exhibited high reproducibility, stability, and good selectivity and regeneration, it has the potential of real sample detection.

  11. Involvement of glial cells in the neurotoxicity of parathion and chlorpyrifos

    International Nuclear Information System (INIS)

    Zurich, M.-G.; Honegger, P.; Schilter, B.; Costa, L.G.; Monnet-Tschudi, F.

    2004-01-01

    An in vitro model, the aggregating brain cell culture of fetal rat telencephalon, has been used to investigate the influence of glial cells on the neurotoxicity of two organophosphorus pesticides (OPs), chlorpyrifos and parathion. Mixed-cell aggregate cultures were treated continuously for 10 days between DIV 5 and 15. Parathion induced astrogliosis at concentration at which MAP-2 immunostaining, found here to be more sensitive than neuron-specific enzyme activities, was not affected. In contrast, chlorpyrifos induced a comparatively weak gliotic reaction, and only at concentrations at which neurons were already affected. After similar treatments, increased neurotoxicity of parathion and chlorpyrifos was found in aggregate cultures deprived of glial cells. These results suggest that glial cells provide neuroprotection against OPs toxicity. To address the question of the difference in toxicity between parathion and chlorpyrifos, the toxic effects of their leaving groups, p-nitrophenol and trichloropyridinol, were studied in mixed-cell aggregates. General cytotoxicity was more pronounced for trichloropyridinol and both compounds had similar toxic effects on neuron-specific enzyme activities. In contrast, trichloropyridinol induced a much stronger decrease in glutamine synthetase activity, the enzymatic marker of astrocytes. Trichloropyridinol may exert a toxic effect on astrocytes, compromising their neuroprotective function, thus exacerbating the neurotoxicity of chlorpyrifos. This is in line with the suggestion that glial cells may contribute to OPs neurotoxicity, and with the view that OPs may exert their neurotoxic effects through different mechanisms

  12. Soil enzyme dynamics in chlorpyrifos-treated soils under the influence of earthworms.

    Science.gov (United States)

    Sanchez-Hernandez, Juan C; Notario Del Pino, J; Capowiez, Yvan; Mazzia, Christophe; Rault, Magali

    2018-01-15

    Earthworms contribute, directly and indirectly, to contaminant biodegradation. However, most of bioremediation studies using these annelids focus on pollutant dissipation, thus disregarding the health status of the organism implied in bioremediation as well as the recovery of indicators of soil quality. A microcosm study was performed using Lumbricus terrestris to determine whether earthworm density (2 or 4individuals/kg wet soil) and the time of exposure (1, 2, 6, 12, and 18wk) could affect chlorpyrifos persistence in soil initially treated with 20mg active ingredientkg -1 wet soil. Additionally, selected earthworm biomarkers and soil enzyme activities were measured as indicators of earthworm health and soil quality, respectively. After an 18-wk incubation period, no earthworm was killed by the pesticide, but clear signs of severe intoxication were detected, i.e., 90% inhibition in muscle acetylcholinesterase and carboxylesterase (CbE) activities. Unexpectedly, the earthworm density had no significant impact on chlorpyrifos dissipation rate, for which the measured half-life ranged between 30.3d (control soils) and 44.5d (low earthworm density) or 36.7d (high earthworm density). The dynamic response of several soil enzymes to chlorpyrifos exposure was examined calculating the geometric mean and the treated-soil quality index, which are common enzyme-based indexes of microbial functional diversity. Both indexes showed a significant and linear increase of the global enzyme response after 6wk of chlorpyrifos treatment in the presence of earthworms. Examination of individual enzymes revealed that soil CbE activity could decrease chlorpyrifos-oxon impact upon the rest of enzyme activities. Although L. terrestris was found not to accelerate chlorpyrifos dissipation, a significant increase in the activity of soil enzyme activities was achieved compared with earthworm-free, chlorpyrifos-treated soils. Therefore, the inoculation of organophosphorus-contaminated soils with L

  13. Effects of EGCG and Chlorpyrifos on the Mortality, AChE and GSH of Adult Zebrafish: Independent and Combination

    Science.gov (United States)

    Zhang, Rong; Zhang, Jian; Gao, Qian; Guo, Nichun

    2018-01-01

    Chlorpyrifos is a neurotoxic agent and also causes oxidative stress in the body. EGCG is a typical strong antioxidant and has been reported to be neuroprotective. Our study investigated the mortality, the activity of acetylcholinesterase (AChE) in the brain and glutathione (GSH) in the liver of the adult Zebrafish in present of Chlorpyrifos and EGCG independent and combination. The results indicated that after the addition of EGCG, the mortality of zebrafish induced by Chlorpyrifos was reduced and the activity of AChE and glutathione (GSH) inhibited by Chlorpyrifos in zebrafish was significantly increased, which demonstrated that EGCG inhibited the toxicity Chlorpyrifos to zebrafish. The inhibition was dependent on the concentration of EGCG and Chlorpyrifos, which was not shown a gradual change trend but a complex situation.

  14. Development of a freeze-dried fungal wettable powder preparation able to biodegrade chlorpyrifos on vegetables.

    Directory of Open Access Journals (Sweden)

    Jie Liu

    Full Text Available Continuous use of the pesticide chlorpyrifos has resulted in harmful contaminations in environment and species. Based on a chlorpyrifos-degrading fungus Cladosporium cladosporioides strain Hu-01 (collection number: CCTCC M 20711, a fungal wettable powder preparation was developed aiming to efficiently remove chlorpyrifos residues from vegetables. The formula was determined to be 11.0% of carboxymethyl cellulose-Na, 9.0% of polyethylene glycol 6000, 5.0% of primary alcohol ethoxylate, 2.5% of glycine, 5.0% of fucose, 27.5% of kaolin and 40% of freeze dried fungi by response surface methodology (RSM. The results of quality inspection indicated that the fungal preparation could reach manufacturing standards. Finally, the degradation of chlorpyrifos by this fungal preparation was determined on pre-harvest cabbage. Compared to the controls without fungal preparation, the degradation of chlorpyrifos on cabbages, which was sprayed with the fungal preparation, was up to 91% after 7 d. These results suggested this freeze-dried fungal wettable powder may possess potential for biodegradation of chlorpyrifos residues on vegetables and provide a potential strategy for food and environment safety against pesticide residues.

  15. New photodegradation products of chlorpyrifos and their detection on glass, soil, and leaf surfaces

    International Nuclear Information System (INIS)

    Walia, S.; Dureja, P.; Mukerjee, S.K.

    1988-01-01

    The organophosphate insecticide chlorpyrifos was irradiated under different photochemical conditions and the products characterized by gas chromatography, mass spectrometry, and NMR spectroscopy. Irradiation of chlorpyrifos in hexane yielded dechlorinated photoproducts and cleavage products. In methanol, besides these products, chlorpyrifos gave oxons. Several new photoproducts, the formation of which apparently occurs by the displacement of 5-chloro by a methoxy substituent in the pyridyl moiety. The possibility of formation of such products on glass, soil, and leaf surfaces under the influence of UV and solar simulated light have also been explored and many new products presumably formed due to simultaneous photo-dechlorination, oxidation and hydrolytic processes were detected. Photodegradation of chlorpyrifos was rapid on a soil surface but comparatively slow on glass and leaf surfaces

  16. Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring

    International Nuclear Information System (INIS)

    Mohan, S. Venkata; Sirisha, K.; Rao, N. Chandrasekhara; Sarma, P.N.; Reddy, S. Jayarama

    2004-01-01

    Bioslurry reactor (SS-SBR) was studied for the degradation of chlorpyrifos contaminated soil using native mixed microflora, by adopting sequencing batch mode (anoxic-aerobic-anoxic) operation. Reactor operation was monitored for a total cycle period of 72 h consisting of 3 h of FILL, 64 h REACT, 2 h of SETTLE, and 3 h of DECANT with chlorpyrifos concentrations of 3000 μg/g, 6000 μg/g and 12000 μg/g. At 3000 μg/g of chlorpyrifos concentration, 91% was degraded after 72 h of the cycle period, whereas in the case of 6000 μg/g of chlorpyrifos, 82.5% was degraded. However, for 12000 μg/g of chlorpyrifos, only 14.5% degradation was observed. The degradation rate was rapid at lower substrate concentration and 12000 μg/g of substrate concentration was found to be inhibitory. Chlorpyrifos removal rate was slow during the initial phase of the sequence operation. Half-life of chlorpyrifos degradation (t 0.5 ) was estimated to be 6.3 h for 3000 μg/g of substrate, 17.5 h for 6000 μg/g and 732.2 h for 12000 μg/g. Process performance was assessed by monitoring chlorpyrifos concentration and biochemical process parameters viz., pH, oxidation and reduction potential (ORP), dissolved oxygen (DO), oxygen consumption rate (OCR) and microbial count (CFU) during sequence operation. From the experimental data obtained it can be concluded that the rate-limiting step with the bioslurry phase reactor in the process of chlorpyrifos degradation may be attributed to the concentration of substrate present in either soil or liquid phase. Periodic operations (SBR) by varying individual components of substrate with time in each process step place micro-organisms under nutritional changes from feast to famine and maintains a wide distribution in the population of micro-organisms resulting in high uptake of the substrate in the bioslurry reactor

  17. Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, S. Venkata [Biochemical and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500007 (India); Sirisha, K. [Electrochemical Research Laboratories, Department of Chemistry, Sri Venkateswara University, Tirupati 517502 (India); Rao, N. Chandrasekhara [Biochemical and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500007 (India); Sarma, P.N. [Biochemical and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500007 (India); Reddy, S. Jayarama [Electrochemical Research Laboratories, Department of Chemistry, Sri Venkateswara University, Tirupati 517502 (India)]. E-mail: profjreddy_s@yahoo.co.in

    2004-12-10

    Bioslurry reactor (SS-SBR) was studied for the degradation of chlorpyrifos contaminated soil using native mixed microflora, by adopting sequencing batch mode (anoxic-aerobic-anoxic) operation. Reactor operation was monitored for a total cycle period of 72 h consisting of 3 h of FILL, 64 h REACT, 2 h of SETTLE, and 3 h of DECANT with chlorpyrifos concentrations of 3000 {mu}g/g, 6000 {mu}g/g and 12000 {mu}g/g. At 3000 {mu}g/g of chlorpyrifos concentration, 91% was degraded after 72 h of the cycle period, whereas in the case of 6000 {mu}g/g of chlorpyrifos, 82.5% was degraded. However, for 12000 {mu}g/g of chlorpyrifos, only 14.5% degradation was observed. The degradation rate was rapid at lower substrate concentration and 12000 {mu}g/g of substrate concentration was found to be inhibitory. Chlorpyrifos removal rate was slow during the initial phase of the sequence operation. Half-life of chlorpyrifos degradation (t{sub 0.5}) was estimated to be 6.3 h for 3000 {mu}g/g of substrate, 17.5 h for 6000 {mu}g/g and 732.2 h for 12000 {mu}g/g. Process performance was assessed by monitoring chlorpyrifos concentration and biochemical process parameters viz., pH, oxidation and reduction potential (ORP), dissolved oxygen (DO), oxygen consumption rate (OCR) and microbial count (CFU) during sequence operation. From the experimental data obtained it can be concluded that the rate-limiting step with the bioslurry phase reactor in the process of chlorpyrifos degradation may be attributed to the concentration of substrate present in either soil or liquid phase. Periodic operations (SBR) by varying individual components of substrate with time in each process step place micro-organisms under nutritional changes from feast to famine and maintains a wide distribution in the population of micro-organisms resulting in high uptake of the substrate in the bioslurry reactor.

  18. Removal of chlorpyrifos insecticide in constructed wetlands with different plant species

    Directory of Open Access Journals (Sweden)

    Tamara D. de Souza

    Full Text Available ABSTRACT The objective of this study was to evaluate the remediation of water containing the insecticide chlorpyrifos by using constructed wetlands (CW cultivated with Polygonum punctatum, Cynodon spp. and Mentha aquatica, operated under different hydraulic retention times: 24, 48, 96, 144 and 192 h. The system efficiency was based on reduction of the initial concentration of chlorpyrifos and toxicity of the contaminated water. The results showed that constructed wetlands are an excellent alternative for remediation of the insecticide chlorpyrifos in aqueous medium. It was observed that the average overall removal efficiency of the insecticide was 98.6%, and in the first hydraulic retention time, 24 h, chlorpyrifos was removed to levels below the detection limit in all CW. This result is mainly attributed to adsorption and microbial degradation. For the qualitative standard acute toxicity tests with Daphnia similis, for most samples there was a reduction in toxicity greater than 80%. It was reported that the ecotoxicological tests with the effluents of the constructed wetland are a good option as an indicator of the effectiveness of treatments and a promising alternative to complement the physical and chemical analyses.

  19. Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos.

    Science.gov (United States)

    Singh, P B; Sharma, S; Saini, H S; Chadha, B S

    2009-09-01

    To study the effect of biosurfactant on aqueous phase solubility and biodegradation of chlorpyrifos. A Pseudomonas sp. (ChlD), isolated from agricultural soil by enrichment culture technique in the presence of chlorpyrifos, was capable of producing biosurfactant (rhamnolipids) and degrading chlorpyrifos (0.01 g l(-1)). The partially purified rhamnolipid biosurfactant preparation, having a CMC of 0.2 g l(-1), was evaluated for its ability to enhance aqueous phase partitioning and degradation of chlorpyrifos (0.01 g l(-1)) by ChlD strain. The best degradation efficiency was observed at 0.1 g l(-1) supplement of biosurfactant, as validated by GC and HPLC studies. The addition of biosurfactant at 0.1 g l(-1) resulted in more than 98% degradation of chlorpyrifos when compared to 84% in the absence of biosurfactant after 120-h incubation. This first report, to the best of our knowledge, on enhanced degradation of chlorpyrifos in the presence of biosurfactant(s), would help in developing bioremediation protocols to counter accumulation of organophosphates to toxic/carcinogenic levels in environment.

  20. From the Cover: AstrocytesAre Protective Against Chlorpyrifos Developmental Neurotoxicity in Human Pluripotent Stem Cell-Derived Astrocyte-Neuron Cocultures.

    Science.gov (United States)

    Wu, Xian; Yang, Xiangkun; Majumder, Anirban; Swetenburg, Raymond; Goodfellow, Forrest T; Bartlett, Michael G; Stice, Steven L

    2017-06-01

    Human neural progenitor cells are capable of independent, directed differentiation into astrocytes, oligodendrocytes and neurons and thus offer a potential cell source for developmental neurotoxicity (DNT) systems. Human neural progenitor-derived astrocyte-neuron cocultured at defined ratios mimic cellular heterogeneity and interaction in the central nervous system. Cytochrome P450 enzymes are expressed at a relatively high level in astrocytes and may play a critical role in the biotransformation of endogenous or exogenous compounds, including chlorpyrifos, an organophosphate insecticide that affects the central nervous system. P450 enzymes metabolize chlorpyrifos to chlorpyrifos-oxon, which is then metabolized primarily to 3, 5, 6-trichloropyridinol in addition to diethylphosphate and diethylthiophosphate. These end metabolites are less neurotoxic than chlorpyrifos and chlorpyrifos-oxon. Our objective was to identify the interactive role of astrocytes and neurons in chlorpyrifos-induced human DNT. In neuron-only cultures, chlorpyrifos inhibited neurite length, neurite number and branch points per neuron in a dose-dependent manner during a 48 h exposure, starting at 10 μM. However, in astrocyte-neuron cocultures, astrocytes protected neurons from the effects of chlorpyrifos at higher concentrations, up to and including 30 μM chlorpyrifos and endogenous astrocyte P450 enzymes effectively metabolized chlorpyrifos. The P450 inhibitor SKF525A partly negated the protective effect of astrocytes, allowing reduction in branch points with chlorpyrifos (10 μM). Thus, the scalable and defined astrocyte-neuron cocultures model that we established here has potentially identified a role for P450 enzymes in astrocytic neuroprotection against chlorpyrifos and provides a novel model for addressing DNT in a more accurate multicellular environment. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For

  1. Developmental sub-chronic exposure to chlorpyrifos reduces anxiety-related behavior in zebrafish larvae

    Science.gov (United States)

    Richendrfer, Holly; Pelkowski, Sean D.; Colwill, Ruth M.; Créton, Robbert

    2013-01-01

    Neurobehavioral disorders such as anxiety, autism, and attention deficit hyperactivity disorders are typically influenced by genetic and environmental factors. Although several genetic risk factors have been identified in recent years, little is known about the environmental factors that either cause neurobehavioral disorders or contribute to their progression in genetically predisposed individuals. One environmental factor that has raised concerns is chlorpyrifos, an organophosphate pesticide that is widely used in agriculture and is found ubiquitously in the environment. In the present study, we examined the effects of sub-chronic chlorpyrifos exposure on anxiety-related behavior during development using zebrafish larvae. We found that sub-chronic exposure to 0.01 or 0.1 μM chlorpyrifos during development induces specific behavioral defects in 7-day-old zebrafish larvae. The larvae displayed decreases in swim speed and thigmotaxis, yet no changes in avoidance behavior were seen. Exposure to 0.001 μM chlorpyrifos did not affect swimming, thigmotaxis, or avoidance behavior and exposure to 1 μM chlorpyrifos induced behavioral defects, but also induced defects in larval morphology. Since thigmotaxis, a preference for the edge, is an anxiety-related behavior in zebrafish larvae, we propose that sub-chronic chlorpyrifos exposure interferes with the development of anxiety-related behaviors. The results of this study provide a good starting point for examination of the molecular, cellular, developmental, and neural mechanisms that are affected by environmentally relevant concentrations of organophosphate pesticides. A more detailed understanding of these mechanisms is important for the development of predictive models and refined health policies to prevent toxicant-induced neurobehavioral disorders. PMID:22579535

  2. BDE99 (2,2',4,4',5-pentabromodiphenyl ether) suppresses differentiation into neurotransmitter phenotypes in PC12 cells.

    Science.gov (United States)

    Slotkin, Theodore A; Card, Jennifer; Infante, Alice; Seidler, Frederic J

    2013-01-01

    Early-life exposures to brominated diphenyl ethers (BDEs) lead to neurobehavioral abnormalities later in life. Although these agents are thyroid disruptors, it is not clear whether this mechanism alone accounts for the adverse effects. We evaluated the impact of 2,2',4,4',5-pentabromodiphenyl ether (BDE99) on PC12 cells undergoing neurodifferentiation, contrasting the effects with chlorpyrifos, a known developmental neurotoxicant. BDE99 elicited decrements in the number of cells, evidenced by a reduction in DNA levels, to a lesser extent than did chlorpyrifos. This did not reflect cytotoxicity from oxidative stress, since cell enlargement, monitored by the total protein/DNA ratio, was not only unimpaired by BDE99, but was actually enhanced. Importantly, BDE99 impaired neurodifferentiation into both the dopamine and acetylcholine neurotransmitter phenotypes. The cholinergic phenotype was affected to a greater extent, so that neurotransmitter fate was diverted away from acetylcholine and toward dopamine. Chlorpyrifos produced the same imbalance, but through a different underlying mechanism, promoting dopaminergic development at the expense of cholinergic development. In our earlier work, we did not find these effects with BDE47, a BDE that has greater endocrine disrupting and cytotoxic effects than BDE99. Thus, our results point to interference with neurodifferentiation by specific BDE congeners, distinct from cytotoxic or endocrine mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Role of Serotonin Neurons in L-DOPA- and Graft-Induced Dyskinesia in a Rat Model of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Eunju Shin

    2012-01-01

    Full Text Available L-DOPA, the most effective drug to treat motor symptoms of Parkinson's disease, causes abnormal involuntary movements, limiting its use in advanced stages of the disease. An increasing body of evidence points to the serotonin system as a key player in the appearance of L-DOPA-induced dyskinesia (LID. In fact, exogenously administered L-DOPA can be taken up by serotonin neurons, converted to dopamine and released as a false transmitter, contributing to pulsatile stimulation of striatal dopamine receptors. Accordingly, destruction of serotonin fibers or silencing serotonin neurons by serotonin agonists could counteract LID in animal models. Recent clinical work has also shown that serotonin neurons are present in the caudate/putamen of patients grafted with embryonic ventral mesencephalic cells, producing intense serotonin hyperinnervation. These patients experience graft-induced dyskinesia (GID, a type of dyskinesia phenotypically similar to the one induced by L-DOPA but independent from its administration. Interestingly, the 5-HT1A receptor agonist buspirone has been shown to suppress GID in these patients, suggesting that serotonin neurons might be involved in the etiology of GID as for LID. In this paper we will discuss the experimental and clinical evidence supporting the involvement of the serotonin system in both LID and GID.

  4. A Human Life-Stage Physiologically Based Pharmacokinetic and Pharmacodynamic Model for Chlorpyrifos: Development and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jordan N.; Hinderliter, Paul M.; Timchalk, Charles; Bartels, M. J.; Poet, Torka S.

    2014-08-01

    Sensitivity to chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to computationally predict disposition of CPF and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, age-dependent body weight was calculated from a generalized Gompertz function, and compartments (liver, brain, fat, blood, diaphragm, rapid, and slow) were scaled based on body weight from polynomial functions on a fractional body weight basis. Blood flows among compartments were calculated as a constant flow per compartment volume. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Model simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ≥ 0.55 mg/kg of chlorpyrifos (significantly higher than environmental exposure levels), 6 mo old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent oral doses of chlorpyrifos. At lower doses that are more relevant to environmental exposures, the model predicts that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict CPF disposition and biological response over various postnatal life-stages.

  5. Toxicity of chlorpyrifos, carbofuran, mancozeb and their formulations to the tropical earthworm Perionyx excavatus.

    NARCIS (Netherlands)

    De Silva, P.M.C.S.; Pathiratne, A.; van Gestel, C.A.M.

    2010-01-01

    Effects of chlorpyrifos, carbofuran, mancozeb and their formulated products on survival, growth and reproduction of the tropical earthworm Perionyx excavatus were investigated in standard artificial soil. The toxicity of the three chemicals decreased in the order carbofuran > chlorpyrifos >

  6. Prenatal drug exposures sensitize noradrenergic circuits to subsequent disruption by chlorpyrifos.

    Science.gov (United States)

    Slotkin, Theodore A; Skavicus, Samantha; Seidler, Frederic J

    2015-12-02

    We examined whether nicotine or dexamethasone, common prenatal drug exposures, sensitize the developing brain to chlorpyrifos. We gave nicotine to pregnant rats throughout gestation at a dose (3mg/kg/day) producing plasma levels typical of smokers; offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1mg/kg) that produces minimally-detectable inhibition of brain cholinesterase activity. In a parallel study, we administered dexamethasone to pregnant rats on gestational days 17-19 at a standard therapeutic dose (0.2mg/kg) used in the management of preterm labor, followed by postnatal chlorpyrifos. We evaluated cerebellar noradrenergic projections, a known target for each agent, and contrasted the effects with those in the cerebral cortex. Either drug augmented the effect of chlorpyrifos, evidenced by deficits in cerebellar β-adrenergic receptors; the receptor effects were not due to increased systemic toxicity or cholinesterase inhibition, nor to altered chlorpyrifos pharmacokinetics. Further, the deficits were not secondary adaptations to presynaptic hyperinnervation/hyperactivity, as there were significant deficits in presynaptic norepinephrine levels that would serve to augment the functional consequence of receptor deficits. The pretreatments also altered development of cerebrocortical noradrenergic circuits, but with a different overall pattern, reflecting the dissimilar developmental stages of the regions at the time of exposure. However, in each case the net effects represented a change in the developmental trajectory of noradrenergic circuits, rather than simply a continuation of an initial injury. Our results point to the ability of prenatal drug exposure to create a subpopulation with heightened vulnerability to environmental neurotoxicants. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Interactive toxicity of chlorpyrifos and parathion in neonatal rats: Role of esterases in exposure sequence-dependent toxicity

    International Nuclear Information System (INIS)

    Kacham, R.; Karanth, S.; Baireddy, P.; Liu, J.; Pope, C.

    2006-01-01

    We previously reported that sequence of exposure to chlorpyrifos and parathion in adult rats can markedly influence toxic outcome. In the present study, we evaluated the interactive toxicity of chlorpyrifos (8 mg/kg, po) and parathion (0.5 mg/kg, po) in neonatal (7 days old) rats. Rats were exposed to the insecticides either concurrently or sequentially (separated by 4 h) and sacrificed at 4, 8, and 24 h after the first exposure for biochemical measurements (cholinesterase activity in brain, plasma, and diaphragm and carboxylesterase activity in plasma and liver). The concurrently-exposed group showed more cumulative lethality (15/24) than either of the sequential dosing groups. With sequential dosing, rats treated initially with chlorpyrifos prior to parathion (C/P) exhibited higher lethality (7/23) compared to those treated with parathion before chlorpyrifos (P/C; 1/24). At 8 h after initial dosing, brain cholinesterase inhibition was significantly greater in the C/P group (59%) compared to the P/C group (28%). Diaphragm and plasma cholinesterase activity also followed a relatively similar pattern of inhibition. Carboxylesterase inhibition in plasma and liver was relatively similar among the treatment groups across time-points. Similar sequence-dependent differences in brain cholinesterase inhibition were also noted with lower binary exposures to chlorpyrifos (2 mg/kg) and parathion (0.35 mg/kg). In vitro and ex vivo studies compared relative oxon detoxification of carboxylesterases (calcium-insensitive) and A-esterases (calcium-sensitive) in liver homogenates from untreated and insecticide pretreated rats. Using tissues from untreated rats, carboxylesterases detoxified both chlorpyrifos oxon and paraoxon, while A-esterases only detoxified chlorpyrifos oxon. With parathion pretreatment, A-esterases still detoxified chlorpyrifos oxon while liver from chlorpyrifos pretreated rats had little apparent effect on paraoxon. We conclude that while neonatal rats are less

  8. CHLORPYRIFOS TRANSFORMATION BY AQUEOUS CHLORINE IN THE PRESENCE OF BROMIDE AND NATURAL ORGANIC MATTER

    Science.gov (United States)

    The aqueous chlorination of chlorpyrifos (CP) was investigated in the presence of bromide and natural organic matter (NOM), which were identified as naturally occurring aqueous constituents that could impact CP transformation rates to the toxic product chlorpyrifos oxon (CPO). Br...

  9. Acute toxicity of chlorpyrifos to embryo and larvae of banded gourami Trichogaster fasciata

    NARCIS (Netherlands)

    Sumon, Kizar Ahmed; Saha, Sampa; Brink, van den Paul J.; Peeters, Edwin T.H.M.; Bosma, Roel H.; Rashid, Harunur

    2017-01-01

    This study elucidated the acute toxicity of chlorpyrifos on the early life stages of banded gourami (Trichogaster fasciata). To determine the acute effects of chlorpyrifos on their survival and development, we exposedthe embryos and two-day-old larvae to six concentrations (0, 0.01, 0.10, 1.0, 10

  10. Fate and effects of the insecticide chlorpyrifos in outdoor plankton-dominated microcosms in Thailand.

    NARCIS (Netherlands)

    Daam, M.A.; Crum, S.J.H.; Brink, van den P.J.; Nogueira, A.J.A.

    2008-01-01

    The fate and effects of the insecticide chlorpyrifos were studied in plankton-dominated, freshwater microcosms in Thailand. Disappearance rates of chlorpyrifos from the water column in the present study were similar to those in temperate regions. Insecticide accumulation in the sediment was

  11. Evaluation of chlorpyrifos transferred from contaminated feed to duck commodities and dietary risks to Chinese consumers.

    Science.gov (United States)

    Li, Rui; Ji, Xiaofeng; He, Liang; Liu, Zhiqiang; Wei, Wei; Qiang, Mingrong; Wang, Qiang; Yuan, Yuwei

    2015-06-03

    The present study describes chlorpyrifos residues in duck commodities through the duck food chain, transfer factors, and dietary risks to Chinese consumers. After duck feeding experiments with pellet feed that lasted for 42 days, chlorpyrifos residues found in all samples collected from the ducks on maximum estimated dose group (3.20 mg/kg level) were from chlorpyrifos had a low persistency in duck meat and metabolism organs. The chronic exposure assessment revealed that only 0.034-0.150% of the acceptable daily intake (ADI; 0-0.01 mg/kg/bw/day) of chlorpyrifos was consumed via the duck commodities for different age and gender groups in China. The acute exposure assessments of different age and gender groups were only 0.019-0.082% of the acute reference dose (ARfD; 0-0.1 mg/kg/bw). The results show that the single dietary exposure risk of chlorpyrifos raised by the intake of duck commodities was quite low in China.

  12. An Amperometric Immunosensor Based on Multi-Walled Carbon Nanotubes-Thionine-Chitosan Nanocomposite Film for Chlorpyrifos Detection

    Science.gov (United States)

    Sun, Xia; Cao, Yaoyao; Gong, Zhili; Wang, Xiangyou; Zhang, Yan; Gao, Jinmei

    2012-01-01

    In this work, a novel amperometric immunosensor based on multi-walled carbon nanotubes-thionine-chitosan (MWCNTs-THI-CHIT) nanocomposite film as electrode modified material was developed for the detection of chlorpyrifos residues. The nanocomposite film was dropped onto a glassy carbon electrode (GCE), and then the anti-chlorpyrifos monoclonal antibody was covalently immobilized onto the surface of MWCNTs-THI-CHIT/GCE using the crosslinking agent glutaraldehyde (GA). The modification procedure was characterized by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under the optimized conditions, a linear relationship between the relative change in peak current of different pulse voltammetry (DPV) and the logarithm of chlorpyrifos solution concentration was obtained in the range from 0.1 to 1.0 × 105 ng/mL with a detection limit of 0.046 ng/mL. The proposed chlorpyrifos immunosensor exhibited high reproducibility, stability, and good selectivity and regeneration, making it a potential alternative tool for ultrasensitive detection of chlorpyrifos residues in vegetables and fruits. PMID:23443396

  13. Triptans, serotonin agonists, and serotonin syndrome (serotonin toxicity): a review.

    Science.gov (United States)

    Gillman, P Ken

    2010-02-01

    The US Food and Drug Administration (FDA) have suggested that fatal serotonin syndrome (SS) is possible with selective serotonin reuptake inhibitors (SSRIs) and triptans: this warning affects millions of patients as these drugs are frequently given simultaneously. SS is a complex topic about which there is much misinformation. The misconception that 5-HT1A receptors can cause serious SS is still widely perpetuated, despite quality evidence that it is activation of the 5-HT2A receptor that is required for serious SS. This review considers SS involving serotonin agonists: ergotamine, lysergic acid diethylamide, bromocriptine, and buspirone, as well as triptans, and reviews the experimental foundation underpinning the latest understanding of SS. It is concluded that there is neither significant clinical evidence, nor theoretical reason, to entertain speculation about serious SS from triptans and SSRIs. The misunderstandings about SS exhibited by the FDA, and shared by the UK Medicines and Healthcare products Regulatory Agency (in relation to methylene blue), are an important issue with wide ramifications.

  14. Absorption, distribution, and metabolism of [14C]chlorpyrifos applied dermally to goats

    International Nuclear Information System (INIS)

    Cheng, T.; Bodden, R.M.; Puhl, R.J.; Bauriedel, W.R.

    1989-01-01

    Radiolabeled chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate] was applied dermally to two male weanling goats, at a dose of 22 mg/kg of body weight. A blood sample was drawn before dosing and every 4 h thereafter. The animals were sacrificed approximately 18 h after dosing, when blood radioactivity levels at 16 h had declined from maximum values (12 h) in both animals. Radioanalysis of blood and selected tissues (liver, kidney, heart, fat, muscle) indicated that radioactivity levels were, in general, very low, ranging from 0.04 ppm (chlorpyrifos equivalents) in muscle to 0.90 ppm in omental fat. Tissue extracts contained 80-96% of the 14 C residue, most of which was organosoluble. High-performance liquid chromatography analysis of tissue extracts showed that the predominant 14 C residue in liver and kidney was [ 14 C]-3,5,6-trichloro-2-pyridinol (chlorpyridinol) whereas [ 14 C]chlorpyrifos was predominant in fat and heart extracts. In muscle, in addition to approximately equal amounts of [ 14 C]chlorpyridinol and [ 14 C]chlorpyrifos, 18.6% of the radioactivity was unidentified; alkaline hydrolysis quantitatively converted the latter radioactivity to pyridinol

  15. Pharmacological manipulation of serotonin receptors during brain embryogenesis favours stress resiliency in female rats

    Directory of Open Access Journals (Sweden)

    Gianluca Lavanco

    2018-02-01

    Full Text Available Manipulations of the serotonin transmission during early development induce long-lasting changes in the serotonergic circuitry throughout the brain. However, little is known on the developmental consequences in the female progeny. Therefore, this study aimed at exploring the behavioural effects of pre- and postnatal stimulation of the serotonergic system by 5-methoxytryptamine in adolescent female rats on behavioural reactivity and anxiety- like phenotype. Our results show that perinatal 5- methoxythyptamine decreased total distance travelled and rearing frequency in the novel enviroment, and increased the preference for the centre of the arena in the open field test. Moreover, perinatal 5-methoxytryptamine increased the percentages of entries and time spent on the open arms of the elevated plus maze, with respect to perinatally vehicle-exposed rats. Thus, perinatal stimulation of serotonin receptors does not impair the functional response to the emotional challenges in female rats, favouring the occurrence of a stress-resilient phenotype.

  16. Sub-lethal toxicity of chlorpyrifos on Common carp, Cyprinus carpio (Linnaeus, 1758: Biochemical response

    Directory of Open Access Journals (Sweden)

    Mahdi Banaee

    2014-01-01

    Full Text Available Chlorpyrifos, an organophosphate pesticide, is widely used to control pests in agriculture farms and orchards of fruit trees. In this study, the fish were exposed to sub-lethal concentrations of chlorpyrifos which were determined based on numerical value of 96 h LC50. Blood was sampled after 10, 20 and 30 days and biochemical parameters including glucose, total protein, albumin, globulin, triglyceride and cholesterol levels, and aspartate aminotransferase (AST, alanine aminotransferase (ALT, lactate dehydrogenase (LDH, creatine kinase (CK, alkaline phosphatase (ALP and acetylcholinsetrase (AChE activities were measured. Behavioral changes in the fish were also recorded during the experiment. Unbalanced swimming, swimming in the surface water and hyperglycemia, increased blood triglyceride, and increased levels of AST, LDH and CK activities as well as decreased levels of AChE activity were important changes that were observed in the specimens exposed to chlorpyrifos during experimental periods. The most important alterations in the blood biochemical parameters were measured in the specimens exposed to 40 µg/L chlorpyrifos on the 20th and 30th day of the trial. In conclusion, results of the present study indicated that exposure to sub-lethal concentrations of chlorpyrifos as low as 40 µg/L may cause biochemical and behavioral changes in Cyprinus carpio.

  17. Use of Fe-Impregnated Biochar To Efficiently Sorb Chlorpyrifos, Reduce Uptake by Allium fistulosum L., and Enhance Microbial Community Diversity.

    Science.gov (United States)

    Tang, Xiao-Yan; Huang, Wen-Da; Guo, Jing-Jing; Yang, Yang; Tao, Ran; Feng, Xu

    2017-07-05

    Fe-impregnated biochar was assessed as a method to remove the pesticide pollutant chlorpyrifos, utilizing biochar/FeO x composite synthesized via chemical coprecipitation of Fe 3+ /Fe 2+ onto Cyperus alternifolius biochar. Fe-impregnated biochar exhibited a higher sorption capacity than pristine biochar, resulting in more efficient removal of chlorpyrifos from water. Soil was dosed with pristine or Fe-impregnated biochar at 0.1 or 1.0% w/w, to evaluate chlorpyrifos uptake in Allium fistulosum L. (Welsh onion). The results showed that the average concentration of chlorpyrifos and its degradation product, 3,5,6-trichloro-2-pyridinol (TCP), decreased in A. fistulosum L. with increased levels of pristine biochar and Fe-biochar. Fe-biochar was found to be more effective in reducing the uptake of chlorpyrifos by improving the sorption ability and increasing plant root iron plaque. Bioavailability of chlorpyrifos is reduced with both biochar and Fe-biochar soil dosing; however, the greatest persistence of chlorpyrifos residues was observed with 1.0% pristine biochar. Microbial community analysis showed Fe-biochar to have a positive impact on the efficiency of chlorpyrifos degradation in soils, possibly by altering microbial communities.

  18. Heterogeneous reaction of particulate chlorpyrifos with NO3 radicals: Products, pathways, and kinetics

    Science.gov (United States)

    Li, Nana; Zhang, Peng; Yang, Bo; Shu, Jinian; Wang, Youfeng; Sun, Wanqi

    2014-08-01

    Chlorpyrifos is a typical chlorinated organophosphorus pesticide. The heterogeneous reaction of chlorpyrifos particles with NO3 radicals was investigated using a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS) and a real-time atmospheric gas analysis mass spectrometer. Chlorpyrifos oxon, 3,5,6-trichloro-2-pyridinol, O,O-diethyl O-hydrogen phosphorothioate, O,O-diethyl ester thiophosphoric acid, diethyl hydrogen phosphate and a phosphinyl disulfide compound were identified as the main degradation products. The heterogeneous reaction pathways were proposed and their kinetic processes were investigated via a mixed-phase relative rate method. The observed effective rate constant is 3.4 ± 0.2 × 10-12 cm3 molecule-1 s-1.

  19. Persistence and Dissipation of Chlorpyrifos in Brassica Chinensis, Lettuce, Celery, Asparagus Lettuce, Eggplant, and Pepper in a Greenhouse

    Science.gov (United States)

    Lu, Meng-Xiao; Jiang, Wayne W.; Wang, Jia-Lei; Jian, Qiu; Shen, Yan; Liu, Xian-Jin; Yu, Xiang-Yang

    2014-01-01

    The residue behavior of chlorpyrifos, which is one of the extensively used insecticides all around the world, in six vegetable crops was assessed under greenhouse conditions. Each of the vegetables was subjected to a foliar treatment with chlorpyrifos. Two analytical methods were developed using gas chromatography equipped with a micro-ECD detector (LOQ = 0.05 mg kg−1) and liquid chromatography with a tandem mass spectrometry (LOQ = 0.01 mg kg−1). The initial foliar deposited concentration of chlorpyrifos (mg kg−1) on the six vegetables followed the increasing order of brassica chinensischlorpyrifos showed differences among the six selected vegetable plants, ranging from 16.5±0.9 mg kg−1 (brassica chinensis) to 74.0±5.9 mg kg−1 (pepper plant). At pre-harvest interval 21 days, the chlorpyrifos residues in edible parts of the crops were chlorpyrifos were found to be 7.79 (soil), 2.64 (pepper plants), 3.90 (asparagus lettuce), 3.92 (lettuce), 5.81 (brassica chinensis), 3.00 (eggplant plant), and 5.45 days (celery), respectively. The dissipation of chlorpyrifos in soil and the six selected plants was different, indicating that the persistence of chlorpyrifos residues strongly depends upon leaf characteristics of the selected vegetables. PMID:24967589

  20. Deletion of the serotonin transporter in rats disturbs serotonin homeostasis without impairing liver regeneration.

    NARCIS (Netherlands)

    Matondo, R.B.; Punt, C.J.A.; Homberg, J.R.; Toussaint, M.J.; Kisjes, R.; Korporaal, S.J.; Akkerman, J.W.; Cuppen, E.; Bruin, A. de

    2009-01-01

    The serotonin transporter is implicated in the uptake of the vasoconstrictor serotonin from the circulation into the platelets, where 95% of all blood serotonin is stored and released in response to vascular injury. In vivo studies indicated that platelet-derived serotonin mediates liver

  1. Deletion of the serotonin transporter in rats disturbs serotonin homeostasis without impairing liver regeneration

    NARCIS (Netherlands)

    Matondo, R.B.; Punt, C.; Homberg, J.R.; Toussaint, M.J.; Kisjes, R.; Korporaal, S.J.; Akkerman, J.W.; Cuppen, E.; de Bruin, A.

    2009-01-01

    The serotonin transporter is implicated in the uptake of the vasoconstrictor serotonin from the circulation into the platelets, where 95% of all blood serotonin is stored and released in response to vascular injury. In vivo studies indicated that platelet-derived serotonin mediates liver

  2. Effects of acute and repeated oral exposure to the organophosphate insecticide chlorpyrifos on open-field activity in chicks.

    Science.gov (United States)

    Al-Badrany, Y M A; Mohammad, F K

    2007-11-01

    The effects of the organophosphate insecticide chlorpyrifos on 5min open-field activity were examined in a 7-15 days old chick model. Chlorpyrifos was acutely administered taking into account cholinesterase inhibition and determination of the acute (24h) median lethal dose (LD50). The oral LD50 value of chlorpyrifos in chicks was 18.14mg/kg, with cholinergic toxicosis observed on intoxicated chicks. Chlorpyrifos at the dose rates of 5,10 and 20mg/kg orally produced within 2h signs of cholinergic toxicosis in the chicks and significantly inhibited plasma (40-70%), whole brain (43-69%) and liver (31-46%) cholinesterase activities in a dose-dependent manner. Chlorpyrifos at 2 and 4mg/kg, orally did not produce overt signs of cholinergic toxicosis, but decreased (30, 60 and 90min after dosing) the general locomotor activity of the chicks as seen by a significant increase in the latency to move from the central square of the open-field arena, decreases in the numbers of lines crossed and vocalization score. Repeated daily chlorpyrifos treatments (2 and 4mg/kg, orally) for seven consecutive days also caused hypoactivity in chicks in the open-field behavioral paradigm. Only the high dose of chlorpyrifos (4mg/kg, orally) given repeatedly for 7 days caused significant cholinesterase inhibition in the whole brain (37%) and the liver (22%). In conclusion, chlorpyrifos at single or short-term repeated doses-induced behavioral changes in 7-15 days old chicks, in a model that could be used for further neurobehavioral studies involving subtle effects of organophosphates on chicks.

  3. Toxicity of chlorpyrifos and chlorpyrifos oxon in a transgenic mouse model of the human paraoxonase (PON1) Q192R polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Toby B.; Walter, Betsy J.; Shih, Diana M.; Tward, Aaron D.; Lusis, Aldons J.; Timchalk, Chuck; Richter, Rebecca J.; Costa, Lucio G.; Furlong, Clement E.

    2005-08-01

    The Q192R polymorphism of paraoxonase (PON1) has been shown to affect hydrolysis of organophosphorus compounds. The Q192 and R192 alloforms exhibit equivalent catalytic efficiencies of hydrolysis for diazoxon, the oxon form of the pesticide (DZ). However, the R192 alloform has a higher catalytic efficiency of hydrolysis than does the Q192 alloform for chlorpyrifos oxon (CPO), the oxon form of the pesticide chlorpyrifos (CPS). The current study examined the relevance of these observations for in-vivo exposures to chlorpyrifos and chlorpyrifos oxon. Methods Using a transgenic mouse model we examined the relevance of the Q192R polymorphism for exposure to CPS and CPO in vivo. Transgenic mice were generated that expressed either human PON1Q192 or PON1R192 at equivalent levels, in the absence of endogenous mouse PON1. Dose-response and time course experiments were performed on adult mice exposed dermally to CPS or CPO. Morbidity and acetylcholinesterase (AChE) activity in the brain and diaphragm were determined in the first 24 h following exposure. Results Mice expressing PON1Q192 were significantly more sensitive to CPO, and to a lesser extent CPS, than were mice expressing PON1R192. The time course of inhibition following exposure to 1.2 mg/kg CPO revealed maximum inhibition of brain AChE at 6?12 h, with PON1R192, PON1Q192, and PON1? /? mice exhibiting 40, 70 and 85% inhibition, respectively, relative to control mice. The effect of PON1 removal on the dose?response curve for CPS exposure was remarkably consistent with a PBPK/PD model of CPS exposure. Conclusion These results indicate that individuals expressing only the PON1Q192 allele would be more sensitive to the adverse effects of CPO or CPS exposure, especially if they are expressing a low level of plasma PON1Q192.

  4. Molecular characterisation of two α-esterase genes involving chlorpyrifos detoxification in the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Xie, Miao; Ren, Na-Na; You, Yan-Chun; Chen, Wei-Jun; Song, Qi-Sheng; You, Min-Sheng

    2017-06-01

    Carboxylesterases (CarEs) are involved in metabolic detoxification of dietary and environmental xenobiotics in insects. However, owing to the complexity of the protein family, the involvement of CarEs in insecticide metabolism in Plutella xylostella has not been fully elucidated. This study aimed to characterise two CarE genes and assess their potential roles in response to chlorpyrifos in P. xylostella. Synergistic tests showed that triphenyl phosphate decreased the resistance of the third-instar larvae to chlorpyrifos. The treatment of the third-instar larvae with chlorpyrifos at the LC 30 dose led to a significant increase in CarE activity. Two CarE cDNAs (Pxae18 and Pxae28) were subsequently sequenced and characterised. Both genes were expressed predominantly in the larval midgut. Most importantly, two CarE genes showed significantly higher expression in the chlorpyrifos-resistant strain than in the susceptible strain. RNAi knockdown of Pxae18 and Pxae28 significantly increased the mortality to chlorpyrifos from 40% in the control to 73.8 and 63.3% respectively. RNAi knockdown of Pxae18 and Pxae28 significantly inhibited detoxification ability and increased the mortality in P. xylostella. The results indicate that these two CarE genes play important roles in the detoxification of chlorpyrifos in P. xylostella. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Serotonin-induced down-regulation of cell surface serotonin transporter

    DEFF Research Database (Denmark)

    Jørgensen, Trine Nygaard; Christensen, Peter Møller; Gether, Ulrik

    2014-01-01

    The serotonin transporter (SERT) terminates serotonergic signaling and enables refilling of synaptic vesicles by mediating reuptake of serotonin (5-HT) released into the synaptic cleft. The molecular and cellular mechanisms controlling SERT activity and surface expression are not fully understood...

  6. Immunodetection of the serotonin transporter protein is a more valid marker for serotonergic fibers than serotonin

    DEFF Research Database (Denmark)

    Nielsen, Kirsten; Brask, Dorthe; Knudsen, Gitte M.

    2006-01-01

    Tracking serotonergic pathways in the brain through immunodetection of serotonin has widely been used for the anatomical characterization of the serotonergic system. Immunostaining for serotonin is also frequently applied for the visualization of individual serotonin containing fibers...... and quantification of serotonin positive fibers has been widely used to detect changes in the serotonergic innervation. However, particularly in conditions with enhanced serotonin metabolism the detection level of serotonin may lead to an underestimation of the true number of serotonergic fibers. The serotonin...... immunostained for serotonin and SERT protein and colocalization was quantified in several brain areas by confocal microscopy. In comparison with untreated rats, MAO inhibitor treated rats had a significantly higher number (almost 200% increase) of serotonin immunopositive fibers whereas no difference...

  7. Toxicity of Cypermethrin and Chlorpyrifos Against German Cockroach [ Blattella germanica (Blattaria: Blattellidae)] Strains from Hamadan, Iran.

    Science.gov (United States)

    Nazari, Mansour; Motlagh, Behrouz Alipourian; Nasirian, Hassan

    German cockroach has relatively short life cycle and reproduce rapidly. It is the most common medically and public health pest. As a result, it is essential to combat this pest. Cypermethrin and chlorpyrifos are used by private companies in Hamadan to control Blattella germanica. It seems necessary to determine its susceptibility levels to these insecticides. The aim of this study was to determine the susceptibility levels of B. germanica strains to cypermethrin and chlorpyrifos in Hamadan. In this study, the German cockroach strains were collected from two hospitals (Fatemiyeh and Atiyeh) in Hamadan and transfered to the insectarium. The cockroach strains were reared under the same laboratory condition. Then their sensitivity levels were considered to 1, 2, 4, 8 and 16 mg m -2 for cypermethrin and 0.82, 1.65, 3.31, 6.63, 9.945 and 13.26 mg m -2 for chlorpyrifos using surface contact method. Results based on insecticide treated doses, B. germanica strains showed different percent mortality to the insecticides ranged from 13.3-100. The LD 50 and LD 90 and regression lines of the treated insecticides against German cockroach strains indicate that Fatemiyeh Hospital strain is more susceptible to the treated insecticides than Atiyeh Hospital strain. The LD 50 and LD 90 of chlorpyrifos are also lower than cypermethrin, indicated that chlorpyrifos is more effective than cypermethrin against German cockroach. As the slopes of the regression lines are observed mild in this study indicate that the population of the cockroach strains is very heterogeneous. It can be a symbol of insecticides resistance to cypermethrin and chlorpyrifos. As chlorpyrifos and cypermethrin insecticides are also used for residual spraying by private companies and the doses which provide more than 90% mortality are below the WHO recommended insecticide doses. Therefore, chlorpyrifos and cypermethrin insecticides can be used for B. germanica control in Hamadan within regular monitoring and preventive

  8. Characterization and functional analysis of a carboxylesterase gene associated with chlorpyrifos resistance in Nilaparvata lugens (Stål).

    Science.gov (United States)

    Lu, Kai; Wang, Ying; Chen, Xia; Zhang, Zhichao; Li, Yue; Li, Wenru; Zhou, Qiang

    2017-12-01

    The widespread and extensive application of insecticides have promoted the development of resistance in the brown planthopper Nilaparvata lugens (Stål), one of the most important rice pests in Asia. To better understand the underlying molecular mechanisms of metabolic resistance to insecticides, a chlorpyrifos-resistant (CR) strain of N. lugens was selected and its possible resistance mechanism was investigated. Synergistic tests using carboxylesterases (CarEs) inhibitor triphenyl phosphate (TPP) decreased the resistance of N. lugens to chlorpyrifos, and CarE activities could be induced by low concentrations of chlorpyrifos. Subsequently, a gene putatively encoding CarE, namely NlCarE, predominant in the midgut and ovary was isolated and characterized. The expression levels of NlCarE were detected and compared between the CR and a susceptible (SS) strain of N. lugens. Consistent with the increased CarE activity, this gene was overexpressed in the CR strain compared to the SS strain. The transcript levels of NlCarE were up-regulated by chlorpyrifos exposure, showing dose- and time-dependent expression patterns. Furthermore, RNA interference (RNAi)-mediated knockdown of NlCarE followed by insecticide application significantly increased the susceptibility of N. lugens to chlorpyrifos. These results demonstrate that NlCarE plays an important role in chlorpyrifos detoxification and its overexpression may be involved in chlorpyrifos resistance in N. lugens. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Identification of genetic modifiers of behavioral phenotypes in serotonin transporter knockout rats

    Directory of Open Access Journals (Sweden)

    Nijman Isaäc J

    2010-05-01

    Full Text Available Abstract Background Genetic variation in the regulatory region of the human serotonin transporter gene (SLC6A4 has been shown to affect brain functionality and personality. However, large heterogeneity in its biological effects is observed, which is at least partially due to genetic modifiers. To gain insight into serotonin transporter (SERT-specific genetic modifiers, we studied an intercross between the Wistar SERT-/- rat and the behaviorally and genetically divergent Brown Norway rat, and performed a QTL analysis. Results In a cohort of >150 intercross SERT-/- and control (SERT+/+ rats we characterized 12 traits that were previously associated with SERT deficiency, including activity, exploratory pattern, cocaine-induced locomotor activity, and abdominal and subcutaneous fat. Using 325 genetic markers, 10 SERT-/--specific quantitative trait loci (QTLs for parameters related to activity and exploratory pattern (Chr.1,9,11,14, and cocaine-induced anxiety and locomotor activity (Chr.5,8 were identified. No significant QTLs were found for fat parameters. Using in silico approaches we explored potential causal genes within modifier QTL regions and found interesting candidates, amongst others, the 5-HT1D receptor (Chr. 5, dopamine D2 receptor (Chr. 8, cannabinoid receptor 2 (Chr. 5, and genes involved in fetal development and plasticity (across chromosomes. Conclusions We anticipate that the SERT-/--specific QTLs may lead to the identification of new modulators of serotonergic signaling, which may be targets for pharmacogenetic and therapeutic approaches.

  10. Ecotoxicity of two organophosphate pesticides chlorpyrifos and dichlorvos on non-targeting cyanobacteria Microcystis wesenbergii.

    Science.gov (United States)

    Sun, Kai-Feng; Xu, Xiang-Rong; Duan, Shun-Shan; Wang, You-Shao; Cheng, Hao; Zhang, Zai-Wang; Zhou, Guang-Jie; Hong, Yi-Guo

    2015-10-01

    Organophosphate pesticides (OPs), as a replacement for the organochlorine pesticides, are generally considered non-toxic to plants and algae. Chlorpyrifos and dichlorvos are two OPs used for pest control all over the world. In this study, the dose-response of cyanobacteria Microcystis wesenbergii on OPs exposure and the stimulating effect of OPs with and without phosphorus source were investigated. The results showed that high concentrations of chlorpyrifos and dichlorvos caused significant decrease of chlorophyll a content. The median inhibitory concentrations (EC50) of chlorpyrifos and dichlorvos at 96 h were 15.40 and 261.16 μmol L(-1), respectively. Growth of M. wesenbergii under low concentration of OPs (ranged from 1/10,000 to 1/20 EC50), was increased by 35.85 % (chlorpyrifos) and 41.83 % (dichlorvos) at 120 h, respectively. Correspondingly, the highest enhancement on the maximum quantum yield (F v/F m) was 4.20 % (24 h) and 9.70 % (48 h), respectively. Chlorophyll fluorescence kinetics, known as O-J-I-P transients, showed significant enhancements in the O-J, J-I, and I-P transients under low concentrations of dichlorvos at 144 h, while enhancements of chlorophyll fluorescence kinetics induced by low concentrations of chlorpyrifos were only observed in the J-I transient at 144 h. Significant decreases of chlorophyll content, F v/F m and O-J-I-P transients with OPs as sole phosphorus source were found when they were compared with inorganic phosphate treatments. The results demonstrated an evidently hormetic dose-response of M. wesenbergii to both chlorpyrifos and dichlorvos, where high dose (far beyond environmental concentrations) exposure caused growth inhibition and low dose exposure induced enhancement on physiological processes. The stimulating effect of two OPs on growth of M. wesenbergii was negligible under phosphate limitation.

  11. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Eun [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Park, Jae Hyeon [Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Shin, In Chul [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Koh, Hyun Chul, E-mail: hckoh@hanyang.ac.kr [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of)

    2012-09-01

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.

  12. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    International Nuclear Information System (INIS)

    Lee, Jeong Eun; Park, Jae Hyeon; Shin, In Chul; Koh, Hyun Chul

    2012-01-01

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.

  13. Morpho-toxicology of chlorpyrifos to prolactin cells of a freshwater catfish, Heteropneustes fossilis =Morpho-toxicology of chlorpyrifos to prolactin cells of a freshwater catfish, Heteropneustes fossilis

    Directory of Open Access Journals (Sweden)

    Diwakar Mishra

    2012-10-01

    Full Text Available In the present study, an organophosphorus compound Coroban (active ingredient chlorpyrifos – E.C. 20% was used. In short-term exposure the fish were subjected to 0.8 of 96h LC50 value of chlorpyrifos (1.76 mg L-1 for 96h. In long-term exposure the experiment was performed for 28 days by using 0.2 of 96h LC50 value of chlorpyrifos (0.44 mg L-1. Fish were killed on each time intervals from control and experimental (chlorpyrifos groups after 24, 48, 72, and 96h in short-term exposure and after 7, 14, 21, and 28 days in long-term experiment. Blood samples were collected and sera were analyzed for calcium. Pituitary glands were fixed for histological studies and stained with Herlant tetrachrome and Heidenhain’s azan techniques. Short-term exposure of chlorpyrifos caused decrease in the serum calcium levels. No change was noticed in the prolactin cells of chlorpyrifos treated fish. Long-term treatment with chlorpyrifos provoked hypocalcemia. The prolactin cells of treated fish exhibited slight degranulation after 21 days whereas the nuclear volume remained unchanged. After 28 days, the prolactin cells exhibited further degranulation and the nuclear volume recorded an increase. Cytolysis and vacuolization were also visible. No estudo presente, o composto organofosforo Coroban (ingrediente ativo clorpirifo – E.C. 20% foi usado. Na exposição a curto prazo os peixes foram submetido a 0,8 de valor LC50 de 96h de clorpirifo (1,76 mg L-1 durante 96h. Na exposição a longo prazo o experimento foi executado durante 28 dias usando 0,2 de valor LC50 de 96h de clorpirifos (0,44 mg L-1. Os peixes foram mortos a cada intervalo dos grupos controle e experimental (clorpirifos após 24, 48, 72, e 96h em exposição a curto prazo e após 7, 14, 21, e 28 dias no experimento a longo prazo. As amostras de sangue foram colhidas e o soro foi analisado para cálcio. As glândulas pituitárias foram fixadas para estudos histológicos e colorido por tetracromo de

  14. Changes of Field Incurred Chlorpyrifos and Its Toxic Metabolite Residues in Rice during Food Processing from-RAC-to-Consumption

    Science.gov (United States)

    Zhang, Zhiyong; Jiang, Wayne W.; Jian, Qiu; Song, Wencheng; Zheng, Zuntao; Wang, Donglan; Liu, Xianjin

    2015-01-01

    The objectives of this study were to determine the effects of food processing on field incurred residues levels of chlorpyrifos and its metabolite 3,5,6-Trichloro-2-pyridinol (TCP) in rice. The chlorpyrifos and TCP were found to be 1.27 and 0.093 mg kg-1 in straw and 0.41 and 0.073 mg kg-1 in grain, respectively. It is observed that the sunlight for 2 hours does not decrease the chlorpyrifos and TCP residues in grain significantly. Their residues in rice were reduced by up to 50% by hulling. The cooking reduced the chlorpyrifos and TCP in rice to undetectable level (below 0.01 mg kg-1). Processing factors (PFs) of chlorpyrifos and TCP residues in rice during food processing were similar. Various factors have impacts on the fates of chlorpyrifos and TCP residues and the important steps to reduce their residues in rice were hulling and cooking. The results can contribute to assure the consumer of a safe wholesome food supply. PMID:25608031

  15. Dissipation, half-lives, and mass spectrometric identification of chlorpyrifos and its two metabolites on field-grown collard and kale.

    Science.gov (United States)

    Antonious, George F; Turley, Eric T; Abubakari, Mutari; Snyder, John C

    2017-04-03

    The persistence and fate of chlorpyrifos and its two metabolites, chlorpyrifos-oxon and the 3, 5, 6-trichloro-2-pyridinol (TCP) break-down product were investigated on kale and collard leaves under field conditions. A simultaneous extraction and quantification procedure was developed for chrorpyrifos and its two main metabolites. Residues of chlorpyrifos, chlorpyrifos oxon, and TCP were determined using a gas chromatograph (GC) equipped with an electron capture detector (GC/ECD). Chlorpyrifos metabolites were detectable up to 23 days following application. Residues were confirmed using a GC equipped with a mass selective detector (GC/MSD) in total ion mode. Initial residues of chlorpyrifos were greater on collard (14.5 µg g -1 ) than kale (8.2 µg g -1 ) corresponding to half-lives (T 1/2 ) values of 7.4 and 2.2 days, respectively. TCP, the hydrolysis product, was more persistent on collards with an estimated T 1/2 of 6.5 days compared to kale (T 1/2 of 1.9 days).

  16. Electrochemical Determination of Chlorpyrifos on a Nano-TiO₂Cellulose Acetate Composite Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Kumaravel, Ammasai; Chandrasekaran, Maruthai

    2015-07-15

    A rapid and simple method of determination of chlorpyrifos is important in environmental monitoring and quality control. Electrochemical methods for the determination of pesticides are fast, sensitive, reproducible, and cost-effective. The key factor in electrochemical methods is the choice of suitable electrode materials. The electrode materials should have good stability, reproducibility, more sensitivity, and easy method of preparation. Mercury-based electrodes have been widely used for the determination of chlorpyrifos. From an environmental point of view mercury cannot be used. In this study a biocompatible nano-TiO2/cellulose acetate modified glassy carbon electrode was prepared by a simple method and used for the electrochemical sensing of chlorpyrifos in aqueous methanolic solution. Electroanalytical techniques such as cyclic voltammetry, differential pulse voltammetry, and amperometry were used in this work. This electrode showed very good stability, reproducibility, and sensitivity. A well-defined peak was obtained for the reduction of chlorpyrifos in cyclic voltammetry and differential pulse voltammetry. A smooth noise-free current response was obtained in amperometric analysis. The peak current obtained was proportional to the concentration of chlorpyrifos and was used to determine the unknown concentration of chlorpyrifos in the samples. Analytical parameters such as LOD, LOQ, and linear range were estimated. Analysis of real samples was also carried out. The results were validated through HPLC. This composite electrode can be used as an alternative to mercury electrodes reported in the literature.

  17. Removal of Chlorpyrifos by Water Hyacinth (Eichhornia crassipes) and the Role of a Plant-Associated Bacterium.

    Science.gov (United States)

    Anudechakul, Choochai; Vangnai, Alisa S; Ariyakanon, Naiyanan

    2015-01-01

    The objective of this research was to study the efficiency of water hyacinth (Eichhornia crassipes) and the role of any plant-associated bacteria in removing chlorpyrifos from water. The relative growth rate (RGR) of E. crassipes in the presence of 0.1 mg/L chlorpyrifos was not significantly different from that in its absence and only slightly decreased at concentrations of 0.5 and 1.0 mg/L by ∼1.1- and ∼1.2-fold, respectively, with an observed dry weight based RGRDW for E. crassipes of 0.036-0.041 mg/g/d. The removal rate constants of chlorpyrifos in the absence of plants were low at 3.52, 2.29 and 1.84 h(-1) for concentrations of 0.1, 0.5 and 1.0 mg/L, respectively, but were some 3.89- to 4.87-fold higher in the presence of E. crassipes. Chlorpyrifos removal was markedly facilitated by the presence of a root-associated bacterium, preliminarily identified as Acinetobacter sp. strain WHA. The interaction of E. crassipes and Acinetobacter sp. strain WHA provide an efficient and ecological alternative to accelerate the removal and degradation of chlorpyrifos pollution from aquatic systems including wastewater.

  18. Characterization of cholinesterases in Chironomus riparius and the effects of three herbicides on chlorpyrifos toxicity.

    Science.gov (United States)

    Pérez, Joanne; Monteiro, Marta S; Quintaneiro, Carla; Soares, Amadeu M V M; Loureiro, Susana

    2013-11-15

    In this study, the toxicities of four pesticides (the herbicides atrazine, terbuthylazine, metolachlor and the insecticide chlorpyrifos) previously detected in the Alqueva reservoir/dam (south of Portugal) were evaluated individually and in binary combinations of the herbicides and the insecticide using fourth-instar larvae of the aquatic midge Chironomus riparius. Chlorpyrifos induced toxicity to midges in all the 48 h toxicity bioassays performed. The swimming behaviour of the larvae was impaired, with EC50 values ranging from 0.15 to 0.17 μg/L. However, neither s-triazine (atrazine and terbuthylazine) herbicides nor metolachlor alone at concentrations up to 200 μg/L caused significant toxicity to C. riparius. When combined with both s-triazine herbicides, chlorpyrifos toxicity was enhanced by approximately 2-fold when tested in a binary mixture experimental setup, at the 50% effective concentration levels. To evaluate how chlorpyrifos toxicity was being increased, the cholinesterases (ChE) were characterized biochemically using different substrates and selective inhibitors. The results obtained suggested that the main enzyme present in this species is acetylcholinesterase (AChE) and therefore it was assayed upon C. riparius exposures to all pesticides individually and as binary mixtures. Although atrazine and terbuthylazine are not effective inhibitors of AChE, the potentiation of chlorpyrifos toxicity by the two s-triazine herbicides was associated with a potentiation in the inhibition of AChE in midges; both s-triazine herbicides at 200 μg/L increased the inhibition of the AChE activity by 7 and 8-fold, respectively. A strong correlation was observed between swimming behaviour disturbances of larvae and the inhibition of the AChE activity. In contrast, metolachlor did not affect chlorpyrifos toxicity at any of the concentrations tested. Therefore, the herbicides atrazine and terbuthylazine can act as synergists in the presence of chlorpyrifos, increasing

  19. Evaluation of abamectin, diazinon and chlorpyrifos pesticide residues in apple product of Mahabad region gardens: Iran in 2014.

    Science.gov (United States)

    Pirsaheb, Meghdad; Fattahi, Nazir; Rahimi, Rahim; Sharafi, Kiomars; Ghaffari, Hamid Reza

    2017-09-15

    The purpose of this study was to investigate abamectin, diazinon and chlorpyrifos in apple from the Mahabad of Iran. The influences of several parameters including shadow and sun, geographical directions and varieties of apples, whether they are golden or red type, was also taken into account on the residuals of the pesticides in the samples. The results indicated that sun considerably decreased the concentrations of diazinon and chlorpyrifos in samples exposed to it. Geographical directions are showed to be non-influential on diazinon while they are influential on chlorpyrifos ones. This can be attributed to pesticide spraying time and prevailing wind direction in Mahabad. The pesticides in golden and red varieties showed no significant relations. The apple samples from Mahabad did not contain any abamectin while they contained residuals of diazinon and chlorpyrifos. In some samples the diazinon and chlorpyrifos were above allowed limit according to World Health Organization (WHO) standard. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Inhibition of recombinant human carboxylesterase 1 and 2 and monoacylglycerol lipase by chlorpyrifos oxon, paraoxon and methyl paraoxon

    International Nuclear Information System (INIS)

    Crow, J. Allen; Bittles, Victoria; Herring, Katye L.; Borazjani, Abdolsamad; Potter, Philip M.; Ross, Matthew K.

    2012-01-01

    Oxons are the bioactivated metabolites of organophosphorus insecticides formed via cytochrome P450 monooxygenase-catalyzed desulfuration of the parent compound. Oxons react covalently with the active site serine residue of serine hydrolases, thereby inactivating the enzyme. A number of serine hydrolases other than acetylcholinesterase, the canonical target of oxons, have been reported to react with and be inhibited by oxons. These off-target serine hydrolases include carboxylesterase 1 (CES1), CES2, and monoacylglycerol lipase. Carboxylesterases (CES, EC 3.1.1.1) metabolize a number of xenobiotic and endobiotic compounds containing ester, amide, and thioester bonds and are important in the metabolism of many pharmaceuticals. Monoglyceride lipase (MGL, EC 3.1.1.23) hydrolyzes monoglycerides including the endocannabinoid, 2-arachidonoylglycerol (2-AG). The physiological consequences and toxicity related to the inhibition of off-target serine hydrolases by oxons due to chronic, low level environmental exposures are poorly understood. Here, we determined the potency of inhibition (IC 50 values; 15 min preincubation, enzyme and inhibitor) of recombinant CES1, CES2, and MGL by chlorpyrifos oxon, paraoxon and methyl paraoxon. The order of potency for these three oxons with CES1, CES2, and MGL was chlorpyrifos oxon > paraoxon > methyl paraoxon, although the difference in potency for chlorpyrifos oxon with CES1 and CES2 did not reach statistical significance. We also determined the bimolecular rate constants (k inact /K I ) for the covalent reaction of chlorpyrifos oxon, paraoxon and methyl paraoxon with CES1 and CES2. Consistent with the results for the IC 50 values, the order of reactivity for each of the three oxons with CES1 and CES2 was chlorpyrifos oxon > paraoxon > methyl paraoxon. The bimolecular rate constant for the reaction of chlorpyrifos oxon with MGL was also determined and was less than the values determined for chlorpyrifos oxon with CES1 and CES2

  1. Inhibition of recombinant human carboxylesterase 1 and 2 and monoacylglycerol lipase by chlorpyrifos oxon, paraoxon and methyl paraoxon

    Energy Technology Data Exchange (ETDEWEB)

    Crow, J. Allen; Bittles, Victoria; Herring, Katye L.; Borazjani, Abdolsamad [Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762 (United States); Potter, Philip M. [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 332 N. Lauderdale, Memphis, TN 38105 (United States); Ross, Matthew K., E-mail: mross@cvm.msstate.edu [Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762 (United States)

    2012-01-01

    Oxons are the bioactivated metabolites of organophosphorus insecticides formed via cytochrome P450 monooxygenase-catalyzed desulfuration of the parent compound. Oxons react covalently with the active site serine residue of serine hydrolases, thereby inactivating the enzyme. A number of serine hydrolases other than acetylcholinesterase, the canonical target of oxons, have been reported to react with and be inhibited by oxons. These off-target serine hydrolases include carboxylesterase 1 (CES1), CES2, and monoacylglycerol lipase. Carboxylesterases (CES, EC 3.1.1.1) metabolize a number of xenobiotic and endobiotic compounds containing ester, amide, and thioester bonds and are important in the metabolism of many pharmaceuticals. Monoglyceride lipase (MGL, EC 3.1.1.23) hydrolyzes monoglycerides including the endocannabinoid, 2-arachidonoylglycerol (2-AG). The physiological consequences and toxicity related to the inhibition of off-target serine hydrolases by oxons due to chronic, low level environmental exposures are poorly understood. Here, we determined the potency of inhibition (IC{sub 50} values; 15 min preincubation, enzyme and inhibitor) of recombinant CES1, CES2, and MGL by chlorpyrifos oxon, paraoxon and methyl paraoxon. The order of potency for these three oxons with CES1, CES2, and MGL was chlorpyrifos oxon > paraoxon > methyl paraoxon, although the difference in potency for chlorpyrifos oxon with CES1 and CES2 did not reach statistical significance. We also determined the bimolecular rate constants (k{sub inact}/K{sub I}) for the covalent reaction of chlorpyrifos oxon, paraoxon and methyl paraoxon with CES1 and CES2. Consistent with the results for the IC{sub 50} values, the order of reactivity for each of the three oxons with CES1 and CES2 was chlorpyrifos oxon > paraoxon > methyl paraoxon. The bimolecular rate constant for the reaction of chlorpyrifos oxon with MGL was also determined and was less than the values determined for chlorpyrifos oxon with CES1

  2. Dissipation and distribution of chlorpyrifos in selected vegetables through foliage and root uptake.

    Science.gov (United States)

    Ge, Jing; Lu, Mengxiao; Wang, Donglan; Zhang, Zhiyong; Liu, Xianjin; Yu, Xiangyang

    2016-02-01

    Dissipation, distribution and uptake pathways of chlorpyrifos were investigated in pakchoi (Brassica chinensis L.) and lettuce (Lactuca sativa) with foliage treatments under a greenhouse trial and root treatments under a hydroponic experiment. The dissipation trends were similar for chlorpyrifos in pakchoi and lettuce with different treatments. More than 94% of chlorpyrifos was degraded in the samples for both of the vegetables 21 days after the foliage treatments. For the root treatment, the dissipation rate of chlorpyrifos in pakchoi and lettuce at the low concentration was greater than 93%, however, for the high concentrations, the dissipation rates were all under 90%. Both shoots and roots of the vegetables were able to absorb chlorpyrifos from the environment and distribute it inside the plants. Root concentration factor (RCF) values at different concentrations with the hydroponic experiment ranged from 5 to 39 for pakchoi, and from 14 to 35 for lettuce. The translocation factor (TF) representing the capability of the vegetables to translocate contaminants was significantly different for pakchoi and lettuce with foliage and root treatments. The values of TF with foliage treatments ranged from 0.003 to 0.22 for pakchoi, and from 0.032 to 1.63 for lettuce. The values of TF with root treatments ranged from 0.01 to 0.17 for pakchoi, and from 0.003 to 0.23 for lettuce. Significant difference of TF was found between pakchoi and lettuce with foliage treatments, and at high concentrations (10 and 50 mg L(-1)) with root treatments as well. However, there was no significant difference of TF between pakchoi and lettuce at 1 mg L(-1) with root treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Chlorpyrifos Exposure and Urban Residential Environment Characteristics as Determinants of Early Childhood Neurodevelopment

    Science.gov (United States)

    Quinn, James W.; Rauh, Virginia A.; Perera, Frederica P.; Andrews, Howard F.; Garfinkel, Robin; Hoepner, Lori; Whyatt, Robin; Rundle, Andrew

    2011-01-01

    Objectives. We evaluated whether neighborhood characteristics correlated with early neurodevelopment and whether these characteristics confounded the previously reported association between exposure to chlorpyrifos (an organophosphate insecticide) and neurodevelopment. Methods. We obtained prenatal addresses, chlorpyrifos exposure data, and 36-month Psychomotor Development Index (PDI) and Mental Development Index (MDI) scores for a birth cohort in New York City (born 1998–2002). We used data from the 2000 US Census to estimate measures of physical infrastructure, socioeconomic status, crowding, demographic composition, and linguistic isolation for 1-kilometer network areas around each child's prenatal address. Generalized estimating equations were adjusted for demographics, maternal education and IQ, prenatal exposure to tobacco smoke, caretaking environment quality, and building dilapidation. Results. Of 266 children included as participants, 47% were male, 59% were Dominican, and 41% were African American. For each standard deviation higher in neighborhood percent poverty, the PDI score was 2.6 points lower (95% confidence interval [CI] = −3.7, −1.5), and the MDI score was 1.7 points lower (95% CI = −2.6, −0.8). Neighborhood-level confounding of the chlorpyrifos-neurodevelopment association was not apparent. Conclusions. Neighborhood context and chlorpyrifos exposure were independently associated with neurodevelopment, thus providing distinct opportunities for health promotion. PMID:20299657

  4. The effect of stress on the acute neurotoxicity of the organophosphate insecticide chlorpyrifos

    International Nuclear Information System (INIS)

    Hancock, Sandra; Ehrich, Marion; Hinckley, Jonathan; Pung, Thitiya; Jortner, Bernard S.

    2007-01-01

    A study was conducted to determine if multiple exposures to several stress paradigms might affect the anticholinesterase effect of subsequently administered organophosphate insecticide chlorpyrifos. Male Sprague-Dawley rats were subject to daily periods of restraint, swimming, a combination of the two, or neither of the two (controls) (n = 8/group) for 5 days per week over a six-week period. The most profound stress, as measured by reduced body weight gain and elevated levels of plasma corticosterone, was swimming. On day 39 of the study, shortly after the daily stress episode, one half of the rats in each group was dosed with 60 mg/kg chlorpyrifos subcutaneously. This had no effect on subsequent levels of plasma corticosterone. There were no stress-related differences in the degree of chlorpyrifos-induced inhibition of brain acetylcholinesterase in animals sacrificed on day 43

  5. Enzyme induction and cytotoxicity in human hepatocytes by chlorpyrifos and N,N-diethyl-m-toluamide (DEET).

    Science.gov (United States)

    Das, Parikshit C; Cao, Yan; Rose, Randy L; Cherrington, Nathan; Hodgson, Ernest

    2008-01-01

    Xenobiotics, including drugs and environmental chemicals, can influence cytochrome P450 (CYP) levels by altering the transcription of CYP genes. To minimize potential drug-pesticide and pesticide-pesticide interactions it is important to evaluate the potential of pesticides to induce CYP isoforms and to cause cytotoxicity in humans. The present study was designed to examine chlorpyrifos and DEET mediated induction of CYP isoforms and also to characterize their potential cytotoxic effects on primary human hepatocytes. DEET significantly induced CYP3A4, CYP2B6, CYP2A6 and CYP1A2 mRNA expression while chlorpyrifos induced CYP1A1, CYP1A2 and CYP3A4 mRNA, and to a lesser extent, CYP1B1 and CYP2B6 mRNA in primary human hepatocytes. Chlorpyrifos and DEET also mediated the expression of CYP isoforms, particularly CYP3A4, CYP2B6 and CYP1A1, as shown by CYP3A4-specific protein expression, testosterone metabolism and CYP1Al-specific activity assays. DEET is a mild, while chlorpyrifos is a relatively potent, inducer of adenylate kinase and caspase-3/7, an indicator of apoptosis, while inducing 15-20% and 25-30% cell death, respectively. Therefore, DEET and chlorpyrifos mediated induction of CYP mRNA and functional CYP isoforms together with their cytotoxic potential in human hepatocytes suggests that exposure to chlorpyrifos and/or DEET should be considered in human health impact analysis.

  6. SEROTONIN METABOLISM FOLLOWING PLATINUM-BASED CHEMOTHERAPY COMBINED WITH THE SEROTONIN TYPE-3 ANTAGONIST TROPISETRON

    NARCIS (Netherlands)

    SCHRODER, CP; VANDERGRAAF, WTA; KEMA, IP; GROENEWEGEN, A; SLEIJFER, DT; DEVRIES, EGE

    1995-01-01

    The administration of platinum-based chemotherapy induces serotonin release from the enterochromaffin cells, causing nausea and vomiting. This study was conducted to evaluate parameters of serotonin metabolism following platinum-based chemotherapy given in combination with the serotonin type-3

  7. Selection for chlorpyrifos resistance in Liriomyza sativae Blanchard: Cross-resistance patterns, stability and biochemical mechanisms.

    Science.gov (United States)

    Askari-Saryazdi, Ghasem; Hejazi, Mir Jalil; Ferguson, J Scott; Rashidi, Mohammad-Reza

    2015-10-01

    The vegetable leafminer (VLM), Liriomyza sativae (Diptera: Agromyzidae) is a serious pest of vegetable crops and ornamentals worldwide. In cropping systems with inappropriate management strategies, development of resistance to insecticides in leafminers is probable. Chlorpyrifos is a commonly used pesticide for controlling leafminers in Iran, but resistance to this insecticide in leafminers has not been characterized. In order to develop strategies to minimize resistance in the field and greenhouse, a laboratory selected chlorpyrifos resistant strain of L. sativae was used to characterize resistance and determine the rate of development and stability of resistance. Selecting for resistance in the laboratory after 23 generations yielded a chlorpyrifos resistant selected strain (CRSS) with a resistance ratio of 40.34, determined on the larval stage. CRSS exhibited no cross-resistance to other tested insecticides except for diazinon. Synergism and biochemical assays indicated that esterases (EST) had a key role in metabolic resistance to chlorpyrifos, but glutathione S-transferase (GST) and mixed function oxidase (MFO) were not mediators in this resistance. In CRSS acetylcholinesterase (AChE) was more active than the susceptible strain, Sharif (SH). AChE in CRSS was also less sensitive to inhibition by propoxur. The kinetics parameters (Km and Vmax) of AChE indicated that affinities and hydrolyzing efficiencies of this enzyme in CRSS were higher than SH. Susceptibility to chlorpyrifos in L. sativae was re-gained in the absence of insecticide pressure. Synergism, biochemical and cross-resistance assays revealed that overactivity of metabolic enzymes and reduction in target site sensitivity are probably joint factors in chlorpyrifos resistance. An effective insecticide resistance management program is necessary to prevent fast resistance development in crop systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Use of Bacillus thuringiensis supernatant from a fermentation process to improve bioremediation of chlorpyrifos in contaminated soils.

    Science.gov (United States)

    Aceves-Diez, Angel E; Estrada-Castañeda, Kelly J; Castañeda-Sandoval, Laura M

    2015-07-01

    The aim of this research was to investigate the potential of a nutrient-rich organic waste, namely the cell-free supernatant of Bacillus thuringiensis (BtS) gathered from fermentation, as a biostimulating agent to improve and sustain microbial populations and their enzymatic activities, thereby assisting in the bioremediation of chlorpyrifos-contaminated soil at a high dose (70 mg kg(-1)). Experiments were performed for up to 80 d. Chlorpyrifos degradation and its major metabolic product, 3,5,6-trichloro-2-pyridinol (TCP), were quantified by high-performance liquid chromatography (HPLC); total microbial populations were enumerated by direct counts in specific medium; and fluorescein diacetate (FDA) hydrolysis was measured as an index of soil microbial activity. Throughout the experiment, there was higher chlorpyrifos degradation in soil supplemented with BtS (83.1%) as compared to non-supplemented soil. TCP formation and degradation occurred in all soils, but the greatest degradation (30.34%) was observed in soil supplemented with BtS. The total microbial populations were significantly improved by supplementation with BtS. The application of chlorpyrifos to soil inhibited the enzymatic activity; however, this negative effect was counteracted by BtS, inducing an increase of approximately 16% in FDA hydrolysis. These results demonstrate the potential of B. thuringiensis supernatant as a suitable biostimulation agent for enhancing chlorpyrifos and TCP biodegradation in chlorpyrifos-contaminated soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Production of a recombinant laccase from Pichia pastoris and biodegradation of chlorpyrifos in a laccase/vanillin system.

    Science.gov (United States)

    Xie, Huifang; Li, Qi; Wang, Minmin; Zhao, Linguo

    2013-06-28

    The recombinant strain P. pastoris GS115-lccC was used to produce laccase with high activity. Factors influencing laccase expression, such as pH, methanol concentration, copper concentration, peptone concentration, shaker rotate speed, and medium volume were investigated. Under the optimal conditions, laccase activity reached 12,344 U/L on day 15. The recombinant enzyme was purified by precipitating and dialyzing to electrophoretic homogeneity, and was estimated to have a molecular mass of about 58 kDa. When guaiacol was the substrate, the laccase showed the highest activity at pH 5.0 and was stable when the pH was 4.5~6.0. The optimal temperature for the laccase to oxidize guaiacol was 60°C, but it was not stable at high temperature. The enzyme could remain stable at 30°C for 5 days. The recombinant laccase was used to degrade chlorpyrifos in several laccase/mediator systems. Among three synthetic mediators (ABTS, HBT, VA) and three natural mediators (vanillin, 2,6-DMP, and guaiacol), vanillin showed the most enhancement on degradation of chlorpyrifos. Both laccase and vanillin were responsible for the degradation of chlorpyrifos. A higher dosage of vanillin may promote a higher level of degradation of chlorpyrifos, and the 2-step addition of vanillin led to 98% chlorpyrifos degradation. The degradation of chlorpyrifos was faster in the L/V system (kobs = 0.151) than that in the buffer solution (kobs = 0.028).

  10. A Risk Assessment of exposure to chlorpyrifos from foodstuff in the Slovak Republic

    OpenAIRE

    Šalgovičová, Danka

    2012-01-01

    Chlorpyrifos (O,O-diethyl-O-(3,5,6-trichlor-2-pyridyl)-phosphorothioate) is a white cristalline organophosphates with a broad-spectrum of insecticide effects. Chlorpyrifos is acrid and poor water soluble compound. In agriculture it is used for the treatment of infected leaves and the fruit as well as beet, maize, cereals, pepper, cucumbers and potatoes. It is effective for the destruction of mosquitoes, cockroaches, caterpillars, fleas, ants and other insects. Applying to the affected cr...

  11. Problems induced by the use of acetone as a solvent to dose chlorpyrifos in a microecosystem

    NARCIS (Netherlands)

    Kersting, K.

    1995-01-01

    Recycling aquatic microecosystems consisting of three subsystems with a total volume of 7.5 L were used to study the effects of the insecticide chlorpyrifos. The poorly soluble chlorpyrifos was dosed dissolved in 0.5 ml of acetone. Acetone was found to be responsible for some of the observed

  12. The beneficial role of resveratrol on chlorpyrifos-induced cognitive ...

    African Journals Online (AJOL)

    ... malondialdehyde (MDA) concentration when compared with the control. In conclusion, 30mg/kg resveratrol suppressed memory impairment, decreased malondialdehyde levels, increased catalase activity, superoxide dismutase activity and glutathione levels in our chlorpyrifos-induced cognitive impairment mice model.

  13. Disruption of Transient Serotonin Accumulation by Non-Serotonin-Producing Neurons Impairs Cortical Map Development

    Directory of Open Access Journals (Sweden)

    Xiaoning Chen

    2015-01-01

    Full Text Available Polymorphisms that alter serotonin transporter SERT expression and functionality increase the risks for autism and psychiatric traits. Here, we investigate how SERT controls serotonin signaling in developing CNS in mice. SERT is transiently expressed in specific sets of glutamatergic neurons and uptakes extrasynaptic serotonin during perinatal CNS development. We show that SERT expression in glutamatergic thalamocortical axons (TCAs dictates sensory map architecture. Knockout of SERT in TCAs causes lasting alterations in TCA patterning, spatial organizations of cortical neurons, and dendritic arborization in sensory cortex. Pharmacological reduction of serotonin synthesis during the first postnatal week rescues sensory maps in SERTGluΔ mice. Furthermore, knockdown of SERT expression in serotonin-producing neurons does not impair barrel maps. We propose that spatiotemporal SERT expression in non-serotonin-producing neurons represents a determinant in early life genetic programming of cortical circuits. Perturbing this SERT function could be involved in the origin of sensory and cognitive deficits associated with neurodevelopmental disorders.

  14. Determination of selected pesticides in water samples adjacent to agricultural fields and removal of organophosphorus insecticide chlorpyrifos using soil bacterial isolates

    Science.gov (United States)

    Hossain, M. S.; Chowdhury, M. Alamgir Zaman; Pramanik, Md. Kamruzzaman; Rahman, M. A.; Fakhruddin, A. N. M.; Alam, M. Khorshed

    2015-06-01

    The use of pesticide for crops leads to serious environmental pollution, therefore, it is essential to monitor and develop approaches to remove pesticide from contaminated environment. In this study, water samples were collected to monitor pesticide residues, and degradation of chlorpyrifos was also performed using soil bacteria. Identification of pesticide residues and determination of their levels were performed by high-performance liquid chromatography with photodiode array detector. Among 12 samples, 10 samples were found contaminated with pesticides. Chlorpyrifos was detected in four tested samples and concentrations ranged from 3.27 to 9.31 μg/l whereas fenitrothion ranging from (Below Detection Limit, chlorpyrifos completely in 8, 10 and 10 days, respectively, when 20 mg/l chlorpyrifos was supplied as sole source of carbon. Whereas, BG1, BG4 and PD6 took 14, 16 and 16 days, respectively, for complete removal of 50 mg/l chlorpyrifos. Chlorpyrifos degradation rates were found maximum by all three isolates at 2nd day of incubation for both tested concentrations. The results of the present study suggest the need for regular monitoring of pesticide residues in water, to protect the aquatic environment. Chlorpyrifos degrading bacterial isolates can be used to clean up environmental samples contaminated with the organophosphate pesticides.

  15. Effects of chlorpyrifos on life cycle parameters, cytochrome P450S expression, and antioxidant systems in the monogonont rotifer Brachionus koreanus.

    Science.gov (United States)

    Kim, Ryeo-Ok; Kim, Bo-Mi; Jeong, Chang-Bum; Lee, Jae-Seong; Rhee, Jae-Sung

    2016-06-01

    Chlorpyrifos is a widely used organophosphorus insecticide for controlling diverse insect pests of crops. In the monogonont rotifer Brachionus koreanus, population growth retardation with the inhibition of lifespan, fecundity, and individual body size of ovigerous females was shown over 10 d in response to chlorpyrifos exposure. At the molecular and biochemical levels, the rotifer B. koreanus defensome, composed of cytochrome P450 complements, heat shock protein 70, and antioxidant enzymatic systems (i.e., glutathione, glutathione peroxidase, glutathione reductase, and glutathione S-transferase), was significantly induced in response to different concentrations of chlorpyrifos. Thus, chlorpyrifos strongly induced a defensome system to mitigate the deleterious effects of chlorpyrifos at in vivo and in vitro levels as a trade-off in fitness costs. Environ Toxicol Chem 2016;35:1449-1457. © 2015 SETAC. © 2015 SETAC.

  16. Changes in glutathione system and lipid peroxidation in rat blood during the first hour after chlorpyrifos exposure

    Directory of Open Access Journals (Sweden)

    V. P. Rosalovsky

    2015-10-01

    Full Text Available Chlorpyrifos (CPF is a highly toxic organophosphate compound, widely used as an active substance of many insecticides. Along with the anticholinesterase action, CPF may affect other biochemical mechanisms, particularly through disrupting pro- and antioxidant balance and inducing free-radical oxidative stress. Origins and occurrence of these phenomena are still not fully understood. The aim of our work was to investigate the effects of chlorpyrifos on key parameters of glutathione system and on lipid peroxidation in rat blood in the time dynamics during one hour after exposure. We found that a single exposure to 50 mg/kg chlorpyrifos caused a linear decrease in butyryl cholinesterase activity, increased activity of glutathione peroxidase and glutathione reductase, alterations in the levels of glutathione, TBA-active products and lipid hydroperoxides during 1 hour after poisoning. The most significant changes in studied parameters were detected at the 15-30th minutes after chlorpyrifos exposure.

  17. Fate of 14C-Chlorpyrifos Insecticide in Sunflower Seeds and Oil and the Effect of Processing According to Industrial Practice

    International Nuclear Information System (INIS)

    Abdel-Gawad, H.; Khatab, M.S.; Hegazi, B.

    2007-01-01

    Ethyl -1- 14 C-chlorpyrifos and some of its degradation products have been prepared for the present investigation. Sunflower plants were treated with 14 C-chlorpyrifos under conditions simulating local agricultural practice. 14 C-residue in seeds were determined at different time intervals. At harvest time about 8 % of 14 C-activity was associated with oil. The methanol soluble 14 C-residues accounted for 0.8 % of the total seed residues, while the cake contained about 80 % of the total residues. About 46 % of the 14 C-activity in the crude oil could be eliminated by simulated commercial processes locally used for oil refining. The refined oil had a 14 C- residue level of about 21 ppm. Chromatographic analysis of crude and refined oil revealed the presence of the parent compound together with three metabolites which were identified as chlorpyrifos oxon, desethyl chlorpyrifos, and desethyl chlorpyrifos oxon in addition to an unknown compound. Methanol extract of the cake revealed the presence of the parent compound and its oxon as free compounds. Acid hydrolysis of the conjugated metabolites in the methanol extract yielded desethyl chlorpyrifos and 3, 5, 6- trichloro-2-hydroxypyridine

  18. The Effect of High-Pressure Arc Discharge Plasma on the Degradation of Chlorpyrifos

    International Nuclear Information System (INIS)

    Yin Meiqiang; Ma Tengcai; Zhang Jialiang; Huang Mingjing; Ma Buzhou

    2006-01-01

    A study is conducted to determine the effect of a kind of high-pressure arc discharge plasma on the degradation rate and kinetic equations of chlorpyrifos in different solvents with the treated times and concentrations as variables. The degradation rate was sorted in different solvents as water, methanol, acetone and then acetoacetate. The tendencies of the degradation rates with treated time in water and methanol were optimally fitted with first-order kinetics equations while those in acetone and acetoacetate were fitted with zeroth-order kinetics equations. The difference was attributed to the stronger polarity of water and methanol. The weak correlation of the degradation rates with time was mainly because the high-temperature of the arc discharge tube and the chemically-active species generated by the discharge. The degradation half-life was extended with increase of chlorpyrifos concentration. A degradation half-life less than 3 min was achieved for chlorpyrifos in water and methanol when the initial concentration was less than 300 μg/ml

  19. Salivary serotonin does not correlate with central serotonin turnover in adult phenylketonuria (PKU patients

    Directory of Open Access Journals (Sweden)

    Joseph Leung

    2018-06-01

    Full Text Available Introduction: Phenylketonuria (PKU is an inborn error of metabolism associated with an increased risk of behavioural and mood disorders. There are currently no reliable markers for monitoring mood in PKU. The purpose of this study was to evaluate salivary serotonin as a possible non-invasive marker of long-term mood symptoms and central serotonin activity in patients with PKU. Methods: 20 patients were recruited from our Adult Metabolic Diseases Clinic. Age, sex, plasma phenylalanine (Phe level, DASS (Depression Anxiety Stress Scales depression score, DASS anxiety score, BMI, salivary serotonin, salivary cortisol, 2-year average Phe, 2-year average tyrosine (Tyr, and 2-year average Phe:Tyr ratio were collected for each patient. Spearman's ρ correlation analysis was used to determine if there was any relationship between any of the parameters. Results: There were positive correlations between DASS anxiety and DASS depression scores (Spearman's ρ = 0.8708, p-value < 0.0001, BMI and plasma Phe level (Spearman's ρ = 0.6228, p-value = .0034, and 2-year average Phe and BMI (Spearman's ρ = 0.5448, p-value = .0130. There was also a negative correlation between salivary cortisol and plasma Phe level (Spearman's ρ = −0.5018, p-value = .0338. All other correlations were not statistically significant. Conclusion: Salivary serotonin does not correlate with peripheral phenylalanine levels, DASS depression scale scores, or DASS anxiety scale scores, implying that salivary serotonin does not reflect central serotonin turnover. Additionally, this study suggests that salivary serotonin is not a suitable marker for monitoring dietary control, mood, or anxiety in PKU. Synopsis: Salivary serotonin does not correlate with peripheral phenylalanine levels, DASS depression scale scores, or DASS anxiety scale scores, suggesting that salivary serotonin is not a suitable marker for monitoring dietary control, mood, or anxiety in PKU

  20. Biodegradation of Chlorpyrifos and Its Hydrolysis Product 3,5,6-Trichloro-2-Pyridinol by a New Fungal Strain Cladosporium cladosporioides Hu-01

    Science.gov (United States)

    Peng, Chuyan; Liu, Hongmei; Hu, Meiying; Zhong, Guohua

    2012-01-01

    Intensive use of chlorpyrifos has resulted in its ubiquitous presence as a contaminant in surface streams and soils. It is thus critically essential to develop bioremediation methods to degrade and eliminate this pollutant from environments. We present here that a new fungal strain Hu-01 with high chlorpyrifos-degradation activity was isolated and identified as Cladosporium cladosporioides based on the morphology and 5.8S rDNA gene analysis. Strain Hu-01 utilized 50 mg·L−1 of chlorpyrifos as the sole carbon of source, and tolerated high concentration of chlorpyrifos up to 500 mg·L−1. The optimum degradation conditions were determined to be 26.8°C and pH 6.5 based on the response surface methodology (RSM). Under these conditions, strain Hu-01 completely metabolized the supplemented chlorpyrifos (50 mg·L−1) within 5 d. During the biodegradation process, transient accumulation of 3,5,6-trichloro-2-pyridinol (TCP) was observed. However, this intermediate product did not accumulate in the medium and disappeared quickly. No persistent accumulative metabolite was detected by gas chromatopraphy-mass spectrometry (GC-MS) analysis at the end of experiment. Furthermore, degradation kinetics of chlorpyrifos and TCP followed the first-order model. Compared to the non-inoculated controls, the half-lives (t 1/2) of chlorpyrifos and TCP significantly reduced by 688.0 and 986.9 h with the inoculum, respectively. The isolate harbors the metabolic pathway for the complete detoxification of chlorpyrifos and its hydrolysis product TCP, thus suggesting the fungus may be a promising candidate for bioremediation of chlorpyrifos-contaminated water, soil or crop. PMID:23056611

  1. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01.

    Directory of Open Access Journals (Sweden)

    Shaohua Chen

    Full Text Available Intensive use of chlorpyrifos has resulted in its ubiquitous presence as a contaminant in surface streams and soils. It is thus critically essential to develop bioremediation methods to degrade and eliminate this pollutant from environments. We present here that a new fungal strain Hu-01 with high chlorpyrifos-degradation activity was isolated and identified as Cladosporium cladosporioides based on the morphology and 5.8S rDNA gene analysis. Strain Hu-01 utilized 50 mg·L(-1 of chlorpyrifos as the sole carbon of source, and tolerated high concentration of chlorpyrifos up to 500 mg·L(-1. The optimum degradation conditions were determined to be 26.8°C and pH 6.5 based on the response surface methodology (RSM. Under these conditions, strain Hu-01 completely metabolized the supplemented chlorpyrifos (50 mg·L(-1 within 5 d. During the biodegradation process, transient accumulation of 3,5,6-trichloro-2-pyridinol (TCP was observed. However, this intermediate product did not accumulate in the medium and disappeared quickly. No persistent accumulative metabolite was detected by gas chromatopraphy-mass spectrometry (GC-MS analysis at the end of experiment. Furthermore, degradation kinetics of chlorpyrifos and TCP followed the first-order model. Compared to the non-inoculated controls, the half-lives (t(1/2 of chlorpyrifos and TCP significantly reduced by 688.0 and 986.9 h with the inoculum, respectively. The isolate harbors the metabolic pathway for the complete detoxification of chlorpyrifos and its hydrolysis product TCP, thus suggesting the fungus may be a promising candidate for bioremediation of chlorpyrifos-contaminated water, soil or crop.

  2. Comparative effects of parathion and chlorpyrifos on endocannabinoid and endocannabinoid-like lipid metabolites in rat striatum.

    Science.gov (United States)

    Liu, Jing; Parsons, Loren; Pope, Carey

    2015-09-01

    Parathion and chlorpyrifos are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). The endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) are endogenous neuromodulators that regulate presynaptic neurotransmitter release in neurons throughout the central and peripheral nervous systems. While substantial information is known about the eCBs, less is known about a number of endocannabinoid-like metabolites (eCBLs, e.g., N-palmitoylethanolamine, PEA; N-oleoylethanolamine, OEA). We report the comparative effects of parathion and chlorpyrifos on AChE and enzymes responsible for inactivation of the eCBs, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and changes in the eCBs AEA and 2AG and eCBLs PEA and OEA, in rat striatum. Adult, male rats were treated with vehicle (peanut oil, 2 ml/kg, sc), parathion (27 mg/kg) or chlorpyrifos (280 mg/kg) 6-7 days after surgical implantation of microdialysis cannulae into the right striatum, followed by microdialysis two or four days later. Additional rats were similarly treated and sacrificed for evaluation of tissue levels of eCBs and eCBLs. Dialysates and tissue extracts were analyzed by LC-MS/MS. AChE and FAAH were extensively inhibited at both time-points (85-96%), while MAGL activity was significantly but lesser affected (37-62% inhibition) by parathion and chlorpyrifos. Signs of toxicity were noted only in parathion-treated rats. In general, chlorpyrifos increased eCB levels while parathion had no or lesser effects. Early changes in extracellular AEA, 2AG and PEA levels were significantly different between parathion and chlorpyrifos exposures. Differential changes in extracellular and/or tissue levels of eCBs and eCBLs could potentially influence a number of signaling pathways and contribute to selective neurological changes following acute OP intoxications. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Effect of enrofloxacin and chlorpyrifos on the levels of vitamins A and E in Wistar rats.

    Science.gov (United States)

    Spodniewska, Anna; Barski, Dariusz; Giżejewska, Aleksandra

    2015-09-01

    This study investigates the effects of enrofloxacin and chlorpyrifos, and their combination on vitamin A and E concentrations in the liver of rats. Results of this study indicated a reduction in the contents of vitamins A and E in the liver, which persisted for the entire period of the experiment. Vitamins A and E concentrations were slightly decreased (2-7%) in enrofloxacin-treated rats. In the group of rats intoxicated with chlorpyrifos, a significant decrease in the level of vitamin A was observed up to the 24th hour, and for vitamin E up to the 3rd day from the discontinuation of intoxication with the compounds under study. In the enrofloxacin-chlorpyrifos co-exposure group reduced vitamins A and E level was also noted. The greatest fall in vitamin A level was observed after 3h, while the contents of vitamin E decreased progressively up to the 3rd day. Changes in this group were less pronounced in comparison to the animals intoxicated with chlorpyrifos only. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Determination of chlorpyrifos and its metabolites in cells and culture media by liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Yang, Xiangkun; Wu, Xian; Brown, Kyle A; Le, Thao; Stice, Steven L; Bartlett, Michael G

    2017-09-15

    A sensitive method to simultaneously quantitate chlorpyrifos, chlorpyrifos oxon and the detoxified product 3,5,6-trichloro-2-pyridinol (TCP) was developed using either liquid-liquid extraction for culture media samples, or protein precipitation for cell samples. Multiple reaction monitoring in positive ion mode was applied for the detection of chlorpyrifos and chlorpyrifos oxon, and selected ion recording in negative mode was applied to detect TCP. The method provided linear ranges from 5 to 500, 0.2-20 and 20-2000ng/mL for media samples and from 0.5-50, 0.02-2 and 2-200ng/million cells for CPF, CPO and TCP, respectively. The method was validated using selectivity, linearity, precision, accuracy, recovery, stability and dilution tests. All relative standard deviations (RSDs) and relative errors (REs) for QC samples were within 15% (except for LLOQ, within 20%). This method has been successfully applied to study the neurotoxicity and metabolism of chlorpyrifos in a human neuronal model. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Measurements of Chlorpyrifos Levels in Forager Bees and Comparison with Levels that Disrupt Honey Bee Odor-Mediated Learning Under Laboratory Conditions.

    Science.gov (United States)

    Urlacher, Elodie; Monchanin, Coline; Rivière, Coraline; Richard, Freddie-Jeanne; Lombardi, Christie; Michelsen-Heath, Sue; Hageman, Kimberly J; Mercer, Alison R

    2016-02-01

    Chlorpyrifos is an organophosphate pesticide used around the world to protect food crops against insects and mites. Despite guidelines for chlorpyrifos usage, including precautions to protect beneficial insects, such as honeybees from spray drift, this pesticide has been detected in bees in various countries, indicating that exposure still occurs. Here, we examined chlorpyrifos levels in bees collected from 17 locations in Otago, New Zealand, and compared doses of this pesticide that cause sub-lethal effects on learning performance under laboratory conditions with amounts of chlorpyrifos detected in the bees in the field. The pesticide was detected at 17 % of the sites sampled and in 12 % of the colonies examined. Amounts detected ranged from 35 to 286 pg.bee(-1), far below the LD50 of ~100 ng.bee(-1). We detected no adverse effect of chlorpyrifos on aversive learning, but the formation and retrieval of appetitive olfactory memories was severely affected. Chlorpyrifos fed to bees in amounts several orders of magnitude lower than the LD50, and also lower than levels detected in bees, was found to slow appetitive learning and reduce the specificity of memory recall. As learning and memory play a central role in the behavioral ecology and communication of foraging bees, chlorpyrifos, even in sublethal doses, may threaten the success and survival of this important insect pollinator.

  6. Concentration-dependent interactions of the organophosphates chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase

    International Nuclear Information System (INIS)

    Kaushik, R.; Rosenfeld, Clint A.; Sultatos, L.G.

    2007-01-01

    For many decades it has been thought that oxygen analogs (oxons) of organophosphorus insecticides phosphorylate the catalytic site of acetylcholinesterase by a mechanism that follows simple Michaelis-Menten kinetics. More recently, the interactions of at least some oxons have been shown to be far more complex and likely involve binding of oxons to a second site on acetylcholinesterase that modulates the inhibitory capacity of other oxon molecules at the catalytic site. The current study has investigated the interactions of chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase. Both chlorpyrifos oxon and methyl paraoxon were found to have k i 's that change as a function of oxon concentration. Furthermore, 10 nM chlorpyrifos oxon resulted in a transient increase in acetylthiocholine hydrolysis, followed by inhibition. Moreover, in the presence of 100 nM chlorpyrifos oxon, acetylthiocholine was found to influence both the K d (binding affinity) and k 2 (phosphorylation constant) of this oxon. Collectively, these results demonstrate that the interactions of chlorpyrifos oxon and methyl paraoxon with acetylcholinesterase cannot be described by simple Michaelis-Menten kinetics but instead support the hypothesis that these oxons bind to a secondary site on acetylcholinesterase, leading to activation/inhibition of the catalytic site, depending on the nature of the substrate and inhibitor. Additionally, these data raise questions regarding the adequacy of estimating risk of low levels of insecticide exposure from direct extrapolation of insecticide dose-response curves since the capacity of individual oxon molecules at low oxon levels could be greater than individual oxon molecules in vivo associated with the dose-response curve

  7. The Effects of Serotonin in Immune Cells

    OpenAIRE

    Herr, Nadine; Bode, Christoph; Duerschmied, Daniel

    2017-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] plays an important role in many organs as a peripheral hormone. Most of the body’s serotonin is circulating in the bloodstream, transported by blood platelets and is released upon activation. The functions of serotonin are mediated by members of the 7 known mammalian serotonin receptor subtype classes (15 known subtypes), the serotonin transporter (SERT), and by covalent binding of serotonin to different effector proteins. Almost all immune cells express...

  8. Remediation of Chlorpyrifos-Contaminated Soils by Laboratory-Synthesized Zero-Valent Nano Iron Particles: Effect of pH and Aluminium Salts

    Directory of Open Access Journals (Sweden)

    A. Vijaya Bhaskar Reddy

    2013-01-01

    Full Text Available Degradation of the insecticide chlorpyrifos in contaminated soils was investigated using laboratory synthesized zero-valent nano iron (ZVNI particles. The synthesized ZVNI particles were characterized as nanoscale sized by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The zero-valent state (Fe0 of iron was confirmed by EDAX analysis and the morphology of the ZVNI particles was studied by XRD. Batch experiments were conducted by treating the chlorpyrifos contaminated soil with ZVNI, our results indicate that 90% of chlorpyrifos was degraded after 10 days of incubation. Only 32% degradation was observed with micro zero-valent iron (mZVI and no considerable degradation was attained without ZVNI. The degradation of chlorpyrifos followed the first-order kinetics with a rate constant and a half-life of 0.245 day−1 and 2.82 days, respectively. Degradation was monitored at two different pH values, that is, pH 10 and pH 4. Chlorpyrifos degradation rate constant increased as the pH decreases from 10 to 4. The corresponding rate constant and half-lives were 0.43 day−1 and 1.57days for pH 4, 0.18 day−1 and 3.65 days for pH 10. In addition, an attempt was made by augmenting Al2(SO43 with ZVNI and it was found that the degradation rate of chlorpyrifos was greatly enhanced and the rate constant was rapidly increased from 0.245 day−1 to 0.60 day−1. Hydrolysis and stepwise dechlorination pathway of chlorpyrifos with ZVNI was the dominant reaction.

  9. ROLE OF SEROTONIN IN FISH REPRODUCTION

    Directory of Open Access Journals (Sweden)

    Parvathy ePrasad

    2015-06-01

    Full Text Available The neuroendocrine mechanism regulates reproduction through the hypothalamo-pituitary-gonadal (HPG axis which is evolutionarily conserved in vertebrates. The HPG axis is regulated by a variety of internal as well as external factors. Serotonin, a monoamine neurotransmitter, is involved in a wide range of reproductive functions. In mammals, serotonin regulates sexual behaviours, gonadotropin release and gonadotropin-release hormone (GnRH secretion. However, the serotonin system in teleost may play unique role in the control of reproduction as the mechanism of reproductive control in teleosts is not always the same as in the mammalian models. In fish, the serotonin system is also regulated by natural environmental factors as well as chemical substances. In particular, selective serotonin reuptake inhibitors (SSRIs are commonly detected as pharmaceutical contaminants in the natural environment. Those factors may influence fish reproductive functions via the serotonin system. This review summarizes the functional significance of serotonin in the teleosts reproduction.

  10. An approach for serotonin depletion in pigs: effects on serotonin receptor binding

    DEFF Research Database (Denmark)

    Ettrup, Anders; Kornum, Birgitte R; Weikop, Pia

    2011-01-01

    Depletion of central serotonin (5-HT) levels and dysfunction in serotonergic transmission are implicated in a variety of human CNS disorders. The mechanisms behind these serotonergic deficits have been widely studied using rodent models, but only to a limited extent in larger animal models. The pig...... is increasingly used as an experimental animal model especially in neuroscience research. Here, we present an approach for serotonin depletion in the pig brain. Central serotonin depletion in Danish Landrace pigs was achieved following 4 days treatment with para-chlorophenylalanine (pCPA). On day 5, tissue...... average decreases in 5-HT concentrations of 61% ± 14% and 66% ± 16%, respectively, and a substantial loss of 5-HT immunostaining was seen throughout the brain. The serotonin depletion significantly increased 5-HT₄ receptor binding in nucleus accumbens, but did not alter 5-HT(1A) and 5-HT(2A) receptor...

  11. An approach for serotonin depletion in pigs: effects on serotonin receptor binding

    DEFF Research Database (Denmark)

    Ettrup, Anders; Kornum, Birgitte R; Weikop, Pia

    2011-01-01

    Depletion of central serotonin (5-HT) levels and dysfunction in serotonergic transmission are implicated in a variety of human CNS disorders. The mechanisms behind these serotonergic deficits have been widely studied using rodent models, but only to a limited extent in larger animal models. The pig...... is increasingly used as an experimental animal model especially in neuroscience research. Here, we present an approach for serotonin depletion in the pig brain. Central serotonin depletion in Danish Landrace pigs was achieved following 4 days treatment with para-chlorophenylalanine (pCPA). On day 5, tissue...... average decreases in 5-HT concentrations of 61% ± 14% and 66% ± 16%, respectively, and a substantial loss of 5-HT immunostaining was seen throughout the brain. The serotonin depletion significantly increased 5-HT4 receptor binding in nucleus accumbens, but did not alter 5-HT(1A) and 5-HT(2A) receptor...

  12. Serotonin metabolism in rat brain

    International Nuclear Information System (INIS)

    Schutte, H.H.

    1976-01-01

    The metabolism of serotonin in rat brain was studied by measuring specific activities of tryptophan in plasma and of serotonin, 5-hydroxyindole acetic acid and tryptophan in the brain after intravenous injection of tritiated tryptophan. For a detailed analysis of the specific activities, a computer simulation technique was used. It was found that only a minor part of serotonin in rat brain is synthesized from tryptophan rapidly transported from the blood. It is suggested that the brain tryptophan originates from brain proteins. It was also found that the serotonin in rat brain is divided into more than one metabolic compartment

  13. Physicochemical Characteristics and Slow Release Performances of Chlorpyrifos Encapsulated by Poly(butyl acrylate-co-styrene) with the Cross-Linker Ethylene Glycol Dimethacrylate.

    Science.gov (United States)

    Wang, Yu; Gao, Zideng; Shen, Feng; Li, Yang; Zhang, Sainan; Ren, Xueqin; Hu, Shuwen

    2015-06-03

    Chlorpyrifos' application and delivery to the target substrate needs to be controlled to improve its use. Herein, poly(butyl acrylate-co-styrene) (poly(BA/St)) and poly(BA/St/ethylene glycol dimethacrylate (EGDMA)) microcapsules loaded with chlorpyrifos as a slow release formulation were prepared by emulsion polymerization. The effects of structural characteristics on the chlorpyrifos microcapsule particle size, entrapment rate (ER), pesticide loading (PL), and release behaviors in ethyl alcohol were investigated. Fourier transform infrared and thermogravimetric analysis confirmed the successful entrapment of chlorpyrifos. The ER and PL varied with the BA/St monomer ratio, chlorpyrifos/monomer core-to-shell ratio, and EGDMA cross-linker content with consequence that suitable PL was estimated to be smaller than 3.09% and the highest ER was observed as 96.74%. The microcapsule particle size (88.36-101.8 nm) remained mostly constant. The extent of sustainable release decreased with increasing content of BA, St, or chlorpyrifos in the oil phase. Specifically, an adequate degree of cross-linking with EGMDA (0.5-2.5%) increased the extent of sustainable release considerably. However, higher levels of cross-linking with EGDMA (5-10%) reduced the extent of sustainable release. Chlorpyrifos release from specific microcapsules (monomer ratio 1:2 with 0.5% EGDMA or 5 g chlopyrifos) tended to be a diffusion-controlled process, while for others, the kinetics probably indicated the initial rupture release.

  14. Serotonin Receptors in Hippocampus

    Science.gov (United States)

    Berumen, Laura Cristina; Rodríguez, Angelina; Miledi, Ricardo; García-Alcocer, Guadalupe

    2012-01-01

    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system. PMID:22629209

  15. Radioprotective action of serotonin

    Energy Technology Data Exchange (ETDEWEB)

    Vodop' yanova, L G; Vinogradova, M F [Leningradskij Gosudarstvennyj Univ. (USSR). Biologicheskij Nauchno-Issledovatel' skij Inst.

    1975-09-01

    Tests in vitro were performed to study the effect of serotonin on oxidative phosphorylation in the mitochondria of rat liver. Serotonin (2.10/sup -4/ M) was shown to suppress oxidation of ..cap alpha..-ketoglutaric acid without significantly changing succinic acid consumption. A comparison of the results obtained with those from the literature allowed to assume that the radioprotective effect of serotonin was based not only on its previously known ability to cause tissue hypoxia, but also on its ability to affect oxidation processes in mitochondria.

  16. Effect of serotonin on the expression of antigens and DNA levels in Yersinia pestis cells with different plasmid content

    Science.gov (United States)

    Klueva, Svetlana N.; Korsukov, Vladimir N.; Schukovskaya, Tatyana N.; Kravtsov, Alexander L.

    2004-08-01

    Using flow cytometry (FCM) the influence of exogenous serotonin on culture growth, DNA content and fluorescence intensity of cells binding FITC-labelled plague polyclonal immunoglobulins was studied in Yersinia pestis EV (pFra+, pCad+, pPst+), Yersinia pestis KM218 (pFra-, pCad-, pPst-), Yersinia pestis KM 216 (pFra-, pCad-, pPst+). The results have been obtained by FCM showed serotonin accelerated Yersinia pestis EV (pFra+, pCad+, pPst+), Yersinia pestis KM218 (pFra-, pCad-, pPst-) culture growth during cultivation in Hottinger broth pH 7.2 at 28°C at concentration of 10-5 M. The presence of 10-5 M serotonin in nutrient broth could modulate DNA content in 37°C growing population of plague microbe independently of their plasmid content. Serotonin have been an impact on the distribution pattern of the cells according to their phenotypical characteristics, which was reflected in the levels of population heterogeneity in the intensity of specific immunofluorescence determined by FMC.

  17. Behaviors of 14C-butachlor, 14C-chlorpyrifos and 14C-DDT in Rana japonica japonica Guenther

    International Nuclear Information System (INIS)

    Zhang Yiqiang; Zhong Chuangguang; Zhao Xiaokui; Chen Shunhua

    2002-01-01

    The research on the behaviors of 14 C-butachlor, 14 C-chlorpyrifos and 14 C-DDT in the frog Rana japonica japonica Guenther was carried out. After administrated per os to the frogs in doses of 380, 347, 363 Bq/g, 14 C-butachlor, 14 C-chlorpyrifos and 14 C-DDT, were distributed respectively to various organs within 24 h with specific accumulating organs as gallbladder, intestine and intestine, relevantly to the pesticides described. Compared to that in gallbladder and intestine, the radioactivity of many organs was extremely low, and this might due to the characters of the pesticides. Analysis of the metabolites of 14 C-DDT in frog at 24 th hr demonstrated that DDT was difficult to be degraded. Most 14 C-butachlor, 14 C-chlorpyrifos 14 C-DDT in liver and fat or ovary of frog was extractable with acetone. However, there were some differences between the pesticides, and the organs as well. And 14 C-butachlor, 14 C-chlorpyrifos or 14 C-DDT were better bound in liver than in fat

  18. Efeito da interação do nicosulfuron e chlorpyrifos sobre o banco de sementes e os atributos microbianos do solo Effect of sequential nicosulfuron and chlorpyrifos application on seed bank and soil microbial characteristics

    Directory of Open Access Journals (Sweden)

    Taciane Almeida de Oliveira

    2009-06-01

    Full Text Available Considerando o período de competição de plantas daninhas e a incidência da lagarta-do-cartucho na cultura do milho, há necessidade de aplicação, em curto intervalo de tempo, de herbicidas e de inseticidas, principalmente o nicosulfuron e o chlorpyrifos. O objetivo deste estudo foi avaliar o efeito da aplicação sequencial do nicosulfuron e do chlorpyrifos sobre a emergência de plântulas do banco de sementes, a taxa de desprendimento de CO2 (respiração basal e o C da biomassa microbiana (CBM do solo. Foi realizada aplicação sequencial, em solo, do nicosulfuron (doses de 0 a 64 g ha-1 associado ou não ao chlorpyrifos (0 e 240 g ha-1. Aos 20, 40 e 60 dias após a aplicação (DAA dos produtos, todas as plântulas emergidas do banco de sementes foram identificadas em nível de espécie, sendo estimadas a frequência, densidade e abundância, além do índice de valor de importância (IVI. Aos 60 DAA, determinou-se também a taxa de desprendimento de CO2, o CBM e o quociente metabólico (qCO2, por meio da relação entre o CO2 acumulado e o CBM total do solo. A aplicação alterou severamente a massa de plântulas secas e o número de espécies nas doses superiores a 20 g ha-1 do nicosulfuron. Na presença do herbicida, as espécies com maior IVI foram Boehavia diffusa e Commelina benghalensis. Quanto aos bioindicadores do solo, foi observado decréscimo na taxa da respiração basal do solo com o aumento da dose aplicada do nicosulfuron associado ao chlorpyrifos, sem efeito na ausência do inseticida. Houve decréscimo linear no CBM em todos os casos, independentemente da aplicação do chlorpyrifos; entretanto, observou-se uma taxa de decréscimo 4,5 vezes maior para o solo que recebeu esse inseticida em conjunto com o nicosulfuron. A avaliação do qCO2 confirmou o efeito negativo da aplicação do inseticida e do herbicida. Conclui-se que a aplicação de chlorpyrifos + nicosulfuron promove impacto negativo sobre o banco de

  19. Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors

    Energy Technology Data Exchange (ETDEWEB)

    Bedia, Carmen, E-mail: carmen.bedia@idaea.csic.es; Dalmau, Núria, E-mail: nuria.dalmau@idaea.csic.es; Jaumot, Joaquim, E-mail: joaquim.jaumot@idaea.csic.es; Tauler, Romà, E-mail: roma.tauler@idaea.csic.es

    2015-07-15

    Endocrine disruptors (EDs) are a class of environmental toxic molecules able to interfere with the normal hormone metabolism. Numerous studies involve EDs exposure to initiation and development of cancers, including prostate cancer. In this work, three different EDs (aldrin, aroclor 1254 and chlorpyrifos (CPF)) were investigated as potential inducers of a malignant phenotype in DU145 prostate cancer cells after a chronic exposure. Epithelial to mesenchymal transition (EMT) induction, proliferation, migration, colony formation and release of metalloproteinase 2 (MMP-2) were analyzed in 50-day exposed cells to the selected EDs. As a result, aldrin and CPF exposure led to an EMT induction (loss of 16% and 14% of E-cadherin levels, respectively, compared to the unexposed cells). Aroclor and CPF presented an increased migration (134% and 126%, respectively), colony formation (204% and 144%, respectively) and MMP-2 release (137% in both cases) compared to the unexposed cells. An untargeted lipidomic analysis was performed to decipher the lipids involved in the observed transformations. As general results, aldrin exposure showed a global decrease in phospholipids and sphingolipids, and aroclor and CPF showed an increase of certain phospholipids, glycosphingolipids as well as a remarkable increase of some cardiolipin species. Furthermore, the three exposures resulted in an increase of some triglyceride species. In conclusion, some significant changes in lipids were identified and thus we postulate that some lipid compounds and lipid metabolic pathways could be involved in the acquisition of the malignant phenotype in exposed prostate cancer cells to the selected EDs. - Highlights: • Aldrin, aroclor and chlorpyrifos induced an aggressive phenotype in DU145 cells. • An untargeted lipidomic analysis has been performed on chronic exposed cells. • Lipidomic results showed changes in specific lipid species under chronic exposure. • These lipids may have a role in the

  20. Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors

    International Nuclear Information System (INIS)

    Bedia, Carmen; Dalmau, Núria; Jaumot, Joaquim; Tauler, Romà

    2015-01-01

    Endocrine disruptors (EDs) are a class of environmental toxic molecules able to interfere with the normal hormone metabolism. Numerous studies involve EDs exposure to initiation and development of cancers, including prostate cancer. In this work, three different EDs (aldrin, aroclor 1254 and chlorpyrifos (CPF)) were investigated as potential inducers of a malignant phenotype in DU145 prostate cancer cells after a chronic exposure. Epithelial to mesenchymal transition (EMT) induction, proliferation, migration, colony formation and release of metalloproteinase 2 (MMP-2) were analyzed in 50-day exposed cells to the selected EDs. As a result, aldrin and CPF exposure led to an EMT induction (loss of 16% and 14% of E-cadherin levels, respectively, compared to the unexposed cells). Aroclor and CPF presented an increased migration (134% and 126%, respectively), colony formation (204% and 144%, respectively) and MMP-2 release (137% in both cases) compared to the unexposed cells. An untargeted lipidomic analysis was performed to decipher the lipids involved in the observed transformations. As general results, aldrin exposure showed a global decrease in phospholipids and sphingolipids, and aroclor and CPF showed an increase of certain phospholipids, glycosphingolipids as well as a remarkable increase of some cardiolipin species. Furthermore, the three exposures resulted in an increase of some triglyceride species. In conclusion, some significant changes in lipids were identified and thus we postulate that some lipid compounds and lipid metabolic pathways could be involved in the acquisition of the malignant phenotype in exposed prostate cancer cells to the selected EDs. - Highlights: • Aldrin, aroclor and chlorpyrifos induced an aggressive phenotype in DU145 cells. • An untargeted lipidomic analysis has been performed on chronic exposed cells. • Lipidomic results showed changes in specific lipid species under chronic exposure. • These lipids may have a role in the

  1. Indigenous children nearby plantations with chlorpyrifos-treated bags have elevated 3,5,6-trichloro-2-pyridinol (TCPy) urinary concentrations

    NARCIS (Netherlands)

    Wendel de Joode, van B.; Barraza-Ruiz, D.A.; Ruepert, C.; Mora, A.M.; Córdoba, L.; Öberg, M.; Wesseling, C.; Mergler, D.; Lindh, C.

    2012-01-01

    BACKGROUND: The US Environmental Protection Agency voluntary phased-out residential use of chlorpyrifos in 2001. In contrast, in Costa Rica, chlorpyrifos-treated bags are increasingly used to protect banana and plantain fruits from insects and to fulfill product standards, even in populated areas.

  2. Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development.

    Directory of Open Access Journals (Sweden)

    Windy A Boyd

    2009-09-01

    Full Text Available The nematode Caenorhabditis elegans is being assessed as an alternative model organism as part of an interagency effort to develop better means to test potentially toxic substances. As part of this effort, assays that use the COPAS Biosort flow sorting technology to record optical measurements (time of flight (TOF and extinction (EXT of individual nematodes under various chemical exposure conditions are being developed. A mathematical model has been created that uses Biosort data to quantitatively and qualitatively describe C. elegans growth, and link changes in growth rates to biological events. Chlorpyrifos, an organophosphate pesticide known to cause developmental delays and malformations in mammals, was used as a model toxicant to test the applicability of the growth model for in vivo toxicological testing.L1 larval nematodes were exposed to a range of sub-lethal chlorpyrifos concentrations (0-75 microM and measured every 12 h. In the absence of toxicant, C. elegans matured from L1s to gravid adults by 60 h. A mathematical model was used to estimate nematode size distributions at various times. Mathematical modeling of the distributions allowed the number of measured nematodes and log(EXT and log(TOF growth rates to be estimated. The model revealed three distinct growth phases. The points at which estimated growth rates changed (change points were constant across the ten chlorpyrifos concentrations. Concentration response curves with respect to several model-estimated quantities (numbers of measured nematodes, mean log(TOF and log(EXT, growth rates, and time to reach change points showed a significant decrease in C. elegans growth with increasing chlorpyrifos concentration.Effects of chlorpyrifos on C. elegans growth and development were mathematically modeled. Statistical tests confirmed a significant concentration effect on several model endpoints. This confirmed that chlorpyrifos affects C. elegans development in a concentration dependent

  3. Rotavirus and Serotonin Cross-Talk in Diarrhoea

    Science.gov (United States)

    Nordgren, Johan; Karlsson, Thommie; Sharma, Sumit; Magnusson, Karl-Eric; Svensson, Lennart

    2016-01-01

    Rotavirus (RV) has been shown to infect and stimulate secretion of serotonin from human enterochromaffin (EC) cells and to infect EC cells in the small intestine of mice. It remains to identify which intracellularly expressed viral protein(s) is responsible for this novel property and to further establish the clinical role of serotonin in RV infection. First, we found that siRNA specifically silencing NSP4 (siRNANSP4) significantly attenuated secretion of serotonin from Rhesus rotavirus (RRV) infected EC tumor cells compared to siRNAVP4, siRNAVP6 and siRNAVP7. Second, intracellular calcium mobilization and diarrhoeal capacity from virulent and avirulent porcine viruses correlated with the capacity to release serotonin from EC tumor cells. Third, following administration of serotonin, all (10/10) infants, but no (0/8) adult mice, responded with diarrhoea. Finally, blocking of serotonin receptors using Ondansetron significantly attenuated murine RV (strain EDIM) diarrhoea in infant mice (2.9 vs 4.5 days). Ondansetron-treated mice (n = 11) had significantly (p serotonin receptor antagonist significantly (p serotonin from human EC tumor cells and that serotonin participates in RV diarrhoea, which can be attenuated by Ondansetron. PMID:27459372

  4. Uremic anorexia: a consequence of persistently high brain serotonin levels? The tryptophan/serotonin disorder hypothesis.

    Science.gov (United States)

    Aguilera, A; Selgas, R; Codoceo, R; Bajo, A

    2000-01-01

    Anorexia is a frequent part of uremic syndrome, contributing to malnutrition in dialysis patients. Many factors have been suggested as responsible for uremic anorexia. In this paper we formulate a new hypothesis to explain the appetite disorders in dialysis patients: "the tryptophan/serotonin disorder hypothesis." We review current knowledge of normal hunger-satiety cycle control and the disorders described in uremic patients. There are four phases in food intake regulation: (1) the gastric phase, during which food induces satiety through gastric distention and satiety peptide release; (2) the post absorptive phase, during which circulating compounds, including glucose and amino acids, cause satiety by hepatic receptors via the vagus nerve; (3) the hepatic phase, during which adenosine triphosphate (ATP) concentration is the main stimulus inducing hunger or satiety, with cytokines inhibiting ATP production; and (4) the central phase, during which appetite is regulated through peripheral (circulating plasma substances and neurotransmitters) and brain stimuli. Brain serotonin is the final target for peripheral mechanisms controlling appetite. High brain serotonin levels and a lower serotonin/dopamine ratio cause anorexia. Plasma and brain amino acid concentrations are recognized factors involved in neurotransmitter synthesis and appetite control. Tryptophan is the substrate of serotonin synthesis. High plasma levels of anorectics such as tryptophan (plasma and brain), cholecystokinin, tumor necrosis factor alpha, interleukin-1, and leptin, and deficiencies of nitric oxide and neuropeptide Y have been described in uremia; all increase intracerebral serotonin. We suggest that brain serotonin hyperproduction due to a uremic-dependent excess of tryptophan may be the final common pathway involved in the genesis of uremic anorexia. Various methods of ameliorating anorexia by decreasing the central effects of serotonin are proposed.

  5. Histopathological effects, responses of oxidative stress, inflammation, apoptosis biomarkers and alteration of gene expressions related to apoptosis, oxidative stress, and reproductive system in chlorpyrifos-exposed common carp (Cyprinus carpio L.).

    Science.gov (United States)

    Altun, Serdar; Özdemir, Selçuk; Arslan, Harun

    2017-11-01

    In this study, we aimed to identify the toxic effects of chlorpyrifos exposure on the tissues of common carp. For this purpose, we evaluated histopathological changes in the brain, gills, liver, kidney, testis, and ovaries after 21 days of chlorpyrifos exposure. Activation of 8-OHdG, cleaved caspase-3, and iNOS were assesed by immunofluorescence assay in chlorpyrifos-exposed brain and liver tissue. Additionally, we measured the expression levels of caspase-3, caspase-8, iNOS, MT1, CYP1A, and CYP3A genes in chlorpyrifos-exposed brain tissue, as well as the expression levels of FSH and LH genes in chlorpyrifos-exposed ovaries, using qRT-PCR. We observed severe histopathological lesions, including inflammation, degeneration, necrosis, and hemorrhage, in the evaluated tissues of common carp after both high and low levels of exposure to chlorpyrifos. We detected strong and diffuse signs of immunofluorescence reaction for 8-OHdG, iNOS, and cleaved caspase-3 in the chlorpyrifos-exposed brain and liver tissues. Furthermore, we found that chlorpyrifos exposure significantly upregulated the expressions of caspase-3, caspase-8, iNOS, and MT1, and also moderately upregulated CYP1A and CYP3A in the brain tissue of exposed carp. We also noted downregulation of FSH and LH gene expressions in chlorpyrifos-exposed ovary tissues. Based on our results, chlorpyrifos toxication caused crucial histopathological lesions in vital organs, induced oxidative stress, inflammation, and apoptosis in liver and brain tissues, and triggered reproductive sterility in common carp. Therefore, we can propose that chlorpyrifos toxication is highly dangerous to the health of common carp. Moreover, chlorpyrifos pollution in the water could threaten the common carp population. Use of chlorpyrifos should be restricted, and aquatic systems should be monitored for chlorpyrifos pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.

    Science.gov (United States)

    Pai, Vaibhav P; Marshall, Aaron M; Hernandez, Laura L; Buckley, Arthur R; Horseman, Nelson D

    2009-01-01

    The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs

  7. Brain serotonin content regulates the manifestation of tramadol-induced seizures in rats: disparity between tramadol-induced seizure and serotonin syndrome.

    Science.gov (United States)

    Fujimoto, Yohei; Funao, Tomoharu; Suehiro, Koichi; Takahashi, Ryota; Mori, Takashi; Nishikawa, Kiyonobu

    2015-01-01

    Tramadol-induced seizures might be pathologically associated with serotonin syndrome. Here, the authors investigated the relationship between serotonin and the seizure-inducing potential of tramadol. Two groups of rats received pretreatment to modulate brain levels of serotonin and one group was treated as a sham control (n = 6 per group). Serotonin modulation groups received either para-chlorophenylalanine or benserazide + 5-hydroxytryptophan. Serotonin, dopamine, and histamine levels in the posterior hypothalamus were then measured by microdialysis, while simultaneously infusing tramadol until seizure onset. In another experiment, seizure threshold with tramadol was investigated in rats intracerebroventricularly administered with either a serotonin receptor antagonist (methysergide) or saline (n = 6). Pretreatment significantly affected seizure threshold and serotonin fluctuations. The threshold was lowered in para-chlorophenylalanine group and raised in benserazide + 5-hydroxytryptophan group (The mean ± SEM amount of tramadol needed to induce seizures; sham: 43.1 ± 4.2 mg/kg, para-chlorophenylalanine: 23.2 ± 2.8 mg/kg, benserazide + 5-hydroxytryptophan: 59.4 ± 16.5 mg/kg). Levels of serotonin at baseline, and their augmentation with tramadol infusion, were less in the para-chlorophenylalanine group and greater in the benserazide + 5-hydroxytryptophan group. Furthermore, seizure thresholds were negatively correlated with serotonin levels (correlation coefficient; 0.71, P seizure threshold (P seizures, and that serotonin concentrations were negatively associated with seizure thresholds. Moreover, serotonin receptor antagonism precipitated seizure manifestation, indicating that tramadol-induced seizures are distinct from serotonin syndrome.

  8. Reference values for acetyl and butyrylcholinesterases in cattle under actual management conditions, hepatic and renal function by application of chlorpyrifos.

    Science.gov (United States)

    Ferré, Daniela M; Lentini, Valeria R; Romano, R Raquel; Ludueña, Hector R; Jotallán, Paola J; Gorla, Nora B M

    2018-03-04

    Chlorpyrifos is an anticholinesterase organophosphate insecticide widely used in Argentina in the production of food derived from animal, fruit and horticultural origin and is reported as a residue within these products. Local reference values for acetyl and butyrylcholinesterase were determined in Aberdeen Angus bovine and cross bred cattle (n = 25), a requirement to be able to evaluate toxicity of commercial organophosphate and carbamate formulations. The activity of cholinesterase enzymes presented an overall mean of 2,183.00 ± 485.6 IU L -1 for erythrocyte acetylcholinesterase and 203.1 ± 42.06 IU L -1 for plasma butyrylcholinesterase, which are used as reference values for meat steers within a system of intensive production in a semi-arid region. The toxic potential of chlorpyrifos in steers of the same breeds (n = 12) was assessed applying chlorpyrifos 15.00% Tipertox® in a single therapeutic dose of 7.50 mg kg -1 by topical route. Prior to application and then on day 1 and day 21 post-application, both blood cholinesterases, serum chlorpyrifos concentration by ultra-high resolution liquid chromatography with mass detector, analysis of blood counts, total proteins, liver enzymes, urea and creatinine were evaluated. The mean plasma concentration of chlorpyrifos was 27.90 ug L -1 at 24 h. The findings indicate that the therapeutic treatment of castrated male bovines treated with chlorpyrifos, applied by pour-on according to the manufacturer's instructions, does not cause changes in the variables evaluated.

  9. Chlorpyrifos- and chlorpyrifos oxon-induced neurite retraction in pre-differentiated N2a cells is associated with transient hyperphosphorylation of neurofilament heavy chain and ERK 1/2

    International Nuclear Information System (INIS)

    Sindi, Ramya A.; Harris, Wayne; Arnott, Gordon; Flaskos, John; Lloyd Mills, Chris; Hargreaves, Alan J.

    2016-01-01

    Chlorpyrifos (CPF) and CPF-oxon (CPO) are known to inhibit neurite outgrowth but little is known about their ability to induce neurite retraction in differentiating neuronal cells. The aims of this study were to determine the ability of these compounds to destabilize neurites and to identify the key molecular events involved. N2a cells were induced to differentiate for 20 h before exposure to CPF or CPO for 2–8 h. Fixed cell monolayers labeled with carboxyfluorescein succinimidyl ester or immunofluorescently stained with antibodies to tubulin (B512) or phosphorylated neurofilament heavy chain (Ta51) showed time- and concentration-dependent reductions in numbers and length of axon-like processes compared to the control, respectively, retraction of neurites being observed within 2 h of exposure by live cell imaging. Neurofilament disruption was also observed in treated cells stained by indirect immunofluorescence with anti-phosphorylated neurofilament heavy chain (NFH) monoclonal antibody SMI34, while the microtubule network was unaffected. Western blotting analysis revealed transiently increased levels of reactivity of Ta51 after 2 h exposure and reduced levels of reactivity of the same antibody following 8 h treatment with both compounds, whereas reactivity with antibodies to anti-total NFH or anti-tubulin was not affected. The alteration in NFH phosphorylation at 2 h exposure was associated with increased activation of extracellular signal-regulated protein kinase ERK 1/2. However, increased levels of phosphatase activity were observed following 8 h exposure. These findings suggest for the first time that organophosphorothionate pesticide-induced neurite retraction in N2a cells is associated with transient increases in NFH phosphorylation and ERK1/2 activation. - Highlights: • Chlorpyrifos and chlorpyrifos oxon induced rapid neurite retraction in N2a cells. • This occurred following transient hyperphosphorylation of ERK 1/2. • It was concomitant with

  10. Chlorpyrifos- and chlorpyrifos oxon-induced neurite retraction in pre-differentiated N2a cells is associated with transient hyperphosphorylation of neurofilament heavy chain and ERK 1/2

    Energy Technology Data Exchange (ETDEWEB)

    Sindi, Ramya A., E-mail: ramya.sindi2010@my.ntu.ac.uk [Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom); School of Applied Medical Sciences, Umm Al-Qura University, Makkah (Saudi Arabia); Harris, Wayne [Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom); Arnott, Gordon [School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS (United Kingdom); Flaskos, John [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Lloyd Mills, Chris [School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS (United Kingdom); Hargreaves, Alan J., E-mail: alan.hargreaves@ntu.ac.uk [Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom)

    2016-10-01

    Chlorpyrifos (CPF) and CPF-oxon (CPO) are known to inhibit neurite outgrowth but little is known about their ability to induce neurite retraction in differentiating neuronal cells. The aims of this study were to determine the ability of these compounds to destabilize neurites and to identify the key molecular events involved. N2a cells were induced to differentiate for 20 h before exposure to CPF or CPO for 2–8 h. Fixed cell monolayers labeled with carboxyfluorescein succinimidyl ester or immunofluorescently stained with antibodies to tubulin (B512) or phosphorylated neurofilament heavy chain (Ta51) showed time- and concentration-dependent reductions in numbers and length of axon-like processes compared to the control, respectively, retraction of neurites being observed within 2 h of exposure by live cell imaging. Neurofilament disruption was also observed in treated cells stained by indirect immunofluorescence with anti-phosphorylated neurofilament heavy chain (NFH) monoclonal antibody SMI34, while the microtubule network was unaffected. Western blotting analysis revealed transiently increased levels of reactivity of Ta51 after 2 h exposure and reduced levels of reactivity of the same antibody following 8 h treatment with both compounds, whereas reactivity with antibodies to anti-total NFH or anti-tubulin was not affected. The alteration in NFH phosphorylation at 2 h exposure was associated with increased activation of extracellular signal-regulated protein kinase ERK 1/2. However, increased levels of phosphatase activity were observed following 8 h exposure. These findings suggest for the first time that organophosphorothionate pesticide-induced neurite retraction in N2a cells is associated with transient increases in NFH phosphorylation and ERK1/2 activation. - Highlights: • Chlorpyrifos and chlorpyrifos oxon induced rapid neurite retraction in N2a cells. • This occurred following transient hyperphosphorylation of ERK 1/2. • It was concomitant with

  11. Residues of Lindane and Chlorpyrifos in firewood and woodsmoke

    Science.gov (United States)

    P.B. Bush; J.W. Taylor; Charles K. McMahon; D.G. Neary

    1987-01-01

    Abstract.Pine bark beetle insecticide treatment plots were established on the Ocala National Forest, in central Florida. Each plot consisted of five sand pine, pinus clausa (Chapm. Ex. Engelm) Vassey ex. Sarg., trees treated with either 0.5% lindane (benzene hexachloride) or 2% chlorpyrifos (O,O-diethyl O-(3,5,6-trichloro-2-pgridyl) phosphorothioate...

  12. Toxicity of Chlorpyrifos and Dimethoate to the Ciliate Urostyla grandis, with Notes on Their Effects on Cell Ultrastructure

    Science.gov (United States)

    Mu, Weijie; Warren, Alan; Pan, Xuming; Ying, Chen

    2018-06-01

    Chlorpyrifos and dimethoate are overused agricultural pesticides that can trigger trophic cascades, resulting in toxicity to both terrestrial and aquatic organisms as well as altered ecosystems. In previous studies, substantial attention has been given to the effects of pesticides on vertebrate species and, to a lesser extent, species of zooplankton. The present study was designed to show that the fission time effective concentration in ciliates is a potential aquatic detection index for environmental monitoring. The ciliate Urostyla grandis was treated with doses of chlorpyrifos and dimethoate. After exposed to the pesticides, the LC 50 ( i.e., concentration that killed 50% of the ciliate cells within 24 h) values were 0.029 mg L-1 for chlorpyrifos and 0.0685 mg L-1 for dimethoate. The fission time effective concentrations after 168 h of exposure were 0.0075-0.0093 mg L-1 for chlorpyrifos and 0.2640-0.2750 mg L-1 for dimethoate. These results show that the fission time effective concentration is lower than the LC 50 value in ciliates, indicating that fission time effective concentration is more suitable than the LC 50 value for environmental monitoring using ciliates. The effects of chlorpyrifos and dimethoate on ciliate cell ultrastructures included agglutination of chromatin in the macronucleus, protruded and discontinuous macronuclear and micronuclear membranes, loss of integrity of mitochondrial membranes and contents, and abscission and deformation of the adoral zone of membranelles.

  13. Effects of insecticides chlorpyrifos, emamectin benzoate and fipronil on Spodoptera litura might be mediated by OBPs and CSPs.

    Science.gov (United States)

    Lin, X; Jiang, Y; Zhang, L; Cai, Y

    2017-12-04

    Spodoptera litura is a widespread polyphagous insect pest that can develop resistance and cross-resistance to insecticides, making it difficult to control. Insecticide exposure has previously been linked with induction of specific olfactory-related proteins, including some chemosensory proteins (CSPs) and odorant-binding proteins (OPBs), which may disrupt detection of environmental factors and reduce fitness. However, functional evidence supporting insecticide and OBPs/CSPs mediation remains unknown. Here we fed male S. litura moths with sucrose water containing one of three insecticides, chlorpyrifos, emamectin benzoate or fipronil, and used real-time quantitative polymerase chain reaction and RNAi to investigate OBPs and CSPs expression and their correlations with survival. Chlorpyrifos and emamectin benzoate increased expression of 78% of OBPs, plus 63 and 56% of CSP genes, respectively, indicating a major impact on these gene families. RNAi knockdown of SlituCSP18, followed by feeding with chlorpyrifos or fipronil, decreased survival rates of male moths significantly compared with controls. Survival rate also decreased significantly with the downregulation of SlituOBP9 followed by feeding with chlorpyrifos. Thus, although these three insecticides had different effects on OBP and CSP gene expression, we hypothesize that SlituOBPs and SlituCSPs might mediate their effects by increasing their expression levels to improve survival. Moreover, the differential response of S. litura male moths to the three insecticides indicated the potential specificity of chlorpyrifos affect SlituCSP18 and SlituOBP9 expression.

  14. Effects of pesticide (Chlorpyrifos Ethyl) on the fingerlings of catfish ...

    African Journals Online (AJOL)

    Acute toxicity bioassay of the organophosphate pesticide chlorpyrifos ethyl on the fingerlings of Clarias gariepinus was evaluated to determine its effect on the survival, body morphology and the lethal concentration (LC50). Following a preliminary bioassay in mg/l concentration which showed 100% mortality, fish were ...

  15. Effects of chlorpyrifos in freshwater model ecosystems: the influence of experimental conditions on ecotoxicological thresholds.

    Science.gov (United States)

    van Wijngaarden, René P A; Brock, Theo C M; Douglas, Mark T

    2005-10-01

    Three experiments were conducted to determine the impact of the insecticide chlorpyrifos (single applications of 0.01 to 10 microg AI litre(-1)) in plankton-dominated nutrient-rich microcosms. The microcosms (water volume approximately 14 litres) were established in the laboratory under temperature, light regimes and nutrient levels that simulated cool 'temperate' and warm 'Mediterranean' environmental conditions. The fate of chlorpyrifos in the water column was monitored and the effects on zooplankton, phytoplankton and community metabolism were followed for 4 or 5 weeks. The mean half-life (t1/2) of chlorpyrifos in the water of the test systems was 45 h under 'temperate' conditions and about 30 h under 'Mediterranean' environmental conditions. Microcrustaceans (cladocerans and copepod nauplii) were amongst the most sensitive organisms. All three experiments yielded community NOEC (no observed effect concentrations) of 0.1 microg AI litre(-1), similar to those derived from more complex outdoor studies. Above this threshold level, responses and effect chains, and time spans for recovery, differed between the experiments. For example, algal blooms as an indirect effect from the impact of exposure on grazing organisms were only observed under the 'Mediterranean' experimental conditions. The relatively simple indoor test system seems to be sufficient to provide estimates of safe threshold levels for the acute insecticidal effects of low-persistence compounds such as chlorpyrifos. The robustness of the community NOEC indicates that this threshold level is likely to be representative for many freshwater systems. Copyright (c) 2005 Society of Chemical Industry.

  16. Role of folic acid in chlorpyrifos induced teratogenicity in mice ...

    African Journals Online (AJOL)

    Folic acid is known to reduce the incidence of neural tube defects, in animal experiments however, it has not been effective in reducing the congenital anomalies caused by antiepileptics and many other chemicals. Pesticides of organophosphate group such as chlorpyrifos are widely used in agriculture and household, and ...

  17. Preparation and evaluation of serotonin labelled with 125I

    International Nuclear Information System (INIS)

    Sivaprasad, N.; Geetha, R.; Ghodke, A.S.; Karmalkar, C.P.; Pilkhwal, N.S.; Sarnaik, J.S.; Borkute, S.D.; Nadkarni, G.D.

    1999-01-01

    Radiolabelled serotonin is an important tool for studying serotonin receptors and estimating serotonin levels in plants and animals. In this paper we report the synthesis of serotonin - 125 I. Tyrosine Methyl Ester (TME) was first labelled with 125 I using chloramine-T method. 125 I-TME was then conjugated with serotonin using carbodimide. The labelled conjugate was purified using gel filtration. Yield and radiochemical purity were estimated using electrophoresis and ITLC in different solvent systems. The binding of the purified tracer to serotonin receptors and serotonin antibodies was studied. (author)

  18. Short-term effects of chlorpyrifos and other pesticides on earthworm numbers

    Science.gov (United States)

    Chlorpyrifos is generally used on grasses grown for seed to control billbugs (Sphenophorus venatus confluens) and cutworms (various species), and on other crops for crane fly larvae (Tipula sp.), garden symphyllans (Scutigerella immaculate), and wireworms (Agriotes sp.). The indirect impact of cont...

  19. Serotonin transporter gene polymorphisms and brain function during emotional distraction from cognitive processing in posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Hauser Michael A

    2011-05-01

    Full Text Available Abstract Background Serotonergic system dysfunction has been implicated in posttraumatic stress disorder (PTSD. Genetic polymorphisms associated with serotonin signaling may predict differences in brain circuitry involved in emotion processing and deficits associated with PTSD. In healthy individuals, common functional polymorphisms in the serotonin transporter gene (SLC6A4 have been shown to modulate amygdala and prefrontal cortex (PFC activity in response to salient emotional stimuli. Similar patterns of differential neural responses to emotional stimuli have been demonstrated in PTSD but genetic factors influencing these activations have yet to be examined. Methods We investigated whether SLC6A4 promoter polymorphisms (5-HTTLPR, rs25531 and several downstream single nucleotide polymorphisms (SNPs modulated activity of brain regions involved in the cognitive control of emotion in post-9/11 veterans with PTSD. We used functional MRI to examine neural activity in a PTSD group (n = 22 and a trauma-exposed control group (n = 20 in response to trauma-related images presented as task-irrelevant distractors during the active maintenance period of a delayed-response working memory task. Regions of interest were derived by contrasting activation for the most distracting and least distracting conditions across participants. Results In patients with PTSD, when compared to trauma-exposed controls, rs16965628 (associated with serotonin transporter gene expression modulated task-related ventrolateral PFC activation and 5-HTTLPR tended to modulate left amygdala activation. Subsequent to combat-related trauma, these SLC6A4 polymorphisms may bias serotonin signaling and the neural circuitry mediating cognitive control of emotion in patients with PTSD. Conclusions The SLC6A4 SNP rs16965628 and 5-HTTLPR are associated with a bias in neural responses to traumatic reminders and cognitive control of emotions in patients with PTSD. Functional MRI may help identify

  20. Evaluation of chlorpyrifos effects, alone and combined with lipopolysaccharide stress, on DNA integrity and immune responses of the three-spined stickleback, Gasterosteus aculeatus.

    Science.gov (United States)

    Marchand, Adrien; Porcher, Jean-Marc; Turies, Cyril; Chadili, Edith; Palluel, Olivier; Baudoin, Patrick; Betoulle, Stéphane; Bado-Nilles, Anne

    2017-11-01

    Organism immune defences might be weakened by pollutants, largely detected in aquatic ecosystems, leading to the facilitation for opportunistic pathogens to infect organisms. In this context, destabilization of fish non-specific immune parameters and erythrocyte DNA integrity was tested, on a model fish species, the three-spined stickleback (Gasterosteus aculeatus), after exposure to chlorpyrifos (CPF). Alone, pesticide exposure induced a genotoxic potential (chlorpyrifos at 1.75 and 0.88µg/L) in addition to a decrease in phagocytosis capacity and a stimulation of respiratory burst. Then, to mimic pathogenic infection, fish exposure to chlorpyrifos was combined with lipopolysaccharides (LPS) stress. In this second experiment, an increase of DNA damage was observed in fish exposed to a lower concentration of chlorpyrifos and LPS. Moreover, at the higher concentration of chlorpyrifos, an early destabilization of innate immunity was observed as suggested by the absence of an increase of lysosomal presence in fish injected with LPS. This study highlighted the usefulness of stress on stress responses to better understand the impact of contaminants on the organism's health. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Serotonin shapes risky decision making in monkeys.

    Science.gov (United States)

    Long, Arwen B; Kuhn, Cynthia M; Platt, Michael L

    2009-12-01

    Some people love taking risks, while others avoid gambles at all costs. The neural mechanisms underlying individual variation in preference for risky or certain outcomes, however, remain poorly understood. Although behavioral pathologies associated with compulsive gambling, addiction and other psychiatric disorders implicate deficient serotonin signaling in pathological decision making, there is little experimental evidence demonstrating a link between serotonin and risky decision making, in part due to the lack of a good animal model. We used dietary rapid tryptophan depletion (RTD) to acutely lower brain serotonin in three macaques performing a simple gambling task for fluid rewards. To confirm the efficacy of RTD experiments, we measured total plasma tryptophan using high-performance liquid chromatography (HPLC) with electrochemical detection. Reducing brain serotonin synthesis decreased preference for the safe option in a gambling task. Moreover, lowering brain serotonin function significantly decreased the premium required for monkeys to switch their preference to the risky option, suggesting that diminished serotonin signaling enhances the relative subjective value of the risky option. These results implicate serotonin in risk-sensitive decision making and, further, suggest pharmacological therapies for treating pathological risk preferences in disorders such as problem gambling and addiction.

  2. Chlorpyrifos-Induced Delayed Neurotoxicity with A Rare Presentation of Flaccid Quadriplegia: A Diagnostic Challenge

    Directory of Open Access Journals (Sweden)

    Patrícia Afonso Mendes

    2017-10-01

    Full Text Available Chlorpyrifos is an organophosphate compound recognized as causing acute toxicity. However, organophosphate-induced delayed polyneuropathy (OPIDP, although rare, has also been described. We describe an unusual presentation of OPIDP with flaccid quadriplegia progressing to a locked-in-like syndrome, 30 days after a 60-year-old man voluntarily ingested chlorpyrifos. In the absence of specific treatment, the patient only recovered partial motor responses and the ability to communicate. The authors present this report in order to highlight a form of OPIDP which can hinder diagnosis due to its atypia and the delay in the onset of symptoms from initial contact with the toxicant.

  3. A Dualistic Conformational Response to Substrate Binding in the Human Serotonin Transporter Reveals a High Affinity State for Serotonin*

    Science.gov (United States)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes that occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation. Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in this subpopulation of SERT. PMID:25614630

  4. Dissipation and leaching of acephate, chlorpyrifos, and their main metabolites in field soils of Malaysia.

    Science.gov (United States)

    Chai, L K; Mohd-Tahir, N; Hansen, S; Hansen, H C B

    2009-01-01

    Preventive treatment with insecticides at high dosing rates before planting of a new crop- soil drenching- is a common practice in some tropical intensive cropping systems, which may increase the risk of leaching, soil functioning, and pesticide uptake in the next crop. The degradation rates and migration of acephate and chlorpyrifos and their primary metabolites, methamidophos and 3,5,6-trichloropyridinol (TCP), have been studied in clayey red yellow podzolic (Typic Paleudults), alluvial (Typic Udorthents), and red yellow podzolic soils (Typic Kandiudults) of Malaysia under field conditions. The initial concentrations of acephate and chlorpyrifos in topsoils were found to strongly depend on solar radiation. Both pesticides and their metabolites were detected in subsoils at the deepest sampling depth monitored (50 cm) and with maximum concentrations up to 2.3 mg kg(-1) at soil depths of 10 to 20 cm. Extraordinary high dissipation rates for weakly sorbed acephate was in part attributed to preferential flow which was activated due to the high moisture content of the soils, high precipitation and the presence of conducting macropores running from below the A horizons to at least 1 m, as seen from a dye tracer experiment. Transport of chlorpyrifos and TCP which both sorb strongly to soil organic matter was attributed to macropore transport with soil particles. The half-lives for acephate in topsoils were 0.4 to 2.6 d while substantially longer half-lives of between 12.6 and 19.8 d were observed for chlorpyrifos. The transport through preferential flow of strongly sorbed pesticides is of concern in the tropics.

  5. Implications of genetic research on the role of the serotonin in depression: emphasis on the serotonin type 1A receptor and the serotonin transporter.

    Science.gov (United States)

    Neumeister, Alexander; Young, Theresa; Stastny, Juergen

    2004-08-01

    Serotonin systems appear to play a key role in the pathophysiology of major depressive disorder. Consequently, ongoing research determines whether serotonin related genes account for the very robust differential behavioral and neural mechanisms that discriminate patients with depression from healthy controls. Serotonin type 1(A) receptors and the serotonin transporters are reduced in depression, and recent genetic research in animals and humans has implicated both in depression. Preclinical studies have utilized a variety of animal models that have been used to explain pathophysiological mechanisms in humans, although it is not clear at all whether these models constitute relevant models for depression in humans. However, data from preclinical studies can generate hypotheses that are tested in humans by combining genetic data with behavioral and physiological challenge paradigms and neuroimaging. These studies will enhance our understanding about combined influences from multiple interacting genes, as well as from environmental factors on brain circuits and their function, and about how these mechanisms may contribute to the pathophysiology of neuropsychiatric disorders.

  6. Hepatotoxicity of Chlorpyrifos in Zebrafish Liver Cells by NMR-based Metabolomics

    Science.gov (United States)

    For decades chlorpyrifos (CPS) has been one of the most widely used organophosphate insecticides for a variety of agricultural and public health applications. The extensive use of CPS inevitably results in exposure to a small number of the human population. It is believed that ...

  7. Volatilization of the pesticides chlorpyrifos and fenpropimorph from a potato crop

    NARCIS (Netherlands)

    Leistra, M.; Smelt, J.H.; Weststrate, J.H.; Berg, van den F.; Aalderink, R.

    2006-01-01

    Volatilization of pesticides from crops in the field can be an important emission pathway. In a field experiment with characterization of meteorological conditions, the pesticides chlorpyrifos and fenpropimorph were sprayed onto a potato crop, after which concentrations in the air and on/in the

  8. Ecstasy use and serotonin syndrome: a neglected danger to adolescents and young adults prescribed selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Dobry, Yuriy; Rice, Timothy; Sher, Leo

    2013-01-01

    At present, there are scarce clinical and basic lab data concerning the risk of acute serotonin toxicity from selective serotonin reuptake inhibitors (SSRIs) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) co-administration. The health care community can strongly benefit from efforts to address the high risks associated with serotonin syndrome from this specific drug combination. The aim of this work is to review the risk of serotonin syndrome in adolescents and young adults prescribed with SSRIs and are concurrently using ecstasy. An electronic search of the major behavioral science bibliographic databases (Pubmed, PsycINFO, Medline) was conducted to retrieve peer-reviewed articles, which detail the clinical characteristics, biological mechanisms and social implications of SSRIs, MDMA, and their potential synergism in causing serotonin syndrome in the pediatric and young adult population. Search terms included "serotonin syndrome", "ecstasy", "MDMA", "pediatric", and "SSRI". Additional references were incorporated from the bibliographies of these retrieved articles. MDMA, in combination with the widely-prescribed SSRI antidepressant class, can lead to rapid, synergistic rise of serotonin (5-HT) concentration in the central nervous system, leading to the acute medical emergency known as serotonin syndrome. This review addresses such complication through an exploration of the theoretical mechanisms and clinical manifestations of this life-threatening pharmacological interaction. The increasing incidences of recreational ecstasy use and SSRI pharmacotherapy among multiple psychiatric disorders in the adolescent population have made this an overlooked yet increasingly relevant danger, which poses a threat to public health. This can be curbed through further research, as well as greater health care provision and attention from a regulatory body owing.

  9. Biotransformation of chlorpyrifos and endosulfan by bacteria and fungi.

    Science.gov (United States)

    Supreeth, M; Raju, N S

    2017-08-01

    Large quantities of pesticides are applied on crops to protect them from pests in modern agricultural practices around the globe. The two insecticides, chlorpyrifos, belonging to the organophosphorous group and endosulfan, belonging to the organochlorine group, are vastly used insecticides on agricultural crops in the last three decades. Hence, both these insecticides are ubiquitous in the environment. Once applied, these two insecticides undergo transformation in the environment either biologically or non-biologically. Microbial degradation has been considered a safe and cost-effective method for removing contaminants from the environment. Both the insecticides have been subjected to biodegradation studies using various bacteria and fungi by the researchers. Here, in this review, we report on biotransformed products formed during the course of biodegradation of these two insecticides and also discuss about the aftereffects of their transformed metabolites. This is important, because the primary biotransformed metabolites 3,5,6, trichloro-2-pyridinol of chlorpyrifos and endosulfan sulfate of endosulfan are toxic as their parent compounds and are noxious to variety of organisms. In conclusion, it is recommended to obtain microbial cultures capable of mineralizing pesticides completely without formation of any such toxic by-product before adopting bioremediation or bioaugmentation technology.

  10. Effects of Nickel, Chlorpyrifos and Their Mixture on the Dictyostelium discoideum Proteome

    Science.gov (United States)

    Boatti, Lara; Robotti, Elisa; Marengo, Emilio; Viarengo, Aldo; Marsano, Francesco

    2012-01-01

    Mixtures of chemicals can have additive, synergistic or antagonistic interactions. We investigated the effects of the exposure to nickel, the organophosphate insecticide chlorpyrifos at effect concentrations (EC) of 25% and 50% and their binary mixture (Ec25 + EC25) on Dictyostelium discoideum amoebae based on lysosomal membrane stability (LMS). We treated D. discoideum with these compounds under controlled laboratory conditions and evaluated the changes in protein levels using a two-dimensional gel electrophoresis (2DE) proteomic approach. Nickel treatment at EC25 induced changes in 14 protein spots, 12 of which were down-regulated. Treatment with nickel at EC50 resulted in changes in 15 spots, 10 of which were down-regulated. Treatment with chlorpyrifos at EC25 induced changes in six spots, all of which were down-regulated; treatment with chlorpyrifos at EC50 induced changes in 13 spots, five of which were down-regulated. The mixture corresponding to EC25 of each compound induced changes in 19 spots, 13 of which were down-regulated. The data together reveal that a different protein expression signature exists for each treatment, and that only a few proteins are modulated in multiple different treatments. For a simple binary mixture, the proteomic response does not allow for the identification of each toxicant. The protein spots that showed significant differences were identified by mass spectrometry, which revealed modulations of proteins involved in metal detoxification, stress adaptation, the oxidative stress response and other cellular processes. PMID:23443088

  11. Modulation of defensive reflex conditioning in snails by serotonin

    Science.gov (United States)

    Andrianov, Vyatcheslav V.; Bogodvid, Tatiana K.; Deryabina, Irina B.; Golovchenko, Aleksandra N.; Muranova, Lyudmila N.; Tagirova, Roza R.; Vinarskaya, Aliya K.; Gainutdinov, Khalil L.

    2015-01-01

    Highlights Daily injection of serotonin before a training session accelerated defensive reflex conditioning in snails.Daily injection of 5-hydroxytryptophan before a training session in snails with a deficiency of serotonin induced by the “neurotoxic” analog of serotonin 5,7-dihydroxytryptamine, restored the ability of snails to learn.After injection of the “neurotoxic” analogs of serotonin 5,6- and 5,7-dihydroxytryptamine as well as serotonin, depolarization of the membrane and decrease of the threshold potential of premotor interneurons was observed. We studied the role of serotonin in the mechanisms of learning in terrestrial snails. To produce a serotonin deficit, the “neurotoxic” analogs of serotonin, 5,6- or 5,7-dihydroxytryptamine (5,6/5,7-DHT) were used. Injection of 5,6/5,7-DHT was found to disrupt defensive reflex conditioning. Within 2 weeks of neurotoxin application, the ability to learn had recovered. Daily injection of serotonin before a training session accelerated defensive reflex conditioning and daily injections of 5-HTP in snails with a deficiency of serotonin induced by 5,7-DHT restored the snail's ability to learn. We discovered that injections of the neurotoxins 5,6/5,7-DHT as well as serotonin, caused a decrease in the resting and threshold potentials of the premotor interneurons LPa3 and RPa3. PMID:26557063

  12. Data on the phosphorylation of p38MAPK and JNK induced by chlorpyrifos in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    J.E.S. Batista

    2016-12-01

    Full Text Available Exposure to organophosphate compounds, such as chlorpyrifos, has been linked to disturbances on cell signaling pathways. Mitogen activated protein kinases (MAPK are a family of protein kinases involved in a range of cellular processes, including stress response, apoptosis and survival. Therefore, changes in the activation state of these kinases may characterize key mechanisms of toxicity elicited by xenobiotics. Here we report data on the phosphorylation of p38MAPK and JNK, members of the MAPK family, in Drosophila melanogaster exposed to chlorpyrifos, as characterized by western blotting assays.

  13. Absorption, distribution, dynamics of 14C-chlorpyrifos in several kinds of animals and plants in fresh water ecosystem

    International Nuclear Information System (INIS)

    Chen Shunhua; Zhong Chuangguang; Zhao Xiaokui

    1998-01-01

    The absorption, distribution, dynamics of chlorpyrifos in five fresh water organisms were studied. The results showed that all organisms tested absorbed 14 C-chlorpyrifos rapidly in simulation ecosystem for 4 h of exposure. The concentration factors (CF) of 14 C-chlorpyrifos in the organisms were in order of Gambusia affinis>Bellarnya purificata>Planorbis sp.>Lenna polyrrhiza>Naslurtium officincles on the 2nd day of the experiment. The absorption of 14 C-chlorpyrifos by three kinds of animals showed that the 14 C-radioactivity reached peaks after 24 h or 48 h of exposure to the pesticide. the concentration factors of Gambusia affinis (48 h), Bellarnya purificata (48 h) and Planorbis sp. (24 h) were 375, 249.69 and 30 respectively. The absorption peaks expressed in concentration factors in Lenna polyrrhiza and Naslurtium officincles, were 28.54 and 7.78 at 4 and 24 h respectively. After the absorption peaks, the radioactivity in all experimental animals and plants decreased with increase of time. After 4 h, the radioactivity in water rapidly decreased to 67% of the original and it decreased to about one half of the original after 24 h. Then the radioactivity of 14 C in water slightly increased due to the excreta of the organisms

  14. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    International Nuclear Information System (INIS)

    Brann, M.R.

    1985-01-01

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor

  15. Tissue-specific bioconcentration and biotransformation of cypermethrin and chlorpyrifos in a native fish (Jenynsia multidentata) exposed to these insecticides singly and in mixtures.

    Science.gov (United States)

    Bonansea, Rocío Inés; Marino, Damián J G; Bertrand, Lidwina; Wunderlin, Daniel A; Amé, María Valeria

    2017-07-01

    The aim of the present study was to evaluate the accumulation of cypermethrin and chlorpyrifos when the fish Jenynsia multidentata was exposed to these pesticides singly and in technical and commercial mixtures. Adult female fish were exposed over 96 h to 0.04 μg/L of cypermethrin; 0.4 μg/L of chlorpyrifos; 0.04 μg/L of cypermethrin + 0.4 μg/L of chlorpyrifos in a technical mixture; and 0.04 μg/L of cypermethrin + 0.4 μg/L of chlorpyrifos in a mixture of commercial products. Fish exposed to cypermethrin accumulated this compound only in muscle, probably because of the low biotransformation capacity of this organ and the induction of cytochrome P4501A1 (CYP1A1) expression in the liver. The accumulation of chlorpyrifos occurred in fish exposed to the insecticide (intestine > liver > gills) even when these fish had higher gluthatione-S-transferase (GST) activity in gills and P-glycoprotein (P-gp) expression in the liver, compared with the control. Fish exposed to the technical mixture showed cypermethrin accumulation (liver > intestine > gills) with higher levels than those measured in fish after only cypermethrin exposure. Higher expression levels of CYP1A1 in the liver were also observed compared with the Control. Fish exposed to the commercial mixture accumulated both insecticides (cypermethrin: intestine > gills and chlorpyrifos: liver > intestine > gills > muscle). In the organs where accumulation occurred, biotransformation enzymes were inhibited. Consequently, the commercial formulation exposure provoked the highest accumulation of cypermethrin and chlorpyrifos in J. multidentata, possibly associated with the biotransformation system inhibition. Environ Toxicol Chem 2017;36:1764-1774. © 2016 SETAC. © 2016 SETAC.

  16. Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells

    International Nuclear Information System (INIS)

    Saulsbury, Marilyn D.; Heyliger, Simone O.; Wang, Kaiyu; Johnson, Deadre J.

    2009-01-01

    There are increasing concerns regarding the relative safety of chlorpyrifos (CPF) to various facets of the environment. Although published works suggest that CPF is relatively safe in adult animals, recent evidence indicates that juveniles, both animals and humans, may be more sensitive to CPF toxicity than adults. In young animals, CPF is neurotoxic and mechanistically interferes with cellular replication and cellular differentiation, which culminates in the alteration of synaptic neurotransmission in neurons. However, the effects of CPF on glial cells are not fully elucidated. Here we report that chlorpyrifos is toxic to oligodendrocyte progenitors. In addition, CPF produced dose-dependent increases in 2',7'-dichlorodihydrofluorescein diacetate (H 2 DCF-DA) and dihydroethidium (DHE) fluorescence intensities relative to the vehicle control. Moreover, CPF toxicity is associated with nuclear condensation and elevation of caspase 3/7 activity and Heme oxygenase-1 mRNA expression. Pan-caspase inhibitor QVDOPh and cholinergic receptor antagonists' atropine and mecamylamine failed to protect oligodendrocyte progenitors from CPF-induced injury. Finally, glutathione (GSH) depletion enhanced CPF-induced toxicity whereas nitric oxide synthetase inhibitor L-NAME partially protected progenitors and the non-specific antioxidant vitamin E (alpha-tocopherol) completely spared cells from injury. Collectively, this data suggests that CPF induced toxicity is independent of cholinergic stimulation and is most likely caused by the induction of oxidative stress.

  17. Serotonin and Norepinephrine Reuptake Inhibitors (SNRIs)

    Science.gov (United States)

    Serotonin and norepinephrine reuptake inhibitors (SNRIs) Antidepressant SNRIs help relieve depression symptoms, such as irritability and sadness, ... effects they may cause. By Mayo Clinic Staff Serotonin and norepinephrine reuptake inhibitors (SNRIs) are a class ...

  18. Avoidance behaviour response and esterase inhibition in the earthworm, Lumbricus terrestris, after exposure to chlorpyrifos.

    Science.gov (United States)

    Martínez Morcillo, S; Yela, J L; Capowiez, Y; Mazzia, C; Rault, M; Sanchez-Hernandez, Juan C

    2013-05-01

    The avoidance response of earthworms to polluted soils has been standardised using a simple and low-cost test, which facilitates soil toxicity screening. In this study, the avoidance response of Lumbricus terrestris was quantified in chlorpyrifos-spiked soils, depending on the pesticide concentration and exposure duration. The inhibition of acetylcholinesterase (AChE) and carboxylesterase (CbE) activities was also determined as indirect measures of pesticide bioavailability. The effects of different chlorpyrifos concentrations were examined in a standardised test (two-chamber system) with 0.6, 3 and 15 mg/kg chlorpyrifos. A modification of the test involved a pre-exposure step (24, 48 or 72 h) in soils spiked with 15 mg/kg. In both protocols, earthworms were unable to avoid the contaminated soils. However, the esterase activities showed that all earthworms were exposed to chlorpyrifos. Acetylcholinesterase activity did not change in earthworms in the standardised behavioural test (0.58 ± 0.20 U/mg protein, mean ± SD; n = 72), whereas the CbE activity was significantly inhibited (62-87 % inhibition) in earthworms exposed to 3 and 15 mg/kg. In the modified test, earthworms had greatly inhibited AChE activity (0.088 ± 0.034 U/mg protein, n = 72), which was supported by reactivation of the inhibited enzyme activity in the presence of pralidoxime (2-PAM). Similarly, the CbE activity was significantly inhibited in earthworms with all treatments. This study suggests that the avoidance behaviour test for organophosphorus-contaminated soils could be supported by specific biomarkers to facilitate a better understanding of pesticide exposure and toxicity during this test.

  19. Characterization of soil organic matter by FT-IR spectroscopy and its relationship with chlorpyrifos sorption.

    Science.gov (United States)

    Parolo, María Eugenia; Savini, Mónica Claudia; Loewy, Ruth Miriam

    2017-07-01

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (K OC ) assuming that the main factor that influences the amount sorbed is the organic carbon content (OC) of the soil. However, K OC can vary across a range of soils. The influence of certain soil characteristics on the chlorpyrifos K OC values variation for 12 representative soils of the Northpatagonian Argentinian region with different physicochemical properties was investigated for this study. The chlorpyrifos sorption coefficients normalized by the OC content were experimentally obtained using the batch equilibrium method; the K OC values ranged between 9000-20,000 L kg -1 . The soil characteristics assessed were pH, clay content and spectral data indicative of soil organic matter (SOM) quality measured by FT-IR on the whole soil. The bands considered in the spectroscopic analyses were those corresponding to the aliphatic components, 2947-2858 cm -1 (band A) and the hydrophilic components, 1647-1633 cm -1 (band B). A significant relationship was found (R 2  = 0.66) between chlorpyrifos sorption (K OC ) and the variables pH and A/B height band ratio. The correlation between the values predicted by the derived model and the experimental data was significant (r = 0.89 p chlorpyrifos sorption coefficient through the use of a simple, rapid, and environmentally-friendly measurement. K OC analysis in relation to soil properties represents a valuable contribution to the understanding of the attenuation phenomena of the organic contaminants off-site migration in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. An evaluation of the inhibition of human butyrylcholinesterase and acetylcholinesterase by the organophosphate chlorpyrifos oxon

    International Nuclear Information System (INIS)

    Shenouda, Josephine; Green, Paula; Sultatos, Lester

    2009-01-01

    Acetylcholinesterase (EC 3.1.1.7) and butyrylcholinesterase (EC 3.1.1.8) are enzymes that belong to the superfamily of α/β-hydrolase fold proteins. While they share many characteristics, they also possess many important differences. For example, whereas they have about 54% amino acid sequence identity, the active site gorge of acetylcholinesterase is considerably smaller than that of butyrylcholinesterase. Moreover, both have been shown to display simple and complex kinetic mechanisms, depending on the particular substrate examined, the substrate concentration, and incubation conditions. In the current study, incubation of butyrylthiocholine in a concentration range of 0.005-3.0 mM, with 317 pM human butyrylcholinesterase in vitro, resulted in rates of production of thiocholine that were accurately described by simple Michaelis-Menten kinetics, with a K m of 0.10 mM. Similarly, the inhibition of butyrylcholinesterase in vitro by the organophosphate chlorpyrifos oxon was described by simple Michaelis-Menten kinetics, with a k i of 3048 nM -1 h -1 , and a K D of 2.02 nM. In contrast to inhibition of butyrylcholinesterase, inhibition of human acetylcholinesterase by chlorpyrifos oxon in vitro followed concentration-dependent inhibition kinetics, with the k i increasing as the inhibitor concentration decreased. Chlorpyrifos oxon concentrations of 10 and 0.3 nM gave k i s of 1.2 and 19.3 nM -1 h -1 , respectively. Although the mechanism of concentration-dependent inhibition kinetics is not known, the much smaller, more restrictive active site gorge of acetylcholinesterase almost certainly plays a role. Similarly, the much larger active site gorge of butyrylcholinesterase likely contributes to its much greater reactivity towards chlorpyrifos oxon, compared to acetylcholinesterase.

  1. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    International Nuclear Information System (INIS)

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.; Moskowitz, M.A.

    1986-01-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 μM serotonin with increased incorporation of [ 3 H]thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 μM. At a concentration of 1 μM, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was ≅ 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine were inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors

  2. PRENATAL EXPOSURE TO CHLORPYRIFOS ALTERS NEUROTROPHIN IMMUNOREACTIVITY AND APOPTOSIS IN RAT BRAIN.

    Science.gov (United States)

    In the present study, the effects of the organophosphate pesticide chlorpyrifos [CPF; O,O'diethyl O-3,5,6-trichloro-2-pyridyl) phosphorothionate] on the regional distribution of three neurotrophic factors and on levels of apoptosis in gestational rat brain were characterized. P...

  3. Serotonin Neuron Abnormalities in the BTBR Mouse Model of Autism

    Science.gov (United States)

    Guo, Yue-Ping; Commons, Kathryn G.

    2017-01-01

    The inbred mouse strain BTBR T+ Itpr3tf/J (BTBR) i studied as a model of idiopathic autism because they are less social and more resistant to change than other strains. Forebrain serotonin receptors and the response to serotonin drugs are altered in BTBR mice, yet it remains unknown if serotonin neurons themselves are abnormal. In this study, we found that serotonin tissue content and the density of serotonin axons is reduced in the hippocampus of BTBR mice in comparison to C57BL/6J (C57) mice. This was accompanied by possible compensatory changes in serotonin neurons that were most pronounced in regions known to provide innervation to the hippocampus: the caudal dorsal raphe (B6) and the median raphe. These changes included increased numbers of serotonin neurons and hyperactivation of Fos expression. Metrics of serotonin neurons in the rostral 2/3 of the dorsal raphe and serotonin content of the prefrontal cortex were less impacted. Thus, serotonin neurons exhibit region-dependent abnormalities in the BTBR mouse that may contribute to their altered behavioral profile. PMID:27478061

  4. CHLORPYRIFOS ACCUMULATION PATTERNS FOR CHILD ACCESSIBLE SURFACES AND OBJECTIVES AND URINARY METABOLITE EXCRETION BY CHILDREN FOR TWO-WEEKS AFTER CRACK-AND-CREVICE APPLICATION

    Science.gov (United States)

    The Children's-Post-Pesticide-Application-Exposure-Study (CPPAES) was conducted to look at the distribution of chlorpyrifos within a home environment for a 2-week period following a routine professional crack-and-crevice application, and to determine the amount of the chlorpyrifo...

  5. Cytotoxic Effects of Ionizing Radiation and Chlorpyrifos on White Rats

    International Nuclear Information System (INIS)

    El-Bahkery, A.M.L.H.

    2014-01-01

    The hazard of accidental exposure to ionizing radiation (IR) and/or neurotoxic insecticides like the organophosphorus insecticide chlorpyrifos (CPF) represent series health problem for human. In the present work, the cytotoxic effects of ionizing radiation and chlorpyrifos on rats were studied where animals were under glutathione (GSH) depletion. Animals were pre-treated with single dose of Buthionine Sulfoximine (BSO) (200 mg/kg body weight, by oral intubation), then treated with high dose of CPF (30 mg/kg body weight) and or exposure to IR (single dose of 6 Gy whole body gamma ray) one hour after BSO treatment. Another groups of animals pertreated with N-acetyl cystiene (NAC) one hour before treated with CPF and/or IR. After 24 hours blood sample, liver and brain were taken and used for estimate the GSH level and the activities of glutathione-stransferase (GST), glutathione reductase (GR), acetyl cholinesterase (AChE), carboxyl esterase (CE), paraoxonase (PON) and arylesterase (AE). Also, native PAGE electrophoresis was undertaken for separating the CE and PON isozymes in plasma, liver and brain. The results indicated that CPF produced no change in GSH level. Whereas, treatment with either BSO or IR, produced decrease in GSH level. NAC restored GSH level near the control level in all treated groups CPF had no effect on GST activity and pretreatment with either BSO or NAC increased GST activity in CPF treated groups. Also, exposure to IR had no effect on GST activity. Whereas, IR in combination with CPF and/or NAC and/or BSO produced inhibition in plasma GST activity and increased liver GST activity. In addition, both CPF and IR had no effect on the activity of GR. Whereas, pre-treatment with either BSO or NAC produced inhibition in plasma and liver GR activity in CPF treated groups. No change had observed in the IR exposed groups. Treatment with CPF inhibited AChE activity in plasma, liver and brain. Whereas, exposure to IR inhibited AChE activity in brain only

  6. Serotonin Test

    Science.gov (United States)

    ... microscope. (For more, see the article on Anatomic Pathology .) See More Common Questions See Less Common Questions ... tumor. Accessed December 2010. Vorvick, L. (Updated 2009 March 14). Serum serotonin level. MedlinePlus Medical Encyclopedia [On- ...

  7. Measuring the serotonin uptake site using [3H]paroxetine--a new serotonin uptake inhibitor

    International Nuclear Information System (INIS)

    Gleiter, C.H.; Nutt, D.J.

    1988-01-01

    Serotonin is an important neurotransmitter that may be involved in ethanol preference and dependence. It is possible to label the serotonin uptake site in brain using the tricyclic antidepressant imipramine, but this also binds to other sites. We have used the new high-affinity uptake blocker paroxetine to define binding to this site and report it to have advantages over imipramine as a ligand

  8. Molecular imaging of serotonin degeneration in mild cognitive impairment.

    Science.gov (United States)

    Smith, Gwenn S; Barrett, Frederick S; Joo, Jin Hui; Nassery, Najlla; Savonenko, Alena; Sodums, Devin J; Marano, Christopher M; Munro, Cynthia A; Brandt, Jason; Kraut, Michael A; Zhou, Yun; Wong, Dean F; Workman, Clifford I

    2017-09-01

    Neuropathological and neuroimaging studies have consistently demonstrated degeneration of monoamine systems, especially the serotonin system, in normal aging and Alzheimer's disease. The evidence for degeneration of the serotonin system in mild cognitive impairment is limited. Thus, the goal of the present study was to measure the serotonin transporter in vivo in mild cognitive impairment and healthy controls. The serotonin transporter is a selective marker of serotonin terminals and of the integrity of serotonin projections to cortical, subcortical and limbic regions and is found in high concentrations in the serotonergic cell bodies of origin of these projections (raphe nuclei). Twenty-eight participants with mild cognitive impairment (age 66.6±6.9, 16 males) and 28 healthy, cognitively normal, demographically matched controls (age 66.2±7.1, 15 males) underwent magnetic resonance imaging for measurement of grey matter volumes and high-resolution positron emission tomography with well-established radiotracers for the serotonin transporter and regional cerebral blood flow. Beta-amyloid imaging was performed to evaluate, in combination with the neuropsychological testing, the likelihood of subsequent cognitive decline in the participants with mild cognitive impairment. The following hypotheses were tested: 1) the serotonin transporter would be lower in mild cognitive impairment compared to controls in cortical and limbic regions, 2) in mild cognitive impairment relative to controls, the serotonin transporter would be lower to a greater extent and observed in a more widespread pattern than lower grey matter volumes or lower regional cerebral blood flow and 3) lower cortical and limbic serotonin transporters would be correlated with greater deficits in auditory-verbal and visual-spatial memory in mild cognitive impairment, not in controls. Reduced serotonin transporter availability was observed in mild cognitive impairment compared to controls in cortical and limbic

  9. Effects of chlorpyrifos and trichloropyridinol on HEK 293 human embryonic kidney cells

    Science.gov (United States)

    Chlorpyrifos (CPF) [O, O-diethyl -O-3, 5, 6-trichloro-2-pyridyl phosphorothioate] is an organophosphate insecticide widely used for agricultural and urban pest control. Trichloropyridinol (TCP; 3,5,6-trichloro-2-pyridinol), the primary metabolite of CPF, is often used as a generi...

  10. The expression of proteins involved in digestion and detoxification are regulated in Helicoverpa armigera to cope up with chlorpyrifos insecticide.

    Science.gov (United States)

    Dawkar, Vishal V; Chikate, Yojana R; More, Tushar H; Gupta, Vidya S; Giri, Ashok P

    2016-02-01

    Helicoverpa armigera is a key pest in many vital crops, which is mainly controlled by chemical strategies. To manage this pest is becoming challenging due to its ability and evolution of resistance against insecticides. Further, its subsequent spread on nonhost plant is remarkable in recent times. Hence, decoding resistance mechanism against phytochemicals and synthetic insecticides is a major challenge. The present work describes that the digestion, defense and immunity related enzymes are associated with chlorpyrifos resistance in H. armigera. Proteomic analysis of H. armigera gut tissue upon feeding on chlorpyrifos containing diet (CH) and artificial diet (AD) using nano-liquid chromatography-mass spectrometry identified upregulated 23-proteins in CH fed larvae. Database searches combined with gene ontology analysis revealed that the identified gut proteins engrossed in digestion, proteins crucial for immunity, adaptive responses to stress, and detoxification. Biochemical and quantitative real-time polymerase chain reaction analysis of candidate proteins indicated that insects were struggling to get nutrients and energy in presence of CH, while at the same time endeavoring to metabolize chlorpyrifos. Moreover, we proposed a potential processing pathway of chlorpyrifos in H. armigera gut by examining the metabolites using gas chromatography-mass spectrometry. H. armigera exhibit a range of intriguing behavioral, morphological adaptations and resistance to insecticides by regulating expression of proteins involved in digestion and detoxification mechanisms to cope up with chlorpyrifos. In these contexts, as gut is a rich repository of biological information; profound analysis of gut tissues can give clues of detoxification and resistance mechanism in insects. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  11. Serotonin binding in vitro by releasable proteins from human blood platelets

    International Nuclear Information System (INIS)

    Heemstra, V.L.

    1983-11-01

    Among the substances released from human blood platelets are serotonin and various proteins. It was hypothesized that one of these proteins binds serotonin and that serotonin might be important to the protein's function or that the protein might be important to serotonin's function. Two platelet-specific proteins, platelet factor 4 (PF4) and β-thromboglobulin (βTG) were found to bind serotonin in vitro. Endogenous PF4 was isolated by serotonin-affinity chromatography and was identified by radioimmunoassay. Purified [ 125 I] -PF4 and native PF4 bound to and eluted from a serotonin-affinity column similarly. Ultrafiltration of the homologous protein, βTG, with [ 14 C]-serotonin demonstrated binding of about 8 moles serotonin per mole tetrameric βTG with a dissociation constant of about 4 X 10(sup-8) M. Equilibrium dialysis of PF4 with radiolabelled serotonin was attempted, but no binding constant values were obtained because serotonin apparently bound to the dialysis membrane. Since EDTA was one of the two agents that eluted PF4 from the serotonin-affinity gel, calcium binding by PF4 was investigated by equilibrium dialysis. Evidence was obtained for positively cooperative binding of calcium ions by PF4. It is concluded that PF4 and βTG bind serotonin in vitro, that they may also bind in vivo when platelets undergo release, and that the functions of serotonin, PF4 and βTG may be mediated in part by serotonin-protein associations

  12. Use of organic amendments as a bioremediation strategy to reduce the bioavailability of chlorpyrifos insecticide in soils. Effects on soil biology.

    Science.gov (United States)

    Tejada, Manuel; Gómez, Isidoro; Del Toro, Marina

    2011-10-01

    The sorption capacity of both an organic municipal solid waste by-product (MSW) and a cow manure (CM) in a soil polluted with chlorpyrifos, as well as its effect on soil microbial activity, and weight, reproductive parameters and glutathione-S-transferase activity of two earthworm species (Eisenia fetida and Lumbricus terrestris) were studied. Chlorpyrifos was added at the recommended application rate (5 L ha(-1); 768 mg chlorpyrifos kg(-1)) and treated with MSW at a rate of 10% and CM at a rate of 5.8% in order to apply the same amount of organic matter to the soil. An unamended polluted soil was used as control. Earthworm cocoon number, average weight of cocoon, and number of juveniles per cocoon were measured after 30 days of incubation, whereas soil enzymatic activities, earthworm weight, and glutathione-S-transferase activity of earthworms were measured after 3, 45 and 90 days. Soil enzymatic activities, reproductive and glutathione-S-transferase activity in both worms decreased in polluted soil. The inhibition percentage of soil enzymatic activities, reproductive and glutathione-S-transferase activity in both worms was lower in MSW-amended soil than for CM-amended soil. The toxic effect of chlorpyrifos on E. fetida was lowest compared to L. terrestris. This suggested that the addition of organic wastes with higher humic than fulvic acid concentration is more beneficial for remediation of soils polluted with chlorpyrifos. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Regulation of serotonin release from enterochromaffin cells of rat cecum mucosa

    International Nuclear Information System (INIS)

    Simon, C.; Ternaux, J.P.

    1990-01-01

    The release of endogenous serotonin or previously taken up tritiated serotonin from isolated strips of rat cecum mucosa containing enterochromaffin cells was studied in vitro. Release of tritiated serotonin was increased by potassium depolarization and was decreased by tetrodotoxin, veratridine and the absence of calcium. Endogenous serotonin was released at a lower rate than tritiated serotonin; endogenous serotonin release was stimulated by potassium depolarization but was unaffected by tetrodotoxin, veratridine or the absence of calcium. Carbachol, norepinephrine, clonidine and isoproterenol decreased release of tritiated serotonin but had less or reverse effect on release of endogenous serotonin. The results suggest two different serotoninergic pools within the enterochromaffin cell population

  14. Effect of serotonin on small intestinal contractility in healthy volunteers

    DEFF Research Database (Denmark)

    Hansen, M.B.; Arif, F.; Gregersen, H.

    2008-01-01

    The physiological significance of serotonin released into the intestinal lumen for the regulation of motility is unknown in humans. The aim of this study was to evaluate the effect of serotonin infused into the lumen of the gastric antrum, duodenum or the jejunum, on antro-duodeno-jejunal contrac......The physiological significance of serotonin released into the intestinal lumen for the regulation of motility is unknown in humans. The aim of this study was to evaluate the effect of serotonin infused into the lumen of the gastric antrum, duodenum or the jejunum, on antro......-duodeno-jejunal contractility in healthy human volunteers. Manometric recordings were obtained and the effects of either a standard meal, continuous intravenous infusion of serotonin (20 nmol/kg/min) or intraluminal bolus infusions of graded doses of serotonin (2.5, 25 or 250 nmol) were compared. In addition, platelet......-depleted plasma levels of serotonin, blood pressure, heart rate and electrocardiogram were evaluated. All subjects showed similar results. Intravenous serotonin increased migrating motor complex phase In frequency 3-fold and migrating velocity 2-fold. Intraluminal infusion of serotonin did not change contractile...

  15. Action potential-independent and pharmacologically unique vesicular serotonin release from dendrites

    Science.gov (United States)

    Colgan, Lesley A.; Cavolo, Samantha L.; Commons, Kathryn G.; Levitan, Edwin S.

    2012-01-01

    Serotonin released within the dorsal raphe nucleus (DR) induces feedback inhibition of serotonin neuron activity and consequently regulates mood-controlling serotonin release throughout the forebrain. Serotonin packaged in vesicles is released in response to action potentials by the serotonin neuron soma and terminals, but the potential for release by dendrites is unknown. Here three-photon (3P) microscopy imaging of endogenous serotonin in living rat brain slice, immunofluorescence and immuno-gold electron microscopy detection of VMAT2 (vesicular monoamine transporter 2) establish the presence of vesicular serotonin within DR dendrites. Furthermore, activation of glutamate receptors is shown to induce vesicular serotonin release from dendrites. However, unlike release from the soma and terminals, dendritic serotonin release is independent of action potentials, relies on L-type Ca2+ channels, is induced preferentially by NMDA, and displays distinct sensitivity to the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. The unique control of dendritic serotonin release has important implications for DR physiology and the antidepressant action of SSRIs, dihydropyridines and NMDA receptor antagonists. PMID:23136413

  16. Critical Duration of Exposure for Developmental Chlorpyrifos-Induced Neurobehavioral Toxicity

    OpenAIRE

    Sledge, Damiyon; Yen, Jerry; Morton, Terrell; Dishaw, Laura; Petro, Ann; Donerly, Susan; Linney, Elwood; Levin, Edward D.

    2011-01-01

    Developmental exposure of rats to the pesticide chlorpyrifos (CPF) causes persistent neurobehavioral impairment. In a parallel series of studies with zebrafish, we have also found persisting behavioral dysfunction after developmental CPF exposure. We have developed a battery of measures of zebrafish behavior, which are reliable and sensitive to toxicant-induced damage. This study determined the critical duration of developmental CPF exposure for causing persisting neurobehavioral effects. Tes...

  17. Transformation of chlorpyrifos in integrated recirculating constructed wetlands (IRCWs) as revealed by compound-specific stable isotope (CSIA) and microbial community structure analysis.

    Science.gov (United States)

    Tang, Xiaoyan; Yang, Yang; Huang, Wenda; McBride, Murray B; Guo, Jingjing; Tao, Ran; Dai, Yunv

    2017-06-01

    Carbon isotope analysis and 454 pyrosequencing methods were used to investigate in situ biodegradation of chlorpyrifos during its transport through three model integrated recirculating constructed wetlands (IRCWs). Results show that plant and Fe-impregnated biochar promoted degradation of chlorpyrifos and its metabolite 3,5,6-trichloro-2-pyridinol (TCP). Carbon isotope ratios in the IRCWs shifted to -31.24±0.58‰ (IRCW1, plant free), -26.82±0.60‰ (IRCW2, with plant) and -24.76±0.94‰ (IRCW3, with plant and Fe-biochar). The enrichment factors (Ɛ bulk,c ) were determined as -0.69±0.06‰ (IRCW1), -0.91±0.07‰ (IRCW2) and -1.03±0.09‰ (IRCW3). Microbial community analysis showed that IRCW3 was dominated by members of Bacillus, which can utilize and degrade chlorpyrifos. These results reveal that plant and Fe-biochar can induce carbon isotope fractionation and have a positive impact on the chlorpyrifos degradation efficiency by influencing the development of beneficial microbial communities. Copyright © 2017. Published by Elsevier Ltd.

  18. Decreased uptake of 3H-serotonin and endogenous content of serotonin in blood platelets in hypertensive patients

    International Nuclear Information System (INIS)

    Kamal, L.A.; Le Quan-Bui, K.H.; Meyer, P.

    1984-01-01

    The uptake and content of serotonin in blood platelets were studied in patients with essential hypertension and in five families in which at least one member was hypertensive. Blood was obtained from male and female normotensive volunteers and hypertensive patients who were free of medication. Lineweaver-Burk plots of 3H-serotonin uptake from both control subjects and hypertensive patients were linear, which suggested simple Michaelis-Menten uptake kinetics. The maximal uptake velocity (Vmax) in hypertensive patients was significantly lower than in control subjects (control . 41.7 +/- 3.3 pmol/min/10(8) platelets, n . 17; hypertensive . 26.6 +/- 3.0 pmol/min/10(8) platelets, n . 16; p less than 0.005). The affinity constant (Km) was slightly but significantly lower in hypertensive patients (control . 0.70 +/- 0.08 microM; hypertensive . 0.46 +/- 0.08 microM; p less than 0.05). The serotonin content in blood platelets determined by high pressure liquid chromatography with electrochemical detection was significantly lower in hypertensive patients (control . 165.0 +/- 12.9 nmol/10(11) platelets, n . 29; hypertensive . 105.9 +/- 10.4 nmol/10(11) platelets, n . 27; p less than 0.001). In the five families investigated, the lowered serotonin content was observed in some normotensive members. The reduced number of carriers of serotonin uptake and the slight decrease in the affinity constant observed in platelets of patients with essential hypertension suggest that serotonin metabolism is altered in essential hypertension and that blood platelets may be a useful model in studying the serotonergic modifications at the molecular level

  19. INFLUENCE OF A SEROTONIN-RICH AND DOPAMINE-RICH DIET ON PLATELET SEROTONIN CONTENT AND URINARY-EXCRETION OF BIOGENIC-AMINES AND THEIR METABOLITES

    NARCIS (Netherlands)

    KEMA, IP; SCHELLINGS, AMJ; MEIBORG, G; HOPPENBROUWERS, CJM; MUSKIET, FAJ

    Using high-performance liquid chromatography and gas chromatography, we reevaluated the 24-h influence of a serotonin- and dopamine-rich diet on platelet serotonin and serotonin, 5-hydroxyindoleacetic acid (5-HIAA), and major catecholamine metabolites in the urine of 15 healthy adults. Although

  20. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey, E-mail: carey.pope@okstate.edu

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  1. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    International Nuclear Information System (INIS)

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey

    2011-01-01

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (−/−) mice. Mice of both genotypes (n = 5–6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82–95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 μM) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20–23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: ► C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. ► Wild type and cannabinoid CB1 receptor knockout littermates

  2. [Metabolism of serotonin in autism in children].

    Science.gov (United States)

    Bursztejn, C; Ferrari, P; Dreux, C; Braconnier, A; Lancrenon, S

    1988-01-01

    In this controlled study of 22 autistic children and 22 normal controls matched for age and sex, the frequency of hyperserotonemia in infantile autism was confirmed. Platelet serotonin was elevated in patients. Comparative to controls, serotonin was also high in urine of autistic patients, while, on the contrary there was no difference for the urinary excretion of 5-HIAA. No difference was observed either for serotonin uptake and efflux or for MAO activity, in isolated platelets. The elevation of plasma free tryptophan - significant only with the Kolmogorov Smirnov test - suggests that 5-HT biosynthesis might be enhanced. In the group of patient reported in this study, disorders of serotonin metabolism are associated with disturbances of platelet catecholamines, and also with elevated immunoglobulins and enhanced cellular immunity reactions.

  3. Control of pyrethroid and DDT-resistant Anopheles gambiae by application of indoor residual spraying or mosquito nets treated with a long-lasting organophosphate insecticide, chlorpyrifos-methyl

    Directory of Open Access Journals (Sweden)

    Chabi Joseph

    2010-02-01

    Full Text Available Abstract Background Scaling up of long-lasting insecticidal nets (LLINs and indoor residual spraying (IRS with support from the Global Fund and President's Malaria Initiative is providing increased opportunities for malaria control in Africa. The most cost-effective and longest-lasting residual insecticide DDT is also the most environmentally persistent. Alternative residual insecticides exist, but are too short-lived or too expensive to sustain. Dow Agrosciences have developed a microencapsulated formulation (CS of the organophosphate chlorpyrifos methyl as a cost-effective, long-lasting alternative to DDT. Methods Chlorpyrifos methyl CS was tested as an IRS or ITN treatment in experimental huts in an area of Benin where Anopheles gambiae and Culex quinquefasiactus are resistant to pyrethroids, but susceptible to organophosphates. Efficacy and residual activity was compared to that of DDT and the pyrethroid lambdacyalothrin. Results IRS with chlorpyrifos methyl killed 95% of An. gambiae that entered the hut as compared to 31% with lambdacyhalothrin and 50% with DDT. Control of Cx. quinquefasciatus showed a similar trend; although the level of mortality with chlorpyrifos methyl was lower (66% it was still much higher than for DDT (14% or pyrethroid (15% treatments. Nets impregnated with lambdacyhalothrin were compromized by resistance, killing only 30% of An. gambiae and 8% of Cx. quinquefasciatus. Nets impregnated with chlorpyrifos methyl killed more (45% of An gambiae and 15% of Cx. quinquefasciatus, but its activity on netting was of short duration. Contact bioassays on the sprayed cement-sand walls over the nine months of monitoring showed no loss of activity of chlorpyrifos methyl, whereas lambdacyhalothrin and DDT lost activity within a few months of spraying. Conclusion As an IRS treatment against pyrethroid resistant mosquitoes chlorpyrifos methyl CS outperformed DDT and lambdacyhalothrin. In IRS campaigns, chlorpyrifos methyl CS should

  4. Serotonin and conditioning: focus on Pavlovian psychostimulant drug conditioning.

    Science.gov (United States)

    Carey, Robert J; Damianopoulos, Ernest N

    2015-04-01

    Serotonin containing neurons are located in nuclei deep in the brainstem and send axons throughout the central nervous system from the spinal cord to the cerebral cortex. The vast scope of these connections and interactions enable serotonin and serotonin analogs to have profound effects upon sensory/motor processes. In that conditioning represents a neuroplastic process that leads to new sensory/motor connections, it is apparent that the serotonin system has the potential for a critical role in conditioning. In this article we review the basics of conditioning as well as the serotonergic system and point up the number of non-associative ways in which manipulations of serotonin neurotransmission have an impact upon conditioning. We focus upon psychostimulant drug conditioning and review the contribution of drug stimuli in the use of serotonin drugs to investigate drug conditioning and the important impact drug stimuli can have on conditioning by introducing new sensory stimuli that can create or mask a CS. We also review the ways in which experimental manipulations of serotonin can disrupt conditioned behavioral effects but not the associative processes in conditioning. In addition, we propose the use of the recently developed memory re-consolidation model of conditioning as an approach to assess the possible role of serotonin in associative processes without the complexities of performance effects related to serotonin treatment induced alterations in sensory/motor systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Pharmacokinetics and effects on serum cholinesterase activities of organophosphorus pesticides acephate and chlorpyrifos in chimeric mice transplanted with human hepatocytes.

    Science.gov (United States)

    Suemizu, Hiroshi; Sota, Shigeto; Kuronuma, Miyuki; Shimizu, Makiko; Yamazaki, Hiroshi

    2014-11-01

    Organophosphorus pesticides acephate and chlorpyrifos in foods have potential to impact human health. The aim of the current study was to investigate the pharmacokinetics of acephate and chlorpyrifos orally administered at lowest-observed-adverse-effect-level doses in chimeric mice transplanted with human hepatocytes. Absorbed acephate and its metabolite methamidophos were detected in serum from wild type mice and chimeric mice orally administered 150mg/kg. Approximately 70% inhibition of cholinesterase was evident in plasma of chimeric mice with humanized liver (which have higher serum cholinesterase activities than wild type mice) 1day after oral administrations of acephate. Adjusted animal biomonitoring equivalents from chimeric mice studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Estimated plasma concentrations of acephate and chlorpyrifos in humans were consistent with reported concentrations. Acephate cleared similarly in humans and chimeric mice but accidental/incidental overdose levels of chlorpyrifos cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in mice. The data presented here illustrate how chimeric mice transplanted with human hepatocytes in combination with a simple PBPK model can assist evaluations of toxicological potential of organophosphorus pesticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin

    DEFF Research Database (Denmark)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across...... the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes...

  7. Automated mass spectrometric analysis of urinary and plasma serotonin

    NARCIS (Netherlands)

    de Jong, Wilhelmina H. A.; Wilkens, Marianne H. L. I.; de Vries, Elisabeth G. E.; Kema, Ido P.

    Serotonin emerges as crucial neurotransmitter and hormone in a growing number of different physiologic processes. Besides extensive serotonin production previously noted in patients with metastatic carcinoid tumors, serotonin now is implicated in liver cell regeneration and bone formation. The aim

  8. 76 FR 25281 - Atrazine, Chloroneb, Chlorpyrifos, Clofencet, Endosulfan, et al.; Proposed Tolerance Actions

    Science.gov (United States)

    2011-05-04

    ... or proposed product label. Generally, the level selected for a tolerance is a value slightly above..., Chloroneb, Chlorpyrifos, Clofencet, Endosulfan, et al.; Proposed Tolerance Actions AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to revoke certain tolerances in...

  9. Inhibition of serotonin transport by (+)McN5652 is noncompetitive

    Energy Technology Data Exchange (ETDEWEB)

    Hummerich, Rene [Biochemical Laboratory, Central Institute of Mental Health, 68159 Mannheim (Germany); Schulze, Oliver [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Raedler, Thomas [Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Mikecz, Pal [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Reimold, Matthias [Department of Nuclear Medicine, University Hospital Tuebingen, D-72076 Tuebingen (Germany); Brenner, Winfried [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Clausen, Malte [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Schloss, Patrick [Biochemical Laboratory, Central Institute of Mental Health, 68159 Mannheim (Germany); Buchert, Ralph [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany)]. E-mail: buchert@uke.uni-hamburg.de

    2006-04-15

    Introduction: Imaging of the serotonergic innervation of the brain using positron emission tomography (PET) with the serotonin transporter (SERT) ligand [{sup 11C}] (+)McN5652 might be affected by serotonin in the synaptic cleft if there is relevant interaction between [{sup 11}C] (+)McN5652 and serotonin at the SERT. The aim of the present study therefore was to pharmacologically characterize the interaction of [{sup 11}C] (+)McN5652 and serotonin at the SERT. Methods: In vitro saturation analyses of [{sup 3}H]serotonin uptake into HEK293 cells stably expressing the human SERT were performed in the absence and presence of unlabelled (+)McN5652. Data were evaluated assuming Michaelis-Menten kinetics. Results: Unlabelled (+)McN5652 significantly reduced the maximal rate of serotonin transport V {sub max} of SERT without affecting the Michaelis-Menten constant K {sub M}. Conclusions: This finding indicates that (+)McN5652 inhibits serotonin transport through the SERT in a noncompetitive manner. This might suggest that [{sup 11}C] (+)McN5652 PET is not significantly affected by endogenous serotonin.

  10. Inhibition of serotonin transport by (+)McN5652 is noncompetitive

    International Nuclear Information System (INIS)

    Hummerich, Rene; Schulze, Oliver; Raedler, Thomas; Mikecz, Pal; Reimold, Matthias; Brenner, Winfried; Clausen, Malte; Schloss, Patrick; Buchert, Ralph

    2006-01-01

    Introduction: Imaging of the serotonergic innervation of the brain using positron emission tomography (PET) with the serotonin transporter (SERT) ligand [ 11C ] (+)McN5652 might be affected by serotonin in the synaptic cleft if there is relevant interaction between [ 11 C] (+)McN5652 and serotonin at the SERT. The aim of the present study therefore was to pharmacologically characterize the interaction of [ 11 C] (+)McN5652 and serotonin at the SERT. Methods: In vitro saturation analyses of [ 3 H]serotonin uptake into HEK293 cells stably expressing the human SERT were performed in the absence and presence of unlabelled (+)McN5652. Data were evaluated assuming Michaelis-Menten kinetics. Results: Unlabelled (+)McN5652 significantly reduced the maximal rate of serotonin transport V max of SERT without affecting the Michaelis-Menten constant K M . Conclusions: This finding indicates that (+)McN5652 inhibits serotonin transport through the SERT in a noncompetitive manner. This might suggest that [ 11 C] (+)McN5652 PET is not significantly affected by endogenous serotonin

  11. Non-conventional features of peripheral serotonin signalling - the gut and beyond.

    Science.gov (United States)

    Spohn, Stephanie N; Mawe, Gary M

    2017-07-01

    Serotonin was first discovered in the gut, and its conventional actions as an intercellular signalling molecule in the intrinsic and extrinsic enteric reflexes are well recognized, as are a number of serotonin signalling pharmacotherapeutic targets for treatment of nausea, diarrhoea or constipation. The latest discoveries have greatly broadened our understanding of non-conventional actions of peripheral serotonin within the gastrointestinal tract and in a number of other tissues. For example, it is now clear that bacteria within the lumen of the bowel influence serotonin synthesis and release by enterochromaffin cells. Also, serotonin can act both as a pro-inflammatory and anti-inflammatory signalling molecule in the intestinal mucosa via activation of serotonin receptors (5-HT 7 or 5-HT 4 receptors, respectively). For decades, serotonin receptors have been known to exist in a variety of tissues other than the gut, but studies have now provided strong evidence for physiological roles of serotonin in several important processes, including haematopoiesis, metabolic homeostasis and bone metabolism. Furthermore, evidence for serotonin synthesis in peripheral tissues outside of the gut is emerging. In this Review, we expand the discussion beyond gastrointestinal functions to highlight the roles of peripheral serotonin in colitis, haematopoiesis, energy and bone metabolism, and how serotonin is influenced by the gut microbiota.

  12. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    Science.gov (United States)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  13. Increased hypothalamic serotonin turnover in inflammation-induced anorexia.

    Science.gov (United States)

    Dwarkasing, J T; Witkamp, R F; Boekschoten, M V; Ter Laak, M C; Heins, M S; van Norren, K

    2016-05-20

    Anorexia can occur as a serious complication of disease. Increasing evidence suggests that inflammation plays a major role, along with a hypothalamic dysregulation characterized by locally elevated serotonin levels. The present study was undertaken to further explore the connections between peripheral inflammation, anorexia and hypothalamic serotonin metabolism and signaling pathways. First, we investigated the response of two hypothalamic neuronal cell lines to TNFα, IL-6 and LPS. Next, we studied transcriptomic changes and serotonergic activity in the hypothalamus of mice after intraperitoneal injection with TNFα, IL-6 or a combination of TNFα and IL-6. In vitro, we showed that hypothalamic neurons responded to inflammatory mediators by releasing cytokines. This inflammatory response was associated with an increased serotonin release. Mice injected with TNFα and IL-6 showed decreased food intake, associated with altered expression of inflammation-related genes in the hypothalamus. In addition, hypothalamic serotonin turnover showed to be elevated in treated mice. Overall, our results underline that peripheral inflammation reaches the hypothalamus where it affects hypothalamic serotoninergic metabolism. These hypothalamic changes in serotonin pathways are associated with decreased food intake, providing evidence for a role of serotonin in inflammation-induced anorexia.

  14. Serotonin induces peripheral antinociception via the opioidergic system.

    Science.gov (United States)

    Diniz, Danielle Aguiar; Petrocchi, Júlia Alvarenga; Navarro, Larissa Caldeira; Souza, Tâmara Cristina; Castor, Marina Gomes Miranda E; Duarte, Igor Dimitri Gama; Romero, Thiago Roberto Lima

    2018-01-01

    Studies conducted since 1969 have shown that the release of serotonin (5-HT) in the dorsal horn of the spinal cord contributes to opioid analgesia. In the present study, the participation of the opioidergic system in antinociceptive effect serotonin at the peripheral level was examined. The paw pressure test was used with mice (Swiss, males from 35 g) which had increased pain sensitivity by intraplantar injection of PGE 2 (2 μg). Serotonin (250 ng), administered locally to the right paw of animals, produces antinociception in this model. The selective antagonists for mu, delta and kappa opioid receptors, clocinnamox clocinnamox (40 μg), naltrindole (60 μg) and nor-binaltorfimina (200 μg), respectively, inhibited the antinociceptive effect induced by serotonin. Additionally, bestatin (400 μg), an inhibitor of enkephalinases that degrade peptides opioids, enhanced the antinociceptive effect induced by serotonin (low dose of 62.5 ng). These results suggest that serotonin possibly induce peripheral antinociception through the release of endogenous opioid peptides, possible from immune cells or keratinocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. In vivo imaging of cerebral serotonin transporter and serotonin(2A) receptor binding in 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and hallucinogen users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frøkjær, Vibe; Holst, Klaus K

    2011-01-01

    Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.......Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin....

  16. Serotonin synthesis, release and reuptake in terminals: a mathematical model

    Directory of Open Access Journals (Sweden)

    Best Janet

    2010-08-01

    Full Text Available Abstract Background Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system. Methods We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data. Results We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct in silico experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to

  17. Peripheral Serotonin: a New Player in Systemic Energy Homeostasis

    Science.gov (United States)

    Namkung, Jun; Kim, Hail; Park, Sangkyu

    2015-01-01

    Whole body energy balance is achieved through the coordinated regulation of energy intake and energy expenditure in various tissues including liver, muscle and adipose tissues. A positive energy imbalance by excessive energy intake or insufficient energy expenditure results in obesity and related metabolic diseases. Although there have been many obesity treatment trials aimed at the reduction of energy intake, these strategies have achieved only limited success because of their associated adverse effects. An ancient neurotransmitter, serotonin is among those traditional pharmacological targets for anti-obesity treatment because it exhibits strong anorectic effect in the brain. However, recent studies suggest the new functions of peripheral serotonin in energy homeostasis ranging from the endocrine regulation by gut-derived serotonin to the autocrine/paracrine regulation by adipocyte-derived serotonin. Here, we discuss the role of serotonin in the regulation of energy homeostasis and introduce peripheral serotonin as a possible target for anti-obesity treatment. PMID:26628041

  18. Time-resolved fluorescence sensing of pesticides chlorpyrifos, crotoxyphos and endosulfan by the luminescent Eu(III)-8-allyl-3-carboxycoumarin probe

    Science.gov (United States)

    Azab, Hassan A.; Khairy, Gasser M.; Kamel, Rasha M.

    2015-09-01

    This work describes the application of time resolved fluorescence in microtiter plates for investigating the interactions of europium-allyl-3-carboxycoumarin with pesticides chlorpyrifos, endosulfan and crotoxyphos. Stern-Volmer studies at different temperatures for chlorpyrifos and crotoxyphos shows dynamic and static quenching mechanisms respectively. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence variations of the probe in solution. The detection limits are 6.53, 0.004, 3.72 μmol/L for chlorpyrifos, endosulfan, and crotoxyphos, respectively. The binding constants and thermodynamic parameters of the pesticides with probe were evaluated. A thermodynamic analysis showed that the reaction is spontaneous with negative ΔG. Effect of some relevant interferents on the detection of pesticides has been investigated. The new method was applied to the determination of the pesticides in different types of water samples (tap, mineral, and waste water).

  19. In Vivo Imaging of Cerebral Serotonin Transporter and Serotonin(2A) Receptor Binding in 3,4-Methylenedioxymethamphetamine (MDMA or "Ecstasy") and Hallucinogen Users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frokjaer, Vibe G.; Holst, Klaus K.

    2011-01-01

    Context: Both hallucinogens and 3,4-methylenedioxy-methamphetamine( MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.Objective: ......Context: Both hallucinogens and 3,4-methylenedioxy-methamphetamine( MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin...

  20. The serotonin transporter in psychiatric disorders

    DEFF Research Database (Denmark)

    Spies, Marie; Knudsen, Karen Birgitte Moos; Lanzenberger, Rupert

    2015-01-01

    Over the past 20 years, psychotropics affecting the serotonergic system have been used extensively in the treatment of psychiatric disorders. Molecular imaging, in particular PET, has allowed for elucidation of the essential contribution of the serotonin transporter to the pathophysiology...... of various psychiatric disorders and their treatment. We review studies that use PET to measure cerebral serotonin transporter activity in psychiatric disorders, focusing on major depressive disorder and antidepressant treatment. We also discuss opportunities and limitations in the application...... of this neuroimaging method in clinical practice. Although results from individual studies diverge, meta-analysis indicates a trend towards reduced serotonin transporter availability in patients with major depressive disorder. Inconsistencies in results might suggest symptom heterogeneity in major depressive disorder...

  1. Serotonin storage pools in basophil leukemia and mast cells: characterization of two types of serotonin binding protein and radioautographic analysis of the intracellular distribution of [3H]serotonin

    International Nuclear Information System (INIS)

    Tamir, H.; Theoharides, T.C.; Gershon, M.D.; Askenase, P.W.

    1982-01-01

    The binding of serotonin to protein(s) derived from rat basophil leukemia (RBL) cells and mast cells was studied. Two types of serotonin binding protein in RBL cells was found. These proteins differed from one another in molecular weight and eluted in separate peaks from sephadex G-200 columns. Peak I protein (KD = 1.9 x 10 -6 M) was a glycoprotein that bound to concanavalin A (Con A); Peak II protein (KD 1 = 4.5 x 10 - 8 M; KD 2 = 3.9 x 10 -6 M) did not bind to Con A. Moreover, binding of [ 3 H]serotonin to protein of Peak I was sensitive to inhibition by reserpine, while binding of [ 3 H]serotonin to protein of Peak II resisted inhibition by that drug. Other differences between the two types of binding protein were found, the most significant of which was the far more vigorous conditions of homogenization required to extract Peak I than Peak II protein. Electron microscope radioautographic analysis of the intracellular distribution of [ 3 H] serotonin taken up in vitro by RBL cells or in vivo by murine mast cells indicated that essentially all of the labeled amine was located in cytoplasmic granules.No evidence for a pool in the cytosol was found and all granules were capable of becoming labeled. The presence of two types of intracellular serotonin binding proteins in these cells may indicate that there are two intracellular storage compartments for the amine. Both may be intragranular, but Peak I protein may be associated with the granular membrane while Peak II protein may be more free within the granular core. Different storage proteins may help to explain the differential release of amines from mast cell granules

  2. Degradation of 14C-malathion and 14C-chlorpyrifos-methyl on stored wheat

    International Nuclear Information System (INIS)

    Matthews, W.A.

    1990-01-01

    The degradation of malathion and chlorpyrifos-methyl on wheat stored under laboratory conditions was monitored using radiolabelled compounds. Metabolites of both insecticides were isolated and identified, although the formation of bound residues was the most significant feature in the breakdown pattern in both cases. After 5 months of storage, only 16% of the applied dose of malathion remained intact, the remainder being present as free metabolites (25%) or bound residues (42%). Chlorpyrifos-methyl degraded considerably more slowly than malathion, there being 60% of the applied dose still present after 14 months of storage. The bound residues accounted for 29% of the activity after this time. Attempts to determine the location of the activity within the grain suggested that it was concentrated in the germ by a factor of 10. Unfortunately, it was found not to be feasible to isolate the bran layer where a similar concentration of activity might have been expected. (author). 13 refs, 3 figs, 2 tabs

  3. Infrared Thermography in Serotonin-Induced Itch Model in Rats

    DEFF Research Database (Denmark)

    Jasemian, Yousef; Gazerani, Parisa; Dagnæs-Hansen, Frederik

    2012-01-01

    The study validated the application of infrared thermography in a serotonin-induced itch model in rats since the only available method in animal models of itch is the count of scratching bouts. Twenty four adult Sprague-Dawley male rats were used in 3 experiments: 1) local vasomotor response...... with no scratching reflex was investigated. Serotonin elicited significant scratching and lowered the local temperature at the site of injection. A negative dose-temperature relationship of serotonin was found by thermography. Vasoregulation at the site of serotonin injection took place in the absence of scratching...

  4. Children's residential exposure to chlorpyrifos: Application of CPPAES field measurements of chlorpyrifos and TCPy within MENTOR/SHEDS-Pesticides model

    International Nuclear Information System (INIS)

    Hore, Paromita; Zartarian, Valerie; Xue Jianping; Ozkaynak, Haluk; Wang, S.-W.; Yang, Y.-C.; Chu, P.-Ling; Sheldon, Linda; Robson, Mark; Needham, Larry; Barr, Dana; Freeman, Natalie; Georgopoulos, Panos; Lioy, Paul J.

    2006-01-01

    The comprehensive individual field-measurements on non-dietary exposure collected in the Children's-Post-Pesticide-Application-Exposure-Study (CPPAES) were used within MENTOR/SHEDS-Pesticides, a physically based stochastic human exposure and dose model. In this application, however, the model was run deterministically. The MENTOR/SHEDS-Pesticides employed the CPPAES as input variables to simulate the exposure and the dose profiles for seven children over a 2-week post-application period following a routine residential and professional indoor crack-and-crevice chlorpyrifos application. The input variables were obtained from a personal activity diary, microenvironmental measurements and personal biomonitoring data obtained from CPPAES samples collected from the individual children and in their homes. Simulation results were compared with CPPAES field measured values obtained from the children's homes to assess the utility of the different microenvironmental data collected in CPPAES, i.e. indicator toys and wipe samplers to estimate aggregate exposures that can be result from one or more exposure pathways and routes. The final analyses of the database involved comparisons of the actual data obtained from the individual biomarker samples of a urinary metabolite of chlorpyrifos (TCPy) and the values predicted by MENTOR/SHEDS-Pesticides using the CPPAES-derived variables. Because duplicate diet samples were not part of the CPPAES study design, SHEDs-Pesticides simulated dose profiles did not account for the dietary route. The research provided more confidence in the types of data that can be used in the inhalation and dermal contact modules of MENTOR/SHEDS-Pesticides to predict the pesticide dose received by a child. It was determined that we still need additional understanding about: (1) the types of activities and durations of activities that result in non-dietary ingestion of pesticides and (2) the influence of dietary exposures on the levels of TCPy found in the

  5. Serotonin and Blood Pressure Regulation

    Science.gov (United States)

    Morrison, Shaun F.; Davis, Robert Patrick; Barman, Susan M.

    2012-01-01

    5-Hydroxytryptamine (5-HT; serotonin) was discovered more than 60 years ago as a substance isolated from blood. The neural effects of 5-HT have been well investigated and understood, thanks in part to the pharmacological tools available to dissect the serotonergic system and the development of the frequently prescribed selective serotonin-reuptake inhibitors. By contrast, our understanding of the role of 5-HT in the control and modification of blood pressure pales in comparison. Here we focus on the role of 5-HT in systemic blood pressure control. This review provides an in-depth study of the function and pharmacology of 5-HT in those tissues that can modify blood pressure (blood, vasculature, heart, adrenal gland, kidney, brain), with a focus on the autonomic nervous system that includes mechanisms of action and pharmacology of 5-HT within each system. We compare the change in blood pressure produced in different species by short- and long-term administration of 5-HT or selective serotonin receptor agonists. To further our understanding of the mechanisms through which 5-HT modifies blood pressure, we also describe the blood pressure effects of commonly used drugs that modify the actions of 5-HT. The pharmacology and physiological actions of 5-HT in modifying blood pressure are important, given its involvement in circulatory shock, orthostatic hypotension, serotonin syndrome and hypertension. PMID:22407614

  6. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.

    Science.gov (United States)

    Li, Yinxia; Zhao, Yunli; Huang, Xu; Lin, Xingfeng; Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong

    2013-01-01

    Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.

  7. The Role of Serotonin in Ventricular Repolarization in Pregnant Mice.

    Science.gov (United States)

    Cui, Shanyu; Park, Hyewon; Park, Hyelim; Mun, Dasom; Lee, Seung Hyun; Kim, Hyoeun; Yun, Nuri; Kim, Hail; Kim, Michael; Pak, Hui Nam; Lee, Moon Hyoung; Joung, Boyoung

    2018-03-01

    The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. We measured current amplitudes and the expression levels of voltage-gated K⁺ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a(-/-)-NP). During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a(-/-)-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents. © Copyright: Yonsei University College of Medicine 2018

  8. Serotonin syndrome:case report and current concepts.

    LENUS (Irish Health Repository)

    Fennell, J

    2005-05-01

    Selective serotonin reuptake inhibitors (SSRI\\'s) are increasingly being used as the first line therapeutic agent for the depression. It is therefore not unusual to see a case of overdose with these agents. More commonly an adverse drug reaction may be seen among the older patients who are particularly vulnerable to the serotonin syndrome due to multiple co-morbidity and polypharmacy. The clinical picture of serotonin syndrome (SS) is non-specific and there is no confirmatory test. SS may go unrecognized because it is often mistaken for a viral illness, anxiety, neurological disorder or worsening psychiatric condition.

  9. The Reliability of Using Urinary Biomarkers to Estimate Human Exposures to Chlorpyrifos and Diazinon

    Science.gov (United States)

    A few studies have reported concurrent levels of chlorpyrifos (CPF) and diazinon (DZN) and their environmentally occurring metabolites, 3,5,6-trichloro-2-pyridinol (TCP) and 2-isopropyl-6-methyl-4-pyrimidinol (IMP), in food and in environmental media. This information raises ques...

  10. Effects of chronic low concentrations of pesticides chlorpyrifos and atrazine in indoor freshwater microcosms.

    NARCIS (Netherlands)

    Brink, van den P.J.; Donk, van E.; Gylstra, R.; Crum, S.J.H.; Brock, T.C.M.

    1995-01-01

    Standards for pesticide concentrations in water are based on the laboratory toxicity of the most susceptible standard test organisms (algae, crustaceans or fish). Field studies have shown that the standards for the insecticide chlorpyrifos and the herbicide atrazine will protect aquatic ecosystems

  11. Chronic exposure to chlorpyrifos reveals two modes of action in the springtail Folsomia candida.

    NARCIS (Netherlands)

    Jager, D.T.; Crommentuijn, T.; van Gestel, C.A.M.; Kooijman, S.A.L.M.

    2007-01-01

    Organophosphates are popular insecticides, but relatively little is known about their chronic effects on ecologically relevant endpoints. In this paper, we examine a life-cycle experiment with the springtail Folsomia candida, exposed via food to chlorpyrifos (CPF). The results for all endpoints

  12. [3]tetrahydrotrazodone binding. Association with serotonin binding sites

    International Nuclear Information System (INIS)

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-01-01

    High (17 nM) and low (603 nM) affinity binding sites for [ 3 ]tetrahydrotrazodone ([ 3 ] THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of [ 3 ]THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, [ 3 ] THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that [ 3 ]THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors

  13. Ca++ dependent bistability induced by serotonin in spinal motoneurons

    DEFF Research Database (Denmark)

    Hounsgaard, J.; Kiehn, O.

    1985-01-01

    The plateau potential, responsible for the bistable state of spinal motoneurons, recently described in the decerebrate cat, was suggested to depend on serotonin (Hounsgaard et al. 1984). In an in vitro preparation of the spinal cord of the turtle we now show that serotonin, applied directly...... to the bath, transforms the intrinsic response properties of motoneurons, uncovering a plateau potential and voltage sensitive bistability. The changes induced by serotonin were blocked by Mn++, while the plateau potential and the bistability remained after application of tetrodotoxin. We conclude...... that serotonin controls the expression of a Ca++ dependent plateau potential in motoneurons....

  14. The influence of serotonin on fear learning.

    Directory of Open Access Journals (Sweden)

    Catherine Hindi Attar

    Full Text Available Learning of associations between aversive stimuli and predictive cues is the basis of Pavlovian fear conditioning and is driven by a mismatch between expectation and outcome. To investigate whether serotonin modulates the formation of such aversive cue-outcome associations, we used functional magnetic resonance imaging (fMRI and dietary tryptophan depletion to reduce brain serotonin (5-HT levels in healthy human subjects. In a Pavlovian fear conditioning paradigm, 5-HT depleted subjects compared to a non-depleted control group exhibited attenuated autonomic responses to cues indicating the upcoming of an aversive event. These results were closely paralleled by reduced aversive learning signals in the amygdala and the orbitofrontal cortex, two prominent structures of the neural fear circuit. In agreement with current theories of serotonin as a motivational opponent system to dopamine in fear learning, our data provide first empirical evidence for a role of serotonin in representing formally derived learning signals for aversive events.

  15. Conundrums in neurology: diagnosing serotonin syndrome - a meta-analysis of cases.

    Science.gov (United States)

    Werneke, Ursula; Jamshidi, Fariba; Taylor, David M; Ott, Michael

    2016-07-12

    Serotonin syndrome is a toxic state, caused by serotonin (5HT) excess in the central nervous system. Serotonin syndrome's main feature is neuro-muscular hyperexcitability, which in many cases is mild but in some cases can become life-threatening. The diagnosis of serotonin syndrome remains challenging since it can only be made on clinical grounds. Three diagnostic criteria systems, Sternbach, Radomski and Hunter classifications, are available. Here we test the validity of four assumptions that have become widely accepted: (1) The Hunter classification performs clinically better than the Sternbach and Radomski criteria; (2) in contrast to neuroleptic malignant syndrome, the onset of serotonin syndrome is usually rapid; (3) hyperthermia is a hallmark of severe serotonin syndrome; and (4) serotonin syndrome can readily be distinguished from neuroleptic malignant syndrome on clinical grounds and on the basis of medication history. Systematic review and meta-analysis of all cases of serotonin syndrome and toxicity published between 2004 and 2014, using PubMed and Web of Science. Two of the four assumptions (1 and 2) are based on only one published study each and have not been independently validated. There is little agreement between current criteria systems for the diagnosis of serotonin syndrome. Although frequently thought to be the gold standard for the diagnosis of the serotonin syndrome, the Hunter criteria did not perform better than the Sternbach and Radomski criteria. Not all cases seem to be of rapid onset and only relatively few cases may present with hyperthermia. The 0 differential diagnosis between serotonin syndrome and neuroleptic malignant syndrome is not always clear-cut. Our findings challenge four commonly made assumptions about serotonin syndrome. We propose our meta-analysis of cases (MAC) method as a new way to systematically pool and interpret anecdotal but important clinical information concerning uncommon or emergent phenomena that cannot be

  16. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    Science.gov (United States)

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Chlorpyrifos reduces nickel-induced growth retardation of the soil dwelling Collembolan Folsomia candida.

    NARCIS (Netherlands)

    Broerse, M.; van Gestel, C.A.M.

    2010-01-01

    For 7 weeks, we studied the effects on body size and growth rate of Folsomia candida exposed to nickel and chlorpyrifos and their mixtures in a natural Lufa 2.2 soil. Nickel significantly reduced the development of body size of the springtails, although no complete dose-response curve was obtained.

  18. FOXO1 orchestrates the bone-suppressing function of gut-derived serotonin

    Science.gov (United States)

    Kode, Aruna; Mosialou, Ioanna; Silva, Barbara C.; Rached, Marie-Therese; Zhou, Bin; Wang, Ji; Townes, Tim M.; Hen, Rene; DePinho, Ronald A.; Guo, X. Edward; Kousteni, Stavroula

    2012-01-01

    Serotonin is a critical regulator of bone mass, fulfilling different functions depending on its site of synthesis. Brain-derived serotonin promotes osteoblast proliferation, whereas duodenal-derived serotonin suppresses it. To understand the molecular mechanisms of duodenal-derived serotonin action on osteoblasts, we explored its transcriptional mediation in mice. We found that the transcription factor FOXO1 is a crucial determinant of the effects of duodenum-derived serotonin on bone formation We identified two key FOXO1 complexes in osteoblasts, one with the transcription factor cAMP-responsive element–binding protein 1 (CREB) and another with activating transcription factor 4 (ATF4). Under normal levels of circulating serotonin, the proliferative activity of FOXO1 was promoted by a balance between its interaction with CREB and ATF4. However, high circulating serotonin levels prevented the association of FOXO1 with CREB, resulting in suppressed osteoblast proliferation. These observations identify FOXO1 as the molecular node of an intricate transcriptional machinery that confers the signal of duodenal-derived serotonin to inhibit bone formation. PMID:22945629

  19. Selective serotonin reuptake inhibitors and risk for gastrointestinal bleeding

    Directory of Open Access Journals (Sweden)

    Batić-Mujanović Olivera

    2014-01-01

    Full Text Available The most of the known effects of selective serotonin reuptake inhibitors, beneficial or harmful, are associated with the inhibitory action of the serotonin reuptake transporter. This mechanism is present not only in neurons, but also in other cells such as platelets. Serotoninergic mechanism seems to have an important role in hemostasis, which has long been underestimated. Abnormal activation may lead to a prothrombotic state in patients treated with selective serotonin reuptake inhibitors. On one hand there may be an increased risk of bleeding, and on the other hand reduction in thrombotic risk may be possible. Serotonin is critical to maintain a platelet haemostatic function, such as platelet aggregation. Evidences from the studies support the hypothesis that antidepressants with a relevant blockade of action of serotonin reuptake mechanism may increase the risk of bleeding, which can occur anywhere in the body. Epidemiological evidences are, however, the most robust for upper gastrointestinal bleeding. It is estimated that this bleeding can occur in 1 in 100 to 1 in 1.000 patient-years of exposure to the high-affinity selective serotonin reuptake inhibitors, with very old patients at the highest risk. The increased risk may be of particular relevance when selective serotonin reuptake inhibitors are taken simultaneously with nonsteroidal anti-inflammatory drugs, low dose of aspirin or warfarin.

  20. Regulation of Pituitary Beta Endorphin Release: Role of Serotonin Neurons

    Science.gov (United States)

    1983-12-15

    endogenous) may be related to pain and its transmission in the nervous system. Areas known to have a large number of opiate receptors both in primates and...serotonin meta- bolite 5-hydroxytrvptamine; serotonin 5-hydroxtryptophan; serotonin precursor intra- cerebro -ventricular administration intermediate lobe

  1. Voltammetric and Mathematical Evidence for Dual Transport Mediation of Serotonin Clearance In Vivo

    Science.gov (United States)

    Wood, Kevin M.; Zeqja, Anisa; Nijhout, H. Frederik; Reed, Michael C.; Best, Janet; Hashemi, Parastoo

    2014-01-01

    The neurotransmitter serotonin underlies many of the brain’s functions. Understanding serotonin neurochemistry is important for improving treatments for neuropsychiatric disorders such as depression. Antidepressants commonly target serotonin clearance via serotonin transporters (SERTs) and have variable clinical effects. Adjunctive therapies, targeting other systems including serotonin autoreceptors, also vary clinically and carry adverse consequences. Fast scan cyclic voltammetry (FSCV) is particularly well suited for studying antidepressant effects on serotonin clearance and autoreceptors by providing real-time chemical information on serotonin kinetics in vivo. However, the complex nature of in vivo serotonin responses makes it difficult to interpret experimental data with established kinetic models. Here, we electrically stimulated the mouse medial forebrain bundle (MFB) to provoke and detect terminal serotonin in the substantia nigra reticulata (SNr). In response to MFB stimulation we found three dynamically distinct serotonin signals. To interpret these signals we developed a computational model that supports two independent serotonin reuptake mechanisms (high affinity, low efficiency reuptake mechanism and low affinity, high efficiency reuptake system) and bolsters an important inhibitory role for the serotonin autoreceptors. Our data and analysis, afforded by the powerful combination of voltammetric and theoretical methods, gives new understanding of the chemical heterogeneity of serotonin dynamics in the brain. This diverse serotonergic matrix likely contributes to clinical variability of antidepressants. PMID:24702305

  2. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Yinxia Li

    Full Text Available Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.

  3. Serotonin Control of Thermotaxis Memory Behavior in Nematode Caenorhabditis elegans

    Science.gov (United States)

    Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong

    2013-01-01

    Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans. PMID:24223727

  4. Serotonin transporter gene promoter polymorphisms modify the association between paroxetine serotonin transporter occupancy and clinical response in major depressive disorder

    NARCIS (Netherlands)

    Ruhé, Henricus G.; Ooteman, Wendy; Booij, Jan; Michel, Martin C.; Moeton, Martina; Baas, Frank; Schene, Aart H.

    2009-01-01

    BACKGROUND: In major depressive disorder, selective serotonin reuptake inhibitors target the serotonin transporter (SERT). Their response rates (30-50%) are modified by SERT promotor polymorphisms (5-HTTLPR). OBJECTIVES: To quantify the relationship between SERT occupancy and response, and whether

  5. The Mechanism by Which Dodecyl Dimethyl Benzyl Ammonium Chloride Increased the Toxicity of Chlorpyrifos to Spodoptera exigua

    Directory of Open Access Journals (Sweden)

    Li Cui

    2017-07-01

    Full Text Available Beet armyworm, Spodoptera exigua (Hübner is one of the most destructive pests that causes significant losses in crops. Unfortunately, S. exigua have developed resistance toward the majority of insecticides. Synergists may provide an important choice to deal with the resistance problems. Dodecyl dimethyl benzyl ammonium chloride (DDBAC is a cationic surfactant, which displayed enhancement effect when combined with chlorpyrifos against S. exigua, giving enhancement factors of 1.50 and 1.57 at the concentrations of 90 and 810 mg L−1. In order to clarify the possible mechanisms, we investigate the effects of DDBAC on detoxification enzymes. However, DDBAC showed no inhibition on these enzymes activities. Meanwhile, scanning electron microscope images indicated DDBAC did not affect the cuticle super micro structure of S. exigua. The alterations in cuticular penetration rate have also been observed; indeed, it has been suggested that synergism is obtained by an acceleration of insecticide penetration through the cuticle. The chlorpyrifos penetration increased sharply when combined with 90 and 810 mg L−1 DDBAC, with only 12.6 and 8.5% of the initial chlorpyrifos recovered by external rinsing after 8 h. In contrast, when there was no DDBAC, more than 23.3% of the initial dose was recovered after 8 h.

  6. Association between salivary serotonin and the social sharing of happiness.

    Directory of Open Access Journals (Sweden)

    Masahiro Matsunaga

    Full Text Available Although human saliva contains the monoamine serotonin, which plays a key role in the modulation of emotional states, the association between salivary serotonin and empathic ability remains unclear. In order to elucidate the associations between salivary serotonin levels, trait empathy, and the sharing effect of emotions (i.e., sharing emotional experiences with others, we performed a vignette-based study. Participants were asked to evaluate their happiness when they experience several hypothetical life events, whereby we manipulated the valence of the imagined event (positive, neutral, or negative, as well as the presence of a friend (absent, positive, or negative. Results indicated that the presence of a happy friend significantly enhanced participants' happiness. Correlation analysis demonstrated that salivary serotonin levels were negatively correlated with happiness when both the self and friend conditions were positive. Correlation analysis also indicated a negative relationship between salivary serotonin levels and trait empathy (particularly in perspective taking, which was measured by the Interpersonal Reactivity Index. Furthermore, an exploratory multiple regression analysis suggested that mothers' attention during childhood predicted salivary serotonin levels. Our findings indicate that empathic abilities and the social sharing of happiness decreases as a function of salivary serotonin levels.

  7. Association between salivary serotonin and the social sharing of happiness.

    Science.gov (United States)

    Matsunaga, Masahiro; Ishii, Keiko; Ohtsubo, Yohsuke; Noguchi, Yasuki; Ochi, Misaki; Yamasue, Hidenori

    2017-01-01

    Although human saliva contains the monoamine serotonin, which plays a key role in the modulation of emotional states, the association between salivary serotonin and empathic ability remains unclear. In order to elucidate the associations between salivary serotonin levels, trait empathy, and the sharing effect of emotions (i.e., sharing emotional experiences with others), we performed a vignette-based study. Participants were asked to evaluate their happiness when they experience several hypothetical life events, whereby we manipulated the valence of the imagined event (positive, neutral, or negative), as well as the presence of a friend (absent, positive, or negative). Results indicated that the presence of a happy friend significantly enhanced participants' happiness. Correlation analysis demonstrated that salivary serotonin levels were negatively correlated with happiness when both the self and friend conditions were positive. Correlation analysis also indicated a negative relationship between salivary serotonin levels and trait empathy (particularly in perspective taking), which was measured by the Interpersonal Reactivity Index. Furthermore, an exploratory multiple regression analysis suggested that mothers' attention during childhood predicted salivary serotonin levels. Our findings indicate that empathic abilities and the social sharing of happiness decreases as a function of salivary serotonin levels.

  8. Serotonin Toxicity Caused by Moclobemide Too Soon After Paroxetine-Selegiline

    Directory of Open Access Journals (Sweden)

    Ming-Ling Wu

    2009-08-01

    Full Text Available Serotonin toxicity is an iatrogenic complication of serotonergic drug therapy. It is due to an overstimulation of central and peripheral serotonin receptors that lead to neuromuscular, mental and autonomic changes. Moclobemide is a reversible inhibitor of monoamine oxidase (MAO-A, selegiline is an irreversible selective inhibitor of MAO-B, and paroxetine is a selective serotonin reuptake inhibitor. Combined use of these agents is known to cause serotonin toxicity. A 53-year-old woman had been treated with paroxetine and selegiline. After moclobemide was prescribed in place of paroxetine without a washout period, she quickly developed confusion, agitation, ataxia, diaphoresis, tremor, mydriasis, ocular clonus, hyper-reflexia, tachycardia, moderately elevated blood pressure and high fever, symptoms that were consistent with serotonin toxicity. Discontinuation of the drugs, hydration and supportive care were followed by remarkable improvement of baseline status within 3 days. This case demonstrates that serotonin toxicity may occur even with small doses of paroxetine, selegi-line and moclobemide in combination. Physicians managing patients with depression must be aware of the potential for serotonin toxicity and should be able to recognize and treat or, ideally, anticipate and avoid this pharmacodynamically-mediated interaction that may occur between prescribed drugs.

  9. Screening of chlorpyrifos degrading bacteria CD7 and its combined application with PGPR JD37

    Directory of Open Access Journals (Sweden)

    Su Cuizhu

    2017-04-01

    Full Text Available We screened a chlorpyrifos degrading bacteria,Burkholderiasp. CD7.Joint with plant growth-promoting rhizobacteria(PGPR JD37 to produce a compositesoil amendment,which could restorethe pesticides polluted soil and promote plant growth.Results showed that CD7 and JD37 (at the volume ratio of 1:1 can promote the growth of plants,and within 25 days degrade about 66.43% chlorpyrifos in the soil.Further research found that under the same conditions of carrier dosage,vermicompost can adsorbed more bacteria than talcum powder;after a month preservation at room temperature,the number of living bacterium still maintained about 4.81×107 CFU/g.Carrier and soil,at the mass ratio of 1:1,could optimally promote plant growth,improve soil enzyme activities and increase the number of microorganisms in soil.

  10. The serotonin transporter knockout rat : A review

    NARCIS (Netherlands)

    Olivier, Jocelien; Cools, Alexander; Ellenbroek, Bart A.; Cuppen, E.; Homberg, Judith; Kalueff, Allan V.; LaPorte, Justin L.

    2010-01-01

    This chapter dicusses the most recent data on the serotonin transporter knock-out rat, a unique rat model that has been generated by target-selected N-ethyl-N-nitrosourea (ENU) driven mutagenesis. The knock-out rat is the result of a premature stopcodon in the serotonin transporter gene, and the

  11. Serotonin: Modulator of a Drive to Withdraw

    Science.gov (United States)

    Tops, Mattie; Russo, Sascha; Boksem, Maarten A. S.; Tucker, Don M.

    2009-01-01

    Serotonin is a fundamental neuromodulator in both vertebrate and invertebrate nervous systems, with a suspected role in many human mental disorders. Yet, because of the complexity of serotonergic function, researchers have been unable to agree on a general theory. One function suggested for serotonin systems is the avoidance of threat. We propose…

  12. Serotonin: Is it a marker for the diagnosis of hepatocellular ...

    African Journals Online (AJOL)

    Impaired metabolic function in liver cirrhosis and slow uptake and storage of serotonin by the platelets is a sequelae of kinetic change of serotonin transport mechanisms or abnormal serotonin release from dense granules of activated platelets is a condition defined as ''platelet exhaustion'', contributes to elevated plasma ...

  13. Using trajectory analyses to refine phenotype for genetic association: conduct problems and the serotonin transporter (5HTTLPR).

    Science.gov (United States)

    Sakai, Joseph T; Boardman, Jason D; Gelhorn, Heather L; Smolen, Andrew; Corley, Robin P; Huizinga, David; Menard, Scott; Hewitt, John K; Stallings, Michael C

    2010-10-01

    Conduct disorder is a serious, relatively common disorder of childhood and adolescence. Findings from genetic association studies searching for genetic determinants of the liability toward such behaviors have been inconsistent. One possible explanation for differential results is that most studies define phenotype from a single assessment; for many adolescents conduct problems decrease in severity over time, whereas for others such behaviors persist. Therefore, longitudinal datasets offer the opportunity to refine phenotype. We used Caucasians that were first assessed during adolescence from the National Youth Survey Family Study. Nine waves of data were used to create latent growth trajectories and test for associations between trajectory class and 5HTTLPR genotype. For the full sample, 5HTTLPR was not associated with conduct problem phenotypes. However, the short (s) allele was associated with chronic conduct problems in females; a nominally significant sex by 5HTTLPR genotype interaction was noted. Longitudinal studies provide unique opportunities for phenotypic refinement and such techniques, with large samples, may be useful for phenotypic definition with other study designs, such as whole genome association studies.

  14. Dextromethorphan, chlorphenamine and serotonin toxicity: case report and systematic literature review

    Science.gov (United States)

    Monte, Andrew A; Chuang, Ryan; Bodmer, Michael

    2010-01-01

    The aim of this review was to describe a patient with serotonin toxicity after an overdose of dextromethorphan and chlorphenamine and to perform a systematic literature review exploring whether dextromethorphan and chlorphenamine may be equally contributory in the development of serotonin toxicity in overdose. A Medline literature review was undertaken to identify cases of serotonin toxicity due to dextromethorphan and/or chlorphenamine. Case reports were included if they included information on the ingested dose or plasma concentrations of dextromethorphan and/or chlorphenamine, information about co-ingestions and detailed clinical information to evaluate for serotonin toxicity. Cases were reviewed by two toxicologists and serotonin toxicity, defined by the Hunter criteria, was diagnosed when appropriate. The literature was then reviewed to evaluate whether chlorphenamine may be a serotonergic agent. One hundred and fifty-five articles of dextromethorphan or chlorphenamine poisoning were identified. There were 23 case reports of dextromethorphan, of which 18 were excluded for lack of serotonin toxicity. No cases were identified in which serotonin toxicity could be solely attributed to chlorphenamine. This left six cases of dextrometorphane and/or chlorphenamine overdose, including our own, in which serotonin toxicity could be diagnosed based on the presented clinical information. In three of the six eligible cases dextromethorphan and chlorphenamine were the only overdosed drugs. There is substantial evidence from the literature that chlorphenamine is a similarly potent serotonin re-uptake inhibitor when compared with dextrometorphan. Chlorphenamine is a serotonergic medication and combinations of chlorphenamine and dextromethorphan may be dangerous in overdose due to an increased risk of serotonin toxicity. PMID:21175434

  15. Chronic exposure to chlorpyrifos reveals two modes of action in the springtail Folsomia candida

    Energy Technology Data Exchange (ETDEWEB)

    Jager, Tjalling [Department of Theoretical Biology, Vrije Universiteit, de Boelelaan 1085, NL-1081 HV, Amsterdam (Netherlands)]. E-mail: tjalling@bio.vu.nl; Crommentuijn, Trudie [Ministry of Spatial Planning, Housing and the Environment (VROM), Rijnstraat 8, P.O. Box 30945, 2500 GX, The Hague (Netherlands); Gestel, Cornelis A.M. van [Department of Animal Ecology, Vrije Universiteit, de Boelelaan 1085, NL-1081 HV, Amsterdam (Netherlands); Kooijman, Sebastiaan A.L.M. [Department of Theoretical Biology, Vrije Universiteit, de Boelelaan 1085, NL-1081 HV, Amsterdam (Netherlands)

    2007-01-15

    Organophosphates are popular insecticides, but relatively little is known about their chronic effects on ecologically relevant endpoints. In this paper, we examine a life-cycle experiment with the springtail Folsomia candida, exposed via food to chlorpyrifos (CPF). The results for all endpoints (survival, growth and reproduction) were analyzed using the DEBtox model. Growth was unaffected by CPF, even at concentrations causing severe effects on survival and reproduction. Model analysis suggests that CPF directly affects the process of egg production. For the short-term response (45 days), this single mode of action accurately agreed with the data. However, the full data set (120 days) revealed a dose-related decrease in reproduction at low concentrations after prolonged exposure, not covered by the same mechanism. It appears that CPF interacts with senescence by increasing oxidative damage. This assumption fits the data well, but has little consequences for the predicted response at the population level. - Exposure to chlorpyrifos in food affects reproduction in springtails according to two distinct toxic mechanisms.

  16. Chronic exposure to chlorpyrifos reveals two modes of action in the springtail Folsomia candida

    International Nuclear Information System (INIS)

    Jager, Tjalling; Crommentuijn, Trudie; Gestel, Cornelis A.M. van; Kooijman, Sebastiaan A.L.M.

    2007-01-01

    Organophosphates are popular insecticides, but relatively little is known about their chronic effects on ecologically relevant endpoints. In this paper, we examine a life-cycle experiment with the springtail Folsomia candida, exposed via food to chlorpyrifos (CPF). The results for all endpoints (survival, growth and reproduction) were analyzed using the DEBtox model. Growth was unaffected by CPF, even at concentrations causing severe effects on survival and reproduction. Model analysis suggests that CPF directly affects the process of egg production. For the short-term response (45 days), this single mode of action accurately agreed with the data. However, the full data set (120 days) revealed a dose-related decrease in reproduction at low concentrations after prolonged exposure, not covered by the same mechanism. It appears that CPF interacts with senescence by increasing oxidative damage. This assumption fits the data well, but has little consequences for the predicted response at the population level. - Exposure to chlorpyrifos in food affects reproduction in springtails according to two distinct toxic mechanisms

  17. Leaching potential of chlorpyrifos in an Andisol and Entisol: adsorption-desorption and degradation studies

    Science.gov (United States)

    Mosquera-Vivas, Carmen; Walther Hansen, Eddy; Garcia-Santos, Glenda; Obregón-Neira, Nelson; Celis-Ossa, Raul Ernesto; González-Murillo, Carlos Alberto; Juraske, Ronnie; Hellweg, Stefanie; Guerrero-Dallos, Jairo Arturo

    2017-04-01

    Ecological status of tropical soils like high OC content and microbial activity plays a key role to reduce the leaching of insecticide chlorpyrifos through the soil profile and therefore into groundwater. We found that chlorpyrifos has "transitional" leaching potential (GUS values varied between 1.8 and 2.5) throughout the soil depth, which differs from the "nonleacher" classification for temperate soils as based on surface level t1/2 and Koc values from international databases. These findings provide strong evidence of the importance of estimating the transport parameters and insecticide concentrations in different soil layers, especially when the amount and type of OC content vary throughout the soil profile. We got to such conclusions after studying the soil profile structural composition of soil organic matter and the adsorption/desorption characteristics of the insecticide in two different soil profiles (Andisol and Entisol) under agriculture production using Fourier transform infrared spectroscopy, nuclear magnetic resonance, and batch analysis methods.

  18. The serotonin system in autism spectrum disorder: from biomarker to animal models

    Science.gov (United States)

    Muller, Christopher L.; Anacker, Allison M.J.; Veenstra-VanderWeele, Jeremy

    2015-01-01

    Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophysiology remains incompletely understood. Studies of whole blood serotonin levels in ASD and in a large founder population indicate greater heritability than for the disorder itself and suggest an association with recurrence risk. Emerging data from both neuroimaging and postmortem samples also indicate changes in the brain serotonin system in ASD. Genetic linkage and association studies of both whole blood serotonin levels and of ASD risk point to the chromosomal region containing the serotonin transporter (SERT) gene in males but not in females. In ASD families with evidence of linkage to this region, multiple rare SERT amino acid variants lead to a convergent increase in serotonin uptake in cell models. A knock-in mouse model of one of these variants, SERT Gly56Ala, recapitulates the hyperserotonemia biomarker and shows increased brain serotonin clearance, increased serotonin receptor sensitivity, and altered social, communication, and repetitive behaviors. Data from other rodent models also suggest an important role for the serotonin system in social behavior, in cognitive flexibility, and in sensory development. Recent work indicates that reciprocal interactions between serotonin and other systems, such as oxytocin, may be particularly important for social behavior. Collectively, these data point to the serotonin system as a prime candidate for treatment development in a subgroup of children defined by a robust, heritable biomarker. PMID:26577932

  19. Transient Serotonin Toxicity Evoked by Combination of Electroconvulsive Therapy and Fluoxetine

    DEFF Research Database (Denmark)

    Klysner, René; Bjerg Bendsen, Birgitte; Hansen, Maja Soon

    2014-01-01

    The serotonin syndrome has been described only in rare instances for electroconvulsive therapy combined with an antidepressant medication. We describe a case of serotonin toxicity induced by electroconvulsive therapy in combination with fluoxetine.......The serotonin syndrome has been described only in rare instances for electroconvulsive therapy combined with an antidepressant medication. We describe a case of serotonin toxicity induced by electroconvulsive therapy in combination with fluoxetine....

  20. Effect of In Vivo Nicotine Exposure on Chlorpyrifos Pharmacokinetics and Pharmacodynamics in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sookwang; Poet, Torka S.; Smith, Jordan N.; Busby-Hjerpe, Andrea L.; Timchalk, Charles

    2010-03-30

    Routine use of tobacco products may modify physiological and metabolic functions, including drug metabolizing enzymes, which may impact the pharmacokinetics of environmental contaminants. Chlorpyrifos is an organophosphorus (OP) insecticide that is bioactivated to chlorpyrifos-oxon, and manifests its neurotoxicity by inhibiting acetylcholinesterase (AChE). The objective of this study was to evaluate the impact of repeated nicotine exposure on the pharmacokinetics of chlorpyrifos (CPF) and its major metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) in blood and urine and also to determine the impact on cholinesterase (ChE) activity in plasma and brain. Animals were exposed to 7-daily doses of either 1 mg nicotine/kg or saline (sc), and to either a single oral dose of 35 mg CPF/kg or a repeated dose of 5 mg CPF/kg/day for 7 days. Groups of rats were then sacrificed at multiple time-points after receiving the last dose of CPF. Repeated nicotine and CPF exposures resulted in enhanced metabolism of CPF to TCPy, as evidenced by increases in the measured TCPy concentration and AUC in blood. However, there was no significant difference in the amount of TCPy (free or total) excreted in the urine. The extent of brain acetylcholinesterase (AChE) inhibition was reduced due to nicotine co-exposure consistent with an increase in CYP450-mediated dearylation (detoxification) versus desulfuration. It was of interest to note that the impact of nicotine co-exposure was experimentally observed only after repeated CPF doses. Physiologically based pharmacokinetic model simulations of CPF-oxon concentrations in blood and brain were predicted to be lower in nicotine treated groups, which were simulated by increasing the dearylation Vmax based upon previously conducted in vitro metabolism studies. These results were consistent with the experimental data. The current study demonstrated that repeated nicotine exposure could alter CPF metabolism in vivo, further modulating brain AChE inhibition.

  1. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    International Nuclear Information System (INIS)

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na + , Cl - and K + to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na + . Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na + and Cl - , the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na + binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl - . Cl - enhances the transporters affinity for imipramine, as well as for Na + . At concentrations in the range of its K M for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na + -independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both [ 3 H]imipramine binding and [ 3 H]serotonin transport

  2. Lung damage and pulmonary uptake of serotonin in intact dogs

    International Nuclear Information System (INIS)

    Dawson, C.A.; Christensen, C.W.; Rickaby, D.A.; Linehan, J.H.; Johnston, M.R.

    1985-01-01

    The authors examined the influence of glass bead embolization and oleic acid, dextran, and imipramine infusion on the pulmonary uptake of trace doses of [ 3 H]serotonin and the extravascular volume accessible to [ 14 C]antipyrine in anesthetized dogs. Embolization and imipramine decreased serotonin uptake by 53 and 61%, respectively, but no change was observed with oleic acid or dextran infusion. The extravascular volume accessible to the antipyrine was reduced by 77% after embolization and increased by 177 and approximately 44% after oleic acid and dextran infusion, respectively. The results suggest that when the perfused endothelial surface is sufficiently reduced, as with embolization, the uptake of trace doses of serotonin will be depressed. In addition, decreases in serotonin uptake in response to imipramine in this study and in response to certain endothelial toxins in other studies suggest that serotonin uptake can reveal certain kinds of changes in endothelial function. However, the lack of a response to oleic acid-induced damage in the present study suggests that serotonin uptake is not sensitive to all forms of endothelial damage

  3. Serotonin synthesis rate and the tryptophan hydroxylase-2

    DEFF Research Database (Denmark)

    Furmark, Tomas; Marteinsdottir, Ina; Frick, Andreas

    2016-01-01

    It is disputed whether anxiety disorders, like social anxiety disorder, are characterized by serotonin over- or underactivity. Here, we evaluated whether our recent finding of elevated neural serotonin synthesis rate in patients with social anxiety disorder could be reproduced in a separate cohor...

  4. Histopathological effects of chlorpyrifos on the gills, hepatopancreas and gonads of the freshwater crab Zilchiopsis collastinensis. Persistent effects after exposure.

    Science.gov (United States)

    Negro, C L; Collins, P

    2017-06-01

    Sublethal effects of the pesticide chlorpyrifos were evaluated in the crab Zilchiopsis collastinensis (Decapoda, Trichodactylidae). Crabs were exposed to high concentrations of chlorpyrifos at the beginning of the experiment and controlled dilution, under natural light and temperature conditions. A control and three concentrations (22.4, 41.25 and 61.4µg chlorpyrifos L -1 ) were evaluated in triplicate. Nine crabs per concentration and day were used. The gills, hepatopancreas and ovaries were sampled before pesticide exposure (day 0) and 8, 15 and 22 days later, when concentrations were diluted and below the detection limits. The histopathological effects and their variations in time were observed and quantified. In gills, hyperplasias were observed in several cases, mainly in crabs exposed to chlorpyrifos. The number of collapsed lamellae and the number of affected lamellae quickly increased in exposed crabs, as effects were observed on day 8 and remained until day 22. In hepatopancreas there was an increase in the number of F and B -cells and affected tubules, especially after 22 days of exposure (p<0.05). In ovaries, there were no effects on gonadosomatic indexes or oocyte volume, but there was a significant increase in the atretic oocyte proportion related to pesticide exposure (p<0.05). The histopathological effects on the gills, hepatopancreas and ovaries were observed after exposure and persist even after dilution, and might be related to earlier exposures. Thus, these histopathological effects might be used as pesticide biomarkers even after the pesticide is not detected by chemical methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Delayed effects of chlorpyrifos across metamorphosis on dispersal-related traits in a poleward moving damselfly.

    Science.gov (United States)

    Dinh, Khuong Van; Janssens, Lizanne; Therry, Lieven; Bervoets, Lieven; Bonte, Dries; Stoks, Robby

    2016-11-01

    How exposure to contaminants may interfere with the widespread poleward range expansions under global warming is largely unknown. Pesticide exposure may negatively affect traits shaping the speed of range expansion, including traits related to population growth rate and dispersal-related traits. Moreover, rapid evolution of growth rates during poleward range expansions may come at a cost of a reduced investment in detoxification and repair thereby increasing the vulnerability to contaminants at expanding range fronts. We tested effects of a sublethal concentration of the widespread pesticide chlorpyrifos on traits related to range expansion in replicated edge and core populations of the poleward moving damselfly Coenagrion scitulum reared at low and high food levels in a common garden experiment. Food limitation in the larval stage had strong negative effects both in the larval stage and across metamorphosis in the adult stage. Exposure to chlorpyrifos during the larval stage did not affect larval traits but caused delayed effects across metamorphosis by increasing the incidence of wing malformations during metamorphosis and by reducing a key component of the adult immune response. There was some support for an evolutionary trade-off scenario as the faster growing edge larvae suffered a higher mortality during metamorphosis. Instead, there was no clear support for the faster growing edge larvae being more vulnerable to chlorpyrifos. Our data indicate that sublethal delayed effects of pesticide exposure, partly in association with the rapid evolution of faster growth rates, may slow down range expansions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Plasma serotonin in horses undergoing surgery for small intestinal colic

    Science.gov (United States)

    Torfs, Sara C.; Maes, An A.; Delesalle, Catherine J.; Pardon, Bart; Croubels, Siska M.; Deprez, Piet

    2015-01-01

    This study compared serotonin concentrations in platelet poor plasma (PPP) from healthy horses and horses with surgical small intestinal (SI) colic, and evaluated their association with postoperative ileus, strangulation and non-survival. Plasma samples (with EDTA) from 33 horses with surgical SI colic were collected at several pre- and post-operative time points. Serotonin concentrations were determined using liquid-chromatography tandem mass spectrometry. Results were compared with those for 24 healthy control animals. The serotonin concentrations in PPP were significantly lower (P serotonin was not a suitable prognostic factor in horses with SI surgical colic. PMID:25694668

  7. The importance of serotonin in the gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Jarosław Koza

    2017-12-01

    Description of the current knowledge and conclusions. Serotonin is responsible for some symptoms of carcinoid syndrome. It is the result of higher 5-hydroxytryptamine content in the body. Moreover disrupted serotonin system is found in different gastrointestinal disorders e.g. in gastroesophageal reflux disease, functional heartburn, hypersensitive esophagus, functional dyspepsia, irritable bowel syndrome (both diarrhoea predominant and constipation predominant as well as in inflammatory bowel diseases. Knowledge of changed mechanisms in particular diseases facilitates the optimal choice of treatment. Drugs affecting the serotonin system in gastroenterological clinical practice are useful especially in the case of abnormalities in the brain - gut axis.

  8. Effects of chlorpyrifos in freshwater model ecosystems: the influence of experimental conditions on ecotoxicological thresholds

    NARCIS (Netherlands)

    Wijngaarden, van R.P.A.; Brock, T.C.M.; Douglas, M.T.

    2005-01-01

    Three experiments were conducted to determine the impact of the insecticide chlorpyrifos (single applications of 0.01 to 10 µg AI litre-1) in plankton-dominated nutrient-rich microcosms. The microcosms (water volume approximately 14 litres) were established in the laboratory under temperature, light

  9. Effects of time-variable exposure regimes of the insecticide chlorpyrifos on freshwater invertebrate communities in microcosms

    NARCIS (Netherlands)

    Zafar, M.I.; Wijngaarden, van R.; Roessink, I.; Brink, van den P.J.

    2011-01-01

    The present study compared the effects of different time-variable exposure regimes having the same time-weighted average (TWA) concentration of the organophosphate insecticide chlorpyrifos on freshwater invertebrate communities to enable extrapolation of effects across exposure regimes. The

  10. Optimization of the Use of His₆-OPH-Based Enzymatic Biocatalysts for the Destruction of Chlorpyrifos in Soil.

    Science.gov (United States)

    Senko, Olga; Maslova, Olga; Efremenko, Elena

    2017-11-23

    Applying enzymatic biocatalysts based on hexahistidine-containing organophosphorus hydrolase (His₆-OPH) is suggested for the decomposition of chlorpyrifos, which is actively used in agriculture in many countries. The application conditions were optimized and the following techniques was suggested to ensure the highest efficiency of the enzyme: first, the soil is alkalinized with hydrated calcitic lime Ca(OH)₂, then the enzyme is introduced into the soil at a concentration of 1000 U/kg soil. Non-equilibrium low temperature plasma (NELTP)-modified zeolite is used for immobilization of the relatively inexpensive polyelectrolyte complexes containing the enzyme His₆-OPH and a polyanionic polymer: poly-l-glutamic acid (PLE 50 ) or poly-l-aspartic acid (PLD 50 ). The soil's humidity is then increased up to 60-80%, the top layer (10-30 cm) of soil is thoroughly stirred, and then exposed for 48-72 h. The suggested approach ensures 100% destruction of the pesticide within 72 h in soils containing as much as 100 mg/kg of chlorpyrifos. It was concluded that using this type of His₆-OPH-based enzyme chemical can be the best approach for soils with relatively low humus concentrations, such as sandy and loam-sandy chestnut soils, as well as types of soil with increased alkalinity (pH 8.0-8.4). Such soils are often encountered in desert, desert-steppe, foothills, and subtropical regions where chlorpyrifos is actively used.

  11. Children's residential exposure to chlorpyrifos: Application of CPPAES field measurements of chlorpyrifos and TCPy within MENTOR/SHEDS-Pesticides model

    Energy Technology Data Exchange (ETDEWEB)

    Hore, Paromita [Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University and the University of Medicine and Dentistry of New Jersey (UMDNJ), Robert Wood Johnson Medical School, 170 Frelinghuysen Road, Piscataway, NJ 08855 (United States)]|[New York City Department of Health, 253 Broadway New York, New York 10007 (United States); Zartarian, Valerie; Xue Jianping; Ozkaynak, Haluk [National Exposure Research Laboratory, U.S. EPA, 109 TW Alexander Drive, Research Triangle Park, NC 27709 (United States); Wang, S.-W.; Yang, Y.-C.; Chu, P.-Ling; Robson, Mark; Georgopoulos, Panos [Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University and the University of Medicine and Dentistry of New Jersey (UMDNJ), Robert Wood Johnson Medical School, 170 Frelinghuysen Road, Piscataway, NJ 08855 (United States); Sheldon, Linda [National Exposure Research Laboratory, U.S. EPA, 109 TW Alexander Drive, Research Triangle Park, NC 27709 (United States); Needham, Larry Barr, Dana [Contemporary Pesticide Laboratory, Centers for Disease Control, 4770 Buford Highway, Atlanta, GA 30341 (United States); Freeman, Natalie [Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University and the University of Medicine and Dentistry of New Jersey (UMDNJ), Robert Wood Johnson Medical School, 170 Frelinghuysen Road, Piscataway, NJ 08855 (United States)]|[University of Florida, Gainesville, FL 32611 (United States); Lioy, Paul J. [Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University and the University of Medicine and Dentistry of New Jersey (UMDNJ), Robert Wood Johnson Medical School, 170 Frelinghuysen Road, Piscataway, NJ 08855 (United States)]. E-mail: plioy@eohsi.rutgers.edu

    2006-08-01

    The comprehensive individual field-measurements on non-dietary exposure collected in the Children's-Post-Pesticide-Application-Exposure-Study (CPPAES) were used within MENTOR/SHEDS-Pesticides, a physically based stochastic human exposure and dose model. In this application, however, the model was run deterministically. The MENTOR/SHEDS-Pesticides employed the CPPAES as input variables to simulate the exposure and the dose profiles for seven children over a 2-week post-application period following a routine residential and professional indoor crack-and-crevice chlorpyrifos application. The input variables were obtained from a personal activity diary, microenvironmental measurements and personal biomonitoring data obtained from CPPAES samples collected from the individual children and in their homes. Simulation results were compared with CPPAES field measured values obtained from the children's homes to assess the utility of the different microenvironmental data collected in CPPAES, i.e. indicator toys and wipe samplers to estimate aggregate exposures that can be result from one or more exposure pathways and routes. The final analyses of the database involved comparisons of the actual data obtained from the individual biomarker samples of a urinary metabolite of chlorpyrifos (TCPy) and the values predicted by MENTOR/SHEDS-Pesticides using the CPPAES-derived variables. Because duplicate diet samples were not part of the CPPAES study design, SHEDs-Pesticides simulated dose profiles did not account for the dietary route. The research provided more confidence in the types of data that can be used in the inhalation and dermal contact modules of MENTOR/SHEDS-Pesticides to predict the pesticide dose received by a child. It was determined that we still need additional understanding about: (1) the types of activities and durations of activities that result in non-dietary ingestion of pesticides and (2) the influence of dietary exposures on the levels of TCPy found

  12. Serotonin is critical for rewarded olfactory short-term memory in Drosophila.

    Science.gov (United States)

    Sitaraman, Divya; LaFerriere, Holly; Birman, Serge; Zars, Troy

    2012-06-01

    The biogenic amines dopamine, octopamine, and serotonin are critical in establishing normal memories. A common view for the amines in insect memory performance has emerged in which dopamine and octopamine are largely responsible for aversive and appetitive memories. Examination of the function of serotonin begins to challenge the notion of one amine type per memory because altering serotonin function also reduces aversive olfactory memory and place memory levels. Could the function of serotonin be restricted to the aversive domain, suggesting a more specific dopamine/serotonin system interaction? The function of the serotonergic system in appetitive olfactory memory was examined. By targeting the tetanus toxin light chain (TNT) and the human inwardly rectifying potassium channel (Kir2.1) to the serotonin neurons with two different GAL4 driver combinations, the serotonergic system was inhibited. Additional use of the GAL80(ts1) system to control expression of transgenes to the adult stage of the life cycle addressed a potential developmental role of serotonin in appetitive memory. Reduction in appetitive olfactory memory performance in flies with these transgenic manipulations, without altering control behaviors, showed that the serotonergic system is also required for normal appetitive memory. Thus, serotonin appears to have a more general role in Drosophila memory, and implies an interaction with both the dopaminergic and octopaminergic systems.

  13. Comparative effects of parathion and chlorpyrifos on extracellular endocannabinoid levels in rat hippocampus: Influence on cholinergic toxicity

    International Nuclear Information System (INIS)

    Liu, Jing; Parsons, Loren; Pope, Carey

    2013-01-01

    Parathion (PS) and chlorpyrifos (CPF) are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). Endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) can modulate neurotransmission by inhibiting neurotransmitter release. We proposed that differential inhibition of eCB-degrading enzymes (fatty acid amide hydrolase, FAAH, and monoacylglycerol lipase, MAGL) by PS and CPF leads to differences in extracellular eCB levels and toxicity. Microdialysis cannulae were implanted into hippocampus of adult male rats followed by treatment with vehicle (peanut oil, 2 ml/kg, sc), PS (27 mg/kg) or CPF (280 mg/kg) 6–7 days later. Signs of toxicity, AChE, FAAH and MAGL inhibition, and extracellular levels of AEA and 2AG were measured 2 and 4 days later. Signs were noted in PS-treated rats but not in controls or CPF-treated rats. Cholinesterase inhibition was extensive in hippocampus with PS (89–90%) and CPF (78–83%) exposure. FAAH activity was also markedly reduced (88–91%) by both OPs at both time-points. MAGL was inhibited by both OPs but to a lesser degree (35–50%). Increases in extracellular AEA levels were noted after either PS (about 2-fold) or CPF (about 3-fold) while lesser treatment-related 2-AG changes were noted. The cannabinoid CB1 receptor antagonist/inverse agonist AM251 (3 mg/kg, ip) had no influence on functional signs after CPF but markedly decreased toxicity in PS-treated rats. The results suggest that extracellular eCBs levels can be markedly elevated by both PS and CPF. CB1-mediated signaling appears to play a role in the acute toxicity of PS but the role of eCBs in CPF toxicity remains unclear. - Highlights: • Chlorpyrifos and parathion both extensively inhibited hippocampal cholinesterase. • Functional signs were only noted with parathion. • Chlorpyrifos and parathion increased hippocampal extracellular anandamide levels. • 2-Arachidonoylglycerol levels were

  14. Comparative effects of parathion and chlorpyrifos on extracellular endocannabinoid levels in rat hippocampus: Influence on cholinergic toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK (United States); Parsons, Loren [Committee on Neurobiology of Affective Disorders, The Scripps Research Institute, La Jolla, CA (United States); Pope, Carey, E-mail: carey.pope@okstate.edu [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK (United States)

    2013-11-01

    Parathion (PS) and chlorpyrifos (CPF) are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). Endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) can modulate neurotransmission by inhibiting neurotransmitter release. We proposed that differential inhibition of eCB-degrading enzymes (fatty acid amide hydrolase, FAAH, and monoacylglycerol lipase, MAGL) by PS and CPF leads to differences in extracellular eCB levels and toxicity. Microdialysis cannulae were implanted into hippocampus of adult male rats followed by treatment with vehicle (peanut oil, 2 ml/kg, sc), PS (27 mg/kg) or CPF (280 mg/kg) 6–7 days later. Signs of toxicity, AChE, FAAH and MAGL inhibition, and extracellular levels of AEA and 2AG were measured 2 and 4 days later. Signs were noted in PS-treated rats but not in controls or CPF-treated rats. Cholinesterase inhibition was extensive in hippocampus with PS (89–90%) and CPF (78–83%) exposure. FAAH activity was also markedly reduced (88–91%) by both OPs at both time-points. MAGL was inhibited by both OPs but to a lesser degree (35–50%). Increases in extracellular AEA levels were noted after either PS (about 2-fold) or CPF (about 3-fold) while lesser treatment-related 2-AG changes were noted. The cannabinoid CB1 receptor antagonist/inverse agonist AM251 (3 mg/kg, ip) had no influence on functional signs after CPF but markedly decreased toxicity in PS-treated rats. The results suggest that extracellular eCBs levels can be markedly elevated by both PS and CPF. CB1-mediated signaling appears to play a role in the acute toxicity of PS but the role of eCBs in CPF toxicity remains unclear. - Highlights: • Chlorpyrifos and parathion both extensively inhibited hippocampal cholinesterase. • Functional signs were only noted with parathion. • Chlorpyrifos and parathion increased hippocampal extracellular anandamide levels. • 2-Arachidonoylglycerol levels were

  15. Photomimetic effect of serotonin on yeast cells irradiated by far-UV radiation

    International Nuclear Information System (INIS)

    Fraikin, G.Y.; Strakhovskaya, M.G.; Rubin, L.B.

    1982-01-01

    The effect of serotonin on the survival of far-UV irradiated cells of the yeast Candida guilliermondii was studied. Serotonin was found to have a photomimetic property. Preincubation of cells with serotonin results in protection against far-UV inactivation, whereas the post-radiation treatment with serotonin causes a potentiation of far-UV lethality. Both effects are similar to those produced by near-UV (334 nm) radiation. The observations provide support to the previously proposed idea that photosynthesized serotonin is the underlying cause of the two effects of near-UV radiation, photoprotection and potentiation of far-UV lethality. Experiments with an excision-deficient strain of the yeast Saccharomyces cerevisiae suggest that the effect of serotonin is by its binding to DNA. (author)

  16. Characterization and regulation of [3H]-serotonin uptake and release in rodent spinal

    International Nuclear Information System (INIS)

    Stauderman, K.A.

    1986-01-01

    The uptake and release of [ 3 H]-serotonin were investigated in rat spinal cord synaptosomes. In the uptake experiments, sodium-dependent and sodium-independent [ 3 H]-serotonin accumulation processes were found. Sodium-dependent [ 3 H]-serotonin accumulation was: linear with sodium concentrations up to 180 mM; decreased by disruption of membrane integrity or ionic gradients; associated with purified synaptosomal fractions; and reduced after description of descending serotonergic neurons in the spinal cord. Of the uptake inhibitors tested, the most potent was fluoxetine (IC 50 75 nM), followed by desipramine (IC 50 430 nM) and nomifensine (IC 50 950 nM). The sodium-independent [ 3 H]-serotonin accumulation process was insensitive to most treatments and probably represents nonspecific membrane binding. Thus, only sodium-dependent [ 3 H]-serotonin uptake represents the uptake process of serotonergic nerve terminals in rat spinal cord homogenates. In the release experiments, K + -induced release of previously accumulated [ 3 H]-serotonin was Ca 2+ -dependent, and originated from serotonergic synaptosomes. Exogenous serotonin and 5-methyoxy-N,N-dimethyltryptamine inhibited [ 3 H]-serotonin release in a concentration-dependent way. Of the antagonists tested, only methiothepin effectively blocked the effect of serotonin. These data support the existence of presynaptic serotonin autoreceptors on serotonergic nerve terminals in the rat spinal cord that act to inhibit a voltage and Ca 2+ -sensitive process linked to serotonin release. Alteration of spinai cord serotonergic function may therefore be possible by drugs acting on presynaptic serotonin autoreceptors in the spinal cord

  17. Noninvasive measurement of lung carbon-11-serotonin extraction in man

    International Nuclear Information System (INIS)

    Coates, G.; Firnau, G.; Meyer, G.J.; Gratz, K.F.

    1991-01-01

    The fraction of serotonin extracted on a single passage through the lungs is being used as an early indicator of lung endothelial damage but the existing techniques require multiple arterial blood samples. We have developed a noninvasive technique to measure lung serotonin uptake in man. We utilized the double indicator diffusion principle, a positron camera, 11 C-serotonin as the substrate, and 11 CO-erythrocytes as the vascular marker. From regions of interest around each lung, we recorded time-activity curves in 0.5-sec frames for 30 sec after a bolus injection of first the vascular marker 11 CO-erythrocytes and 10 min later 11 C-serotonin. A second uptake measurement was made after imipramine 25-35 mg was infused intravenously. In three normal volunteers, the single-pass uptake of 11 C-serotonin was 63.9% +/- 3.6%. This decreased in all subjects to a mean of 53.6% +/- 1.4% after imipramine. The rate of lung washout of 11 C was also significantly prolonged after imipramine. This noninvasive technique can be used to measure lung serotonin uptake to detect early changes in a variety of conditions that alter the integrity of the pulmonary endothelium

  18. Cholinesterase catalyzed hydrolysis of O-acyl derivatives of serotonin

    International Nuclear Information System (INIS)

    Makhaeva, G.F.; Suvorov, N.N.; Ginodman, L.N.; Antonov, V.K.; AN SSSR, Moscow. Inst. Bioorganicheskoj Khimii)

    1977-01-01

    Hydrolysis of O acyl serotonin derivatives containing the residues of monocarbon dicarbon and amino acids under the effect of horse serum butyryl cholinesterase and bull erythrocytic acetylcholinesterase has been studied. It has been established, that acetylcholinesterase hydrolizes O acetylserotonin only; butyrylcholinesterase hydrolizes all the compounds investigated, except for 5,5'-terephthaloildioxytriptamine. The kinetic parameters of hydrolysis were determined. O acyl serotonin derivatives turned out good substrates of butylrylcholinesterase; serotonin and 5.5'-terephtaloildioxytriptamine are effective competitine inhibitors of the enzyme. Estimating of resistance of O acyl serotonin derivatines to blood cholinesterase effect under physiological conditions shows that the compounds investigated with the exception of 5,5'-terephthaloildioxytriptamine must be quickly hydrolyzed under butyrylcholinesterase action. 5,5'-terephthaloildioxytriptamine is suggested as a radioprotective preparation with the prolonged effect, which agrees with the biological test results

  19. Impact of single and repeated applications of the insecticide chlorpyrifos on tropical freshwater plankton communities

    NARCIS (Netherlands)

    Daam, M.A.; Brink, van den P.J.; Nogueira, A.J.A.

    2008-01-01

    This paper describes the effects of a single and a repeated application of the organophosphorus insecticide chlorpyrifos on zooplankton and phytoplankton communities in outdoor microcosms in Thailand. Treatment levels of 1 mu g L-1 were applied once or twice with a 2-week interval. Both treatments

  20. Serotonin shapes risky decision making in monkeys

    OpenAIRE

    Long, Arwen B.; Kuhn, Cynthia M.; Platt, Michael L.

    2009-01-01

    Some people love taking risks, while others avoid gambles at all costs. The neural mechanisms underlying individual variation in preference for risky or certain outcomes, however, remain poorly understood. Although behavioral pathologies associated with compulsive gambling, addiction and other psychiatric disorders implicate deficient serotonin signaling in pathological decision making, there is little experimental evidence demonstrating a link between serotonin and risky decision making, in ...

  1. Chlorpyrifos causes decreased organic matter decomposition by suppressing earthworm and termite communities in tropical soil

    Energy Technology Data Exchange (ETDEWEB)

    De Silva, P. Mangala C.S., E-mail: msilva@falw.vu.n [Department of Animal Ecology, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Department of Zoology, Faculty of Science, University of Ruhuna, Matara (Sri Lanka); Pathiratne, Asoka [Department of Zoology, Faculty of Science, University of Kelaniya, Kelaniya (Sri Lanka); Straalen, Nico M. van; Gestel, Cornelis A.M. van [Department of Animal Ecology, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)

    2010-10-15

    Effects of pesticides on structural and functional properties of ecosystems are rarely studied under tropical conditions. In this study litterbag and earthworm field tests were performed simultaneously at the same tropical field site sprayed with chlorpyrifos (CPF). The recommended dose of CPF (0.6 kg a.i. ha{sup -1}) and two higher doses (4.4-8.8 kg a.i. ha{sup -1}) significantly decreased litter decomposition during the first 3 months after application, which could be explained from lower earthworm and termite abundances during this period. Species-specific effects of CPF on organism abundance and biomass were observed, with termites being mostly affected followed by the earthworm Perionyx excavatus; the earthworm Megascolex sp. was least affected. Recovery was completed within 6 months. Decomposition in the controls and lowest two treatments was completed within 4 months, which suggests the need for modification of standard test guidelines to comply with faster litter degradation under tropical conditions. - Effects of chlorpyrifos on functional and structural endpoints in soil.

  2. Chlorpyrifos causes decreased organic matter decomposition by suppressing earthworm and termite communities in tropical soil

    International Nuclear Information System (INIS)

    De Silva, P. Mangala C.S.; Pathiratne, Asoka; Straalen, Nico M. van; Gestel, Cornelis A.M. van

    2010-01-01

    Effects of pesticides on structural and functional properties of ecosystems are rarely studied under tropical conditions. In this study litterbag and earthworm field tests were performed simultaneously at the same tropical field site sprayed with chlorpyrifos (CPF). The recommended dose of CPF (0.6 kg a.i. ha -1 ) and two higher doses (4.4-8.8 kg a.i. ha -1 ) significantly decreased litter decomposition during the first 3 months after application, which could be explained from lower earthworm and termite abundances during this period. Species-specific effects of CPF on organism abundance and biomass were observed, with termites being mostly affected followed by the earthworm Perionyx excavatus; the earthworm Megascolex sp. was least affected. Recovery was completed within 6 months. Decomposition in the controls and lowest two treatments was completed within 4 months, which suggests the need for modification of standard test guidelines to comply with faster litter degradation under tropical conditions. - Effects of chlorpyrifos on functional and structural endpoints in soil.

  3. Serotonin 2c receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

    Science.gov (United States)

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor a...

  4. Determination of half life of the pesticides chlorpyrifos (14C) in an agricultural soil of the VI region by means of the using isotopic techniques

    International Nuclear Information System (INIS)

    Camarda Rojas, Gabriela Paz

    2005-01-01

    Chlorpyrifos is an organophosphorus insecticide widely used in Chilean agriculture in the control of plagues of insects in soil and several crops. From an environmental point of view, to know the behavior and fate of Chlorpyrifos under different moisture regimes in soil is important because it contributes to optimize its use, assuring that collateral effects do not take place inside or outside the application area and in addition it specifies the optimal conditions of application to obtain better results in the treatment with the land insecticide. In this work it was studied the half life of Chlorpyrifos ( 14 C) in an agricultural soil of VI Region, by means of the use of Isotopic techniques, under two moisture regimes of 50 and 75% of the Field Capacity. The ground samples were fortified with doses of 10 mg/Kg and incubated to 20 o C and in absence of light. The dissipation of Chlorpyrifos in soil was determined during 110 days of test, through the quantification of remaining 14 CO 2 by liquid scintillation counting. Results show temporary differences in the half life for different moisture regimes, with T 1/2 of 21 and 28 days for the soil to 75 and 50% of the Field Capacity, respectively. It was studied the factors related to soil and plaguicide that could affect speed of degradation, either accelerating or inhibiting the process of dissipation of Chlorpyrifos, under the described moisture regimes. The results indicated that the fast degradation of the insecticide organophosphorus in the soil to 75% of the CC is product of biotic and abiotic processes. Between the abiotic processes the neutral hydrolysis constituted the principal route of dissipation, mainly due to the moisture content and pH presented in soil (pH 7,2). Nevertheless, factors as the high content of organic matter of the soil, low water solubility, high coefficient of adsorption and bond p=S of the Chlorpyrifos, they suggest the sorption process would inhibit hydrolysis, slowing down the

  5. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors

    International Nuclear Information System (INIS)

    Pazos, A.; Palacios, M.

    1985-01-01

    The distribution of serotonin-1 (5-HT 1 ) receptors in the rat brain was studied by light microscopic quantitative autoradiography. Receptors were labeled with [ 3 H]serotonin (5-[ 3 H]HT), 8-hydroxy-2-[N-dipropylamino- 3 H]tetralin (8-OH-[ 3 H]DPAT), [ 3 H]LSD and [ 3 H]mesulergine, and the densities quantified by microdensitometry with the aid of a computer-assisted image-analysis system. Competition experiments for 5-[ 3 H]HT binding by several serotonin-1 agonists led to the identification of brain areas enriched in each one of the three subtypes of 5-HT 1 recognition sites already described. The existence of these 'selective' areas allowed a detailed pharmacological characterization of these sites to be made in a more precise manner than has been attained in membrane-binding studies. Very high concentrations of 5-HT 1 receptors were localized in the choroid plexus, lateroseptal nucleus, globus pallidus and ventral pallidum, dentate gyrus, dorsal subiculum, olivary pretectal nucleus, substantia nigra, reticular and external layer of the entorhinal cortex. The distribution of 5-HT 1 receptors reported here is discussed in correlation with the distribution of serotoninergic neurons and fibers, the related anatomical pathways and the effects which appear to be mediated by these sites. (Auth.)

  6. Moderation of antidepressant response by the serotonin transporter gene

    DEFF Research Database (Denmark)

    Huezo-Diaz, Patricia; Uher, Rudolf; Smith, Rebecca

    2009-01-01

    Background: There have been conflicting reports on whether the length polymorphism in the promoter of the serotonin transporter gene (5-HTTLPR) moderates the antidepressant effects of selective serotonin reuptake inhibitors (SSRIs). We hypothesised that the pharmacogenetic effect of 5-HTTLPR...... the serotonin transporter gene were genotyped in 795 adults with moderate-to-severe depression treated with escitalopram or nortriptyline in the Genome Based Therapeutic Drugs for Depression (GENDEP) project. Results: The 5-HTTLPR moderated the response to escitalopram, with long-allele carriers improving more...

  7. Ethanol intake and 3H-serotonin uptake I: A study in Fawn-Hooded rats

    International Nuclear Information System (INIS)

    Daoust, M.; Compagnon, P.; Legrand, E.; Boucly, P.

    1991-01-01

    Ethanol intake and synaptosomal 3 H-serotonin uptake were studied in male Fawn-Hooded and Sprague-Dawley rats. Fawn-Hooded rats consumed more alcohol and more water than Sprague-Dawley rats. Plasma alcohol levels of Sprague-Dawley rats were not detectable but were about 5 mg/dl in Fawn-Hooded rats. Ethanol intake increased the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex, but not in thalamus. In Fawn-Hooded rats, serotonin uptake (Vmax) was higher than in Sprague-Dawley rats cortex. Ethanol intake reduced the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex. In cortex, the carrier affinity for serotonin was increased in alcoholized Fawn-Hooded rats. These results indicate that synaptosomal 3 H-serotonin uptake is affected by ethanol intake. In Fawn-Hooded rats, high ethanol consumption is associated with high serotonin uptake. In rats presenting high serotonin uptake, alcoholization reduces 3 H-serotonin internalization in synaptosomes, indicating a specific sensitivity to alcohol intake of serotonin uptake system

  8. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  9. Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii

    International Nuclear Information System (INIS)

    Sparling, D.W.; Fellers, G.

    2007-01-01

    Organophosphorus pesticides (OPs) are ubiquitous in the environment and are highly toxic to amphibians. They deactivate cholinesterase, resulting in neurological dysfunction. Most chemicals in this group require oxidative desulfuration to achieve their greatest cholinesterase-inhibiting potencies. Oxon derivatives are formed within liver cells but also by bacterial decay of parental pesticides. This study examines the toxicity of chlorpyrifos, malathion and diazinon and their oxons on the foothill yellow-legged frog (Rana boylii). R. boylii is exposed to agricultural pesticides in the California Central Valley. Median lethal concentrations of the parental forms during a 96 h exposure were 3.00 mg/L (24 h) for chlorpyrifos, 2.14 mg/L for malathion and 7.49 mg/L for diazinon. Corresponding oxons were 10 to 100 times more toxic than their parental forms. We conclude that environmental concentrations of these pesticides can be harmful to R. boylii populations. - Laboratory tests on the toxicity of OP insecticides and their oxons suggest that they may be acutely lethal to amphibians at ecologically relevant concentrations

  10. Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii

    Energy Technology Data Exchange (ETDEWEB)

    Sparling, D.W. [Cooperative Wildlife Research Laboratory, Department of Zoology and Center for Ecology, Southern Illinois University, LS II, MS6504, Carbondale, IL 62901 (United States)]. E-mail: dsparl@siu.edu; Fellers, G. [Western Ecology Research Center, U.S. Geological Survey, Point Reyes National Seashore, Point Reyes, CA 94956 (United States)

    2007-06-15

    Organophosphorus pesticides (OPs) are ubiquitous in the environment and are highly toxic to amphibians. They deactivate cholinesterase, resulting in neurological dysfunction. Most chemicals in this group require oxidative desulfuration to achieve their greatest cholinesterase-inhibiting potencies. Oxon derivatives are formed within liver cells but also by bacterial decay of parental pesticides. This study examines the toxicity of chlorpyrifos, malathion and diazinon and their oxons on the foothill yellow-legged frog (Rana boylii). R. boylii is exposed to agricultural pesticides in the California Central Valley. Median lethal concentrations of the parental forms during a 96 h exposure were 3.00 mg/L (24 h) for chlorpyrifos, 2.14 mg/L for malathion and 7.49 mg/L for diazinon. Corresponding oxons were 10 to 100 times more toxic than their parental forms. We conclude that environmental concentrations of these pesticides can be harmful to R. boylii populations. - Laboratory tests on the toxicity of OP insecticides and their oxons suggest that they may be acutely lethal to amphibians at ecologically relevant concentrations.

  11. Effects of delayed laboratory processing on platelet serotonin levels.

    Science.gov (United States)

    Sanner, Jennifer E; Frazier, Lorraine; Udtha, Malini

    2013-01-01

    Despite the availability of established guidelines for measuring platelet serotonin, these guidelines may be difficult to follow in a hospital setting where time to processing may vary from sample to sample. The purpose of this study was to evaluate the effect of the time to processing of human blood samples on the stability of the enzyme-linked immunosorbent assay (ELISA) for the determination of platelet serotonin levels in human plasma. Human blood samples collected from a convenience sample of eight healthy volunteers were analyzed to determine platelet serotonin levels from plasma collected in ethylene diamine tetra acetic acid (EDTA) tubes and stored at 4°C for 3 hr, 5 hr, 8 hr, and 12 hr. Refrigeration storage at 4°C for 3 hr, 5 hr, 8 hr, and 12 hr altered the platelet serotonin measurement when compared to immediate processing. The bias for the samples stored at 4°C for 3 hr was 102.3 (±217.39 ng/10(9) platelets), for 5 hr was 200.1 (±132.76 ng/10(9) platelets), for 8 hr was 146.9 (±221.41 ng/10(9) platelets), and for 12 hr was -67.6 (±349.60 ng/10(9) platelets). Results from this study show that accurate measurement of platelet serotonin levels is dependent on time to processing. Researchers should therefore follow a standardized laboratory guideline for obtaining immediate platelet serotonin levels after blood sample collection.

  12. Serotonin Regulates the Feeding and Reproductive Behaviors of Pratylenchus penetrans.

    Science.gov (United States)

    Han, Ziduan; Boas, Stephanie; Schroeder, Nathan E

    2017-07-01

    The success of all plant-parasitic nematodes is dependent on the completion of several complex behaviors. The lesion nematode Pratylenchus penetrans is an economically important parasite of a diverse range of plant hosts. Unlike the cyst and root-knot nematodes, P. penetrans moves both within and outside of the host roots and can feed from both locations. Adult females of P. penetrans require insemination by actively moving males for reproduction and can lay eggs both within and outside of the host roots. We do not have a complete understanding of the molecular basis for these behaviors. One candidate modulator of these behaviors is the neurotransmitter serotonin. Previous research demonstrated an effect of exogenously applied serotonin on the feeding and male mating behaviors of cyst and root-knot nematodes. However, there are no data on the role of exogenous serotonin on lesion nematodes. Similarly, there are no data on the presence and function of endogenous serotonin in any plant-parasitic nematode. Here, we establish that exogenous serotonin applied to P. penetrans regulates both feeding and sex-specific behaviors. Furthermore, using immunohistochemistry and pharmacological assays, our data suggest that P. penetrans utilizes endogenous serotonin to regulate both feeding and sex-specific behaviors.

  13. Incidence and prognostic value of serotonin secretion in pancreatic neuroendocrine tumours.

    Science.gov (United States)

    Zandee, Wouter T; van Adrichem, Roxanne C; Kamp, Kimberly; Feelders, Richard A; van Velthuysen, Marie-Louise F; de Herder, Wouter W

    2017-08-01

    Serotonin secretion occurs in approximately 1%-4% of patients with a pancreatic neuroendocrine tumour (PNET), but the incidence is not well defined. The aim of this study was to determine the incidence of serotonin secretion with and without carcinoid syndrome and the prognostic value for overall survival (OS). Data were collected from 255 patients with a PNET if 24-hours urinary 5-hydroxyindoleacetic acid excretion (5-HIAA) was assessed. Patients were diagnosed with serotonin secretion if 24-hours urinary 5-HIAA excretion was more than 3× the upper limit of normal (ULN) of 50 μmol/24 hours during follow-up. The effect of serotonin secretion on OS was estimated with uni- and multivariate analyses using a Cox regression. Two (0.8%) patients were diagnosed with carcinoid syndrome, and another 20 (7.8%) had a serotonin-secreting PNET without symptoms. These patients mostly had ENETS stage IV disease with high chromogranin A (CgA). Serotonin secretion was a negative prognostic factor in univariate analysis (HR 2.2, 95% CI: 1.27-3.81), but in multivariate analysis, only CgA>10× ULN (HR: 1.81, 95% CI: 1.10-2.98) and neuron-specific enolase (NSE) >ULN (HR: 3.51, 95% CI: 2.26-5.46) were predictors for OS. Immunohistochemical staining for serotonin was positive in 28.6% of serotonin-secreting PNETs (one with carcinoid syndrome) and negative in all controls. Carcinoid syndrome is rare in patients with a PNET, but serotonin secretion occurs often. This is a negative prognostic factor for OS, but after correction for CgA and NSE, it is no longer a predictor and probably only a "not-so innocent bystander" in patients with high tumour burden. © 2017 John Wiley & Sons Ltd.

  14. Interaction of antidepressants with the serotonin and norepinephrine transporters

    DEFF Research Database (Denmark)

    Sørensen, Lena; Andersen, Jacob; Thomsen, Mette

    2012-01-01

    The serotonin transporter (SERT) and the norepinephrine transporter (NET) are sodium-dependent neurotransmitter transporters responsible for reuptake of released serotonin and norepinephrine, respectively, into nerve terminals in the brain. A wide range of inhibitors of SERT and NET are used...

  15. Temperament, character and serotonin activity in the human brain

    DEFF Research Database (Denmark)

    Tuominen, L; Salo, J; Hirvonen, J

    2013-01-01

    The psychobiological model of personality by Cloninger and colleagues originally hypothesized that interindividual variability in the temperament dimension 'harm avoidance' (HA) is explained by differences in the activity of the brain serotonin system. We assessed brain serotonin transporter (5-HTT...

  16. Effect of plasma membrane fluidity on serotonin transport by endothelial cells

    International Nuclear Information System (INIS)

    Block, E.R.; Edwards, D.

    1987-01-01

    To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of [ 14 C]-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluidity in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells

  17. Residual Toxicity of Abamectin, Chlorpyrifos, Cyromazine, Indoxacarb and Spinosad on Liriomyza trifolii (Burgess (Diptera: Agromyzidae in Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Ghasem Askari Saryazdi

    2012-01-01

    Full Text Available Liriomyza trifolii is an important pest of vegetable crops in many parts of the worldincluding Iran. In this study potted bean plants were sprayed with recommended fieldrates of abamectin, chlorpyrifos, cyromazine, indoxacarb and spinosad. To assess the residualactivities of these insecticides, the plants were infested with L. trifolii adults 2 hours; 1, 3,5, 7, 10, 15, 20, 25 and 35 days after insecticidal treatments. The adults were allowed to stayon treated plants for eight hours. The treated plants were kept in a greenhouse. Numberof feeding stipples and larval mines on leaves, as well as pupation and adult eclosion rateswere assessed. Two-way ANOVA procedure of SAS was used for statistical analysis andthe treatment means were separated using Duncan’s multiple range test. Abamectin andspinosad severely affected egg hatching and embryonic development. Eggs oviposited inleaves with residues of chlorpyrifos up to 5 days old, had reduced hatching. Larval developmentwas also, affected by residues of chlorpyrifos up to four weeks old. Indoxacarbreduced larval development and adult eclosion in treatments with up to 20 days old residues.Cyromazine had no effect on the number of larval mines, but, pupation was severelyhampered and adult eclosion was completely ceased even in treatments with five weeksold residues. Determining the residual activity of insecticides used for controlling this pestis useful in avoiding unnecessary treatments.

  18. Evaluation of temephos and chlorpyrifos-methyl against Culex pipiens (Diptera: Culicidae) larvae in septic tanks in Antalya, Turkey.

    Science.gov (United States)

    Cetin, H; Yanikoglu, A; Kocak, O; Cilek, J E

    2006-11-01

    The larvicidal activity of chlorpyrifos-methyl and temephos was evaluated against Culex pipiens L. (Diptera: Culicidae) in septic tanks in Antalya, Turkey. Chlorpyrifos-methyl (Pyrifos MT 25 emulsifiable concentrate [EC] ) was evaluated at application rates of 0.04, 0.08, and 0.12 mg active ingredient (AI)/liter, and temephos (Temeguard 50 EC) was evaluated at 0.02, 0.04, and 0.06 mg (AI)/liter during a 21-d study. Generally, overall larval reduction in septic tanks from single- and multifamily dwellings treated with either larvicide was significantly greater than pretreatment levels and control tanks for the duration of the study. At 14 d posttreatment, duration of control was greatest in multifamily tanks treated with chlorpyrifos-methyl at the highest application rate with similar levels of control through 21 d for single-family dwellings (range 97-100%). Septic tanks from both types of family dwellings treated at the highest application rate of temephos resulted in >90% reduction through day 21 (range 91-100%). Laboratory bioassays of septic tank water treated at field application rates, without daily dilution, revealed that complete larval mortality was achieved for 21 d at each application rate and formulation. It is thought that daily addition of water and organic matter to the septic tanks in the single and multifamily dwellings influenced the duration of effectiveness of the larvicides.

  19. Serotonin and calcium homeostasis during the transition period.

    Science.gov (United States)

    Weaver, S R; Laporta, J; Moore, S A E; Hernandez, L L

    2016-07-01

    The transition from pregnancy to lactation puts significant, sudden demands on maternal energy and calcium reserves. Although most mammals are able to effectively manage these metabolic adaptations, the lactating dairy cow is acutely susceptible to transition-related disorders because of the high amounts of milk being produced. Hypocalcemia is a common metabolic disorder that occurs at the onset of lactation. Hypocalcemia is also known to result in poor animal welfare conditions. In addition, cows that develop hypocalcemia are more susceptible to a host of other negative health outcomes. Different feeding tactics, including manipulating the dietary cation-anion difference and administering low-calcium diets, are commonly used preventative strategies. Despite these interventions, the incidence of hypocalcemia in the subclinical form is still as high as 25% to 30% in the United States dairy cow population, with a 5% to 10% incidence of clinical hypocalcemia. In addition, although there are various effective treatments in place, they are administered only after the cow has become noticeably ill, at which point there is already significant metabolic damage. This emphasizes the need for developing alternative prevention strategies, with the monoamine serotonin implicated as a potential therapeutic target. Our research in rodents has shown that serotonin is critical for the induction of mammary parathyroid hormone-related protein, which is necessary for the mobilization of bone tissue and subsequent restoration of maternal calcium stores during lactation. We have shown that circulating serotonin concentrations are positively correlated with serum total calcium on the first day of lactation in dairy cattle. Administration of serotonin's immediate precursor through feeding, injection, or infusion to various mammalian species has been shown to increase circulating serotonin concentrations, with positive effects on other components of maternal metabolism. Most recently

  20. Acute serotonin depletion releases motivated inhibition of response vigour

    NARCIS (Netherlands)

    Ouden, H.E.M. den; Swart, J.C.; Schmidt, K.; Fekkes, D.; Geurts, D.E.M.; Cools, R.

    2015-01-01

    Rationale The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas,

  1. Acute serotonin depletion releases motivated inhibition of response vigour

    NARCIS (Netherlands)

    Ouden, H.E.M. den; Swart, J.C.; Schmidt, K.; Fekkes, D.; Geurts, D.E.M.; Cools, R.

    2015-01-01

    RATIONALE: The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas,

  2. Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells.

    Directory of Open Access Journals (Sweden)

    Moina Hasni Ebou

    Full Text Available Diabetes is a major complication of chronic Glucocorticoids (GCs treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1 and 2 (Tph2, leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells.

  3. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards.

    Science.gov (United States)

    Miyazaki, Kayoko W; Miyazaki, Katsuhiko; Tanaka, Kenji F; Yamanaka, Akihiro; Takahashi, Aki; Tabuchi, Sawako; Doya, Kenji

    2014-09-08

    Serotonin is a neuromodulator that is involved extensively in behavioral, affective, and cognitive functions in the brain. Previous recording studies of the midbrain dorsal raphe nucleus (DRN) revealed that the activation of putative serotonin neurons correlates with the levels of behavioral arousal [1], rhythmic motor outputs [2], salient sensory stimuli [3-6], reward, and conditioned cues [5-8]. The classic theory on serotonin states that it opposes dopamine and inhibits behaviors when aversive events are predicted [9-14]. However, the therapeutic effects of serotonin signal-enhancing medications have been difficult to reconcile with this theory [15, 16]. In contrast, a more recent theory states that serotonin facilitates long-term optimal behaviors and suppresses impulsive behaviors [17-21]. To test these theories, we developed optogenetic mice that selectively express channelrhodopsin in serotonin neurons and tested how the activation of serotonergic neurons in the DRN affects animal behavior during a delayed reward task. The activation of serotonin neurons reduced the premature cessation of waiting for conditioned cues and food rewards. In reward omission trials, serotonin neuron stimulation prolonged the time animals spent waiting. This effect was observed specifically when the animal was engaged in deciding whether to keep waiting and was not due to motor inhibition. Control experiments showed that the prolonged waiting times observed with optogenetic stimulation were not due to behavioral inhibition or the reinforcing effects of serotonergic activation. These results show, for the first time, that the timed activation of serotonin neurons during waiting promotes animals' patience to wait for a delayed reward. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. INMUNOTOXICIDAD DE MALATIÓN Y CLORPIRIFOS EN LA LOMBRIZ DE TIERRA Eisenia sp. (ANNELIDA: OLIGOCHAETA | IMMUNOTOXICITY OF MALATHION AND CHLORPYRIFOS IN THE EARTHWORM Eisenia sp. (ANNELIDA: OLIGOCHAETA

    Directory of Open Access Journals (Sweden)

    Carmen Cortesia

    2015-11-01

    Full Text Available The effects of malathion and chlorpyrifos on immune responses of Eisenia sp. were assessed using standard toxicity assays. In plastic containers with natural soils as substrate, mature sexually earthworms were exposed to malathion (300 mg kg-1of soil and chlorpyrifos (300 mg kg-1of soil during 7 and 21 days. After exposure periods, cellular viability, total number of coelomocytes (NTC, percentage of phagocytic cells (PCF, lysozyme activity and hemolytic percentage were determined. Malathion and chlorpyrifos exposures caused a significant decrease in NTC, lysozyme and hemolytic activities, but these variables were not affected by time of exposure. PCF declined in earthworms exposed to both pesticides; this decline was dependent of the time-exposure. The results suggest an immunotoxic action of both agrochemicals on humoral and cellular immune responses of Eisenia sp., which could intensify the detrimental effects caused by biotic stressors, such as pathogens microrganisms that live in the soil. The immune responses mediated by the coelocmocytes of Eisenia sp. evaluated in this study were negatively affected by malathion and chlorpyrifos, demonstrating their sensitivity as potential biomarkers useful in early detection of environmental impact by organophosphate pesticides.

  5. Serotonin enhances the impact of health information on food choice.

    Science.gov (United States)

    Vlaev, Ivo; Crockett, Molly J; Clark, Luke; Müller, Ulrich; Robbins, Trevor W

    2017-06-01

    Serotonin has been implicated in promoting self-control, regulation of hunger and physiological homeostasis, and regulation of caloric intake. However, it remains unclear whether the effects of serotonin on caloric intake reflect purely homeostatic mechanisms, or whether serotonin also modulates cognitive processes involved in dietary decision making. We investigated the effects of an acute dose of the serotonin reuptake inhibitor citalopram on choices between food items that differed along taste and health attributes, compared with placebo and the noradrenaline reuptake inhibitor atomoxetine. Twenty-seven participants attended three sessions and received single doses of atomoxetine, citalopram, and placebo in a double-blind randomised cross-over design. Relative to placebo, citalopram increased choices of more healthy foods over less healthy foods. Citalopram also increased the emphasis on health considerations in decisions. Atomoxetine did not affect decision making relative to placebo. The results support the hypothesis that serotonin may influence food choice by enhancing a focus on long-term goals. The findings are relevant for understanding decisions about food consumption and also for treating health conditions such as eating disorders and obesity.

  6. Serotonin inhibits low-threshold spike interneurons in the striatum

    Science.gov (United States)

    Cains, Sarah; Blomeley, Craig P; Bracci, Enrico

    2012-01-01

    Low-threshold spike interneurons (LTSIs) are important elements of the striatal architecture and the only known source of nitric oxide in this nucleus, but their rarity has so far prevented systematic studies. Here, we used transgenic mice in which green fluorescent protein is expressed under control of the neuropeptide Y (NPY) promoter and striatal NPY-expressing LTSIs can be easily identified, to investigate the effects of serotonin on these neurons. In sharp contrast with its excitatory action on other striatal interneurons, serotonin (30 μm) strongly inhibited LTSIs, reducing or abolishing their spontaneous firing activity and causing membrane hyperpolarisations. These hyperpolarisations persisted in the presence of tetrodotoxin, were mimicked by 5-HT2C receptor agonists and reversed by 5-HT2C antagonists. Voltage-clamp slow-ramp experiments showed that serotonin caused a strong increase in an outward current activated by depolarisations that was blocked by the specific M current blocker XE 991. In current-clamp experiments, XE 991 per se caused membrane depolarisations in LTSIs and subsequent application of serotonin (in the presence of XE 991) failed to affect these neurons. We concluded that serotonin strongly inhibits striatal LTSIs acting through postsynaptic 5-HT2C receptors and increasing an M type current. PMID:22495583

  7. Engineering of Escherichia coli for the synthesis of N-hydroxycinnamoyl tryptamine and serotonin.

    Science.gov (United States)

    Lee, Su Jin; Sim, Geun-Young; Lee, Youngshim; Kim, Bong-Gyu; Ahn, Joong-Hoon

    2017-11-01

    Plants synthesize various phenol amides. Among them, hydroxycinnamoyl (HC) tryptamines and serotonins exhibit antioxidant, anti-inflammatory, and anti-atherogenic activities. We synthesized HC-tryptamines and HC-serotonin from several HCs and either tryptamine or serotonin using Escherichia coli harboring the 4CL (4-coumaroyl CoA ligase) and CaHCTT [hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase] genes. E. coli was engineered to synthesize N-cinnamoyl tryptamine from glucose. TDC (tryptophan decarboxylase) and PAL (phenylalanine ammonia lyase) along with 4CL and CaHCTT were introduced into E. coli and the phenylalanine biosynthetic pathway of E. coli was engineered. Using this strategy, approximately 110.6 mg/L of N-cinnamoyl tryptamine was synthesized. By feeding 100 μM serotonin into the E. coli culture, which could induce the synthesis of cinnamic acid or p-coumaric acid, more than 99 μM of N-cinnamoyl serotonin and N-(p-coumaroyl) serotonin were synthesized.

  8. CHANGES IN THE RAT EEG SPECTRA AND CORE TEMPERATURE AFTER EXPOSURE TO DIFFERENT DOSES OF CHLORPYRIFOS.

    Science.gov (United States)

    Our previous study showed that single exposure to 25 mg/kg (p.o.) of organophsphate pesticide chlorpyrifos (CHP) led to significant alterations in all EEG frequency bands within 0.1-50 Hz range, reduction in core temperature (Tc) and motor activity (MA). The alterations in EEG pe...

  9. Health risk characterization of chlorpyrifos using epidemiological dose-response data and probabilistic techniques: a case study with rice farmers in Vietnam.

    Science.gov (United States)

    Phung, Dung Tri; Connell, Des; Yu, Qiming; Chu, Cordia

    2013-09-01

    Various methods for risk characterization have been developed using probabilistic approaches. Data on Vietnamese farmers are available for the comparison of outcomes for risk characterization using different probabilistic methods. This article addresses the health risk characterization of chlorpyrifos using epidemiological dose-response data and probabilistic techniques obtained from a case study with rice farmers in Vietnam. Urine samples were collected from farmers and analyzed for trichloropyridinol (TCP), which was converted into absorbed daily dose of chlorpyrifos. Adverse health response doses due to chlorpyrifos exposure were collected from epidemiological studies to develop dose-adverse health response relationships. The health risk of chlorpyrifos was quantified using hazard quotient (HQ), Monte Carlo simulation (MCS), and overall risk probability (ORP) methods. With baseline (prior to pesticide spraying) and lifetime exposure levels (over a lifetime of pesticide spraying events), the HQ ranged from 0.06 to 7.1. The MCS method indicated less than 0.05% of the population would be affected while the ORP method indicated that less than 1.5% of the population would be adversely affected. With postapplication exposure levels, the HQ ranged from 1 to 32.5. The risk calculated by the MCS method was that 29% of the population would be affected, and the risk calculated by ORP method was 33%. The MCS and ORP methods have advantages in risk characterization due to use of the full distribution of data exposure as well as dose response, whereas HQ methods only used the exposure data distribution. These evaluations indicated that single-event spraying is likely to have adverse effects on Vietnamese rice farmers. © 2013 Society for Risk Analysis.

  10. Mutational scanning of the human serotonin transporter reveals fast translocating serotonin transporter mutants

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Larsen, Mads B; Johnsen, Laust B

    2004-01-01

    The serotonin transporter (SERT) belongs to a family of sodium-chloride-dependent transporters responsible for uptake of amino acids and biogenic amines from the extracellular space. SERT represents a major pharmacological target in the treatment of several clinical conditions, including depressi...

  11. Serotonin induces ecdysteroidogenesis and methyl farnesoate synthesis in the mud crab, Scylla serrata.

    Science.gov (United States)

    Girish, B P; Swetha, C H; Reddy, P Sreenivasula

    2017-09-02

    In the current study, we have examined the role of serotonin in regulating the levels of methyl farnesoate and ecdysteroids in the giant mud crab Scylla serrata and validated that serotonin indeed is a reproductive hormone. Administration of serotonin elevated circulatory levels of methyl farnesoate and ecdysteroids in crabs. Since methyl farnesoate and ecdysteroid act through retinoid X receptor (RXR) and ecdysteroid receptor (EcR) respectively and these receptors are involved in the regulation of reproduction in crustaceans, we have determined the mRNA levels of RXR and EcR in hepatopancreas and ovary after serotonin administration. The expression levels of both RXR and EcR increased significantly in the hepatopancreas and ovary of serotonin injected crabs when compared to the controls. In vitro organ culture studies revealed that incubation of Y-orgas and mandibular organ explants in the presence of serotonin resulted in a significant increase in the secretion of ecdysteroids by Y-organs, but without alterations in MF synthesis in mandibular organs. From the above studies it is evident that serotonin stimulates Y organs resulting in increased ecdysteroidogenesis. Though the circulatory levels methyl farnesoate elevated after serotonin administration, organ culture studies revealed serotonin mediated methyl farnesaote synthesis is indirect probably by inhibiting release of mandibular organ inhibiting hormone from eyestalks. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Loss of a neural AMP-activated kinase mimics the effects of elevated serotonin on fat, movement, and hormonal secretions.

    Directory of Open Access Journals (Sweden)

    Katherine A Cunningham

    2014-06-01

    Full Text Available AMP-activated protein kinase (AMPK is an evolutionarily conserved master regulator of metabolism and a therapeutic target in type 2 diabetes. As an energy sensor, AMPK activity is responsive to both metabolic inputs, for instance the ratio of AMP to ATP, and numerous hormonal cues. As in mammals, each of two genes, aak-1 and aak-2, encode for the catalytic subunit of AMPK in C. elegans. Here we show that in C. elegans loss of aak-2 mimics the effects of elevated serotonin signaling on fat reduction, slowed movement, and promoting exit from dauer arrest. Reconstitution of aak-2 in only the nervous system restored wild type fat levels and movement rate to aak-2 mutants and reconstitution in only the ASI neurons was sufficient to significantly restore dauer maintenance to the mutant animals. As in elevated serotonin signaling, inactivation of AAK-2 in the ASI neurons caused enhanced secretion of dense core vesicles from these neurons. The ASI neurons are the site of production of the DAF-7 TGF-β ligand and the DAF-28 insulin, both of which are secreted by dense core vesicles and play critical roles in whether animals stay in dauer or undergo reproductive development. These findings show that elevated levels of serotonin promote enhanced secretions of systemic regulators of pro-growth and differentiation pathways through inactivation of AAK-2. As such, AMPK is not only a recipient of hormonal signals but can also be an upstream regulator. Our data suggest that some of the physiological phenotypes previously attributed to peripheral AAK-2 activity on metabolic targets may instead be due to the role of this kinase in neural serotonin signaling.

  13. Serotonin blockade delays learning performance in a cooperative fish.

    Science.gov (United States)

    Soares, Marta C; Paula, José R; Bshary, Redouan

    2016-09-01

    Animals use learning and memorizing to gather information that will help them to make ecologically relevant decisions. Neuro-modulatory adjustments enable them to make associations between stimuli and appropriate behavior. A key candidate for the modulation of cooperative behavior is serotonin. Previous research has shown that modulation of the serotonergic system spontaneously affects the behavior of the cleaner wrasse Labroides dimidiatus during interactions with so-called 'client' reef fish. Here, we asked whether shifts in serotonin function affect the cleaners' associative learning abilities when faced with the task to distinguish two artificial clients that differ in their value as a food source. We found that the administration of serotonin 1A receptor antagonist significantly slowed learning speed in comparison with saline treated fish. As reduced serotonergic signaling typically enhances fear, we discuss the possibility that serotonin may affect how cleaners appraise, acquire information and respond to client-derived stimuli via manipulation of the perception of danger.

  14. SEP-225289 serotonin and dopamine transporter occupancy: a PET study.

    Science.gov (United States)

    DeLorenzo, Christine; Lichenstein, Sarah; Schaefer, Karen; Dunn, Judith; Marshall, Randall; Organisak, Lisa; Kharidia, Jahnavi; Robertson, Brigitte; Mann, J John; Parsey, Ramin V

    2011-07-01

    SEP-225289 is a novel compound that, based on in vitro potencies for transporter function, potentially inhibits reuptake at dopamine, norepinephrine, and serotonin transporters. An open-label PET study was conducted during the development of SEP-225289 to investigate its dopamine and serotonin transporter occupancy. Different single doses of SEP-225289 were administered to healthy volunteers in 3 cohorts: 8 mg (n = 7), 12 mg (n = 5), and 16 mg (n = 7). PET was performed before and approximately 24 h after oral administration of SEP-225289, to assess occupancy at trough levels. Dopamine and serotonin transporter occupancies were estimated from PET using (11)C-N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane ((11)C-PE2I) and (11)C-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine ((11)C-DASB), respectively. Plasma concentration of SEP-225289 was assessed before ligand injection, and subjects were monitored for adverse events. Average dopamine and serotonin transporter occupancies increased with increasing doses of SEP-225289. Mean dopamine and serotonin transporter occupancies were 33% ± 11% and 2% ± 13%, respectively, for 8 mg; 44% ± 4% and 9% ± 10%, respectively, for 12 mg; and 49% ± 7% and 14% ± 15%, respectively, for 16 mg. On the basis of the relationship between occupancy and plasma concentration, dopamine transporter IC(50) (the plasma concentration of drug at 50% occupancy) was determined (4.5 ng/mL) and maximum dopamine transporter occupancy was extrapolated (85%); however, low serotonin transporter occupancy prevented similar serotonin transporter calculations. No serious adverse events were reported. At the doses evaluated, occupancy of the dopamine transporter was significantly higher than that of the serotonin transporter, despite similar in vitro potencies, confirming that, in addition to in vitro assays, PET occupancy studies can be instrumental to the drug development process by informing early decisions about

  15. Potential of [11C]DASB for measuring endogenous serotonin with PET: binding studies

    International Nuclear Information System (INIS)

    Lundquist, Pinelopi; Wilking, Helena; Hoeglund, A. Urban; Sandell, Johan; Bergstroem, Mats; Hartvig, Per; Langstroem, Bengt

    2005-01-01

    The serotonin transporter radioligand [ 11 C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile, or [ 11 C]DASB, was examined in order to assess its potential for measuring fluctuations in endogenous serotonin concentrations with positron emission tomography. Binding characteristics of [ 11 C]DASB and the propensity for serotonin to displace the tracer were explored in rat brain homogenates. Experiments showed that serotonin displaced [ 11 C]DASB in vitro. Ex vivo experiments performed after tranylcypromine injection (3 or 15 mg/kg) showed a dose-dependent trend in radioactivity uptake and suggested that serotonin may compete with [ 11 C]DASB for transporter binding

  16. Effects of chlorpyrifos on individuals and populations of Daphnia pulex in the laboratory and field

    NARCIS (Netherlands)

    Hoeven, N. van der; Gerritsen, A.A.M.

    1997-01-01

    Effects of the insecticide chlorpyrifos (cpf) on young (

  17. Effectiveness of personal protective equipment: Relevance of dermal and inhalation exposure to chlorpyrifos among pest control operators

    NARCIS (Netherlands)

    Jagt, K. van der; Tielemans, E.; Links, I.; Brouwer, D.; Hemmen, J. van

    2004-01-01

    This study assessed the effectiveness of a custom fit personal protective equipment (PPE) program aimed at reducing occupational exposure to pesticides. The intervention study was carried out on 15 pest control operators (PCOs) during mixing/loading and application of chlorpyrifos. Each worker was

  18. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice

    Science.gov (United States)

    Suidan, Georgette L.; Demers, Melanie; Herr, Nadine; Carbo, Carla; Brill, Alexander; Cifuni, Stephen M.; Mauler, Maximilian; Cicko, Sanja; Bader, Michael; Idzko, Marco; Bode, Christoph

    2013-01-01

    The majority of peripheral serotonin is stored in platelets, which secrete it on activation. Serotonin releases Weibel-Palade bodies (WPBs) and we asked whether absence of platelet serotonin affects neutrophil recruitment in inflammatory responses. Tryptophan hydroxylase (Tph)1–deficient mice, lacking non-neuronal serotonin, showed mild leukocytosis compared with wild-type (WT), primarily driven by an elevated neutrophil count. Despite this, 50% fewer leukocytes rolled on unstimulated mesenteric venous endothelium of Tph1−/− mice. The velocity of rolling leukocytes was higher in Tph1−/− mice, indicating fewer selectin-mediated interactions with endothelium. Stimulation of endothelium with histamine, a secretagogue of WPBs, or injection of serotonin normalized the rolling in Tph1−/− mice. Diminished rolling in Tph1−/− mice resulted in reduced firm adhesion of leukocytes after lipopolysaccharide treatment. Blocking platelet serotonin uptake with fluoxetine in WT mice reduced serum serotonin by > 80% and similarly reduced leukocyte rolling and adhesion. Four hours after inflammatory stimulation, neutrophil extravasation into lung, peritoneum, and skin wounds was reduced in Tph1−/− mice, whereas in vitro neutrophil chemotaxis was independent of serotonin. Survival of lipopolysaccharide-induced endotoxic shock was improved in Tph1−/− mice. In conclusion, platelet serotonin promotes the recruitment of neutrophils in acute inflammation, supporting an important role for platelet serotonin in innate immunity. PMID:23243271

  19. Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis.

    Science.gov (United States)

    Lu, Hai-Ping; Luo, Ting; Fu, Hao-Wei; Wang, Long; Tan, Yuan-Yuan; Huang, Jian-Zhong; Wang, Qing; Ye, Gong-Yin; Gatehouse, Angharad M R; Lou, Yong-Gen; Shu, Qing-Yao

    2018-05-07

    Rice is one of the world's most important foods, but its production suffers from insect pests, causing losses of billions of dollars, and extensive use of environmentally damaging pesticides for their control 1,2 . However, the molecular mechanisms of insect resistance remain elusive. Although a few resistance genes for planthopper have been cloned, no rice germplasm is resistant to stem borers. Here, we report that biosynthesis of serotonin, a neurotransmitter in mammals 3 , is induced by insect infestation in rice, and its suppression confers resistance to planthoppers and stem borers, the two most destructive pests of rice 2 . Serotonin and salicylic acid derive from chorismate 4 . In rice, the cytochrome P450 gene CYP71A1 encodes tryptamine 5-hydroxylase, which catalyses conversion of tryptamine to serotonin 5 . In susceptible wild-type rice, planthopper feeding induces biosynthesis of serotonin and salicylic acid, whereas in mutants with an inactivated CYP71A1 gene, no serotonin is produced, salicylic acid levels are higher and plants are more insect resistant. The addition of serotonin to the resistant rice mutant and other brown planthopper-resistant genotypes results in a loss of insect resistance. Similarly, serotonin supplementation in artificial diet enhances the performance of both insects. These insights demonstrate that regulation of serotonin biosynthesis plays an important role in defence, and may prove valuable for breeding insect-resistant cultivars of rice and other cereal crops.

  20. Development of resistance to serotonin-induced itch in bile duct ligated mice.

    Science.gov (United States)

    Ostadhadi, Sattar; Haddadi, Nazgol-Sadat; Foroutan, Arash; Azimi, Ehsan; Elmariah, Sarina; Dehpour, Ahmad-Reza

    2017-06-01

    Cholestatic itch can be severe and significantly impair the quality of life of patients. The serotonin system is implicated in cholestatic itch; however, the pruritogenic properties of serotonin have not been evaluated in cholestatic mice. Here, we investigated the serotonin-induced itch in cholestatic mice which was induced by bile duct ligation (BDL). Serotonin, sertraline or saline were administered intradermally to the rostral back area in BDL and sham operated (SHAM) mice, and the scratching behaviour was videotaped for 1 hour. Bile duct ligated mice had significantly increased scratching responses to saline injection on the seventh day after surgery. Additionally, serotonin or sertraline significantly induced scratching behaviour in BDL mice compared to saline at day 7 after surgery, while it did not induce itch at day 5. The scratching behaviour induced by serotonin or sertraline was significantly less in BDL mice compared to SHAM mice. Likewise, the locomotor activity of BDL or SHAM mice was not significantly different from unoperated (UNOP) mice on the fifth and seventh day, suggesting that the scratching behaviour was not affected by motor dysfunctions. Our data suggest that despite the potentiation of evoked itch, a resistance to serotonin-induced itch is developed in cholestatic mice. © 2017 John Wiley & Sons Australia, Ltd.

  1. Serotonin Syndrome in the Setting of Lamotrigine, Aripiprazole, and Cocaine Use

    Directory of Open Access Journals (Sweden)

    Anupam Kotwal

    2015-01-01

    Full Text Available Serotonin syndrome is a potentially life-threatening condition associated with increased serotonergic activity in the central nervous system. It is classically associated with the simultaneous administration of two serotonergic agents, but it can occur after initiation of a single serotonergic drug or increasing the dose of a serotonergic drug in individuals who are particularly sensitive to serotonin. We describe a case of serotonin syndrome that occurred after ingestion of higher than prescribed doses of lamotrigine and aripiprazole, in addition to cocaine abuse. The diagnosis was established based on Hunter toxicity criteria and severity was classified as mild. The features of this syndrome resolved shortly after discontinuation of the offending agents. Serotonin syndrome is characterized by mental status changes, autonomic hyperactivity, and neuromuscular abnormalities along a spectrum ranging from mild to severe. Serotonin syndrome in our patient was most likely caused by the pharmacokinetic and pharmacodynamic interactions between lamotrigine, aripiprazole, and cocaine leading to increased CNS serotonergic activity.

  2. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis.

    Science.gov (United States)

    Berglund, Eric D; Liu, Chen; Sohn, Jong-Woo; Liu, Tiemin; Kim, Mi Hwa; Lee, Charlotte E; Vianna, Claudia R; Williams, Kevin W; Xu, Yong; Elmquist, Joel K

    2013-12-01

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor agonists on energy and glucose homeostasis are unknown. Here, we show that mice lacking serotonin 2C receptors (Htr2c) specifically in pro-opiomelanocortin (POMC) neurons had normal body weight but developed glucoregulatory defects including hyperinsulinemia, hyperglucagonemia, hyperglycemia, and insulin resistance. Moreover, these mice did not show anorectic responses to serotonergic agents that suppress appetite and developed hyperphagia and obesity when they were fed a high-fat/high-sugar diet. A requirement of serotonin 2C receptors in POMC neurons for the maintenance of normal energy and glucose homeostasis was further demonstrated when Htr2c loss was induced in POMC neurons in adult mice using a tamoxifen-inducible POMC-cre system. These data demonstrate that serotonin 2C receptor-expressing POMC neurons are required to control energy and glucose homeostasis and implicate POMC neurons as the target for the effect of serotonin 2C receptor agonists on weight-loss induction and improved glycemic control.

  3. Optimization of the Use of His6-OPH-Based Enzymatic Biocatalysts for the Destruction of Chlorpyrifos in Soil

    Directory of Open Access Journals (Sweden)

    Olga Senko

    2017-11-01

    Full Text Available Applying enzymatic biocatalysts based on hexahistidine-containing organophosphorus hydrolase (His6-OPH is suggested for the decomposition of chlorpyrifos, which is actively used in agriculture in many countries. The application conditions were optimized and the following techniques was suggested to ensure the highest efficiency of the enzyme: first, the soil is alkalinized with hydrated calcitic lime Ca(OH2, then the enzyme is introduced into the soil at a concentration of 1000 U/kg soil. Non-equilibrium low temperature plasma (NELTP-modified zeolite is used for immobilization of the relatively inexpensive polyelectrolyte complexes containing the enzyme His6-OPH and a polyanionic polymer: poly-l-glutamic acid (PLE50 or poly-l-aspartic acid (PLD50. The soil’s humidity is then increased up to 60–80%, the top layer (10–30 cm of soil is thoroughly stirred, and then exposed for 48–72 h. The suggested approach ensures 100% destruction of the pesticide within 72 h in soils containing as much as 100 mg/kg of chlorpyrifos. It was concluded that using this type of His6-OPH-based enzyme chemical can be the best approach for soils with relatively low humus concentrations, such as sandy and loam-sandy chestnut soils, as well as types of soil with increased alkalinity (pH 8.0–8.4. Such soils are often encountered in desert, desert-steppe, foothills, and subtropical regions where chlorpyrifos is actively used.

  4. Brain dopamine-serotonin vesicular transport disease presenting as a severe infantile hypotonic parkinsonian disorder.

    Science.gov (United States)

    Jacobsen, Jessie C; Wilson, Callum; Cunningham, Vicki; Glamuzina, Emma; Prosser, Debra O; Love, Donald R; Burgess, Trent; Taylor, Juliet; Swan, Brendan; Hill, Rosamund; Robertson, Stephen P; Snell, Russell G; Lehnert, Klaus

    2016-03-01

    Two male siblings from a consanguineous union presented in early infancy with marked truncal hypotonia, a general paucity of movement, extrapyramidal signs and cognitive delay. By mid-childhood they had made little developmental progress and remained severely hypotonic and bradykinetic. They developed epilepsy and had problems with autonomic dysfunction and oculogyric crises. They had a number of orthopaedic problems secondary to their hypotonia. Cerebrospinal fluid (CSF) neurotransmitters were initially normal, apart from mildly elevated 5-hydroxyindolacetic acid, and the children did not respond favourably to a trial of levodopa-carbidopa. The youngest died from respiratory complications at 10 years of age. Repeat CSF neurotransmitters in the older sibling at eight years of age showed slightly low homovanillic acid and 5-hydroxyindoleacetic acid levels. Whole-exome sequencing revealed a novel mutation homozygous in both children in the monoamine transporter gene SLC18A2 (p.Pro237His), resulting in brain dopamine-serotonin vesicular transport disease. This is the second family to be described with a mutation in this gene. Treatment with the dopamine agonist pramipexole in the surviving child resulted in mild improvements in alertness, communication, and eye movements. This case supports the identification of the causal mutation in the original case, expands the clinical phenotype of brain dopamine-serotonin vesicular transport disease and confirms that pramipexole treatment may lead to symptomatic improvement in affected individuals.

  5. Serotonin Decreases the Gain of Visual Responses in Awake Macaque V1.

    Science.gov (United States)

    Seillier, Lenka; Lorenz, Corinna; Kawaguchi, Katsuhisa; Ott, Torben; Nieder, Andreas; Pourriahi, Paria; Nienborg, Hendrikje

    2017-11-22

    Serotonin, an important neuromodulator in the brain, is implicated in affective and cognitive functions. However, its role even for basic cortical processes is controversial. For example, in the mammalian primary visual cortex (V1), heterogenous serotonergic modulation has been observed in anesthetized animals. Here, we combined extracellular single-unit recordings with iontophoresis in awake animals. We examined the role of serotonin on well-defined tuning properties (orientation, spatial frequency, contrast, and size) in V1 of two male macaque monkeys. We find that in the awake macaque the modulatory effect of serotonin is surprisingly uniform: it causes a mainly multiplicative decrease of the visual responses and a slight increase in the stimulus-selective response latency. Moreover, serotonin neither systematically changes the selectivity or variability of the response, nor the interneuronal correlation unexplained by the stimulus ("noise-correlation"). The modulation by serotonin has qualitative similarities with that for a decrease in stimulus contrast, but differs quantitatively from decreasing contrast. It can be captured by a simple additive change to a threshold-linear spiking nonlinearity. Together, our results show that serotonin is well suited to control the response gain of neurons in V1 depending on the animal's behavioral or motivational context, complementing other known state-dependent gain-control mechanisms. SIGNIFICANCE STATEMENT Serotonin is an important neuromodulator in the brain and a major target for drugs used to treat psychiatric disorders. Nonetheless, surprisingly little is known about how it shapes information processing in sensory areas. Here we examined the serotonergic modulation of visual processing in the primary visual cortex of awake behaving macaque monkeys. We found that serotonin mainly decreased the gain of the visual responses, without systematically changing their selectivity, variability, or covariability. This

  6. No link of serotonin 2C receptor editing to serotonin transporter genotype

    NARCIS (Netherlands)

    Lyddon, R.; Cuppen, E.; Haroutunian, V.; Siever, L.J.; Dracheva, S.

    2010-01-01

    RNA editing is a post-transcriptional process, which has the potential to alter the function of encoded proteins. In particular, serotonin 2C receptor (5-HT2cR) mRNA editing can produce 24 protein isoforms of varying functionality. Rodent studies have shown that 5-HT2cR editing is dynamically

  7. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function

    Science.gov (United States)

    Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Anderson, George M.; Snyder, Isaac; Blakely, Randy D.; Gershon, Michael D.

    2016-01-01

    Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4–mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230

  8. Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl

    International Nuclear Information System (INIS)

    Lee, Iwa; Eriksson, Per; Fredriksson, Anders; Buratovic, Sonja; Viberg, Henrik

    2015-01-01

    In recent times, an increased occurrence of neurodevelopmental disorders, such as neurodevelopmental delays and cognitive abnormalities has been recognized. Exposure to pesticides has been suspected to be a possible cause of these disorders, as these compounds target the nervous system of pests. Due to the similarities of brain development and composition, these pesticides may also be neurotoxic to humans. We studied two different pesticides, chlorpyrifos and carbaryl, which specifically inhibit acetylcholinesterase (AChE) in the nervous system. The aim of the study was to investigate if the pesticides can induce neurotoxic effects, when exposure occurs during a period of rapid brain growth and maturation. The results from the present study show that both compounds can affect protein levels in the developing brain and induce persistent adult behavior and cognitive impairments, in mice neonatally exposed to a single oral dose of chlorpyrifos (0.1, 1.0 or 5 mg/kg body weight) or carbaryl (0.5, 5.0 or 20.0 mg/kg body weight) on postnatal day 10. The results also indicate that the developmental neurotoxic effects induced are not related to the classical mechanism of acute cholinergic hyperstimulation, as the AChE inhibition level (8–12%) remained below the threshold for causing systemic toxicity. The neurotoxic effects are more likely caused by a disturbed neurodevelopment, as similar behavioral neurotoxic effects have been reported in studies with pesticides such as organochlorines, organophosphates, pyrethroids and POPs, when exposed during a critical window of neonatal brain development. - Highlights: • A single neonatal exposure to chlorpyrifos or carbaryl induced developmental neurotoxic effects. • The neurotoxic effects were not caused by acute AChE inhibition. • The neurotoxic effects manifested as altered levels of neuroproteins in the developing brain. • The neurotoxic effects manifested as adult persistent aberrant behavior and cognitive function.

  9. Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Iwa; Eriksson, Per; Fredriksson, Anders; Buratovic, Sonja; Viberg, Henrik, E-mail: henrik.viberg@ebc.uu.se

    2015-11-01

    In recent times, an increased occurrence of neurodevelopmental disorders, such as neurodevelopmental delays and cognitive abnormalities has been recognized. Exposure to pesticides has been suspected to be a possible cause of these disorders, as these compounds target the nervous system of pests. Due to the similarities of brain development and composition, these pesticides may also be neurotoxic to humans. We studied two different pesticides, chlorpyrifos and carbaryl, which specifically inhibit acetylcholinesterase (AChE) in the nervous system. The aim of the study was to investigate if the pesticides can induce neurotoxic effects, when exposure occurs during a period of rapid brain growth and maturation. The results from the present study show that both compounds can affect protein levels in the developing brain and induce persistent adult behavior and cognitive impairments, in mice neonatally exposed to a single oral dose of chlorpyrifos (0.1, 1.0 or 5 mg/kg body weight) or carbaryl (0.5, 5.0 or 20.0 mg/kg body weight) on postnatal day 10. The results also indicate that the developmental neurotoxic effects induced are not related to the classical mechanism of acute cholinergic hyperstimulation, as the AChE inhibition level (8–12%) remained below the threshold for causing systemic toxicity. The neurotoxic effects are more likely caused by a disturbed neurodevelopment, as similar behavioral neurotoxic effects have been reported in studies with pesticides such as organochlorines, organophosphates, pyrethroids and POPs, when exposed during a critical window of neonatal brain development. - Highlights: • A single neonatal exposure to chlorpyrifos or carbaryl induced developmental neurotoxic effects. • The neurotoxic effects were not caused by acute AChE inhibition. • The neurotoxic effects manifested as altered levels of neuroproteins in the developing brain. • The neurotoxic effects manifested as adult persistent aberrant behavior and cognitive function.

  10. Temperature influences the toxicity of deltamethrin, chlorpyrifos and dimethoate to the predatory mite Hypoaspis aculeifer (Acari) and the springtail Folsomia candida (Collembola).

    Science.gov (United States)

    Jegede, O O; Owojori, O J; Römbke, J

    2017-06-01

    In order to assess the influence of temperature on pesticide toxicity to soil fauna, specimens of the predatory mite Hypoaspis aculeifer and the springtail Folsomia candida were exposed in artificial soil spiked with different concentrations of three pesticides (dimethoate, chlorpyrifos and deltamethrin) at 20°C vs 28°C for the mites and 20°C vs 26°C for the springtails. All tests were carried out according to OECD guidelines. In the mite tests, the toxic effects of dimethoate and chlorpyrifos on survival was about two orders of magnitude more at 28°C than at 20°C. Mite reproduction decreased in the tests with chlorpyrifos and deltamethrin by about four to five orders of magnitude at 28°C than at 20°C. (EC50 28 ° C =1.42 and 2.52mg/kg vs EC50 20 ° C =6.18 and 10.09mg/kg) In the collembolan tests, the toxicity of dimethoate on survival was higher at 26°C than at 20°C (LC50 26 ° C =0.17mg/kg vs LC50 20 ° C =0.36mg/kg), while the opposite was detected for deltamethrin (LC50 26 ° C =11.27mg/kg vs LC50 20 ° C =6.84mg/kg). No difference was found in the test with chlorpyrifos. Effects of dimethoate and chlorpyrifos on reproduction were higher at 26°C than at 20°C (EC50 26 ° C =0.11 and 0.018mg/kg vs EC50 20 ° C =0.29 and 0.031mg/kg respectively), but in the case of deltamethrin the opposite was observed (EC50 26 ° C =12.85mg/kg vs EC50 20 ° C =2.77mg/kg). A preliminary risk assessment of the three pesticides at the two temperature regimes based on the Toxicity Exposure Ratio (TER) approach of the European Union, shows that in general there are few different outcomes when comparing data gained at different temperatures. However, in the light of the few comparisons made data gained in temperate regions should be used with caution in the tropics. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Cholinesterase activity in the cup oyster Saccostrea sp. exposed to chlorpyrifos, imidacloprid, cadmium and copper.

    Science.gov (United States)

    Moncaleano-Niño, Angela M; Luna-Acosta, Andrea; Gómez-Cubillos, Maria Camila; Villamil, Luisa; Ahrens, Michael J

    2018-04-30

    In the present study, the sensitivity and concentration dependence of three functionally-defined components of cholinesterase activity (total: T-ChE; eserine-sensitive: Es-ChE; and eserine-resistant: Er-ChE) were quantified in the gill, digestive gland and adductor muscle of the tropical cup oyster Saccostrea sp., following acute (96h) aqueous exposure to commercial formulations of the organophosphate (OP) insecticide chlorpyrifos and the neonicotinoid (NN) imidacloprid (concentration range: 0.1-100mg/L), as well as to dissolved cadmium and copper (concentration range: 1-1000μg/L). Oysters (1.5-5.0cm shell length), field-collected from a boating marina in Santa Marta, Colombia (Caribbean Sea) were exposed in the laboratory to each substance at five concentrations. T-ChE, Es-ChE, and Er-ChE activity were quantified in the three tissues in pools of 5 individuals (3 replicates per concentration), before and after inhibition with the total cholinesterase inhibitor eserine (physostigmine, 100µM). Oysters exposed to chlorpyrifos, imidacloprid and Cd showed reduced T-ChE and Es-ChE activity in gills at highest exposure concentrations, with Es-ChE activity being inhibited proportionally more so than T-ChE, whereas Er-ChE activity showed no significant concentration-response. Digestive gland also showed diminished T-ChE, Es-ChE and Er-ChE activity for highest chlorpyrifos and Cd concentrations relative to controls, but an increase of T-ChE and Er-ChE activity at the highest imidacloprid concentration (100mg/L). For Cu, T-ChE, Es-ChE and Er-ChE activities in gills and digestive gland were elevated relative to controls in oysters exposed to Cu concentrations > 100µg/L. In adductor muscle, T-ChE, Es-ChE and Er-ChE activity showed no apparent pattern for any of the four xenobiotics and concentration levels tested. Although this study confirms acute (96h) concentration-dependent reduction of tissue T-ChE and Es-ChE activity in gills and digestive glands of Saccostrea sp

  12. Exercise and sleep in aging: emphasis on serotonin.

    Science.gov (United States)

    Melancon, M O; Lorrain, D; Dionne, I J

    2014-10-01

    Reductions in central serotonin activity with aging might be involved in sleep-related disorders in later life. Although the beneficial effects of aerobic exercise on sleep are not new, sleep represents a complex recurring state of unconsciousness involving many lines of transmitters which remains only partly clear despite intense ongoing research. It is known that serotonin released into diencephalon and cerebrum might play a key inhibitory role to help promote sleep, likely through an active inhibition of supraspinal neural networks. Several lines of evidence support the stimulatory effects of exercise on higher serotonergic pathways. Hence, exercise has proved to elicit acute elevations in forebrain serotonin concentrations, an effect that waned upon cessation of exercise. While adequate exercise training might lead to adaptations in higher serotonergic networks (desensitization of forebrain receptors), excessive training has been linked to serious brain serotonergic maladaptations accompanied by insomnia. Dietary supplementation of tryptophan (the only serotonin precursor) is known to stimulate serotonergic activity and promote sleep, whereas acute tryptophan depletion causes deleterious effects on sleep. Regarding sleep-wake regulation, exercise has proved to accelerate resynchronization of the biological clock to new light-dark cycles following imposition of phase shifts in laboratory animals. Noteworthy, the effect of increased serotonergic transmission on wake state appears to be biphasic, i.e. promote wake and thereafter drowsiness. Therefore, it might be possible that acute aerobic exercise would act on sleep by increasing activity of ascending brain serotonergic projections, though additional work is warranted to better understand the implication of serotonin in the exercise-sleep axis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Plasma serotonin level is a predictor for recurrence and poor prognosis in colorectal cancer patients.

    Science.gov (United States)

    Xia, Yan; Wang, Dawei; Zhang, Nan; Wang, Zhihao; Pang, Li

    2018-02-01

    To investigate the prognostic value of plasma serotonin levels in colorectal cancer (CRC). Preoperative plasma serotonin levels of 150 healthy control (HC) cases, 150 benign colorectal polyp (BCP) cases, and 176 CRC cases were determined using radioimmunoassay assay. Serotonin levels were compared between HC, BCP, and CRC cases, and those in CRC patients were related to 5-year outcome. Plasma serotonin levels were markedly higher in CRC patients than in either HCs or BCP cases. An elevated serotonin level was significantly associated with advanced tumor node metastasis. Receiver operating characteristic curve analysis showed that the level of serotonin had a high predictive value for disease recurrence and mortality. Multivariate analysis revealed that high serotonin level was significantly associated with poor recurrence-free survival and overall survival. Our results suggest that a high peri-operative plasma serotonin level is useful as a prognostic biomarker for CRC recurrence and poor survival. © 2017 Wiley Periodicals, Inc.

  14. cis-3-Hexenol and trans-2-hexenal mixture prevents development of PTSD-like phenotype in rats.

    Science.gov (United States)

    Nikaido, Yoshikazu; Yamada, Junko; Migita, Keisuke; Shiba, Yuko; Furukawa, Tomonori; Nakashima, Toshihiro; Ueno, Shinya

    2016-01-15

    Several green leaf volatiles have anxiolytic/antidepressant properties and attenuate adrenocortical stress response in rodents. However, it remains unknown whether a mixture of cis-3-hexenol and trans-2-hexenal so-called 'green odor (GO)' affects fear-associated post-traumatic stress disorder (PTSD)-like behavior. In the present study, fear memory of the initial conditioning stimulus was stably maintained by weekly presentation of conditioned tone. Examination of open field behavior, acoustic startle response, prepulse inhibition, and immobility in the forced swim test for 2 weeks after initial conditioning revealed that conditioned rats sustained anxiety, enhanced startle response, hypervigilance, depression-like behavior, and hypocortisolism, which is consistent with PTSD symptoms. Daily, not acute, GO presentation facilitated fear extinction and reduced PTSD-like behavioral and endocrinal responses. To further investigate the mechanism of effect of GO, we examined the effect of paroxetine (a selective serotonin reuptake inhibitor), p-chlorophenylalanine (PCPA, an irreversible serotonin synthesis inhibitor), alone or in combination of GO on PTSD-like phenotype. The alleviative effects of GO were masked by simultaneous paroxetine administration. PCPA-induced serotonin depletion abolished the effects of GO. Our results suggest that daily GO presentation facilitates fear extinction and prevents development of PTSD-like symptoms. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. How the cerebral serotonin homeostasis predicts environmental changes

    DEFF Research Database (Denmark)

    Kalbitzer, Jan; Kalbitzer, Urs; Knudsen, Gitte Moos

    2013-01-01

    Molecular imaging studies with positron emission tomography have revealed that the availability of serotonin transporter (5-HTT) in the human brain fluctuates over the course of the year. This effect is most pronounced in carriers of the short allele of the 5-HTT promoter region (5-HTTLPR), which...... has in several previous studies been linked to an increased risk to develop mood disorders. We argue that long-lasting fluctuations in the cerebral serotonin transmission, which is regulated via the 5-HTT, are responsible for mediating responses to environmental changes based on an assessment...... of cerebral serotonin transmission to seasonal and other forms of environmental change imparts greater behavioral flexibility, at the expense of increased vulnerability to stress. This model may explain the somewhat higher prevalence of the s-allele in some human populations dwelling at geographic latitudes...

  16. Brain serotonin content - Increase following ingestion of carbohydrate diet.

    Science.gov (United States)

    Fernstrom, J. D.; Wurtman, R. J.

    1971-01-01

    In the rat, the injection of insulin or the consumption of carbohydrate causes sequential increases in the concentrations of tryptophan in the plasma and the brain and of serotonin in the brain. Serotonin-containing neurons may thus participate in systems whereby the rat brain integrates information about the metabolic state in its relation to control of homeostasis and behavior.

  17. Therapeutic Application of Diacylglycerol Oil for Obesity: Serotonin Hypothesis

    Directory of Open Access Journals (Sweden)

    Yuji Hirowatari

    2012-01-01

    Full Text Available ABSTRACT: Characteristics for the serum lipid abnormalities in the obesity/metabolic syndrome are elevated fasting, postprandial triglyceride (TG, and decreased high-density lipoprotein-cholesterol (HDL-C. Diacylglycerol (DAG oil ingestion has been reported to ameliorate postprandial hyperlipidemia and prevent obesity by increasing energy expenditure, due to the intestinal physiochemical dynamics that differ from triacylglycerol (TAG. Our study demonstrated that DAG suppresses postprandial increase in TG-rich lipoprotein, very low-density lipoprotein (VLDL, and insulin, as compared with TAG in young, healthy individuals. Interestingly, our study also presented that DAG significantly increases plasma serotonin, which is mostly present in the intestine, and mediates thermogenesis, proposing a possible mechanism for a postprandial increase in energy expenditure by DAG. Our other study demonstrated that DAG suppresses postprandial increase in TG, VLDL-C, and remnant-like particle-cholesterol, in comparison with TAG in an apolipoprotein C-II deficient subject, suggesting that DAG suppresses postprandial TG-rich lipoprotein independently of lipoprotein lipase. Further, to understand the molecular mechanisms for DAG-mediated increase in serotonin and energy expenditure, we studied the effects of 1-monoacylglycerol and 2(1:1-10 2-monoacylglycerol, distinct digestive products of DAG and TAG, respectively, on serotonin release from the Caco-2 cells, the human intestinal cell line. We also studied effects of 1- and 2-monoacylglycerol, and serotonin on the expression of mRNA associated with â-oxidation, fatty acids metabolism, and thermogenesis, in the Caco-2 cells. 1-monoacylglycerol significantly increased serotonin release from the Caco-2 cells, compared with 2-monoacylglycerol by approximately 40%. The expression of mRNA of acyl-CoA oxidase (ACO, fatty acid translocase (FAT, and uncoupling protein-2 (UCP-2, was significantly higher in 1-MOG

  18. Chlorpyrifos-induced biochemical changes in Cyprinus carpio: Ameliorative effect of curcumin.

    Science.gov (United States)

    Yonar, M Enis

    2018-04-30

    The aim of this study was to determine protective effects of curcumin on some haematological values and oxidant/antioxidant status in Cyprinus carpio exposed to chlorpyrifos. The fish were exposed to two sublethal concentrations of chlorpyrifos (0.040 and 0.080mgL), and curcumin (100mg per kg of fish weight) was simultaneously administered for 14 days. Blood and tissue (liver, kidney, and gill) samples were collected at the end of the experiment and analysed to determine the haematological profile (red blood cell count, white blood cell count, haemoglobin concentration, and haematocrit level) and oxidant/antioxidant status (malondialdehyde level and superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase activities) of the fish. There was a significant decrease in the red blood cell count, the haemoglobin concentration, and the haematocrit level and a increase in the white blood cell count of CPF-treated fish. The results revealed a significant increase in the malondialdehyde levels of the groups that were exposed to CPF. Conversely, the MDA levels were significantly decreased by curcumin. Also, CPF exposure caused a significant increase in the superoxide dismutase and glutathione-S-transferase activities and a significant decrease in the catalase and glutathione peroxidase activities. However, curcumin reversed the superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase activities. In conclusion, this study demonstrated that CPF had a negative effect on the haematological values and the oxidant/antioxidant status of the fish. The simultaneous administration of curcumin was neutralised CPF-induced toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Understanding the Role of Serotonin in Female Hypoactive Sexual Desire Disorder and Treatment Options.

    Science.gov (United States)

    Croft, Harry A

    2017-12-01

    The neurobiology of sexual response is driven in part by dopamine and serotonin-the former modulating excitatory pathways and the latter regulating inhibitory pathways. Neurobiological underpinnings of hypoactive sexual desire disorder (HSDD) are seemingly related to overactive serotonin activity that results in underactive dopamine activity. As such, pharmacologic agents that decrease serotonin, increase dopamine, or some combination thereof, have therapeutic potential for HSDD. To review the role of serotonin in female sexual function and the effects of pharmacologic interventions that target the serotonin system in the treatment of HSDD. Searches of the Medline database for articles on serotonin and female sexual function. Relevant articles from the peer-reviewed literature were included. Female sexual response is regulated not only by the sex hormones but also by several neurotransmitters. It is postulated that dopamine, norepinephrine, oxytocin, and melanocortins serve as key neuromodulators for the excitatory pathways, whereas serotonin, opioids, and endocannabinoids serve as key neuromodulators for the inhibitory pathways. Serotonin appears to be a key inhibitory modulator of sexual desire, because it decreases the ability of excitatory systems to be activated by sexual cues. Centrally acting drugs that modulate the excitatory and inhibitory pathways involved in sexual desire (eg, bremelanotide, bupropion, buspirone, flibanserin) have been investigated as treatment options for HSDD. However, only flibanserin, a multifunctional serotonin agonist and antagonist (5-hydroxytryptamine [5-HT] 1A receptor agonist and 5-HT 2A receptor antagonist), is currently approved for the treatment of HSDD. The central serotonin system is 1 biochemical target for medications intended to treat HSDD. This narrative review integrates findings from preclinical studies and clinical trials to elucidate neurobiological underpinnings of HSDD but is limited to 1 neurotransmitter system

  20. Looking on the bright side of serotonin transporter gene variation.

    NARCIS (Netherlands)

    Homberg, J.R.; Lesch, K.P.

    2011-01-01

    Converging evidence indicates an association of the short (s), low-expressing variant of the repeat length polymorphism, serotonin transporter-linked polymorphic region (5-HTTLPR), in the human serotonin transporter gene (5-HTT, SERT, SLC6A4) with anxiety-related traits and increased risk for

  1. Hippocampal volume and serotonin transporter polymorphism in major depressive disorder

    DEFF Research Database (Denmark)

    Ahdidan, Jamila; Foldager, Leslie; Rosenberg, Raben

    2013-01-01

    Objective: The main aim of the present study was to replicate a previous finding in major depressive disorder (MDD) of association between reduced hippocampal volume and the long variant of the di- and triallelic serotonin transporter polymorphism in SLC6A4 on chromosome 17q11.2. Secondarily, we...... that we aimed to replicate, and no significant associations with the serotonin transporter polymorphism were found. Conclusions: The present quantitative and morphometric MRI study was not able to replicate the previous finding of association between reduced hippocampal volume in depressed patients...... and the serotonin transporter polymorphism....

  2. Diazinon and chlorpyrifos loads in precipitation and urban and agricultural storm runoff during January and February 2001 in the San Joaquin River basin, California

    Science.gov (United States)

    Zamora, Celia; Kratzer, Charles R.; Majewski, Michael S.; Knifong, Donna L.

    2003-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2001 in the San Joaquin River Basin was 24 percent less and 3.2 times more than applications in 2000, respectively. A total of 16 sites were sampled during January and February 2001 storm events: 7 river sites, 8 precipitation sites, and 1 urban storm drain. The seven river sites were sampled weekly during nonstorm periods and more frequently during storm runoff from a total of four storms. The monitoring of storm runoff at a city storm drain in Modesto, California, occurred simultaneously with the collection of precipitation samples from eight sites during a January 2001 storm event. The highest concentrations of diazinon occurred during the storm periods for all 16 sites, and the highest concentrations of chlorpyrifos occurred during weekly nonstorm sampling for the river sites and during the January storm period for the urban storm drain and precipitation sites. A total of 60 samples (41 from river sites, 10 from precipitation sites, and 9 from the storm drain site) had diazinon concentrations greater than 0.08 ?g/L, the concentration being considered by the California Department of Fish and Game as its criterion maximum concentration for the protection of aquatic habitats. A total of 18 samples (2 from river sites, 9 from precipitation sites, and 7 from the storm drain site) exceeded the equivalent California Department of Fish and Game guideline of 0.02 ?g/L for chlorpyrifos. The total diazinon load in the San Joaquin River near Vernalis during January and February 2001 was 23.8 pounds active ingredient; of this amount, 16.9 pounds active ingredient were transported by four storms, 1.06 pounds active ingredient were transported by nonstorm events, and 5.82 pounds active ingredient were considered to be baseline loads. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2001 was 2.17 pounds active ingredient; of this amount, 0.702 pound active

  3. Repeated Gestational Exposure of Mice to Chlorpyrifos Oxon Is Associated with Paraoxonase 1 (PON1) Modulated Effects in Maternal and Fetal Tissues

    Science.gov (United States)

    Co, Aila L.; Hay, Ariel M.; MacDonald, James W.; Bammler, Theo K.; Farin, Federico M.; Costa, Lucio G.; Furlong, Clement E.

    2014-01-01

    Chlorpyrifos oxon (CPO), the toxic metabolite of the organophosphorus (OP) insecticide chlorpyrifos, causes developmental neurotoxicity in humans and rodents. CPO is hydrolyzed by paraoxonase-1 (PON1), with protection determined by PON1 levels and the human Q192R polymorphism. To examine how the Q192R polymorphism influences fetal toxicity associated with gestational CPO exposure, we measured enzyme inhibition and fetal-brain gene expression in wild-type (PON1+/+), PON1-knockout (PON1−/−), and tgHuPON1R192 and tgHuPON1Q192 transgenic mice. Pregnant mice exposed dermally to 0, 0.50, 0.75, or 0.85 mg/kg/d CPO from gestational day (GD) 6 through 17 were sacrificed on GD18. Biomarkers of CPO exposure inhibited in maternal tissues included brain acetylcholinesterase (AChE), red blood cell acylpeptide hydrolase (APH), and plasma butyrylcholinesterase (BChE) and carboxylesterase (CES). Fetal plasma BChE was inhibited in PON1−/− and tgHuPON1Q192, but not PON1+/+ or tgHuPON1R192 mice. Fetal brain AChE and plasma CES were inhibited in PON1−/− mice, but not in other genotypes. Weighted gene co-expression network analysis identified five gene modules based on clustering of the correlations among their fetal-brain expression values, allowing for correlation of module membership with the phenotypic data on enzyme inhibition. One module that correlated highly with maternal brain AChE activity had a large representation of homeobox genes. Gene set enrichment analysis revealed multiple gene sets affected by gestational CPO exposure in tgHuPON1Q192 but not tgHuPON1R192 mice, including gene sets involved in protein export, lipid metabolism, and neurotransmission. These data indicate that maternal PON1 status modulates the effects of repeated gestational CPO exposure on fetal-brain gene expression and on inhibition of both maternal and fetal biomarker enzymes. PMID:25070982

  4. A new method for setting guidelines to protect human health from agricultural exposure by using chlorpyrifos as an example

    Directory of Open Access Journals (Sweden)

    Dung Tri Phung

    2015-05-01

    Full Text Available Introduction and objectives. Guidelines set by various agencies for the control and management of chlorpyrifos cover a wide range of values reflecting difficulties in the procedures for their development. To overcome these difficulties a new method to set guidelines would be developed. Published data derived from epidemiological investigations on human populations would be used to develop a dose-response relationship for chlorpyrifos allowing the calculation of threshold values which can be used as guidelines. Materials and Method. Data from the scientific literature on human populations were collected to evaluate the adverse response doses for a range of health effects. The Cumulative Frequency Distribution (CFD for the minimum levels of adverse effects measured in terms of the Lifetime Average Daily Dose (LADD[sub]D[/sub] and the Absorbed Daily Dose for neurological (ADD[sub]DN[/sub] and non-neurological effects were used. Results. Linear regression equations were fitted to the CFD plots giving R 2 values of 0.93 and 0.86 indicating a normal distribution of the data. Using these CFD plots, the chronic and acute threshold values were calculated at the 5% cumulative frequency level for chlorpyrifos exposure giving values at 0.5 µg/kg/d and 3 µg/kg/d respectively. Conclusions. Guidelines set using this technique at the values at 0.5 µg/kg/d and 3 µg/kg/d for chronic and acute exposure respectively provide an alternative to the currently used biological endpoint and safety factor method.

  5. Positron emission tomography quantification of serotonin transporter in suicide attempters with major depressive disorder.

    Science.gov (United States)

    Miller, Jeffrey M; Hesselgrave, Natalie; Ogden, R Todd; Sullivan, Gregory M; Oquendo, Maria A; Mann, J John; Parsey, Ramin V

    2013-08-15

    Several lines of evidence implicate abnormal serotonergic function in suicidal behavior and completed suicide, including low serotonin transporter binding in postmortem studies of completed suicide. We have also reported low in vivo serotonin transporter binding in major depressive disorder (MDD) during a major depressive episode using positron emission tomography (PET) with [(11)C]McN5652. We quantified regional brain serotonin transporter binding in vivo in depressed suicide attempters, depressed nonattempters, and healthy controls using PET and a superior radiotracer, [(11)C]DASB. Fifty-one subjects with DSM-IV current MDD, 15 of whom were past suicide attempters, and 32 healthy control subjects underwent PET scanning with [(11)C]DASB to quantify in vivo regional brain serotonin transporter binding. Metabolite-corrected arterial input functions and plasma free-fraction were acquired to improve quantification. Depressed suicide attempters had lower serotonin transporter binding in midbrain compared with depressed nonattempters (p = .031) and control subjects (p = .0093). There was no difference in serotonin transporter binding comparing all depressed subjects with healthy control subjects considering six a priori regions of interest simultaneously (p = .41). Low midbrain serotonin transporter binding appears to be related to the pathophysiology of suicidal behavior rather than of major depressive disorder. This is consistent with postmortem work showing low midbrain serotonin transporter binding capacity in depressed suicides and may partially explain discrepant in vivo findings quantifying serotonin transporter in depression. Future studies should investigate midbrain serotonin transporter binding as a predictor of suicidal behavior in MDD and determine the cause of low binding. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Effects of ageing on serotonin transporters in healthy females

    International Nuclear Information System (INIS)

    Kuikka, J.T.; Tammela, L.; Karhunen, L.; Uusitupa, M.; Bergstroem, K.A.; Tiihonen, J.

    2001-01-01

    The effect of ageing on brain serotonin transporters was evaluated in 19 healthy female volunteers (age range 22-74 years) using single-photon emission tomography and [ 123 I] nor-β-CIT. The study subjects were scanned 0.3, 3, 6 and 23 h after injection of 185 MBq of [ 123 I] nor-β-CIT. The ratio of the distribution volume for tracer in the midbrain to that in the cerebellum minus 1 was used as an index for serotonin transporter binding. An age-related decline of 2% per decade (r=-0.47; P 123 I] nor-β-CIT binding in the serotonin transporter-rich area is much less than that in dopamine transporters in the striatum (6% per decade). (orig.)

  7. Selective serotonin reuptake inhibitor (SSRI antidepressants, prolactin and breast cancer

    Directory of Open Access Journals (Sweden)

    Janet eAshbury

    2012-12-01

    Full Text Available Selective serotonin reuptake inhibitors (SSRIs are a widely prescribed class of anti-depressants. Laboratory and epidemiologic evidence suggests that a prolactin-mediated mechanism secondary to increased serotonin levels at neuronal synapses could lead to a potentially carcinogenic effect of SSRIs. In this population-based case-control study, we evaluated the association between SSRI use and breast cancer risk as a function of their relative degree of inhibition of serotonin reuptake as a proxy for their impact on prolactin levels. Cases were 2,129 women with primary invasive breast cancer diagnosed from 2003-2007, and controls were 21,297 women randomly selected from the population registry. Detailed information for each SSRI prescription dispensed was compiled using the Saskatchewan prescription database. Logistic regression was used to evaluate the impact of use of high and lower inhibitors of serotonin reuptake and duration of use, as well as to assess the effect of individual high inhibitors on the risk of breast cancer. Exclusive users of high or lower inhibitors of serotonin reuptake were not at increased risk for breast cancer compared with nonusers of SSRIs (OR = 1.01, CI = 0.88-1.17 and OR = 0.91, CI = 0.67-1.25 respectively, regardless of their duration of use or menopausal status. While we cannot rule out the possibility of a clinically important risk increase (OR = 1.83, CI = 0.99-3.40 for long-term users of sertraline (≥24 prescriptions, given the small number of exposed cases (n=12, the borderline statistical significance and the wide confidence interval, these results need to be interpreted cautiously. In this large population-based case-control study, we found no conclusive evidence of breast cancer risk associated with the use of SSRIs even after assessing the degree of serotonin reuptake inhibition and duration of use. Our results do not support the serotonin-mediated pathway for the prolactin-breast cancer hypothesis.

  8. [The effect of mineral water on serotonin and insulin production (an experimental study)].

    Science.gov (United States)

    Polushina, N D

    1998-01-01

    Radioimmunoassay (DRG kits) and orthotoluidine test were conducted to measure blood serotonin, insulin and glucose in 70 intact Wistar rat males before and after a course of drinking mineral water Essentuki 17 (MW). After the MW drinking course, a single dose of mineral water increases basal levels of serotonin and insulin, sensitivity of endocrine cells to MW. Serotonin and insulin rose maximally on minute 5 after the drink while in contrast to minute 15 and 30 before initiation of the MW drinking course. A direct correlation was found between blood concentrations of serotonin and insulin.

  9. Demonstration of clomipramine and venlafaxine occupation at serotonin reuptake sites in man in vivo.

    Science.gov (United States)

    Malizia, A L; Melichar, J M; Brown, D J; Gunn, R N; Reynolds, A; Jones, T; Nutt, D J

    1997-01-01

    We describe the use of 11CRTI-55 and the Multiple Objects Coincidences Counter (MOCC) to detect in-vivo binding to peripheral serotonin reuptake sites (left chest comprising platelet and lung serotonin reuptake sites) in man. Displacement and preloading experiments with clomipramine and venlafaxine in two healthy volunteers demonstrated that 11CRTI-55 binding is decreased in a dose-dependent fashion by both these drugs which bind to the serotonin transporter. In addition parallel data from the total head curve (representing 11CRTI-55 binding to central serotonin and dopamine (DA) reuptake sites) suggest that prior blockade of the serotonin transporter may be a useful strategy to maximize radioactive counts in the head when measuring the DA transporter. The MOCC is likely to be useful to determine sequential indices of relative serotonin reuptake blockade in patients on treatment.

  10. Serotonin and decision making processes.

    NARCIS (Netherlands)

    Homberg, J.R.

    2012-01-01

    Serotonin (5-HT) is an important player in decision making. Serotonergic antidepressant, anxiolytic and antipsychotic drugs are extensively used in the treatment of neuropsychiatric disorders characterized by impaired decision making, and exert both beneficial and harmful effects in patients.

  11. Protonated serotonin: Geometry, electronic structures and photophysical properties

    Science.gov (United States)

    Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan

    2017-07-01

    The geometry and electronic structures of protonated serotonin have been investigated by the aim of MP2 and CC2 methods. The relative stabilities, transition energies and geometry of sixteen different protonated isomers of serotonin have been presented. It has been predicted that protonation does not exhibit essential alteration on the S1 ← S0 electronic transition energy of serotonin. Instead, more complicated photophysical nature in respect to its neutral analogue is suggested for protonated system owing to radiative and non-radiative deactivation pathways. In addition to hydrogen detachment (HD), hydrogen/proton transfer (H/PT) processes from ammonium to indole ring along the NH+⋯ π hydrogen bond have been predicted as the most important photophysical consequences of SERH+ at S1 excited state. The PT processes is suggested to be responsible for fluorescence of SERH+ while the HD driving coordinate is proposed for elucidation of its nonradiative deactivation mechanism.

  12. β-cell serotonin production is associated with female sex, old age, and diabetes-free condition.

    Science.gov (United States)

    Kim, Yeong Gi; Moon, Joon Ho; Kim, Kyuho; Kim, Hyeongseok; Kim, Juok; Jeong, Ji-Seon; Lee, Junguee; Kang, Shinae; Park, Joon Seong; Kim, Hail

    2017-11-25

    Serotonin is known to be present in pancreatic β-cells and to play several physiological roles, including insulin secretion, β-cell proliferation, and paracrine inhibition of α-cells. However, the serotonin production of different cell lines and islets has not been compared based on age, sex, and diabetes related conditions. Here, we directly compared the serotonin concentrations in βTC and MIN6 cell lines, as well as in islets from mice using ultra-performance liquid chromatography tandem mass spectrometry. The average serotonin concentration was 5-10 ng/mg protein in the islets of male and non-pregnant female mice. The serotonin level was higher in females than males at 8 weeks, although there was no difference at 1 year. Furthermore, we observed serotonin by immunofluorescence staining in the pancreatic tissues of mice and human. Serotonin was detected by immunofluorescence staining in a portion of β-cells from islets of old female mice, but not of male or young female mice. A similar pattern was observed in human pancreas as well. In humans, serotonin production in β-cells was associated with a diabetes-free condition. Thus, serotonin production in β-cells was associated with old age, female sex, and diabetes-free condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Transient Serotonin Toxicity Evoked by Combination of Electroconvulsive Therapy and Fluoxetine

    Directory of Open Access Journals (Sweden)

    René Klysner

    2014-01-01

    Full Text Available The serotonin syndrome has been described only in rare instances for electroconvulsive therapy combined with an antidepressant medication. We describe a case of serotonin toxicity induced by electroconvulsive therapy in combination with fluoxetine.

  14. A sensitive monoclonal antibody-based enzyme-linked immunosorbent assay for chlorpyrifos residue determination in Chinese agricultural smaples

    Science.gov (United States)

    A monoclonal antibody-based competitive antibody-coated enzyme-linked immunosorbent assay (ELISA) was developed and optimized for determining chlorpyrifos residue in agricultural products. The IC50 and IC10 of this ELISA were 3.3 ng/mL and 0.1 ng/mL respectively. The average recoveries recovery rate...

  15. Effect of serotonin on the yield of UV-induced thymine dimers in DNA

    International Nuclear Information System (INIS)

    Frajkin, G.Ya.; Strakhovskaya, M.G.; Ivanova, Eh.V.

    1985-01-01

    Using fluorescence method serotonin interaction with DNA is studied and bond constant Ksub(c)=4.2x10 4 M -1 is defined. It is shown that bound serotonin reduces yield of UV-induced thymine dimers. Value of efficient distance of protective serotonin effect constituting part of DNA chain of 4 base pairs, is determined

  16. Serotonin, calcitonin and calcitonin gene-related peptide in acute pancreatitis

    DEFF Research Database (Denmark)

    Wahlstrøm, Kirsten Lykke; Novovic, Srdan; Ersbøll, Annette Kjær

    2017-01-01

    OBJECTIVE: The aim of this study was to investigate plasma levels of serotonin, calcitonin and calcitonin gene-related peptide (CGRP) in the course of acute pancreatitis (AP) taking organ failure, etiology and severity into consideration. MATERIAL AND METHODS: Sixty consecutive patients with alco......OBJECTIVE: The aim of this study was to investigate plasma levels of serotonin, calcitonin and calcitonin gene-related peptide (CGRP) in the course of acute pancreatitis (AP) taking organ failure, etiology and severity into consideration. MATERIAL AND METHODS: Sixty consecutive patients...... dysfunction. We hypothesize that serotonin plays a pathogenic role in the compromised pancreatic microcirculation, and calcitonin a role as a biomarker of severity in AP....

  17. Effect of serotonin infusions on the mean plasma concentrations of ...

    African Journals Online (AJOL)

    SERVER

    hhazali@hotmail.com, tabeshyarnoor@yahoo.com. neurotransmitters. It has been shown that neurons secreting serotonin may be co-locolized with neurons secreting GHRH and TRH (Bujatti et al., 1976; Bulsa et al., 1998; Savard et al., 1986; Savard et al., 1983). This indicate that serotonin as a neurotransmitter may control.

  18. The rat frontal cortex serotonin receptors. Influence of supraletal irradiation

    International Nuclear Information System (INIS)

    Chanez, P.O.; Timmermans, R.; Gerber, G.B.

    1984-01-01

    The density of the frontal cortex serotonin-2 receptors was determined after a supralethal irradiation (20 Gy) in Wistar rat. Using spiperone as ligand, we observed an important decrease in the density of serotonin-2 receptor and an increase in the dissociation constant receptor-ligand, 3 days after exposure [fr

  19. Serotonin-promoted elevation of ROS levels may lead to cardiac pathologies in diabetic rat

    Directory of Open Access Journals (Sweden)

    Ali Tahir

    2015-01-01

    Full Text Available Patients with diabetes mellitus (DM develop tendencies toward heart disease. Hyperglycemia induces the release of serotonin from enterochromaffin cells (EC. Serotonin was observed to elevate reactive oxygen species (ROS and downregulate antioxidant enzymes. As a result, elevated levels of serotonin could contribute to diabetic complications, including cardiac hypertrophy. In the present study, diabetes mellitus was induced in rats by alloxan administration; this was followed by the administration of serotonin to experimental animals. ROS, catalase (CAT, superoxide dismutase (SOD, B-type natriuretic peptide (BNP expression, and histopathological assessments were performed. Elevated ROS concentrations and decreased antioxidant enzyme activities were detected. Further, we observed an increase in cell surface area and elevated BNP expression which suggests that events associated with cardiac hypertrophy were increased in serotonin-administered diabetic rats. We conclude that serotonin secretion in diabetes could contribute to diabetic complications, including cardiac hypertrophy, through enhanced ROS production.

  20. PON1 status does not influence cholinesterase activity in Egyptian agricultural workers exposed to chlorpyrifos

    International Nuclear Information System (INIS)

    Ellison, Corie A.; Crane, Alice L.; Bonner, Matthew R.; Knaak, James B.; Browne, Richard W.; Lein, Pamela J.; Olson, James R.

    2012-01-01

    Animal studies have shown that paraoxonase 1 (PON1) genotype can influence susceptibility to the organophosphorus pesticide chlorpyrifos (CPF). However, Monte Carlo analysis suggests that PON1 genotype may not affect CPF-related toxicity at low exposure conditions in humans. The current study sought to determine the influence of PON1 genotype on the activity of blood cholinesterase as well as the effect of CPF exposure on serum PON1 in workers occupationally exposed to CPF. Saliva, blood and urine were collected from agricultural workers (n = 120) from Egypt's Menoufia Governorate to determine PON1 genotype, blood cholinesterase activity, serum PON1 activity towards chlorpyrifos-oxon (CPOase) and paraoxon (POase), and urinary levels of the CPF metabolite 3,5,6-trichloro-2-pyridinol (TCPy). The PON1 55 (P ≤ 0.05) but not the PON1 192 genotype had a significant effect on CPOase activity. However, both the PON1 55 (P ≤ 0.05) and PON1 192 (P ≤ 0.001) genotypes had a significant effect on POase activity. Workers had significantly inhibited AChE and BuChE after CPF application; however, neither CPOase activity nor POase activity was associated with ChE depression when adjusted for CPF exposure (as determined by urinary TCPy levels) and stratified by PON1 genotype. CPOase and POase activity were also generally unaffected by CPF exposure although there were alterations in activity within specific genotype groups. Together, these results suggest that workers retained the capacity to detoxify chlorpyrifos-oxon under the exposure conditions experienced by this study population regardless of PON1 genotype and activity and that effects of CPF exposure on PON1 activity are minimal. -- Highlights: ► CPF exposure resulted in an increase in TCPy and decreases in BuChE and AChE. ► CPOase activity decreased in subjects with the PON1 55LM and PON1 55 MM genotypes. ► Neither PON1 genotype nor CPOase activity had an effect on BuChE or AChE inhibition.

  1. PON1 status does not influence cholinesterase activity in Egyptian agricultural workers exposed to chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, Corie A., E-mail: cellison@buffalo.edu [Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214 (United States); Crane, Alice L., E-mail: alcrane@buffalo.edu [Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214 (United States); Bonner, Matthew R., E-mail: mrbonner@buffalo.edu [Department of Social and Preventive Medicine, State University of New York at Buffalo, Buffalo, NY 14214 (United States); Knaak, James B., E-mail: jbknaak@aol.com [Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214 (United States); Browne, Richard W., E-mail: rwbrowne@buffalo.edu [Department of Biotechnical and Clinical Laboratory Sciences, State University of New York at Buffalo, Buffalo, NY 14214 (United States); Lein, Pamela J., E-mail: pjlein@ucdavis.edu [Department of Molecular Biosciences, University of California School of Veterinary Medicine, Davis, CA 95618 (United States); Olson, James R., E-mail: jolson@buffalo.edu [Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214 (United States); Department of Social and Preventive Medicine, State University of New York at Buffalo, Buffalo, NY 14214 (United States)

    2012-12-15

    Animal studies have shown that paraoxonase 1 (PON1) genotype can influence susceptibility to the organophosphorus pesticide chlorpyrifos (CPF). However, Monte Carlo analysis suggests that PON1 genotype may not affect CPF-related toxicity at low exposure conditions in humans. The current study sought to determine the influence of PON1 genotype on the activity of blood cholinesterase as well as the effect of CPF exposure on serum PON1 in workers occupationally exposed to CPF. Saliva, blood and urine were collected from agricultural workers (n = 120) from Egypt's Menoufia Governorate to determine PON1 genotype, blood cholinesterase activity, serum PON1 activity towards chlorpyrifos-oxon (CPOase) and paraoxon (POase), and urinary levels of the CPF metabolite 3,5,6-trichloro-2-pyridinol (TCPy). The PON1 55 (P ≤ 0.05) but not the PON1 192 genotype had a significant effect on CPOase activity. However, both the PON1 55 (P ≤ 0.05) and PON1 192 (P ≤ 0.001) genotypes had a significant effect on POase activity. Workers had significantly inhibited AChE and BuChE after CPF application; however, neither CPOase activity nor POase activity was associated with ChE depression when adjusted for CPF exposure (as determined by urinary TCPy levels) and stratified by PON1 genotype. CPOase and POase activity were also generally unaffected by CPF exposure although there were alterations in activity within specific genotype groups. Together, these results suggest that workers retained the capacity to detoxify chlorpyrifos-oxon under the exposure conditions experienced by this study population regardless of PON1 genotype and activity and that effects of CPF exposure on PON1 activity are minimal. -- Highlights: ► CPF exposure resulted in an increase in TCPy and decreases in BuChE and AChE. ► CPOase activity decreased in subjects with the PON1 55LM and PON1 55 MM genotypes. ► Neither PON1 genotype nor CPOase activity had an effect on BuChE or AChE inhibition.

  2. Transient Serotonin Syndrome by Concurrent Use of Electroconvulsive Therapy and Selective Serotonin Reuptake Inhibitor: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Nagahisa Okamoto

    2012-01-01

    Full Text Available The serotonin syndrome, which is characterized by psychiatric, autonomic nervous and neurological symptoms, is considered to be caused by excessive stimulation of the 5-HT1A and 5-HT2 receptors in the gray matter and spinal cord of the central nervous system, after the start of dosing or increase of the dose of a serotoninergic drug. There have been hardly any reports of induction of serotonin syndrome by electroconvulsive therapy (ECT in combination with antidepressant. We present the case of a female patient with major depressive disorder (MDD who developed transient serotonin syndrome soon after the first session of ECT in combination with paroxetine. Paroxetine was discontinued, and her psychiatric, autonomic nervous and neurological symptoms were gradually relieved and disappeared within 2 days. We performed the second ECT session 5 days after the initial session and performed 12 sessions of ECT without any changes in the procedure of ECT and anesthesia, but no symptoms of SS were observed. Finally, her MDD remitted. ECT might cause transiently increased blood-brain barrier (BBB permeability and enhance the transmissivity of the antidepressant in BBB. Therefore, it is necessary to pay attention to rare side effect of serotonin syndrome by ECT in combination with antidepressant.

  3. Transient serotonin syndrome by concurrent use of electroconvulsive therapy and selective serotonin reuptake inhibitor: a case report and review of the literature.

    Science.gov (United States)

    Okamoto, Nagahisa; Sakamoto, Kota; Yamada, Maki

    2012-01-01

    The serotonin syndrome, which is characterized by psychiatric, autonomic nervous and neurological symptoms, is considered to be caused by excessive stimulation of the 5-HT1A and 5-HT2 receptors in the gray matter and spinal cord of the central nervous system, after the start of dosing or increase of the dose of a serotoninergic drug. There have been hardly any reports of induction of serotonin syndrome by electroconvulsive therapy (ECT) in combination with antidepressant. We present the case of a female patient with major depressive disorder (MDD) who developed transient serotonin syndrome soon after the first session of ECT in combination with paroxetine. Paroxetine was discontinued, and her psychiatric, autonomic nervous and neurological symptoms were gradually relieved and disappeared within 2 days. We performed the second ECT session 5 days after the initial session and performed 12 sessions of ECT without any changes in the procedure of ECT and anesthesia, but no symptoms of SS were observed. Finally, her MDD remitted. ECT might cause transiently increased blood-brain barrier (BBB) permeability and enhance the transmissivity of the antidepressant in BBB. Therefore, it is necessary to pay attention to rare side effect of serotonin syndrome by ECT in combination with antidepressant.

  4. Oxytocin and Serotonin Brain Mechanisms in the Nonhuman Primate.

    Science.gov (United States)

    Lefevre, Arthur; Richard, Nathalie; Jazayeri, Mina; Beuriat, Pierre-Aurélien; Fieux, Sylvain; Zimmer, Luc; Duhamel, Jean-René; Sirigu, Angela

    2017-07-12

    Oxytocin (OT) is increasingly studied for its therapeutic potential in psychiatric disorders, which are associated with the deregulation of several neurotransmission systems. Studies in rodents demonstrated that the interaction between OT and serotonin (5-HT) is critical for several aspects of social behavior. Using PET scan in humans, we have recently found that 5-HT 1A receptor (5-HT 1A R) function is modified after intranasal oxytocin intake. However, the underlying mechanism between OT and 5-HT remains unclear. To understand this interaction, we tested 3 male macaque monkeys using both [ 11 C]DASB and [ 18 F]MPPF, two PET radiotracers, marking the serotonin transporter and the 5-HT 1A R, respectively. Oxytocin (1 IU in 20 μl of ACSF) or placebo was injected into the brain lateral ventricle 45 min before scans. Additionally, we performed postmortem autoradiography. Compared with placebo, OT significantly reduced [ 11 C]DASB binding potential in right amygdala, insula, and hippocampus, whereas [ 18 F]MPPF binding potential increased in right amygdala and insula. Autoradiography revealed that [ 11 C]DASB was sensitive to physiological levels of 5-HT modification, and that OT does not act directly on the 5-HT 1A R. Our results show that oxytocin administration in nonhuman primates influences serotoninergic neurotransmission via at least two ways: (1) by provoking a release of serotonin in key limbic regions; and (2) by increasing the availability of 5-HT 1A R receptors in the same limbic areas. Because these two molecules are important for social behavior, our study sheds light on the specific nature of their interaction, therefore helping to develop new mechanisms-based therapies for psychiatric disorders. SIGNIFICANCE STATEMENT Social behavior is largely controlled by brain neuromodulators, such as oxytocin and serotonin. While these are currently targeted in the context of psychiatric disorders such as autism and schizophrenia, a new promising pharmaceutical

  5. Comparative Effects of Oral Chlorpyrifos Exposure on Cholinesterase Activity and Muscarinic Receptor Binding in Neonatal and Adult Rat Heart

    Science.gov (United States)

    Howard, Marcia D.; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N.

    2010-01-01

    Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M2 muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M2 receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor–mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M2 receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac ChE activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1 × LD10: neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1 × LD10, relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (≈ 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC50 values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that differential A-esterase activity was not

  6. The serotonin system in autism spectrum disorder: from biomarker to animal models

    OpenAIRE

    Muller, Christopher L.; Anacker, Allison M.J.; Veenstra-VanderWeele, Jeremy

    2015-01-01

    Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophy...

  7. Serotonin Drives Predatory Feeding Behavior via Synchronous Feeding Rhythms in the Nematode Pristionchus pacificus

    Directory of Open Access Journals (Sweden)

    Misako Okumura

    2017-11-01

    Full Text Available Feeding behaviors in a wide range of animals are regulated by the neurotransmitter serotonin, although the exact neural circuits and associated mechanism are often unknown. The nematode Pristionchus pacificus can kill other nematodes by opening prey cuticles with movable teeth. Previous studies showed that exogenous serotonin treatment induces a predatory-like tooth movement and slower pharyngeal pumping in the absence of prey; however, physiological functions of serotonin during predation and other behaviors in P. pacificus remained completely unknown. Here, we investigate the roles of serotonin by generating mutations in Ppa-tph-1 and Ppa-bas-1, two key serotonin biosynthesis enzymes, and by genetic ablation of pharynx-associated serotonergic neurons. Mutations in Ppa-tph-1 reduced the pharyngeal pumping rate during bacterial feeding compared with wild-type. Moreover, the loss of serotonin or a subset of serotonergic neurons decreased the success of predation, but did not abolish the predatory feeding behavior completely. Detailed analysis using a high-speed camera revealed that the elimination of serotonin or the serotonergic neurons disrupted the timing and coordination of predatory tooth movement and pharyngeal pumping. This loss of synchrony significantly reduced the efficiency of successful predation events. These results suggest that serotonin has a conserved role in bacterial feeding and in addition drives the feeding rhythm of predatory behavior in Pristionchus.

  8. Capture and retention of tritiated serotonin by the chick notochord

    International Nuclear Information System (INIS)

    Gerard, Anne; Gerard, Hubert; Dollander, Alexis

    1978-01-01

    The 3 day old chick notochord capacity to fix tritiated serotonin is maximal in its axis and in cephalic region. Observations permitting to find, the intracellular serotonin binding sites, contribute to an explanation of the capture mechanism and suggest a special direct role of the notochord on the monoaminergic neuron cytodifferentiation [fr

  9. Radioimmunoassays for serotonin and 5-hydroxyindole acetic acid

    International Nuclear Information System (INIS)

    Delaage, M.A.; Puizillout, J.J.

    1981-01-01

    Radioimmunoassays for serotonin and 5-hydroxyindole acetic acid were developed. High titer antibodies, having a well-defined high specificity, have been raised by coupling the side-chain of both molecules to human serum albumin. Serotonin is first converted into N-hemisuccinate, and then treated like 5-HIAA, namely, conjugated with HSA for the immunogen. Synthesis of 125 I iodinated analogues was performed by coupling 5-HIAA or N-succinyl serotonin to glycyltyrosine, without any contact between both molecules and the oxidizing reagents. Chemical conversions of biological samples (by succinylation for 5-HT and amidation for 5-HIAA) were carried out. This critical step makes the antigen molecules resemble the immunogen more closely, thus allowing an appreciable gain in specificity and sensitivity. These assays allow the rapid determination of 5-HT and 5-HIAA in small amounts of tissue, blood, cerebral spinal fluid or perfusate without any purification, with a sensitivity threshold of 50 pg

  10. Vagal innervation is required for pulmonary function phenotype in Htr4-/- mice.

    Science.gov (United States)

    House, John S; Nichols, Cody E; Li, Huiling; Brandenberger, Christina; Virgincar, Rohan S; DeGraff, Laura M; Driehuys, Bastiaan; Zeldin, Darryl C; London, Stephanie J

    2017-04-01

    Human genome-wide association studies have identified over 50 loci associated with pulmonary function and related phenotypes, yet follow-up studies to determine causal genes or variants are rare. Single nucleotide polymorphisms in serotonin receptor 4 ( HTR4 ) are associated with human pulmonary function in genome-wide association studies and follow-up animal work has demonstrated that Htr4 is causally associated with pulmonary function in mice, although the precise mechanisms were not identified. We sought to elucidate the role of neural innervation and pulmonary architecture in the lung phenotype of Htr4 -/- animals. We report here that the Htr4 -/- phenotype in mouse is dependent on vagal innervation to the lung. Both ex vivo tracheal ring reactivity and in vivo flexiVent pulmonary functional analyses demonstrate that vagotomy abrogates the Htr4 -/- airway hyperresponsiveness phenotype. Hyperpolarized 3 He gas magnetic resonance imaging and stereological assessment of wild-type and Htr4 -/- mice reveal no observable differences in lung volume, inflation characteristics, or pulmonary microarchitecture. Finally, control of breathing experiments reveal substantive differences in baseline breathing characteristics between mice with/without functional HTR4 in breathing frequency, relaxation time, flow rate, minute volume, time of inspiration and expiration and breathing pauses. These results suggest that HTR4's role in pulmonary function likely relates to neural innervation and control of breathing. Copyright © 2017 the American Physiological Society.

  11. Developmental exposure to terbutaline and chlorpyrifos: pharmacotherapy of preterm labor and an environmental neurotoxicant converge on serotonergic systems in neonatal rat brain regions

    International Nuclear Information System (INIS)

    Aldridge, Justin E.; Meyer, Armando; Seidler, Frederic J.; Slotkin, Theodore A.

    2005-01-01

    Developmental exposure to unrelated neurotoxicants can nevertheless produce similar neurobehavioral outcomes. We examined the effects of developmental exposure to terbutaline, a tocolytic β 2 -adrenoceptor agonist used to arrest preterm labor, and chlorpyrifos (CPF), a widely used organophosphate pesticide, on serotonin (5HT) systems. Treatments were chosen to parallel periods typical of human developmental exposures, terbutaline (10 mg/kg) on postnatal days (PN) 2-5 and CPF (5 mg/kg) on PN11-14, with assessments conducted on PN45, comparing each agent alone as well as sequential administration of both. Although neither treatment affected growth or viability, each elicited similar alterations in factors that are critical to the function of the 5HT synapse: 5HT 1A receptors, 5HT 2 receptors, and the presynaptic 5HT transporter (5HTT). Either agent elicited global increases in 5HT receptors and the 5HTT in brain regions possessing 5HT cell bodies (midbrain, brainstem) as well as in the hippocampus, which contains 5HT projections. For both terbutaline and CPF, males were affected more than females, although there were some regional disparities in the sex selectivity between the two agents. Both altered 5HT receptor-mediated cell signaling, suppressing stimulatory effects on adenylyl cyclase and enhancing inhibitory effects. When animals were exposed sequentially to both agents, the outcomes were no more than additive and, for many effects, less than additive, suggesting convergence of the two agents on a common set of developmental mechanisms. Our results indicate that 5HT systems represent a target for otherwise unrelated neuroteratogens

  12. [3H]Serotonin release: an improved method to measure mast cell degranulation

    International Nuclear Information System (INIS)

    Mazingue, C.; Dessaint, J.-P.; Capron, A.

    1978-01-01

    A method based on the release of tritium-labelled serotonin by activated mast cells in rodents is described. Mast cells incorporate labelled serotonin selectively and released the label after activation by non-specific stimulators (compound 48/80, polymyxin B sulphate, ATP, bovine chymotrypsin and L-α-lysophosphatidylcholine) or anaphylactic antibody and the corresponding antigen. These two types of activation were investigated in comparison with the toluidine blue microscopic rat mast cell degranulation test, and a methodological study of the release of [ 3 H] serotonin is described. The measurement of labelled serotonin release provides a simple and quick assay of mast cell degranulation compared to the time required for the classical rat mast cell degranulation technique and achieves a greater sensitivity. (Auth.)

  13. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

    NARCIS (Netherlands)

    Ripken, D.; Wielen, N. van der; Wortelboer, H.M.; Meijerink, J.; Witkamp, R.F.; Hendriks, H.F.J.

    2016-01-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis

  14. Validation of infrared thermography in serotonin-induced itch model in rats

    DEFF Research Database (Denmark)

    Dagnæs-Hansen, Frederik; Jasemian, Yousef; Gazerani, Parisa

    The number of scratching bouts is generally used as a standard method in animal models of itch. The aim of the present study was to validate the application of infrared thermography (IR-Th) in a serotonin-induced itch model in rats. Adult Sprague-Dawley male rats (n = 24) were used in 3 consecutive...... experiments. The first experiment evaluated vasomotor response (IR-Th) and scratching behavior (number of bouts) induced by intradermal serotonin (10 μl, 2%). Isotonic saline (control: 10 μl, 0.9%) and Methysergide (antagonist: 10 μl, 0.047 mg/ml) were used. The second experiment evaluated the dose......-response effect of intradermal serotonin (1%, 2% and 4%) on local temperature. The third experiment evaluated the anesthetized rats to test the local vasomotor responses in absent of scratching. Serotonin elicited significant scratching and lowered the local temperature at the site of injection. A dose...

  15. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    Science.gov (United States)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  16. Neuroticism Associates with Cerebral in Vivo Serotonin Transporter Binding Differently in Males and Females

    DEFF Research Database (Denmark)

    Tuominen, Lauri; Miettunen, Jouko; Cannon, Dara M

    2017-01-01

    scores from 91 healthy males and 56 healthy females. We specifically tested if the association between neuroticism and serotonin transporter is different in females and males. Results: We found that neuroticism and thalamic serotonin transporter binding potentials were associated in both males......). Conclusions: The finding is in agreement with recent studies showing that the serotonergic system is involved in affective disorders differently in males and females and suggests that contribution of thalamic serotonin transporter to the risk of affective disorders depends on sex....... and females, but with opposite directionality. Higher neuroticism associated with higher serotonin transporter binding potential in males (standardized beta 0.292, P=.008), whereas in females, higher neuroticism associated with lower serotonin transporter binding potential (standardized beta -0.288, P=.014...

  17. Inhibition, recovery and oxime-induced reactivation of muscle esterases following chlorpyrifos exposure in the earthworm Lumbricus terrestris

    International Nuclear Information System (INIS)

    Collange, B.; Wheelock, C.E.; Rault, M.; Mazzia, C.; Capowiez, Y.; Sanchez-Hernandez, J.C.

    2010-01-01

    Assessment of wildlife exposure to organophosphorus (OP) pesticides generally involves the measurement of cholinesterase (ChE) inhibition, and complementary biomarkers (or related endpoints) are rarely included. Herein, we investigated the time course inhibition and recovery of ChE and carboxylesterase (CE) activities in the earthworm Lumbricus terrestris exposed to chlorpyrifos, and the ability of oximes to reactivate the phosphorylated ChE activity. Results indicated that these esterase activities are a suitable multibiomarker scheme for monitoring OP exposure due to their high sensitivity to OP inhibition and slow recovery to full activity levels following pesticide exposure. Moreover, oximes reactivated the inhibited ChE activity of the earthworms exposed to 12 and 48 mg kg -1 chlorpyrifos during the first week following pesticide exposure. This methodology is useful for providing evidence for OP-mediated ChE inhibition in individuals with a short history of OP exposure (≤1 week); resulting a valuable approach for assessing multiple OP exposure episodes in the field. - Esterase inhibition combined with oxime reactivation methods is a suitable approach for monitoring organophosphate contamination

  18. Inhibition, recovery and oxime-induced reactivation of muscle esterases following chlorpyrifos exposure in the earthworm Lumbricus terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Collange, B. [Universite d' Avignon et des Pays de Vaucluse, UMR 406 Abeilles et Environnement, Site AGROPARC, F-84914, Avignon Cede 09 (France); Wheelock, C.E. [Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77, Stockholm (Sweden); Rault, M.; Mazzia, C. [Universite d' Avignon et des Pays de Vaucluse, UMR 406 Abeilles et Environnement, Site AGROPARC, F-84914, Avignon Cede 09 (France); Capowiez, Y. [INRA, Unite PSH, Site AGROPARC, F-84914 Avignon Cedex 09 (France); Sanchez-Hernandez, J.C., E-mail: juancarlos.sanchez@uclm.e [Laboratory of Ecotoxicology, Faculty of Environmental Science, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071, Toledo (Spain)

    2010-06-15

    Assessment of wildlife exposure to organophosphorus (OP) pesticides generally involves the measurement of cholinesterase (ChE) inhibition, and complementary biomarkers (or related endpoints) are rarely included. Herein, we investigated the time course inhibition and recovery of ChE and carboxylesterase (CE) activities in the earthworm Lumbricus terrestris exposed to chlorpyrifos, and the ability of oximes to reactivate the phosphorylated ChE activity. Results indicated that these esterase activities are a suitable multibiomarker scheme for monitoring OP exposure due to their high sensitivity to OP inhibition and slow recovery to full activity levels following pesticide exposure. Moreover, oximes reactivated the inhibited ChE activity of the earthworms exposed to 12 and 48 mg kg{sup -1} chlorpyrifos during the first week following pesticide exposure. This methodology is useful for providing evidence for OP-mediated ChE inhibition in individuals with a short history of OP exposure (<=1 week); resulting a valuable approach for assessing multiple OP exposure episodes in the field. - Esterase inhibition combined with oxime reactivation methods is a suitable approach for monitoring organophosphate contamination

  19. Behavior of pyrimethanil, pyraclostrobin, boscalid, cypermethrin and chlorpyrifos residues on raspberry fruit and leaves of Laszka variety.

    Science.gov (United States)

    Sadło, Stanisław; Szpyrka, Ewa; Stawarczyk, Michał; Piechowicz, Bartosz

    2014-01-01

    The purpose of the research conducted was to investigate and evaluate the behavior of pyrimethanil, pyraclostrobin, boscalid, cypermethrin and chlorpyrifos, the active ingredients of selected fungicides and insecticides, on ripe fruit and in fully developed leaves of raspberry of the Laszka variety. The field trial was carried out in the period of one month starting from the first fruit picking. The results obtained indicated that residue levels on the day of the first crop picking did not even approximate the corresponding EU-MRLs (http://ec.europa.eu/sanco_pesticides). Individual substances in raspberry fruits and leaves disappeared at a similar rate. As a result of chlorpyrifos application to the soil, its residue in fruits and leaves occurred for the whole period of fruit bearing, though in fruit they dropped successively. To produce raspberries with residues below or equal to 0.01 μg g(-1), the application of pesticides should be stopped at least 2-3 weeks before the first crop picking, and on condition that an appropriate preparation (active in low doses) is applied to the last treatments.

  20. Application of chemometric analysis based on physicochemical and chromatographic data for the differentiation origin of plant protection products containing chlorpyrifos.

    Science.gov (United States)

    Miszczyk, Marek; Płonka, Marlena; Bober, Katarzyna; Dołowy, Małgorzata; Pyka, Alina; Pszczolińska, Klaudia

    2015-01-01

    The aim of this study was to investigate the similarities and dissimilarities between the pesticide samples in form of emulsifiable concentrates (EC) formulation containing chlorpyrifos as active ingredient coming from different sources (i.e., shops and wholesales) and also belonging to various series. The results obtained by the Headspace Gas Chromatography-Mass Spectrometry method and also some selected physicochemical properties of examined pesticides including pH, density, stability, active ingredient and water content in pesticides tested were compared using two chemometric methods. Applicability of simple cluster analysis and also principal component analysis of obtained data in differentiation of examined plant protection products coming from different sources was confirmed. It would be advantageous in the routine control of originality and also in the detection of counterfeit pesticides, respectively, among commercially available pesticides containing chlorpyrifos as an active ingredient.

  1. A new Drosophila octopamine receptor responds to serotonin.

    Science.gov (United States)

    Qi, Yi-Xiang; Xu, Gang; Gu, Gui-Xiang; Mao, Fen; Ye, Gong-Yin; Liu, Weiwei; Huang, Jia

    2017-11-01

    As the counterparts of the vertebrate adrenergic transmitters, octopamine and tyramine are important physiological regulators in invertebrates. They control and modulate many physiological and behavioral functions in insects. In this study, we reported the pharmacological properties of a new α2-adrenergic-like octopamine receptor (CG18208) from Drosophila melanogaster, named DmOctα2R. This new receptor gene encodes two transcripts by alternative splicing. The long isoform DmOctα2R-L differs from the short isoform DmOctα2R-S by the presence of an additional 29 amino acids within the third intracellular loop. When heterologously expressed in mammalian cell lines, both receptors were activated by octopamine, tyramine, epinephrine and norepinephrine, resulting in the inhibition of cAMP production in a dose-dependent manner. The long form is more sensitive to the above ligands than the short form. The adrenergic agonists naphazoline, tolazoline and clonidine can stimulate DmOctα2R as full agonists. Surprisingly, serotonin and serotoninergic agonists can also activate DmOctα2R. Several tested adrenergic antagonists and serotonin antagonists blocked the action of octopamine or serotonin on DmOctα2R. The data presented here reported an adrenergic-like G protein-coupled receptor activated by serotonin, suggesting that the neurotransmission and neuromodulation in the nervous system could be more complex than previously thought. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

    NARCIS (Netherlands)

    Ripken, Dina; Wielen, van der Nikkie; Wortelboer, Heleen M.; Meijerink, Jocelijn; Witkamp, Renger F.; Hendriks, Henk F.J.

    2016-01-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis

  3. Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus

    Directory of Open Access Journals (Sweden)

    Saravanan Rajendiran

    2016-03-01

    Full Text Available The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of

  4. Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus.

    Science.gov (United States)

    Rajendiran, Saravanan; Muhammad Iqbal, Beema Mahin; Vasudevan, Sugumar

    2016-03-01

    The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH) and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of pargyline in elevating the

  5. EXAMINATION OF THE EFFECTS OF CHLORPYRIFOS ON DEVELOPMENTAL PROCESSES: EVALUATION OF BIOCHEMICAL, MORPHOLOGICAL, AND BEHAVIORAL INDICES OF DEVELOPMENTAL NEUROTOXICITY.

    Science.gov (United States)

    Until recently, the organophosphate pesticide, chlorpyrifos [CPF; O,O'diethyl O-3,5,6-trichloro-2-pyridyl) phosphorothionate] was one of the highest volume use pesticides in a non agricultural setting. The principal reason for restriction of use of this pesticide has been concern...

  6. Platelet 3H-serotonin releasing immune complexes induced by pseudomonas aeruginosa in cystic fibrosis

    International Nuclear Information System (INIS)

    Permin, H.; Stahl Skov, P.; Norn, S.; Hoeiby, N.; Schioetz, P.O.

    1982-01-01

    In vitro formation of immune complexes was studied by 3 H-serotonin release from human platelets by P. aeruginosa antigens in the presence of serum from 22 cyctic fibrosis patients, chronically infected with mucoid P. aeruginosa (CF+P) and with a pronounced antibody response against these bacteria, and in 24 patients without P. aeruginosa (CF-P). All CF+P patients responded with 3 H-serotonin release (16-34%), whereas CF-P patients released less than 15%. In the group of CF+P patients the number of P. aeruginosa precipitins was correlated to the serotonin titer. Time courses indicated that 3 H-serotonin release was maximal between 2 and 5 min, and that no further release was observed up to 20 min. There was a gradual increase in 3 H-serotonin release with higher platelet concentrations. The response was not changed by complement inactivation, and fractionation of serum demonstrated that the serotonin release was dependent on the presence of the immunoglobulin fraction. These experiments support the suggestion of a type III reaction being involved in the lung damage in CF+P patients and also suggest a possible involvement of serotonin in the inflammatory reaction during chronic P. aeruginosa lung infection. (author)

  7. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: A proposal of its metabolic pathway.

    Science.gov (United States)

    Abraham, Jayanthi; Silambarasan, Sivagnanam

    2016-01-01

    Biodegradation of chlorpyrifos and its major metabolite 3,5,6-trichloro-2-pyridinol (TCP) were studied with a novel bacterial strain JAS2 isolated from paddy rhizosphere soil. The molecular characterization based on 16S rRNA gene sequence homology confirmed its identity as Ochrobactrum sp. JAS2. The JAS2 strain degraded 300mgl(-1) of chlorpyrifos within 12h of incubation in the aqueous medium and it produced the TCP metabolite. However, after 72h of incubation TCP was also completely degraded by the JAS2 strain. A tentative degradation pathway of chlorpyrifos by Ochrobactrum sp. JAS2 has been proposed on basis of GC-MS analysis. The complete degradation of chlorpyrifos occurred within 24h in the soil spiked with and without addition of nutrients inoculated with Ochrobactrum sp. JAS2. TCP was obtained in both the studies which was degraded completely by 96h in the soil spiked with nutrients and whereas 120h in absence of nutrients in the soil. The mpd gene which is responsible for organophosphorus hydrolase production was identified. The isolates Ochrobactrum sp. JAS2 also exhibited a time dependent increase in the amount of tricalcium phosphate solubilization in Pikovskaya's medium. Further screening of the strain JAS2 for auxiliary plant growth promoting activities revealed its remarkable capability of producing the indole acetic acid (IAA), hydrogen cyanide (HCN) and ammonia. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Binding of Serotonin to Lipid Membranes

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Wang, Chunhua; Cruys-Bagger, Nicolaj

    2013-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a prevalent neurotransmitter throughout the animal kingdom. It exerts its effect through the specific binding to the serotonin receptor, but recent research has suggested that neural transmission may also be affected by its nonspecific interactions...... with the lipid matrix of the synaptic membrane. However, membrane–5-HT interactions remain controversial and superficially investigated. Fundamental knowledge of this interaction appears vital in discussions of putative roles of 5-HT, and we have addressed this by thermodynamic measurements and molecular...... dynamics (MD) simulations. 5-HT was found to interact strongly with lipid bilayers (partitioning coefficient ∼1200 in mole fraction units), and this is highly unusual for a hydrophilic solute like 5-HT which has a bulk, oil–water partitioning coefficient well below unity. It follows that membrane affinity...

  9. Effects of the insecticide Dursban 4E (active ingredient chlorpyrifos) in outdoor experimental ditches: II. invertebrate community responses and recovery

    NARCIS (Netherlands)

    Brink, van den P.J.; Wijngaarden, van R.P.A.; Lucassen, W.G.H.; Brock, T.C.M.; Leeuwangh, P.

    1996-01-01

    This paper describes long-term effects of chlorpyrifos on macro-invertebrates and zooplankton after a single application. Crustaceans and insects showed a rapid, concentration-dependent decrease in numbers after application (direct effects). A significant increase in gastropods and oligochaetes was

  10. EXPOSURE OF PRESCHOOL CHILDREN TO CHLORPYRIFOS AND ITS DEGRADATION PRODUCT 3,5,6-TRICHLORO-2-PYRIDINOL IN THEIR EVERYDAY ENVIRONMENTS

    Science.gov (United States)

    As part of the Children's Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants (CTEPP) study, we investigated the exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol (TCP) in their everyday environment...

  11. 3H-spiroperidol labels serotonin receptors in rat cerebral cortex and hippocampus

    International Nuclear Information System (INIS)

    Creese, I.; Snyder, S.H.

    1978-01-01

    It is found that in the cerebral cortex, butaclamol displaceable 3 H-spiroperidol binding labels both dopamine and serotonin receptors. In the hippocampus it is probable that 3 H-spiroperidol binding involves serotonin receptors exclusively. (Auth.)

  12. Sex dimorphic behaviors as markers of neuroendocrine disruption by environmental chemicals: the case of chlorpyrifos.

    Science.gov (United States)

    Venerosi, A; Ricceri, L; Tait, S; Calamandrei, G

    2012-12-01

    The complexity of the neuroendocrine level of investigation requires the assessment of behavioral patterns that extend beyond the reproductive functions, which are age- and sex-specific in rodents, described by defined clusters of behavioral items regulated by genetic, hormonal, and epigenetic factors. The study of social behavior in laboratory rodents reveals sex-dimorphic effects of environmental chemicals that may be undetected either by a traditional neurotoxicological approach or referring to the classical definition of endocrine disrupting chemicals. Here we review data on the neurobehavioral effects of developmental exposure to the non-persistent organophosphorus insecticide chlorpyrifos, whose neurotoxic activity at low doses is currently a matter of concern for children's health. In mice exposed to chlorpyrifos in utero and/or in early development social/emotional responses are differently affected in the two sexes in parallel with sex-dependent interference on hypothalamic neuroendocrine pathways regulating social behaviors (vasopressin, oxytocin, and steroid regulated systems). Through the analysis of complex sex-dimorphic behavioral patterns we show that neurotoxic and endocrine disrupting activities of CPF overlap. This widely diffused organophosphorus pesticide might thus be considered as a neuroendocrine disruptor possibly representing a risk factor for sex-biased neurodevelopmental disorders in children. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Localization of 3H-serotonin in the adrenal medullary cells of newborn rats

    International Nuclear Information System (INIS)

    Sudar, F.; Csaba, G.

    1979-01-01

    Newborn rats received 25 μCi 3 H-5-hydroxytryptophan (5-HTP); 30, 60 min or 5 hours later the adrenal glands were removed. Electronmicroscopic autoradiography was carried out after fixation and embedding. As in the cells 5-HTP is formed into serotonin, the distribution of radioactivity actually represents the distribution of serotonin. Activity was found on the cellular, nuclear and catecholamine granule-membranes, and in the nucleus. The activity increased as a function of time at all the above mentioned sites, and in line with this more and more empty catecholamine-granules appeared. Data indicate the existence of intracellular serotonin-receptors and the role of serotonin in the release of catecholamines. (L.E.)

  14. Different components of 3H-imipramine binding in rat brain membranes: relation to serotonin uptake sites

    International Nuclear Information System (INIS)

    Gobbi, M.; Taddei, C.; Mennini, T.

    1988-01-01

    In the present paper, the authors confirm and extend previous studies showing heterogeneous 3 H-imipramine ( 3 H-IMI) binding sites. Inhibition curves of various drugs (serotonin, imipramine, desmethyl-imipramine, d-fenfluramine, d-norfenfluramine and indalpine, a potent serotonin uptake inhibitor) obtained using 2 nM 3 H-IMI and in presence of 120 mM NaCl, confirmed the presence of at least three 3 H-IMI binding sites: two of these were serotonin-insensitive while the third one was selectively inhibited by serotonin and indalpine with nanomolar affinities. Moreover this last component was found to be selectively modulated by chronic imipramine treatment thus suggesting a close relation to serontonin uptake mechanism. These data indicate that the use of a more selective inhibitors of the serotonin-sensitive component (like indalpine or serotonin itself) to define non specific 3 H-IMI, may be of help in understanding its relation with serotonin uptake system. 22 references, 2 figures, 2 tables

  15. Serotonin selectively influences moral judgment and behavior through effects on harm aversion.

    Science.gov (United States)

    Crockett, Molly J; Clark, Luke; Hauser, Marc D; Robbins, Trevor W

    2010-10-05

    Aversive emotional reactions to real or imagined social harms infuse moral judgment and motivate prosocial behavior. Here, we show that the neurotransmitter serotonin directly alters both moral judgment and behavior through increasing subjects' aversion to personally harming others. We enhanced serotonin in healthy volunteers with citalopram (a selective serotonin reuptake inhibitor) and contrasted its effects with both a pharmacological control treatment and a placebo on tests of moral judgment and behavior. We measured the drugs' effects on moral judgment in a set of moral 'dilemmas' pitting utilitarian outcomes (e.g., saving five lives) against highly aversive harmful actions (e.g., killing an innocent person). Enhancing serotonin made subjects more likely to judge harmful actions as forbidden, but only in cases where harms were emotionally salient. This harm-avoidant bias after citalopram was also evident in behavior during the ultimatum game, in which subjects decide to accept or reject fair or unfair monetary offers from another player. Rejecting unfair offers enforces a fairness norm but also harms the other player financially. Enhancing serotonin made subjects less likely to reject unfair offers. Furthermore, the prosocial effects of citalopram varied as a function of trait empathy. Individuals high in trait empathy showed stronger effects of citalopram on moral judgment and behavior than individuals low in trait empathy. Together, these findings provide unique evidence that serotonin could promote prosocial behavior by enhancing harm aversion, a prosocial sentiment that directly affects both moral judgment and moral behavior.

  16. Common selective serotonin reuptake inhibitor side effects in older adults associated with genetic polymorphisms in the serotonin transporter and receptors: data from a randomized controlled trial.

    Science.gov (United States)

    Garfield, Lauren D; Dixon, David; Nowotny, Petra; Lotrich, Francis E; Pollock, Bruce G; Kristjansson, Sean D; Doré, Peter M; Lenze, Eric J

    2014-10-01

    Antidepressant side effects are a significant public health issue, associated with poor adherence, premature treatment discontinuation, and, rarely, significant harm. Older adults assume the largest and most serious burden of medication side effects. We investigated the association between antidepressant side effects and genetic variation in the serotonin system in anxious, older adults participating in a randomized, placebo-controlled trial of the selective serotonin reuptake inhibitor (SSRI) escitalopram. Adults (N = 177) aged ≥ 60 years were randomized to active treatment or placebo for 12 weeks. Side effects were assessed using the Udvalg fur Kliniske Undersøgelser side-effect rating scale. Genetic polymorphisms were putative functional variants in the promoters of the serotonin transporter and 1A and 2A receptors (5-HTTLPR [L/S + rs25531], HTR1A rs6295, HTR2A rs6311, respectively). Four significant drug-placebo side-effect differences were found: increased duration of sleep, dry mouth, diarrhea, and diminished sexual desire. Analyses using putative high- versus low-transcription genotype groupings revealed six pharmacogenetic effects: greater dry mouth and decreased sexual desire for the low- and high-expressing serotonin transporter genotypes, respectively, and greater diarrhea with the 1A receptor low-transcription genotype. Diminished sexual desire was experienced significantly more by high-expressing genotypes in the serotonin transporter, 1A, or 2A receptors. There was not a significant relationship between drug concentration and side effects nor a mean difference in drug concentration between low- and high-expressing genotypes. Genetic variation in the serotonin system may predict who develops common SSRI side effects and why. More work is needed to further characterize this genetic modulation and to translate research findings into strategies useful for more personalized patient care. Published by Elsevier Inc.

  17. Serotonin receptors influencing cell proliferation in the jejunal crypt epithelium and in colonic adenocarcinomas.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1986-01-01

    Serotonin has previously been shown to stimulate cell proliferation in the jejunal crypt epithelium and in colonic tumours. The original classification of serotonin receptors into D and M groups was not conductive to the understanding of these observations. The more recent classification of serotonin receptors into 5HT1 and 5HT2 groups is considered in this report. On the balance of evidence it appears that similar receptors mediate the response to serotonin in the two tissues under consideration and that these receptors resemble those of the 5HT1 group. Such receptors are usually positively linked to adenylate cyclase.

  18. Brief Report: Whole Blood Serotonin Levels and Gastrointestinal Symptoms in Autism Spectrum Disorder

    OpenAIRE

    Marler, Sarah; Ferguson, Bradley J.; Lee, Evon Batey; Peters, Brittany; Williams, Kent C.; McDonnell, Erin; Macklin, Eric A.; Levitt, Pat; Gillespie, Catherine Hagan; Anderson, George M.; Margolis, Kara Gross; Beversdorf, David Q.; Veenstra-VanderWeele, Jeremy

    2016-01-01

    Elevated whole blood serotonin levels are observed in more than 25 % of children with autism spectrum disorder (ASD). Co-occurring gastrointestinal (GI) symptoms are also common in ASD but have not previously been examined in relationship with hyperserotonemia, despite the synthesis of serotonin in the gut. In 82 children and adolescents with ASD, we observed a correlation between a quantitative measure of lower GI symptoms and whole blood serotonin levels. No significant association was seen...

  19. BDNF val66met association with serotonin transporter binding in healthy humans

    DEFF Research Database (Denmark)

    Fisher, P. M.; Ozenne, B.; Svarer, C.

    2017-01-01

    The serotonin transporter (5-HTT) is a key feature of the serotonin system, which is involved in behavior, cognition and personality and implicated in neuropsychiatric illnesses including depression. The brain-derived neurotrophic factor (BDNF) val66met and 5-HTTLPR polymorphisms have predicted......-carriers have increased subcortical 5-HTT binding. The small difference suggests limited statistical power may explain previously reported null effects. Our finding adds to emerging evidence that BDNF val66met contributes to differences in the human brain serotonin system, informing how variability in the 5-HTT...

  20. Serotonin-induced nitric oxide production in the ventral nerve cord of the earthworm, Eisenia fetida.

    Science.gov (United States)

    Kitamura, Y; Naganoma, Y; Horita, H; Ogawa, H; Oka, K

    2001-10-01

    Effect of serotonin on nitric oxide (NO) production in the ventral nerve cord (VNC) of the earthworm Eisenia fetida was investigated by a bio-imaging and an electrochemical technique. In the bio-imaging, the spatial pattern of NO production in VNC was visualized using an NO-specific fluorescent dye, diaminofluorescein-2 diacethyl (DAF-2 DA). Application of serotonin (100 microM) increased NO production in VNC by about 65% (PVNC. In the electrochemical technique, real-time basal and serotonin-induced NO production was estimated with an NO-specific electrode. On the ventral surface of VNC, the estimated basal NO production was stable at 200+/-52 nM, and was transiently augmented to 840+/-193 nM by the addition of 10 microM serotonin. In conclusion, the estimated basal NO production in the earthworm VNC is relatively high compared with other nervous systems earlier reported, and transiently augmented by serotonin. Our results suggest that NO signaling in VNC is involved in neuromodulation by serotonin.

  1. Heart valve cardiomyocytes of mouse embryos express the serotonin transporter SERT

    International Nuclear Information System (INIS)

    Pavone, Luigi Michele; Spina, Anna; Lo Muto, Roberta; Santoro, Dionea; Mastellone, Vincenzo; Avallone, Luigi

    2008-01-01

    Multiple evidence demonstrate a role for serotonin and its transporter SERT in heart valve development and disease. By utilizing a Cre/loxP system driven by SERT gene expression, we recently demonstrated a regionally restricted distribution of SERT-expressing cells in developing mouse heart. In order to characterize the cell types exhibiting SERT expression within the mouse heart valves at early developmental stages, in this study we performed immunohistochemistry for Islet1 (Isl1) and connexin-43 (Cx-43) on heart sections from SERT Cre/+ ;ROSA26R embryos previously stained with X-gal. We observed the co-localization of LacZ staining with Isl1 labelling in the outflow tract, the right ventricle and the conal region of E11.5 mouse heart. Cx-43 labelled cells co-localized with LacZ stained cells in the forming atrioventricular valves. These results demonstrate the cardiomyocyte phenotype of SERT-expressing cells in heart valves of the developing mouse heart, thus suggesting an active role of SERT in early heart valve development.

  2. Acute serotonin depletion releases motivated inhibition of response vigour.

    Science.gov (United States)

    den Ouden, Hanneke E M; Swart, Jennifer C; Schmidt, Kristin; Fekkes, Durk; Geurts, Dirk E M; Cools, Roshan

    2015-04-01

    The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas, however, has been mixed. In the current study, we aimed to investigate the role of serotonin (5HT) in behavioural vigour as a function of incentive motivation. We employed dietary acute tryptophan depletion (ATD) to lower the 5HT precursor tryptophan during the performance of a speeded visual discrimination task. Feedback valence and feedback probability were manipulated independently and cued prior to target onset. On feedback trials, fast correct responses led to either reward or avoidance of punishment, while slow or incorrect responses led to reward omission or punishment. We show that behavioural responding is inhibited under high incentive motivation (i.e. high-feedback probability) at baseline 5HT levels and that lowering these leads to behavioural disinhibition, while leaving accuracy unaffected. Surprisingly, there were no differential effects of motivational valence, with 5HT depletion releasing behavioural inhibition under both appetitive and aversive motivation. Our findings extend current theories on the role of 5HT in behavioural inhibition by showing that reductions in serotonin lead to increased behavioural vigour only if there is a motivational drive to inhibit behaviour at baseline.

  3. Chlorpyrifos and Malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity

    Science.gov (United States)

    Richendrfer, Holly; Creton, Robbert

    2015-01-01

    Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. PMID:25983063

  4. Chlorpyrifos and malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity.

    Science.gov (United States)

    Richendrfer, Holly; Creton, Robbert

    2015-07-01

    Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Serotonin projection patterns to the cochlear nucleus.

    Science.gov (United States)

    Thompson, A M; Thompson, G C

    2001-07-13

    The cochlear nucleus is well known as an obligatory relay center for primary auditory nerve fibers. Perhaps not so well known is the neural input to the cochlear nucleus from cells containing serotonin that reside near the midline in the midbrain raphe region. Although the specific locations of the main, if not sole, sources of serotonin within the dorsal cochlear nucleus subdivision are known to be the dorsal and median raphe nuclei, sources of serotonin located within other cochlear nucleus subdivisions are not currently known. Anterograde tract tracing was used to label fibers originating from the dorsal and median raphe nuclei while fluorescence immunohistochemistry was used to simultaneously label specific serotonin fibers in cat. Biotinylated dextran amine was injected into the dorsal and median raphe nuclei and was visualized with Texas Red, while serotonin was visualized with fluorescein. Thus, double-labeled fibers were unequivocally identified as serotoninergic and originating from one of the labeled neurons within the dorsal and median raphe nuclei. Double-labeled fiber segments, typically of fine caliber with oval varicosities, were observed in many areas of the cochlear nucleus. They were found in the molecular layer of the dorsal cochlear nucleus, in the small cell cap region, and in the granule cell and external regions of the cochlear nuclei, bilaterally, of all cats. However, the density of these double-labeled fiber segments varied considerably depending upon the exact region in which they were found. Fiber segments were most dense in the dorsal cochlear nucleus (especially in the molecular layer) and the large spherical cell area of the anteroventral cochlear nucleus; they were moderately dense in the small cell cap region; and fiber segments were least dense in the octopus and multipolar cell regions of the posteroventral cochlear nucleus. Because of the presence of labeled fiber segments in subdivisions of the cochlear nucleus other than the

  6. Bioremediation of chlorpyrifos contaminated soil by two phase bioslurry reactor: Processes evaluation and optimization by Taguchi's design of experimental (DOE) methodology.

    Science.gov (United States)

    Pant, Apourv; Rai, J P N

    2018-04-15

    Two phase bioreactor was constructed, designed and developed to evaluate the chlorpyrifos remediation. Six biotic and abiotic factors (substrate-loading rate, slurry phase pH, slurry phase dissolved oxygen (DO), soil water ratio, temperature and soil micro flora load) were evaluated by design of experimental (DOE) methodology employing Taguchi's orthogonal array (OA). The selected six factors were considered at two levels L-8 array (2^7, 15 experiments) in the experimental design. The optimum operating conditions obtained from the methodology showed enhanced chlorpyrifos degradation from 283.86µg/g to 955.364µg/g by overall 70.34% of enhancement. In the present study, with the help of few well defined experimental parameters a mathematical model was constructed to understand the complex bioremediation process and optimize the approximate parameters upto great accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Efficacy of Ganoderma sp. JAS4 in bioremediation of chlorpyrifos and its hydrolyzing metabolite TCP from agricultural soil.

    Science.gov (United States)

    Silambarasan, Sivagnanam; Abraham, Jayanthi

    2014-01-01

    A novel fungal strain JAS4 was isolated from agricultural soil and was found to be highly effective in degrading chlorpyrifos and its major degradation product 3,5,6-trichloro-2-pyridinol (TCP). The molecular characterization based on 18S rRNA sequence analysis, revealed strain JAS4 as Ganoderma sp. which could able to degrade chlorpyrifos and its metabolite in an aqueous medium with rate constant of 0.8460 day(-1), following first order rate kinetics, and the time in which the initial insecticide concentration was reduced by 50% (DT(50)) was 0.81 days. Studies on biodegradation in soil with nutrients showed that JAS4 strain exhibited efficient degradation of insecticide with a rate constant of 0.9 day(-1), and DT(50) was 0.73 day. In contrast, degradation of insecticide in soil without nutrients was characterized by a rate constant of 0.7576 day(-1) and the DT(50) was 0.91 day. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Boosting serotonin in the brain: is it time to revamp the treatment of depression?

    Science.gov (United States)

    Torrente, Mariana P; Gelenberg, Alan J; Vrana, Kent E

    2012-05-01

    Abnormalities in serotonin systems are presumably linked to various psychiatric disorders including schizophrenia and depression. Medications intended for these disorders aim to either block the reuptake or the degradation of this neurotransmitter. In an alternative approach, efforts have been made to enhance serotonin levels through dietary manipulation of precursor levels with modest clinical success. In the last 30 years, there has been little improvement in the pharmaceutical management of depression, and now is the time to revisit therapeutic strategies for the treatment of this disease. Tryptophan hydroxylase (TPH) catalyzes the first and rate-limiting step in the biosynthesis of serotonin. A recently discovered isoform, TPH2, is responsible for serotonin biosynthesis in the brain. Learning how to activate this enzyme (and its polymorphic versions) may lead to a new, more selective generation of antidepressants, able to regulate the levels of serotonin in the brain with fewer side effects.

  9. Brain serotonin 4 receptor binding is associated with the cortisol awakening response

    DEFF Research Database (Denmark)

    Jakobsen, Gustav R; Fisher, Patrick M; Dyssegaard, Agnete

    2016-01-01

    Serotonin signalling is considered critical for an appropriate and dynamic adaptation to stress. Previously, we have shown that prefrontal serotonin transporter (SERT) binding is positively associated with the cortisol awakening response (CAR) (Frokjaer et al., 2013), which is an index of hypotha...

  10. Synthesis of Dopamine and Serotonin Derivatives for Immobilization on a Solid Support

    DEFF Research Database (Denmark)

    Funder, Erik Daa; Jensen, Anne Bjørnskov; Tørring, Thomas

    2012-01-01

    rearrangement from the allylated phenol moiety of serotonin. The tethers are azide-functionalized, which enables coupling to alkyne-modified magnetic beads. The coupling to the magnetic beads is quantified by UV spectroscopy using Fmoc-monitoring of the immobilized dopamine and serotonin derivatives....

  11. Coaction of Stress and Serotonin Transporter Genotype in Predicting Aggression at the Transition to Adulthood

    Science.gov (United States)

    Conway, Christopher C.; Keenan-Miller, Danielle; Hammen, Constance; Lind, Penelope A.; Najman, Jake M.; Brennan, Patricia A.

    2012-01-01

    Despite consistent evidence that serotonin functioning affects stress reactivity and vulnerability to aggression, research on serotonin gene-stress interactions (G x E) in the development of aggression remains limited. The present study investigated variation in the promoter region of the serotonin transporter gene (5-HTTLPR) as a moderator of the…

  12. Epinephrine Injection effect on serotonin metabolism in small intestines of gamma irradiated rats

    International Nuclear Information System (INIS)

    Saada, H.N.; Mahdy, A.M.

    1997-01-01

    The response of serotonin metabolism to epinephrine injection was examined in the small intestine of normal and whole body gamma irradiated rats. The data revealed that a single dose of 6 Gy induced decrease in serotonin content associated with increase of monoaminoxidase activity (MAO), and 5-hydroxyindol acetic acid (5-HIAA); at one and four hours, and one, three and seven days after exposure. Intraperitoneal administration of epinephrine to normal unirradiated rats at a dose of 0.2 mug/g increased serotonin content, decreased (MAO) activity, and (5-HIAA) level, one and four hours after treatment. No significant changes were recorded later. Injection of epinephrine to rats, 15 minutes before irradiation, resulted in no significant changes of serotonin content, MAO activity and 5-HIAA level at one, four hours and one day after irradiation. At three and seven days, the changes were less significant. The results obtained suggest that the effect of epinephrine on serotonin and 5-HIAA levels in the small intestine of rats is mediated by the opposing effect of epinephrine on the radiation induced increase of intestinal MAO activity

  13. Radioenzymatic microassay for picogram quantities of serotonin or acetylserotonin in biological fluids and tissues

    International Nuclear Information System (INIS)

    Hussain, M.N.; Benedict, C.R.

    1987-01-01

    This paper describes several modifications of the original radioenzymatic assay for serotonin which increase the sensitivity of the assay 20-fold as well as enhance its reliability. Using this method serotonin concentrations can be directly measured in biological examples without precleaning the sample. When compared to currently available methods this assay is specific and sensitive to approximately 1 pg of serotonin and can be used to measure serotonin levels in individual brain nuclei or microliter quantities of biological fluids. This assay can be easily adapted for the direct measurement of N-acetylserotonin. A large number of samples can be assayed in a single working day

  14. Crystal Structure of an LSD-Bound Human Serotonin Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, Daniel; Wang, Sheng; McCorvy, John D.; Betz, Robin M.; Venkatakrishnan, A.J.; Levit, Anat; Lansu, Katherine; Schools, Zachary L.; Che, Tao; Nichols, David E.; Shoichet, Brian K.; Dror, Ron O.; Roth, Bryan L. (UNCSM); (UNC); (Stanford); (Stanford-MED); (UCSF)

    2017-01-01

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD’s key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR—a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD’s slow binding kinetics may be due to a “lid” formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD’s binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD’s actions at human serotonin receptors.

  15. Crystal Structure of an LSD-Bound Human Serotonin Receptor.

    Science.gov (United States)

    Wacker, Daniel; Wang, Sheng; McCorvy, John D; Betz, Robin M; Venkatakrishnan, A J; Levit, Anat; Lansu, Katherine; Schools, Zachary L; Che, Tao; Nichols, David E; Shoichet, Brian K; Dror, Ron O; Roth, Bryan L

    2017-01-26

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT 2B . The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD's key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT 2B R and 5-HT 2A R-a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD's slow binding kinetics may be due to a "lid" formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD's binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD's actions at human serotonin receptors. PAPERCLIP. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A current view of serotonin transporters [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Louis J. De Felice

    2016-07-01

    Full Text Available Serotonin transporters (SERTs are largely recognized for one aspect of their function—to transport serotonin back into the presynaptic terminal after its release. Another aspect of their function, however, may be to generate currents large enough to have physiological consequences. The standard model for electrogenic transport is the alternating access model, in which serotonin is transported with a fixed ratio of co-transported ions resulting in net charge per cycle. The alternating access model, however, cannot account for all the observed currents through SERT or other monoamine transporters.  Furthermore, SERT agonists like ecstasy or antagonists like fluoxetine generate or suppress currents that the standard model cannot support.  Here we survey evidence for a channel mode of transport in which transmitters and ions move through a pore. Available structures for dopamine and serotonin transporters, however, provide no evidence for a pore conformation, raising questions of whether the proposed channel mode actually exists or whether the structural data are perhaps missing a transient open state.

  17. Lower serotonin level and higher rate of fibromyalgia syndrome with advancing pregnancy.

    Science.gov (United States)

    Atasever, Melahat; Namlı Kalem, Muberra; Sönmez, Çiğdem; Seval, Mehmet Murat; Yüce, Tuncay; Sahin Aker, Seda; Koç, Acar; Genc, Hakan

    2017-09-01

    The aim of the study is to investigate the relationship between changes in serotonin levels during pregnancy and fibromyalgia syndrome (FS) and the relationships between FS and the physical/psychological state, biochemical and hormonal parameters, which may be related to the musculoskeletal system. This study is a prospective case-control study conducted with 277 pregnant women at the obstetric unit of Ankara University Faculty of Medicine, in the period between January and June 2015. FS was determined based on the presence or absence of the 2010 ACR diagnostic criteria and all the volunteers were asked to answer the questionnaires as Fibromyalgia Impact Criteria (FIQ), Widespread Pain Index (WPI), Symptom Severity Scale (SS), Beck Depression Inventory and Visual Analog Scale (VAS). Biochemical and hormonal markers (glucose, TSH, T4, Ca (calcium), P (phosphate), PTH (parathyroid hormone) and serotonin levels) relating to muscle and bone metabolism were measured. In the presence of fibromyalgia, the physical and psychological parameters are negatively affected (p serotonin levels may contribute to the development of fibromyalgia but this was not statistically significant. The Beck Depression Inventory scale statistically showed that increasing scores also increase the risk of fibromyalgia (p serotonin levels in women with FS are lower than the control group and that serotonin levels reduce as pregnancy progresses. Anxiety and depression in pregnant women with FS are higher than the control group. The presence of depression increases the likelihood of developing FS at a statistically significant level. Serotonin impairment also increases the chance of developing FS, but this correlation has not been shown to be statistically significant.

  18. Plasma serotonin in horses undergoing surgery for small intestinal colic

    OpenAIRE

    Torfs, Sara C; Maes, An A; Delesalle, Catherine J; Pardon, Bart; Croubels, Siska M; Deprez, Piet

    2015-01-01

    This study compared serotonin concentrations in platelet poor plasma (PPP) from healthy horses and horses with surgical small intestinal (SI) colic, and evaluated their association with postoperative ileus, strangulation and non-survival. Plasma samples (with EDTA) from 33 horses with surgical SI colic were collected at several pre- and post-operative time points. Serotonin concentrations were determined using liquid-chromatography tandem mass spectrometry. Results were compared with those fo...

  19. Autoradiographic localization of 3H-paroxetine-labeled serotonin uptake sites in rat brain

    International Nuclear Information System (INIS)

    De Souza, E.B.; Kuyatt, B.L.

    1987-01-01

    Paroxetine is a potent and selective inhibitor of serotonin uptake into neurons. Serotonin uptake sites have been identified, localized, and quantified in rat brain by autoradiography with 3H-paroxetine; 3H-paroxetine binding in slide-mounted sections of rat forebrain was of high affinity (KD = 10 pM) and the inhibition affinity constant (Ki) values of various drugs in competing 3H-paroxetine binding significantly correlated with their reported potencies in inhibiting synaptosomal serotonin uptake. Serotonin uptake sites labeled by 3H-paroxetine were highly concentrated in the dorsal and median raphe nuclei, central gray, superficial layer of the superior colliculus, lateral septal nucleus, paraventricular nucleus of the thalamus, and the islands of Calleja. High concentrations of 3H-paroxetine binding sites were found in brainstem areas containing dopamine (substantia nigra and ventral tegmental area) and norepinephrine (locus coeruleus) cell bodies. Moderate concentrations of 3H-paroxetine binding sites were present in laminae I and IV of the frontal parietal cortex, primary olfactory cortex, olfactory tubercle, regions of the basal ganglia, septum, amygdala, thalamus, hypothalamus, hippocampus, and some brainstem areas including the interpeduncular, trigeminal, and parabrachial nuclei. Lower densities of 3H-paroxetine binding sites were found in other regions of the neocortex and very low to nonsignificant levels of binding were present in white matter tracts and in the cerebellum. Lesioning of serotonin neurons with 3,4-methylenedioxyamphetamine caused large decreases in 3H-paroxetine binding. The autoradiographic distribution of 3H-paroxetine binding sites in rat brain corresponds extremely well to the distribution of serotonin terminals and cell bodies as well as with the pharmacological sites of action of serotonin

  20. Tramadol: seizures, serotonin syndrome, and coadministered antidepressants.

    Science.gov (United States)

    Sansone, Randy A; Sansone, Lori A

    2009-04-01

    This ongoing column is dedicated to the challenging clinical interface between psychiatry and primary care-two fields that are inexorably linked.Tramadol (Ultram(®)) is a commonly prescribed analgesic because of its relatively lower risk of addiction and better safety profile in comparison with other opiates. However, two significant adverse reactions are known to potentially occur with tramadol-seizures and serotonin syndrome. These two adverse reactions may develop during tramadol monotherapy, but appear much more likely to emerge during misuse/overdose as well as with the coadministration of other drugs, particularly antidepressants. In this article, we review the data relating to tramadol, seizures, and serotonin syndrome. This pharmacologic intersection is of clear relevance to both psychiatrists and primary care clinicians.

  1. Dissipation of chlorantraniliprole, chlorpyrifos-methyl and indoxacarb-insecticides used to control codling moth (Cydia Pomonella L.) and leafrollers (Tortricidae) in apples for production of baby food.

    Science.gov (United States)

    Szpyrka, Ewa; Matyaszek, Aneta; Słowik-Borowiec, Magdalena

    2017-05-01

    Dissipations of three insecticides: chlorantraniliprole, chlorpyrifos-methyl and indoxacarb in apples were studied following their foliar application on apples intended for production of baby food. The apples were sprayed with formulations for control of codling moth (Cydia Pomonella L.) and leafrollers (Tortricidae). Six experiments were conducted; each insecticide was applied individually on dessert apples. A validated gas chromatography-based method with simultaneous electron capture and nitrogen-phosphorus detection (GC-ECD/NPD) was used for the residue analysis. The analytical performance of the method was satisfactory, with expanded uncertainties ≤36% (a coverage factor, k = 2, and a confidence level of 95%). The dissipations of insecticides were studied in pseudo-first-order kinetic models (for which the coefficient of determination, R 2 , ranged between 0.9188 and 0.9897). Residues of studied insecticides were below their maximum residue limits of 0.5 mg/kg at an early stage of growth of the fruit. The half-lives of chlorantraniliprole, chlorpyrifos-methyl and indoxacarb were 16-17, 4-6 and 20-24 days, respectively. The initial residue levels declined gradually and reached the level of 0.01 mg/kg in 1 month for chlorpyrifos-methyl, 2 months for chlorantraniliprole and 2.5 months for indoxacarb. To obtain the insecticide residue levels below 0.01 mg/kg, which is the default MRL for food intended for infants and young children, the application of the studied insecticides should be carried out at recommended doses not later then: 1 month before harvest for chlorpyrifos-methyl, 2 months for chlorantraniliprole and 2.5 months for indoxacarb.

  2. The value of blood serotonin for effective weight loss in obese women

    Directory of Open Access Journals (Sweden)

    Natal'ya Vadimovna Anikina

    2015-07-01

    Full Text Available Introduction. Obesity is a disorder of energy balance, which leads to excessive accumulation of fat. In recent years, many important discoveries were made in this field, including the discovery of hormones produced by adipose tissue and the identification of many of the central and peripheral pathways of energy balance. Objective. To study the levels of hormones that affect appetite and metabolism in women with obesity baseline and after weight loss while taking sibutramine. Materials and methods. The study included 56 women aged 42,9±9,5 years, with a BMI of 34,6±6,1 kg/m2. All patients underwent clinical, laboratory and instrumental examination. Hormonal study included determination of serotonin, leptin, ghrelin, endothelin-1, adiponectin. Results: In women with obesity we identified hyperleptinemia and increased serotonin levels. The decrease in body weight in patients receiving sibutramine was accompanied by lower levels of serotonin, leptin, ghrelin, endothelin-1, and increase of adiponectin. Conclusions: Obese patients have significantly elevated levels of leptin, serotonin, ghrelin compared to women of normal weight. Sibutramine treatment leads to a decrease in serotonin, leptin, ghrelin and is more effective in women with a BMI less than 36,5 kg/m2.

  3. Developmental exposure to fluoxetine modulates the serotonin system in hypothalamus.

    Directory of Open Access Journals (Sweden)

    Cecilia Berg

    Full Text Available The selective serotonin reuptake inhibitor (SSRI fluoxetine (FLU, Prozac® is commonly prescribed for depression in pregnant women. This results in SSRI exposure of the developing fetus. However, there are knowledge gaps regarding the impact of SSRI exposure during development. Given the role of serotonin in brain development and its cross-talk with sex hormone function, we investigated effects of developmental exposure to pharmacologically relevant concentrations of FLU (3 and 30 nM (measured on brain neurotransmitter levels, gonadal differentiation, aromatase activity in brain and gonads, and the thyroid system, using the Xenopus tropicalis model. Tadpoles were chronically exposed (8 weeks until metamorphosis. At metamorphosis brains were cryosectioned and levels of serotonin, dopamine, norepinephrine, and their metabolites 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic acid, and homovanillic acid were measured in discrete regions (telencephalon, hypothalamus and the reticular formation of the cryosections using high-performance liquid chromatography. Exposure to 30 nM FLU increased the concentration of 5-hydroxyindoleacetic acid in hypothalamus compared with controls. FLU exposure did not affect survival, time to metamorphosis, thyroid histology, gonadal sex differentiation, or aromatase activity implying that the effect on the serotonergic neurotransmitter system in the hypothalamus region was specific. The FLU concentration that impacted the serotonin system is lower than the concentration measured in umbilical cord serum, suggesting that the serotonin system of the developing brain is highly sensitive to in utero exposure to FLU. To our knowledge this is the first study showing effects of developmental FLU exposure on brain neurochemistry. Given that SSRIs are present in the aquatic environment the current results warrant further investigation into the neurobehavioral effects of SSRIs in aquatic wildlife.

  4. Sublethal effects of diazinon, fenitrothion and chlorpyrifos on the functional response of predatory bug, Andrallus spinidens Fabricius (Hem.: Pentatomidae in the laboratory conditions

    Directory of Open Access Journals (Sweden)

    Moloud GholamzadehChitgar

    2014-04-01

    Full Text Available The sublethal effects of diazinon, fenitrothion and chlorpyrifos on the functional response of predatory bug, Andrallus spinidens Fabricius (Hem.: Pentatomidae, a potential biological control agent, were studied on 5th-instar nymphs. The experiment was conducted in varying densities (2, 4, 8, 16, 32 and 64 of last instars larvae of Chilo suppressalis Walker (Lepidoptera: Pyralidae as prey at 25 ± 2 °C, 60% ± 10% relative humidity (RH and a photoperiod of 16:8 h (L: D. The results of logistic regressions revealed a type II functional response in the control and all insecticide treatments. Comparison of functional response curves revealed that tested insecticides markedly decreased the mean of preys consumed by A. spinidens. Among them, functional response curve of A. spinidens in chlorpyrifos treatment was significantly lower than the other treatments. In this study, application of insecticides caused a decrease in the attack rate and an increase in the handling time of exposed bugs compared with the control. The longest handling time (3.97 ± 0.62 and the lowest attack rate (0.023 ± 0.007 were observed in chlorpyrifos and fenitrothion treatments, respectively. The results suggested that the adverse effect of these insecticides on A. spinidens should be considered in integrated pest management programs (IPM.

  5. Rapid detection of chlorpyrifos pesticide residue concentration in agro-product using Raman spectroscopy

    Science.gov (United States)

    Dhakal, Sagar; Peng, Yankun; Li, Yongyu; Chao, Kuanglin; Qin, Jianwei; Zhang, Leilei; Xu, Tianfeng

    2014-05-01

    Different chemicals are sprayed in fruits and vegetables before and after harvest for better yield and longer shelf-life of crops. Cases of pesticide poisoning to human health are regularly reported due to excessive application of such chemicals for greater economic benefit. Different analytical technologies exist to detect trace amount of pesticides in fruits and vegetables, but are expensive, sample destructive, and require longer processing time. This study explores the application of Raman spectroscopy for rapid and non-destructive detection of pesticide residue in agricultural products. Raman spectroscopy with laser module of 785 nm was used to collect Raman spectral information from the surface of Gala apples contaminated with different concentrations of commercially available organophosphorous (48% chlorpyrifos) pesticide. Apples within 15 days of harvest from same orchard were used in this study. The Raman spectral signal was processed by Savitzky-Golay (SG) filter for noise removal, Multiplicative Scatter Correction (MSC) for drift removal and finally polynomial fitting was used to eliminate the fluorescence background. The Raman spectral peak at 677 cm-1 was recognized as Raman fingerprint of chlorpyrifos. Presence of Raman peak at 677 cm-1 after fluorescence background removal was used to develop classification model (presence and absence of pesticide). The peak intensity was correlated with actual pesticide concentration obtained using Gas Chromatography and MLR prediction model was developed with correlation coefficient of calibration and validation of 0.86 and 0.81 respectively. Result shows that Raman spectroscopy is a promising tool for rapid, real-time and non-destructive detection of pesticide residue in agro-products.

  6. Influence of previous administration of trans-phenylcyclopropylamine on radioprotective and hypothermic effects of serotonin

    International Nuclear Information System (INIS)

    Misustova, J.; Hosek, B.; Novak, L.; Kautska, J.

    1978-01-01

    The influence of a previous administration of trans-phenylcyclopropylamine (t-PCPA) on radioprotective and hypothermic effects of serotonin was studied in male mice of the H strain, which were given t-PCPA in the dose of 4 mg/kg intraperitoneally 2 or 7 hours before application of serotonin (40 mg/kg, i.p.). The time course of protection was studied for exposures to 800 and 900 R. The results have shown that a previous administration of t-PCPA does not alter the short-time protective effect of serotonin, but that it significantly prolongs the time course of protection. The administration of t-PCPA also affects the starting speed and the duration of the serotonin-induced hypothermic reaction. The established correlation between prolongation of the radioprotective and hypothermic effects of serotonin induced by previous application of t-PCPA supplements the results with the existence of mutual relationship between changes of the energetic exchange and radioresistance of the organism. (author)

  7. An Exploration of the Serotonin System in Antisocial Boys with High Levels of Callous-Unemotional Traits

    Science.gov (United States)

    Moul, Caroline; Dobson-Stone, Carol; Brennan, John; Hawes, David; Dadds, Mark

    2013-01-01

    Background The serotonin system is thought to play a role in the aetiology of antisocial and aggressive behaviour in both adults and children however previous findings have been inconsistent. Recently, research has suggested that the function of the serotonin system may be specifically altered in a sub-set of antisocial populations – those with psychopathic (callous-unemotional) personality traits. We explored the relationships between callous-unemotional traits and functional polymorphisms of selected serotonin-system genes, and tested the association between callous-unemotional traits and serum serotonin levels independently of antisocial and aggressive behaviour. Method Participants were boys with antisocial behaviour problems aged 3–16 years referred to University of New South Wales Child Behaviour Research Clinics. Participants volunteered either a blood or saliva sample from which levels of serum serotonin (N = 66) and/or serotonin-system single nucleotide polymorphisms (N = 157) were assayed. Results Functional single nucleotide polymorphisms from the serotonin 1b receptor gene (HTR1B) and 2a receptor gene (HTR2A) were found to be associated with callous-unemotional traits. Serum serotonin level was a significant predictor of callous-unemotional traits; levels were significantly lower in boys with high callous-unemotional traits than in boys with low callous-unemotional traits. Conclusion Results provide support to the emerging literature that argues for a genetically-driven system-wide alteration in serotonin function in the aetiology of callous-unemotional traits. The findings should be interpreted as preliminary and future research that aims to replicate and further investigate these results is required. PMID:23457595

  8. Role of endogenous serotonin in the mechanism of action of radioprotective substances

    International Nuclear Information System (INIS)

    Konstantinova, M.M.; Nekrasova, I.V.; Gusareva, Eh.V.; Dontsova, G.V.

    1978-01-01

    A study is made of a correlation between radiomodifying activity of noradrenaline (NA), N-ethylmaleimide (NEM) and a combination of these agents and their effect on the content of endogenous serotonin in cells of Ehrlich's ascites tumor and E. coli B. There is no uniformity in the response of different cells and uniform direction of the changes in their radioresistance and endogenous serotonin content both under the effect of the substances (NA and NEM) given separately and under a combined effect of the protector and the agent, which removes the protective effect or prevents realization of the latter (NEM). This enables us to arrive at a conclusion that endogenous serotonin is not the only factor responsible for the radioprotective effect of the protective substances. At the same time, it is not excluded that endogenous serotonin is involved in the chain of reactions which are necessary for the radioprotective effect to come into play

  9. Genetics of premenstrual syndrome: investigation of specific serotonin receptor polymorphisms

    OpenAIRE

    Dhingra, Vandana

    2014-01-01

    Premenstrual dysphoric disorder (PMDD) is a distressing and disabling syndrome causing a significant degree of impairment on daily functioning and interpersonal relationships in 3-8% of the women. With the convincing evidence that PMS is inheritable and that serotonin is important in the pathogenesis of PMS, and failure of initial studies to demonstrate significant associations between key genes controlling the synthesis, reuptake and catabolism of serotonin and PMDD, the main aim of this the...

  10. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICATION IN THE U.S. EPA INDOOR AIR QUALITY RESEARCH HOUSE

    Science.gov (United States)

    A study was conducted in the U.S. EPA Indoor Air Quality Research House to determine the spatial and temporal distribution of chlorpyrifos following a professional crack and crevice application in the kitchen. Following the application, measurements were made in the kitchen, de...

  11. Serotonin transporter evolution and impact of polymorphic transcriptional regulation

    DEFF Research Database (Denmark)

    Søeby, Karen; Larsen, Svend Ask; Olsen, Line

    2005-01-01

    The serotonin transporter (SERT) is the primary drug target in the current antidepressant therapy. A functional polymorphism in the 2nd intron of the 5HTT gene encoding the SERT has been identified and associated with susceptibility to affective disorders and treatment response to antidepressants...... in the VNTRs of all mammalian SERT genes. The number of these putative binding sites varies proportionally to the length of the VNTR. We propose that the intronic VNTR have been selectively targeted through mammalian evolution to finetune transcriptional regulation of the serotonin expression....

  12. Modulation of the intrinsic properties of motoneurons by serotonin

    DEFF Research Database (Denmark)

    Perrier, Jean-François; Rasmussen, Hanne Borger; Christensen, Rasmus Kordt

    2013-01-01

    Serotonin (5-HT) is one of the main transmitters in the nervous system. Serotonergic neurons in the raphe nuclei in the brainstem innervate most parts of the central nervous system including motoneurons in the spinal cord and brainstem. This review will focus on the modulatory role that 5-HT exerts...... a sustained depolarization and an amplification of synaptic inputs. Under pathological conditions, such as after a spinal cord injury, the promotion of persistent inward currents by serotonin and/or the overexpression of autoactive serotonergic receptors may contribute to motoneuronal excitability, muscle...

  13. The impact of peripheral serotonin on leptin-brain serotonin axis, bone metabolism and strength in growing rats with experimental chronic kidney disease.

    Science.gov (United States)

    Pawlak, Dariusz; Domaniewski, Tomasz; Znorko, Beata; Oksztulska-Kolanek, Ewa; Lipowicz, Paweł; Doroszko, Michał; Karbowska, Malgorzata; Pawlak, Krystyna

    2017-12-01

    Chronic kidney disease (CKD) results in decreased bone strength. Serotonin (5-HT) is one of the critical regulators of bone health, fulfilling distinct functions depending on its synthesis site: brain-derived serotonin (BDS) favors osteoblast proliferation, whereas gut-derived serotonin (GDS) inhibits it. We assessed the role of BDS and peripheral leptin in the regulation of bone metabolism and strength in young rats with 5/6 nephrectomy. BDS synthesis was accelerated during CKD progression. Decreased peripheral leptin in CKD rats was inversely related to BDS content in the hypothalamus, brainstem and frontal cortex. Serotonin in these brain regions affected bone strength and metabolism in the studied animals. The direct effect of circulating leptin on bone was not shown in uremia. At the molecular level, there was an inverse association between elevated GDS and the expression of cAMP responsive element-binding protein (Creb) gene in bone of CKD animals. In contrast, increased expression of activating transcription factor 4 (Atf4) was shown, which was associated with GDS-dependent transcription factor 1 (Foxo1), clock gene - Cry-1, cell cycle genes: c-Myc, cyclins, and osteoblast differentiation genes. These results identified a previously unknown molecular pathway, by which elevated GDS can shift in Foxo1 target genes from Creb to Atf4-dependent response, disrupting the leptin-BDS - dependent gene pathway in the bone of uremic rats. Thus, in the condition of CKD the effect of BDS and GDS on bone metabolism and strength can't be distinguished. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Serotonin receptor activity is necessary for olfactory learning and memory in Drosophila melanogaster.

    Science.gov (United States)

    Johnson, O; Becnel, J; Nichols, C D

    2011-09-29

    Learning and memory in the fruit fly, Drosophila melanogaster, is a complex behavior with many parallels to mammalian learning and memory. Although many neurotransmitters including acetylcholine, dopamine, glutamate, and GABA have previously been demonstrated to be involved in aversive olfactory learning and memory, the role of serotonin has not been well defined. Here, we present the first evidence of the involvement of individual serotonin receptors in olfactory learning and memory in the fly. We initially followed a pharmacological approach, utilizing serotonin receptor agonists and antagonists to demonstrate that all serotonin receptor families present in the fly are necessary for short-term learning and memory. Isobolographic analysis utilizing combinations of drugs revealed functional interactions are occurring between 5-HT(1A)-like and 5-HT(2), and 5-HT(2) and 5-HT(7) receptor circuits in mediating short-term learning and memory. Examination of long-term memory suggests that 5-HT(1A)-like receptors are necessary for consolidation and important for recall, 5-HT(2) receptors are important for consolidation and recall, and 5-HT(7) receptors are involved in all three phases. Importantly, we have validated our pharmacological results with genetic experiments and showed that hypomorph strains for 5-HT(2)Dro and 5-HT(1B)Dro receptors, as well as knockdown of 5-HT(7)Dro mRNA, significantly impair performance in short-term memory. Our data highlight the importance of the serotonin system and individual serotonin receptors to influence olfactory learning and memory in the fly, and position the fly as a model system to study the role of serotonin in cognitive processes relevant to mammalian CNS function. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Mapping neurotransmitter networks with PET: an example on serotonin and opioid systems.

    Science.gov (United States)

    Tuominen, Lauri; Nummenmaa, Lauri; Keltikangas-Järvinen, Liisa; Raitakari, Olli; Hietala, Jarmo

    2014-05-01

    All functions of the human brain are consequences of altered activity of specific neural pathways and neurotransmitter systems. Although the knowledge of "system level" connectivity in the brain is increasing rapidly, we lack "molecular level" information on brain networks and connectivity patterns. We introduce novel voxel-based positron emission tomography (PET) methods for studying internal neurotransmitter network structure and intercorrelations of different neurotransmitter systems in the human brain. We chose serotonin transporter and μ-opioid receptor for this analysis because of their functional interaction at the cellular level and similar regional distribution in the brain. Twenty-one healthy subjects underwent two consecutive PET scans using [(11)C]MADAM, a serotonin transporter tracer, and [(11)C]carfentanil, a μ-opioid receptor tracer. First, voxel-by-voxel "intracorrelations" (hub and seed analyses) were used to study the internal structure of opioid and serotonin systems. Second, voxel-level opioid-serotonin intercorrelations (between neurotransmitters) were computed. Regional μ-opioid receptor binding potentials were uniformly correlated throughout the brain. However, our analyses revealed nonuniformity in the serotonin transporter intracorrelations and identified a highly connected local network (midbrain-striatum-thalamus-amygdala). Regionally specific intercorrelations between the opioid and serotonin tracers were found in anteromedial thalamus, amygdala, anterior cingulate cortex, dorsolateral prefrontal cortex, and left parietal cortex, i.e., in areas relevant for several neuropsychiatric disorders, especially affective disorders. This methodology enables in vivo mapping of connectivity patterns within and between neurotransmitter systems. Quantification of functional neurotransmitter balances may be a useful approach in etiological studies of neuropsychiatric disorders and also in drug development as a biomarker-based rationale for targeted

  16. Serotonin Activated Hepatic Stellate Cells Contribute to Sex Disparity in Hepatocellular CarcinomaSummary

    Directory of Open Access Journals (Sweden)

    Qiqi Yang

    2017-05-01

    Full Text Available Background & Aims: Hepatocellular carcinoma (HCC occurs more frequently and aggressively in men than in women. Although sex hormones are believed to play a critical role in this disparity, the possible contribution of other factors largely is unknown. We aimed to investigate the role of serotonin on its contribution of sex discrepancy during HCC. Methods: By using an inducible zebrafish HCC model through hepatocyte-specific transgenic krasV12 expression, differential rates of HCC in male and female fish were characterized by both pharmaceutical and genetic interventions. The findings were validated further in human liver disease samples. Results: Accelerated HCC progression was observed in krasV12-expressing male zebrafish and male fish liver tumors were found to have higher hepatic stellate cell (HSC density and activation. Serotonin, which is essential for HSC survival and activation, similarly were found to be synthesized and accumulated more robustly in males than in females. Serotonin-activated HSCs could promote HCC carcinogenesis and concurrently increase serotonin synthesis via transforming growth factor (Tgfb1 expression, hence contributing to sex disparity in HCC. Analysis of liver disease patient samples showed similar male predominant serotonin accumulation and Tgfb1 expression. Conclusions: In both zebrafish HCC models and human liver disease samples, a predominant serotonin synthesis and accumulation in males resulted in higher HSC density and activation as well as Tgfb1 expression, thus accelerating HCC carcinogenesis in males. Keywords: Liver Cancer, TGFB1, Kras, Zebrafish

  17. Acute tryptophan depletion dose dependently impairs object memory in serotonin transporter knockout rats

    NARCIS (Netherlands)

    Olivier, J D A; Jans, L A W; Korte-Bouws, G A H; Korte, S M; Deen, P M T; Cools, A R; Ellenbroek, B A; Blokland, A

    2008-01-01

    RATIONALE: Acute tryptophan depletion (ATD) transiently lowers central serotonin levels and can induce depressive mood states and cognitive defects. Previous studies have shown that ATD impairs object recognition in rats. OBJECTIVES: As individual differences exist in central serotonin

  18. Interaction between serotonin transporter and serotonin receptor 1 B genes polymorphisms may be associated with antisocial alcoholism.

    Science.gov (United States)

    Wang, Tzu-Yun; Lee, Sheng-Yu; Chen, Shiou-Lan; Chang, Yun-Hsuan; Chen, Shih-Heng; Chu, Chun-Hsien; Huang, San-Yuan; Tzeng, Nian-Sheng; Wang, Chen-Lin; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang; Lu, Ru-Band

    2012-07-11

    Several studies have hypothesized that genes regulating the components of the serotonin system, including serotonin transporter (5-HTTLPR) and serotonin 1 B receptor (5-HT1B), may be associated with alcoholism, but their results are contradictory because of alcoholism's heterogeneity. Therefore, we examined whether the 5-HTTLPR gene and 5-HT1B gene G861C polymorphism are susceptibility factors for a specific subtype of alcoholism, antisocial alcoholism in Han Chinese in Taiwan. We recruited 273 Han Chinese male inmates with antisocial personality disorder (ASPD) [antisocial alcoholism (AS-ALC) group (n=120) and antisocial non-alcoholism (AS-N-ALC) group (n=153)] and 191 healthy male controls from the community. Genotyping was done using PCR-RFLP. There were no significant differences in the genotypic frequency of the 5-HT1B G861C polymorphism between the 3 groups. Although AS-ALC group members more frequently carried the 5-HTTLPR S/S, S/LG, and LG/LG genotypes than controls, the difference became non-significant after controlling for the covarying effects of age. However, the 5-HTTLPR S/S, S/LG, and LG/LG genotypes may have interacted with the 5-HT1B G861C C/C polymorphism and increased the risk of becoming antisocial alcoholism. Our study suggests that neither the 5-HTTLPR gene nor the 5-HT1B G861C polymorphism alone is a risk factor for antisocial alcoholism in Taiwan's Han Chinese population, but that the interaction between both genes may increase susceptibility to antisocial alcoholism.

  19. The combined effect of irradiation and chlorpyrifos on the cotton leaf worm spodoptera littoralis (BOISD.)

    International Nuclear Information System (INIS)

    El-Banby, M.A., Souka, S.R.; Abdel-Fattah, M.S.; El-Shall, S.M.

    1991-01-01

    The combined treatment of L D 10 chlorpyrifos and radiation had no deleterious effects on adult emergence, adult longevity or number of spermatophores per mated female, whereas it caused considerable reduction in both fecundity and egg hatchability as compared with the effect of radiation alone. Treating larvae with L D 10 insecticide or irradiating their male pupae (each treatment separately) did not affect the percentage of mated females, while combining both treatment on females slightly decreased this percentage.3 tab

  20. Synthesis of high specific activity [ethyl-1,2-3H]-labeled chlorpyrifos oxon and diazoxon

    International Nuclear Information System (INIS)

    Zhang, Nanjing; Morimoto, Hiromi; Williams, Philip G.; Casida, John E

    2000-01-01

    [Ethyl-1,2-3H] Chlorpyrifos oxon and [ethyl-1,2-3H] diazoxon were synthesized at a specific activity of 79 and 58 Ci/mmol, respectively, by catalytic tritiation of the corresponding monovinyl analogs over Pd/C. Direct evidence is provided that the high specific activity results from isotope exchange of the terminal vinylic protons prior to saturation of the double bond. This radiosynthesis procedure is applicable to the toxicologically-important oxon metabolites of many commercial O-O-diethyl phosphorothioate pesticides

  1. Fitness Effects of Chlorpyrifos in the Damselfly Enallagma cyathigerum Strongly Depend upon Temperature and Food Level and Can Bridge Metamorphosis

    Science.gov (United States)

    Janssens, Lizanne; Stoks, Robby

    2013-01-01

    Interactions between pollutants and suboptimal environmental conditions can have severe consequences for the toxicity of pollutants, yet are still poorly understood. To identify patterns across environmental conditions and across fitness-related variables we exposed Enallagma cyathigerum damselfly larvae to the pesticide chlorpyrifos at two food levels or at two temperatures and quantified four fitness-related variables (larval survival, development time, mass at emergence and adult cold resistance). Food level and temperature did not affect survival in the absence of the pesticide, yet the pesticide reduced survival only at the high temperature. Animals reacted to the pesticide by accelerating their development but only at the high food level and at the low temperature; at the low food level, however, pesticide exposure resulted in a slower development. Chlorpyrifos exposure resulted in smaller adults except in animals reared at the high food level. Animals reared at the low food level and at the low temperature had a higher cold resistance which was not affected by the pesticide. In summary our study highlight that combined effects of exposure to chlorpyrifos and the two environmental conditions (i) were mostly interactive and sometimes even reversed in comparison with the effect of the environmental condition in isolation, (ii) strongly differed depending on the fitness-related variable under study, (iii) were not always predictable based on the effect of the environmental condition in isolation, and (iv) bridged metamorphosis depending on which environmental condition was combined with the pesticide thereby potentially carrying over from aquatic to terrestrial ecosystems. These findings are relevant when extrapolating results of laboratory tests done under ideal environmental conditions to natural communities. PMID:23840819

  2. Fitness Effects of Chlorpyrifos in the Damselfly Enallagma cyathigerum Strongly Depend upon Temperature and Food Level and Can Bridge Metamorphosis.

    Directory of Open Access Journals (Sweden)

    Lizanne Janssens

    Full Text Available Interactions between pollutants and suboptimal environmental conditions can have severe consequences for the toxicity of pollutants, yet are still poorly understood. To identify patterns across environmental conditions and across fitness-related variables we exposed Enallagma cyathigerum damselfly larvae to the pesticide chlorpyrifos at two food levels or at two temperatures and quantified four fitness-related variables (larval survival, development time, mass at emergence and adult cold resistance. Food level and temperature did not affect survival in the absence of the pesticide, yet the pesticide reduced survival only at the high temperature. Animals reacted to the pesticide by accelerating their development but only at the high food level and at the low temperature; at the low food level, however, pesticide exposure resulted in a slower development. Chlorpyrifos exposure resulted in smaller adults except in animals reared at the high food level. Animals reared at the low food level and at the low temperature had a higher cold resistance which was not affected by the pesticide. In summary our study highlight that combined effects of exposure to chlorpyrifos and the two environmental conditions (i were mostly interactive and sometimes even reversed in comparison with the effect of the environmental condition in isolation, (ii strongly differed depending on the fitness-related variable under study, (iii were not always predictable based on the effect of the environmental condition in isolation, and (iv bridged metamorphosis depending on which environmental condition was combined with the pesticide thereby potentially carrying over from aquatic to terrestrial ecosystems. These findings are relevant when extrapolating results of laboratory tests done under ideal environmental conditions to natural communities.

  3. Docosahexaenoyl serotonin emerges as most potent inhibitor of IL-17 and CCL-20 released by blood mononuclear cells from a series of N-acyl serotonins identified in human intestinal tissue.

    Science.gov (United States)

    Wang, Ya; Balvers, Michiel G J; Hendriks, Henk F J; Wilpshaar, Tessa; van Heek, Tjarda; Witkamp, Renger F; Meijerink, Jocelijn

    2017-09-01

    Fatty acid amides (FAAs), conjugates of fatty acids with ethanolamine, mono-amine neurotransmitters or amino acids are a class of molecules that display diverse functional roles in different cells and tissues. Recently we reported that one of the serotonin-fatty acid conjugates, docosahexaenoyl serotonin (DHA-5-HT), previously found in gut tissue of mouse and pig, attenuates the IL-23-IL-17 signaling axis in LPS-stimulated mice macrophages. However, its presence and effects in humans remained to be elucidated. Here, we report for the first time its identification in human intestinal (colon) tissue, along with a series of related N-acyl serotonins. Furthermore, we tested these fatty acid conjugates for their ability to inhibit the release of IL-17 and CCL-20 by stimulated human peripheral blood mononuclear cells (PBMCs). Serotonin conjugates with palmitic acid (PA-5-HT), stearic acid (SA-5-HT) and oleic acid (OA-5-HT) were detected in higher levels than arachidonoyl serotonin (AA-5-HT) and DHA-5-HT, while eicosapentaenoyl serotonin (EPA-5-HT) could not be quantified. Among these, DHA-5-HT was the most potent in inhibiting IL-17 and CCL-20, typical Th17 pro-inflammatory mediators, by Concanavalin A (ConA)-stimulated human PBMCs. These results underline the idea that DHA-5-HT is a gut-specific endogenously produced mediator with the capacity to modulate the IL-17/Th17 signaling response. Our findings may be of relevance in relation to intestinal inflammatory diseases like Crohn's disease and Ulcerative colitis. Copyright © 2017. Published by Elsevier B.V.

  4. Prenatal naled and chlorpyrifos exposure is associated with deficits in infant motor function in a cohort of Chinese infants.

    Science.gov (United States)

    Silver, Monica K; Shao, Jie; Zhu, Binquan; Chen, Minjian; Xia, Yankai; Kaciroti, Niko; Lozoff, Betsy; Meeker, John D

    2017-09-01

    Organophosphate insecticides (OPs) are used worldwide, yet despite nearly ubiquitous exposure in the general population, few have been studied outside the laboratory. Fetal brains undergo rapid growth and development, leaving them susceptible to long-term effects of neurotoxic OPs. The objective here was to investigate the extent to which prenatal exposure to OPs affects infant motor development. 30 OPs were measured in umbilical cord blood using gas chromatography tandem mass spectrometry in a cohort of Chinese infants. Motor function was assessed at 6-weeks and 9-months using Peabody Developmental Motor Scales 2nd edition (PDMS-2) (n=199). Outcomes included subtest scores: reflexes, stationary, locomotion, grasping, visual-motor integration (V-M), composite scores: gross (GM), fine (FM), total motor (TM), and standardized motor quotients: gross (GMQ), fine (FMQ), total motor (TMQ). Naled, methamidophos, trichlorfon, chlorpyrifos, and phorate were detected in ≥10% of samples. Prenatal naled and chlorpyrifos were associated with decreased 9-month motor function. Scores were 0.55, 0.85, and 0.90 points lower per 1ng/mL increase in log-naled, for V-M (p=0.04), FM (p=0.04), and FMQ (p=0.08), respectively. For chlorpyrifos, scores were 0.50, 1.98, 0.80, 1.91, 3.49, 2.71, 6.29, 2.56, 2.04, and 2.59 points lower for exposed versus unexposed infants, for reflexes (p=0.04), locomotion (p=0.02), grasping (p=0.05), V-M (pchlorpyrifos. Naled is being aerially sprayed to combat mosquitoes carrying Zika virus, yet this is the first non-occupational human study of its health effects. Delays in early-motor skill acquisition may be detrimental for downstream development and cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Tryptophan: the key to boosting brain serotonin synthesis in depressive illness.

    Science.gov (United States)

    Badawy, Abdulla A-B

    2013-10-01

    It has been proposed that focusing on brain serotonin synthesis can advance antidepressant drug development. Biochemical aspects of the serotonin deficiency in major depressive disorder (MDD) are discussed here in detail. The deficiency is caused by a decreased availability of the serotonin precursor tryptophan (Trp) to the brain. This decrease is caused by accelerated Trp degradation, most likely induced by enhancement of the hepatic enzyme tryptophan 2,3-dioxygenase (TDO) by glucocorticoids and/or catecholamines. Induction of the extrahepatic Trp-degrading enzyme indolylamine 2,3-dioxygenase (IDO) by the modest immune activation in MDD has not been demonstrated and, if it occurs, is unlikely to make a significant contribution. Liver TDO appears to be a target of many antidepressants, the mood stabilisers Li(+) and carbamazepine and possibly other adjuncts to antidepressant therapy. The poor, variable and modest antidepressant efficacy of Trp is due to accelerated hepatic Trp degradation, and efficacy can be restored or enhanced by combination with antidepressants or other existing or new TDO inhibitors. Enhancing Trp availability to the brain is thus the key to normalisation of serotonin synthesis and could form the basis for future antidepressant drug development.

  6. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICATION IN THE U.S. EPA INDOOR AIR QUALITY TEST HOUSE

    Science.gov (United States)

    A study was conducted in the U.S. EPA Indoor Air Quality Test House to determine the spatial and temporal distribution of chlorpyrifos following a professional crack and crevice application in the kitchen. Following the application, measurements were made in the kitchen, den a...

  7. Efficacy of serotonin in lessening radiation damage to mouse embryo depending on time of its administration following radiation exposure

    International Nuclear Information System (INIS)

    Konstantinova, M.M.; Dontsova, G.V.; Panaeva, S.V.; Turpaev, T.M.

    1994-01-01

    Our earlier studies demonstrated that serotonin lessons radiation damage to an 8-day mouse embryo. Moreover, this biogenic amine was equally effective when administered before and after intrauterine exposure of the embryo to ionizing radiation. The radiotherapeutic effect of serotonin was manifested by disorders in the embryo growth of various intensity, within the range of the studied radiation doses (1.31, 1.74, and 2.18 Gy). The therapeutic effect of serotonin in the embryos exposed to various doses of radiation depended on the amount of serotonin administered. The effective doses of this substance were determined by the severity of the damage inflicted. In this series of experiments, serotonin was administered immediately after exposure to ionizing radiation. The object of the present study was to determine whether or not the radiotherapeutic effect of serotonin depends on the time that elapses between the end of radiation exposure and the administration of serotonin to pregnant mice. It was established that serotonin produces a radiotherapeutic effect during 24 h following the intrauterine exposure of the fetus to ionizing radiation on the 8th day of gestation. The best therapeutic effect is attained with the administration of serotonin immediately after radiation exposure. The effect is slightly lower is serotonin is administered within 5 or 24 h following radiation exposure

  8. Aggressive Behavior and Altered Amounts of Brain Serotonin and Norepinephrine in Mice Lacking MAOA

    Science.gov (United States)

    Cases, Olivier; Grimsby, Joseph; Gaspar, Patricia; Chen, Kevin; Pournin, Sandrine; Müller, Ulrike; Aguet, Michel; Babinet, Charles; Shih, Jean Chen; De Maeyer, Edward

    2010-01-01

    Deficiency in monoamine oxidase A (MAOA), an enzyme that degrades serotonin and norepinephrine, has recently been shown to be associated with aggressive behavior in men of a Dutch family. A line of transgenic mice was isolated in which transgene integration caused a deletion in the gene encoding MAOA, providing an animal model of MAOA deficiency. In pup brains, serotonin concentrations were increased up to ninefold, and serotonin-like immunoreactivity was present in catecholaminergic neurons. In pup and adult brains, norepinephrine concentrations were increased up to twofold, and cytoarchitectural changes were observed in the somatosensory cortex. Pup behavioral alterations, including trembling, difficulty in righting, and fearfulness were reversed by the serotonin synthesis inhibitor parachlorophenylalanine. Adults manifested a distinct behavioral syndrome, including enhanced aggression in males. PMID:7792602

  9. Mixture and single-substance toxicity of selective serotonin reuptake inhibitors toward algae and crustaceans

    DEFF Research Database (Denmark)

    Christensen, Anne Munch; Faaborg-Andersen, S.; Ingerslev, Flemming

    2007-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are used as antidepressant medications. primarily in the treatment of clinical depression. They are among the pharmaceuticals most often Prescribed in the industrialized countries. Selective serotonin reuptake inhibitors are compounds with an identi......Selective serotonin reuptake inhibitors (SSRIs) are used as antidepressant medications. primarily in the treatment of clinical depression. They are among the pharmaceuticals most often Prescribed in the industrialized countries. Selective serotonin reuptake inhibitors are compounds...... with an identical mechanism of action in mammals (inhibit reuptake of serotonin), and they have been found in different aqeous as well as biological samples collected in the environment. In the present study, we tested the toxicities of five SSRIs (citalopram, fluoxetine, fluoxamine, paroxetine, and sertraline.......027 to 1.6 mg/L, and in daphnids, test EC50s ranged from 0.92 to 20 mg/L, with sertraline being one of the most toxic compounds. The test design and statistical analysis of results from mixture tests were based on isobole analysis. It was demonstrated that the mixture toxicity of the SSRIs in the two...

  10. Upper gastrointestinal bleeding in a patient with depression receiving selective serotonin reuptake inhibitor therapy.

    Science.gov (United States)

    Kumar, Deepak; Saaraswat, Tanuj; Sengupta, S N; Mehrotra, Saurabh

    2009-02-01

    Serotonin plays an important role in the normal clotting phenomenon and is released by platelets. Platelets are dependent on a serotonin transporter for the uptake of serotonin, as they cannot synthesize it themselves. Selective serotonin reuptake inhibitors (SSRIs) block the uptake of serotonin into platelets and can cause problems with clotting leading to bleeding. This case report highlights the occurrence of upper gastrointestinal bleeding in the index case on initiating SSRI therapy for depression and the prompt resolution of the same on its discontinuation on two separate occasions. SSRIs may cause upper gastrointestinal (GI) bleeding. Physicians should be aware of the same and should try to rule out previous episodes of upper GI bleed or the presence of other risk factors which might predispose to it before prescribing SSRIs; they should also warn the patients about this potential side effect. Also, the presence of thalassemia trait in the index patient deserves special attention and needs to be explored to see if it might in any way contribute in potentiating this side effect of SSRIs.

  11. Serotonin depletion induces pessimistic-like behavior in a cognitive bias paradigm in pigs.

    Science.gov (United States)

    Stracke, Jenny; Otten, Winfried; Tuchscherer, Armin; Puppe, Birger; Düpjan, Sandra

    2017-05-15

    Cognitive and affective processes are highly interrelated. This has implications for neuropsychiatric disorders such as major depressive disorder in humans but also for the welfare of non-human animals. The brain serotonergic system might play a key role in mediating the relationship between cognitive functions and affective regulation. The aim of our study was to examine the influence of serotonin depletion on the affective state and cognitive processing in pigs, an important farm animal species but also a potential model species for biomedical research in humans. For this purpose, we modified a serotonin depletion model using para-chlorophenylalanine (pCPA) to decrease serotonin levels in brain areas involved in cognitive and affective processing (part 1). The consequences of serotonin depletion were then measured in two behavioral tests (part 2): the spatial judgement task (SJT), providing information about the effects of the affective state on cognitive processing, and the open field/novel object (OFNO) test, which measures behavioral reactions to novelty that are assumed to reflect affective state. In part 1, 40 pigs were treated with either pCPA or saline for six consecutive days. Serotonin levels were assessed in seven different brain regions 4, 5, 6, 11 and 13days after the first injection. Serotonin was significantly depleted in all analyzed brain regions up to 13days after the first application. In part 2, the pCPA model was applied to 48 animals in behavioral testing. Behavioral tests, the OFNO test and the SJT, were conducted both before and after pCPA/saline injections. While results from the OFNO tests were inconclusive, an effect of treatment as well as an effect of the phase (before and after treatment) was observed in the SJT. Animals treated with pCPA showed more pessimistic-like behavior, suggesting a more negative affective state due to serotonin depletion. Thus, our results confirm that the serotonergic system is a key player in cognitive

  12. Serotonin and noradrenaline reuptake inhibitors improve micturition control in mice.

    Directory of Open Access Journals (Sweden)

    Marco Redaelli

    Full Text Available Poor micturition control may cause profound distress, because proper voiding is mandatory for an active social life. Micturition results from the subtle interplay of central and peripheral components. It involves the coordination of autonomic and neuromuscular activity at the brainstem level, under the executive control of the prefrontal cortex. We tested the hypothesis that administration of molecules acting as reuptake inhibitors of serotonin, noradrenaline or both may exert a strong effect on the control of urine release, in a mouse model of overactive bladder. Mice were injected with cyclophosphamide (40 mg/kg, to increase micturition acts. Mice were then given one of four molecules: the serotonin reuptake inhibitor imipramine, its metabolite desipramine that acts on noradrenaline reuptake, the serotonin and noradrenaline reuptake inhibitor duloxetine or its active metabolite 4-hydroxy-duloxetine. Cyclophosphamide increased urine release without inducing overt toxicity or inflammation, except for increase in urothelium thickness. All the antidepressants were able to decrease the cyclophosphamide effects, as apparent from longer latency to the first micturition act, decreased number of urine spots and volume of released urine. These results suggest that serotonin and noradrenaline reuptake inhibitors exert a strong and effective modulatory effect on the control of urine release and prompt to additional studies on their central effects on brain areas involved in the social and behavioral control of micturition.

  13. APRESS: apical regulatory super system, serotonin, and dopamine interaction

    Directory of Open Access Journals (Sweden)

    Hinz M

    2011-08-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics, Inc, Cape Coral, FL, USA; 2Stein Orthopedic Associates, Plantation, FL, USA; 3DBS Labs, Duluth, MN, USABackground: The monoamines serotonin and dopamine are known to exist in two separate states: the endogenous state and the competitive inhibition state. The presence of the competitive inhibition state has been known to science for many years, but from a functional standpoint it has been noted in the literature as being "meaningless."Methods: A large database of monoamine transporter response to amino acid precursor administration variations with clinical outcomes was accumulated. In the process, a new organic cation transporter (OCT model has been published, and OCT functional status determination along with amino acid precursor manipulation methods have been invented and refined.Results: Methodology was developed whereby manipulation of the OCT, in the competitive inhibition state, is carried out in a predictable manner. This, in turn, has disproved the long-held assertion that the monoamine competitive inhibition state is functionally meaningless.Conclusion: The most significant aspect of this paper is the documentation of newly recognized relationships between serotonin and dopamine. When transport of serotonin and dopamine are both in the competitive inhibition state, manipulation of the concentrations of one will lead to predictable changes in concentrations of the other. From a functional standpoint, processes regulated and controlled by changes to only serotonin can now be controlled by changes to dopamine, and vice versa, in a predictable manner.Keywords: catecholamine, monoamine, competitive inhibition state

  14. Serotonin depletion increases seizure susceptibility and worsens neuropathological outcomes in kainate model of epilepsy.

    Science.gov (United States)

    Maia, Gisela H; Brazete, Cátia S; Soares, Joana I; Luz, Liliana L; Lukoyanov, Nikolai V

    2017-09-01

    Serotonin is implicated in the regulation of seizures, but whether or not it can potentiate the effects of epileptogenic factors is not fully established. Using the kainic acid model of epilepsy in rats, we tested the effects of serotonin depletion on (1) susceptibility to acute seizures, (2) development of spontaneous recurrent seizures and (3) behavioral and neuroanatomical sequelae of kainic acid treatment. Serotonin was depleted by pretreating rats with p-chlorophenylalanine. In different groups, kainic acid was injected at 3 different doses: 6.5mg/kg, 9.0mg/kg or 12.5mg/kg. A single dose of 6.5mg/kg of kainic acid reliably induced status epilepticus in p-chlorophenylalanine-pretreated rats, but not in saline-pretreated rats. The neuroexcitatory effects of kainic acid in the p-chlorophenylalanine-pretreated rats, but not in saline-pretreated rats, were associated with the presence of tonic-clonic convulsions and high lethality. Compared to controls, a greater portion of serotonin-depleted rats showed spontaneous recurrent seizures after kainic acid injections. Loss of hippocampal neurons and spatial memory deficits associated with kainic acid treatment were exacerbated by prior depletion of serotonin. The present findings are of particular importance because they suggest that low serotonin activity may represent one of the major risk factors for epilepsy and, thus, offer potentially relevant targets for prevention of epileptogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Individual differences in scanpaths correspond with serotonin transporter genotype and behavioral phenotype in rhesus monkeys (Macaca mulatta

    Directory of Open Access Journals (Sweden)

    Robert R Gibboni

    2009-11-01

    Full Text Available Scanpaths (the succession of fixations and saccades during spontaneous viewing contain information about the image but also about the viewer. To determine the viewer-dependent factors in the scanpaths of monkeys, we trained three adult males (Macaca mulatta to look for 3 s at images of conspecific facial expressions with either direct or averted gaze. The subjects showed significant differences on four basic scanpath parameters (number of fixations, fixation duration, saccade length, and total scanpath length when viewing the same facial expression/gaze direction combinations. Furthermore, we found differences between monkeys in feature preference and in the temporal order in which features were visited on different facial expressions. Overall, the between-subject variability was larger than the within- subject variability, suggesting that scanpaths reflect individual preferences in allocating visual attention to various features in aggressive, neutral, and appeasing facial expressions. Individual scanpath characteristics were brought into register with the genotype for the serotonin transporter regulatory gene (5-HTTLPR and with behavioral characteristics such as expression of anticipatory anxiety and impulsiveness/hesitation in approaching food in the presence of a potentially dangerous object.

  16. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    International Nuclear Information System (INIS)

    Yang Dongren; Howard, Angela; Bruun, Donald; Ajua-Alemanj, Mispa; Pickart, Cecile; Lein, Pamela J.

    2008-01-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE -/- ) versus wild type (AChE +/+ ) mice indicated that while these OPs inhibited axonal growth in AChE +/+ DRG neurons, they had no effect on axonal growth in AChE -/- DRG neurons. However, transfection of AChE -/- DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs

  17. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Serotonin and the regulation of calcium transport in dairy cows.

    Science.gov (United States)

    Hernandez, L L

    2017-12-01

    The mammary gland regulates maternal metabolism during lactation. Numerous factors within the tissue send signals to shift nutrients to the mammary gland for milk synthesis. Serotonin is a monoamine that has been well documented to regulate several aspects of lactation among species. Maintenance of maternal calcium homeostasis during lactation is a highly evolved process that is elegantly regulated by the interaction of the mammary gland with the bone, gut, and kidney tissues. It is well documented that dietary calcium is insufficient to maintain maternal calcium concentrations during lactation, and mammals must rely on bone resorption to maintain normocalcemia. Our recent work focused on the ability of the mammary gland to function as an accessory parathyroid gland during lactation. It was demonstrated that serotonin acts to stimulate parathyroid hormone-related protein (PTHrP) in the mammary gland during lactation. The main role of mammary-derived PTHrP during mammalian lactation is to stimulate bone resorption to maintain maternal calcium homeostasis during lactation. In addition to regulating PTHrP, it was shown that serotonin appears to directly affect calcium transporters and pumps in the mammary gland. Our current working hypothesis regarding the control of calcium during lactation is as follows: serotonin directly stimulates PTHrP production in the mammary gland through interaction with the sonic hedgehog signaling pathway. Simultaneously, serotonin directly increases calcium movement into the mammary gland and, subsequently, milk. These 2 direct actions of serotonin combine to induce a transient maternal hypocalcemia required to further stimulate PTHrP production and calcium mobilization from bone. Through these 2 routes, serotonin is able to improve maternal calcium concentrations. Furthermore, we have shown that Holstein and Jersey cows appear to regulate calcium in different manners and also respond differently to serotonergic stimulation of the calcium

  18. Serotonin, neural markers and memory

    Directory of Open Access Journals (Sweden)

    Alfredo eMeneses

    2015-07-01

    Full Text Available Diverse neuropsychiatric disorders present dysfunctional memory and no effective treatment exits for them; likely as result of the absence of neural markers associated to memory. Neurotransmitter systems and signaling pathways have been implicated in memory and dysfunctional memory; however, their role is poorly understood. Hence, neural markers and cerebral functions and dysfunctions are revised. To our knowledge no previous systematic works have been published addressing these issues. The interactions among behavioral tasks, control groups and molecular changes and/or pharmacological effects are mentioned. Neurotransmitter receptors and signaling pathways, during normal and abnormally functioning memory with an emphasis on the behavioral aspects of memory are revised. With focus on serotonin, since as it is a well characterized neurotransmitter, with multiple pharmacological tools, and well characterized downstream signaling in mammals’ species. 5-HT1A, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 receptors as well as SERT (serotonin transporter seem to be useful neural markers and/or therapeutic targets. Certainly, if the mentioned evidence is replicated, then the translatability from preclinical and clinical studies to neural changes might be confirmed. Hypothesis and theories might provide appropriate limits and perspectives of evidence

  19. Approach to novel functional foods for stress control 4. Regulation of serotonin transporter by food factors.

    Science.gov (United States)

    Ito, Mikiko; Haito, Sakiko; Furumoto, Mari; Kawai, Yoshichika; Terao, Junji; Miyamoto, Ken-ichi

    2005-11-01

    Serotonin transporters (SERTs) are pre-synaptic proteins specialized for the clearance of serotonin following vesicular release at central nervous system (CNS) and enteric nervous system synapses. SERTs are high affinity targets in vivo for antidepressants such as serotonin selective reuptake inhibitors (SSRIs). These include 'medical' psychopharmacological agents such as analgesics and antihistamines, a plant extract called St John's Wort (Hypericum). Osteoclasts are the primary cells responsible for bone resorption. They arise by the differentiation of osteoclast precursors of the monocyte/macrophage lineage. The expression of SERTs was increased in RANKL-induced osteoclast-like cells. Using RANKL stimulation of RAW264.7 cells as a model system for osteoclast differentiation, we studied the direct effects of food factor on serotonin uptake. The SSRIs (fluoxetine and fluvoxamine) inhibited markedly (approximately 95%) in serotonin transport in differentiated osteoclast cells. The major components of St. John's Wort, hyperforin and hypericine were significantly decreased in serotonin transport activity. Thus, a new in vitro model using RANKL-induced osteoclast-like cells may be useful to analyze the regulation of SERT by food factors and SSRIs.

  20. Serotonin 6 receptor controls Alzheimer's disease and depression.

    Science.gov (United States)

    Yun, Hyung-Mun; Park, Kyung-Ran; Kim, Eun-Cheol; Kim, Sanghyeon; Hong, Jin Tae

    2015-09-29

    Alzheimer's disease (AD) and depression in late life are one of the most severe health problems in the world disorders. Serotonin 6 receptor (5-HT6R) has caused much interest for potential roles in AD and depression. However, a causative role of perturbed 5-HT6R function between two diseases was poorly defined. In the present study, we found that a 5-HT6R antagonist, SB271036 rescued memory impairment by attenuating the generation of Aβ via the inhibition of γ-secretase activity and the inactivation of astrocytes and microglia in the AD mouse model. It was found that the reduction of serotonin level was significantly recovered by SB271036, which was mediated by an indirect regulation of serotonergic neurons via GABA. Selective serotonin reuptake inhibitor (SSRI), fluoxetine significantly improved cognitive impairment and behavioral changes. In human brain of depression patients, we then identified the potential genes, amyloid beta (A4) precursor protein-binding, family A, member 2 (APBA2), well known AD modulators by integrating datasets from neuropathology, microarray, and RNA seq. studies with correlation analysis tools. And also, it was demonstrated in mouse models and patients of AD. These data indicate functional network of 5-HT6R between AD and depression.